考研数学一真题(含答案)
2020年考研数学一真题及答案(全)
全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()nii X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ; 221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②,令'0y =,得233,1x x ==±.当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=,令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2011-2020年近十年全国考研数学一试卷真题和答案解析(最新146页含书签导航)
dt
,则
2F x2
x0
.
y2
(12) 设 L 是柱面方程 x2 y2 1与平面 z x y 的交线,从 z 轴正向往 z 轴负向看去
为逆时针方向,则曲线积分 xzdx xdy y2 dz
L
2
.
(13) 若二次曲面的方程 x2 3y2 z2 2axy 2xz 2 yz 4 ,经过正交变换化为
2 (1, 2, 3)T , 3 (3, 4, a)T 线性表示. (I) 求 a 的值; (II) 将 1, 2 , 3 由1,2 ,3 线性表示.
(21)(本题满分 11 分)
1 1 1 1
A
为三阶实对称矩阵,
A
的秩为
2,即
r
A
2
,且
0 1
0 1
0 1
0 1
.
(I) 求 A 的特征值与特征向量;
f (x, y)dxdy a ,其中 D (x, y) | 0 x 1,0 y 1 ,
D
计算二重积分 I
xy
f
'' xy
(
x,
y)dxdy
.
D
(20)(本题满分 11 分)
设向量组1 (1, 0,1)T ,2 (0,1,1)T ,3 (1, 3, 5)T ,不能由向量组 1 (1,1,1)T ,
(7) 设 F1(x) , F2 (x) 为两个分布函数,其相应的概率密度 f1(x) , f2 (x) 是连续函数,
则必为概率密度的是( )
(A) f1(x) f2 (x) .
(B) 2 f2 (x)F1(x) .
(C) f1(x)F2 (x) .
(D) f1(x)F2 (x) f2 (x)F1(x) .
2020年考研数学一真题及答案解析
(4)【答案】(A).
【解析】若 anrn 发散,则 r R ,否则,若 r R ,由阿贝尔定理知, anrn
n 1
n 1
绝对收敛,矛盾. 故应选(A).
(5)若矩阵 A 经过初等列变换化成 B ,则
()
(A)存在矩阵 P ,使得 PA B.
(B)存在矩阵 P ,使得 BP A.
(C)存在矩阵 P ,使得 PB A.
x a2 a1
y b2 b1
z c2 c1
与直线 L2
:
x a3 a2
y b3 b2
z c3 c2
相交于一
ai
点,法向量 αi
bi
,
i
1, 2,3 .则
ci
()
(A) α1 可由 α2 , α3 线性表示.
(B) α2 可由 α1, α3 线性表示.
(C) α3 可由 α1, α2 线性表示. (6)【答案】(C).
f x
,
f y
, 1
0,0
fx0, 0, fy 0, 0 , 1 ,故
n x, y, f x, y fx0, 0 x fy 0, 0 y f x, y x2 y2 ,
3
n x, y, f x, y
x2 y2
则 lim
lim
0. 故应选(A).
x, y0,0
x2 y2
x, y0,0
x2 y2
(4) 设 R 为幂级数 an xn 的收敛半径, r 是实数,则 n 1
()
(A) anrn 发散时, r R . n 1
(B) anrn 发散时, r R . n 1
(C) r R 时, anrn 发散. n 1
历年考研数学一真题及答案
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
(1)已知 则 = _____________.
(2)设 是连续函数,且 则 =_____________.
(3)设平面曲线 为下半圆周 则曲线积分 =_____________.
(4)向量场 在点 处的散度 =_____________.
六、(本题满分10分)
求幂级数 的收敛域,并求其和函数.
七、(本题满分10分)
求曲面积分
其中 是由曲线 绕 轴旋转一周而成的曲面,其法向量与 轴正向的夹角恒大于
八、(本题满分10分)
设函数 在闭区间 上可微,对于 上的每一个 函数 的值都在开区间 内,且 1,证明在 内有且仅有一个 使得
九、(本题满分8分)
(2)设矩阵 和 满足关系式 其中 求矩阵
四、(本题满分8分)
求微分方程 的通解,其中常数
五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)设 则在 处
(A) 的导数存在,且 (B) 取得极大值
(C) 取得极小值(D) 的导数不存在
(1)过点 且与直线 垂直的平面方程是_____________.
(2)设 为非零常数,则 =_____________.
(3)设函数 ,则 =_____________.
(4)积分 的值等于_____________.
(5)已知向量组
则该向量组的秩是_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
2023年全国硕士研究生招生考试《数学一》真题及答案解析【完整版】
2023年全国硕士研究生招生考试《数学一》真题及答案解析【完整版】一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选选项前的字母填在答题卡指定位置。
1.1ln 1y x e x ⎛⎫=+ ⎪-⎝⎭曲线的渐近线方程为( )。
A .y =x +e B .y =x +1/e C .y =xD .y =x -1/e 【答案】B【解析】1ln 11lim lim lim ln 1,1x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭ ()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢⎥--⎣⎦所以斜渐近线方程为y =x +1/e .2.已知微分方程式y ′′+ay ′+by =0的解在(-∞,+∞)上有界,则( )。
A .a <0,b >0 B .a >0,b >0 C .a =0,b >0 D .a =0,b <0 【答案】C【解析】微分方程y ′′+ay ′+by =0的特征方程为λ2+a λ+b =0,当Δ=a 2-4b >0时,特征方程有两个不同的实根λ1,λ2,则λ1,λ2至少有一个不等于零, 若C 1,C 2都不为零,则微分方程的解1212x x y C e C e λλ--=+在(-∞,+∞)无界; 当Δ=a 2-4b =0时,特征方程有两个相同的实根λ1,2=-a/2, 若C 2≠0,则微分方程的解2212a a x xy C eC e=+在(-∞,+∞)无界;当Δ=a 2-4b <0时,特征方程的根为1,22a λ=-±,则通解为212cossin 22ax y eC x C x -⎛⎫=+ ⎪ ⎪⎝⎭, 此时,要使微分方程的解在(-∞,+∞)有界,则a =0,再由Δ=a 2-4b <0,知b >0.3.设函数y =f (x )由2sin x t t y t t⎧=+⎪⎨=⎪⎩确定,则( )。
2020考研数学一真题及答案
0 0⎰⎰x →0→ →2020考研数学一真题及答案一、选择题:1~8 小题,第小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上. 1. x → 0+ 时,下列无穷小阶数最高的是 A. ⎰ x (e t 2-1)d tB.⎰ x ln (1+ t 3)d tC.sin x sin t 2d t1-cos xD.1. 答案:Dsin 3 t d t2. 设函数 f (x ) 在区间(-1,1)内有定义,且lim f ( x ) = 0, 则( )A. 当limxB. 当limx →0f (x )= 0, f ( x )在x = 0 处可导. | x |f (x )= 0, f ( x )在x = 0 处可导.C. 当 f (x )在x = 0处可导时,limx 0D. 当 f (x )在x = 0处可导时,limx →0f (x ) = 0.| x |f (x )= 0.x 2 + y 2x 2 + y 2x 2 + y 2x 2 + y 2x 2 + y 2x 2 + y 22. 答案:B解析: limf (x )= 0 ∴limf (x )= 0 ∴ limf (x )= 0, lim f (x ) = 0x →0x →0| x |x →0+x x →0-x∴limf (x )= 0, lim f ( x ) = 0x →0xx →0∴lim f (x ) - f (0) = lim f (x ) = 0 = f '(0) x →0 x - 0 x →0 x∴ f (x ) 在 x = 0 处可导∴选 Blim ( x , y)→(0,0)lim ( x , y)→(0,0)lim ( x , y)→(0,0)lim ( x , y)→(0,0) | n ⋅ ( x , y , f ( x , y )) |= 0存在| n ⨯( x , y , f ( x , y )) |= 0存在| d ⋅ ( x , y , f ( x , y )) |= 0存在| d ⨯( x , y , f ( x , y )) |= 03. 答案:A解析:f (x , y )在(0, 0) 处可微. f (0, 0)=0∴limx →0 y →0f (x , y ) - f (0, 0) - f x '(0, 0) ⋅ x - f y '(0, 0) ⋅ y= 0即lim x →0y →0f (x , y ) - f x '(0, 0) ⋅ x - f y '(0, 0) ⋅ y= 0n ⋅ ( x , y , f (x , y ) ) = f x '(0, 0)x + f y '(0, 0) y - f (x , y )n ⋅ ( x , y , f (x , y ) )A. B. C. D.4.设 R 为幂级数∑ a r 的收敛半径,r 是实数,则()A.∑ a r 发散时,| r |≥ RB.∑ a r 发散时,| r |≤ RC.| r |≥ R 时,∑ a r 发散D.| r |≤ R 时,∑ a r 发散∵R 为幂级数∑ a x 的收敛半径.∴∑ a x 在(-R , R ) 内必收敛.∴∑ a r 发散时,| r |≥ R .1 1 ∴ lim( x , y )→(0,0)= 0 存在∴选 A.∞n n n =1∞n n n =1∞n nn =1∞n nn =1∞n nn =14. 答案:A解析:∞n n n =1∞n n n =1∞n n n =1∴选 A. 5. 若矩阵 A 经初等列变换化成 B ,则( )A. 