常见不等关系的关键词的数学化
人教版初一数学下册:实际问题与一元一次不等式(提高)知识讲解
实际问题与一元一次不等式(提高)知识讲解【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题; 2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系 1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【高清课堂:实际问题与一元一次不等式409415 小结:】 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等; (2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式; (4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意. 要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来; (3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如下面例1中 “设还需要B 型车x 辆 ”,而在答中 “至少需要11台B 型车 ”.这一点要应十分注意. 【典型例题】类型一、简单应用题1.蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?【思路点拨】本题的数量关系是:7辆A型汽车装载货物的吨数+B型汽车装货物的吨数≥300吨,由此可得出不等式,求出自变量的取值范围,找出符合条件的值.【答案与解析】解:设需调用B型车x辆,由题意得:72015300x⨯+≥,解得:2103x≥,又因为x取整数,所以x最小取11.答:在已确定调用7辆A型车的前提下至少还需调用B型车11辆.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等量关系.举一反三:【变式】(2015•香坊区二模)某商场共用2200元同时购进A、B两种型号的背包各40个,且购进A型号背包2个比购进B型号背包1个多用20元.(1)求A、B两种型号背包的进货单价各为多少元?(2)若该商场把A、B两种型号背包均按每个50元的价格进行零售,同时为了吸引消费者,商场拿出一部分背包按零售价的7折进行让利销售.商场在这批背包全部销售完后,若总获利不低于1350元,求商场用于让利销售的背包数量最多为多少个?【答案】解:(1)设A型背包每个为x元,B型背包每个为y元,由题意得,解得:.答:A、B两种型号背包的进货单价各为25元、30元;(2)设商场用于让利销售的背包数量为a个,由题意得,50×70a%+50(40×2﹣a)﹣2200≥1350,解得:a≤30.所以,商场用于让利销售的背包数数量最多为30个.答:商场用于让利销售的背包数数量最多为30个.类型二、阅读理解型2. 用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料维生素C含量(单位•千克)600 100原料价格(元•千克)8 4现配制这种饮料10kg,要求至少含有4200单位的维生素C,若所需甲种原料的质量为xkg,则x应满足的不等式为()A.600x+100(10-x)≥4200 B.8x+4(100-x)≤4200C.600x+100(10-x)≤4200 D.8x+4(100-x)≥4200【思路点拨】首先由甲种原料所需的质量和饮料的总质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有4200单位的维生素C”这一不等关系列不等式.【答案】A【解析】解:若所需甲种原料的质量为xkg,则需乙种原料(10-x)kg.根据题意,得600x+100(10-x)≥4200.【总结升华】能够读懂表格,会把文字语言转换为数学语言.【变式】(2015春•西城区期末)为了落实水资源管理制度,大力促进水资源节约,某地实行居民用水阶梯水价,收费标准如下表:(1)小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为元;(2)小明家6月份缴纳水费110元,在这个月,小明家缴纳第二阶梯水价的用水量为立方米;(3)随着夏天的到来,用水量将会有所增加,为了节省开支,小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水多少立方米?【答案】解:(1)由表格中数据可得:0≤x≤15时,水价为:5元/立方米,故小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为:14×5=70(元);(2)∵15×5=75<110,75+6×7=117>110,∴小明家6月份使用水量超过15立方米但小于21立方米,设小明家6月份使用水量为x立方米,∴75+(x﹣15)×7=110,解得:x=20,故小明家缴纳第二阶梯水价的用水量为:20﹣15=5(立方米),故答案为:5;(3)设小明家能用水a立方米,根据题意可得:117+(a﹣21)×9≤180,解得:a≤28.答:小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水28立方米.类型三、方案选择型3.(2015•龙岩)某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)45 30租金(元/辆)400 280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x 45x 400xB 5﹣x __________ ___________(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.【思路点拨】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.【答案与解析】解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.【总结升华】此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.举一反三:【变式】黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?【答案】解:设四座车租x辆,则十一座车租70411x-辆.依题意 70×60+60x+(70-4x)×10≤5000,将不等式左边化简后得:20x+4900≤5000,不等式两边减去3500得 20x≤100,不等式两边除以20得 x≤5,又∵70411x-是整数,∴1x=,704611x-=.答:公司租用四座车l辆,十一座车6辆.4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【思路点拨】(1)关系式为:甲种电冰箱用款+乙种电冰箱用款+丙种电冰箱用款≤132000,根据此不等关系列不等式即可求解;(2)关系式为:甲种电冰箱的台数≤丙种电冰箱的台数,以及(1)中得到的关系式联合求解.【答案与解析】解:(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据题意得1200×2x+1600x+(80-3x)×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;(2)根据题意得2x≤80-3x解这个不等式得x≤16由(1)知x≥14∴14≤x≤16又∵x为正整数∴x=14,15,16.所以,有三种购买方案方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台.方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台.方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.【总结升华】探求不等关系时,要注意捕捉“大于”、“超过”、“不少于”、“不足”、“至多”等表示不等关系的关键词,通过这些词语,可以直接找到不等关系.附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x ,请你根据题意写出x 必须满足的不等式. 【思路点拨】由题意知,x 必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系. 【答案与解析】 解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】 举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵. 【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树; 最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵, 这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组. 【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
