Dry friction and wear characteristics of rare-earthMoSi2 composite
聚四氟乙烯纳米复合材料的制备及其力学和摩擦学性能
聚四氟乙烯纳米复合材料的制备及其力学和摩擦学性能汪海风;徐意;申乾宏;樊先平;罗仲宽;杨辉【摘要】以添加表面活性剂的水为溶剂,采用溶剂混合法制备纳米 Al2 O3填充聚四氟乙烯(PTFE)复合材料,研究其力学性能和摩擦学性能,并与乙醇中分别制备纳米 Al2 O3填充 PTFE 复合材料进行比较。
结果表明:在相同 Al2 O3填充比例下,水中制备的复合材料的拉伸强度和硬度要低于乙醇中制备的复合材料,而断裂伸长率却要高于乙醇中制备的复合材料。
在200 N 和干摩擦条件下,当纳米Al2 O3质量分数为1%~5%时,水中制备的复合材料的磨耗量要低于乙醇中制备的复合材料,并较纯 PTFE 磨耗量下降了1~2个数量级;且水中制备的复合材料的摩擦因数也要低于乙醇中制备的复合材料。
复合材料磨痕处 SEM显示复合材料的磨损机制为黏着磨损和磨粒磨损。
%Nanometer Al2 O3 filled PTFE composites were prepared in water containing surfactant and in ethanol,and their mechanical and tribological properties were investigated,respectively.The results show that the composites prepared in water exhibit lower tensile strength,lower hardness and higher elongation at break than that of composites prepared in ethanol at the same Al2 O3 contents.Under dry sliding condition of 200 N,the wear mass loss of the composites prepared in water,1 ~2 orders of magnitude lower than that of pure PTFE,is lower than that of the composites prepared in ethanol with Al2 O3 content in 1% ~5 %,and the friction coefficient of the composites prepared in water is also lower than that of the composites prepared in ethanol.The SEManalysis of the worn surfaces of the composites shows the wear mechanism of PT-FE composites is adhesive wear and abrasive wear.【期刊名称】《润滑与密封》【年(卷),期】2013(000)010【总页数】4页(P21-24)【关键词】聚四氟乙烯;纳米Al2O3;拉伸强度;断裂伸长率;磨耗量;摩擦因数【作者】汪海风;徐意;申乾宏;樊先平;罗仲宽;杨辉【作者单位】浙江大学浙江加州国际纳米技术研究院浙江杭州 310029;浙江大学浙江加州国际纳米技术研究院浙江杭州 310029;浙江大学材料科学与工程学系浙江杭州 310027;浙江大学材料科学与工程学系浙江杭州 310027;浙江大学材料科学与工程学系浙江杭州 310027;浙江大学浙江加州国际纳米技术研究院浙江杭州310029; 浙江大学材料科学与工程学系浙江杭州 310027【正文语种】中文【中图分类】TH117.1聚四氟乙烯 (PTFE)具有优异的耐高低温、耐腐蚀、耐老化、不黏等性能,已广泛应用于航空航天、石油化工、机械电子等领域。
DLC表面处理对高速钢耐磨性能的影响
Effect of DLC Surface Trea tm en t on W ear Resistance of H igh Speed Steel
lubrication and different speeds in the first 60 m inutes.
件 (模具钢 )表面的粗糙度不一致 ,他们表面都具有一些微观的 硬质凸起 ,这些微观凸起使得初始接触时的摩擦因数急剧变大 。 在摩擦磨损过程中 ,这些硬质小凸点承受了接触面间的绝大多 数压力 ,因而在较短的时间内 ,这些硬质凸起就开始屈服并发生 塑性变形 ,加之润滑油的良好辅助作用 (接触面间成边界摩擦 趋势 ) ,接触表面变得光滑 ,而且摩擦副间的配合也越来越好 , 因而摩擦因数随时间的延长逐渐变小 。图 2b的变化趋势与图 2a有所区别 ,图 2b中的摩擦因数并不是先增加后减少 ,相反还 出现了些许的增加 ,这可能是因为高速磨损时 ,随磨损时间延 长 ,接触面间温度过高 ,润滑油挥发得比较多 ,本实验控制的正 常滴油速度下并不能满足润滑需求 ,因此实际的润滑状况可能 变成半干摩擦 (此时部分接触点是干摩擦 ,而另一部分是边界 摩擦 ) ,由此可解释图 2b中摩擦因数的变化趋势 。 2. 1. 3 转速对 DLC摩擦磨损性能的影响
试验中摩擦因数的测量是通过对力矩的换算来实现收稿日期18作者简介江苏东台人硕士主要从事耐磨涂层的相关研究表面技术surfactechnologyec2008vo是摩擦力是摩擦因数磨痕形貌分析采用s2570型扫描电子显微镜sem观察试样的磨痕微观形貌油润滑不同转速下第igureriationfrictioncoefficienconditionillubricationifferenspeedfirst60inute模具钢表面的粗糙度不一致他们表面都具有一些微观的硬质击起这些微观击起使得初始接触时的摩擦因数急剧变大在摩擦磨损过程中这些硬质小击点承受了接触面间的绝大多数压力因而在较短的时间内这些硬质击起就开始屈服并发生塑性变形加之润滑油的良好辅助作用接触面间成边界摩擦趋势而且摩擦副间的配合也越来越好2b的变化趋势与图2a有所区别2b中的摩擦因数并不是先增加后减少相反随磨损时间接触面间温度过高润滑油挥发得比较多本实验控制的常滴油速度下并不能满足润滑需求因此实际的润滑状况可变成半干摩擦此时部分接触点是干摩擦转速对dl为油润滑状况下转速的变化对dlc试样摩擦磨损3a为不同转速下dlc试样的磨损曲线变3b为测定的第1h内摩擦因数的变化曲线油润滑不同转速下的摩擦磨损曲线igurecurvefrictionconditionillubricationifferenspeed可以看出低速下进行磨损dlc试样的磨损曲线比较平缓而在图1b磨损初始阶段dlcdlc试样的磨损曲线斜率增大试样的磨损曲线斜率较为接近
水润滑轴承摩擦噪声实验研究
水润滑轴承摩擦噪声实验研究开题报告1、课题的目的及意义(含国内外的研究现状分析或设计方案比较、选型分析等)水润滑轴承的研究背景轴承是机器中用来支撑轴的一种重要零件,随着流体力学理论的建立和数值计算技术的发展,滑动轴承的应用日益广泛,普遍应用于船舶、汽车、金属切削机床、仪表、矿山、冶金等设备中。
如何减少轴承与轴之间的动摩擦、噪声,提高机械效率和使用寿命,是滑动轴承研究需要迫切解决的问题,研究者们在轴承结构、润滑剂、减摩材料、制造加工工艺等方面进行了大量的研究工作,取得了相当的成果。
近几年来, 由于人们逐渐认识到保护环境、节约能源资源对人类可持续发展的意义, 开发新型的节能无污染产品的很急切。
长久以来,船舶轴承大多采用金属构件,以油为介质,这不但消耗大量贵金属和油料,并且为了防止油泄漏,需要进行密封,使其结构相当复杂,而且很难解决由于各种摩擦副而引起的摩擦、磨损、振动、冲击、噪声、无功能耗、可靠性差、寿命较短等一系列问题。
根据我国有关调查报告:目前我国使用油润滑尾轴轴承的所有中型船只,每年要从尾轴轴承中泄漏出的润滑油总量约有312 t,这对江河湖海的水系造成严重的污染。
利用天然水替代矿物油作为各种机械传动和流体动力系统工作介质以及利用非金属作为传动摩擦副的研究课题,是机械传动系统的高效节能与环境保护科学研究领域的前沿,现已引起了人们的普遍关注。
用水代替油作润滑介质,不仅能节约油料,还可以避免以油为润滑介质对环境造成的污染。
同时水润滑轴承成本低,阻燃性好,易维护保养,承载能力高;还能降低摩擦副的摩擦、磨损、振动、噪声、无功能耗等关键问题。
因而水润滑轴承的研究对于提高机械效率和保护环境等都有着重要的理论研究和实践应用价值。
但是由于水的沸点低,所以水润滑轴承不能应用于高温环境中。
水尤其是海水的锈蚀作用较强,纯水的导电性比普通润滑油高数亿倍以上,能引起绝大多数金属材料的电化学腐蚀和高分子材料的老化。
河流的含沙量也会对船舶上的水润滑轴承也会产生影响。
基于硬质WC_涂层的不同摩擦副间的摩擦磨损特性及损伤机制研究
表面技术第53卷第7期基于硬质WC涂层的不同摩擦副间的摩擦磨损特性及损伤机制研究王晓霞1,陈杰1,郝恩康1*,刘光1*,崔烺1,贾利1,魏连坤1,郝建洁1,曹立军1,安宇龙2(1.中国兵器科学研究院宁波分院,浙江 宁波 315103;2.中国科学院兰州化学物理研究所 固体润滑国家重点实验室,兰州 730000)摘要:目的探究硬质WC-12Co涂层与摩擦副间的力学性能、摩擦磨损特性的对应关系。
方法采用超音速火焰喷涂(HVOF)技术制备WC-12Co硬质涂层,利用SEM、XRD、EDS等分析涂层的微观形貌、物相组成和元素分布规律等,研究该涂层与不同对偶配副的摩擦学性能及摩擦磨损机理等。
结果采用HVOF技术制备的WC-12Co涂层中各元素及物相分布均匀,涂层的显微硬度约为1 103.8HV0.3,纳米硬度约为20.47 GPa。
涂层和不同对偶配副的干摩擦因数均在0.80以上,磨损率在10−6 mm3/(N·m)量级,其中与Al2O3对偶球配副时摩擦因数(约0.81)最低,与WC-6Co对偶球配副时摩擦因数(约0.85)最大,在与Al2O3配副时磨损率最大,约为11.09×10−6 mm3/(N·m),与GCr15配副时磨损率最小,约为1.60×10−6 mm3/(N·m)。
结论硬质WC-12Co涂层致密均匀,其力学性能优异,与不同材质对偶球配副时其磨损机制有所不同,导致摩擦副间的摩擦因数和磨损率略有差异,但其耐磨性均良好,可以根据实际应用工况特点选择不同的摩擦副,以保证硬质碳化钨涂层的安全稳定长效服役。
关键词:WC-12Co涂层;超音速火焰喷涂;摩擦副;力学性能;摩擦学性能中图分类号:TG174.442 文献标志码:A 文章编号:1001-3660(2024)07-0076-09DOI:10.16490/ki.issn.1001-3660.2024.07.008Friction and Wear Behaviors and Damage Mechanisms ofDifferent Friction Pairs Based on Hard WC CoatingWANG Xiaoxia1, CHEN Jie1, HAO Enkang1*, LIU Guang1*, CUI Lang1,JIA Li1, WEI Liankun1, HAO Jianjie1, CAO Lijun1, AN Yulong2(1. Chinese Weapons Science Academy Ningbo Branch, Zhejiang Ningbo 315103, China; 2. State Key Laboratory ofSolid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China)ABSTRACT: The WC-12Co metalloceramic coating is regarded as the ideal choice to improve the wear resistance of engineering components. However, the friction and wear characteristics of the coating are not only related to its structure and收稿日期:2023-04-10;修订日期:2023-10-09Received:2023-04-10;Revised:2023-10-09基金项目:国家自然科学基金(52205223);内蒙古自治区自然科学基金(2022QN05019);宁波市自然科学基金(2022J316)Fund:National Natural Science Foundation of China (52205223); Natural Science Foundation of Inner Mongolia Municipality (2022QN05019); Natural Science Foundation of Ningbo City (2022J316)引文格式:王晓霞, 陈杰, 郝恩康, 等. 基于硬质WC涂层的不同摩擦副间的摩擦磨损特性及损伤机制研究[J]. 表面技术, 2024, 53(7): 76-84.WANG Xiaoxia, CHEN Jie, HAO Enkang, et al. Friction and Wear Behaviors and Damage Mechanisms of Different Friction Pairs Based on Hard WC Coating[J]. Surface Technology, 2024, 53(7): 76-84.*通信作者(Corresponding author)第53卷第7期王晓霞,等:基于硬质WC涂层的不同摩擦副间的摩擦磨损特性及损伤机制研究·77·components, but also closely associated with the friction pairs and working conditions. Thus, the work aims to expound the relationship between the mechanical and tribological properties of the hard WC-12Co coating sliding with different friction pairs. In this work, the WC-12Co coating was prepared by the high velocity oxygen fuel (HVOF) spraying technology, and then its morphology, phase composition and element distribution were analyzed by SEM, XRD and EDS. Meanwhile, the tribological properties and friction and wear mechanism of the coating sliding against three different coupled balls of GCr15 stainless steel, WC-6Co and Al2O3 were studied as well. Moreover, the friction and wear mechanisms were analyzed from the evolution of microstructure, mechanical properties and phase components.The elements and phases of WC-12Co coating prepared by HVOF technology were evenly distributed. The interior of the coating was uniform and compact with an average porosity of (2.86±0.16)%, while the near-surface layer was loose. This was caused by the tamping effect because of subsequent particles compacting the previous deposited particles. In addition, there wasa slight decarbonization during deposition proved by the presence of W3C phase in the coating. The WC-12Co coating had amicrohardness of about 1 103.8HV0.3, and a nano-hardness of about 20.47 GPa. According to the order of GCr15 stainless steel, WC-6Co and Al2O3, the microhardness, contact stiffness, nano hardness, elastic modulus and resilience of the coupled balls gradually increased, while the mechanical properties of the coating were slightly less than the values of the WC-6Co coupled ball. The dry coefficient of friction (COF) of WC-12Co coating sliding against