高一数学月考试题

合集下载

2024-2025学年湖北省高一年级9月月考数学试题(含答案)

2024-2025学年湖北省高一年级9月月考数学试题(含答案)

2024-2025学年湖北省高一年级9月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.命题“∃x∈R,x2+x−1=0”的否定为( )A. ∃x∉R,x2+x−1=0B. ∃x∈R,x2+x−1≠0C. ∀x∈R,x2+x−1≠0D. ∀x∉R,x2+x−1=02.已知集合A={x|−3≤x≤1},B={x||x|≤2},则A∩B=( )A. {x|−2≤x≤1}B. {x|0≤x≤1}C. {x|−3≤x≤2}D. {x|1≤x≤2}3.下列命题为真命题的是( )A. ∀a>b>0,当m>0时,a+mb+m >abB. 集合A={x|y=x2+1}与集合B={y|y=x2+1}是相同的集合.C. 若b<a<0,m<0,则ma >mbD. 所有的素数都是奇数4.已知−1<a<5,−3<b<1,则以下错误的是( )A. −15<ab<5B. −4<a+b<6C. −2<a−b<8D. −53<ab<55.甲、乙、丙、丁四位同学在玩一个猜数字游戏,甲、乙、丙共同写出三个集合:A={x|0<Δx<2},B={x|−3≤x≤5},C={x|0<x<23},然后他们三人各用一句话来正确描述“Δ”表示的数字,并让丁同学猜出该数字,以下是甲、乙、丙三位同学的描述,甲:此数为小于5的正整数;乙:x∈B是x∈A的必要不充分条件;丙:x∈C是x∈A的充分不必要条件.则“Δ”表示的数字是( )A. 3或4B. 2或3C. 1或2D. 1或36.已知不等式ax2+bx+c<0的解集为{x|x<−1或x>3},则下列结论正确的是( )A. a>0B. c<0C. a+b+c<0D. cx2−bx+a<0的解集为{x|−13<x<1}7.已知m<8,则m+4m−8的最大值为( )A. 4B. 6C. 8D. 108.向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成;赞成B的比赞成A的多3人,其余的不赞成;另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1人.则下列说法错误的是( )A. 赞成A的不赞成B的有9人B. 赞成B的不赞成A的有11人C. 对A,B都赞成的有21人D. 对A,B都不赞成的有8人二、多选题:本题共3小题,共18分。

高一数学月考试题及答案

高一数学月考试题及答案

高一数学月考试题一、填空题:本大题共14小题,每小题4分,共计56分.请把答案填写在答题卡相应位置上......... 1、棱长为1的正四面体的表面积为__________.2、函数()sin 2cos ()f x x x x R =-∈的最大值为_________.3、长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的 半径是__________.4、在长方体1111ABCD A BC D -,底面是边长为2的正方形,高为4,则四面体111A AB D -的体积111A AB D V -=________.5、已知向量()()2,1,cos ,sin -==b x x a ,且a ∥b ,则x tan =_________.6、已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则当x 3π=时,y = .7、点, A B 到平面α的距离分别为4cm 和6cm ,则线段AB 的 中点M 到平面α的距离为__________.8、在边长为2的正三角形ABC 中,设CE CA BD BC 3,2==,则AD BE ⋅=_________.9、已知在四面体ABCD 中,,E F 分别是,AC BD 的中点,若2, 4, AB CD EF AB ==⊥,则EF 与CD 所成的角的度数为_________.10、设,m n 是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则n m ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是____________.11、函数y 2tan(x )62ππ=-的部分图象如图所示,则AB =______.(用坐标形式表示)12、集合E=}20,sin cos |{πθθθθ≤≤<,F=}sin tan |{θθθ<,则E F =________.13、数列}{n a 的通项公式为12cos+=πn n a n ,前n 项和为n S ,则_______3201=S14、已知P 为ABC ∆所在平面内一点,且满足,5251AB AC AP += 则APB ∆的面积与PAC ∆的面积之比为_________二、解答题:本大题共4小题,共计44分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15、(本小题满分10分)已知函数213()cos sin cos 1 ()22f x x x x x R =++∈ (1) 求函数()f x 的周期; (2)求函数()f x 单调递增区间. 16、(本小题满分10分)已知集合2A {x |x x 20}-≤=3+ 与集合2B {x |x 5x 5)0}a a --≤=+(, ⑴若B {x |2x 3}≤≤=,求实数a 的值; ⑵若A B ⊆,求实数a 的取值范围.17、(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD . (I )证明:PA BD ⊥; (II )设PD=AD=1,求棱锥D-PBC 的高.BA y x2 O18、(本小题满分12分)如图,已知长方体ABC D-A1B1C1D1底面ABC D为正方形,E为线段AD1的中点,F为线段BD1的中点.(1)求证:EF∥平面ABC D;(2)设M为线段C1C的中点,当D1DAD的值为多少时,DF⊥平面D1MB,并说明理由.高一数学月考试题参考答案一、填空题:本大题共14小题,每小题4分,共计56分.1、23、2、835、21-6、21- 7、5cm或1cm 8、1- 9、30 10、①、②11、(32, 2) 12、),2(ππ13、3019 14、1:2二、解答题:本大题共4小题,共计44分.15、(本小题满分10分)答:(1)π(2)(,), k Z36k kππππ-+∈D1A1 B1C1E FCBAMD16、(本小题满分10分) 答:⑴=2a 或3 ⑵41a a ≥≤或17、答: (Ⅰ)略 (Ⅱ).2318、(本小题满分12分) 答:(Ⅰ)略 (Ⅱ)2D 1A 1B 1C 1 E FCBAM D。

高一数学月考测试题

高一数学月考测试题
高一数学第一次月考测试卷
一、单选题
1.集合 P x 0 x 3 , M x N x 2 9 ,则 P M ( )
A.1, 2
B.0,1, 2
C.x 0 x 3
D.x 0 x 3
2.如果 a c b ,那么( )
A. a c b
B. a c b
C. a b c
C.奇函数
D.定义域为 R
10.已知 a 0 , b 0 ,且 a b 1,则( )
A.
ab
1 4
B. a2 b2 1 2
C. b a 1
D. a b 2
11.已知函数
f
x
x2 ax
a x
,
x
1
5, x
1

R
上的函数,且满足对于任意的
x1
x2
,都有 x1
x2
f
x1
f
( x1 ,
y1 )
,(x2 ,
y2 )
,L
,(x6, y6 ) ,
则 x1 x2 x6 y1 y2 y6 ( )
A.0
B.6
C.12
D.18
8.已知 f x 是定义在 , 0 0, 上的奇函数,且 f 2 6 ,若对任意两个不相等的正数 x1, x2 ,都有
x2
f
Hale Waihona Puke x1 x1 fB.“ a R ”是“ x R ,使 a 2 x2 2ax 1 0 成立”的必要不充分条件
C.函数 y x 与函数 u 3 v3 不是同一个函数
D.函数
f
x
1 1
x2 x2
的值域为 ,1
7.已知函数 y
f
(x

数学高一月考试题及答案

数学高一月考试题及答案

数学高一月考试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x^2+3x-5,则f(-2)的值为:A. 3B. -3C. -1D. 12. 在等差数列{a_n}中,若a_3=7,a_5=11,则公差d为:A. 2B. 3C. 4D. 53. 已知圆的方程为x^2+y^2-6x-8y+25=0,该圆的半径为:A. 2B. 4C. 5D. 64. 若sinθ=1/3,且θ为第一象限角,则cosθ的值为:A. 2√2/3B. √2/3C. √6/3D. 2√6/35. 函数y=x^3-3x+2在x=1处的导数为:B. 1C. 2D. 36. 集合A={1,2,3},集合B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 47. 已知等比数列{a_n}的首项a_1=2,公比q=3,那么a_5的值为:A. 162B. 486C. 729D. 9728. 若直线y=2x+1与圆x^2+y^2=25相切,则该直线与x轴的交点坐标为:A. (-1/2, 0)B. (1/2, 0)C. (-1, 0)D. (1, 0)9. 函数f(x)=x^2-2x+3的最小值为:A. 2B. 1C. 0D. -110. 已知向量a=(3, -4),向量b=(-2, 6),则向量a与向量b的夹角A. 0°B. 90°C. 180°D. 45°二、填空题(每题4分,共20分)1. 若函数f(x)=x^3-6x^2+11x-6的零点为x_0,则f'(x_0)的值为________。

2. 已知数列{a_n}满足a_1=2,a_{n+1}=2a_n+1,那么a_4的值为________。

3. 圆心在原点,半径为5的圆的方程为________。

4. 若sinα=3/5,且α为第二象限角,则cosα的值为________。

5. 函数y=|x-2|+|x+3|的最小值为________。

高一数学月考试题

高一数学月考试题

高一数学月考试题考试时间:120分钟满分:150分一、选择题(共10小题,每题4分,共40分)在每小题列出的四个备选答案中,只有一个是正确的,请将正确答案的字母编号填入题前题号的括号内。

1. 已知函数f(x) = 3x + 2,g(x) = x^2 - 1,若h(x) = f[g(x)], 则h(2)的值为:A. 13B. 15C. 19D. 212. 下列矩阵中,不同于其他三个的一个是:A. ⎡1 2⎤⎣3 4⎦B. ⎡2 1⎤⎣4 3⎦C. ⎡-1 0⎤⎣0 1⎦D. ⎡0 1⎤⎣1 0⎦3. 若直线l的斜率为2,且过点(3,1),则直线l的斜截式方程为:A. y = 2x - 3B. y = 2x + 1C. y = 2x + 3D. y = 2x - 14. 已知等差数列{an}的公差为2,且a5 = 8,那么a8的值等于:A. 14B. 16C. 18D. 205. 已知函数f(x) = 3x^2 + 2x - 5,那么f(1)的值为:A. -5B. -2C. 0D. 56. 一矩形的长是宽的2倍,若面积为36平方单位,则宽的长为:A. 3B. 4C. 5D. 67. 若两个事件A和B是互斥事件,且S为宇集,那么事件A∪B的概率为:A. 0B. 0.5C. 1D. 28. 设正方形区域ABCD的边长为a,点M、N分别位于AD边和AB边上,且AM=AN=b,若三角形BMN的面积为B,那么B等于:A. (a^2 - b^2)/2B. (a^2 - b^2)/4C. (a^2 - 2b^2)/4D. (a^2 - 2b^2)/89. 已知集合A = {x | x^2 - 2x - 8 > 0},则A的解集为:A. (-∞, -2)∪(4, +∞)B. (-∞, -2)∪(-1, 4)C. (-2, 4)D. (-1, 4)10. 在锐角三角形ABC中,已知∠B = 60°,BC = 4,AC = 2√3,则AB的值为:A. 2B. √3C. 4D. 8二、填空题(共10小题,每题4分,共40分)在每小题的横线上填入一个简明扼要的答案。

高一上学期第一次月考数学试题(附答案解析)

高一上学期第一次月考数学试题(附答案解析)