不等式的特点和规律
不等式的特点与规律数量关系是数学研究的核心内容之一,数量关系既包括等量关系,也包括不等量关系,与刻画等量关系的等式、方程、函数等模型不同,不等式则是刻画普通存在的不等关系的典型模型。
理解进而掌握不等式模型,不仅可以深化对等式、方程等模型的理解,而且可以丰富自己的数学认知结构,为后续学习奠定重要基础。
为此,我们必须努力做到以下三个方面。
一、理解不等关系不等关系与相等关系既是矛盾对立的,也是相互统一的。
事实上,对于两个量a 、b 之间的不等关系a>b ,如果我们引入一个实数δ,使得b a -=δ,那么,0b a >-=δ,即δ是一个正数,从而不等关系a>b 可以等价地转化为相等关系δ+=b a (其中δ是一个正数)。
二、理解不等式的基本性质对此我们可以从以下三个方面进行思考1、类比等式性质理解和掌握不等式性质等式有很多基本的性质,不等式也是如此。
在理解不等式的基本性质时,我们可以借助类比的思想,对照等式相应的性质,感受不等式的基本性质。
但是,对于性质3“不等式的两边都乘以(或除以)同一个负数,不等号的方向改变”,我们要知道这时不等号的类别不变,但方向改为原来的相反方向,即<、>、≤、≥依次改为≤≥<>、、、。
这是等式里所没有的,解不等式时尤其要注意这一点。
2、能够初步证明不等式的有关性质。
利用“δ+=⇔>b a b a (其中δ是一个正数)”,我们可以很简捷地证明不等式的三个基本性质。
例如,对于性质1“若a>b ,则c b c a ±>±”,因“δ+=⇔>b a b a (其中δ是一个正数)”,于是,由等式性质,得c b c a ±δ+=±,即δ+±=±)c b (c a ,从而必有c b c a ±>±。
同样地,对于性质2和性质3,利用“δ+=⇔>b a b a (其中δ是一个正数)”也能很容易地证明。
一元一次不等式(组)的应用
专题20 一元一次不等式(组)的应用知识要点1.一元一次不等式(组)在实际生活中的应用,就是将实际问题转化为刻画不等关系的数学模型即不等式(组)这一数学问题,其基本步骤:(1)审:通过审题,分析已知数和未知数;(2)设:根据题意设未知数;(3)找:找出能够符合题意的不等关系;(4)列:根据不等关系列出不等式(组);(5)解:解不等式(组);(6)求:从不等式(组);(7)答:写出答案.2.注意常见的反映不等关系的关键词:如至多(或最多),不超过,不足,至少,不低于,不少于.3.利润问题中除了“利润=售价一进价(成本)=利润率×成本”外,还要注意打n 折是售价×0.1n 而不是售价×n .4.不等式(组)的解集一般是取值范围,但在实际问题中往往需要根据问题的实际意义求未知数的某特殊解,比如笔的支数、车的辆数、人数等应是整数解或非负整数解等,解答这类问题的关键是明确解的特征.典例精析例1 某种商品进价为800元,出售时标价为1200元,后来由于该商品积压,商品准备打折出售,但要保持利润不低于5%,则至少可以打多少折.【分析】关键词“不低于”的不等关系可用不等式表示,列出不等式解之即可.【解】设打x 折,依题意,得., 解得x ≥7.答:至少可以打7折.【点评】注意设未知数应“设打x 折”,不能“设至少打x 折”,同时注意打x 折应为0.1x 或.拓展与变式1 某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保持利润不低于5%,那么商店最多降 元出售商品.拓展与变式2 某商品的标价比成本价高25%,根据市场需要,该商品需降价出售,为了不亏本,至多降价百分之几?【反思】“至多”“至少”都是不等关系,结合利润问题中的数量关系和不等关系列出12000.18008005%x ⨯-≥⨯110x不等式.例2 某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?【分析】注意有15题计算分数,把答对题的分数和答错题的分数加起来,列出不等式求解,注意答对的题数应为正整数.【解】设这个学生答对x 道题,依题意得,解得.∵x 应取正整数,∴x 的最小值为12.答:这个学生至少答对12題,成绩才能在60分以上.【点评】注意根据不等式的解集结合实际情况取符合实际意义的解.拓展与变式3 为了举行班级晚会,小明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍作为奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,那么小明最多可以买多少个球拍?拓展与变式4 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元,已知甲、乙、丙三种电冰箱的出厂价格分别为1200元/台,1600元/台,2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求购买甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【反思】找好不等关系列出不等式,同时注意问题的解要符合问题的实际意义.例3 甲、乙两家商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同. 甲商场规定:凡购买超过1 000元电器的,超出的金额按90%实收;乙商场规定:凡购买超过500元电器的,超出的金额按95%实收.顾客怎样选择商场购买电器能获得更大的优惠? ()621560x x -->1114x >【分析】设顾客所购买电器的金额为x 元,分x >1000、500<x ≤100和0<x ≤500三种情况分别比较在甲、乙两商场购买时的实际金额数.【解】设顾客所购买电器的金额为x 元,由题意得当0<x ≤500时,可任意选择甲、乙两商场;当500<x ≤1000时,可选择乙商场;当x >1000时,设甲商场实收金额为,则元;乙商场实收金额为,则 元.①当<时,即1000+(x -1000)×0.9<500+(x -500)×0.95,0.9x +100<0.95x +25,即-0.05x <-75,解得x >1500.∴当x >1500时,可选择甲商场. ②当=时,即1000+(x -1000)×0.9=500+(x -500)×0.95,0.9x +100=0.9,即-0.05x =-75,解得x =1500.∴当x =1500时,可任意选择甲、乙两商场. ③当>时,即11000+(x -1000)×0.9>500+(x -500)×0.95,0.9x +100>0.95x +25,即-0.05x >-75,解得x <1500.∴当x <1500时,可选择乙商场. 综上所述,顾客对于商场的选择可参考如下:(1)当0<x ≤500或x =1500时,可任意选择甲、乙两商场;(2)当500<x <1500时,可选择乙商场;(3)当x >1500时,可选择甲商场.拓展与变式5 某大型超市为了促进商场的销售,推出了会员制度.共有两种会员卡,其中普通卡每年需交纳会员费100元,所购买商品均可享受9.5折优惠;贵宾卡每年需交纳会员费300元,所购买的商品均可享受9折优惠.小明家一年在该超市购买商品共消费5000元,应选择 卡合算.拓展与变式6 端午节是中华民族古老的传统节日.甲、乙两家超市在端午节当天对一种原来售价相同的粽子分别推出了不同的优惠方案.甲超市方案:购买该种粽子超过200元后,超出200元的部分按95%收费;乙超市方案:购买该种粽子超过300元后,超出300元的部分按90%收费.设某位顾客购买了x 元的该种粽子.(1)补充表格,填写在横线上:(2)列式计算说明,如果顾客在端午节当天购买该种粽子超过300元,那么到哪家超市花费更少?y 甲()()100010000.90.91000y x =+-⨯=+甲y 乙()()5005000.950.9525y x x =+-⨯=+乙y 甲y 乙y 甲y 乙y 甲y 乙【反思】方案选择问题需要分类讨论,需把各种情况进行比较,从而找出最优解.专题突破1.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于60分才能得奖,那么要得奖至少应选对的题数为().A. 18B. 19C. 20D. 212.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔的数量为().A. 20支B. 14支C. 13支D. 10支3.某市举办以“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共500棵,已知甲树每棵800元,乙树每棵1200元.若购买甲树的金额不少于购买乙树的金额,问:至少应购买甲树多少棵?4.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8人,则有一间宿舍不满也不空,问:宿舍间数和学生人数分别是多少?5.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种? 请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1 500元,那么应选择以上哪种购买方案?。