存在矩阵 P ,使得 PA =BB. 存在矩阵 P ,使得 BP =AC. 存在矩阵 P ,使得 PB =AD. 方程组 Ax =0 与 Bx =0 同解 5. 答案:B 解析:A 经初等列变换化成 B. ∴存在可逆矩阵 P 1 使得 AP 1 = B∴ A = BP -1令P = P -1∴ A = BP .∴选B .6.已知直线 L : x - a 2 = y - b 2 = 2 - c 2 与直线 L : x - a 3 = y - b 3 = 2 - c 3 相交于一点,法1⎡a i ⎤ a 1 b 1 c 1a 2b 2c 2 向量 a = ⎢b ⎥,i = 1, 2, 3. 则i ⎢ i ⎥ ⎢⎣c i ⎥⎦A. a 1 可由 a 2 , a 3 线性表示B. a 2 可由 a 1, a 3 线性表示C. a 3 可由 a 1, a 2 线性表示D. a 1, a 2 , a 3 线性无关6.答案:C 解析:令 L 的方程x - a 2 = y - b 2= z - c 2 = t1⎛ x ⎫ a 1 b 1 c 1⎛ a 2 ⎫ ⎛ a 1 ⎫ 即有y ⎪ = b ⎪ + tb ⎪ =α + t α ⎪ 2 ⎪ 1 ⎪ 2 1 z ⎪c ⎪ c ⎪ ⎝ ⎭ ⎝ 2 ⎭ ⎝ 1 ⎭ ⎛ x ⎫ ⎛ a 3 ⎫ ⎛ a 2 ⎫ 由 L 的方程得 y ⎪= b ⎪ + t b ⎪ =α + t α 2 ⎪ 3 ⎪ 2 ⎪ 32 z ⎪ c ⎪ c ⎪ ⎝ ⎭ ⎝3 ⎭ ⎝ 2 ⎭由直线 L 1 与 L 2 相交得存在 t 使α2 + t α1 =α3 + t α2即α3 = t α1 + (1- t )α2 ,α3 可由α1 ,α2 线性表示,故应选C. 7. 设 A,B,C 为三个随机事件,且 P ( A ) = P (B ) = P (C ) =1, P ( AB ) = 0 4P ( AC ) = P (BC ) = 1123A. 4 2B. 3 1C.2,则 A,B,C 中恰有一个事件发生的概率为25D.127.答案:D解析: P( ABC ) =P( ABUC) =P( A) -P[ A(BUC)]=P( A) -P( AB +AC)=P( A) +P( AB) -P( AC) +P( ABC)=1- 0 -1+ 0 =1 4 12 6P(BAC ) =P(BAUC) =P(B) -P[B( AUC)] =P(B) -P(BA) -P(BC) +P( ABC)=1- 0 -1+ 0 =1 4 12 6P(CBA) =P(CBUA) =P(C) -P[CU (BUA)] =P(C) -P(CB) -P(CA) +P( ABC)=1-1-1+ 0 =14 12 12 12P( ABC +ABC +ABC) =P( ABC ) +P( ABC ) +P( ABC)=1+1+1=5 6 6 12 12选择D8.设X1 , X 2,…, X n为来自总体X 的简单随机样本,其中P( X = 0) =P( X = 1) =1, Φ(x) 表2⎛100 ⎫示标准正态分布函数,则利用中心极限定理可得P ∑X i ≤ 55⎪的近似值为⎝i=1 ⎭A.1-Φ(1)B. Φ(1)C.1-Φ(2)D. Φ(2)8.答案:B解析:由题意EX =1, DX =1 2 4∑ ⎣ ⎦⎝ ⎭⎛ 100 ⎫ ⎛ 100 ⎫ E ∑ X i ⎪ X = 100EX = 50. D ∑ X i ⎪ = 100DX = 25 ⎝ i =1 ⎭ ⎝ i =1 ⎭100由中心极限定理X i~ N (50, 25)i =1⎧ 100⎫ ⎧ 100⎫ ⎪∑ X i - 55 55 - 50⎪ ∴ P ⎨∑ X i ≤ 55⎬ = P ⎨ i =1 ≤ 55 ⎬ = Φ(1) ⎩ i =1 ⎭ ⎪ ⎪⎪⎩ ⎪⎭故选择 B二、填空题:9—14 小题,每小题 2 分,共 24 分。
(完整版)考研数一真题和答案
2018年全国硕士研究生入学统一考试数学一考研真题与全面解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1.下列函数中在0x =处不可导的是() (A )()sin f x x x =(B)()f x x =(C )()cos f x x =(D)()f x =2.过点(1,0,0),(0,1,0),且与曲面22z x y =+相切的平面为()(A )01z x y z =+-=与(B )022z x y z =+-=与2(C )1x y x y z =+-=与(D )22x y x y z =+-=与23.023(1)(21)!nn n n ∞=+-=+∑()4.设2222(1)1x M dx xππ-+=+⎰,221x x N dx e ππ-+=⎰,22(1K dx ππ-=+⎰,则() (A )M N K >>(B )M K N >> (C )KM N >>(D )K N M >>5.下列矩阵中阵,与矩阵110011001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦相似的是() (A )111011001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(B )101011001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(C )111010001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D )101010001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦6.设,A B 是n 阶矩阵,记()r X 为矩阵X 的秩,(,)X Y 表示分块矩阵,则() (A )(,)()r A AB r A =(B )(,)()r A BA r A =(C )(,)max{(),()}r A B r A r B =(D )(,)(,)TT r A B r A B =7.设随机变量X 的概率密度()f x 满足(1)(1)f x f x -=+,且20()0.6f x dx =⎰则{0}P X<=()(A )0.2(B )0.3(C )0.4(D )0.5 8.设总体X 服从正态分布2(,)N μσ,12,,,n X X X L 是来自总体X 的简单随机样本,据此样本检测,假设0010:,:,H H μμμμ=≠则()(A )如果在检验水平0.05α=下拒绝0H ,那么在检验水平0.01α=下必拒绝0H ;(B )如果在检验水平0.05α=下拒绝0H ,那么在检验水平0.01α=下必接受0H ;(C )如果在检验水平0.05α=下接受0H ,那么在检验水平0.01α=下必拒绝0H ;(D )如果在检验水平0.05α=下接受0H ,那么在检验水平0.01α=下必接受0H 。
考研数学一真题及答案(全)
全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上.(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim2x b ax a +→-==,得12ab =. (2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-.(C) ()()11f f >-. (D) ()()11f f <-. 【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为(A) 12. (B) 6. (C) 4. (D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<.(C) 025t =. (D)025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处.(5)设α为n 维单位列向量,E 为n 阶单位矩阵,则(A) T E -αα不可逆. (B) T E +αα不可逆.(C) T 2E +αα不可逆. (D) T 2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似.(D) A 与C 不相似,B 与C 不相似.【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化, B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B .(8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是(A)21()ni i X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ;221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答.题纸..指定位置上.(9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()x y C C -=+【详解】特征方程2230r r ++=得1r =-+,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydyxdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a.【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x +【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上.(15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k k n n→∞+. 【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②, 令'0y =,得233,1x x ==±. 当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=, 令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =.所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明:(I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,0()lim 0,'(0)0,x f x f x+→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2019-2021考研数学一真题(含完整答案)
(22) 设随机变量 X1,X2,X3 相互独立,其中 X1 与 X2 均服从标准正态分布,X3 的概率分布为
P {X3
= 0} = P {X3
= 1} =
1 2
,Y
= X3X1 + (1 − X3)X2.