different friction pairs was above 0.80, and the wear rate (WR) was in the order of 10−6 mm3/(N·m). The lowest COF was about 0.81 when the coating slid against alumina ball, and the highest COF was about 0.85 when the coating slid against tungsten carbide ball. The coating had the highest WR(11.09×10−6 mm3·N−1·m−1) coupled with aluminum oxide ball, and the lowest WR (1.60×10−6 mm3·N−1·m−1) coupled withGCr15 steel ball. Due to the low hardness and large plasticity of GCr15 stainless steel ball, the transfer film was easy to form and adhere to the coating surface during friction, appearing typical abrasive wear and adhesive wear characteristics. The mechanical properties of WC-6Co ball and coating were approximate, and there were no typical signs of abrasive wear or adhesive wear. The alumina would appear moisture absorption phenomenon in the air, and the formation of intermediate products could play a lubricant effect to reduce the COF. However, the hardness of Al2O3 ball was very high, and it was easy to wear the softer one of the friction pairs, so the wear rate of the coating was the largest. Besides, the tribochemical reactions of the coating sliding against different coupled balls were roughly the same.In general, the WC-12Co coating is dense and uniform with excellent mechanical properties. Although the COF and WR of the coating are slightly different due to the wear mechanism difference with different coupled balls, the wear resistance of the hard WC-12Co coating is very excellent. The various friction pairs can be selected according to the characteristics of the actual application conditions, so as to ensure the safe, stable and long-term service of the hard WC-12Co coating.KEY WORDS: WC-12Co coating; HVOF spraying; friction pairs; mechanical properties; tribological properties履带行动系统(如主动轮齿圈、履带连接环等“四轮一带”运动摩擦部件)具有高速重载的典型特征,互相接触的运动部件之间通常伴随着磨损的产生,这是导致相应部件损伤失效的重要因素[1-3]。
高频往复条件下M42高速钢干摩擦特性研究
根据表4的极差分析结果得到摩擦系数随因素水平 变化趋势,如图4所示。可以看出:
1) 摩擦系数基本随着法向载荷增大而增大,法向载 荷的大小直接决定了摩擦接触表面的尺寸、应力场与变形 程度。但是法向载荷从5N增长至15N,摩擦系数的增长 幅度比较小,这说明在较小的法向载荷范围内,摩擦系数 受法向载荷的影响有限。因为M42高速钢的硬度非常 大,当名义法向载荷增大时,作用到摩擦表面的真实法向 应力引起接触面积和变形程度增长有限。
不同条件下不同尼龙的摩擦磨损性能
2021年3月第45卷第3期Vol.45No.3Mar.2021 MATERIALS FOR MECHANICAL ENGINEERINGDOI:10.11973/jxgccl202103011不同条件下不同尼龙的摩擦磨损性能陈保磊,贾体锋,周忠尚,张小强(徐工集团徐工铁路装备有限公司,徐州221000)摘要:分别制备了MC尼龙、含5%(质量分数)润滑油的MC油尼龙及35%(体积分数)碳纤维增强的复合MC尼龙,研究了3种尼龙在干摩擦、洁净水、干砂、水砂条件下的摩擦磨损性能。
结果表明:MC油尼龙表面由于存在润滑油膜,4种条件下的摩擦因数和磨损率均最小;干摩擦和水润滑条件下.复合MC尼龙表面的纤维凸起使其磨损率和摩擦因数均较MC尼龙的小;水润滑下的尼龙磨损程度均较干摩擦下的小;干砂和水砂条件下,石英砂的犁削作用使MC尼龙表面出现较多犁沟,MC油尼龙表面由于存在润滑油膜,仅出现少量犁沟。
水砂条件下的尼龙磨损程度均较干砂条件下的小。
关键词:MCPA;OMCPA;CFMCPA;摩擦条件;摩擦磨损性能中图分类号:TH117.1文献标志码:A文章编号:1000-3738(2021)03-0056-05 Friction and Wear Properties of Different Nylon Under Different Conditions CHEN Baolei,JIA Tifeng,ZHOU Zhongshang,ZHANG Xiaoqiang(XCMG Railway Equipment Co.,Ltd.,Xuzhou221000,China)Abstract:MC nylon,MC oil nylon containing5%(mass fraction)of lubricating oil,and carbon fiber r&nforced compound MC nylon containing35%(volume fraction)of carbon fiber were prepared.The friction and wear performance of three kinds of nylon under dry friction,clean water,dry sand,and water sand conditions were studied.The results show that the friction factor and wear rate were the smallest of MC oil nylon under the four conditions due to the existence of lubricant film on the surface.Under the conditions of dry friction and water lubrication,the fiber protrusions on the surface of compound MC nylon made the wear rate and friction factor smaller than that of MC nylon.The degree of wear of nylon under water lubrication were lower than that under dry friction.Under the conditions of dry sand and water sand,the ploughing effect of quartz sand caused more furrows appeared on the surface of MC nylon.Only a few furrows appeared on the surface of MC oil nylon due to the lubricant oli film on the surface.The degree of wear of nylon under water sand conditions was lower than that under dry sand conditions.Key words:MCPA;OMCPA;CFMCPA;friction condition;friction and wear performanceo引言单体浇铸尼龙(MC尼龙)因具有强度、刚度高,耐磨损、耐化学腐蚀性能好,以及成型工艺简单、尺寸限制小等优点而广泛应用于机械、食品、化工等领域。
铜合金镶嵌石墨材料的摩擦磨损性能
2021 年5 月第45卷第5期 Vol. 45 !Na 5 May 2021MATERIALS FO R MECHANICAL ENGINEERING1X)1: 10.11973/jxgccl202105009铜合金镶嵌石墨材料的摩擦磨损性能史科\王文东司明明2,王飞2,张超2(1.国核工程有限公司,上海200233;2.上海材料研究所,上海市工程材料应用评价重点实验室.上海200437)摘要:将硬度和强度不同的2种石墨分别镶嵌于Cu -15Ni -8S n 合金基体上,然后将Cu -15Ni -8S n 合金镶嵌石墨材料与05C rl 7Ni 4Cu 4N b 沉淀硬化不锈钢组成摩擦副,研究了不同栽荷(490, 980,1 470 N )和润滑条件(干摩擦与湿摩擦)下该材料的摩擦磨损性能。
结果表明:干摩擦条件下 该材料的摩擦因数随栽荷的增大基本呈增大趋势,且镶嵌较高硬度和强度石墨时材料的干摩擦因 数小于镶嵌较低硬度和强度石墨时材料的;湿摩擦条件下,镶嵌较高硬度和强度时石墨材料的摩擦 因数随栽荷的增大而增大.且与干摩擦条件下的相当;随着栽荷的增大,在干摩擦和湿摩擦条件下 的磨损量均呈增大趋势;干摩擦条件下石墨的磨损机制以磨粒磨损为主,并伴有疲劳磨损,而湿摩 擦条件下的磨损机制以磨粒磨损和冲刷磨损为主。
关键词:铜合金镶嵌石墨;摩擦因数;磨损机制中图分类号:TB333文献标志码: A文章编号:1000-3738(2021)05-0050-06Friction and Wear Properties of Copper Alloy Inlaid Graphite Material(1. State Nuclear Pow er Engineering C o., L td., Shanghai 200233» C hina ;2. Shanghai Research Key Laboratory forEngineering M aterials Evaluation, Shanghai Research Institute of M aterials, Shanghai 200437, China)Abstract : Tw o kinds of graphite with different hardness and strength were inlaid in the Cu-15Ni-8Sn alloymatrix. The friction pairs of Cu-15Ni-8Sn copper alloy inlaid graphite material and 05C rl7N i4Cu4N h precipitation hardened stainless steel w ere obtained. The friction and wear properties of the material under different loads (490, 980,1 470 N ) and different lubrication conditions (dry friction and w et friction) w ere studied. T he results show that under dry friction condition, the friction coefficient of the m aterials alm ost increased w ith load» and the dry friction coefficient of the material w ith higher hardness and strength graphite was sm aller than that of the material with lower hardness and strength graphite. U nder wet friction condition, the friction coefficient of the material with higher hardness and strength graphite increased w ith load, but was sim ilar w ith that under dry friction condition. W ith increasing load,the w ear loss under dry friction and wet friction increased. T he w ear mechanism of graphite was abrasive w ear accompanied w ith fatigue wear under dry friction condition, and was abrasive w ear and erosive w ear under wet friction condition.Key words : copper alloy inlaid graphite ; friction coefficient ; w ear mechanismSHI Ke1, WANG Wendong2. SI Mingming2. WANG Fei2. ZHANG Chao 2目(GYQJ-2019+24)作者简介:史科(1986—男,浙江慈溪人,工程师,学士通信作者:王文东正高级T .程师()引言在核电、航空、航天、军工等领域的苛刻服役工收稿曰期:2019-06-l h 修订日期:2021-03-15基金项目:2019年度(工业强基)产业转型升级发展专项资金资助项况下,当无法采用传统方式对运动机械零部件进行 润滑,但仍需满足特别长的服役寿命要求(如核电领 域的蒸汽发生器支撑用关节轴承服役寿命为60 a [1])时,需采用合理的固体润滑方式满足此类特 殊零部件的技术要求。
浸渍石墨38CrMoAlA(喷涂)配对密封摩擦副的干摩擦性能
润滑与密封LUBRICATION ENGINEERINGDec. 2020Vol. 45 No. 122020年12月第45卷第12期DOI : 10. 3969/j. issri. 0254-0150. 2020. 12. 008文献引用:郑绘付光卫,赵祥,等•浸渍石墨/38C 『MoAlA (喷涂)配对密封摩擦副的干摩擦性能[J].润滑与密封,2020,45(12) :52-59.Cite as :ZHENG Rao ,FU Guangwei ,ZHAO Xiang ,et al.Dry friction properties of impregnated graphite/38GrMoAlA ( sprayed) paired seal ing friction pair[ J] .Lubrication Engineering ,2020,45( 12) :52-59.浸渍石墨/38CrMoAlA (喷涂)配对密封摩擦副的干摩擦性能**基金项目:国家重点研发计划项目(2018YFB2000800).收稿日期:2019-11-20;修回日期:2020-01-14作者简介:付光卫(1992—),男,硕士研究生,研究方向为流 体密封技术"E-mail : guangweibuct© 163. com.通信作者:李双喜(1977-),男,博士,副教授,研究方向为 流体密封技术.E-mail : ***************.郑娱付光卫赵祥李双喜(北京化工大学流体密封技术研究中心北京100029)1摘要:针对干摩擦机械密封在高速运转工况下密封端面的摩擦磨损而导致密封失效问题,通过试验分析几种典型? 摩擦副材料组对在干摩擦下的摩擦磨损性能。
选择浸磚石墨M106D 和浸树脂石墨M106K 分别与38CrMoAlA 以及喷涂|Q2O3、AI2O3的38CrMoAlA 硬环组对,采用Plint 摩擦磨损试验机,监测摩擦副在高速干摩擦条件下的摩擦因数,分析I轴向载荷及线速度对摩擦因数的影响,通过白光干涉仪观测试验前后端面形貌。
SCI英文科技论文常见的错误及修改法
non-linear library of the Matlab/zdimulink toolbox can be used; the initial value of gear gap
in the backlash block is set to zero.