解决问题的关键理解数学问题中的关键词
解决问题的关键理解数学问题中的关键词解决问题的关键-理解数学问题中的关键词数学是一门抽象的学科,它以符号、公式和算式为基础,通过逻辑推理和证明来解决各种问题。
然而,在实际学习和解题中,我们常常遇到一些晦涩难懂的数学问题,无法正确理解问题的关键,就会导致解题困难甚至出错。
因此,理解数学问题中的关键词是解决问题的关键之一。
一、理解问题在解决数学问题之前,首先要充分理解问题的意义和要求。
而要理解问题,就需要关注问题中的关键词。
关键词通常是问题中最能反映问题本质的词语,在数学问题中扮演着重要的角色。
下面以几个具体的数学问题为例,来说明理解关键词的重要性。
例1:小明有100个苹果,小红有50个苹果,他们一起将苹果分成若干堆,每堆都有相同数量的苹果,且不能剩下。
问他们最多可以分成几堆?解析:这个问题中的关键词是“最多可以分成几堆”,关于堆的数量。
理解关键词,我们可以得知,他们所拥有的苹果总数应该能够整除每堆的苹果数量,而最大的堆数应该是他们所拥有的苹果总数的最大公约数。
因此,我们应该计算100和50的最大公约数,得出答案为50。
例2:一条绳子长12米,被剪成了长度相同的3段。
问每段绳子的长度是多少?解析:问题中的关键词是“长度相同的3段”,要求得出每段绳子的长度。
理解关键词,我们可以得知,绳子长度应该被3整除,且每段绳子长度相同。
因此,我们应该将12米分成3份,每段绳子的长度为12米除以3,即4米。
以上两个例子说明了理解问题中的关键词对于问题解决的帮助。
在实际的数学问题中,准确理解问题,找出关键词是解决问题的第一步。
二、关键词的分类与应用理解数学问题中的关键词,需要对常见的关键词有所了解,并能够将其应用于问题求解中。
下面将关键词进行分类,并给出相应的应用示例。
1. 数量关键词数量关键词通常用于表示数值大小、数量比较等,如“减少、增加、总计、差值、倍数、平均数”等。
我们可以通过数量关键词对数学问题进行数值计算或比较。
不等式概念及性质知识点详解与练习[1]
(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改)的全部内容。
不等式的概念及性质知识点详解及练习一、不等式的概念及列不等式不等式⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→≤≥≠→→表示出不等关系列出代数式设未知数步骤列不等式””、“”、“”、“”、““不等号概念 1、不等式的概念及其分类(1)定义:用“>”、“﹤”、“≠”、“≥"及“≤"等不等号把代数式连接起来,表示不等关系的式子。
a —b 〉0a>b, a —b=0a=b, a-b 〈0a<b 。
(2)分类:①矛盾不等式:不等式只是表示了某种不等关系,它表示的关系可能在任何条件下都不成立,这样的不等式叫矛盾不等式;如2>3,x 2﹤0②绝对不等式:它表示的关系可能在任何条件下都成立,这样的不等式叫绝对不等式; ③条件不等式:在一定条件下才能成立的不等式叫条件不等式。
(3)不等号的类型:①“≠”读作“不等于”,它说明两个量之间关系是不等的,但不能明确两个量谁大谁小; ②“>"读作“大于",它表示左边的数比右边的数大;③“﹤”读作“小于”, 它表示左边的数比右边的数小;④“≥”读作“大于或等于”, 它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”, 它表示左边的数不大于右边的数;注意:要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
(文章)列不等式的两个步骤
列不等式的两个步骤不等式指的是用不等号连接的式子,不等号的两边是代数式。
能否根据题目的意思列出正确的不等式,是利用不等式解决问题的关键。
列不等式的步骤总结如下:1、确定不等关系用不等号表示数量之间的关系,类似于用方程表示相等关系,其关键是把两个数量之间的关系找到,也就是找到题目中表示不等关系的一些关键词:“大于”、“小于”、“不大于”、“不小于”、“非负数”、“非正数”、“最多”、“至少”、“超过”、“低于”等等,将这些关键词转化为数学符号,其意义常用的有四种:“≤”、“≥”、“<”、“>”。
2、列代数式方程中等号的两边是两个代数式,中间用“=”连接,不等式与方程一样,不等号的两边实际上都是代数式,中间用不等号连接。
所以在确定不等关系的前提下,能够根据已知条件列出相应的代数式是列不等式的基础。
例1:列不等式:a的3倍与b的15的和不大于3。
分析:题目中的关键词是“不大于”,用数学符号表示就是“≤”,关键词的前面是“a的3倍与b的15的和”,列代数式为“135a b+”,关键词的后面是“3”。
解:135a b+≤3。
例2、列不等式:一个数a的13与-4的差不小于这个数的2倍加上5的和。
分析:题目中的关键词是“不小于”,用数学符号表示是“≥”,关键词的前面是“一个数a的13与-4的差”,列代数式为“1(4)3a--”,关键词的后面是“这个数的2倍加上5的和”,列代数式为“25a+”。
解:1(4)3a--≥25a+。
练习:1、x与17的和比它的5倍小。
答案:175x x+< 2、x与8的和比x的8倍大。
答案:88x x+>。
例析解析几何中求解范围问题的常用不等关系
例析解析几何中求解范围问题的常用不等关系摘要:在教学体制改革的背景下,高中数学教学面临一些新变。
传统教学方法逐渐落后于时代发展的潮流,教师需要更新教学模式,创新教学体系。
解析几何是高中数学的重要组成部分,在探讨解析几何的求解范围时,经常要分析不等关系。
本文将具体探讨解析几何中求解范围问题的特点,以及解析几何中求解范围问题的常用不等关系,希望能为相关人士提供一些参考。
关键词:解析几何;求解范围;不等关系引言:高中学生面临一定的升学压力,每个学生都设定了升学目标,希望在高考中乘风破浪,成功考入自己的理想学校。
教师是学生的引导者,担任着为学生传道受业解惑的重要任务,只有发挥教师的引导作用,才能促进学生健康成长。
数学成绩直接关系着学生升学目标的实现,数学教师需要提升学生的学习能力,让学生掌握高效的数学学习技巧。
解析几何求解范围问题是高中数学的常见考点,教师应该将着眼点放在此处,攻克解析几何难点问题,帮助学生形成解题思路。
1解析几何中求解范围问题的特点1.1知识抽象性强与其他类型的数学知识相比,解析几何中求解范围问题更加抽象。
将数学公式、数学概念和数学模型问题与解析几何中求解范围问题进行对比分析,可以发现数学公式、概念模型问题等采用了形象通俗的语言表达方式,而解析几何中求解范围问题采用了抽象高深的语言表达方式[1]。
学生的认知能力有限,对抽象知识点的吸收能力比较弱,对具象知识点的吸收能力比较强,在面对抽象知识点时,学生难免会出现畏难情绪。
1.2逻辑要求性高学生之所以会在数学学习过程中遇到阻碍,是因为高中数学思维方式非常难把握。
解析几何中求解范围问题的知识体系非常庞杂,仅仅依靠一种思维模式很难解答数学问题。
在传统教学过程中,教师习惯对类型题目进行划分,对题目进行优化分解,看题目是否能够套用公式。
这种思维定式的解题方法明显不适用于高中数学,解析几何中求解范围问题对学生的逻辑能力提出考验。
在面对抽象化的数学语言时,学生很难对已知信息进行转换,致使解题效率较低,做题失误不断。
不等关系说课稿
不等关系说课稿引言概述:不等关系是数学中的一个重要概念,它描述了两个数之间的大小关系。
在数学的学习过程中,深入理解不等关系对于解决问题和推理判断都具有重要意义。
本文将从不等关系的定义、性质、应用等方面进行详细阐述。
一、不等关系的定义1.1 不等关系的基本概念不等关系是指两个数之间的大小关系,可以分为大于、小于、大于等于、小于等于四种情况。
用符号表示时,大于用 ">",小于用 "<",大于等于用"≥",小于等于用"≤"。
1.2 不等关系的传递性不等关系具有传递性,即如果a>b,b>c,则有a>c。
这个性质在解决问题时非常实用,可以简化推理过程。
1.3 不等关系的对称性不等关系不具有对称性,即a>b不一定意味着b<a。
这是因为不等关系是基于数的大小进行比较,而不是数的本身。
二、不等关系的性质2.1 不等关系的反身性不等关系具有反身性,即对于任意的数a,都有a≥a或者a≤a。
2.2 不等关系的传递闭包不等关系的传递闭包是指将不等关系中的传递性扩展到所有可能的数对上。
通过传递闭包,我们可以得到更多的不等关系。
2.3 不等关系的等价关系不等关系可以看做是等价关系的一种特殊情况。
等价关系具有自反性、对称性和传递性,而不等关系只具有自反性和传递性。
三、不等关系的应用3.1 不等关系在数学推理中的应用不等关系在数学推理中起到了重要的作用,可以匡助我们解决各种问题。
例如,在证明不等式时,我们可以利用不等关系的传递性和性质来进行推导。
3.2 不等关系在实际问题中的应用不等关系在实际问题中也有广泛的应用。
例如,在经济学中,不等关系可以描述不同商品的价格大小关系;在物理学中,不等关系可以描述物体的大小和分量关系等。
3.3 不等关系在计算机科学中的应用不等关系在计算机科学中也有重要的应用。
