直流电机及调速系统
直流电动机调速系统
直流电动机调速系统的能耗分析
能效比
直流电动机的能效比通常较高,可以在较高的效率下运行,减少 能源浪费。
功率因数
直流电动机的功率因数较高,可以减少无功损耗,提高电网效率。
热效率
直流电动机的热效率也较高,可以在长时间运行下保持稳定的性 能。
直流电动机调速系统的稳定性分析
抗干扰能力
直流电动机的调速系统通常具有较强的抗干扰能力,可以在复杂 的工作环境下稳定运行。
直流电动机调速系统的调速性能
调速范围
直流电动机的调速范围通常较大,可以在较 宽的转速范围内实现平滑调节,满足不同工 况下的需求。
调速精度
直流电动机的调速精度较高,可以通过精确的控制 算法实现转速的精确控制,提高生产过程的稳定性 和产品质量。
动态响应
直流电动机的动态响应较快,可以在短时间 内达到稳定转速,满足动态负载变化的需求 。
输标02入题
调压调速是通过改变电枢电压来控制电动机的转速, 具有调节方便、平滑性好等优点,但调速过程中能量 损失较大。
01
03
串级调速是通过改变转子回路的电阻来控制电动机的 转速,具有调节方便、能量损失较小等优点,但调节
范围较小且对电机结构有特殊要求。
04
调磁调速是通过改变励磁电流来控制电动机的转速, 具有调节方便、能量损失较小等优点,但调节范围较 小。
系统调试
在系统集成完成后,进行全面的 调试,确保各部分工作正常,满 足设计要求。
性能测试
对系统的性能进行测试,包括调 速范围、动态响应、稳态精度等 指标,确保系统性能达标。
优化改进
根据测试结果和实际应用情况, 对系统进行必要的优化和改进, 提高系统的稳定性和可靠性。
04
无刷直流电机的调速与控制技术
无刷直流电机的调速与控制技术随着科技的发展,电动机在各个领域的应用越来越广泛。
而无刷直流电机作为一种高效、可靠的电机,在许多领域得到了广泛的应用。
无刷直流电机的调速与控制技术是保证电机运行稳定性和提高其性能的重要一环。
一、无刷直流电机的工作原理无刷直流电机是一种基于电磁感应原理工作的电动机。
其核心部件是电机转子上的永磁体,通过感应电流产生的磁场与定子线圈产生的磁场相互作用,从而实现电机的运转。
相比于传统的有刷直流电机,无刷直流电机省去了电刷与换向器件,因此具有更高的效率和更长的寿命。
二、无刷直流电机的调速方法无刷直流电机的调速方法主要包括电压控制调速和电流控制调速两种。
1. 电压控制调速电压控制调速是通过改变电压的大小来控制电机的转速。
在实际应用中,最常见的方式是采用PWM (Pulse Width Modulation) 调制技术。
PWM技术通过调整电压的占空比,使得电机在一个固定的周期内以不同的占空比工作,从而实现不同的转速。
这种方法简单易行,但是对于大功率的无刷直流电机,其调速范围较窄。
2. 电流控制调速电流控制调速是通过改变电机定子线圈的电流来控制电机的转速。
常见的控制方法有开环控制和闭环控制。
开环电流控制是在电机定子线圈中加回馈电阻,通过改变反馈电阻的大小来调整电流。
这种方法结构简单,控制参数易调,但是系统稳定性较差,无法适应负载的变化。
闭环电流控制是在开环控制的基础上加入反馈环节,通过传感器测量电机的电流,并与设定的电流进行比较,通过PID控制算法来调整控制器输出的电压,从而控制电机的转速。
这种方法可以提高系统的稳定性和动态响应性能,适用于对转速精度和系统稳定性要求较高的应用。
三、无刷直流电机的控制技术无刷直流电机的控制技术是实现电机调速的重要手段之一。
根据不同的应用场景和需求,可以选择不同的控制方法。
1. 速度控制速度控制是无刷直流电机最基本的控制方式。
通过改变电机的输入提速,可以控制电机的转速。
第4章 直流电动机调速控制系统
调速指标
静态调速指标
• 调速范围 • 静差率 • 调速范围与静差率的关系
动态调速指标
• 跟随性能指标 • 抗扰性能指标
单闭环直流调速系统
单闭环有静差调速系统 单闭环无静差调速系统
单闭环有静差调速系统
系统的组成及原理 系统的静特性及静态结构图
系统的反馈控制规律 单闭环调速系统的动态特性
电动机转速与转矩的关系