高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共8小题,共32.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={−1,1},B={x|ax=1},若A∩B=B,则a的取值集合为( )A. {1}B. {−1}C. {−1,1}D. {−1,0,1}2. 下列存在量词命题是假命题的是( )A. 存在x∈Q,使2x−x3=0B. 存在x∈R,使x2+x+1=0C. 有的素数是偶数D. 有的有理数没有倒数3. 定义集合A,B的一种运算:A⊗B={x|x=a2−b,a∈A,b∈B},若A={−1,0},B={1,2},则A⊗B 中的元素个数为( )A. 1B. 2C. 3D. 44. 已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+xyz|xyz|的值所组成的集合是M,则下列判断正确的是( )A. 4∈MB. 2∈MC. 0∉MD. −4∉M5. 一批救灾物资随26辆汽车从某市以vkm/h的速度送达灾区,已知运送的路线长400km,为了安全起见,两辆汽车的间距不得小于(v20)2km,那么这批物资全部到达灾区最少需要时间( )A. 5 hB. 10 hC. 15 hD. 20 h6. 已知集合A={x|ax2−(a+1)x+1<0},B={x|x2−3x−4<0},且A∩B=A,则实数a的取值范围是( )A. a≤14B. 0<a≤14C. a≥14D. 14≤a<1或a>17. 如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+ c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8. 某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数的最大值是( )A. 6B. 5C. 7D. 8二、多选题(本大题共4小题,共16.0分。

高一月考数学试题及答案

高一月考数学试题及答案

高一学年月考试数学试题一、选择题(本大题共有12个小题;每小题5分;共60分;在每小题给出的四选项中只有一项是符合题目要求的。

)1.)667cos(π-的值为( )A21 B 23- C 21- D 232.一个扇形的面积为π3;弧长为π2;则这个扇形中心角为( ) A3π B 4π C 6π D 32π3.设角α的终边经过点)0(,)4,3(>-a a a P ;则ααcos 2sin +等于( ) A51 B 51- C 52- D 524.下列函数中最小正周期为π;且为偶函数的是( )A |sin |21x y =B )22cos(21π+=x y C x y tan = D x y 31cos =5.ααcos sin =是02cos =α的( )条件A 充要B 必要不充分C 充分不必要D 既不充分也不必要23sin -=α;且α为第四象限角;则αtan 的值为( ) A33B 3-C 33- D3,53sinπ=a ,52cos π=b ,52tan π=c 则( )A c a b <<B a c b <<C c b a <<D b c a <<8. (1+17tan )(1+18tan )(1+27tan )(1+28tan )的值是 ( ) D.16 9.为了得到)32cos()(π+=x x f 的图象;只需将函数x y 2sin =的图象( )A 向右平移65π个单位 B 向右平移125π个单位 C 向左平移65π个单位 D 向左平移125π个单位 10.已知)(x f 是以5为周期的奇函数;4)3(=-f 且23sin =α;则)2cos 4(αf =( ) A 4 B 4- C 2 D 2-11.函数x x x f 21log 2sin3)(-=π的零点个数为( )A 3B 4C 5D 612.已知函数)0,0,0(),sin()(>>>+=ϕωϕωA x A x f 的最小正周期为π;当32π=x 时;函数)(x f 取得最小值;则下列结论正确的是( )A )0()2()2(f f f <-<B )2()2()0(-<<f f fC )2()0()2(f f f <<-D )2()0()2(-<<f f f二、填空题(本大题共有4个小题;每小题5分;共20分)13.函数x x y 2cos 2sin +=在],0[π上的单调递减区间为14.若55sin =α;1010sin =β;且βα,为钝角;则βα+的值为 15.函数222)]32sin(2[log x x y -+-=π的定义域为16.函数⎩⎨⎧>≤=xx x xx x x f cos sin ,cos cos sin ,sin )(;下列四个命题①)(x f 是以π为周期的函数 ②)(x f 的图象关于直线)(,245Z k k x ∈+=ππ对称 ③当且仅当)(Z k k x ∈+=ππ;)(x f 取得最小值1-④当且仅当)(,222Z k k x k ∈+<<πππ时;22)(0≤<x f 正确的是三、解答题17.(10分)已知21)sin(=+θπ;求)23sin()cos()27sin()2cos(]1)[cos(cos )3cos(θπθππθπθθπθθπ+----+--+的值18.(12分)已知3cos 2sin cos 2sin =+-αααα;计算(1)ααααsin cos 5cos 2sin -+;(2)2)cos (sin αα+19.(12分)求函数]2,2[,1cos sin 2ππ-∈++=x x x y 的最大、小值;及取得最大、小值时x 的取值集合。

河南省洛阳市高一上学期第一次月考数学试题(解析版)

河南省洛阳市高一上学期第一次月考数学试题(解析版)