例如,在排序算法中,我们可以利用不等关系对元素进行比较和排序;在数据库查询中,不等关系可以用于筛选满足特定条件的数据。
湘教版八年级数学第4章《不等式》知识清单
一元一次不等式(组)知识点汇总4.1 不等式知识点1 不等式的有关概念1、定义:用不等号(“<”、“≤”、“>”、“≥”、“≠”)连接而成的式子,叫做不等式。
这5个用来连接的符号统称不等号。
特别解读1.判断一个式子是否为不等式,关键是看所给式子是否含不等号;2.不等号具有方向性,不等号两边的数(或式子)不能随意交换.2.基本的表达形式:(1)常见的不等号:(2)常见的不等式基本语言与符号表示:①a是正数表示为 a>0, a是负数表示为 a<0;②a是非负数表示为 a≥0, a是非正数表示为 a≤0③ a, b同号表示为 ab> o, a, b异号表示为 ab< o.知识点2 列不等式:一般步骤如下(1)第1步:找出问题中要对比的量,并用代数式表示出来;(2)第2步:找出表示不等关系的关键词,正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过等确切的含义,用相应的不等号表示出来。
(3)第3步:将代数式表示的量→用不等号连接起来。
特别解读列不等式的关键是要领会具体问题中内在的数量关系,特别是一些关键词、句的含义.4.2 不等式的基本性质知识点1不等式的基本性质1.不等式基本性质1:不等式的两边都加上(或减去)同一个数(或式),不等号的方向不变,即,如果a>b,那么a+c>b+c,a-c>b-c.2.不等式基本性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变.即,如果a>b,>0,那么ac>bc, ac >b c.3.不等式基本性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变:即,如果a>b,c<0,那么ac<bc, ac <bc.4.不等式的基本性质与等式的基本性质的关系:知识点2 利用不等式的基本性质化简不等式1.解不等式就是将不等式化为x>a(x≥a)或x<a(x≤a)(a为常数)的形式.对于不等式两边多余的项用不等式基本性质1消去,而不等式基本性质2、基本性质3可将不等式中未知数的系数化为1.2.用不等式的基本性质化简不等式的步骤:(1)用不等式基本性质1将不等式变成ax>b(ax≥b或ax<b(ax≤b)的形式;(2)用不等式基本性质2、基本性质3将不等式变成x>ba (x≥ba)或x<ba (x≤ba)的形式.4.3 一元一次不等式的解法知识点 1 一元一次不等式1.定义:含有一个未知数,且含未知数的项的次数是1的不等式称为一元一次不等式.一元一次不等式的“三要素”:(1)不等式的两边都是整式;(2)只含一个未知数;(3)未知数的次数是1.2.一元一次不等式与一元一次方程间的关系:知识点2 不等式的解与解集1.不等式的解:满足一个不等式的未知数的每一个值,称为这个不等式的一个解。
数学化的名词解释
数学化的名词解释数学是一门严密而抽象的学科,它通过符号和推理来研究数量、结构、变化以及空间等概念。
在数学的学习和研究过程中,我们会遇到许多特定的术语和名词。
这些名词具有其独特的定义和含义,它们是数学化思维的基石。
在本文中,我们将对一些常见的数学名词进行解释。
一、函数函数是数学中的基本概念之一,它描述了两个集合之间的对应关系。
具体而言,函数将一个集合中的每个元素映射到另一个集合中的唯一元素上。
函数由三个要素组成:定义域、值域以及对应关系。
定义域是输入值的集合,值域是输出值的集合,而对应关系则将定义域中的每个元素映射到值域中的唯一元素上。
函数在数学中的应用非常广泛,它能够描述各种关系和现象。
例如,在物理学中,时间和位置之间的关系可以用函数来表示;在经济学中,需求量和价格之间的关系也可以用函数来表示。
通过函数,我们可以把复杂的问题转化为简单的数学表达式,从而更好地理解和分析问题。
二、微积分微积分是数学中的一个重要分支,它研究的是变化的过程。
微积分包括微分学和积分学两个部分。
微分学研究的是函数的变化率和导数,它描述了函数在每个点上的斜率和切线的性质。
积分学研究的是曲线的面积和函数的总变化量,它求解了函数的不定积分和定积分。
微积分的应用非常广泛,它在自然科学、工程学以及经济学等领域都有重要的应用。
例如,通过微积分,我们可以计算物体的速度和加速度,研究物理学中的运动问题;通过微积分,我们可以优化函数的形状和求解最值问题,帮助解决工程学中的设计和规划问题;通过微积分,我们可以计算曲线下的面积,揭示了经济学中的消费和生产关系。
三、线性代数线性代数是数学中的另一个重要分支,它研究的是向量空间和线性变换。
向量是线性代数中的基本概念,它表示具有大小和方向的量。
向量空间则是描述向量集合的数学结构,它包括了向量的加法和数乘运算。
线性变换是将一个向量空间映射到另一个向量空间的线性映射,它保持了向量空间中的线性关系。
线性代数的应用广泛,它在计算机图形学、物理学、统计学以及金融学等领域都发挥着重要作用。
高三数学一轮复习知识点讲解2-1不等式的性质及常见不等式解法
高三数学一轮复习知识点讲解专题2.1 不等式的性质及常见不等式解法【考纲要求】1.不等关系:了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式:(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式.3.会解|x+b|≤c,|x+b|≥c,|x-a|+|x-b|≥c,|x-a|+|x-b|≤c 型不等式.4.掌握不等式||a|-|b||≤|a+b|≤|a|+|b|及其应用.5.培养学生的数学抽象、数学运算、数学建模、逻辑推理等核心数学素养.【知识清单】1.实数的大小(1)数轴上的任意两点中,右边点对应的实数比左边点对应的实数大.(2)对于任意两个实数a和b,如果a-b是正数,那么a>b;如果a-b是负数,那么a<b;如果a-b等于零,那么a=b.2.不等关系与不等式我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些符号的式子,叫做不等式.3.不等式的性质(1)性质1:如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)性质2:如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)性质3:如果a>b,那么a+c>b+c.(4)性质4:①如果a>b,c>0那么ac>bc.②如果a >b ,c <0,那么ac <bc .(5)性质5:如果a >b ,c >d ,那么a +c >b +d . (6)性质6:如果a >b >0,c >d >0,那么ac >bd . (7)性质7:如果a >b >0,那么a n >b n ,(n ∈N ,n ≥2). (8)性质8:如果a >b >0,那么n a >nb ,(n ∈N ,n ≥2). 4.一元二次不等式的概念及形式(1)概念:我们把只含有一个未知数,并且知数的最高次数是2的不等式,称为一元二次不等式. (2)形式:①ax 2+bx +c >0(a ≠0); ②ax 2+bx +c ≥0(a ≠0); ③ax 2+bx +c <0(a ≠0); ④ax 2+bx +c ≤0(a ≠0).(3)一元二次不等式的解集的概念:一般地,使某个一元二次不等式成立的x 的值叫做这个不等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次不等式的解集. 5.分式不等式的解法定义:分母中含有未知数,且分子、分母都是关于x 的多项式的不等式称为__分式不等式__. f (x )g (x )>0⇔f (x )g (x )__>__0,f (x )g (x )<0⇔f (x )·g (x )__<__0. f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )g (x ) ≥ 0,g (x )≠0.⇔f (x )·g (x )__>__0或⎩⎪⎨⎪⎧ f (x )=0g (x )≠0.f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x ) ≤ 0,g (x )≠0⇔f (x )·g (x )__<__0或⎩⎪⎨⎪⎧f (x )=0g (x )≠0. 6.简单的高次不等式的解法高次不等式:不等式最高次项的次数高于2,这样的不等式称为高次不等式. 解法:穿根法①将f (x )最高次项系数化为正数;②将f (x )分解为若干个一次因式的积或二次不可分因式的积;③将每一个一次因式的根标在数轴上,自上而下,从右向左依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根穿过);④观察曲线显现出的f (x )的值的符号变化规律,写出不等式的解集.7.不等式恒成立问题 1.