如果把E =Cen代入式(4-8) ,便可得出电枢电流I的表达式 Ia=(U- Cen )/Ra (4-9) 由上式可见,直流电动机和一般的直流电路不一样,它的电流不仅 取决于外加电压和自身电阻,并且还取决于与转速成正比的反电动 势(当φ为常数) 。将式(4-1) 代入(4-9) 式,可得 n=U/Ce-R Te/ Ce Cm (4-10) 其中Cm=Kmφ,式(4-10)称为电动机的机械特性,它描述了电 动机的转速与转矩之间的关系。 图4-5是机械特性曲线族。在这一曲线族中,不同的电枢电压对应于 不同的曲线,各曲线是彼此平行的。n0( U/Ce)称为“理想空载转 速” ,而⊿n(R Te/ Ce Cm) 称为转速降落。
脉宽调制器是一个电压—脉冲变换装置。由控制 电压Uct进行控制,为PWM变换器提供所需的脉 冲信号。 脉宽调制器的基本原理是将直流信号和一个调制 信号比较,调制信号可以是三角波,也可以是锯 齿波。锯齿波脉宽调制器电路如图4-42所示, 由锯齿波发生器和电压比较器组成。锯齿波发生 器采用最简单的单结晶体管多谐振荡器4-42a), 为了控制锯齿波的线性度,使电容器C充电电流 恒定,由晶体管VT1和稳压管VST构成恒流源。
电流截止负反馈环节 带电流截止负反馈环节的单闭环无静差调 速系统
直流电机调速系统的设计
直流电机调速系统的设计直流电机调速系统是控制直流电机转速的一个重要工程应用领域。
在很多工业领域中,直流电机的转速控制是非常重要的,因为直流电机的转速对于机械设备的运行效率和稳定性有着重要影响。
本文将详细介绍直流电机调速系统的设计原理和步骤。
一、直流电机调速系统的基本原理直流电机调速系统的基本原理是通过改变电机的电压和电流来控制电机的转速。
一般来说,直流电机的转速与电机的电压和负载有关,转速随电压增加而增加,转速随负载增加而减小。
因此,当我们需要调节直流电机的转速时,可以通过改变电机的电压和负载来实现。
二、直流电机调速系统的设计步骤1.确定设计要求:在设计直流电机调速系统之前,首先需要确定系统的设计要求,包括所需的转速范围、响应速度、控制精度和负载要求等。
这些设计要求将指导系统的设计和选择适当的控制器。
2.选择控制器:根据设计要求,选择适当的控制器。
常见的直流电机调速控制器有PID控制器、模糊控制器和自适应控制器等。
根据实际情况,选择最合适的控制器来实现转速调节。
3.选择传感器:为了实时监测电机的转速和位置,需要选择合适的传感器来进行测量。
常见的传感器有光电编码器、霍尔效应传感器和转速传感器等。
根据实际需求,选择合适的传感器进行安装和测量。
4.搭建电路:根据控制器的要求,搭建合适的电路来实现控制和测量功能。
通常需要安装电压和电流传感器来实时监测电机的电压和电流,并将测量结果反馈给控制器。
5.调试和测试:在电路搭建完成后,需要进行调试和测试来验证系统的性能。
首先调整控制器的参数,使得系统能够按照设计要求进行转速调节。
然后进行负载试验,测试系统在不同负载下的转速调节性能。
对系统进行调试和测试,可以发现问题并及时解决,确保系统能够正常工作。
6.性能优化:根据测试结果,对系统进行性能优化。
根据实际需求,调整控制器的参数和传感器的位置,改善系统的转速调节性能和响应速度。
优化后的系统将更好地满足设计要求。
三、直流电机调速系统的工程应用总结:本文详细介绍了直流电机调速系统的设计原理和步骤。
直流电机晶闸管调速系统
包括控制回路:速度环、电流环、触发脉冲发生器等。
. 主回路:可控硅整流放大器等。
. 速度环:速度调节(PI),作用:好的静态、动态特性。
. 电流环:电流调节(P或PI)。
作用:加快响应、启动、低频稳定等。
. 触发脉冲发生器:产生移相脉冲,使可控硅触发角前移或后移。
. 可控硅整流放大器:整流、放大、驱动,使电机转动。
2)主回路工作原理组成:由大功率晶闸管构成的三相全控桥式(三相全波)反并接可逆电路,分成二大部分(Ⅰ和Ⅱ),每部分内按三相桥式连接,二组反并接,分别实现正转和反转。
原理:三相整流器,由二个半波整流电路组成。
每部分内又分成共阴极组(1、3、5)和共阳极组(2、4、6)。
为构成回路,这二组中必须各有一个可控硅同时导通。
1、3、5在正半周导通,2、4、6在负半周导通。
每组内(即二相间)触发脉冲相位相差120o,每相内二个触发脉冲相差180°。
按管号排列,触发脉冲的顺序:1-2-3-4-5-6,相邻之间相位差60°。