(I) 求二维随机变量 (X1, Y ) 的分布函数,结果用标准正态分布函数 Φ(x) 表示.
Ox2 (14)设随机变掀X的概率密度为八x) = (f' < < 'F(x)为X的分布函数,E(X)为X的
—,• 0, 其他,
数学期望,则Pj F(X) > E(X) - 1 l
三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分10分)
设函数y(x)是微分方程y'+xy = e 寻满足条件y(O) = 0的特解
¨
I = [xf (xy) + 2x − y]dydz + [yf (xy) + 2y + x]dzdx + [zf (xy) + z]dxdy.
Σ
(19) 设函数 f (x) 在区间 [0, 2] 上具有连续导数,f (0) = f (2) = 0,M = max |f (x)|. 证明:
x∈[0,2]
(A) 当 ∑∞ a2nr2n 发散时,|r| ≥ R.
(B) 当 ∑∞ a2nr2n 收敛时,|r| ≤ R.
n=1
(C) 当 |r| ≥ R 时, ∑∞ a2nr2n 发散.
n=1
(D) 当 |r| ≤ R 时, ∑∞ a2nr2n 收敛.
n=1
n=1
(5) 若矩阵 A 经过初等列变换化成 B,则 ( )
2020考研数学一真题及答案解析
I xf xy 2x ydydz yf (xy) 2y xdzdx zf xy z dxdy
.
【详解】将曲面 Z x2 y2 向 xoy 面投影得 Dxy
Dxy 为1
x2
y2
4
,又
Z
' x
x x2
y2
,
Z
' y
y x2 y2
I
{[ xf
(
xy)
又 G(0) G(1) 0 ,从而 G(x) 0 ,即 f (x) Mx , 0 x 1 .
因此 f(1) M ,从而 M 0 .
综上所述,最终 M 0
(20)(本题满分 11 分)
设二次型
f
x1, x2
x12
4 x1x2
4 x22
经正交变化
x1 x2
Q
y1 y2
化为二次型
,
AC A
1
B2 =3>0 0
x y
1 6 1 12
,为极小值点
f (1 , 1 ) 1 极小值为 6 12 216
(16)(本题满分 10 分)
I
计算
L
4x 4x2
y y
2
dx
x y 4x2 y2
dy
,其中
L为
x2
y2
2
,方向为逆时针方向.
【详解】补曲线 L1 : 4x2 y2 2 ,逆时针方向
(C)3 可由1 ,2 线性表示
(D)1,2 ,3 线性无关
【答案】(C).
(7)
PA
PB
PC
1 4
,
P AB
0,
P AC
2023考研数学一真题试卷+详细答案解析
2023年全国硕士研究生入学统一考试数学(一)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( ) (A )0,0a b <>(B )0,0a b >>(C )0,0ab =>(D )0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(3)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C【解析】当0t =时,有0x y ==①当0t >时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t <时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(4)已知(1,2,)nn a b n <= ,若级数1n n a ∞=∑与1n n b ∞=∑均收敛,则“1n n a ∞=∑绝对收敛”是“1n n b ∞=∑绝对收敛”的( )(A )充分必要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件【答案】A 【解析】因为级数1nn a ∞=∑与1nn b ∞=∑均收敛,所以正项级数1()nn n ba ∞=−∑收敛又因为()()n n n n n n n n n nb b a a b a a b a a =−+≤−+=−+所以,若1nn a∞=∑绝对收敛,则1n n b ∞=∑绝对收敛;同理可得:()()n n n n n n n n n na ab b a b b b a b =−+≤−+=−+所以,若1nn b ∞=∑绝对收敛,则1nn a∞=∑绝对收敛;故答案为充要条件,选(A)(5)已知n 阶矩阵A ,B ,C 满足ABC O =,E 为n 阶单位矩阵,记矩阵OA BC E ⎛⎫ ⎪⎝⎭,ABC O E ⎛⎫⎪⎝⎭,E AB AB O ⎛⎫⎪⎝⎭的秩分别为123,,r r r ,则( ) (A )123r r r ≤≤(B )132r r r ≤≤(C )321r r r ≤≤(D )213r r r ≤≤【答案】B【解析】根据初等变换可得:OA O O O O BC E BC E O E ⎛⎫⎛⎫⎛⎫⎯⎯→⎯⎯→⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭行列,所以1r n =;AB C AB O O E O E ⎛⎫⎛⎫⎯⎯→ ⎪ ⎪⎝⎭⎝⎭行,所以2()r n r AB =+;2()E AB E O E O AB O AB ABAB O AB ⎛⎫⎛⎫⎛⎫⎯⎯→⎯⎯→ ⎪ ⎪ ⎪−⎝⎭⎝⎭⎝⎭行列,所以23()r n r AB ⎡⎤=+⎣⎦;又因为20()()r AB r AB ⎡⎤≤≤⎣⎦,所以132r r r ≤≤(6)下列矩阵中不能相似于对角矩阵的是()(A )11022003a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )1112003a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )11020002a ⎛⎫⎪ ⎪ ⎪⎝⎭(D )11022002a ⎛⎫⎪ ⎪ ⎪⎝⎭【答案】D【解析】(A )特征值互异,则可对角化;(B )为实对称矩阵,必可对角化; 选项(C ),特征值为1,2,2,且特征值2的重数(代数重数)2(2)312n r E A =−−=−=(几何重数),故矩阵可对角化;选项(D ),特征值为1,2,2,且特征值2的重数(代数重数)2(2)321n r E A ≠−−=−=(几何重数),故矩阵不可对角化;(7)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A )33,4k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(B )35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(C )11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D )15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D(8)设随机变量X 服从参数为1的泊松分布,则()E X EX −=( )(A)1e(B)12(C)2e(D)1【答案】C【解析】因为(1)X P ,所以1EX =,()()1110022112(1)(1)!0!!k k e e e E X EX E X k k E X k k e e−−−∞∞==−=−=−=+−=+−=∑∑,答案为C(9)设12,,,n X X X 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11n i i X X n ==∑,11m i i Y Y m ==∑,22111()1n i i S X X n ==−−∑, 22211()1mi i S Y Y m ==−−∑,则( ) (A)2122(,)S F n m S (B)2122(1,1)S F n m S −−(C)21222(,)S F n m S (D)21222(1,1)S F n m S −− 【答案】D【解析】由正态分布的抽样性质可得,2212(1)(1)n S n χσ−− ,2222(1)(1)2m S m χσ−− 又因为2212,S S 相互独立,所以212222(1)1(1,1)(1)21n S n F n m m S m σσ−−−−−− ,即21222(1,1)S F n m S −− ,答案为D (10)设12,X X 为来自总体2(,)N μσ的简单随机样本,其中(0)σσ>是未知参数,记12a X X σ=−,若()E σσ=,则a =( )(A)2π(B)2π【答案】A【解析】由已知可得,令212(0,2)Z X X N σ=− ,所以22221212()()()z Z E E a X X aE X X aE Z az f z dz a dzσσ−+∞+∞⋅−∞−∞=−=−===⎰⎰2222440z z a zdz aσσ−−+∞+∞==−=⎰若()E σσ=,则有2a π=,答案为A二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =− (12)曲面222ln(1)z x y x y =++++在点(0,0,0)处的切平面方程为________【答案】20x y z +−=【解析】两边微分可得,222221xdx ydydz dx dy x y +=++++,代入(0,0,0)得2dz dx dy =+,因此法向量为(1,2,1)−,切平面方程为20x y z +−=(13)设()f x 是周期为2的周期函数,且()1,[0,1]f x x x =−∈,若01()cos 2n n a f x a n x π∞==+∑,则21nn a∞==∑_________【答案】0【解析】由已知得01(0)12n n a f a ∞==+=∑,01(1)(1)02n n n a f a ∞==+−=∑ 相加可得021(0)(1)21nn f f a a∞=+=+=∑显然()f x 为偶函数,则(0,1,2,)n a n = 为其余弦级数的系数,故1002()1a f x dx ==⎰,因此210n n a ∞==∑.