一元二次不等式恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧ a >0Δ<0;(2)ax 2+bx +c ≥0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧ a >0Δ≤0;(3)ax 2+bx +c <0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧a <0Δ<0;(4)ax 2+bx +c ≤0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧a <0Δ≤0.2.含参数的一元二次不等式恒成立.若能够分离参数成k <f (x )或k >f (x )形式.则可以转化为函数值域求解. 设f (x )的最大值为M ,最小值为m .(1)k <f (x )恒成立⇔k <m ,k ≤f (x )恒成立⇔k ≤m . (2)k >f (x )恒成立⇔k >M ,k ≥f (x )恒成立⇔k ≥M . 8.绝对值不等式的解法1.形如|ax +b|≥|cx+d|的不等式,可以利用两边平方的形式转化为二次不等式求解. 2.形如|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式 (1)绝对值不等式|x|>a 与|x|<a 的解集(2)|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法|ax +b|≤c ⇔-c≤ax +b≤c (c>0),|ax +b|≥c ⇔ax +b≥c 或ax +b≤-c(c>0). 9.绝对值不等式的应用如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab≥0时,等号成立.【考点梳理】考点一 :用不等式表示不等关系【典例1】某种杂志原以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本,若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元? 【答案】见解析【解析】提价后杂志的定价为x 元,则销售的总收入为(8-x -2.50.1×0.2)x 万元,那么不等关系“销售的收入不低于20万元”用不等式可以表示为: (8-x -2.50.1×0.2)x ≥20.【规律总结】用不等式(组)表示实际问题中不等关系的步骤:①审题.通读题目,分清楚已知量和待求量,设出待求量.找出体现不等关系的关键词:“至少”“至多”“不少于”“不多于”“超过”“不超过”等.②列不等式组:分析题意,找出已知量和待求量之间的约束条件,将各约束条件用不等式表示.【变式探究】某钢铁厂要把长度为4 000 mm 的钢管截成500 mm 和600 mm 两种,按照生产的要求,600 mm 钢管的数量不能超过500 mm 钢管的3倍.试写出满足上述所有不等关系的不等式. 【答案】见解析 【解析】分析:应先设出相应变量,找出其中的不等关系,即①两种钢管的总长度不能超过4 000 mm ;②截得600 mm 钢管的数量不能超过500 mm 钢管数量的3倍;③两种钢管的数量都不能为负.于是可列不等式组表示上述不等关系.详解:设截得500 mm 的钢管x 根,截得600 mm 的钢管y 根,依题意,可得不等式组:⎩⎪⎨⎪⎧500x +600y ≤4 0003x ≥yx ≥0y ≥0,即⎩⎪⎨⎪⎧5x +6y ≤403x ≥y x ≥0y ≥0考点二:比较数或式子的大小【典例2】(1)比较x 2+y 2+1与2(x +y -1)的大小; (2)设a ∈R 且a ≠0,比较a 与1a 的大小.【答案】见解析【解析】 (1)x 2+y 2+1-2(x +y -1)=x 2-2x +1+y 2-2y +2=(x -1)2+(y -1)2+1>0, ∴x 2+y 2+1>2(x +y -1). (2)由a -1a =(a -1)(a +1)a当a =±1时,a =1a;当-1<a <0或a >1时,a >1a ;当a <-1或0<a <1时,a <1a .【领悟技法】 1.比较大小的常用方法 (1)作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、通分、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法一般步骤:①作商;②变形;③判断商与1的大小关系;④结论. (3)函数的单调性法将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系. 【变式探究】已知x <y <0,比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小. 【答案】见解析【解析】∵x <y <0,xy >0,x -y <0,∴(x 2+y 2)(x -y )-(x 2-y 2)(x +y )=-2xy (x -y )>0, ∴(x 2+y 2)(x -y )>(x 2-y 2)(x +y ). 考点三:不等式性质的应用【典例3】(2020·黑龙江省佳木斯一中高一期中(理))对于任意实数a b c d ,,,,下列正确的结论为( )A .若,0a b c >≠,则ac bc >;B .若a b >,则22ac bc >;C .若a b >,则11a b <; D .若0a b <<,则b a a b<. 【答案】D 【解析】A :根据不等式的基本性质可知:只有当0c >时,才能由a b >推出ac bc >,故本选项结论不正确;B :若0c时,由a b >推出22ac bc =,故本选项结论不正确;C :若3,0a b ==时,显然满足a b >,但是1b没有意义,故本选项结论不正确; D :22()()b a b a b a b a a b ab ab-+--==,因为0a b <<,所以0,0,0b a ab a b ->>+<,因此0b a b aa b a b-<⇒<,所以本选项结论正确. 故选:D【典例4】 若a =ln33,b =ln44,c =ln55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 【答案】B【解析】方法一 易知a ,b ,c 都是正数, b a =3ln44ln3=log 8164<1,所以a >b ; b c =5ln44ln5=log 6251 024>1,所以b >c .即c <b <a . 方法二 对于函数y =f (x )=ln xx ,y ′=1-ln x x2, 易知当x >e 时,函数f (x )单调递减. 因为e <3<4<5,所以f (3)>f (4)>f (5), 即c <b <a .【典例5】设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4”,则f (-2)的取值范围是 . 【答案】[5,10]【解析】方法一(待定系数法)设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数), 则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b ,于是得⎩⎪⎨⎪⎧ m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.所以f (-2)=3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10. 方法二(解方程组法)由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b , ⎩⎨⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)].所以f (-2)=4a -2b =3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10. 【规律总结】1.判断不等式的真假.(1)首先要注意不等式成立的条件,不要弱化条件.(2)解决有关不等式选择题时,也可采用特值法进行排除,注意取值要遵循以下原则:一是满足题设条件;二是取值要简单,便于验证计算.(3)若要判断某结论正确,应说明理由或进行证明,推理过程应紧扣有关定理、性质等,若要说明某结论错误,只需举一反例. 2.证明不等式(1)要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推证时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则. 3.求取值范围(1)建立待求范围的代数式与已知范围的代数式的关系,利用不等式的性质进行运算,求得待求的范围. (2)同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.4.掌握各性质的条件和结论.在各性质中,乘法性质的应用最易出错,即在不等式的两边同时乘(除)以一个数时,必须能确定该数是正数、负数或零,否则结论不确定. 【变式探究】1.(2020·陕西省西安中学高二期中(文))已知0a b <<,则下列不等式成立的是 ( ) A .22a b < B .2a ab <C .11a b< D .1b a< 【答案】D 【解析】22a b -=22)()0,,a b a b a b +->∴>(所以A 选项是错误的. 