为保证合闸后两个串联可控硅能同时导通,或已截止的相再次导通,采用双脉冲控制。
既每个触发脉冲在导通60o后,在补发一个辅助脉冲;也可以采用宽脉冲控制,宽度大于60o,小于120°。
只要改变可控硅触发角(即改变导通角),就能改变可控硅的整流输出电压,从而改变直流伺服电机的转速。
触发脉冲提前来,增大整流输出电压;触发脉冲延后来,减小整流输出电压。
3)控制回路分析.[总结]速度控制的原理:①调速:当给定的指令信号增大时,则有较大的偏差信号加到调节器的输入端,产生前移的触发脉冲,可控硅整流器输出直流电压提高,电机转速上升。
此时测速反馈信号也增大,与大的速度给定相匹配达到新的平衡,电机以较高的转速运行。
②干扰:假如系统受到外界干扰,如负载增加,电机转速下降,速度反馈电压降低,则速度调节器的输入偏差信号增大,其输出信号也增大,经电流调节器使触发脉冲前移,晶闸管整流器输出电压升高,使电机转速恢复到干扰前的数值。
运动控制系统第五讲直流电机调速原理和调速驱动控制器课件
图45--7 简单的不可逆PWM变换器的主电路 Us—直流电源电压;C—滤波电容器;VT—功率开关器件;VD—续流二极管;M—直流电
5-8
1) 电压和电流波形
• (1) 在一个开关周期T内。 • (2) 当0 ≤ t < ton时,Ug为正,VT饱和导通,电源电压Us
通过VT加到直流电机电枢两端。 • (3) 当ton ≤ t < T时,Ug为负,VT关断,电枢电路中的电
我们很有必要对其进行认真的研究。
5.1.1 直流电机调速的发展历程
• 1.变流机组时代 • 图5-1所示的是早期直流电机的调速方案,
称为直流变流机组。系统主要由5大部件组 成:原动机、直流发电机、直流电动机、 励磁电源和生产机械。其基本工作原理是: 一台三相交流电动机拖动一台直流发电机, 直流发电机发出直流电,作为直流电动机 的供电电源,然后直流电动机拖动生产机 械。通过对励磁电路和放大装置的控制, 就能改变直流发电机的输出电压,从而达 到控制直流电动机转速的目的。
1.3 直流电机PWM基本电路
• 根据电机的运行功能状态,有不可逆运行 和可逆运行之分。PWM调节器也有相对应 的不可逆变换器和可逆变换器。
1.不可逆PWM变换器
• 图5-7所示的是简单的不可逆PWM变换器的 主电路原理图。该电路采用全控式电子晶 体管,开关频率可达20 kHz甚至更高,电 源电压Us一般由不可控整流电源提供,采 用大电容器C滤波,二极管VD在晶体管VT 关断时释放电感储能为电枢回路续流。下 面分析其运行特点。
5-1
• 2.相控整流时代
• 20世纪50年代末期,随着电力电子技术的 早期代表——晶闸管(SCR)的出现,直 流电机调压调速技术进入到一个新的时期。 图5-2所示的是相控整流电路图。相控整流 由5大部件组成:相控整流器、电抗器、直 流电机、直流励磁控制电路和相控整流器 触发电路。
第五章 直流电动机调速控制系统
其中,R是电枢回路总电阻,为系统固有参数, Idnom是对应额定负载时的电流, 也是固定的。所以,一般开环系统无法满足一定调速范围和静差率性能指标要求。
如果在负载增加的同时设法增大系统的给定电压 Un,就会使电动机电枢两端的 电压Ud增大,电动机的转速就会升高。若Un增加量大小适度,就可以使因负载增加 而产生的 n被Ud升高而产生的速升所弥补,结果会使转速n接近保持在负载增加前的 值上。 这样,既能使系统有调速能力,又能减少稳态速降,使系统具有满足要求的调 速范围和静差率。 系统组成如图 我们可以在与调速电动机 同轴接一测速发电机TG,这 样就可以将电动机转速 n 的大 小转换成与其成正比的电压信 号Un,把Un与Un相比较后, 去控制晶闸管整流装置以控制 电动机电枢两端的电压Ud就可 以达到控制电动机转速 n 的目 的。
(5-5)
上式表明,同一系统的调速范围、静差率和额定转速降落三者之间有密不可 分的联系。对静差率值要求越小,能得到的调速范围也将越小。
Back
例题
某生产机械由他励直流电动机拖动,采用降压调速,额 定负载下电动机的额定转速为 ,理想空载转 速 。降低电压以后的转速为 ,理想 空载转速 。试求: (1)调速范围D和静差率 ; (2)如果生产工艺要求静差率 20% ,则此时的调速范 围是多少?