(14)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(15)已知向量11011α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,21101α−⎛⎫ ⎪− ⎪= ⎪ ⎪⎝⎭,30111α⎛⎫ ⎪ ⎪= ⎪− ⎪⎝⎭,1111β⎛⎫ ⎪ ⎪= ⎪ ⎪−⎝⎭,112233k k k γααα=++,若(1,2,3)T T i i i γαβα==,则222123k k k ++=_______【答案】119【解析】由已知可得,123,,ααα两两正交,通过计算可得:11113TT k γαβα=⇒=;2221T T k γαβα=⇒=−;33213T T k γαβα=⇒=−,则222123k k k ++=119(16)设随机变量X 与Y 相互独立,且1(1,3X B ,1(2,2Y B ,则{}P X Y ==________ 【答案】13【解析】212211111{}{0}{1}(323223P X Y P X Y P X Y C ====+===⋅+⋅⋅=三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()(0)L y y x x =>经过点(1,2),该曲线上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)求函数1()()xf x y t dt =⎰在(0,)+∞上的最大值【答案】(1)()(2ln )y x x x =− (2)454e −【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,由题意可得x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入(1,2)可得2C =,从而()(2ln )y x x x =−(2)()(2ln )f x x x ′=−,显然在2(0,)e 上()0f x ′>,()f x 单调递增;在2(,)e +∞上()0f x ′<,()f x 单调递减,所以()f x 在(0,)+∞上的最大值为22422211515()(2ln )ln 424e e ef e t t dt t t t −⎛⎫=−=−=⎪⎝⎭⎰(18)(本题满分12分)求函数23(,)()()f x y y x y x =−−的极值【答案】极小值为2104(,)327729f =−【解析】先求驻点42235(32)020xy f x x x y f y x x ⎧′=−+=⎪⎨′=−−=⎪⎩,解得驻点为(0,0),(1,1),210(,327下求二阶偏导数,3220(62)322xx xy yyf x x yf x xf ⎧′′=−+⎪⎪′′=−−⎨⎪′′=⎪⎩①对于点(0,0),(0,0)0f =,5(,0)f x x =,由定义可得(0,0)不是极值点;②代入点(1,1),解得1252xxxy yy A f B f C f ⎧′′==⎪⎪′′==−⎨⎪′′==⎪⎩,210AC B −=−<,所以(1,1)不是极值点;③代入点210(,)327,解得10027832xx xy yyA fB fC f ⎧′′==⎪⎪⎪′′==−⎨⎪⎪′′==⎪⎩,2809AC B −=>且0A >,所以210(,)327是极小值点,极小值为2104(,)327729f =−(19)(本题满分12分)设空间有界区域Ω由柱面221x y +=与平面0z =和1x z +=围成,Σ为Ω的边界曲面的外侧,计算曲面积分2cos 3sin I xzdydz xz ydzdx yz xdxdy Σ=++⎰⎰【答案】54π【解析】由高斯公式可得,2cos 3sin (2sin 3sin )I xzdydz xz ydzdx yz xdxdy z xz y y x dvΣΩ=++=−+⎰⎰⎰⎰⎰ 因为Ω关于平面xoz 对称,所以(sin 3sin )0xz y y x dv Ω−+=⎰⎰⎰所以1222022(1)(:1)xyxyxxy D D I zdv dxdy zdz x dxdyD x y −Ω===−+≤⎰⎰⎰⎰⎰⎰⎰⎰22221(21)()2xyxyxyD D D x x dxdy x dxdy x y dxdy ππ=−+=+=++⎰⎰⎰⎰⎰⎰ 2130015244d r dr πππθππ=+=+=⎰⎰(20)(本题满分12分)设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈− 两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−= 因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a a ξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间; 代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f a η′′−−≤成立 (21)(本题满分12分)已知二次型2221231231213(,,)2222f x x x x x x x x x x =+++−,22212312323(,,)2g y y y y y y y y =+++(1)求可逆变换x Py =,将123(,,)f x x x 化成123(,,)g y y y ; (2)是否存在正交变换x Qy =将123(,,)f x x x 化成123(,,)g y y y ?【答案】(1)111010001P −⎛⎫ ⎪= ⎪⎪⎝⎭(2)不存在(二者矩阵的迹不相同)【解析】(1)利用配方法将123(,,)f x x x 化成123(,,)g y y y , 先用配方法将123(,,)f x x x 化成标准形:22222212312312131232323(,,)2222()2f x x x x x x x x x x x x x x x x x =+++−=+−+++2212323()()x x x x x =+−++再用配方法将123(,,)g y y y 化成标准形:2222212312323123(,,)2()g y y y y y y y y y y y =+++=++令11232233y x x x y x y x =+−⎧⎪=⎨⎪=⎩,即11232233x y y y x y x y=−+⎧⎪=⎨⎪=⎩, 则在可逆变换112233*********x y x y x y −⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭下,其中111010001P −⎛⎫ ⎪= ⎪ ⎪⎝⎭,二次型123(,,)f x x x 即可化成123(,,)g y y y (2)因为二次型123(,,)f x x x 与123(,,)g y y y 的矩阵分别为111120102A −⎛⎫ ⎪= ⎪ ⎪−⎝⎭,100011011B ⎛⎫⎪= ⎪⎪⎝⎭显然()5tr A =,()3tr B =,所以矩阵A ,B 不相似,故不存在正交矩阵Q ,使得1T Q AQ Q AQ B −==, 所以也不存在正交变换x Qy =,将123(,,)f x x x 化成123(,,)g y y y .11 /11 (22)(本题满分12分)设二维随机变量(,)X Y 的概率密度为22222(),1(,)0,x y x y f x y else π⎧++≤⎪=⎨⎪⎩,求 (1)求X 与Y 的斜方差;(2)X 与Y 是否相互独立?(3)求22Z X Y =+概率密度【答案】(1)0 (2)不独立 (3)2,01()0,z z f z else <<⎧=⎨⎩【解析】(1)由对称性可得:222212()0x y EX x x y dxdy π+≤=+=⎰⎰,同理0EY =,0EXY =所以(,)()()()0Cov X Y E XY E X E Y =−=; (2)22)11()(,)0,X x y dy x f x f x y dy else +∞−∞⎧+−≤≤⎪==⎨⎪⎩⎰24(121130,x x elseπ⎧+−≤≤⎪=⎨⎪⎩同理可得,24(1211()30,Y y y f y else π⎧+−≤≤⎪=⎨⎪⎩所以(,)()()X Y f x y f x f y ≠,X 与Y 不独立 (3)先求分布函数22(){}{}Z F z P Z z P X Y z =≤=+≤ 当0z <时,()0Z F z =;当01z ≤<时,2222222320022(){}()Z x y z F z P X Y z x y dxdy d dr z πθππ+≤=+≤=+==⎰⎰⎰;当1z ≤时,()1Z F z =;所以22Z X Y =+概率密度为2,01()()0,Z Z z z f z F z else <<⎧′==⎨⎩。