高一上学期第一次月考数学试题一、单选题1.已知集合,若,则由实数的所有可能的取值组成的集合为{}{}1,2,1A B x ax =-==B A ⊆a ( ) A .B .11,2⎧⎫⎨⎬⎩⎭11,2⎧⎫-⎨⎬⎩⎭C .D .10,1,2⎧⎫⎨⎬⎩⎭11,0,2⎧⎫-⎨⎬⎩⎭【答案】D【分析】分类讨论,当时满足题意,当,解出,由,解得或0a =B A =∅⊆0a ≠B B A ⊆1a =- 12a =【详解】当时,,满足题意. 0a =B A =∅⊆当时,,0a ≠1B a ⎧⎫=⎨⎩⎭若,则或,即或B A ⊆11a =-12a =1a =-12a =综上所述,的所有取值为a 10,1,2-故选:D2.集合的元素个数为( )16N ,N A x x n n ⎧⎫=∈=∈⎨⎬⎩⎭A .3 B .4 C .5 D .6【答案】C 【分析】利用,讨论, 可得答案. 16116n≤≤N n ∈N x ∈【详解】因为,,,所以 16116n≤≤N n ∈N x ∈时;时;时;时;时,1n =16x =2n =8x =4n =4x =8n =2x =16n =1x =共有5个元素, 故选:C.3.已知集合是实数集的子集,定义,若集合,A B R {}|,A B x x A x B -=∈∉,则( ){}211|,1,|1,123A y y x B y y x x x ⎧⎫==≤≤==--≤≤⎨⎬⎩⎭B A -=A . B . {}|11x x -≤≤{}|11x x -≤<C .D .{}|01x x ≤≤{}|01x x ≤<【答案】B【分析】由函数的值域求得,由此求得. ,A B B A -【详解】由题知,在上递减,所以, 1y x =113x x ⎧⎫≤≤⎨⎬⎩⎭{}|13A y y =≤≤的对称轴为轴,因为,所以, 21y x =-y 12x -≤≤{}13B y y =-≤≤所以, {}11B A y y -=-≤<故选:B.4.若不等式成立的必要条件是,则实数的取值范围是 ||1x t -<14x <≤t A . B . C . D .[2,3](2,3][2,3)(2,3)【答案】A【详解】由得:,∵不等式成立的必要条件是, 1x t -<11t x t -+<<+1x t -<14x <≤∴,故,故选A. {}{}|11|14x t x t x x -+<<+⊆<≤11{2314t t t -+≥⇒≤≤+≤5.若,设,则( ) x y <222221M x y N xy y =+=+-,A . B .C .D .M N >M N <M N …M N …【答案】A【分析】做差整理得两个完全平方式,可判断答案. 【详解】222221M N x y xy y -=+--+ 222221x xy y y y =-++-+22()(1)x y y =-+- 22()0,(1)0x y x y y <∴->-≥M N ∴>故选:A6.如果不等式对任意实数都成立,则实数的取值范围是( ) 210mx mx m +++>x m A .B . 0m ≥403m -<≤C .D .或43m <-43m <-0m ≥【分析】对和分别讨论,列出不等关系后求解即可 0m =0m ≠【详解】由题,当时,不等式为,满足题意;0m =10>当时,则需满足,即 0m ≠()2410m m m m >⎧⎨∆=-+<⎩0m >综上, 0m ≥故选A【点睛】本题考查不等式恒成立问题,考查运算能力,考查分类讨论思想 7.若正实数满足,则( ) ,a b 1a b +=A .有最大值 B .有最大值4 ab 1411a b+C .有最小值 D .有最小值2 ab 1411a b+【答案】A【分析】结合基本不等式及其变形形式分别检验各选项的结论是否成立即可. 【详解】因为正实数满足,a b 1a b +=所以,当且仅当,,即取等号,故A 正确、C 错误. 2124a b ab +⎛⎫≤= ⎪⎝⎭1a b +=a b =12a b ==,当且仅当,,即取等号,故B 、D 错误. 2111142+=≥=⎛⎫+ ⎪⎝⎭a b ab a b 1a b +=a b =12a b ==故选:A8.已知正实数满足,则的最小值为( ) ,a b 4111a b b +=++2+a b A .6 B .8C .10D .12【答案】B【分析】令,用分别乘两边再用均值不等式求解即211a b a b b +=+++-1a b b +++4111a b b +=++可.【详解】因为,且为正实数 4111a b b +=++,a b 所以 1(414(1)41111)(a b b a b b a b b a bb a bb +++=++++++++=+++++,当且仅当即时等号成立. 59≥+=4(1)1a b b b a b ++=++2a b =+所以.219,28a b a b ++≥+≥二、多选题9.集合,则下列关系错误的是( ) 11,Z ,Z 3663n n M xx n N x x n ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭∣,∣A . B . C . D .M N ⊆M N =N M ⊆M N 【答案】ABD【分析】将两个集合中式子通分化成同一形式,对比可得答案.【详解】 12(1)1,Z ,Z 3666n n n M x x n x x n ⎧⎫⎧⎫+++==+∈===∈⎨⎬⎨⎬⎩⎭⎩⎭121,Z ,Z 636n n N x x n x x n ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,所以C 正确.M N ∴⊇故选:ABD10.已知,则下列说法错误的是( ) ,,a b c ∈R A .若,则 B .若,则 a b >22am bm >a bc c>a b >C .若,则D .若,则,0a b ab >>11a b <22,0a b ab >>11a b<【答案】ABD【分析】对于AB 特殊值检验即可;对于C ,分,讨论即可;对于D ,由0a b >>0b a <<知同号,当时即可解决.0ab >,a b ,0a b <【详解】对于A ,当时,不成立,故A 错误; 0m =对于B ,当时,不成立,故B 错误; 0c <对于C ,由知同号, 0ab >,a b 当时,,0a b >>11a b<当时,,故C 正确; 0b a <<11a b<对于D ,由知同号, 0ab >,a b 当时,等价于, ,0a b <22a b >0a b <<所以,故D 错误. 11a b>故选:ABD11.若,则下列选项成立的是( ) ,(0,)a b ∈+∞A .B .若,则 (6)9a a -≤3ab a b =++9ab ≥C .的最小值为D .若,则2243a a ++12a b +=1232ab +≥【答案】ABD【解析】A. 利用怍差法判断;B.由判断;C.利用对勾函数的性质判断;D.33ab a b =++≥由,利用“1”的代换结合基本不等式判断.2a b +=【详解】A. 因为,故正确; ()229(6)6930aa a a a --=-+=-≥B.因为,所以,所以,当且仅当33ab a b =++≥+230-≥3≥9ab ≥取等号,故正确;3a b ==C. 因为,,则由对勾函数的性质得在2222443333a a a a +=++-++233a +>224333t a a =++-+上递增,所以其最小值为,故错误; ()3,+∞43D.因为,则,当且仅当2a b +=()121122333221122b a a b a b a b a b ⎛⎛⎫⎛⎫+=+++≥+=⎪ ⎪ ⎝⎭⎝⎭⎝+=,即时,取等号,故正确;22a b b a a b +=⎧⎪⎨=⎪⎩)(21,22a b =-=故选:ABD12.设所有被4除余数为,,,的整数组成的集合为,即,(0k k =123)k A {}4,Z k A x x n k n ==+∈则下列结论中正确的是( ) A .22022A ∈B .若,则, 3a b A +∈1a A ∈2b A ∈C .31A -∈D .若,,则 k a A ∈k b A ∈0a b A -∈【答案】ACD【分析】根据题目给的定义,逐一分析即可.【详解】解:,所以,故A 正确;202245052=⨯+22022A ∈若,则,或,或,或,,故B 错误;3a b A +∈1a A ∈2b A ∈2a A ∈1b A ∈0a A ∈3b A ∈3a A ∈0b A ∈,所以,故C 正确;()1413-=⨯-+31A -∈令,,,则,,故,故D 正确. 4a n k =+4b m k =+,m n ∈Z ()40a b n m -=-+Z n m -∈0a b A -∈故选:ACD .三、填空题13.若集合有且仅有两个子集,则实数的值是__________.(){}21420A x a x x =-+-=a 【答案】1±【分析】通过集合有且仅有两个子集,可知集合中只有一个元素,根据二次项系数是否为分类讨0论.【详解】由集合有且仅有两个子集,得中只有一个元素.(){}21420A x a x x =-+-=A 当即时,,符合题意.10a -=1a =12A ⎧⎫=⎨⎬⎩⎭当即时, 解得.10a -≠1a ≠()()2Δ44120,a =--⨯-=1a =-故答案为:1±14.已知集合集合,集合,若,{}21,A x a x a =<<-{}0B y y =>{}1C x x =≥R (C )B C A ⋃⋂=∅则实数的取值范围是__________. a 【答案】{}|1a a ≤【分析】通过集合运算得出,对集合进行分类讨论,时显然成立,时无R (C )B C ⋃A A =∅A ≠∅解.【详解】 {}{}00B y y x x =>=> {}R C 0B x x ∴=≤{}R (C )01B C x x x ∴⋃=≤≥或R (C )B C A ⋃⋂=∅当时,,满足题意.21≥-a a 1a ≤A =∅当时,时,解得21a a <-1a >0211a a ≥⎧⎨-≤⎩a ∈∅综上所述,. 1a ≤故答案为:{}|1a a ≤15.已知关于的不等式的解集为,若且,则实数的取值范围x 2(1)(2)0mx x m --<A 2A ∉1A -∈m是________. 【答案】122m ≤<【分析】,则代回不等式让其不成立,,则代回不等式让其成立,求两者范围得2A ∉21A -∈1-交集即可.【详解】依题意得,, 212(21)(22)082A m m m ∉⇔-⨯-≥⇔≤≤,综上, 2(1)(2(1))0121A m m m ∈⇔--⨯--<⇔-<<-122m ≤<故答案为:. 122m ≤<16.已知为实数,则__________(填 “”、“”、“”或“”).,a b 221214a b ++2ab a +><≥≤【答案】≥【分析】作差法解决即可. 【详解】由题知,,()()22222221112110422412a a a b b b a a ab a a b a ⎛⎫+=-+-+⎛⎫++-++-≥ ⎪⎝⎭⎭=- ⎪⎝当且仅当时,取等号. 1,2a b ==故答案为:.≥四、解答题17.已知 .{}{}14,11P x x S x m x m =≤≤=-≤≤+(1)是否存在实数,使是的充要条件?若存在,求出的取值范围;若不存在,请说明理m x P ∈x S ∈m 由;(2)是否存在实数,使是的必要条件?若存在,求出的取值范围;若不存在,请说明理m x P ∈x S ∈m 由.【答案】(1)不存在 (2) {}0m m ≤【分析】(1)根据两集合相等,形成方程组,无解,可判断不存在满足题意的实数. m (2)要使是的必要条件,则,根据集合关系可求得实数的范围. x P ∈x S ∈S P ⊆m 【详解】(1)要使是的充要条件,则x P ∈x S ∈P S =即,此方程组无解.1114m m -=⎧⎨+=⎩所以不存在实数,使是的充要条件. m x P ∈x S ∈(2)要使是的必要条件,则, x P ∈x S ∈S P ⊆当时,,解得 S =∅11m m ->+0m <当时,,解得S ≠∅11m m -≤+0m ≥要使,则有,解得,所以S P ⊆1114m m -≥⎧⎨+≤⎩0m ≤0m =综上可得,当时,是的必要条件.0m ≤x P ∈x S ∈18.已知集合.{}{}{}2222|130,|560,|430A x x ax a B x x x C x x x =-+-==-+==-+=(1)求;B C ⋃(2)若,求的值. ,A B A C =∅≠∅ a 【答案】(1) {}1,2,3(2) 3-【分析】(1)解一元二次方程求得集合,根据集合并集计算即可;(2)根据题意得,即,B C 1A ∈可得到方程求出的值,验证即可. a 【详解】(1)由题知,由,解得或,所以, 2560x x -+=2x =3x ={}2,3B =由,解得或,所以, 2430x x -+=1x =3x ={}1,3C =所以.{}1,2,3B C ⋃=(2)因为, ,A B A C =∅≠∅ 所以,1A ∈所以,解得或, 21130a a -+-=4a =3a =-当时,,与矛盾, 4a ={}1,3A C ==A B ⋂=∅当时,,满足题意, 3a =-{}1,4A =-综上可得,, 3a =-所以的值.a 3-19.如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.【答案】当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米. 60401944【详解】试题分析:先将休闲广场的长度设为米,并将宽度也用进行表示,并将绿化区域的面x x 积表示成的函数表达式,利用基本不等式来求出绿化区域面积的最大值,但是要注意基本不等S x 式适用的三个条件.试题解析:设休闲广场的长为米,则宽为米,绿化区域的总面积为平方米, x 2400xS 6分()240064S x x ⎛⎫=-- ⎪⎝⎭2400242446x x ⎛⎫=-+⨯ ⎪⎝⎭, 8分360024244x x ⎛⎫=-+ ⎪⎝⎭()6,600x ∈因为,所以, ()6,600x ∈3600120x x +≥=当且仅当,即时取等号 12分 3600x x=60x =此时取得最大值,最大值为.S 1944答:当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米. 60401944 14分【解析】矩形的面积、基本不等式 20.已知,且. 0a >0b >1ab =(1)求的最小值;2+a b (2)若不等式恒成立,求实数的取值范围. 21924x x a b-<+x【答案】(1)2)()1,3-【解析】(1)根据条件“,且”,直接应用基本不等式得到0a >0b >1ab =2a b +≥得结果;(2)将恒成立问题转化为最值处理,利用基本不等式求得,从而得到不等式1934a b +≥=,求解得答案.2230x x --<【详解】(1),且, 0a > 0b >1ab =2a b ∴+≥=当且仅当的最小值为 2a b ==2+a b (2),且, 0a > 0b >1ab =,当且仅当,且,即,时,取等号, 1934a b ∴+≥=194a b =1ab =16a =6b =即的最小值为, 194a b+3,即,解得,223x x ∴-<2230x x --<13x -<<即实数的取值范围是.x ()1,3-【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用基本不等式求和的最小值,将恒成立问题向最值转化,一元二次不等式的解法,属于简单题目.。

高一数学月考试题及答案

高一数学月考试题及答案

高一数学月考试题及答案一、选择题(共20小题,每题4分,共80分)1. 已知集合 $A = \{x \mid x \text{是正整数,且} x < 10\}$,$B = \{y \mid y \text{是正整数,且} y \geq 5\}$,则集合 $A \cup B$ 包含元素个数为()。

A. 4B. 9C. 10D. 112. 已知函数 $f(x)=3x^2+2x+1$,则 $f(2) =$()。

A. 21B. 17C. 13D. 113. 若 $a=(1, 2)$,$b=(3, 4)$,则 $\overrightarrow{AB} =$()。

A. (2, 2)B. (2, 3)C. (3, 2)D. (4, 6)4. 在点 $P(4, 3)$ 和点 $Q(-2, 7)$ 的坐标平面直角坐标系下, 则$\overrightarrow{PQ}$ 的坐标为()。

A. (6, 4)B. (-6, 4)C. (6, -4)D. (-6, -4)5. 下列事件中, 既是必然事件又是不可能事件的是()。

A. 抛一颗骰子, 出现1点.B. 抽一张扑克牌, 不是黑桃.C. 接电话时, 大声讲话.D. 一次朋友聚会, 5人都睡着了.6. 若等差数列 $\{a_n\}$ 的首项 $a_1=3$,公差 $d=2$,则 $a_5=$()。

A. 5B. 7C. 9D. 117. 若直线 $y=2x-3$ 切割下列圆所得弦长相同的是()。

A. $(x-1)^2 + (y+2)^2 = 4$B. $(x+1)^2 + (y-2)^2 = 4$C. $(x-1)^2 + (y+2)^2 = 1$D. $(x+1)^2 + (y-2)^2 = 1$8. 设正弦函数 $y=3\sin{(2x+\frac{\pi}{6})}$,则振幅为()。

A. 2B. 3C. -2D. -39. 在直角坐标系中,过点 $A(-3, 4)$ 和点 $B(1, 2)$ 的直线为()。

2024-2025学年高一上第一次月考数学试卷附答案解析(9月份)

2024-2025学年高一上第一次月考数学试卷附答案解析(9月份)

2024-2025学年高一上第一次月考数学试卷(9月份)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x∈N|1<x<6},B={x|4﹣x>0},则A∩B=()A.{2,3,4}B.{2,3}C.{2}D.{3}2.(5分)下列说法正确的是()A.∅∈{0}B.0⊆N C.D.{﹣1}⊆Z3.(5分)命题“∀x∈(0,1),x3<x2”的否定是()A.∀x∈(0,1),x3>x2B.∀x∉(0,1),x3≥x2C.∃x0∈(0,1),D.∃x0∉(0,1),4.(5分)“a>b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)若集合A={x|2mx﹣3>0,m∈R},其中2∈A且1∉A,则实数m的取值范围是()A.B.C.D.6.(5分)满足集合{1,2}⫋M⊆{1,2,3,4,5}的集合M的个数是()A.6B.7C.8D.157.(5分)设集合A={x|1<x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是()A.{a|a<1}B.{a|a≤1}C.{a|a>2}D.{a|a≥2}8.(5分)已知集合A={1,2},B={0,2},若定义集合运算:A*B={z|z=xy,x∈A,y∈B},则集合A*B 的所有元素之和为()A.6B.3C.2D.0二、选择题:本题共3小题,每小题6分,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,有选错的得0分,部分选对的得部分分。