The clear height of the case is 6.15 meters; the thickness of the roof is 0.85 meters; the thickness of the bottom is 0.90 meters, the overall width is 26.6 meters, the overall length of the axial cord is 304.5 meters, the length of the jacking section is about 148.8 meters; the weight of the case is about 24127 tons. • Case clearance height • Roof thickness • Bottom thickness • Overall width • Overall length of the axial cord • Length of the jacking section • Weight of the case 6.15 meters 0.85 meters 0.90 meters 26.6 meters 304.5 meters 148.8 meters (approx.) 24127 tons (approx.)
The gear transmission is grade seven. The gear gap, which is 0.00012 radians, has different
铸铁刹车盘_毂材料摩擦磨损特性研究
(a) 速度与摩擦系数波动范围的关系
(b) 接触压力与摩擦系数波动范围的关系 图 3 速度 、接触压力对摩擦系数波动范围的影响
(b) 接触压力与摩擦系数达到最大值的时间的关系 图 4 不同速度 、接触压力下摩擦系数达到最大值的时间
摩擦系数达到最大值的时间随接触压力的变化规律 性不明显 ,随速度增加而迅速降低. 灰铁在任何情况 下 ,其摩擦系数达到最大值所需的时间最长 ,蠕铁和 球铁在高速 、高接触压力条件下相近 , 相比较而言 , 蠕铁摩擦系数达到最大值所需的时间最短. 这说明 蠕铁的制动效能在制动初始发挥得更为充分.
作为一对摩擦副 , 不仅要求盘试样材料的耐磨 性能好 ,而且要求对配副方造成的磨损小. 图 6 为试 验中测得的不同石墨形态铸铁盘试样和与之配副的
第 5 期 陈 跃 ,等 :铸铁刹车盘/ 毂材料摩擦磨损特性研究
83
(a) 速度与磨损率的关系
(a) 盘试样平均磨损率
试验中 ,将镍铬Ο镍硅热电偶置于盘块试样刚脱 离接触的盘试样表面 ,与旋转的盘试样保持接触 ,用 自动平衡记录仪记录测得的热电势 ,然后换算成温 度值.
2 试验结果与分析
2. 1 摩擦特性 图 2 为 3 种不同石墨形态铸铁材料在不同速度
v 、不同接触压力 N 下平均摩擦系数μ 的变化规 律. 由图可见 ,随着速度 、接触压力的增加 ,材料的摩 擦系数降低 , 3 种铸铁材料的摩擦系数从大到小依 次为灰铁 、蠕铁 、球铁 , 但在高速 、高接触压力条件 下 ,蠕铁的摩擦系数与灰铁相当.
石墨填充聚四氟乙烯基复合材料的摩擦学性能
石墨填充聚四氟乙烯基复合材料的摩擦学性能李文忠,王黎钦,古乐,郑德志哈尔滨工业大学机电工程学院,黑龙江省哈尔滨市 150001E-mail: wenzhonglee@摘要:为了研制PTFE基粘弹-摩擦型阻尼材料,采用机械共混-冷压成型-烧结的工艺制备了石墨/聚苯硫醚/聚醚醚酮混合填充PTFE基复合材料,利用环-块式磨损试验机,在干摩擦条件下考察了复合材料的摩擦学性能;并用扫描电镜观察了磨损表面形貌,研究了复合材料的磨损机理。
结果表明:PTFE含量不同的复合材料,随石墨填充量的增大,摩擦系数和磨损率的变化趋势不同,磨损主要由犁削、粘着和疲劳剥落中的一种或几种引起;适当配比的PTFE基复合材料具有较好的摩擦阻尼性能,能够满足粘弹-摩擦阻尼材料的要求。
关键词:聚四氟乙烯石墨复合材料摩擦学性能1. 引言聚四氟乙烯(PTFE)具有优异的物理化学性能,耐腐蚀性极强,耐高低温,是一种广泛应用的高性能工程塑料。
利用PTFE的粘弹阻尼和摩擦阻尼耗能,可以在苛刻环境下的机械装置中作为减振部件应用。
为了提高这种减振部件的阻尼性能,需要从提高减振材料的粘弹阻尼和摩擦阻尼两个方面研究。
为此,需要提高材料的摩擦系数,同时也要提高材料的耐磨性,以延长材料的使用寿命。
PTFE自身的摩擦系数很小,且耐磨性很差,限制了在减振工程中的应用。
而当其中添加某些无机颗粒或高分子聚合物后,材料的摩擦系数会提高,同时耐磨性可得到很大的提高,人们已经对填充PTFE复合材料的摩擦磨损性能进行了很多的研究[1~5]。
用于填充PTFE 的材料很多。
聚苯硫醚(PPS)和聚醚醚酮(PEEK)都具有机械强度高、耐热、耐腐蚀、耐磨、抗蠕变等性能,在PTFE中填充可大大改善耐蠕变性和耐磨性;在PTFE中填充石墨可明显提高耐磨性,及压缩蠕变性和导热性。
国内外有关石墨/PPS/PEEK混合填充PTFE基复合材料摩擦学性能的研究还未见报道,本文采用机械共混-冷压成型-烧结的工艺制备了石墨、PPS、PEEK混合填充PTFE复合材料,考察了干摩擦条件下石墨的含量对复合材料摩擦学性能的影响,并研究了材料的磨损机理,期望为PTFE基复合材料在减振中的应用提供依据。
光学中光滑的英文
光学中光滑的英文Title: The Optical Phenomenon of Surface SmoothnessLight, a fundamental aspect of our physical world, has fascinated scientists and philosophers for centuries. One of the intriguing phenomena associated with light is the concept of surface smoothness and its optical implications. In the realm of optics, the smoothness of a surface plays a crucial role in the behavior of light as it interacts with various materials and surfaces.At the most basic level, the smoothness of a surface can be described as the absence of significant irregularities or deviations from a perfectly flat or uniform surface. When light encounters a smooth surface, it interacts with the surface in a predictable manner, exhibiting specific optical properties that are distinct from those observed when light interacts with a rough or uneven surface.One of the primary consequences of surface smoothness in optics is the phenomenon of specular reflection. Specular reflection occurs when light is reflected off a smooth surface in a manner where the angle of reflection is equal to the angle of incidence. This type of reflection is often observed in everyday life, such as the reflection of lightoff a mirror or a still body of water. The smoothness of the surface is a critical factor in determining the quality and clarity of the reflected image, as any irregularities or imperfections on the surface can distort or scatter the reflected light.In contrast, when light encounters a rough or uneven surface, the reflection of light is diffuse, meaning that the light is scattered in multiple directions rather than being reflected in a single, predictable direction. This diffuse reflection is responsible for the appearance of many everyday objects, such as matte painted surfaces or rough-texturedmaterials, where the light is scattered in a more random and unpredictable manner.The smoothness of a surface can also influence the refractive properties of light as it passes through the material. Refraction is the bending of light as it transitions from one medium to another, such as from air to glass or water. When light passes through a smooth surface, the refraction is consistent and predictable, allowing for the precise control and manipulation of light beams. This property is essential in the design and manufacture of optical components, such as lenses and prisms, where the smooth surfaces are crucial for achieving desired optical outcomes.Furthermore, the smoothness of a surface can also impact the transmission of light through the material. In the case of transparent materials, such as glass or certain plastics, the smoothness of the surfaces can minimize the scatteringand absorption of light, allowing for efficient transmission and the preservation of image quality. This is particularly important in the design of optical devices, such as camera lenses, where the quality of the transmitted light is crucial for capturing high-resolution images.The importance of surface smoothness extends beyond the realm of optics and has significant implications in various scientific and technological fields. In the field of materials