2020年考研数学一真题详细答案解析
一、选择题(1)【答案】D【解析】(方法一)利用结论:若f(x)和g(x)在x=O某邻域内连续,且当x-o时,f位)~g(x)'则J勹(t)dt �r g(t)dt.(A)『(/-l)dt� 『t 2dt =气3(B)『ln(l +万)dt �rt 令dt=气5(C) f"工s int 2dt �厂r t 2dt�f c 2d t =丘。
3(D)J :-co sx /忒臣了d t -I -c os rt i d t �I :''l令d t=岊(占)寺x故应选CD).(方法二)设J(x)和<p (x)在x =O某邻域内连续,且当x-0时,f(x)和<p (x)分别是x 的m阶和n阶无穷小,则『(,-)J(t)dt 是x -0时的n(m+ 1)阶无穷小.。
CA)r C / -1) d t , m = 2 , n = 1 , 则n(m+ 1) = 3. 。
ln(l + #)dt,m =立,n= 1, 则n(m+l)=立。
2 2.CC)厂sint 2dt, m =2, n =1 , 则n(m+ 1)=3.。
1一cos,·3叫产t,m=一,n= 2, 则n(m+l)=5.。
2故应选(D).(2)【答案】C【解析】(方法一)直接法若f(x)在x=O处可导,则f(x)在x=O处连续,且f(O)=lim f(x) = 0.工-o故应选(C).f(x) -f(O) = limf(x)j'(O) = Jim;-0Xr•OXf(x)f(x) lim=lim ——•X =j'(0)• 0 = 0工-o,/了.,·-oX�(方法二)排除法取f (x)= {X, X # 0,则l im f位)=o ,且1,X= 0J-0 x 3f(x ) x 3lim·f(x)=lim _。
J了工-o�= O ,lim 一=lim —=22 工-oXr--0 X但f(x)在x=O处不可导,因为f(x)在X = 0处不连续,则排除选项(A),CB).若取f(x)= x , 则lim f(x)= 0, 且f(x)在x =O处可导,但J-0• 5 •叫排除CD )'故应选CC).(3)【答案】A2 ,·-·OX.r-0 X.r -•O X【解析】利用函数z = .I 一位,y)在(x 。
历年考研数一真题及答案
历年考研数一真题及答案【篇一:历年考研数学一真题及答案(1987-2013)】ss=txt>数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)?=_____________.(2)曲面x2?2y2?3z2?21在点(1,?2,?2)的法线方程为_____________.(3)微分方程xy???3y??0的通解为_____________.?121?(4)已知方程组??23a?2???x1??1?x???3??1a?2???2无解,则a= ???????x3????0??_____________.(5)设两个相互独立的事件a和b都不发生的概率为19,a发生b不发生的概率与b发生a不发生的概率相等,则p(a)=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设f(x)、g(x)是恒大于零的可导函数,且f?(x)g(x)?f(x)g?(x)?0,则当a?x?b时,有(a)f(x)g(b)?f(b)g(x)(b)f(x)g(a)?f(a)g(x)(c)f(x)g(x)?f(b)g(b)(d)f(x)g(x)?f(a)g(a)(2)设s:x2?y2?z2?a2(z?0),s1为s在第一卦限中的部分,则有(a)??xds?4s??xdss1(b)??yds?4??xdsss1(c)??zds?4??xdsss1(d)??xyzds?4??xyzdsss1(3)设级数??un收敛,则必收敛的级数为n?1(a)??(?1)nun (b)??u2nn?1nn?1(c)??(u2n?1?u2n)n?1(d)??(un?un?1)n?1(a)e(x)?e(y)(b)e(x2)?[e(x)]2?e(y2)?[e(y)]2(c)e(x2)?e(y2) (d)e(x2)?[e(x)]2?e(y2)?[e(y)]2三、(本题满分6分) 1求lim(2?exx??4?sinx).1?exx四、(本题满分5分) 设z?f(xy,xy)?g(xy),其中f具有二阶连续偏导数,g具有二阶连续导数,求?2z?x?y.五、(本题满分6分) 计算曲线积分i??xdy?ydxl4x2?y2,其中l是以点(1,0)为中心,r为半径的圆周(r?1),取逆时针方向.六、(本题满分7分)设对于半空间x?0内任意的光滑有向封闭曲面s,都有??xf(x)dydz?xyf(x)dzdx?e2xzdxdy?0,其中函数f(x)在s(0,??)内具有连续的一阶导数,且xlim?0?f(x)?1,求f(x).七、(本题满分6分)求幂级数??1xnn?13n?(?2)nn的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为r的球体,p0是此球的表面上的一个定点,球体上任一点的密度与该点到p0距离的平方成正比(比例常数k?0),求球体的重心位置.九、(本题满分6分) 设函数f(x)在[0,?]上连续,且???f(x)dx?0,?0f(x)cosxdx?0.试证:在(0,?)内至少存在两个不同的点?1,?2,使f(?1)?f(?2)?0.十、(本题满分6分)??1000?000? 设矩阵a的伴随矩阵a*??1??1010??,且?0?308??aba?1?ba?1?3e,其中e为4阶单位矩阵,求矩阵b.十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量??xn?y??. ?n(1)求??xn?1?与??xn?的关系式并写成矩阵形?y?n?1??y?n?式:??xn?1??xn?y??a???. n?1??yn??1??是a的两个线性无关的特征向量,并求出相应的特征值.?1?(3)当??x1??2?时,求??y?????xn?1??. 1???1??yn?1??2??十二、(本题满分8分)某流水线上每个产品不合格的概率为p(0?p?1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为x,求x的数学期望e(x)和方差d(x).十三、(本题满分6分) 设某种元件的使用寿命x的概率密度为?2e?2(x??)x??f(x;?)??x???0x1,x2,,其中??0为未知参数.又设,xn是x的一组样本观测值,求参数?的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设y?ex(asinx?bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________. (2)r?x2?y2?z2,则div(gradr)(1,?2,2)=_____________.(3)交换二次积分的积分次序:?01?y?1dy?2f(x,y)dx=_____________. (4)设a2?a?4e?o,则(a?2e)?1= _____________.(5)d(x)?2,则根据车贝晓夫不等式有估计p{x?e(x)?2}? _____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设函数f(x)在定义域内可导,y?f(x)的图形如右图所示,则y?f?(x)的图形为(a)(b)(c)【篇二:2000年-2016年考研数学一历年真题完整版(word版)】ss=txt>数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)?=_____________.(2)曲面x2?2y2?3z2?21在点(1,?2,?2)的法线方程为_____________. (3)微分方程xy???3y??0的通解为_____________.1??x1??1??12??????(4)已知方程组23a?2x2?3无解,则a=_____________. ????????1a?2????x3????0??(5)设两个相互独立的事件a和b都不发生的概率为生的概率相等,则p(a)=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)、g(x)是恒大于零的可导函数,且f?(x)g(x)?f(x)g?(x)?0,则当a?x?b时,有 (a)f(x)g(b)?f(b)g(x) (c)f(x)g(x)?f(b)g(b)(b)f(x)g(a)?f(a)g(x) (d)f(x)g(x)?f(a)g(a)1,a发生b不发生的概率与b发生a不发9(2)设s:x2?y2?z2?a2(z?0),s1为s在第一卦限中的部分,则有 (a)(c) ??xds?4??xdsss1(b)(d)??yds?4??xdsss1ss1??zds?4??xdsss1??xyzds?4??xyzds(3)设级数?un?1?n收敛,则必收敛的级数为u(a)?(?1)nnn?1n?(b)?un?1?2n(c)?(un?1?2n?1?u2n)(d)?