(多选)9.(6分)已知命题p:x2﹣4x+3<0,那么命题p成立的一个充分不必要条件是()A.x≤1B.1<x<2C.x≥3D.2<x<3(多选)10.(6分)集合A={x|ax2﹣x+a=0}只有一个元素,则实数a的取值可以是()A.0B.C.1D.(多选)11.(6分)设S是实数集R的一个非空子集,如果对于任意的a,b∈S(a与b可以相等,也可以不相等),都有a+b∈S且a﹣b∈S,则称S是“和谐集”,则下列命题中为真命题的是()A.存在一个集合S,它既是“和谐集”,又是有限集B.集合{x|x=3k,k∈Z}是“和谐集”C.若S1,S2都是“和谐集”,则S1∩S2≠∅D.对任意两个不同的“和谐集”S1,S2,总有S1∪S2=R三、填空题:本题共3小题,每小题5分,共15分。

高一数学第一次月考试卷

高一数学第一次月考试卷

高一数学第一次月考试题时量:120分钟 总分:150分 姓名: 班级: 得分:一、 选择题(5×10=50分)1.集合},{b a 的子集有 ( )A .2个B .3个C .4个D .5个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A B = ( )A .(4,3)-B .(4,2]-C .(,2]-∞D .(,3)-∞3. 图中阴影部分所表示的集合是( )A.B ∩[CU(A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(CUB)D.[CU(A ∩C)]∪B4.下列对应关系:( )①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根②,,A R B R ==f :x x →的倒数③,,A R B R ==f :22x x →-④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方其中是A 到B 的映射的是A .①③B .②④C .③④D .②③5. 已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离s 表示为时间t (小时)的函数表达式是( )A .s=60tB .s=60t+50tC .s=D .s= 6. 函数y=xx ++-1912是( ) A . 奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数7.已知函数212x y x ⎧+=⎨-⎩(0)(0)x x ≤>,使函数值为5的x 的值是( ) ⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t ⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tA .-2B .2或52-C . 2或-2D .2或-2或52- 8.下列函数中,定义域为[0,+∞)的函数是 ( )A .x y =B .22x y -=C .13+=x yD .2)1(-=x y9.下列图象中表示函数图象的是 ( )(A ) (B) (C ) (D)10. 若偶函数 f(x)在 上是增函数,则下列关系式中成立的是( )A. B.C. D. 二、填空题(5×5=15分)11.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x 1<0,x 2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .12.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = .13.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .14. 设奇函数f (x )的定义域为[-5,5],若当 时,f(x)的图象如右图,则不等式f(x)<0的解是 .15.已知函数()y f x =是R 上的偶函数,且在(-∞,0]上是减函数,若()(2)f a f ≥,则实数a 的取值范围是 .三、解答题(共75分)16.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(12分) (Ⅰ)若A =B ,求a 的值;(6分)(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值.(6分)x y 0 x y 0 x y 0 x y 0 (]1,-∞-)2()1()23(f f f <-<-)2()23()1(f f f <-<-)23()1()2(-<-<f f f )1()23()2(-<-<f f f [0,5]x ∈17、设U={2,3,a 2+2a-3},A={b,2},U ⊇A ,C U A={5},求实数a 和b 的值。