5.1.3 直流调速的基础知识
直流电动机 电动机 交流电动机 直流调速系统
交流调速系统
直流电动机优点: 转矩易于控制,具有良好的起制动性能,在相当长的时间内,一直在高性能调速 领域占有绝对的统治地位。此外,直流调速技术方面的理论相对成熟,其研究方法和 许多基本结论很容易在其它调速领域内推广,所以直流调速一直是研究调速技术的主 流。 由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制角度来看, 它又是交流拖动控制系统的基础。因此,为了保持由浅入深的教学顺序,本章将对 直流调速的基本理论做较详细的介绍。
直流无刷电动机及其调速控制
直流无刷电动机及其调速控制1.直流无刷电动机的发展概况与应用有刷直流电动机从19世纪40年代出现以来,以其优良的转矩控制特性,在相当长的一段时间内一直在运动控制领域占据主导地位。
但是,有机械接触电刷-换向器一直是电流电机的一个致命弱点,它降低了系统的可靠性,限制了其在很多场合中的使用。
为了取代有刷直流电动机的机械换向装置,人们进行了长期的探索。
早在1917年,Bolgior就提出了用整流管代替有刷直流电动机的机械电刷,从而诞生了无刷直流电机的基本思想。
1955年美国的等首次申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,标志着现代无刷直流电动机的诞生。
无刷直流电动机的发展在很大程度上取决于电力电子技术的进步,在无刷直流电动机发展的早期,由于当时大功率开关器件仅处于初级发展阶段,可靠性差,价格昂贵,加上永磁材料和驱动控制技术水平的制约,使得无刷直流电动机自发明以后的一个相当长的时间内,性能都不理想,只能停留在实验室阶段,无法推广使用。
1970年以后,随着电力半导体工业的飞速发展,许多新型的全控型半导体功率器件(如GTR、MOSFET、IGBT等)相继问世,加之高磁能积永磁材料(如SmCo、NsFeB)陆续出现,这些均为无刷直流电动机广泛应用奠定了坚实的基础。
在1978年汉诺威贸易博览会上,前联邦德国的MANNESMANN公司正式推出了 MAC无刷直流电动机及其驱动器,引起了世界各国的关注,随即在国际上掀起了研制和生产无刷直流系统的热潮,这业标志着无刷直流电动机走向实用阶段。
随着现代永磁材料和相关电子元器件的性能不断提高,价格不断下降,无刷电动机的到了快速发展,并被广泛应用于各个领域,例如,在数控机床、工业机器人以及医疗器械、仪器仪表、化工、轻纺机械和家用电器等小功率场合,计算机的硬盘驱动和软盘驱动器器中的主轴电动机、录像机中的伺服电动机等。
2.直流无刷电动机的基本结构和工作原理直流无刷电动机的结构直流无刷电动机的结构示意图如图2-1所示。
直流电机调速系统
直流电机调速系统摘要:本文旨在探讨直流电机调速系统的原理和实现方法。
首先,将简要介绍直流电机的原理和特点,然后详细讨论直流电机调速系统的设计和实现过程,包括PID控制、PWM波控制等技术的应用。
最后,通过实验验证了该系统的稳定性和可靠性。
关键词:直流电机,调速系统,PID控制,PWM波控制正文:一、直流电机的原理和特点直流电机是一种能够将电能转化为机械能的电动机,在工厂、农业、交通和家庭等领域中得到广泛应用。
直流电机的转速可以通过改变电源电压和磁场来控制,具有调速灵活、响应迅速、运转平稳等特点。
二、直流电机调速系统的设计和实现直流电机调速系统实现的基本原理是通过改变电机电源电压或电流来调节电机转速。
PID控制是一种经典的调速方法,该方法通过对电机转速的误差、误差变化率和误差积分进行控制,来实现电机的调速。
PWM波控制是一种高效的调速方法,该方法通过改变电源供电时间的占空比来控制电机转速。
三、实验验证为了验证直流电机调速系统的稳定性和可靠性,我们进行了实验。
实验中采用了基于STM32F103单片机和L298N电机驱动板的直流电机调速系统。
实验结果表明,该系统具有良好的响应速度和调节精度,能够满足不同工作条件下的转速要求。
结论:通过本文的探讨,我们深入了解了直流电机调速系统的原理和实现方法,同时也验证了该系统的可靠性和稳定性,为直流电机的应用提供了有效的技术支持。
四、直流电机调速系统的应用直流电机调速系统在现代工业生产中得到广泛应用,如机械加工、自动控制、电力系统等。
在机械加工中,调速系统可以根据不同的工作要求进行调节,达到更精确的加工效果;在自动控制中,调速系统可以根据实时的反馈信息进行控制,使设备的运行更加稳定;在电力系统中,调速系统可以根据能源的供应情况来调整电机的转速,从而降低能源的消耗。
五、直流电机调速系统的发展趋势随着现代工业生产的发展,对于直流电机调速系统的要求也越来越高。
未来直流电机调速系统的发展趋势有以下几个方向:1.智能化:将人工智能技术应用到调速系统中,使其能够自主学习和优化控制策略。
PWM直流电机调速系统设计
PWM直流电机调速系统设计PWM(脉宽调制)直流电机调速系统设计是通过改变电机输入电压的有效值和频率,以控制电机转速的一种方法。
本文将介绍PWM直流电机调速系统的原理、设计过程和实施步骤。