science, the smoothness of a surface can influence the adhesive properties, friction, and wear characteristics of a material. Smooth surfaces can exhibit reduced friction and improved resistance to wear, making them valuable in applications such as mechanical engineering, tribology, and surface coatings.In the semiconductor industry, the smoothness of surfaces is critical for the fabrication of high-performanceelectronic devices. The manufacturing of integrated circuitsand microchips requires the creation of extremely smooth surfaces, often at the nanoscale level, to ensure the accurate deposition of thin films and the precise patterning of features. Any irregularities or roughness on the surface can lead to defects and performance issues in the final devices.Moreover, the smoothness of surfaces plays a crucial role in the development of advanced materials and technologies, such as in the field of nanotechnology. The ability to engineer and control surface smoothness at the nanoscalelevel has opened up new possibilities for the creation of novel materials with unique optical, electronic, and mechanical properties. These materials find applications in areas like quantum computing, energy storage, and medical diagnostics.In conclusion, the optical phenomenon of surface smoothness is a multifaceted and profoundly important aspectof the study of light and its interactions with various materials. The smooth or rough nature of a surface can significantly impact the behavior of light, influencing phenomena such as reflection, refraction, and transmission. The understanding and optimization of surface smoothness have far-reaching implications in a wide range of scientific and technological fields, from optics and materials science to semiconductor fabrication and nanotechnology. As our understanding of the optical properties of smooth surfaces continues to evolve, the potential for innovativeapplications and groundbreaking discoveries in these fields remains vast and exciting.。
温诗铸院士荣获2015年度国际摩擦学金奖
3 结论(1)稀土La对Cu基摩擦材料微观组织改性作用表现在细化晶粒㊁净化组织,产生固溶强化和弥散强化,提高了Cu基摩擦材料的力学性能㊂(2)在铜基粉末冶金摩擦材料中,随着La含量增加,烧结材料的硬度增大,抗压强度先增大后减小,摩擦因数减小,磨损量先减小后增大㊂当La的质量分数为1 5%,烧结材料具有最高的抗压强度82 1MPa和最低的磨损量43mg㊂(3)稀土La能强化Cu基摩擦材料组织晶界,减小微观粒子平均承受的摩擦力,减小材料的摩擦因数,提高了材料的耐磨性㊂参考文献ʌ1ɔCHENBM,BIQL,YANGJ,etal.TRibologicalpropertiesofsolidlubricants(graphite,h⁃BN)forCu⁃basedP/Mfrictioncomposites[J].TribologyInternational,2008,41:1145-1152.ʌ2ɔKOVALCHENKOAM,FUSHCHICHOL,DANYLUKS,ThetribologicalpropertiesandmechanismofwearofCu⁃basedsin⁃teredpowdermaterialscontainingmolybdenumdisulfideandmolybdenumdiselenideunderunlubricatedslidingagainstcop⁃per[J].Wear,2012,290/291:106-123.ʌ3ɔRAJKUMARK,ARAVINDANS.Tribologicalperformanceofmicrowavesinteredcopper⁃TiC⁃graphitehybridcomposites[J].TribologyInternational,2011,44:347-358.ʌ4ɔ刘伯威,樊毅,张金生,等.SiO2和SiC对Cu⁃Fe基烧结摩擦材料性能的影响[J].中国有色金属学报,2001,11(S1):110-113.LIUBW,FANY,ZHANGJS,etal.EffectofSiO2andSiConpropertiesofCu⁃Fematrixsinteredfrictionmaterials[J].TheChineseJournalofNonferrousMetals,2001,11(S1):110-113.ʌ5ɔ王秀飞,许桂生,韩娟,等.添加ZrO2对铜基摩擦材料摩擦磨损性能的影响[J].粉末冶金技术,2013,31(1):22-27.WANGXF,XUGS,HANJ,etal.EffectofzirconiumdioxideadditiononfrictionandwearpropertiesofCu⁃basedfrictionma⁃terials[J].PowderMetallurgyTechnology,2013,31(1):22-27.ʌ6ɔ祁庆琚.含稀土镁合金的摩擦磨损性能[J].中国有色金属学报,2006,16(7):1219-1226.QIQJ.Frictionandwearcharacteristicsofrareearth⁃containingmagnesiumalloy[J].TheChineseJournalofNonferrousMetals,2006,16(7):1219-1226.ʌ7ɔ梁昌霞,潘冶.稀土氧化物对铁铜基粉末冶金轴承材料性能的影响[J].润滑与密封,2010,35(1):62-66.LIANGCX,PANY.Theeffectofrareearthoxidesontheprop⁃ertiesofpowdermetallurgyiron⁃bronzebasedbearingmaterials[J].LubricationEngineering,2010,35(1):62-66.ʌ8ɔ何科纱,程西云,李志华.稀土对金属陶瓷涂层微观组织改性作用研究现状和应用进展[J].润滑与密封,2009,34(3):100-104.HEKS,CHENGXY,LIZH.Surfacemodificationoncermetcoatingmicrostructurebyrareearthsanditsapplicationdevel⁃opment[J].LubricationEngineering,2009,34(3):100-104.ʌ9ɔ付大军,赵越超.稀土元素La对铜导电性及力学性能的影响[J].有色金属,2004,56(4):25-27.FUDJ,ZHAOYC.EffectsofLanthanumadditiononconductiv⁃ityandmechanicalpropertiesofcopper[J].NonferrousMetals,2004,56(4):25-27.ʌ10ɔ祁庆琚,刘勇兵,杨晓红.稀土对镁合金AZ91D摩擦磨损性能的影响[J].中国稀土学报,2002,20(5):428-432.QIQJ,LIUYB,YANGXH.EffectsofrareearthsonfrictionandwearcharacteristicsofmagnesiumalloyAZ91D[J].Jour⁃naloftheChineseRareEarthSociety,2002,20(5):428-432.温诗铸院士荣获2015年度国际摩擦学金奖㊀㊀国际摩擦学理事会评奖委员会经过评审,宣布将2015年度 国际摩擦学金奖 授予中国科学院院士㊁清华大学摩擦学国家重点实验室创始人温诗铸教授,以表彰其在摩擦学领域的杰出贡献,尤其是他对中国摩擦学教育的推动作用㊂摩擦学金奖创立于1972年,由国际摩擦学理事会颁发,每年奖励一位在摩擦学领域有卓越贡献的杰出学者,是国际摩擦学领域最具权威性和影响力的奖项㊂目前,已有来自12个国家的44名科学家获此奖项㊂温诗铸院士1955年以优异成绩毕业于清华大学,留校任教后开始进行摩擦学相关的教学和科学研究㊂1979年经国家选派赴英国伦敦帝国理工学院从事摩擦学研究㊂80年代初回国后,积极推动摩擦学学科创建及发展,主持建立了清华大学摩擦学国家重点实验室㊂温院士长期从事摩擦学研究,在润滑理论㊁摩擦磨损机理与控制等领域做出了系统的㊁创造性的贡献,建立了工程模型弹流润滑理论,奠定了现代润滑设计的基础㊂先后主持国家科委 六五 基础研究项目 摩擦学机理研究 , 七五 部委攻关项目中有关课题包括:卫星轴承润滑与寿命预测㊁铁路车辆轴承润滑设计与结构优化㊁电流变和磁流变流体研究等㊂温院士主持国家自然科学基金㊁ 八五 重点项目 典型机械摩擦学设计 , 九五 重点项目 纳米摩擦学理论与应用基础研究 , 十五 重点项目 微机电系统关键机械学问题研究 , 十一五 重点项目 纳米器件界面行为与控制研究 ,以及其他基金㊁国际合作研究等20余项㊂主持的研究获得科技奖励共24项,包括国家自然科学二等奖㊁国家技术发明三等奖㊁国家科技进步二等奖㊁全国优秀科技图书一㊁二等奖各1项;省部级科技进步一等奖4项㊁二等奖11项㊁三等奖3项㊂2002年获何梁何利基金科学与技术进步奖,2009年获中国机械工程学会摩擦学分会最高成就奖,2013年获中国机械工程学会科技成就奖㊂25润滑与密封第41卷。
六方氮化硼改性聚四氟乙烯聚酰胺酰亚胺复合涂层摩擦磨损性能的研究
and then increase. When the h ̄BN mass fraction is 0 7% ꎬ the friction coefficient is the lowest (0 077) and the wear amount is the
least (2 34×10 8 μm3 ) . When the h ̄BN mass fraction is 1 5% ꎬ the densification and friction and wear performance of the coating could
be reduced. The wear forms of composite coating are adhesive wear and abrasive wear.