湖北省武汉市2023-2024学年高一上学期第一次月考数学试题含答案

湖北省武汉市2023-2024学年高一上学期第一次月考数学试题含答案

武汉高一年级第一次月考(数学)(答案在最后)第Ⅰ卷一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}43A x x =∈-≤≤Z ,{}13B x x =∈+<N ,则A B = ()A.{}0,1 B.{}0,1,2 C.{}1,2 D.{}1【答案】A 【解析】【分析】化简集合,根据交集运算求解.【详解】根据题意,得{}{}=4,3,2,1,0,1,2,30,1A B ----=,,所以{}0,1A B = ,故选:A.2.设{}{}2712|0,0|2A x x x B x ax =-+==-=,若A B B = ,求实数a 组成的集合的子集个数有()A.2B.3C.4D.8【答案】D 【解析】【分析】先解方程得集合A ,再根据A B B = 得B A ⊆,根据包含关系求实数a ,根据子集的定义确定实数a 的取值组成的集合的子集的个数.【详解】{}{}271203,4|A x x x =-+==因为A B B = ,所以B A ⊆,因此B =∅或{}3B =或{}4B =,当B =∅时,=0a ,当{}3B =时,23a =,当{}4B =时,12a =,实数a 的取值组成的集合为210,,32⎧⎫⎨⎬⎩⎭,其子集有∅,{}0,23⎧⎫⎨⎬⎩⎭,12⎧⎫⎨⎬⎩⎭,20,3⎧⎫⎨⎬⎩⎭,10,2⎧⎫⎨⎬⎩⎭,21,32⎧⎫⎨⎬⎩⎭,210,,32⎧⎫⎨⎬⎩⎭,共8个,故选:D .3.下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“2,10x R x ∀∈+<”是全称量词命题;③命题“2,210x R x x ∃∈++≤”的否定为“2,210x R x x ∀∈++≤”;④命题“a b >是22ac bc >的必要条件”是真命题;A.0 B.1C.2D.3【答案】C 【解析】【分析】根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.【详解】对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“2R 10x x ∀∈+<,”是全称量词命题;故②正确;对于③:命题2:R,210p x x x ∃∈++≤,则2:R,210p x x x ⌝∀∈++>,故③错误;对于④:22ac bc >可以推出a b >,所以a b >是22ac bc >的必要条件,故④正确;所以正确的命题为②④,故选:C4.“0m >”是“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”,利用二次函数的性质,求得实数m 的取值范围,结合充分、必要条件的判定方法,即可求解.【详解】由题意,命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”可得命题“x ∀∈R ,2(1)2(1)30m x m x -+-+>是真命题”当10m -=时,即1m =时,不等式30>恒成立;当10m -≠时,即1m ≠时,则满足()()210214130m m m ->⎧⎪⎨⎡⎤---⨯<⎪⎣⎦⎩,解得14m <<,综上可得,实数14m ≤<,即命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”时,实数m 的取值范围是[1,4),又由“0m >”是“14m ≤<”的必要不充分条件,所以“0m >”是“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”的必要不充分条件,故选:B.【点睛】理解全称命题与存在性命题的含义时求解本题的关键,此类问题求解的策略是“等价转化”,把存在性命题为假命题转化为全称命题为真命题,结合二次函数的性质求得参数的取值范围,再根据充分、必要条件的判定方法,进行判定.5.已知()f x =+,则函数(1)()1f xg x x +=-的定义域是()A.[2,1)(1,2]-⋃B.[0,1)(1,4]U C.[0,1)(1,2]⋃ D.[1,1)(1,3]-⋃【答案】A 【解析】【分析】先求出()f x 的定义域,结合分式函数分母不为零求出()g x 的定义域.【详解】()f x = ,10330x x x +≥⎧∴∴≤≤⎨-≥⎩,-1,()f x ∴的定义域为[]1,3x ∈-.又(1)()1f x g x x +=- ,1132210x x x -≤+≤⎧∴∴-≤≤⎨-≠⎩,且1x ≠.(1)()1f xg x x +∴=-的定义域是[2,1)(1,2]-⋃.故选:A6.已知0a >,0b >,且12111a b+=++,那么a b +的最小值为()A.1-B.2C.1+ D.4【答案】C 【解析】【分析】由题意可得()1211211a b a b a b ⎛⎫+=++++-⎪++⎝⎭,再由基本不等式求解即可求出答案.【详解】因为0a >,0b >,12111a b+=++,则()1211211211a b a b a b a b ⎛⎫+=+++-=++++- ++⎝⎭()2113211a b b a ++=++-++()21111111a b ba ++=++≥+=+++.当且仅当()2111112111a b b a a b⎧++=⎪⎪++⎨⎪+=⎪++⎩即2a b ⎧=⎪⎨⎪=⎩时取等.故选:C .7.若两个正实数x ,y 满足141x y +=,且不等式234y x m m +<-有解,则实数m 的取值范围是()A.{14}mm -≤≤∣ B.{0mm <∣或3}m >C .{41}mm -<<∣ D.{1mm <-∣或4}m >【答案】D 【解析】【分析】首先不等式转化为2min34y m m x ⎛⎫->+⎪⎝⎭,再利用基本不等式求最值,即可求解.【详解】若不等式234y x m m +<-有解,则2min 34y m m x ⎛⎫->+ ⎪⎝⎭,因为141x y +=,0,0x y >>,所以144224444y y x y x x x y y x ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当44x y y x =,即4y x =时,等号成立,4y x +的最小值为4,所以234m m ->,解得:4m >或1m <-,所以实数m 的取值范围是{1m m <-或4}m >.故选:D8.已知函数222,2,()366,2,x ax x f x x a x x ⎧--≤⎪=⎨+->⎪⎩若()f x 的最小值为(2)f ,则实数a 的取值范围为()A.[2,5]B.[2,)+∞C.[2,6]D.(,5]-∞【答案】A 【解析】【分析】分别求解分段函数在每一段定义区间内的最小值,结合函数在整体定义域内的最小值得到关于a 的不等式组,解不等式组得到a 的取值范围.【详解】当2x >时,3666126x a a a x +-≥=-,当且仅当6x =时,等号成立,即当2x >时,函数()f x 的最小值为126a -;当2x ≤时,2()22f x x ax =--,要使得函数()f x 的最小值为(2)f ,则满足2,(2)24126,a f a a ≥⎧⎨=-≤-⎩解得25a ≤≤.故选:A .二、多选题(本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得2分,有选错的得0分)9.下列函数在区间(2,)+∞上单调递增的是()A.1y x x=+B.1y x x =-C.14y x=- D.y =【答案】AB 【解析】【分析】求函数的单调区间,首先要确定函数的定义域,若存在定义域之外的元素,则不符合条件;对其他选项可根据特殊函数的单调性得出.【详解】由“对勾”函数的单调性可知,函数1y x x=+在(2,)+∞单调递增,A 正确;由y x =在(2,)+∞单调递增,1y x =在(2,)+∞单调递减,知1y x x=-在(2,)+∞单调递增,B 正确;函数14y x=-在4x =处无定义,因此不可能在(2,)+∞单调递增,C 错误;函数y =的定义域为(,1][3,)-∞⋃+∞,因此在(2,3)上没有定义,故不可能在(2,)+∞单调递增,D 错误.故选:AB.10.已知函数()221f x x x =++在区间[],6a a +上的最小值为9,则a 可能的取值为()A.2B.1C.12D.10-【答案】AD 【解析】【分析】根据二次函数的对称轴和开口方向进行分类讨论,即可求解.【详解】因为函数()221f x x x =++的对称轴为=1x -,开口向上,又因为函数()221f x x x =++在区间[],6a a +上的最小值为9,当16a a ≤-≤+,即71a -≤≤-时,函数()221f x x x =++的最小值为min ()(1)0f x f =-=与题干不符,所以此时不成立;当1a >-时,函数()221f x x x =++在区间[],6a a +上单调递增,所以2min ()()219f x f a a a ==++=,解得:2a =或4a =-,因为1a >-,所以2a =;当61a +<-,也即7a <-时,函数()221f x x x =++在区间[],6a a +上单调递减,所以2min ()(6)14499f x f a a a =+=++=,解得:10a =-或4a =-,因为7a <-,所以10a =-;综上:实数a 可能的取值2或10-,故选:AD .11.若0,0a b >>,且4a b +=,则下列不等式恒成立的是()A.228a b +≤B.114ab ≤ C.≤ D.111a b+≤【答案】C 【解析】【分析】利用重要不等式的合理变形可得()()2222a b a b +≥+,即可知A 错误;由基本不等式和不等式性质即可计算B 错误;由()22a b +≥即可求得C 正确;根据不等式中“1”的妙用即可得出111a b+≥,即D 错误.【详解】对于A ,由222a b ab +≥可得()()2222222a bab ab a b +≥++=+,又4a b +=,所以()()222216a ba b +≥+=,即228a b +≥,当且仅当2a b ==时等号成立,故A 错误;对于B ,由4a b +=可得4a b +=≥,即04<≤ab ,所以114ab ≥,当且仅当2a b ==时等号成立,即B 错误;对于C ,由a b +≥可得()22a b a b +≥++=,所以可得28≥+,即≤,当且仅当2a b ==时等号成立,即C 正确;对于D ,易知()11111111121444a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,即111a b +≥;当且仅当2a b ==时等号成立,可得D 错误;故选:C12.公元3世纪末,古希腊亚历山大时期的一位几何学家帕普斯发现了一个半圆模型(如图所示),以线段AB 为直径作半圆ADB ,CD AB ⊥,垂足为C ,以AB 的中点O 为圆心,OC 为半径再作半圆,过O 作OE OD ⊥,交半圆于E ,连接ED ,设BC a =,,(0)AC b a b =<<,则下列不等式一定正确的是().A.2a b+< B.2a b+<C.b >D.2a b+>【答案】AD 【解析】【分析】先结合图象,利用垂直关系和相似关系得到大圆半径2a b R +=,小圆半径2b ar -=,AD =,BD ==,再通过线段大小判断选项正误即可.【详解】因为AB 是圆O 的直径,则90ADB DAB DBA ∠=︒=∠+∠,因为CD AB ⊥,则=90ACD ∠︒,所以90DAB ADC ∠+∠=︒,故DBA ADC ∠=∠,易有ADC DBC ,故AC DCCD BC=,即2CD AC BC ab =⋅=,大圆半径2a b R +=,小圆半径22a b b ar a +-=-=,90ACD ∠=︒ ,222AC CD AD ∴+=,故AD ==,同理BD ==.选项A 中,,显然当0a b <<时AOD ∠是钝角,在AD 上可截取DM DO =,故OD AD <,即大圆半径R OD AD =<,故2a b+<,正确;选项B 中,当60BOD ∠=︒时,大圆半径R OD OB BD ===,有2a b+=选项C 中,Rt BCD △中,BD =,而AC b =,因为,AC BD 大小关系无法确定,故错误;选项D 中,大圆半径2a b R OD +==,小圆半径2b ar OC -==,=OD >2a b+>,故正确.故选:AD.【点睛】本题解题关键在于将选项中出现的数式均与图中线段长度对应相等,才能通过线段的长短比较反馈到数式的大小关系,突破难点.第Ⅱ卷三、填空题(本题共4小题,每小题5分,共20分)13.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合{}1,2A =-,{}22,0B x ax a ==≥,若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为_____.【答案】10,,22⎧⎫⎨⎬⎩⎭【解析】【分析】分“鲸吞”或“蚕食”两种情况分类讨论求出a 值,即可求解【详解】当0a =时,B =∅,此时满足B A ⊆,当0a >时,B ⎧⎪=⎨⎪⎩,此时,A B 集合只能是“蚕食”关系,所以当,A B 集合有公共元素1=-时,解得2a =,当,A B 集合有公共元素2=时,解得12a =,故a 的取值集合为10,,22⎧⎫⎨⎬⎩⎭.故答案为:10,,22⎧⎫⎨⎬⎩⎭14.一家物流公司计划建立仓库储存货物,经过市场了解到下列信息:每月的土地占地费1y (单位:万元)与仓库到车站的距离x (单位:km )成反比,每月库存货物费2y (单位:万元)与x 成正比.若在距离车站10km 处建立仓库,则1y 与2y 分别为4万元和16万元.则当两项费用之和最小时x =______(单位:km ).【答案】5【解析】【分析】由已知可设:11k y x=,22y k x =,根据题意求出1k 、2k 的值,再利用基本不等式可求出12y y +的最小值及其对应的x 值,即可得出结论.【详解】由已知可设:11k y x=,22y k x =,且这两个函数图象分别过点()10,4、()10,16,得110440k =⨯=,2168105k ==,从而140y x=,()2805xy x =>,故12408165x y y x +=+≥=,当且仅当4085x x =时,即5x =时等号成立.因此,当5x =时,两项费用之和最小.故答案为:5.15.函数()f x 是定义在()0,∞+上的增函数,若对于任意正实数,x y ,恒有()()()f xy f x f y =+,且()31f =,则不等式()()82f x f x +-<的解集是_______.【答案】()8,9【解析】【分析】根据抽象函数的关系将不等式进行转化,利用赋值法将不等式进行转化结合函数单调性即可得到结论.【详解】()()()f xy f x f y =+ ,(3)f 1=,22(3)(3)(3)(33)(9)f f f f f ∴==+=⨯=,则不等式()(8)2f x f x +-<等价为(8)[](9)f x x f <-,函数()f x 在定义域(0,)+∞上为增函数,∴不等式等价为080(8)9x x x x >⎧⎪->⎨⎪-<⎩,即0819x x x >⎧⎪>⎨⎪-<<⎩,解得89x <<,∴不等式的解集为(8,9),故答案为:()8,9.16.已知1:123x p --≤,22:210q x x m -+-≤,若p ⌝是q ⌝的必要不充分条件,则实数m 的取值范围是______.【答案】(][),99,-∞-⋃+∞【解析】【分析】先分别求出命题p 和命题q 为真命题时表示的集合,即可求出p ⌝和q ⌝表示的集合,根据必要不充分条件所表示的集合间关系即可求出.【详解】对于命题p ,由1123x --≤可解出210x -≤≤,则p ⌝表示的集合为{2x x <-或}10x >,设为A ,对于命题q ,22210x x m -+-≤,则()()110x m x m 轾轾---+£臌臌,设q ⌝表示的集合为B , p ⌝是q ⌝的必要不充分条件,B∴A ,当0m >时,()()110x m x m 轾轾---+£臌臌的解集为{}11x m x m -≤≤+,则{1B x x m =<-或}1x m >+,12110m m -≤-⎧∴⎨+≥⎩,解得9m ≥;当0m =时,{}1B x x =≠,不满足题意;当0m <时,()()110x m x m 轾轾---+£臌臌的解集为{}11x m x m +≤≤-,则{1B x x m =<+或}1x m >-,12110m m +≤-⎧∴⎨-≥⎩,解得9m ≤-,综上,m 的取值范围是(][),99,-∞-⋃+∞.故答案为:(][),99,-∞-⋃+∞.【点睛】本题考查命题间关系的集合表示,以及根据集合关系求参数范围,属于中档题.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知集合{0A x x =<或{}2},32x B x a x a >=≤≤-.(1)若A B = R ,求实数a 的取值范围;(2)若B A ⊆R ð,求实数a 的取值范围.【答案】(1)(],0-∞(2)12a ≥【解析】【分析】(1)根据集合的并集运算即可列不等式求解,(2)根据包含关系列不等式求解.【小问1详解】因为{0A x x =<或{}2},32,,x B x a x a A B >=≤≤-⋃=R 所以320322a a a a -≥⎧⎪≤⎨⎪-≥⎩,解得0a ≤,所以实数a 的取值范围是(],0-∞.【小问2详解】{0A x x =<或{}2},02x A x x >=≤≤R ð,由B A ⊆R ð得当B =∅时,32-<a a ,解得1a >;当B ≠∅时,32a a -≥,即1a ≤,要使B A ⊆,则0322a a ≥⎧⎨-≤⎩,得112a ≤≤.综上,12a ≥.18.已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >(1b >).(1)求a ,b 的值;(2)当0x >,0y >,且满足1a b x y +=时,有222x y k k +≥++恒成立,求k 的取值范围.【答案】(1)1a =,2b =(2)[]3,2-【解析】【分析】(1)方法一:根据不等式2320ax x -+>的解集为{1x x <或}x b >,由1和b 是方程2320ax x -+=的两个实数根且0a >,利用韦达定理求解;方法二:根据不等式2320ax x -+>的解集为{1x x <或}x b >,由1和b 是方程2320ax x -+>的两个实数根且0a >,将1代入2320ax x -+=求解.(2)易得121x y+=,再利用“1”的代换,利用基本不等式求解.【小问1详解】解:方法一:因为不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+=的两个实数根且0a >,所以3121b a b a ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得12a b =⎧⎨=⎩方法二:因为不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+>的两个实数根且0a >,由1是2320ax x -+=的根,有3201a a -+=⇒=,将1a =代入2320ax x -+>,得23201x x x -+>→<或2x >,∴2b =;【小问2详解】由(1)知12a b =⎧⎨=⎩,于是有121x y +=,故()12422448y x x y x y x y x y ⎛⎫+=++=++>+ ⎪⎝⎭,当且仅当24x y =⎧⎨=⎩时,等号成立,依题意有()2min 22x y k k +≥++,即282k k ≥++,得26032k k k +-≤→-≤≤,所以k 的取值范围为[]3,2-.19.已知函数()212f x x x =+.(1)试判断函数()f x 在区间(]0,1上的单调性,并用函数单调性定义证明;(2)若(]0,1x ∃∈,使()2f x m <+成立,求实数m 的范围.【答案】(1)单调递减;证明见解析(2)()1,+∞【解析】【分析】(1)运用定义法结合函数单调性即可;(2)将能成立问题转化为最值问题,结合单调性求解最值.【小问1详解】()212f x x x=+在区间(]0,1上单调递减,证明如下:设1201x x <<≤,则()()()()2212121212222212121122x x f x f x x x x x x x x x ⎛⎫--=-+-=-- ⎪⎝⎭()()12121222221212121122x x x x x x x x x x x x ⎡⎤⎛⎫⎛⎫+=--=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦∵1201x x <<≤,∴120x x -<,21211x x >,21211x x >,∴2212121120x x x x ⎛⎫-+< ⎪⎝⎭,∴()()120f x f x ->所以,()212f x x x =+在区间(]0,1上单调递减.【小问2详解】由(1)可知()f x 在(]0,1上单调递减,所以,当1x =时,()f x 取得最小值,即()min ()13f x f ==,又(]0,1x ∃∈,使()2f x m <+成立,∴只需min ()2f x m <+成立,即32m <+,解得1m <.故实数m 的范围为()1,+∞.20.已知函数()21ax b f x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式并判断()f x 在()1,1-上的单调性(不必证明);(2)解不等式()()10f x f x -+<.【答案】(1)()21x f x x=+,在(1,1)-上单调递增(2)1(0,)2【解析】【分析】(1)根据奇函数的性质,以及代入条件,即可求解,并判断函数的单调性;(3)根据函数是奇函数,以及函数的单调性,即可求解不等式.【小问1详解】由题意可得()001225f f ⎧=⎪⎨⎛⎫= ⎪⎪⎝⎭⎩,解得01b a =⎧⎨=⎩所以()21x f x x =+,经检验满足()()f x f x -=-,设1211x x -<<<,()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以120x x -<,1210x x ->,221210,10x x +>+>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间()1,1-单调递增;【小问2详解】(1)()0f x f x -+< ,(1)()()f x f x f x ∴-<-=-,()f x 是定义在(1,1)-上的增函数,∴111111x x x x -<-<⎧⎪-<<⎨⎪-<-⎩,得102x <<,所以不等式的解集为1(0,)2.21.2022年某企业整合资金投入研发高科技产品,并面向全球发布了首批17项科技创新重大技术需求榜单,吸引清华大学、北京大学等60余家高校院所参与,实现企业创新需求与国内知名科技创新团队的精准对接,最终该公司产品研发部决定将某项高新技术应用到某高科技产品的生产中,计划该技术全年需投入固定成本6200万元,每生产x 千件该产品,需另投入成本()F x 万元,且()210100,060810090121980,60x x x F x x x x ⎧+<<⎪=⎨+-≥⎪⎩,假设该产品对外销售单价定为每件0.9万元,且全年内生产的该产品当年能全部售完.(1)求出全年的利润()G x 万元关于年产量x 千件的函数关系式;(2)试求该企业全年产量为多少千件时,所获利润最大,并求出最大利润.【答案】(1)()2108006200,060810015780,60x x x G x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)该企业全年产量为90千件时,所获利润最大为15600万元【解析】【分析】(1)利用分段函数即可求得全年的利润()G x 万元关于年产量x 千件的函数关系式;(2)利用二次函数求值域和均值定理求值域即可求得该企业全年产量为90千件时,所获利润最大为15600万元.【小问1详解】当060x <<时,()()22900101006200108006200G x x x x x x =-+-=-+-,当60x ≥时,()8100810090090121980620015780G x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭,所以()2108006200,060810015780,60x x x G x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩.【小问2详解】若060x <<,则()()210409800G x x =--+,当40x =时,()max 9800G x =;若60x ≥,()8100157801578015600G x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当8100x x=,即90x =时,等号成立,此时()max 15600G x =.因为156009800>,所以该企业全年产量为90千件时,所获利润最大为15600万元.22.在以下三个条件中任选一个,补充在下面问题中,并解答此题.①()()()f x y f x f y +=+,()24f =.当0x >时,()0f x >;②()()()2f x y f x f y +=+-,()15f =.当0x >时,()2f x >;③()()()f x y f x f y +=⋅,()22f =.且x ∀∈R ,()0f x >;当0x >时,()1f x >.问题;对任意,x y ∈R ,()f x 均满足___________.(填序号)(1)判断并证明()f x 的单调性;(2)求不等式()148f a +≤的解集.注;如果选择多个条件分别解答,按第一个解答计分.【答案】(1)增函数(2)答案见解析【解析】【分析】(1)根据单调性的定义法,证明单调性即可;(2)根据单调性,列出相应的不等式,解不等式方程可得答案.【小问1详解】若选①:设12,(,)x x ∈-∞+∞,且12x x <,则210x x ->,所以21()0f x x ->.由()()()f x y f x f y +=+得()()()f x y f x f y +-=,所以,2121()()()0f x f x f x x -=->,所以,21()()f x f x >,所以()f x 在(,)-∞+∞上是增函数;若选②:设12,(,)x x ∈-∞+∞,且12x x <.则210x x ->,所以21()2f x x ->.由()()()2+=+-f x y f x f y 得()()()2f x y f x f y +-=-,所以2121()()()20f x f x f x x -=-->,所以21()()f x f x >,所以f (x )在(,)-∞+∞上是增函数;若选③:设12,(,)x x ∈-∞+∞,且12x x <,则210x x ->,所以21()1f x x ->.由()()()f x y f x f y +=⋅得()()()f x y f y f x +=,2211()()1()f x f x x f x =->,又1()0>f x ,所以2()f x >1()f x ,所以函数()f x 为R 上的增函数;【小问2详解】若选①:由(2)4f =得(4)(2)(2)8f f f =+=,所以,(14)8f a +≤可化为(14)(4)f a f +≤,根据()f x 的单调性,得144a +≤,解得34a ≤,所以不等式(14)8f a +≤的解集为3,4⎛⎤-∞ ⎥⎝⎦.若选②:令1x y ==,则(2)2(1)28f f =-=,所以(14)8f a +≤可化为(14)(2)f a f +≤,根据()f x 的单调性,得142a +≤,解得14a ≤,所以不等式(14)8f a +≤的解集为1,4⎛⎤-∞ ⎥⎝⎦.若选③:由(2)2f =得(4)(2)(2)4f f f =⋅=,(6)(4)(2)8f f f =⋅=,所以(14)8f a +≤可化为(14)(6)f a f +≤,根据()f x 的单调性,得146a +≤,解得54a ≤,所以不等式(14)8f a +≤的解集为5,4⎛⎤-∞ ⎥⎝⎦.。