(un?1?n?un?1)(5)设二维随机变量(x,y)服从二维正态分布,则随机变量??x?y 与 ??x?y不相关的充分必要条件为(a)e(x)?e(y)(c)e(x2)?e(y2)三、(本题满分6分)(d)e(x2)?[e(x)]2?e(y2)?[e(y)]2(b)e(x2)?[e(x)]2?e(y2)?[e(y)]2求lim(x??2?e1?e1x4x?sinx). x四、(本题满分5分)xx?2z设z?f(xy,)?g(),其中f具有二阶连续偏导数,g具有二阶连续导数,求. yy?x?y五、(本题满分6分)计算曲线积分i?xdy?ydx??l4x2?y2,其中l是以点(1,0)为中心,r为半径的圆周(r?1),取逆时针方向.六、(本题满分7分)设对于半空间x?0内任意的光滑有向封闭曲面s,都有???xsx?0?(f)x?dyd(z)x?2xyfex?dzd0x,f(x)在z(0,d??x)内具有连续的一阶导数dy其中函数,且limf(x)?1,求f(x).七、(本题满分6分)八、(本题满分7分)1xn求幂级数?n的收敛区间,并讨论该区间端点处的收敛性. n3?(?2)nn?1?设有一半径为r的球体,p0是此球的表面上的一个定点,球体上任一点的密度与该点到p0距离的平方成正比(比例常数k?0),求球体的重心位置.九、(本题满分6分)设函数f(x)在[0,?]上连续,且??f(x)dx?0,?f(x)cosxdx?0.试证:在(0,?)内至少存在两?个不同的点?1,?2,使f(?1)?f(?2)?0.十、(本题满分6分)?10?01*?设矩阵a的伴随矩阵a??10??0?300100?0??,?1?1且aba?ba?3e,其中e为4阶单位矩阵,求0??8?矩阵b.十一、(本题满分8分)1熟练工支援其他生产部62门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有成为熟练工.设第5某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量??xn?1??xn??xn?1??xn?与的关系式并写成矩阵形式:?a???????.?yn?1??yn??yn?1??yn??xn??. ?yn?(1)求??4???1??1??1??1??x1??2??xn?1?(3)当?????时,求??.y1y?1????n?1????2?十二、(本题满分8分)某流水线上每个产品不合格的概率为p(0?p?1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为x,求x的数学期望e(x)和方差d(x).十三、(本题满分6分)?2e?2(x??)x??设某种元件的使用寿命x的概率密度为f(x;?)??,其中??0为未知参数.又设x???0x1,x2,?,xn是x的一组样本观测值,求参数?的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设y?ex(asinx?bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)r?x2?y2?z2,则div(gradr)(1,?2,2)= _____________.(3)交换二次积分的积分次序:?0?1dy?1?y2f(x,y)dx=_____________.2(4)设a?a?4e?o,则(a?2e)?1= _____________.(5)d(x)?2,则根据车贝晓夫不等式有估计p{x?e(x)?2}?_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在定义域内可导,y?f(x)的图形如右图所示,则y?f?(x)的图形为(a) (b)(c) (d)(2)设f(x,y)在点(0,0)的附近有定义,且fx?(0,0)?3,fy?(0,0)?1则(a)dz|(0,0)?3dx?dy(b)曲面z?f(x,y)在(0,0,f(0,0))处的法向量为{3,1,1}(c)曲线z?f(x,y)在(0,0,f(0,0))处的切向量为{1,0,3}y?0z?f(x,y)(d)曲线在(0,0,f(0,0))处的切向量为{3,0,1}y?0(3)设f(0)?0则f(x)在x=0处可导?f(1?cosh)(a)lim存在2h?0h(c)limh?0f(1?eh)(b) lim存在h?0h(d)limh?0f(h?sinh)存在h2111111111??4??1?0,b???01???1??00000000f(2h)?f(h)存在h?1?(4)设a??1?1??10??0?,则a与b 0??0?(a)合同且相似 (c)不合同但相似(b)合同但不相似 (d)不合同且不相似(5)将一枚硬币重复掷n次,以x和y分别表示正面向上和反面向上的次数, 则x和y相关系数为(a) -1 (c)(b)0 (d)11 2三、(本题满分6分)arctanex. 求?e2x四、(本题满分6分)【篇三:历年考研数学一真题及答案(1987-2015)】1987-2014 (经典珍藏版)1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)当x=_____________时,函数y?x?2x取得极小值.(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平面图形的面积是_____________.1?x(3)与两直线y??1?tz?2?t及x?1y?2z?11?1?1都平行且过原点的平面方程为_____________.(4)设l为取正向的圆周x2?y2?9,则曲线积分??l(2xy?2y)dx?(x2?4x)dy= _____________.(5)已知三维向量空间的基底为此基底下的坐标是_____________.二、(本题满分8分) 求正的常数a与b,使等式lim1x2x?0bx?sinx?0?1成立.三、(本题满分7分)1(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求?u?x,?v?x. (2)设矩阵a和b满足关系式ab=a?2b,其中?301?a???110?,求矩阵 ?4?b.?01??四、(本题满分8分)求微分方程y????6y???(9?a2)y??1的通解,其中常数a?0.五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设limf(x)?f(a)x?a(x?a)2??1,则在x?a处(a)f(x)的导数存在,且f?(a)?0 (b)f(x)取得极大值(c)f(x)取得极小值 (d)f(x)的导数不存在 (2)设f(x)为已知连续函数s,i?t?t0f(tx)dx,其中t?0,s?0,则i的值(a)依赖于s和t (b)依赖于s、t和x(c)依赖于t、x,不依赖于s (d)依赖于s,不依赖于t (3)设常数?k?0,则级数?(?1)nk?nn2n?1(a)发散(b)绝对收敛2(c)条件收敛(d)散敛性与k的取值有关(4)设a为n阶方阵,且a的行列式|a|?a?0,而a*六、(本题满分10分)求幂级数?a1n?1的收敛域,并求其和函数. xnn?2n?1?是a的伴随矩阵,则|a*|等于(a)a (b)1 (c)an?1七、(本题满分10分)求曲面积分i???x(8y?1)dydz?2(1?y2)dzdx?4yzdxdy,?(d)an??z?1?y?3f(x)?其中?是由曲线绕y轴旋转一周而成的曲面,其法向量与y轴正向的夹角恒大于?. ?2x?0??八、(本题满分10分)设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f?(x)?1,证明在(0,1)内有且仅有一个x,使得f(x)?x.九、(本题满分8分)3问a,b为何值时,现线性方程组?x2?x3?x4?02?2x3?2x4?1x2?(a?3)x3?2x4?bx1?2x2?x3?ax4?? 1有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件a发生的概率为p,现进行n次独立试验,则a至少发生一次的概率为____________;而事件a至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________. (3)已知连续随机变量____________.4x的概率密度函数为f(x)??x2?2x?1,则x的数学期望为____________,x的方差为十一、(本题满分6分)设随机变量x,y相互独立,其概率密度函数分别为fx(x)?10?x?1,fy(y)? y?0,求z?2x?y的概率密度函数.?y其它y?05。
考研数学一真题及答案
考研数学一真题(一)一、填空题(本题共6小题,每小题4分,满分24分。
答案写在题中横线上)(1)曲线的斜渐近线方程为。
【答案】【解析】所以斜渐近线方程为。
综上所述,本题正确答案是。
【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线(2)微分方程满足的解为。
【答案】【解析】原方程等价于所以通解为将代入可得综上所述,本题正确答案是。
【考点】高等数学—常微分方程—一阶线性微分方程(3)设函数,单位向量,则。
【答案】【解析】因为所以综上所述,本题正确答案是。
【考点】高等数学—多元函数微分学—方向导数和梯度(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则。