一、PWM直流电机调速系统原理1.电机:PWM直流电机调速系统使用的电机一般是带有永磁励磁的直流电机,其转速与输入电压成正比。
2.传感器:传感器主要用于检测电机转速和转速反馈。
常用的传感器有霍尔传感器和编码器。
3.控制器:控制器通过接收传感器反馈信号,并与用户输入信号进行比较来调整电机输入电压。
控制器一般包括比较器、计数器、时钟和PWM 发生器。
4.功率电源:功率电源负责提供PWM信号的电源。
PWM直流电机调速系统的工作原理是:先将用户输入转速转化为电压信号,然后通过比较器将输入信号与传感器反馈信号进行比较,再将比较结果输入给计数器,由计数器根据输入信号的边沿通过时钟控制PWM发生器,最后通过功率电源提供PWM信号给电机。
二、PWM直流电机调速系统设计过程1.确定电机类型和参数:根据实际需要确定使用的直流电机类型和技术参数,包括额定电压、额定转速、功率等。
2.选择传感器:根据调速要求选择合适的传感器,常用的有霍尔传感器和编码器。
3.设计控制器:根据电机类型和传感器选择合适的控制器,设计比较器、计数器、时钟和PWM发生器电路,并进行连线连接。
4.设计功率电源:根据控制器和电机的电压和电流要求设计适当的功率电源电路。
5.总结设计参数:总结所选器件和电路的技术参数,确保设计完整。
三、PWM直流电机调速系统实施步骤1.进行电路连线:根据设计图将所选器件和电路进行连线连接,包括控制器、传感器、电机和功率电源。
2.进行参数调整:根据需要进行控制器参数的调整,如比较器的阈值、计数器的初始值等。
3.进行调速测试:连接电源后,通过用户输入信号和传感器反馈信号进行调速测试。
根据测试结果进行参数调整。
4.优化系统性能:根据测试结果优化系统性能,如改进控制器参数、调整电机参数等。
直流电机PWM调速控制系统设计
直流电机PWM调速控制系统设计一、引言直流电机是一种常见的电动机,广泛应用于工业生产中的机械传动系统。
为了实现对直流电机的调速控制,可以采用PWM(脉宽调制)技术。
PWM调速控制系统通过控制脉冲宽度的变化来调整输出信号的平均电压,从而改变电机的转速。
本文将详细介绍直流电机PWM调速控制系统的设计原理、电路设计和控制算法等方面。
二、设计原理1、PWM调制原理PWM调制是一种通过改变脉冲宽度来控制平均电压的技术。
在PWM调速控制系统中,主要是通过改变脉冲的占空比来改变输出信号的平均电压,从而调整电机的转速。
2、直流电机调速原理直流电机的转速与电源电压成正比,转速调节的基本原理是改变电机的供电电压。
在PWM调速控制系统中,通过改变PWM信号的占空比,即每个周期高电平的时间占总周期时间的比例,来改变电机的供电电压,从而控制电机的转速。
三、电路设计1、输入电源电压变换电路为了适应不同的输入电源电压,需要设计输入电源电压变换电路。
该电路的功能是将输入电源电压通过变压器等元件进行变压或变换,使其适应电机的工作电压要求。
2、PWM信号发生电路PWM信号发生电路主要是负责产生PWM信号。
常用的PWM信号发生电路有555定时器电路和单片机控制电路等。
3、驱动电路驱动电路用于控制电机的供电电压。
常见的驱动电路有晶闸管调压电路、MOSFET驱动电路等。
通过改变驱动电路的控制信号,可以改变电机的转速。
四、控制算法在PWM调速控制系统中,需要设计相应的控制算法,来根据系统输入和输出变量进行调速控制。
常见的控制算法有PID控制算法等。
PID控制算法是一种经典的控制算法,通过对系统的误差、误差变化率和误差积分进行综合调节,来控制输出变量。
在PWM调速控制系统中,可以根据电机的转速反馈信号和设定转速信号,计算出误差,并根据PID 控制算法调节PWM信号的占空比,从而实现对电机转速的精确控制。
五、系统实现根据上述设计原理、电路设计和控制算法,可以实现直流电机PWM调速控制系统的设计。
直流电机调速控制系统设计
直流电机调速控制系统设计1.引言直流电机调速控制系统是一种广泛应用于工业生产与生活中的电气控制系统。
通过对直流电机进行调速控制,可以实现对机械设备的精确控制,提高生产效率和能源利用率。
本文将介绍直流电机调速控制系统的设计原理、控制策略以及相关技术。
2.设计原理直流电机调速控制系统的基本原理是通过调整电压或电流来改变电机的转速。
在直流电机中,电压和电流与转速之间存在一定的关系。
通过改变电压或电流的大小,可以实现对电机转速的调节。
为了实现精确的调速控制,通常采用反馈控制的方式,通过测量电机转速,并与设定值进行比较,控制输出电压或电流,以达到期望的转速。
3.控制策略开环控制是指在没有反馈的情况下,直接控制输出电压或电流的大小,来实现对电机转速的调节。
开环控制的优点是简单、成本低,但缺点是无法考虑到外界的扰动和电机的非线性特性,使得控制精度较低。
闭环控制是指在有反馈的情况下,测量电机转速,并与设定值进行比较,控制输出电压或电流。
闭环控制的优点是能够考虑到外界的扰动和电机的非线性特性,提高控制精度。
常用的闭环控制策略有PID控制、模糊控制和神经网络控制等。
其中,PID控制是最为常用的一种控制策略,具有调节速度快、控制精度高的优点。