高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(解析版)

高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(解析版)

2024-2025学年高一上学期第一次月考数学试卷(基础篇)参考答案与试题解析第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生【解题思路】根据集合的定义依次判断各个选项即可.【解答过程】对于A:2023年参加“两会”的代表具有确定性,能构成集合,故A正确;对于B:北京冬奥会上受欢迎的运动项目,没有明确的标准,即对象不具有确定性,不能构成集合,故B 错误;对于C:π的近似值,没有明确的标准,即对象不具有确定性,不能构成集合,故C错误;对于D:我校跑步速度快的学生,没有明确的标准,即对象不具有确定性,不能构成集合,故D错误;故选:A.2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤0【解题思路】全称量词命题的否定为存在量词命题,求解即可.【解答过程】因为命题pp:∀xx>2,xx2−1>0,所以¬pp:∃xx>2,xx2−1≤0.故选:C.3.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<1【解题思路】利用必要不充分条件的意义,逐项判断即得.【解答过程】对于A,1<xx<3是xx<2的不充分不必要条件,A不是;对于B,xx<3是xx<2的一个必要不充分条件,B是;对于C,xx<1是xx<2的一个充分不必要条件,C不是;对于D,0<xx<1是xx<2的一个充分不必要条件,D不是.故选:B.4.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.4【解题思路】根据元素与集合、集合与集合之间的关系分析判断.【解答过程】对于①:因为0是{0}的元素,所以0∈{0},故①正确;对于②:因为空集是任何非空集合的真子集,所以∅ {0},故②正确;对于③:因为集合{0,1}的元素为0,1,集合{(0,1)}的元素为(0,1),两个集合的元素全不相同,所以{0,1},{(0,1)}之间不存在包含关系,故③错误;对于④:因为集合{(aa,bb)}的元素为(aa,bb),集合{(bb,aa)}的元素为(bb,aa),两个集合的元素不一定相同,所以{(aa,bb)},{(bb,aa)}不一定相等,故④错误;综上所述:正确的个数为2.故选:B.5.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-4【解题思路】利用整体法,结合不等式的性质即可求解.【解答过程】设zz=xx+2yy=mm(2xx+yy)+nn(xx−yy),故2mm+nn=1且mm−nn=2,所以mm=1,nn=−1,故zz=xx+2yy=(2xx+yy)−(xx−yy),由于3≤2xx+yy≤9,6≤xx−yy≤9,所以3+(−9)≤2xx+yy−(xx−yy)≤9+(−6),−6≤xx+2yy≤3,故最小值为−6,此时xx=4,yy=−5,故选:B.6.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}【解题思路】先求出MM,∁UU NN,再求MM∩(∁UU NN),【解答过程】因为UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},所以MM={5,7,9},因为UU={1,3,5,7,9},NN={3,7,9},所以∁UU NN={1,5},所以MM∩(∁UU NN)={5}.故选:B.7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}【解题思路】根据给定的解集求出aa,bb,再解一元二次不等式即得.【解答过程】由不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},得−2,−1是方程aaxx2+bbxx+2=0的两个根,且aa>0,因此−2+(−1)=−bb aa,且−2×(−1)=2aa,解得aa=1,bb=3,不等式2xx2+bbxx+aa<0化为:2xx2+3xx+1<0,解得−1<xx<−12,所以不等式2xx2+bbxx+aa<0为{xx|−1<xx<−12}.故选:C.8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6【解题思路】根据题意可知2aa+bb=32(aa+bb)+12(aa−bb),根据乘1法结合基本不等式运算求解. 【解答过程】因为aa>bb≥0,则aa+bb>0,aa−bb>0,且2aa+bb=32(aa+bb)+12(aa−bb),则2aa+bb=�32(aa+bb)+12(aa−bb)��6aa+bb+2aa−bb�=10+3(aa−bb)aa+bb+3(aa+bb)aa−bb≥10+2�3(aa−bb)aa+bb⋅3(aa+bb)aa−bb=16,当且仅当3(aa−bb)aa+bb=3(aa+bb)aa−bb,即aa=8,bb=0时,等号成立,所以2aa+bb的最小值为16.故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。

高一数学月考试题及答案

高一数学月考试题及答案

高一数学月考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 若函数f(x) = 2x + 1,g(x) = x^2 - 2x + 1,则f(g(x))等于A. x^2 + 2x + 1B. 2x^2 - 3x + 2C. 2x^2 + 1D. x^2 - 3x + 33. 已知数列{a_n}是等差数列,且a_1=3,a_4=10,则公差d等于A. 2B. 3C. 4D. 54. 函数y=x^2-2x+3的最小值是A. 2B. 3C. 4D. 55. 圆x^2 + y^2 = 25的圆心坐标是B. (5, 0)C. (0, 5)D. (-5, 0)6. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是A. 11B. 13C. 14D. 157. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}8. 若sin(α) = 3/5,且α为第一象限角,则cos(α)等于A. 4/5B. -4/5C. 3/5D. -3/59. 函数y=ln(x)的定义域是A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)10. 抛物线y=x^2-4x+3的顶点坐标是A. (2, -1)C. (-2, 1)D. (-2, -1)二、填空题(每题4分,共20分)1. 函数y=2x-3与x轴的交点坐标为______。