【答案】。
【解析】综上所述,本题正确答案是。
【考点】高等数学—多元函数积分学—两类曲面积分的概念、性质及计算(5)设均为三维列向量,记矩阵如果,那么。
【答案】2。
【解析】【方法一】【方法二】由于两列取行列式,并用行列式乘法公式,所以综上所述,本题正确答案是2。
【考点】线性代数—行列式—行列式的概念和基本性质,行列式按行(列)展开定理(6)从数中任取一个数,记为,再从中任一个数,记为,则。
【答案】。
【解析】【方法一】先求出的概率分布,因为是等可能的取,故关于的边缘分布必有,而只从中抽取,又是等可能抽取的概率为所以即:X Y12341000200304所以【方法二】1综上所述,本题正确答案是。
【考点】概率论与数理统计—多维随机变量及其分布—二维离散型随机变量的概率分布、边缘分布和条件分布二、选择题(本题共8小题,每小题4分,满分32分。
在每小题给出的四个选项中,只有一项符合题目要求。
)(7)设函数,则(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点 (D)恰有三个不可导点 【答案】C 。
【解析】 由知由的表达式和其图像可知在处不可导,在其余点均可导。
综上所述,本题正确答案是C 。
【考点】高等数学—一元函数微分学—导数和微分的概念 (8)设是连续函数的一个原函数,表示的充分必要条件是,则必有(A)是偶函数是奇函数 (B)是奇函数是偶函数 (C)是周期函数是周期函数 (D)是单调函数是单调函数【答案】A 。
考研数学一高等数学-试卷11_真题(含答案与解析)-交互
考研数学一(高等数学)-试卷11(总分62, 做题时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设,则g[f(x)]为SSS_SINGLE_SELABCD该题您未回答:х该问题分值: 2答案:D2.当x→0时,变量是SSS_SINGLE_SELA 无穷小.B 无穷大.C 有界的,但不是无穷小.D 无界的,但不是无穷大.该题您未回答:х该问题分值: 2答案:D3.设数列xn 与yn满足,则下列断言正确的是SSS_SINGLE_SELA若xn 发散,则yn必发散.B若xn 无界,则yn必无界.C若xn 有界,则yn必为无穷小.D若为无穷小,则yn必为无穷小.该题您未回答:х该问题分值: 2答案:D4.设f(x)=2 x +3 x一2,则当x→0时SSS_SINGLE_SELA f(x)与x是等价无穷小.B f(x)与x是同阶但非等价无穷小.C f(x)是比x较高阶的无穷小.D f(x)是比x较低阶的无穷小.该题您未回答:х该问题分值: 2答案:B5.设x→0时,e tanx一e x是与x n同阶的无穷小,则n为SSS_SINGLE_SELA 1B 2C 3D 4该题您未回答:х该问题分值: 2答案:C6.设对任意的x,总有φ(x)≤f(x)≤g(x),且lim[g(x)一φ(x)]=0,则SSS_SINGLE_SELA 存在且一定等于零.B 存在但不一定为零.C 一定不存在.D 不一定存在.该题您未回答:х该问题分值: 2答案:D7.设函数在(一∞,+∞)内连续,且=0,则常数a,b满足SSS_SINGLE_SELA a<0,b<0.B a>0,b>0.C a≤0,b>0.D a≥0,b<0.该题您未回答:х该问题分值: 2答案:D8.设f(x)和φ(x)在(一∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则SSS_SINGLE_SELA φ[f(x)]必有间断点.B[φ(x)] 2必有间断点.C f[φ(x)]必有间断点.D 必有间断点.该题您未回答:х该问题分值: 2答案:D9.设函数f(x)=,讨论函数f(x)的间断点,其结论为SSS_SINGLE_SELA 不存在间断点.B 存在间断点x=1.C 存在间断点x=0.D 存在间断点x=一1.该题您未回答:х该问题分值: 2答案:B2. 填空题1.已知f(x)=sinx,f[φ(x)]=1一x 2,则φ(x)=___________的定义域为_____________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:arcsin(1一x 2 ),2.=__________SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:3.设函数f(x)=a x (a>0,a≠1),则=_____________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:4.=____________SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:5.=____________SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:26.若f(x)=____________在(一∞,+∞)上连续,则a=___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:一23. 解答题解答题解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012 年全国硕士研究生入学统一考试数学一2012年全国硕士研究生入学统一考试数学一试题、选择题 :1: 8小题,每小题 4分,共 32分. 下列每题给出的四个选项中,只有一个选项符合题目要求的, 请将所选项前的字母填在答题纸指定位置上 .xx2xy2kx(4)(1) 曲线y渐近线的条数(2) (3) (A) 0 设函数(A) (x 2y(x) (B) 1 (C) 2 (e x 1)e(2x 2) (e nx n), 其 1n ) 1(n 1)!(D) 3中 n 为正整数 , 则 y (B) ( 1n)(n 1) (C) (1n ) (0)1n!(D) ( 1n )n!如果函数 f (x, y)在 (00, )处连续 ,那么下列命题正确的是(A) f (x, y)若极限 lim存在 , 则 f (x, y)在(00,)处可微y0xy(B) 若极限 limf (x, y)存在 , 则 f (x, y)在 (00, y 2 )处可微(C)x0 y0f (x,y) 在 (00, )处可微 , 则 极限 limf (x, y)存在(D)f (x,y)在(00, )处可微 ,则 极限 limf (x, y)存在2012 年全国硕士研究生入学统一考试数学一0sinxd(xk 1,2,3则) 有(A)(B)(C)(D)12II1(5) 设 , 其中为任意常数,则下列向量组线性相关12 3 4C C C1 2 3 的为( )(A) 1, 2, 3 (B) (C)1, 2, 41 CC C C1, 2, 3, 41(D)1, 3, 42, 3, 4100(6) 设 A 为 3 阶矩阵, P 为 3 阶可逆矩阵,且 1 则 p AP0 1 0 . 若 P=( 1, 2, 3 ),(),002Q 1AQ ( )1 0 02 0 0100200(A)(B)(C)(D)020*********001002002001(7) 设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则p X Y ( )1124 (A)(B)(C)(D) 5535(8 )将长度为1m的木棒随机地截成两段,则两段长度的相关系数为( )11122(A) 1 (B) (C) (D)给大家分享点个人的秘密经验,让大家考得更轻松。
在这里我想跟大家说的是自己在整个考研过程中的经验以及自己能够成功的考上的捷径。
首先就是自己的阅读速度比别人的快,考试过程中的优势自然不必说,平时的学习效率才是关键,其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。
研究生考试关键就是你的专业技能和常识积累。
很多人的失败是输在时间上的,我做事情特别注重效率。
第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。
我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。
包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3 分钟,这样就比别人多出20 几分钟,这在考试中是非常不得了的。
论坛有个帖子专门介绍速读的,叫做“ 速读记忆让我的考研复习奔跑起来”,我就是看了这个才接触了速读,也因为速读,才获得了很好的成绩。
那些密密麻麻的资料,看见都让人晕倒。
学了速读之后,感觉有再多的书都不怕了。
而且,速读对思维和材料组织的能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。
平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。
当然,有经济条件的同学,千万不要吝啬,花点小钱在自己的未来上是最值得的,你已经耗费了那么多的时间和精力,现在既然势在必得,就不要在乎这一刻。
想成功的同学到这里用这个软件训练速读,大概30 个小时就能练出比较厉害的快速阅读的能力,这是给我帮助非常大的学习技巧,极力的推荐给大家给做了超链接,按住键盘左下角Ctrl 键,然后鼠标左键点击本行文字。