2a ab -=2()0,.a a b a ab ->∴>所以B 选项是错误的.11a b -=110,.b a ab a b ->∴>所以C 选项是错误的. 1b a -=0, 1.b a b a a-<∴<所以D 选项是正确的.D 故选:.2. (2020·江西省崇义中学高一开学考试(文))下列结论正确的是( ) A .若ac bc >,则a b > B .若88a b >,则a b >C .若a b >,0c <,则ac bc <D <,则a b >【答案】C 【解析】对于A 选项,若0c <,由ac bc >,可得a b <,A 选项错误;对于B 选项,取2a =-,1b =,则88a b >满足,但a b <,B 选项错误; 对于C 选项,若a b >,0c <,由不等式的性质可得ac bc <,C 选项正确;对于D <a b >,D 选项错误.故选:C. 3.已知12<a <60,15<b <36,求a -b 及ab的取值范围.【错解】∵12<a <60,15<b <36,∴12-15<a -b <60-36,1215<a b <6036,∴-3<a -b <24,45<a b <53.【辨析】错解中直接将12<a <60,15<b <36相减得a -b 的取值范围,相除得ab 的取值范围而致错.【正解】∵15<b <36,∴-36<-b <-15.∴12-36<a -b <60-15, 即-24<a -b <45.又15<b <36,∴136<1b <115.又12<a <60,∴1236<a b <6015,即13<a b <4.综上,-24<a -b <45,13<ab <4.【易错警示】错用不等式的性质致错. 考点四:一元二次不等式的解法【典例6】(2020·全国高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D. 【规律方法】1.解一元二次不等式的一般步骤(1)化:把不等式变形为二次项系数大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式. (3)对方程的根进行讨论,比较大小,以便写出解集. 【易错警示】忽视二次项系数的符号致误 【变式探究】1.(2019·全国高考真题(理))已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .2. (2020·黑龙江省大庆实验中学高三一模(文))已知集合1|03x A x x -⎧⎫=≥⎨⎬-⎩⎭,集合{|15}B x N x =∈-≤≤,则A B =( )A .{0,1,4,5}B .{0,1,3,4,5}C .{1,0,1,4,5}-D .{1,3,4,5}【答案】A【解析】 因为集合{1|033x A x x x x -⎧⎫=≥=⎨⎬-⎩⎭或}1x ≤, 集合{|15}{0,1,2,3,4,5}B x N x =∈-≤≤=, 所以A B ={0,1,4,5}.故选:A考点五:绝对值不等式的解法【典例7】(2020·江苏省高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x <<所以解集为:2(2,)3-【典例8】(2020·周口市中英文学校高二月考(文))(1)求不等式|x -1|+|x +2|≥5的解集; (2)若关于x 的不等式|ax -2|<3的解集为51|33x x ⎧⎫-<<⎨⎬⎩⎭,求a 的值. 【答案】(1) {x |x ≤-3或x ≥2} (2) a =-3 【解析】(1)当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3; 当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解; 当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}. (2)∵|ax -2|<3,∴-1<ax <5. 当a >0时,15x a a -<< , 153a -=-,且513a =无解; 当a =0时,x ∈R ,与已知条件不符;当a <0时,51x a a <<-,553a =-,且113a -=, 解得a =-3. 【规律方法】形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用|x -a|+|x -b|>c(c>0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a|+|x -b|≥|x-a -(x -b)|=|a -b|.(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解. 【变式探究】1.(2017天津,文2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】B【解析】20x -≥,则2x ≤,11x -≤,则111,02x x -≤-≤≤≤,{}{}022x x x x ≤≤⊂≤ ,据此可知:“20x -≥”是“11x -≤”的的必要的必要不充分条件,本题选择B 选项. 2.(2014·广东高考真题(理))不等式的解集为 .【答案】(][),32,-∞-⋃+∞. 【解析】令()12f x x x =-++,则()21,2{3,2121,1x x f x x x x --<-=-≤≤+>,(1)当2x <-时,由()5f x ≥得215x --≥,解得3x ≤-,此时有3x ≤-; (2)当21x -≤≤时,()3f x =,此时不等式无解;(3)当1x >时,由()5f x ≥得215x +≥,解得2x ≥,此时有2x ≥; 综上所述,不等式的解集为(][),32,-∞-⋃+∞.考点六:绝对值不等式的应用如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.【典例9】(2020·陕西省西安中学高二期中(理))已知不等式53m x x ≤-+-对一切x ∈R 恒成立,则实数m 的取值范围为( ) A .2m ≤ B .2m ≥C .8m ≤-D .8m ≥-【答案】A 【解析】()()53532x x x x -+-≥---=,∴根据题意可得2m ≤.故选:A【典例10】(2018年理新课标I 卷)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【答案】(1).(2).【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为; (2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.【总结提升】1.两类含绝对值不等式的证明问题一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值符号转化为常见的不等式证明题,或利用绝对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明. 2.含绝对值不等式的应用中的数学思想(1)利用“零点分段法”求解,体现了分类讨论的思想; (2)利用函数的图象求解,体现了数形结合的思想.3.求f (x )=|x +a |+|x +b |和f (x )=|x +a |-|x +b |的最值的三种方法 (1)转化法:转化为分段函数进而利用分段函数的性质求解.(2)利用绝对值三角不等式进行“求解”,但要注意两数的“差”还是“和”的绝对值为定值. (3)利用绝对值的几何意义. 【变式探究】1.(2020·宁夏回族自治区高三其他(理))已知函数()|21||2|f x x x =-+-. (1)若()4f x <,求实数x 的取值范围;(2)若对于任意实数x ,不等式()|21|f x a >-恒成立,求实数a 的值范围.【答案】(1) 17,33⎛⎫- ⎪⎝⎭;(2) 15,44⎛⎫- ⎪⎝⎭【解析】(1)由题,()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩;当12x ≤时,334x -+<,解得1132x -<≤;当122x <<时,14x +<恒成立,解得122x <<; 当2x ≥时,334x -<,解得723x ≤<.综上有3137x -<<. 故实数x 的取值范围为17,33⎛⎫- ⎪⎝⎭(2)因为()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩,当12x ≤时,()1322f x f ⎛⎫≥= ⎪⎝⎭;当122x <<时,()332f x <<;当2x ≥时,()()23f x f ≥=. 故()f x 的最小值为32. 故3212a -<,即332122a -<-<,解得1544a -<<. 故实数a 的值范围为15,44⎛⎫-⎪⎝⎭2.已知函数f(x)=|x −1|.(1)解不等式f(x)+f(x +4)≥8;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f (ba ). 【答案】(1) {x|x ≤−5 或x ≥3} (2)见解析 【解析】(1)f(x)+f(x +4) =|x −1|+|x +3| ={−2x −2,x <−3,4,−3≤x ≤1,2x +2,x >1,当x <−3时,由−2x −2≥8,解得x ≤−5; 当−3≤x ≤1时,f(x)≥8不成立; 当x >1时,由2x +2≥8,解得x ≥3.所以不等式f(x)+f(x +4)≥8的解集为{x|x ≤−5 或x ≥3}. (2)f (ab )>|a |f (ba ),即|ab −1|>|a −b |.因为|a |<1,|b |<1,所以|ab −1|2−|a −b |2=(a 2b 2−2ab +1)−(a 2−2ab +b 2)=(a 2−1)(b 2−1)>0, 所以|ab −1|>|a −b |,故所证不等式成立.。