2. 等差数列{a_n}的前n项和为S_n,若S_5=75,则a_3=______。

3. 已知一个圆的半径为5,圆心到直线x-y+5=0的距离为3,则该圆与直线的位置关系是______。

4. 函数f(x)=x^2-4x+3的对称轴方程为______。

5. 集合{a, b, c}与集合{a, d, e}的并集为______。

高一第一次月考(数学)试题含答案

高一第一次月考(数学)试题含答案

高一第一次月考(数学)(考试总分:150 分)一、 单选题 (本题共计8小题,总分40分)1.(5分)1. 集合,集合,则等于( )A .B .C .D .2.(5分)2.已知命题:,,则为( )A .,B .,C .,D .,3.(5分)3. “”是“”的( )A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件4.(5分)4.不等式的解集是( )A .B .C .D .5.(5分)5.设实数、满足,,则的取值范围是( )A .B .C .D .6.(5分)6.下列命题中真命题有( )①; ②q :所有的正方形都是矩形; ③ ; ④s :至少有一个实数x ,使.A .1个B .2个C .3个D .4个7.(5分)7.若关于的不等式的解集为,则实数的取值范围是( )A .或B .C .或D .8.(5分)8. 已知关于的不等式在上有解,则实数的取值范围是( ){}1,2,3,4A ={}3,4,5,6B =A B {}1,2,3,4,5,6{}3,4{}3{}4p n N ∃∈225n n ≥+p ⌝n N ∀∈225n n ≥+n N ∃∈225n n ≤+n N ∀∈225n n <+n N ∃∈225n n =+1x =2230x x +-=()()2230x x -->()3,2,2⎛⎫-∞⋃+∞ ⎪⎝⎭R 3,22⎛⎫ ⎪⎝⎭∅x y 34x <<12y <<2M x y =-46M <<57M <<56M <<47M <<21,04p x R x x ∀∈+-≥:2,220r x R x x ∈+∃+≤:210x +=x 210x mx ++≥R m {2m m ≤-}2m ≥{}22m m -≤≤{2m m <-}2m >{}22m m -<<x 2243x x a a -+≥-R aA .B .C .或D .二、 多选题 (本题共计4小题,总分20分)9.(5分)二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9. 已知且,则下列不等式正确的是( )A .B .C .D .10.(5分)10.若集合,,则下列结论错误的是( )A .B .C .D . 11.(5分)11.记全集为U ,在下列选项中,是B ⊆A 的充要条件的有( )A .A ∪B =A B .A ∩B =AC .(∁U A )⊆(∁U B )D .A ∪(∁U B )=U12.(5分)12.两个函数与(为常数)的图像有两个交点且横坐标分别为,,,则下列结论中正确的是( )A .的取值范围是B .若,则,C .当时,D .二次函数的图象与轴交点的坐标为和三、 填空题 (本题共计4小题,总分20分)13.(5分)三、填空题:(本大题共4小题,每小题5分,共20分)13. 不等式的解集是____________.14.(5分)14.设全集U =R ,集合A ={x |x <0},B ={x |x >1},则A ∪(∁U B )=________.15.(5分)15. 设:,:,是的充分条件,则实数的取值范围是__________.16.(5分)16. 已知,则的最大值为________.四、 解答题 (本题共计6小题,总分70分)17.(10分)四、解答题:(本题共6小题,共计70分.解答时应写出文字说明、证明过程或演算步骤.) {}14a a -≤≤{}14a a -<<{4a a ≥}1a ≤-{}41a a -≤≤,,R a b c ∈a b >a c b c +>+11a b >22ac bc >33a b >{1,2,3,4,5}M ={2,2}N =-N M ⊆M N M ⋃=M N N ={2}M N =24y x =-y m =m 1x 2x ()12x x <m 4m >-0m =12x =-22x =0m >1222x x -<<<()()12y x x x x m =--+x ()2,0()2,0-2430x x -+<α24x <≤βx m >αβm 0x >97x x --17.(本小题满分10分)设集合2{},35{-<=≤≤-=x x B x x A 或}4>x ,求)()(,B C A C B A R R ⋃⋂18.(12分)18.(本小题满分12分)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围.19.(12分)19.(本小题满分12分)已知关于的方程有实数根,.(1)若p 是假命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.20.(12分)20(本小题满分12分)在①;②““是“”的充分不必要条件;③这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合.(1)当时,求A ∪B ;(2)若_______,求实数a 的取值范围.21.(12分)21.(本小题满分12分) 已知二次函数.(1)若关于的不等式的解集是.求实数的值;(2)若,解关于的不等式.22.(12分)22. (本小题满分12分)中欧班列是推进“一带一路”沿线国家道路联通、贸易畅通的重要举措,作为中欧铁路在东北地区的始发站,沈阳某火车站正在不断建设,目前车站准备在某仓库外,利用其一侧原有墙体,建造一面高为,底面积为,且背面靠墙的长方体形状的保管员室,由于保管员室的后背靠墙,无需建造费用,因此,甲工程队给出的报价如下:屋子前面新建墙体的报价为每平方米元,左右两面新建墙体的报价为每平方米元,屋顶和地面以及其他报价共计元,设屋子的左右两面墙的长度均为.(1)当左右两面墙的长度为多少米时,甲工程队的报价最低?(2)现有乙工程队也参与此保管员室建造竞标,其给出的整体报价为元:p x 22220x ax a a -++-=:13q m a m -≤≤+a p q m A B B ⋃=x A ∈x B ∈A B =∅{|},111|3{}A x a x a B x x =-≤≤=≤≤-+2a =22y ax bx a =+-+x 220ax bx a +-+>{}|13x x -<<,a b 2,0b a =>x 220ax bx a +-+>3m 212m 4001507200m x (26)x ≤≤900(1)a x x +;若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,求的取值范围.(0)a a答案一、 单选题 (本题共计8小题,总分40分)1.(5分) 1-4 B2.(5分)C3.(5分)A4.(5分)A5.(5分)5-8 D6.(5分)B7.(5分)B8.(5分)A二、 多选题 (本题共计4小题,总分20分)9.(5分)二、多项选择题:9.AD10.(5分) 10.ABC11.(5分) 11.ACD 1212.(5分).ABD三、填空题:(本大题共4小题,每小题5分,共20分)三、 填空题 (本题共计4小题,总分20分)13.(5分)13. (1,3) ;14.(5分) 14. {x |x ≤1};15.(5分) 15. ;16.(5分) 16. 1四、 解答题 (本题共计6小题,总分70分)17.(10分)四、解答题:本大题共6小题,共70分.17.(本小题满分10分)解:=⋂B A }25{-<≤-x x =⋃)()(B C A C R R }2,5{-≥-<x x x 或18.(12分)18.(本小题满分12分)解: (1)当m =-1时,B ={x |-2<x <2},A ∪B ={x |-2<x <3}.(2)由A ⊆B ,知⎩⎨⎧ 1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,(],2-∞即实数m 的取值范围为{m |m ≤-2}.19.(12分)19.(本小题满分12分)解:(1)因为是假命题,所以对于方程,有, 即,解得,所以实数的取值范围是.(2)由命题为真命题,根据(1)可得,又由是的必要不充分条件,可得那么能推出,但由不能推出, 可得,则,解得,所以实数的取值范围是.20.(12分)20.(本小题满分12分)解:(1)当时,集合,所以;(2)若选择①,则,因为 ,所以 ,又,所以,解得, 所以实数a 的取值范围是.若选择②,““是“”的充分不必要条件,则,因为,所以,又,所以,解得, 所以实数a 的取值范围是.若选择③,,因为,所以,又所以或,解得或,所以实数a 的取值范围是 . p 22220x ax a a -++-=()()222420a a a ∆=--+-<480a ->2a >a {}2a a >p {}2a a ≤p q q p p q {}{}132a m a m a a -≤≤+≤32m +≤1m ≤-m {}1m m ≤-2a =1313{|},{|}A x x B x x =≤≤=≤≤-{|13}B x x A -≤≤⋃=A B B ⋃=A B ⊆11{|}A x a x a =-≤≤+A ≠∅{|13}B x x =-≤≤1113a a -≥-⎧⎨+≤⎩02a ≤≤[]0,2x A ∈x B ∈AB 11{|}A x a x a =-≤≤+A ≠∅{|13}B x x =-≤≤1113a a -≥-⎧⎨+≤⎩02a ≤≤[]0,2A B =∅11{|}A x a x a =-≤≤+A ≠∅{|13}B x x =-≤≤13a ->11a +<-4a >2a <-()(),24,-∞-+∞21.(12分)21.(本小题满分12分)解(1)因为关于的不等式的解集是 所以和是方程的两根,所以 解得:, (2)当时,即可化为,因为,所以 所以方程的两根为和, 当即时,不等式的解集为或, 当即时,不等式的解集为, 当即时,不等式的解集为或, 综上所述:当时,不等式的解集为或, 当时,不等式的解集为,当时,不等式的解集为或. 22.(12分) 22.(本小题满分12分)解:(1)设甲工程队的总造价为元,依题意左右两面墙的长度均为,则屋子前面新建墙体长为, 则 因为. 当且仅当,即时等号成立. 所以当时,,即当左右两面墙的长度为4米时,甲工程队的报价最低为14400元. x 220ax bx a +-+>{}|13x x -<<1-3220ax bx a +-+=13213b a a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩12a b =-⎧⎨=⎩2b =220ax bx a +-+>2220ax x a +-+>()()120x ax a +-+>0a >()210a x x a -⎛⎫+-> ⎪⎝⎭()210a x x a -⎛⎫+-= ⎪⎝⎭1-2a a -21a a --<1a >{|1x x <-2a x a -⎫>⎬⎭21a a --=1a ={}|1x x ≠-21a a -->01a <<2|a x x a -⎧<⎨⎩}1x >-01a <<2|a x x a -⎧<⎨⎩}1x >-1a ={}|1x x ≠-1a >{|1x x <-2a x a -⎫>⎬⎭y m x (26)x ≤≤12m x 12163(1502400)7200900()7200(26)y x x x x x =⨯+⨯+=++1616900()72009002720014400x x x x++⨯⨯⋅+=16x x =4x =4x =min 14400y =(2)由题意可得,对任意的,恒成立. 即,从而,即恒成立, 又.当且仅当,即时等号成立. 所以.16900(1)900()7200a x x x x+++>[2x ∈6]2(4)(1)x a x x x ++>2(4)1x a x +>+9161x a x +++>+99162(1)61211x x x x ++++⋅+=++911x x +=+2x =012a <<。

陕西省西安市黄河中学2024-2025学年高一上学期第一次月考数学试题(含解析)

陕西省西安市黄河中学2024-2025学年高一上学期第一次月考数学试题(含解析)

高一数学试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4,本试卷主要考试内容:人教A 版必修第一册前两章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.命题“”的否定为( )A .B .C .D .2.下列关系式正确的是( )AB .C .D .3.已知集合,则用列举法表示( )A . B .C .D .4.已知,则“”是“a ,b ,c 可以构成三角形的三条边”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知集合,则C 的真子集的个数为( )A .0B .1C .2D .36.已知正数a ,b 满足,则的最小值为( )A .9B .6C .4D .37.某花卉店售卖一种多肉植物,若每株多肉植物的售价为30元,则每天可卖出25株;若每株多肉植物的售价每降低1元,则日销售量增加5株.为了使这种多肉植物每天的总销售额不低于1250元,则每株这种多肉植物的最低售价为( )A .25元B .20元C .10元D .5元8.学校统计某班30名学生参加音乐、科学、体育3个兴趣小组的情况,已知每人至少参加了1个兴趣小11,||1||1x y x y ∀><++11,||1||1x y x y ∀>≥++11,||1||1x y x y ∀≤≥++11,||1||1x y x y ∃>≥++11,||1||1x y x y ∃≤≥++Q 1-∈N ⊆Z N ⊆Q R31A x x ⎧⎫=∈∈⎨⎬-⎩⎭ZZ A ={2,0,2,4}-{2,0,1,2,4}-{0,2,4}{2,4}0,0,0a b c >>>a b c +>{}2(,)21,{(,)23},A x y y x x B x y y x C A B ==-+==-= ∣∣121a b+=2a b +组,其中参加音乐、科学、体育小组的人数分别为19,19,18,只同时参加了音乐和科学小组的人数为4,只同时参加了音乐和体育小组的人数为2,只同时参加了科学和体育小组的人数为4,则同时参加了3个小组的人数为( )A .5B .6C .7D .8二、选择题:本题共3小题,每小题6分,共18分。