4.相关技术在直流电机调速控制系统的设计中,还需要用到一些相关的技术,如编码器、传感器和驱动器等。
编码器是一种测量旋转角度和速度的装置,可以用来测量电机的转速。
根据编码器的测量结果,可以对电机进行控制。
传感器可以用来检测电机的电流、电压和转速等参数,以获得电机的实时状态。
通过对这些参数的测量和分析,可以实现对电机转速的控制。
驱动器是将控制信号转换为电机运行的电路,可以根据输入的电压或电流信号控制电机的运行状态。
5.总结直流电机调速控制系统是一种重要的电气控制系统,可以实现对机械设备的精确控制。
在设计过程中,需要合理选择控制策略和相关技术,以实现期望的控制效果。
通过不断的研究和实践,可以进一步提高直流电机调速控制系统的性能和稳定性,满足不同领域的需求。
直流电机如何调速以及直流电机调速方法
直流电机调速,往往说的是他励有刷直流电机调速,根据直流电机的转速方程,转速n=(电枢电压U-电压电流Ia*内阻Ra)÷(常数Ce*气隙磁通Φ),因为电枢的内阻Ra非常小,所以电压电流Ia*内阻Ra≈0,这样转速n=(电枢电压U)÷(常数Ce*气隙磁通Φ),只要在气隙磁通Φ恒定下调整电枢电压U,就可以调整直流电机的转速n;或者在电枢电压U恒定下调整气隙磁通Φ,同样可以调整电机的转速n,前者叫恒转矩调速,后者称之为恒功率调速。
1直流电机恒转矩调速方式恒转矩模式下,要先保持气隙磁通Φ恒定,直流电机的定子和转子磁场是正交状态的,互相没有影响。
要保持Φ恒定,只要保证励磁线圈的电流稳定在一个值就可以了。
理论上给一个恒流源来控制励磁线圈的电流是比较完美的,但是因为电流源不好找,而一般给励磁线圈施加一个稳定的电压值,也可以近似让励磁电流稳定,进而让气隙磁通Φ恒定。
如果是永磁直流电机,用永磁铁来替代了励磁线圈,磁通是永久恒定的,所以不用操这个心了。
简单的调整电压,并不能满足负载波动比较厉害的场合,所以引进了串级调速系统,通过检测电机的电流和转速,分别弄出电流环内环和速度环外环了,使用PID算法,有效的满足了负载波动状况下的调速,让直流电机的调速工作特性非常“硬”,也就是最大转矩不会受到转速的波动而变化,实现了真正的恒扭矩输出。
这种调速方式,一直是交流调速系统的模仿对方,比如变频器矢量控制,就是模仿这种方式而实现的。
如果只用电流环内环,还可以直接控制电机输出一定的扭矩,满足不同的拉伸和卷曲等控制要求。
电枢电压控制,在晶闸管和IGBT这些没有被发明前,控制起来也不是容易的事情了,毕竟功率比较大,早期是通过一台发电机直流发电来控制的,通过调整发电机的磁通就可以控制发电机的输出电压,进而调整了电枢电压大小的。
在晶闸管可控硅被发明出来以后,通过给可控硅施加交流输入电压,利用移相触发技术控制可控硅的导通角,就可以把交流电整流成一定脉动的直流电,因为直流电机是大感性负载,脉动直流电会被大电感缓冲稳定下来。
直流电机调速控制和测速系统设计
直流电机调速控制和测速系统设计摘要:直流型的电机得性能在电机结构中有着较好的优势,由于时代的持续进步,与直流电机相关的使用频率也变得更高。
然而,以往的直流电机工作性质与所面临得运转问题息息相关,怎样对转速进行合理管控就变成了直流电机发展和应用期间存在的困难。
而直流电机控制系统的产生,可以较好的处理该方面的情况,不仅能够增强直流电机的平稳程度和精准程度,还可以合理管控直流电机的运行速度,从而达到我国对相关设备的应用标准。
基于此,本文重点分析了直流电机调速控制的方式,进一步对测速系统进行设计,以供相关人员参考。
关键词:直流电机;调速控制;测速系统目前,直流发电机的应用非常广泛,在自动化装备领域中,其内蓄电池内部都配置有相应的直流发电机,保证在断电的情况下起到一定的发电机组的润滑作用。
而直流电动机在启动时,其所用的电流量会增大很多,造成一定的冲击力,这种冲击力会造成一定的影响,比如充电器出现损坏、短路等,这些故障的产生都会使得发电设备无法正常运转。
因此,为了解决我国在有关这方面的控制技术上存在的问题,需要对调速与测速系统进行控制与设计,以此来确保整个电机设备的稳定性与安全性。
1电机调速原理及其实现电机调速原理主要是指对电机两端所存在的电压进行数据上的更改,以此来完成对电机转速的调节工作,对于电机而言,当自身的电压方向出现改变,那么电机的旋转变化发生改变。
而PWM在调速原理方面则是以脉冲信号为主,利用脉冲信号的输出特性来进行传输,并改变原本存在于电机内部空间的脉冲信号,通过间接或速度按钮来完成有关电机电压的更改工作,从而来确保电机的转速能够因此发生改变。
在这一过程中,电机内部的脉冲占比越大,转速也就越慢。
整个电路主要是以H桥为主,为了确保整个驱动电机能够得到有效控制,将三极管进行单片机的引脚安装,将基极部分分别安装,从而来确保当电机处于运行状态时,能够利用垫片机来对其自身的转速内容进行控制。
当脉冲信号输送工作时,另一端会通过开展低电平的模式来进行应用,这时的直流电机会呈现为正转状态,反之亦然。
直流电机工作原理及调速
直流电机的基本工作原理直流励磁的磁路在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。