其次,从选择的复习资料上来说,我用的是学习软件,不是一般的真题,我认为从电脑上面做题真的是把学习的效率提高了很多,再者这款软件集成最新题库、大纲资料、模拟、分析、动态等等各种超强的功能,性价比超高,是绝不可缺的一款必备工具,结合上速读的能力,如虎添翼,让整个备考过程效率倍增。
想学的朋友可以到这里下载也给做了超链接,按住键盘左下角Ctrl 键,然后鼠标左键点击本行文字二、填空题:9: 14小题,每小题4分,共24分.请将答案写在答题纸指定位置上(9) 若函数f (x)满足方程f '(x) f'(x) 2f(x) 0及f '(x) f(x) 2e,则f(x)(10) x 2x x dx=22z gra(dxy+ )|(2,1,1)22(12) 设x,y,z x y z 1x, 0,y0,z 0 ,y ds2则(13) 设X 为三维单位向量,E 为三阶单位矩阵,则矩阵E XX T的秩为(14) 设A, B, C是随机变量, A 与 C 互不相容,p AB,P C ,p ABC1123三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步22012 年全国硕士研究生入学统一考试数学一已知曲线 L(0t ),其中函数 具有连续导数,且 f(t)f(0) 0,f '(t)0 (0 t若曲线).y cotsL 的切线与 x 轴的交点到切点的距离恒为1,求函数 f (t)的表达式,并求此曲线 L 与 x 轴与 y 轴无边界的区域的面积。
(19)已知 L 是第一象限中从点 (0,0)沿圆周 x 2+y 22x 到点 (2,0),再沿圆周 x 2+y 2 4到点 (02, )的曲线段,计算曲 J线积分xy x x x y y 32 d ( 3 2 )dL(20)( 本题满分 分 )设A2cosx 1 ( 1 x 1) x2xy22求函数 ( , ) 的极值f x y xe 2(17)24n 4n 3求幂级数 x 的收敛域及和函数2n2n 1n0(18)(),x f t骤.(15)证明1xxln 1(16)a001 03( I )计算行列式 A;(II) 当实数 a 为何值时,方程组 Ax 有无穷多解,并求其通解。
(21)101 011已知 A ,二次型 f(x,x,x) x T(A TA)x 的秩为 21231 0 a0 a 11)求实数 a 的值; 2)求正交变换 x Qy 将 f 化为标准型 . 22)设二维离散型随机变量 X 、 Y 的概率分布为0 10412104Ⅰ )求 P X 2Y Ⅱ )求 CovX( Y,Y).(23)设随机变量 X 与 Y 相互独立且分别服从正态分布 N(u, 2)与 N(u,2 2),其中 Z X Y.(1) 求 Z 的概率密度 f(z, 2); 是未知参数且0。
设2)设 1, 2, , n 为来自总体 的简单随机样本,求 z z z Z 2 ( 3)证明 2为 的无偏估计量 的最大似然估计量2、选择题1 2 3 45 6 78 C CBDCBAD二、 填空题9、 e x; 10、 ; 11 、1;1, 1,12、 ;313、2;314、 4212三、 解答题(15)1xx2fxxln1xcosx 12f(x) 证明:令 , 是偶函数20f21 4x2x21144fx cosx 1cosx 1201 x 1 x1x2222221x1x所以00f x f42012 年全国硕士研究生入学统一考试数学一22221x即证得: xln1cosx 1 (16) f x,y解: 得驻点22 xy fx,yx2y2xe 2 1,0,x1xyxe 2 x e 2 y0221xP 1,0222 f x,yxy2xexyx,y2( 11,)把P21,0 代入二阶偏导数P 2 1,0B=0,A<0,C<0,所以为极大值点,极大值为1f 1,0 e(17) 解: ( Ⅰ )收敛域32(n 1) 1x4n 2 4n 32(n 1) 1a (x)4n 4n22n 1R limlimlimxna (x) 4(n 1) 4(n 1) 3 2n 1 4(n 1) 4(n 1) 322nx12n 12(n 1) 1x 2 1,得x 1 x 1,当 时,技术发散。
所以,收敛域为xy2 f x,yxe y 12 2y根据判断极值的第二充分条件,把P11,0,P 1 代入二阶偏导数 B=0, A>0,C>0,所以f 1,0 e2xy221,0,为极22(Ⅱ)设S(x)x2nx2n[(2n 1x)2n x2n](x 1) 2n12n12n 1n0n0n02令S(x)(2n1x)2n,S(x)x2n122n 1n0n0x x nx n因为S(t)dt(2n 1t)2dtx21(x 1)121 x 0(2n 1) 2n0n04n 4n 352012 年全国硕士研究生入学统一考试数学一x 1 x2所以S(x) ( ) (x 1)1 2 2 21 x (1 x )2因为 xS(x)2n1当x时,1(0) 1, 2(0) 2 S S21 x 1 1 x lnx ( 1,0) (0,1)所以,Sx () Sx () S x x 2 2 x x ( ) (1 ) 1x 2所以 [xS(x)]2x2n2x(x 所以 [tS(t)]dt 2 dt 2 21t 0021xx1 1)dt l (x 1) 1 x 0即116(x,y)令Y 0得X f (t)cott f (t)。
由于曲线L 与x 轴和y 轴的交点到切点的距离恒为故有[f (t)cott f(t) f (t)]2co2st 1,又因为f'(t) 0(0 t )sint函数f(t) lnsetc tant sint此曲线L与x轴和y轴所围成的无边界的区域的面积为:S 2cotsf (t)dt4(19) 解:补充曲线沿轴由点到点,D 为曲线和围城的区域。
由格林公式可得Ly 1(20,) (0,0)LL1原式=3xydx(x x 2y)dy 3x ydx(x x 2y)dy2323LLL(18) 解:dy sint曲线L在任一处(x,y)的切线斜率为,过该点处的切线为Y cotsdx f (t) sint(X f(t)) f (t)1.f(t) 所以f (t) ,两边同时取不定积分可得cott ln setc tatn sint C,又由于f(0) 0,所以C=0 故2012 年全国硕士研究生入学统一考试数学一01a a001(II) 对方程组 Ax的增广矩阵初等行变换:1a001 1a01(20) 解: (I )1 3x 2)d 22 1a0001a0001a( 2y)dy 1d 2ydy12=12ydya041a a ( 1) 1 a 000100 00a aa1a001a001001 1 0 0 11 0 0 1 00110101011此时,方程组Ax可知的增广矩阵变为,进一步化为最简形得0011000110000000000001101 1 1导出组的基础解系为11(21) 解:(1) 由二次型的秩为2,知r(A T A) 对矩阵A 初等变换得1 0 1 1 00 1 1 0 1 11 0 a 0 0 a 1,故其通解为k1021 0 11a1aa可知,要使方程组Ax有无穷多解,则有1 a40 且a a20,可知a,非齐次方程的特解为2,故r(A) r(A T A)1 1 0 10 1 1 0 10 0 a 1 0 01072012 年全国硕士研究生入学统一考试数学一因 r(A) 2,所以 a 120( 2)令2B A A 0 2 2T2241213261 0 2EB 02) 2) 1 ( 2)( 6)所以 B的特征值为0, 2, 3对于0,B)X得对应的特征向量为(11, 1)对于2,得对应的特征向量为(1,10,)对于6,得对应的特征向量为E B)X 0(1,12,)1111, 1 , 12(E3将 单位化可得1 1 1 03 2 6111正交矩阵Q,则Q AQT3261236因此,作正交变换x Qy,二次型的标准形为f(x)x T(A T A)x y T Ay2y2 6y22(22)解:X012P1/21/31/6Y012P1/31/31/3XY0124P7/121/301/12(Ⅰ)20,02,1 101P X Y PX Y PX Y4482012 年全国硕士研究生入学统一考试数学一2i两边求导得dlnL( )25covX(,Y) EXY EXEYEX EX 2EYEY 2其中1, 1,332 24 5DX EX (EX) 19 9225 2,2DY EY (EY) 1EXY33 322所以, cov( , ) 0,cov(, ),cov( ,)XY YY DY X YYXY33(23) 解:Ⅱ ) covX( Y,Y) covX(,Y) covY(,Y) 1)因为 X: N(u, 2),Y: N(u,2 2),且 X 与 Y 相互独立,故 Z X Y: (03, 2)所以 Z 的概率密度为 fz z 26 2e 2 ( , ) 6(2)最大似然函数为n L f z ( 2) ( ; 2)ii1两边取对数,得 n n6i1lnL( )2ln lne 6 ),2i12,, , )2012 年全国硕士研究生入学统一考试数学一2i[ 3n Z ] 22 2 d( ) 6( ) 6( )[] i2 2 2 2i1 i19dlnL( ) 2 令 ,得 0 1n d( ) 3ni i1 1 n 所以 2的最大似然估计量2 2Z3n i1 1n1n 1n 所以 3) 证明: E( 2)E(Z 2) [D(Z) (E(Z ))2] 3n3n 3n i1i1 i1 2为 2的无偏估计量。