稳定 [6] ꎮ 采用超音速空气等离子喷涂技术在铸铁基
摩擦系数低ꎬ 良好的热稳定性和耐腐蚀性ꎬ 低硬度ꎬ
展和应用 [1] ꎮ 在聚四氟乙烯基材料中添加一些添加
剂ꎬ 如碳纳米管 [2] 、 ZrO2 [3] 、 MoS2 [4] 等ꎬ 能提高其
滑剂而言ꎬ 固态的 h ̄BN 承载能力更高ꎬ 物理性质更
体上制备了镍基硼硅 / 氮化硼复合涂层ꎬ 实验结果表
已经 取 得 了 众 多 进 展ꎬ 但 是 将 h ̄BN 应 用 于 改 性
∗ 国家自然科学基金 (51675232) ꎬ 江苏省青年自然科学基金 ( BK20190611)
超低温环境下铝
第 54 卷第 8 期2023 年 8 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.54 No.8Aug. 2023超低温环境下铝/铜摩擦副的摩擦磨损特性石琛1, 2,廖华1,贺江南1(1. 中南大学 轻合金研究院,湖南 长沙,410083;2. 中南大学 极端服役性能精准制造全国重点实验室,湖南 长沙,410083)摘要:为探究超低温环境下铝/铜摩擦副的摩擦磨损特性,采用四球摩擦磨损试验机、表面轮廓仪、扫描电镜等研究超低温环境下不同载荷、不同转速时铝/铜摩擦副的干摩擦性能,并与常温工况进行对比。
研究结果表明:超低温环境下,铝/铜摩擦副的平均摩擦因数随着载荷的增加呈现下降趋势,但摩擦副的平均摩擦因数与磨损量比常温环境下的大;常温环境下,摩擦副产生的铝屑集中黏附在铝基体表面中央区域,而超低温环境下铝屑主要分布在铝基体表面边部区域,且有逐渐向摩擦面外排出的趋势;在常温环境下,铝/铜摩擦副摩擦磨损以磨粒磨损和黏着磨损为主,在高载荷、高转速时主要发生黏着磨损甚至出现烧结现象,而在超低温条件下,其摩擦磨损以磨粒磨损为主,在高载荷、高转速时摩擦面间主要发生挤压剥落现象。
关键词:超低温;铝/铜摩擦副;摩擦磨损特性中图分类号:TH117 文献标志码:A 文章编号:1672-7207(2023)08-3103-09Friction and wear characteristics of aluminum/copper frictionpair in cryogenic environmentSHI Chen 1, 2, LIAO Hua 1, HE Jiangnan 1(1. Light Alloy Research Institute, Central South University, Changsha 410083, China;2. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University,Changsha 410083, China)Abstract: In order to explore the friction and wear characteristics of aluminum/copper friction pair in cryogenic environment, the dry friction performance of aluminum/copper friction pair under different loads and at different rotating speeds in cryogenic environment was studied by four-ball friction and wear testing machine, surface收稿日期: 2022 −05 −30; 修回日期: 2022 −08 −03基金项目(Foundation item):国家重点研发计划项目(2020YFA0711104);国家自然科学基金资助项目(U21B6004);湖南省科技创新重大专项(2021GK1040) (Project(2020YFA0711104) supported by the National Key R&D Program of China; Project (U21B6004) supported by the National Natural Science Foundation of China; Project(2021GK1040)supported by the Major Project of Scientific Innovation of Hunan Province)通信作者:石琛,博士,副教授,从事纳米摩擦润滑与材料加工研究;E-mail :***************.cnDOI: 10.11817/j.issn.1672-7207.2023.08.014引用格式: 石琛, 廖华, 贺江南. 超低温环境下铝/铜摩擦副的摩擦磨损特性[J]. 中南大学学报(自然科学版), 2023, 54(8): 3103−3111.Citation: SHI Chen, LIAO Hua, HE Jiangnan. Friction and wear characteristics of aluminum/copper friction pair in cryogenic environment[J]. Journal of Central South University(Science and Technology), 2023, 54(8): 3103−3111.第 54 卷中南大学学报(自然科学版)profiler, scanning electron microscope, and compared with that in the room temperature working condition. The results show that the average friction coefficient(COF) of the aluminum/copper friction pair in cryogenic temperature environment shows a downward trend with the increase of the load, but the average COF and wear of the friction pair are larger than those in the room temperature environment. Under normal temperature conditions, the aluminum chips generated by the friction pair are concentrated and adhere to the central area of the aluminum substrate surface, while under ultra-low temperature conditions, the aluminum chips are mainly distributed in the edge area of the aluminum substrate surface and gradually discharge towards the outside of the friction surface. Itis found that the friction wear of aluminum/copper friction pair are mainly abrasive wear and adhesive wear at room temperature, and under high load and at high rotating speed there mainly occurs adhesive wear or even sintering phenomenon. In cryogenic conditions, the friction and wear are mainly abrasive wear, and under high rotating load and at high rotating speed there mainly occurs extrusion flaking phenomenon between the friction surfaces.Key words: cryogenic; aluminum/copper friction pair; frictional wear characteristics近年来,超低温成形作为一种新型塑性成形方法,逐渐被国内外科研人员应用于铝合金成形工艺研究中[1−2]。
交联聚四氟乙烯的耐磨性能研究
交联聚四氟乙烯的耐磨性能研究唐忠锋【摘要】Cross-linked polytetrafluoroethylene(XPTFE) was prepared by electron beam irradiation at high temperature.The tribological behavior of the XPTFE sheet was investigated on a ring-on-ring tribometer under dry friction conditions.It was shown that the fricti%采用电子束高温辐照制备交联聚四氟乙烯(XPTFE),利用环-环立式万能摩擦磨损试验机在干摩擦条件下研究了PTFE和XPTFE的摩擦磨损性能变化规律。
结果表明:与PTFE的摩擦系数相比,XPTFE的摩擦系数随剂量的增加而增加。
随剂量的增加,XPTFE的耐磨性增大,当吸收剂量为150 kGy时,XPTFE耐磨性提高了近1 000倍。
PTFE磨损表面光滑,磨屑为波浪形带状物;XPTFE的磨损表面形成摩擦棱,磨屑为粉状颗粒。
XPTFE的三维网状交联结构导致其耐磨性能明显提高。
【期刊名称】《有机氟工业》【年(卷),期】2011(000)002【总页数】6页(P3-8)【关键词】聚四氟乙烯;辐射交联;摩擦系数;耐磨性【作者】唐忠锋【作者单位】[1]中国科学院上海应用物理研究所,上海201800;[2]广西工学院生物与化学工程系,广西柳州545006【正文语种】中文【中图分类】TQ325.41 前言聚四氟乙烯(PTFE)具有优异化学稳定性、不燃性、极低的摩擦系数和良好的润滑性,是一种综合性能优异的工程塑料,素有“塑料王”之称,被广泛应用于航空航天及国防工业领域。
但其机械性能差、线膨胀系数大、耐蠕变性差、易冷流、特别是耐磨性差等缺陷在一定程度上限制了它的广泛应用。
为改善PTFE的耐磨性能,通常情况下是在PTFE基体中添加填料来实现改性。
42CrMo_钢表面激光熔覆钴基金刚石耐磨层组织及性能
表面技术第53卷第5期42CrMo钢表面激光熔覆钴基金刚石耐磨层组织及性能罗亮斌,梁国星*,刘东刚,郝新辉,黄永贵,赵建(太原理工大学 a.机械与运载工程学院 精密加工山西省重点实验室b.高端精密刀具系统省技术创新中心,太原 030024)摘要:目的增强42CrMo钢的耐磨性,改善其严重的磨损失效情况。
方法采用激光熔覆技术同步送粉的方式在42CrMo钢表面制备金刚石/WC颗粒增强钴基复合熔覆层,借助SEM、EDS、XRD、显微硬度仪和多功能综合性能测试仪,研究了熔覆层宏观形貌与微观组织、物相组成、显微硬度与耐磨性。
结果使用Ti/TiC 粉末对金刚石进行预处理可以改善其烧蚀和石墨化;适量ZrH2提升了熔覆层宽厚比,促进了熔池对流传质作用,同时,活性元素Zr改善了金刚石颗粒的润湿性能,提高了黏结相对金刚石的把持力。
熔覆层多道搭接过渡均匀,其显微组织主要由细小枝晶及致密网状碳化物共晶组成,熔覆层与基体结合区域反应生成了平面晶组织,进而提高了熔覆层结合强度。
激光熔覆热特性使W2C、ZrC、γ-(Co,Fe)、M6W6C、CoZr2、(Ti,Zr)O2、TiC x、Co3Ti等物相存在于熔覆层内,细晶强化及弥散强化作用使得熔覆层的平均显微硬度(1 002HV0.2)是基体的3倍。
熔覆层平均磨损量是基体平均磨损量的1/2,熔覆层平均摩擦因数也明显低于基体,表明熔覆层的耐磨性能得到提升,其磨损机制主要为磨粒磨损,熔覆层内金刚石因承担摩擦载荷而钝化,但磨痕中的金刚石完整且未发生脱落。
结论金刚石/WC颗粒增强钴基复合熔覆层的耐磨性显著提高,可用于42CrMo钢表面强化。
关键词:激光熔覆;复合熔覆层;显微组织;显微硬度;耐磨性中图分类号:V261.8 文献标志码:A 文章编号:1001-3660(2024)05-0096-12DOI:10.16490/ki.issn.1001-3660.2024.05.010Microstructure and Properties of Laser Cladding Co-based DiamondWear Resistant Layer on 42CrMo Steel SurfaceLUO Liangbin, LIANG Guoxing*, LIU Donggang, HAO Xinhui, HUANG Yonggui, ZHAO Jian(a. Shanxi Key Laboratory of Precision Machining, College of Mechanical and Vehicle Engineering, b. Provincial TechnologyInnovation Center of Advanced Precision Tool System, Taiyuan University of Technology, Taiyuan 030024, China) ABSTRACT: The work aims to enhance the wear resistance of 42CrMo steel and improve the serious wear failure of 42CrMo收稿日期:2022-12-23;修订日期:2023-04-27Received:2022-12-23;Revised:2023-04-27基金项目:中央引导地方科技发展资金项目(YDZJSX2021B003);国家自然科学基金资助项目(52105473);山西省基础研究计划项目(20210302124050,20210302124121);山西省创新平台基地建设专项(202104010911007);山西省高等学校科技创新项目(2021L086)Fund:Central Government Guided Local Development Foundation (YDZJSX2021B003); National Nature Science Foundation of China (52105473); Shanxi Provincial Research Foundations for Basic Research (20210302124050, 20210302124121); Special Project for the Construction of Shanxi Provincial Innovation Platform Base (202104010911007); Science and Technology Innovation Project of Colleges and Universities in Shanxi Province (2021L086)引文格式:罗亮斌, 梁国星, 刘东刚, 等. 42CrMo钢表面激光熔覆钴基金刚石耐磨层组织及性能[J]. 表面技术, 2024, 53(5): 96-107.LUO Liangbin, LIANG Guoxing, LIU Donggang, et al. Microstructure and Properties of Laser Cladding Co-based Diamond Wear Resistant Layer on 42CrMo Steel Surface[J]. Surface Technology, 2024, 53(5): 96-107.*通信作者(Corresponding author)第53卷第5期罗亮斌,等:42CrMo钢表面激光熔覆钴基金刚石耐磨层组织及性能·97·steel. The cladding layer with material of diamond/WC particles reinforced Co-based composites was produced on the 42CrMo steel surface by a laser synchronous powder feeding machine. The laser power was 700 W during the cladding process, the powder feeding rate was 21 g/min, the scanning speed of the spot was 180 mm/min, the carrier gas flow rate was 4 L/min, the distance between the substrate and the laser cladding head was 13 mm, and the overlap rate between the adjacent cladding passes was 30%. The polished cross section was corroded with 10% HNO3 alcohol solution to prepare metallographic samples.Macro morphology and microstructure of the cladding layer were observed by SEM and EDS. The phase composition was detected by XRD, the microhardness of the cladding layer was measured by microhardness tester and the friction and wear tests were carried out. The diamond particles pretreated by Ti/TiC powder could improve graphitization and ablation. An appropriate amount of ZrH2 powder could improve the ratio of the width of the cladding layer to its thickness, and promote the convection mass transfer in the molten pool. At the same time, the active element Zr could improve the wettability of diamond and the metal bond could hold the diamond particles strongly. The overlapping cladding layer performed a regular surface and the microstructure of the cladding layer was mainly composed of fine dendrites and dense network carbide eutectic. Rapid melting and freezing velocity at the bonding interface could make all elements diffuse and change in gradient, and generate planar crystals with appropriate dislocation and slip ability. Therefore, the bonding strength between the cladding layer and the substrate was enhanced. The thermal characteristics of laser cladding was contributed to obtain the W2C, ZrC, M6W6C, γ-(Co,Fe), CoZr2, (Ti,Zr)O2, TiC x, Co3Ti and other substances in the laser cladding, and the dispersion distribution of new carbide phase could significantly improve the microhardness of the cladding layer. The average microhardness (1 002HV0.2) of the cladding layer was 3 times that of the substrate due to the fine grain and dispersion strengthening. The average wear mass loss with a value of 1.6 mg was obtained in sliding the cladding layer, which was the 1/2 compared with that in sliding the substrate. The average friction coefficient of the cladding layer was evidently lower than that of the substrate, indicating that the wear resistance of the cladding layer increased. The friction and wear test of the cladding layer showed that abrasive wear became the dominant wear mechanism in sliding the cladding layer, the diamond particles in the cladding layer were passivated, contributing to bearing the friction load. However, the diamond particles located in the wear track on the cladding layer kept an integrity statue and few grains were falling out. The microstructure of the cladding layer is uniform and dense, the microhardness and the wear resistance are significantly improved, so it can be used for surface strengthening of 42CrMo steel.KEY WORDS: laser cladding; composite cladding layer; microstructure; microhardness; wear resistance42CrMo钢属于合金结构钢材,一般被用于制造高负荷下工作的重要零部件,钻头、齿轮、截齿等构件的材料常用42CrMo钢,其磨损是主要的失效形式[1],严重制约了机械设备高效率、智能化的发展。