在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。
此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。
直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。
在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。
虽然直流发电机和直流电动机的用途各不同,但是它们的结构基本上一样,都是利用电和磁的相互作用来实现机械能与电能的相互转换。
直流电机的最大弱点就是有电流的换向问题,消耗有色金属较多,成本高,运行中的维护检修也比较麻烦。
因此,电机制造业中正在努力改善交流电动机的调速性能,并且大量代替直流电动机。
不过,近年来在利用可控硅整流装置代替直流发电机方面,已经取得了很大进展。
包括直流电机在内的一切旋转电机,实际上都是依据我们所知道的两条基本原则制造的。
一条是:导线切割磁通产生感应电动势;另一条是:载流导体在磁场中受到电磁力的作用。
因此,从结构上来看,任何电机都包括磁场部分和电路部分。
从上述原理可见,任何电机都体现着电和磁的相互作用,是电、磁这两个矛盾着的对立面的一。
我们在这一章里讨论直流电机的结构和工作原理,就是讨论直流电机中的“磁”和“电”如何相互作用,相互制约,以及体现两者之间相互关系的物理量和现象(电枢电动势、电磁转矩、电磁功率、电枢反应等)。
一、直流发电机的基本工作原理直流发电机和直流电动机具有相同的结构,只是直流发电机是由原动机(一般是交流电动机)拖动旋转而发电。
可见,它是把机械能变为电能的设备。
直流电动机则接在直流电源上,拖动各种工作机械(机床、泵、电车、电缆设备等)工作,它是把电能变为机械能的设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计目标
拟定其传动系统 选择伺服电机 确定反馈控制结构 选择伺服系统的参
数
伺服系统设计实例_分析1
解决问题的方法 通过数学建模来分析整个系统的问题
信号
驱动单元数学模型 电机单元数学模型 机械单元数学模型
目标运动
伺服系统设计实例_分析2
数学建模来分析整个系统的问题 数学模型应解决什么问题 数学模型如何来实现互联
额定转速
电机调速基本概念
调速范围 静差度
在额定电压,额定负载条件下 (电机铭牌上所给出的数据)
额定转速
电机调速基本概念
调速范围
静差度
由静差度许可值 求调速范围
在额定电压,额定负载条件下 (电机铭牌上所给出的数据)
额定转速
直流电机的基本特性_1
转速降
理想转速
Ia
Ia
普通直流电机的铭 牌数据
额定工作转速 额定工作转矩 额定工作电压 额定工作电流 电机线圈直流内阻
直流伺服电机调速驱动单元 结构实例
直流伺服电机调速驱动单元 结构实例
速度指令
电机 测速电机
直流伺服电机调速驱动单元 结构实例
速度单元
速度指令
电机 测速电机
直流伺服电机调速驱动单元 结构实例
速度指令 速度环
电机 测速电机
直流伺服电机调速驱动单元 结构实例
电压— 脉冲变换
速度指令
速度环 电流环
电机调速基本概念
理想转速
转速降
Ia
直流电机调速的基本概 念:
什么是恒转距调速? 什么是恒功率调速?
什么是动态平衡方程? 什么是静态平衡方程?
这两类方程的应用场合。
直流电机的控制方法
工业PC 可编程控制器
单片机
电机调速系统的作用
机床在加工过程中、需要按不同的加工要求,调整主轴的转速、 进给速度。为保证工件表面质量和精度.求调速系统调速稳 定.能迅速消除扰动(主要是负载和电枢电压波动)而引起的转速 波动。要求系统具有足够的动态稳定性和快速性,使起动、制动、 调速过程平稳迅速。
据已确定的执行电机、功率放大装置和检测整置,设计前置放大器、信
号转换线路等。在考虑各种部件相互联接时,要注意阻抗的匹配、饱和
界限、分辨率、供电方式和接地方式。为使有用信号不失真的、不失精
度地有效传递,耍设计好福合方式。同时也要考虑必要的屏蔽、保护、 滤波……等抗干扰措施。
建立系统的动态数学模型
电机调速系统的基本结构_1
直流电机调速系统 开环调速系统
控制
驱动
速度控制
电机
机械
电机调速系统的基本结构_2
直流电机调速系统
速度负反馈闭环调速系统(半闭环) 速度控制
控制
驱动
电机
测量
机械
电机调速系统实例_1 (A)
直流伺服电机控制系统 速度负反馈闭环调速系统的结构
右图为一数控 机床进给部件 中的电机调速 系统接线图
电机 测速电机
直流伺服电机调速驱动单元 结构实例
电压— 脉冲变换
速度指令
速度环 电流环
电机 测速电机
系统的稳态设计也要分步骤进行,首先要根据被控对象运动的特点,
选择系统的执行电机和相应的机械传动机构;接着可以选择或设计驱动
执行电机的功率放大装置;再根据系统工作精度的要求,确定检测装置
具体的组成形式,选择元件的型号规格,设计具体的线路参数。然后根
直流电机及调速系统
直流电机工作原理
从图中可以看出,接入直流电源以后,电刷A为正极性,电刷B为负极性。