高一上学期第一次月考数学试题(含答案解析)

高一上学期第一次月考数学试题(含答案解析)

高一上学期第一次月考数学试题(含答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共14小题,共56.0分。

在每小题列出的选项中,选出符合题目的一项)1. 设集合A={1,2,3,4},B={−1,0,2,3},C={x∈R|−1≤x<2},则(A∪B)∩C=( )A. {−1,1}B. {0,1}C. {−1,0,1}D. {2,3,4}2. 命题“∀x∈R,x2−2x+1≥0”的否定是( )A. ∃x∈R,x2−2x+1≤0B. ∃X∈R,x2−2x+1≥0C. ∃x∈R,x2−2x+1<0D. ∀x∈R,x2−2x+1<03. 已知集合A={x|−1≤x<4,x∈Z),则集合A中元素的个数为( )A. 3B. 4C. 5D. 64. 已知集合A={x||x|≥2},B={x|x2−3x>0},则A∩B=( )A. ⌀B. {x|x>3,或x≤−2}C. {x|x>3,或x<0}D. {x|x>3,或x≤2}5. 已知p:sinα=√33,q:cos2α=13,则p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充分条件D. 既不充分也不必要条件6. 若M⊆U,N⊆U,且M⊆N,则( )A. M∩N=NB. M∪N=MC. ∁U N⊆∁U MD. ∁U M⊆∁U N7. 已知集合A={x|x<1},B={x|0≤x≤2},则A∩B=( )A. {x|0≤x<1}B. {x|1<x≤2}C. {x|x<1}D. {x|x≤2}8. 设b>a>0,c∈R,则下列不等式中不一定成立的是( )A. a12<b12B. 1a −c>1b−c C. a+2b+2>abD. ac2<bc29. 满足关系{1,2}⊆A⊆{1,2,3,4,5}的集合的个数是( )A. 4B. 6C. 8D. 910. 若关于x的不等式ax2+bx−1>0的解集是{x|1<x<2},则不等式bx2+ax−1<0的解集是( )A. {x|−1<x<23} B. {x|x<−1或x>23}C. {x|−23<x<1} D. {x|x<−23或x>1}11. 已知集合A={x|x2+x−6=0},B={x|mx+1=0},且B⊆A,则实数m=( )A. {0,12,−13} B. {−12,13} C. {12,−13} D. {0,−12,13}12. 使不等式1+1x>0成立的一个充分不必要条件是( )A. x>0B. x>−1C. x<−1或x>0D. −1<x<013. 已知命题“∃x∈R,4x2+(a−2)x+14<0”是假命题,则实数a的取值范围是( )A. (−∞,0)B. [0,4]C. [4,+∞)D. (0,4)14. 已知a,b∈R,a2+b2=15−ab,则ab最大值是( )A. 15B. 12C. 5D. 3第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)15. 已知a∈R,b∈R,若集合{a,ba,1}={a2,a−b,0},则“a2017+b2018”的值为______.16. 当x<−1时,f(x)=x+1x+1的最大值为______.17. 已知集合A={0,1,2},则集合A的子集共有______个.18. 已知集合A={x|−1<x<2},B={x|−1<x<m+1},若x∈A是x∈B成立的一个充分不必要条件,则实数m的取值范围是______.19. 已知{x|ax2−ax+1<0}=⌀,则实数a的取值范围为.20. 已知正数x,y满足x+y=5,则1x+1+1y+2的最小值为______.三、解答题(本大题共4小题,共40.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正宁一中2012—2013学年下学期高一年级第一次月考
数学试卷
班级 姓名
本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷共1页,第Ⅱ卷共1页。

共22题。

本试卷共150分,考试时间120分钟。

一、选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案
的序号填涂在答题卡上)
1.下列说法错误的是 ( ).
A .在统计里,把所需考察对象的全体叫做总体
B .一组数据的平均数一定大于这组数据中的每个数据
C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势
D .一组数据的方差越大,说明这组数据的波动越大
2. 算法共有三种逻辑结构,即顺序结构、条件结构和循环结构,下列说法正确的是 ( ). A .一个算法只含有一种逻辑结构 B .一个算法最多可以包含两种逻辑结构 C .一个算法必须含有上述三种逻辑结构 D .一个算法可以含有上述三种逻辑结构
3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,
y i )(i =1,2,…,n )都恰好在直线1
12
y x =-+上,则这组样本数
据的样本相关系数为 ( )
(A )-1 (B )0 (C )1
2
(D )1
4. 执行如图所示的程序框图,如果输入的N 是6,那么输出的p 是( ).
A .120
B .720
C .1 440
D .5 040
第5题
5. 阅读上面的算法程序上述程序的功能是( ).
A .计算3×10的值
B .计算310的值
C .计算39的值
D .计算1×2×3×…×10的值 6. 如上图所示,若输出的S =57,则判断框内为 ( ). A .k >4? B .k >5? C .k >6? D .k >7? 7.对一个样本容量为100的数据分组,各组的频数如下:
A .42%
B .58%
C .40%
D .16% 8.下列说法:①一组数据不可能有两个众数;②一组数据的方差必须是正数;③将一组数据中
的每一个数据都加上或减去同一常数后,方差恒不变;④在频率分布直方图中,每个小长方形的面积等于相应小组的频率,其中错误的有 ( ).
A .0个
B .1个
C .2个
D .3个
9. 为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十
分制)如图所示,假设得分值的中位数为m e ,众数为m o ,平均值为x ,则 ( ).
A .m e =m o =x
B .m e =m o <x
C .m e <m o <x
D .m o <m e <x
10.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,
样本数据落在区间[10,12)内的频数为 ( ). A .18 B .36 C .54 D .72 11. 某产品的广告费用x 与销售额y 的统计数据如下表:
根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为
A .63.6万元
B .65.5万元
C .67.7万元
D .72.0万元
12.已知总体的各个体的值由小到大依次为2,3,3,7,
,x y ,12,13.6,18.4,20,且总体的中位数为10.5。

若要使该总体的标准差
最小,则42x y 的值是( )
A .61 B.62
C.63
D. 64
二、填空题(每小题5分,共20分。


13.统计的基本思想是: ; 14.若执行如图所示的框图,输入x 1=1,x 2=2,x 3=3,
x =2,则输出的数等于________
15.将八进制数127(8)化成二进制数为________(2).
16. 随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
请根据以上茎叶图,对甲乙两班同学身高作比较,写出两个正确的统计结论是: ①: ;②: 。

三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.(1)用辗转相除法求出372和684的最大公约数,然后用更相减损术验证。

(2)用秦九韶算法求多项式f (x )=x 6
-12x 5
+60x 4
-160x 3
+240x 2
-192x +64当x =2时的值.
18.某市2012年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.
(1)完成频率分布表;
(2)作出频率分布直方图;
(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;
在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.19.下右程序流程图及其相应程序是实现用二分法求近似值,但步骤并没有全部给出,请补上适当的语句或条件,以保证该程序能顺利运行并达到预期的目的。

20.一个球从243m
三分之一再落下。

设计一个程序,求当它第6次着地时,
(1)向下的运动共经过多少米?(2)第6次着地后反弹多高?(3)全程共经过多少米?
21.在发生公共卫生事件时期间,有专业机构认为该事件在一段时间没有发生为规模群体感染的标志为“连续10天,没有一天新增疑似病例超过7人。

”现有过去10天甲、乙、丙、丁四地新增疑似病例数据,甲地:总体均值为2,总体方差为3;乙地:总体均值为3,中位数为4;丙地:总体均值为1,总体标准差大于0;丁地:中位数为2,众数为3。

试判断哪地在这10天一定没有发生规模群体感染事件,为什么?
22.如图所示,有三根针和套在一根针上若干金属片。

按下列规则,把金属片从一根针上全部移到另一根针上。

(1)每次只能移动1个金属片;
(2)较大的金属片不能放在较小的金属片上面。

试用算法思想推测:把n 个金属片从2号针移到3号针最少需要多少次?
云南民族中学2012-2013学年度下学期高一年级
第一次月考数学参考答案
一、选择题(本大题共12小题,每小题5分,满分60分。


二、填空题(本大题共4小题,每小题5分,满分20分。


13、 用样本估计总体。

14、 2
3。

15、 (2)1010111。

16、①:乙班同学平均身高较高;②乙班同学身高波动程度较
小。

三、解答题(本大题共6小题,满分70分,解答题写出必要的文字说明、推演步骤。


17.(本题12分) 解:(1)(372,684)=12;
(2)将f (x )改写为
f (x )=(((((x -12)x +60)x -160)x +240)x -192)x +64 由内向外依次计算一次多项式当x =2时的值, v 0=1,
v 1=1×2-12=-10, v 2=-10×2+60=40, v 3=40×2-160=-80, v 4=-80×2+240=80, v 5=80×2-192=-32, v 6=-32×2+64=0.
∴f (2)=0,即x =2时,原多项式的值为0.
18.(本题10分)
解:解 (1)频率分布表: (2)频率分布直方图:
_______________试场 座位号_________ ---------------------------线-----------------------------------------------------------------
(3)答对下述两条中的一条即可:
(i)该市一个月中空气污染指数有2天处于优的水
平,占当月天数的
1
15;有26天处于良的水平,占
当月天数的
13
15;处于优或良的天数共有28天,占当月天数的
14
15.说明该市空气质量基本良好.
(ii)轻微污染有2天,占当月天数的
1
15.污染指数在80以上的接近轻微污染的天数有15天,
加上处于轻微污染的天数,共有17
天,占当月天数的
17
30,超过50%.说
19.
解:
20.(本题12分)
解:
(1)向下共运动364米;
(2)第6次着地后反弹高度为
1
3
m;
(3)全程共经过485米。

21.(本题12分)
解:可以判断甲地一定没有发生群体规模感染事件。

理由是:甲由方差计算公式可知这10天甲地的
病例数据x

不可能大于7,而乙、丙、丁都可以
构造出反例数据。

22.(本题12分)
解:记n个金属片从2号针移到3号针最少需要
n
a次;
则据算法思想有:第一步,
1
1,
a=
第二步,
2
3
a=
第三步,37a = 第四步,415a = ……
由此推测:2 1.n n a =-。

相关文档
最新文档