高中数学不等关系教案
高中数学不等关系教案
一、教学内容分析:
不等关系是数学中常见的一种关系,包括大于、小于、大于等于、小于等于等不等关系。
本课程将介绍不等关系的定义、性质和应用,帮助学生掌握不等关系的相关知识和解题技巧。
二、教学目标:
1. 了解不等关系的定义和表示方法。
2. 掌握不等关系的性质和性质。
3. 能够灵活运用不等关系解决实际问题。
三、教学重点与难点:
重点:不等关系的定义和性质。
难点:不等关系在解决实际问题中的应用。
四、教学过程:
1. 导入:通过一个生活中的案例引导学生了解不等关系的概念,并讨论大于、小于、大于等于、小于等于等关系的表示方法。
2. 讲解:介绍不等关系的定义和性质,包括传递性、反对称性和反对称性等。
3. 练习:让学生做一些简单的不等关系的练习题,加深对不等关系的理解。
4. 拓展:引导学生探讨不等关系在不同领域的应用,如经济学、生活中的消费选择等。
5. 总结:对本节课的内容进行总结,强调不等关系的重要性和应用价值。
五、作业布置:
1. 完成课堂练习题。
2. 思考生活中的实际问题,尝试用不等关系来解决。
六、教学反思:
在教学中应该注重引导学生理解不等关系的概念和性质,同时培养他们灵活运用不等关系解决实际问题的能力。
同时,可以通过丰富多样的教学活动,提高学生的学习兴趣和课堂参与度。
名师教学设计:2_1 不等关系
北师大版数学八年级下册第二章第一节《不等关系》教学设计郑州市第七十九中学孙喆一、教材分析:本节课是北师大版八年级下册第二章第一节的内容,不等式是现实世界中不等关系的一种数学表示形式,学生前阶段已经在等式、一元一次方程、二元一次方程组和一次函数方面积累了大量的学习经验,本节课通过发现生活实例中存在更多的不等关系,认识到不等式是客观存在的.类比等式的学习,建立不等式模型,将实际问题“数学化”,为后续展开不等式的学习打下了坚实的基础. 二、学情分析:学生前阶段已经积累了大量的学习经验,有了一元一次方程、二元一次方程组和一次函数的知识基础,我将通过以旧“唤”新环节,引导学生从等式的学习经验出发,使学生类比等式(方程),体会知识间的内在联系.在课堂上通过引悟概念、感悟概念、慧悟概念三个环节,从发现不等关系,抽象不等式模型,用不等号表示不等关系,给不等式赋予实际情景,发展模型思想,提高应用意识,增强解决问题的能力.三、教学目标:根据以上教材以及学情分析,结合课标的要求,我拟定这节课的教学目标为:【学习目标】1.会从具体实例抽象出不等式概念,建立不等式模型.2.会判断一个式子是否是不等式.3.会用不等号表示简单的不等关系,能用实际生活背景和数学背景解释不等式的意义.【评价目标】通过以下三个目标的落实来有效把控学生目标达成的情况:1、通过活动一,引悟概念,准确判断一个式子是否是不等式;2、通过活动二,感悟概念,发现生活中的不等现象,并用适当的符号建立不等式模型;3、通过活动三,慧悟概念,能对不等式赋予合理的实际情景.四、教学重难点:【学习重点】不等式的概念、用适当的符号建立不等式模型.【学习难点】建立不等式模型及赋予不等式实际情景.【课堂准备】纯牛奶;多媒体辅助教学;学案.五、教学过程:学习目标:1.会从具体实例抽象出不等式概念,建立不等式模型.2.会判断一个式子是否是不等式.3.会用不等号表示简单的不等关系,能用实际生活背景和数学背景解释不等式的意义.探究活动:导入:以旧“唤”新请同学们用一个数学式子分别描述天平的两种状态:_______________________请再用一个数学式子分别描述天平的两种状态:_________________________ 设计意图:通过问题驱动,唤醒等式(方程)的相关知识,为新课探究打好铺垫.活动一:引悟概念情景1. 老师今年m岁,你今年n岁,老师的年龄比你的年龄的2倍还要大.请用数学式子表示这一关系.情景2. 铁路部门对随身携带的行李有如下规定:每件行李的长、宽、高之和不得超过160cm.设行李的长、宽、高分别为acm,bcm,ccm,请你列出行李的长、宽、高满足的关系式.情景3. 通过测量一棵树的树围(树干的周长)可以估算出它的树龄.通常规定以树干离地面1.5 m的地方为测量部位.某树栽种时的树围为6 cm,在一定生长期内每年增加约3 cm.设经过x年后这棵树的树围超过30 cm.请你列出x满足的关系式.不等式定义:一般地,用符号_______________________________连接的式子叫做不等式.针对训练:判断下列式子是不是不等式:(1)-3>0;(2)4x+3y<0;(3)x=3;(4) 3x+5;(5)2(;(6)x²+2x≠3a-1)0设计意图:通过三个情景的解决,发现关系式的共同特征,总结不等式的概念,通过针对训练,明确判别不等式的方法.评价方式:小组交流:生活中存在大量的不等现象,请同学们列举实例,并列出不等式. 活动二:感悟概念典例解析例如图,用两根长度均为l cm的绳子分别围成一个正方形和一个圆.(1)如果要使正方形的面积不大于25 cm2,那么绳长l应满足怎样的关系式?(2)如果要使圆的面积不小于100 cm2,那么绳长l(3)当l =8时,正方形和圆的面积哪个大?l =12呢?设计意图:呈现例题,让学生建立不等模型的同时,尝试用不等式解决实际问题,并选择恰当的符号表示不等关系.评价方式:用适当的符号表示下列关系:(1) a是非负数.(2) 直角三角形斜边c 比它的两直角边a 、b 都长.(3) x 与17的和比它的5倍小.(4) 两数的平方和不小于这两数的积的2倍.活动三:慧悟概念请设计一个合理的情景,表示不等式2x+1>3.设计意图:通过换“视角”,多角度解释同一式子的不同意义,一式多用,多题归一,展示学生的创新思维,由浅入深的理解不等式,发展模型思想. 评价方式:分小组交流,小组代表进行班级分享.课堂小结:本节课你收获了哪些知识,总结了哪些方法?设计意图:比较展望,省悟概念,为后续学习埋下伏笔.当堂检测:1. 用不等式表示下列数量关系:(1)m 的绝对值是非负数; (2)地球上海洋面积大于陆地面积;(3)一辆48座的客车载有游客x 人,途中上来2人后,车内仍有空位.2. 请给x+y≤5赋予一个合理的实际情景.3. 甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C 含量及购买这两种原料的价格如下表:(1)现配制这种饮料10千克,要求至少含有4200单位的维生素C ,试写出所需甲种原料的质量x(千克)应满足的不等式.(2)如果还要求购买甲、乙两种原料的费用不超过72元,那么你能写出所需甲种原料的质量x(千克)应满足的另一个不等式吗?设计意图:针对三个学习目标,检测学情,表格类问题引导学生关注如何读取表格信息.积累学习经验.作业布置:课后习题2.1 原料维生素及价格设计意图:作业设计全面涵盖本节课知识点,不仅有知识技能,还有操作类题目.既关注学生的基础知识,同时潜移默化的提高解决问题的能力板书设计:。
人教版高中数学第3章3.1不等关系
解答。听课时关键应该弄清楚老师讲解问题的思路。
三、听问题。
对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
四、听方法。
在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”
②关于 a≤b 或 a≥b 的含义. 不等式 a≤b 应读作“a 小于或者等于 b”,其含义是 指“或者 a<b,或者 a=b”,等价于“a 不大于 b”,即 若 a<b 或者 a=b 之中有一个正确,则 a≤b 正确. 如 2<3 正确,则 2≤3 没有逻辑错误,因为 2、3 是 具体数值,“2<3”比“2≤3”更确切.
因为 ቤተ መጻሕፍቲ ባይዱ-b>0,所以 b-a<0.所以 ab<0. 又 a>b,所以 a>0,b<0.故该命题为真命题.
名师点评 判断命题的真假,应紧扣不等式的性质,同时要注意 条件和结论之间的联系,利用不等式的性质进行不等式的 证明时,一定要在理解的基础上记准、记熟不等式的性质, 并注意在解题时要灵活、准确地加以应用.
[变式训练]
1.国家计划以 2 400 元/吨的价格收购某种农产品 m 吨,按规定,农户向国家纳税为:每收入 100 元纳税 8 元(称作税率为 8 个百分点,即 8%),为了减轻农民负担, 制定积极的收购政策,根据市场规律,税率降低 x 个百分 点,收购量能增加 2x 个百分点,税率降低后,国家此项 税收总收入不低于原计划的 78%.请用不等式表示上述不 等关系.