电流从正电刷A经线圈ab、cd,到负电刷B流出。根据电磁力定律,在载流导体
与磁力线垂直的条件下,线圈每一个有效边将受到一电磁力的作用。电磁力的
方向可用左手定则判断,伸开左手,掌心向着N极,4指指向电流的方向,与4 指垂直的拇指方向就是电磁力的方向。在图示瞬间,导线ab与dc中所受的电磁 力为逆时针方向,在这个电磁力的作用下,转子将逆时针旋转.即图中S的方向。
电机调速系统实例_1 (D)
控制
驱动
电机
电源 电源
电机调速系统实例_1 (E)
控制
驱动
电机
电源 电源
电机调速系统实例_1 (F)
控制
驱动
电机
电源 电源
电机调速系统实例_1 (G)
控制
电机调速系统实例_1 (H)
位置控制实现原理 控制
电机调速系统实例_1 [总结]
通过以上的实例,同学应掌握如下内容 1. 电机调速系统结构的一般形式和工作原理 2. 电机调速系统中速度闭环和位置闭环的区别 3. 电机调速系统系统中速度指令的形式 4. 电机调速系统系统中的位置控制实现原理
直流电机转速负反馈 闭环控制系统分析
以下将对一个简易的直流电机转速负反馈调速 系统进行分析,通过该例掌握电机调速系统的 工作原理、分析方法。
系统结构模型
电机建模
换流装置建模
放大器建模
测量传感器建模
系统综合建模
闭环系统与开环系统比较
开环系统稳态方程
闭环系统稳态方程
系统性能改善的分析式
控制2
驱动 电机 机械
测量2
测量1
电机调速系统实例_2
CNC系统
驱动系统
伺服电机
传感器
CNC中的伺服系统
机床本体
系统实例 数控系统+驱动单元+伺服电机
系统实例
伺服系统设计实例_1
设计条件
最大纵向进给力 工作台质量 工件等质量 定位精度 导轨形式及材料
设计条件转化成 分析条件
变,使电机沿逆时针方向连续转动。
电磁式直流电机的种类
电磁式直流电机的种类
永磁式直流伺服电机结构
直流伺服电机构成 直流伺服电机的电源特点 直流伺服电机的类型
直流电机的基本方程_1
静态方程
Ia
静态方程是指电机稳态下的 机械平衡方程,电压平衡方 程。
直流电机的基本方程_1
动态方程
驱动单元数学模型
信号
电机单元数学模型
机械单元数学模型
目标运动
伺服系统设计实例_分析3
数学建模来分析整个系统的问题 数学模型应解决什么问题 数学模型如何来实现互联
信号 信号
输入 驱动单元数学模型
输出
输入
电机单元数学模型
输入
输出
机械单元数学模型
输出
目标运动
电机调速系统的一般结构形式
电机调速系统实例_1 (A)
直流电机工作原理
随着转子的转动,线圈边位置互换,这时要使转子连续转动.则应使线圈
边中的电流方向也加以改变.要进行换向。由于换向器与静止电刷的相互配合
作用,线圈不论转到何处,B刷h始终与运动到N极下的线圈边相接触,而电极
A始终与运动到S极下的线圈边相接触.这就保证了电流总是经电刷经N极下导
体流入,再沿S极导体经电刷B流出。因而电磁力和电磁转矩的方向始终保持不
经过系统的稳态设计,系统主回路各部分均己确定。但稳态设 计依据的主要是系统的稳态性能指标,因此所构成的系统还不能 保证满足系统动态性能的要求,为系统的动态设汁作准备,需要 对稳态设计所确定的系统作定量计算(或辅助实验测试),建立它 的动态数学模型,称之为原始系统的数学模型。
系统的动态设计
根据被控对象对系统动态性能的要求,结合以上获得的原始系统数学 模型,进行动态设计,要确定采用什么校正(补偿)形式,Q定校正(补偿) 装置具体线路和参数,确定校正装置在原始系统中具体联接的部位和联 接方式。使校正(补偿)后的系统能满足动态性能指标要求
它是一个速度 负反馈闭环 调速系统
控制
驱动
电机
电源 电源
电机调速系统的基本结构_3
直流电机调速系统 速度负反馈闭环调速系统(闭环)
速度控制
控制
驱动
电机
测量
机械
电机调速系统的基本结构_4
直流伺服电机控制系统 速度负反馈闭环控制系统的结构 位置—速度双闭环控制系统的结构
位置控制
控制1
系统性能改善的分析式
系统性能改善的分析式
K值的大小反映了什么?
KM 也被称为转速降△服电机的基本特性_2
启动特性曲线
启动电压
启动电压的物理意义?
电机调速基本概念
P 恒功率调速
n
M
n
电机调速基本概念
P 恒转矩调速
n
M
n
电机调速基本概念
调速范围
在额定电压,额定负载条件下 (电机铭牌上所给出的数据)
直流伺服电机控制系统 速度负反馈闭环调速系统的结构
右图为一数控 机床进给部件 中的电机调速 系统接线图
它是一个速度 负反馈闭环 调速系统
控制
驱动
电机
电源 电源
电机调速系统实例_1 (B)
直流伺服电机控制系统 速度负反馈闭环调速系统的结构
电机调速系统实例_1 (C)
直流伺服电机控制系统 速度负反馈闭环调速系统的结构
I
过渡状态—— 停止/启动、加速、 减速、加载、减载
直流电机的基本方程_1
动态方程
I(t)
过渡状态—— 停止/启动、加速、 减速、加载、减载
直流电机的基本方程_2
电流
直流电机的调速原理
电压调速
直流电机的速度控制原理_1
Ia
机械特性方程的推导
直流电机的基本特性_1
理想转速
转速降
Ia
机械特性曲线