船舶专业英语
VOCABULARYaboli sh v. 消除ABS 美国船级社accommodate v. 容纳accuracy n. 精度adjust v. 调节admi t v. 接纳adopt v. 采纳,采用aforementioned a.前述aft a. adv. n. (在)船艉aft peak 艉尖舱ahead n. 正车air compressor 空压机air-ti ght test 气密实验alignment n. 找中allowance n. 允值amplify v. 放大anchor n. 锚anchor chain (cable chain)锚链angular n. 角度anti corrosion precaution 防腐措施apparatus n. (pl. apparatus or apparatuses)仪器,器械,装置appearance n. 外观approval n. 批准,认可approve vt. 认可arc n. 弧度arrange v. 布置,安排asbestos n. 石棉assemble v. 装配assembly n. 装配astern n. 倒车axial push 轴向推力backing n. 衬垫base n. 基准base point n. 基准点basi c design 基本(方案)设计basi c metal母材bearing n. 轴承bearing hole n. 轴承孔blank n. 毛胚bolt n. 螺栓bolthead n. 螺栓头bottom n. 船底bushing n. 衬垫butt joint 对接接头calculation n. 计算calibrate v. 校正calibration n. 校正casing n. 罩壳cast i ron piece 铸铁件casting n. 铸造CCS 中国船级社centreline n. 中心线certifi cate n. 证书characteri stics n.性能,特性,特征check n. v. 检验China Classi fi cation Soci ety(CCS)中国船级社China Ocean Shipping Company (COSCO)中国远洋公司cold processi ng 冷加工collision n. (船只)碰撞completi on drawing 完工图component n. 组成部分composi tion n. 成分组成condensation n. 冷凝connecting rod 连杆connection n. 接头constitute v. 构成consumption n. 消耗contact v. 触发coolant n. 致冷剂coolant(cooling agent)n. 制冷剂coordinate n. 坐标corrosion n. 腐蚀cross section 截面crosshead n. 十字头curve n. 曲线cutting n. 切割cylinder n. 气缸cylinder block 气缸体cylinder cover (cylinder head) 缸盖cylinder liner 气缸衬套cylinder oil 气缸油cylinder wall缸壁deadweight ton(DWT) n.载重量,吨载量deform v. 形变designati on n. 名称,牌号detail design 详细(施工)设计detect v. 探测detect v. 侦察detection n. 探测deviation n. 位移diameter n. 直径differentia n. 差异disc n. 圆盘division n. 划分DNV挪威船级社Dock n. 船坞dock trial码头试验drive n. 传动drive mechani sm 传动机构drive mechani sm 传动装置drive unit 传动装置driven shaft 从动轴dry v. 烘干drydock n. 干船坞electri c load 负荷electrode n. 焊条element n. 机械零件element n. 要素emerge v. 崛起,兴起enclose v. 封闭encounter v. 遭遇engine oil机油engine space 机舱engineer n. 轮机员engineer n. 工程师engine-room 机舱ensure v. 确保EO 无人机舱equipment n. 设备error n. 误差experi ment n. 实验exterior force 外力Fabri cate v. 装配,制作fabri cation n. 装配fashioned steel型钢fathometer n. 侧深仪feed v. 馈给fixed part 固定件flexibility n. 挠性flexible coupling 挠性联轴节flood v. 进水flush v. 清洗flushing agent 清洗剂flux n. 焊剂flywheel n 飞轮forging n. 锻造formation n. 构成,结构frame n. 肋骨Freon n. 氟利昂fresh water (F.W.)淡水fri ction resi stance 摩擦阻力fuel n. 燃料fuel nozzle 喷油嘴fuel oil 燃油fuel oil (F.O.)燃油fuel pipeline 燃油管系gas cutting 气割gas welding 气焊gear n. 齿轮gear drive 齿轮转动GL 西德劳氏船级社gravity centre 重心groove v. 开坡口ground v. 接地growth n. 生长,发育guarantee n. v. 保证general description 概述hand level手柄hand wheel手轮handle v. 操纵horizontal a.水平的,卧式的horsepower(hp) n. 马力hose n. 软管hot processing 热加工identify vt.识别impact n. 冲击implication n. 含义impurity n. 杂质inclination n. 倾斜inclination test 倾斜试验incline v. 倾斜index n. 索引indi cati on n. 显示indi cator n. 显示仪indi cator n. 指示器injector n. 喷油器input n. v. 输入inspector n. 质检员installation n. (船上)安装installation error 安装误差instrument n. 仪表,仪器intake n. 吸入integral casting 整体浇铸intention n. 意向intermediate bearing 中间轴承intermediate shaft 中间轴internal combustion engine 内燃机jig n. 胎架journal n. 轴颈keel n. 龙骨keep station 定位kerosene test 煤油实验knot n. 节labyrinth n. 迷宫,曲径landing-place n. 码头lap j oint 搭接接头lay v. 敷设length n. (一)节,(一)段level n. 液位level gauge 液位计license n. 许可证lining n. 衬垫locate v. 定位lock washer 锁紧垫片lofting n. 放样log n. 计程仪longitudinal a.纵向的low speed 低速LR 英国劳氏船级社lube oil润滑油lube oil(L.O.)滑油lube oil pump 滑油泵lubri cant n. 润滑剂lubri cating oil滑油M.E.engine room 主机舱Machine v. 机加工machinery n. 机械machinery set 机组machinery workshop 机电车间machining n. 机加工machining workshop 机加工车间magnify v. 放大magnitude n. 大小main bearing 主轴承main engine (ME) 主机maneuver v. n. 操纵maneuverability n. 操纵性maneuvering console 操纵台mark v. 标出material n. 材料maxi mum(max.)n. 最大means n. 手段,工具measuring meter 测量仪表measuring point 测量点mechani cal processing 机加工medi um speed 中速member n. 构件mercury n,水银miller n. 铣床model plate 样板model rod 样棒moderate a. 中型的monitor v. 监视moor v. 系泊moving part 运动件nauti cal mile 海里nil n. 零,无NK 日本海事协会non –ferrous metal有色金属numeral n. 数字numeri cal control (NC)数控numeri cal control cutter 数控切割机nut n. 螺母oil filling port 注油口oil tanker 油船oil-resistant a.耐油的oil-tight n. 油密one-way a.单向的opening n. 开口operation n. 施工operation n. 运行,运转opti cal projector 光学仪器opti cs n. 光学orbit n. 轨道order n. v. 订单,定购outer appearance 外观output n. 输出owner n. 船东oxide n. 氧化皮paint n. 油漆painting n. 涂装painting n. 涂装,油漆工艺parameter n. 参数part n. 部件,机械部件part fabri cation 部装parti cle n. 颗粒performance n. 性能perpendi cular n. 垂线pipe flange 管子法兰piping system 管系piston pin 活塞环piston pin 活塞梢pitch n. 纵摇plan n. 图纸plane n. 平面plant n. (成套机电)设备platform n. 平台pointing of di rection 指向pollution n. 污染port n. 左舷portable light 手提灯pre-heat v. 预热pretreat v. 预处理pri mer n. 底漆process n. 工艺,流程v. 加工,处理program n. 程序prolong v. 延长promote v. 促进,晋升propeller n. 螺旋桨proportion n. 比例propul sion plant 推进装置protection type 保护式purity v. 净化quality assurance 质量保证quality control质量控制range v. 测距range di splay 航程显示器range uni t 航程装置rated power 额定功率rated value 额定值reaction n. 反作用力reading n. 读数receiver n. 接收器reci procating movement 往复运动rectifi cation n. 矫正,整顿register n. (机)验船师register vt. 登记,注册regulation n. 登记remains n. 残余resemble v. 相似reservoi r n. 容器resi stance n. 阻力rest v. 靠左retaining washer 保护垫片retake v. 回收,取回reversal n. 换向reverse v. 反向逆转revolution n. 旋转rigid a. 刚性的room n. 余地rotate v. 旋转rotor n. 转子roughness n. 粗糙度rpm 转速rudder n. 舵rudder angle indi cator 舵角指示器rudder carrier 舵承,舵托rudder stock 舵轴,舵杆rudder stopper 舵角限制器rules n. 规范,规则rust preventati ve 防锈剂rust prevention 防锈rust removal除锈rust-proof a.防锈的safety val ve 安全阀screw shaft 螺旋桨轴sea damage 海损sea trial试航sea water (SW)海水seal n. v. 密封sealing agent 密封剂sealing gasket 密封垫片sealing ring 密封圈seat n. 座seating n. 基座senior engineer 高级工程师separation n. 分离separator n. 分离器serialize vt.使……成系列servi ce engineer 服务工程师servi ce life 使用寿命settle v. 沉淀shaft bracket 艉轴架,人字架shaft system轴系shed v. 放射,散发shipping n. 航运shipyard(yard)n. 船厂shop trial车间实验signal n. 信号single-rudder n. 单舵single-screw n. 单桨sketch n. 草图slide-bl ock n. 滑板,导块sliding di stance 滑行距离software n. 软件sounder n. 测深仪sources of power supply 能源space n. 空间spare parts(spares)备件speed reduction 减速squeeze n. v. 挤压stability n. 稳性stainless steel不锈钢stand v. 经受standard n. 标准stand-by n. 备用starboard n. 右舷start v. 动身,出发starti ng system 起动系统starti ng valve 启动阀state v. 说明steadiness n. 稳定性steel structure 钢结构steel wi re 钢丝steering gear 舵机steering gear room 舵机房steering mechani sm 操舵机构steering wheel舵轮stem n. 艏柱stern n. 船艉,艉柱stern tube 艉轴管straight line 直线structure n. 结构,构件stud n. 螺柱stuffing box 填料函suck v. 吸入sucti on port 吸入口sufficient a.足够的,充足的supply vessel补给,工作船support n. 支撑物surface treatment 表面处理surveyor n. (船)验船师survive v. 幸存,死里逃生sustain v. 支撑,支持swi tch n. 开关symbol n. 符号symmetrical a.对称的testing n. 调试testing facilities 测试设备testing instrument 测试仪器test & trials 试验与试航the ambient ai r 大气the brake horse power (BHP)轴马力,制动马力the controllable pitch propeller (CPP)可调螺距桨the effective horsepower 有效马力the length overall全长the painting outfitting 涂装the parties concerned 有关方面the propul sion plant 推进装置the rated frequency 额定功率the rated horsepower 额定马力the total tonnage 总吨位thermometer n. 温度计thread v. 攻螺纹thrust bearing 推力轴承thrust end 推力端thrust ring 推力环thrust shaft 推力轴tightness test 密性试验time vt. 确定……的时间tonnage n. 吨位torsional vibration 扭振torsional moment 扭距transfer pump 输送泵transportation n. 输送transversal a. 横向的treatment plant 处理装置trend n. 趋势tri m n. 纵倾trunk-pi ston n. 筒形活塞T-type joint T型接头turbi ne oil透平油turni ng ability 回转性turni ng ci rcle 回转半径turni ng gear 盘车机构turni ng motion 回转twin-rudder n. 双舵twin-screw n. 双桨two-way a. 双向的UMS 无人机舱uneven a. 不均匀uniform a. 均匀的unload v. 卸载vacuum n. 真空valve mechanism 阀机构velocity n. 速度verti cal a. 垂直的,直立式的vibration n. 振动viscosity n. 粘度CPP:controllable pitch propeller可调螺距螺旋桨propeller shagt/screw shaft螺旋桨轴hub body 桨毂propeller boss hub 桨毂propeller blade 桨叶piston rod 活塞杆(十字头)piston 活塞hub cylinder 缸套blade flange screw 叶法兰螺栓crank pin ring 曲柄销环(转盘) sliding shoe 滑块cover 盖blade sealing ring 衬垫环(介子) shaft flauge screw 轴法兰螺栓hvb cylinder screw 缸套螺栓pin for blade 桨叶销pin for hub 桨毂销spri ng 弹簧plug 塞locking plate 保险片screw 螺丝螺钉sealing washer 垫圈O-ring O型胶圈u-type packing U-密封圈regulating valve rod 调节阀regulating valve liner 调节衬垫propeller shaft 桨轴valve rod 连杆safety val ve 安全阀shaft flange protection 轴法兰保护罩nut 螺母locking wire 保险线shaft system轴系shafting 轴系tailshaft 尾轴scuff 拉伤cracks 裂纹taut 拉紧pull gauge 拉力计tap 攻丝bolt 螺栓pull拉拨drawwear down (轴)下沉量sealing 密封轴封machine 光车机加工white metal白合金巴氏合金heel根部stamp 打标记measure 测量propeller cap 将军帽bcade ti p 叶梢leading edge 导边trailing edge 随边pitch 螺距direction of rutating 旋向fwd aft linercasing flanceintermediate ringsupport ri ngseal coverwear down gaugeclamp ringtaperinterm shaftrope guardrudder system:舵系body 上磨盘carrier 磨盘座jumping stopper 防跳bearing di sk 轴承环(推力块)bush 轴承packing ground 迫件法兰set bolts 固定螺钉locking bolts for bushcoaming plate 栏板liner 衬垫water seal海水retaining ring 挡水环key 键throuth bolts nutsreamer bolts nutsreamer bolts nutsbolts nuotsstud bolts nutsnavaron packing 盘根O-ringstopper 制动器cotterdrain plug 排水塞packing for drain pluggrease fittings 油孔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tribological behavior of PTFE nanocomposite films reinforcedwith carbon nanoparticlesJeong-Yeop Lee,Dong-Phill Lim,Dae-Soon Lim*Department of Materials Science and Engineering,Korea University,Seoul 136-701,South KoreaReceived 5October 2006;accepted 22December 2006Available online 12January 2007AbstractCarbon-based nanoparticles synthesized by heat treatment of nanodiamond in the temperature range of 1000–1900°C were added to PTFE film to investigate the structural effect of the carbon particles on the tribological properties of PTFE composite film.Carbon-based nanoparticles were prepared by milling with micron sized beads in chemically treated water before their addition to PTFE film.The wear and frictional properties of PTFE nanocomposite film were measured by the ball on plate type wear test.The wear resistance of PTFE film was found to be enhanced by the addition of 2wt%of carbon nanoparticles.The wear coefficient of PTFE film was decreased from 16.2to 3.5·10À6mm 3/N m by the addition of carbon-based nanoparticles heat-treated at 1000°C.Increasing the heating temperature of the nanodiamonds caused the extent of aggregation and particle size to increase.The wear resistance of PTFE nanocomposite film was enhanced by the addition of nanodiamonds heat-treated at 1000°C,but decreased when the heat treatment temperature of carbon nano-particles was further increased.Tribological behavior of PTFE nanocomposite films depending on the types of carbon nanoparticles were explained based on the structural,physical and chemical modification of carbon nanoparticles.