的研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进
初中数学不等式解应用题的难点突破策略
初中数学不等式解应用题的难点突破策略【摘要】初中数学不等式解应用题是学生较为薄弱的环节,本文从引言、正文和结论三部分展开。
在我们介绍了初中数学不等式解应用题的难点,为后续内容做了铺垫。
接着,通过理解不等式的意义和性质、掌握不等式的基本解法、应用题的转化与建模、辅助工具的合理运用、实战演练与强化训练这五个方面,系统地讲解了解决不等式难题的具体策略和方法。
在对初中数学不等式解应用题的难点突破策略进行了总结和概括,强调了方法的重要性和实践的必要性。
通过本文的学习,读者可以全面掌握初中数学不等式解应用题的解题技巧,提高自己的解题能力和应试水平。
【关键词】不等式、初中数学、解题策略、理解意义、掌握基本解法、建模、辅助工具、实战演练、强化训练、难点突破、结论。
1. 引言1.1 初中数学不等式解应用题的难点突破策略初中数学不等式是数学中的一个重要内容,也是学生在学习数学过程中经常遇到的难点之一。
不等式的解应用题更是让许多学生感到头疼,不知道如何下手解题。
只要掌握了一定的解题技巧和策略,就能够轻松应对各种类型的不等式解应用题。
在本文中,我们将探讨初中数学不等式解应用题的难点突破策略。
我们将讨论理解不等式的意义和性质,通过深入理解不等式的本质,可以更好地把握不等式题目的要点。
我们将介绍掌握不等式的基本解法,包括一元一次不等式、一元二次不等式等常见类型的解法方法。
然后,我们将讨论应用题的转化与建模,通过将实际问题抽象为数学模型,可以更快速地解决不等式应用题。
接着,我们将介绍辅助工具的合理运用,如图形法、代数法等辅助工具的运用可以帮助我们更好地理解和解决复杂的不等式问题。
我们将强调实战演练与强化训练的重要性,通过大量的练习题目,可以让我们熟练掌握不等式解题的技巧,从而更好地解决难点题目。
通过本文的学习,相信读者能够更加自信地应对初中数学不等式解应用题,从而取得更好的学习成绩。
初中数学不等式解应用题的难点并不难以突破,关键在于掌握好解题策略,多加练习,相信你一定能够取得优异的成绩。
如何在小学数学教学中体现“数学化”思想
如何在小学数学教学中体现“数学化”思想作者:汪海燕来源:《读写算》2020年第08期摘要小学数学的逻辑性较高,教学内容的板块常见有数量关系、空间模型、结构变化等,在教学中难以仅靠文字描述帮助学生理解教学内容,需要深化数学化思想,让学生从数学角度思考理解。
通过数学化思想强化的小学数学教学,可帮助学生有效地理解抽象、逻辑性高、条理性强的数学内容,提高教学效率。
因此在小学数学教学需要重视数学化思维,增加教学与数学化思想的融合度,提高数学质量。
关键词小学数学教学;数学化思想;体现方式中图分类号:G622 文献标识码:A 文章编号:1002-7661(2020)08-0167-01小学阶段的学生特点有好动、好奇,在逻辑思维上,属于正在培养中,还未具有完善的逻辑思维,相对小学其他学科,小学数学理论较强,难度较大,难以激起学生的学习兴趣。
但随着改革发展推进,对于数学教学的重视程度逐渐增强,数学应用的作用也逐渐增强,因此在小学中,数学教学仍占据着重要地位。
而如何在小学数学中体现数学化思想,提高教学效率与质量,值得不断探究。
一、数学化思想数学化思想的概念是由一位荷兰数学家提出,其是一种数学教学模式,可以帮助学生增强数学與实际问题的联系,提高学生的观察能力、数学运用能力等。
生活与数学息息相关,通过数学化思想可以增强数学与现实生活的联系。
从一方面分析,数学化思想将现实中的问题转化为数学课堂上所学习的知识内容,并联系相关知识点解答。
另一方面,是运用数学化思想,将课堂所学内容在实际生活中进行应用。
两个方面具有密切的相关性,但出发点有所不同,大致为用数学思维观察现实生活,将问题数学化并解决问题。
例如,在学习长方形前,学生面对黑板,在认知中便单纯是黑板,在学习长方形后,通过数学化思想,黑板具有长方形特征,可以借此解决相关的数学问题,巩固长方形知识。
二、在小学数学教学中体现数学化思想的意义与必要性在小学数学教学中,让学生通过数学化思想了解数学,帮助学生更好地认识数学世界,激发学生的数学兴趣,提高学生学习的积极性与主动性。
八年级不等关系知识点
八年级不等关系知识点在数学学科的学习中,不等关系是十分重要的一个知识点。
在八年级的数学课程中,学生们需要学会理解和应用不等关系的基本概念和方法,以便在日常生活、学术研究和职业发展中得到更好的应用。
一、不等关系的基本概念不等关系是指两个数、两个量或两个代数式之间的大小或大小关系不同的关系。
在不等关系中,有等于、大于、小于、大于等于和小于等于五个常用的运算符号。
以数的不等关系为例,对于两个数 a 和 b,如果 a > b,则说明a 大于 b;如果 a < b,则说明 a 小于 b;如果a ≥ b,则说明 a 大于或等于 b;如果a ≤ b,则说明 a 小于或等于 b;如果 a = b,则说明 a 等于 b。
二、不等关系的性质除了运算符号的含义外,不等关系还有一些重要的基本性质,对于学生们的学习和理解也是十分关键的。
1. 对称性。
不等关系的对称性是指,如果 a > b,则 b < a;如果 a < b,则 b > a。
2. 传递性。
不等关系的传递性是指,如果 a > b,b > c,则 a > c;如果 a < b,b < c,则 a < c。
3. 反对称性。
不等关系的反对称性是指,如果a ≥ b,b ≥ a,则a = b。
三、不等关系的应用不等关系不仅仅是理论知识,还具有实际应用。
在日常生活和工作中,人们常常需要应用不等关系来进行量化和比较。
1. 应用于数学领域。
不等关系在代数学、函数学、几何学等学科中有广泛的应用,帮助研究人员更好地理解数学基础理论的构建和发展。
2. 应用于物理学领域。
在物理学中,不等关系用于物体的质量、速度、角度等多种因素的比较和分析中。
3. 应用于经济学领域。
不等关系在经济学中常用于分析收入、财富等经济因素的差异和不平等现象,并提出相应的政策建议和措施。
总结在八年级的数学学习中,透彻理解不等关系的基本概念、性质和应用是至关重要的。
如何寻找不等关系
如何寻找不等关系
占店中学黄兴
一、教学目标:
学会寻找实际问题中的不等关系.
二、教学重难点:
重点:在实际问题中寻找不等关系,并列出不等式.
难点:在实际问题中寻找不等关系.
三、教学过程:
1、导入新课
在应用方程解决实际问题的过程中,要寻找题中的等量关系,而在应用不等式解决实际问题的过程中,应抓住题中的关键词:大于,小于,不超过,至少等等,寻找不等关系,建立不等式,对于不等关系并不是很明显的问题,我们通常将题中的已知量和未知量在图形或者表格上表示出来,从而找到数量之间的关系。
2、探究新知
(1)例题:某中学计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.
符合题意的组建方案有几种?请你帮学校设计出来.
思考下列问题:
①题中哪些语句表示不等关系?
②题中有哪些已知量和未知量?
③如何用表格的形式将这些量列出来?
④如何将这些量用不等式联系起来?
(2)分析解答:
未知量是中型图书角和小型图书角的数量,设组建中型图书角x 个,则组建小型图书角为)30(x -个.
由题意得:⎩⎨⎧≤-+≤-+1620
)30(60501900)30(3080x x x x 解得:2018≤≤x . 由于x 只能取整数,∴x 的取值为18、19、20. 方案一:中型图书角18个,小型图书角12个;
方案二:中型图书角19个,小型图书角11个;
方案三:中型图书角20个,小型图书角10个.
3、练习题
4、小结与作业。