Ó2007Elsevier Ltd.All rights reserved.Keywords:A.Particle-reinforcement;B.Surface properties;E.Heat treatment;B.Wear;PTFE film1.IntroductionPTFE (polytetrafluoroethylene)is a well-known mate-rial which has a high potential for anti-wear applications due to its various advantages,such as its low frictional coefficient,good chemical resistance and good thermal sta-bility.However,its anti-wear applications have been some-what limited by its poor wear resistance which has led to the failure of anti-wear parts and films.Therefore,many researchers have attempted to reinforce PTFE using vari-ous fillers.Glass fibers,carbon fibers,and nonferrous metallic and ceramic powders were studied as potential fill-ers for the enhancement of the wear resistance of PTFE,but it was proven that these fillers induced a large frictional coefficient and abrasion of the fractured fiber [1–5].Recently,several researchers adopted nanometer size inor-ganic powders as a filler and demonstrated their ability to enhance the wear properties of the PTFE [6–10].However,these fillers inevitably increased the frictional coefficient.It has been shown that nanodiamond (ND)particles consti-tute very good reinforcement filler having a low friction coefficient [11].The addition of 2wt%of ND particles to PTFE was found to increase its wear resistance by 48%.ND particles consist of 4–6nm sized crystalline diamonds produced by a detonation method [12].ND particles have superior thermal conductivity and stability,excellent mechanical properties and outstanding tribological proper-ties.Nowadays,carbon-based nanoparticles containing carbon onions can be produced by the annealing of NDs and used as low friction materials [13,14].In this study,the wear coefficient and frictional coeffi-cient of a nanocomposite with PTFE and various carbon-based nanoparticles were tested,in order to examine their structural effect on the tribological properties of the PTFE1359-8368/$-see front matter Ó2007Elsevier Ltd.All rights reserved.doi:10.1016/positesb.2006.12.006*Corresponding author.Tel.:+82232903272;fax:+8229295344.E-mail address:dslim@korea.ac.kr (D.-S.Lim)./locate/compositesbComposites:Part B 38(2007)810–816film.The various forms of these carbon-based nanoparti-cles were mixed with polyacrylic acid in water and milled with300l m zirconia balls for the purpose of dispersing the agglomerates of the heat-treated particles after the heat treatment of the ND in the temperature range of1000–1900°C in an N2gas environment.2.ExperimentalThe ND powders were purchased from Shenzhen, China.They were synthesized by explosive detonation using trinitrotoluene and hexogene in an inert gas environ-ment following the procedure described in the literature [12].The ND powders were heat-treated at temperatures ranging from1000to1900°C in an N2gas environment for1h.For the dispersion of the carbon-based nanoparti-cles,we prepared a mixture of1.5g of carbon nanoparti-cles,250ml of distilled water,and 1.5g of polyacrylic acid(MW:5000,Wako Pure Chemical Ind.,Japan)as an anionic surfactant,in order to improve the dispersion and solubility of the carbon-based nanoparticles in water. The pH of the mixture was maintained at pH10using ammonia water.For attritional milling,the mixture was poured into an attritional milling machine consisting of a stainless steel vessel with a ceramic coated agitator.As the milling medium,300l m size zirconia balls(95%zirco-nia)purchased from Toray Co.in Japan,were loaded tofill 70%of the vessel.After closing the vessel,the agitator was rotated at1000rpm,which was found to be the optimum speed through practice considering the increase in temper-ature.The attritioner was alternatingly agitated for10min and cooled for5–10min,while being constantly cooled with a circulatory cooling system using chilled water.After milling,the zirconia balls were separated byfiltration,and the particle size and zeta potential of the OLC slurry were analyzed.After milling for120min,2wt%of the carbon-based nanoparticles were added to the PTFE and coated on an aluminum substrate.The thickness of the coating was 10l m.The sliding wear test was carried out using 12.7mm steel balls on a plate at room temperature under dry conditions.Fig.1shows the schematic diagram of the wear tester which was designed to evaluate the friction coefficient and wear loss.The variation of the load during the wear test was detected by a load cell and the frictional coefficient was calculated by a PC connected to the load cell of the wear tester.The sliding speed was4cm/s and the load was33.3N.The wear coefficient of the PTFEfilms containing the ND particles and heat-treated carbon nano-particles were calculated after measuring the profile of the wear track.XRD(Rigaku D/Max–2A),Raman spectros-copy(Jobin–Yvon LabRam HR),HRTEM(JEOL JEM-4010)and FTIR(PerkinElmer Co.GX spectrophotometer) were used to determine the structure of the prepared nano-particles.Surface profile analysis and FESEM(Hitachi S-4700)were used to observe the wear track and scars on the worn specimen after the wear test and the cross sections after fracturing the coating with liquid nitrogen.The wear coefficient was derived by calculating the relation between the wear volume and load.Prior to the FESEM observa-tion,the specimens were coated with Pt.3.Results and discussionFig.2shows the XRD patterns of the carbon-based nanoparticles obtained after heat treating them in the tem-perature range of25–1900°C.It can be seen that the peaks at2h=43.5°and75°correspond to the(111)and(220) planes indicating the nanodiamonds and the peaks at 2h=25.8°and43.5°correspond to the(002)and(100) planes indicating the graphite phases,respectively.The NDs retain their structure until1000°C and then begin to transform into graphitic sheets when the temperature reaches1300°C.The temperature region of1600–1900°C shows the completion of their graphitization,due to the absence of the(220)peak.The transformation is sup-ported by the Raman spectroscopy and HRTEM results, as shown at Figs.3and4,respectively.J.-Y.Lee et al./Composites:Part B38(2007)810–816811In the Raman spectra of the NDs at room temperature shown in Fig.3,the diamond peak is present at1326cmÀ1 and when they are heated to over1300°C,a‘disordered’(D)peak at1340cmÀ1and a‘graphite’(G)peak at around 1580cmÀ1are observed.Researchers believed that the rel-ative intensity of the D to G bands(I D/I G)can be used to represent the relative degree,although the quantitative value is hard to be calculated[15,16].The I D/I G decreases with increasing the temperature over1600°C relative to temperature under1300°C.Fig.4shows the HRTEM images of the heat-treated carbon-based nanoparticles.The carbon nanoparticles maintained their diamond structure at1000°C,but trans-formed into carbon onions and polyhedral carbon at 1600°C and1900°C,respectively.The non heat-treated NDs and NDs heat-treated at1000°C have several parallel layers of diamond d-spacings,as shown at Fig.4a and b, respectively.After the heat treatment at1300°C,several spherical layers were formed as the outer layer of the ND particles and the small particles under3nm changed into onion like carbon.The ND particles completely changed into spherical onions at1600°C,and as the temperature was further increased to1900°C,polyhedrons were obtained.Tomita et al.reported that the structural trans-formation of carbon is caused by the localization of the p-electrons[17].Moreover,during continued heat treat-ment at1900°C,the p-electrons are delocalized and this causes the formation of polyhedrons.Fig.5shows the friction coefficient of the PTFEfilled with the carbon nanoparticles.The friction coefficient of the PTFEfilled with the carbon nanoparticles is about 0.1,which is the same as that of pure PTFE.The low fric-tion coefficient of PTFE is caused by the tribo-film trans-ferred to the contact surface on the counterpart[6,10]. Generally,filling the PTFE with particles increases its fric-tion coefficient,because thefillers have a much higher fric-tion coefficient than the PTFE matrix and act as abrasives [1–10].However,in this experiment,the addition of carbon nanoparticles to the PTFE did not increase its friction coef-ficient,because the nanodiamonds and carbon onions behave like a solid lubricant itself having a low friction coefficient.Fig.6shows the wear coefficient of the PTFEfilled with the carbon nanoparticles.The addition of the NDs reduced the wear coefficient from16.2to5.05·10À6mm3/N m. The carbon nanoparticles heat-treated at1000°C resulted in the lowest wear coefficient(3.35·10À6mm3/N m). However,the wear coefficient of the PTFE increased when the temperature exceeded1300°C due to the partial forma-tion of carbon onions.Fig.4.HRTEM(400.0kV)images showing(a)nanocrystalline diamondparticles,(b)nanodiamond particles heat-treated at1000°C,(c)carbononions after heat treatment at1600°C and(d)polyhedral carbon structureafter heat treatment at1900°C.812J.-Y.Lee et al./Composites:Part B38(2007)810–816In order to understand the wear behaviors of the PTFE composite with the carbon-based nanoparticles,the parti-cle sizes of the NDs and carbon-based particles were mea-sured.Fig.7shows the average particle size of the NDs and carbon-based nanoparticles.An attritional mill with 300l m zirconia balls was used to attack the weak points of the intermediate aggregates and the particles were dis-persed in PAA added aqueous medium.The particle size of the carbon nanoparticles was the smallest(33nm)when the heating temperature was1000°C and increased over (300nm)when temperature is over1300°C.Kru¨ger et al. reported the dispersion of NDs in terms of the primary par-ticle size and classified the distribution of the particles into the primary particles(4.4nm),core aggregates(100nm), intermediate aggregates(2000nm),and agglomerates (20000nm)[18].They reported that the effect of milling with100l m size silica balls was to loosen the core struc-tures by producing cracks at the weak portions of the core aggregates.Of course,in the present experiment,the parti-cle size of the NDs and carbon-based nanoparticles was similar to that of the core aggregates(100nm),except for the particles heat-treated at1000°C.The best dispersion of the ND particles heat-treated at1000°C which are smal-ler than the core aggregates can be explained by the forma-tion of disorder.While ND heated at1000is completely nanocrystalline diamond to be scrutinized from XRD and HRTEM,Raman spectra showed that ND particles are disordered at1000°C.It is thus believed that the disor-der is formed in the grain boundaries of the ND at that temperature.The formation of disorder means the produc-tion of defects different from diamond structure in the grain boundaries and the resulting energy concentration results in the failure of the bonds in the grain boundaries during the attrition milling.Therefore,the heat treatment of the ND lessens the bonding strength between the grains and the ND heat-treated at1000°C has the smallest parti-cle size.The formation of bigger particles when the carbon-based nanoparticles are heated at temperatures over 1300°C can be explained from the viewpoint of the func-tional groups on the surfaces of the particles.J.-Y.Lee et al./Composites:Part B38(2007)810–816813Fig.8shows the FT-IR spectra of the NDs and carbon-based nanoparticles.In the spectra of the ND and carbon-based nanoparticles heated at 1000°C,the broad peak at around 3427cm À1is assigned to the hydroxyl group and the small peak at 2931cm À1is assigned to the alkyl group [19,20].Hydroxyl groups are easily adsorbed on NDs in air due to the many dangling bonds on the diamond structuredsurface.The signals at 1738,1630and 1125cm À1indicate the presence of carboxyl and hydroxyl groups [19,20].When the heating temperature exceeds 1300°C,the func-tionality on the surfaces of the carbon-based nanoparticles is reduced and small peaks appear at around 2100–2400cm À1indicating the presence of nitrile (C …N)and alkynyl (C …C)moieties.The termination of thedanglingFig.9.Worn surfaces of the nanocomposite of PTFE and carbon nanoparticles:(a)pure PTFE,PTFE nanocomposite with ND at (b)room temperature,(c)1000°C,(d)1300°C and (e)1900°C.The sliding direction is marked by arrows.814J.-Y.Lee et al./Composites:Part B 38(2007)810–816bonds on the ND surface during the formation of the graphite structure causes the reduction of the functionality. From the FT-IR spectra,the unheated ND and ND heated at1000°C have hydrophilic hydroxyl and carboxyl groups on their surfaces,but these hydrophilic functional groups were eliminated with further heat treatment at tempera-tures over1300°C.Even though the added PAA supplies hydrophilic carboxyl groups,the graphite-like carbon sur-face has insufficient branches to bind with hydroxyl and carboxyl groups to be adsorbed as compared to the ND. Therefore,the distribution of the carbon-based nanoparti-cles is affected by the bond strength and the surface condi-tion of the particles.The wear behavior is affected by the size effect following the influence of surface properties explained above.The reason that the particle size affects the wear behavior sensi-tively,even though the carbon particles are comparatively small,is that the carbon particles can act as abrasives.It can be inferred that the aggregation of the carbon onions and their own graphite-like structure reduce the wear resis-tance of the PTFE nanocomposite and are detrimental to the reinforcement effect.The wear resistance of the PTFE was maximized byfilling it with the ND particles heat-trea-ted at1000°C,because the smallest particles can be well dispersed in the PTFE matrix and these particles have the strongest diamond structure.However,when temperature increased over1300°C,the surface properties of the car-bon particles was changed due to the transformation of the morphology from nanodiamonds to carbon onions. Despite the structure of the carbon onions which makes them easy to fracture,it is difficult to prevent the aggrega-tion of the particles because of the weak repulsion between the particles in the aqueous medium,so that the particle size increases with increasing heat treatment temperature over1300°C.The micrographical images in Fig.9show the worn sur-faces of the PTFE with the ND and carbon-based nanopar-ticles obtained using FESEM.The worn surfaces of the PTFE nanocomposites after the wear test support the wear behaviors shown above.By adding the non heat-treated ND and ND heat-treated at1000°C,the amount of dam-age on the worn surfaces of the PTFE composites was reduced.However,when the heating temperature of the ND was further increased,the amount of damage on the worn surfaces of the PTFE with the carbon-based nano-particles increased and became similar to that on the sur-face of the pure PTFE when the temperature attained 1900°C.4.ConclusionsND particles and carbon onions were prepared by heat treatment at temperatures of up to1900°C,in order to determine their reinforcement effect on the tribological behavior of PTFE nanocomposite coatings.The enhance-ment of the tribological properties with the addition of a small amount of carbon-based nanoparticles is afforded by the uniform dispersion of the nanoparticles when the heating temperature is1000°C.At this temperature,the smallest particle size was observed,due to the decrease in the bond strength between the grains,and the particles retain their good mechanical properties,due to their role as afiller.However,when the heating temperature is increased to over1300°C,the carbon nanoparticles become aggregated and the wear coefficient of the nano-composite produced with them is increased.It was dem-onstrated that the failure of the wear behavior is caused by the aggregation of the particles,due to the formation of carbon onions.Finally,it is found that the wear behav-ior of the PTFE with the carbon nanoparticles is affected by the heat treatment of the ND and that the optimum heat treatment of the ND maximizes the tribological behavior.References[1]Khedkar J,Negulescu I,Meletis EI.Sliding wear behavior of PTFEcomposites.Wear2002;252:361–9.[2]Tevru¨z T.Tribological behaviours of carbonfilled polytetrafluoro-ethylene(PTFE)dry journal bearings.Wear1998;221:61–8.[3]Tevru¨z T.Tribological behaviours of bronze-filled polytetrafluoro-ethylene dry journal bearings.Wear1999;230:61–9.[4]Cheng XH,Xue UJ,Xie CY.Tribological investigation of PTFEcompositefilled with lead and rare earths-modified glassfiber.Mater Lett2003;57:2553–7.[5]Bahadur S.The development of transfer layers and their role inpolymer tribology.Wear2000;245:92–9.[6]Li F,Hu KA,Li JL,Zhao BI.The friction and wear characteristics ofnanometer ZnOfilled polytetrafluoroethylene.Wear 2001;249:877–82.[7]Sawyer WG,Freudenberg KD,Bhimaraj F,Schadler LS.A study onthe friction and wear behavior of PTFEfilled with alumina nanoparticles.Wear2003;254:573–80.[8]Chang L,Zhang Z.Tribological properties of epoxy nanocompositesI.Enhancement of the wear resistance by nano-TiO2particles.Wear2005;258:141–8.[9]Xiang DH,Gu CJ.A study on the friction and wear behavior ofPTFEfilled with ultra-fine kaolin particulates.Mater Lett 2006;60:689–92.[10]Lai SQ,Li TS,Liu XJ,Lv RG,et al.The tribological properties ofPTFEfilled with thermally treated nano-attapulgite.Tribol Inter 2006;39:541–7.[11]Lee JY,Lim DS.Tribological behavior of PTFE with nanodiamond.Surf Coat Tech2004;188–189:534–8.[12]Greiner RN,Philips DS,Johnson JD,Volk F.Diamonds indetonation soot.Nature1988;333:440–2.[13]Qiao ZJ,Li JJ,Zhao NQ,Shi CH,et al.Graphitization andmicrostructure transformation of nanodiamond to onion-like carbon.Scripta Materialia2006;54:225–9.[14]Kuznetsov V,Zilberberg I,Butenko Y,Chuvilin A,Segall B.Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface.J Appl Phys 1999;86:863–70.[15]Tomita S,Burian A,Dore JC,LeBolloch D,et al.Diamondnanoparticles to carbon onions transformation:X-ray diffraction studies.Carbon2002;40:1469–74.[16]Wilhelm H,Lelaurain M,Mcrae E,Humbert B.Raman spectro-scopic studies on well-defined carbonaceous materials of strong two-dimensional character.J Appl Phys1998;84(12):6552–8.J.-Y.Lee et al./Composites:Part B38(2007)810–816815[17]Tomita S,Sakurai T,Ohta H,Fujii M,et al.Structure andelectronic properties of carbon onions.J Chem Phys2001;114(17): 7477–82.[18]Kru¨ger A,Kataoka F,Ozawa M,Fujino T,Suzuki Y,Aleksenskii A,et al.Unusually tight aggregation in detonation nanodiamond: identification and disintegration.Carbon2005;43:1722–30.[19]Mironov E,Koretz A,Petrov E.Detonation synthesis ultradisperseddiamond structural properties investigation by infrared absorption.Diam Relat Mater2002;11:872–6.[20]Ji SF,Jian TL,Xu K,Li SB.FTIR study of the adsorption of wateron ultradispersed diamond powder surface.Appl Surf Sci 1998;133:231–8.816J.-Y.Lee et al./Composites:Part B38(2007)810–816。