中考数学总复习第一编教材知识梳理篇第2章方程组与不等式组第4节一元一次不等式组及应用精练试题

合集下载

中考数学总复习基础知识梳理第2单元方程组与不等式组2.4一元一次不等式组及其应用课件

中考数学总复习基础知识梳理第2单元方程组与不等式组2.4一元一次不等式组及其应用课件

有关一元一次不等式(组)的一些注意事项
1.“解与解集”的联系与区别 不等式的解是指使不等式成立的每一个数,而不等式的解集是指由 全体不等式的解组成的一个集合.因此,不等式的解可以是一个或 多个值,而不等式的解集应包含满足不等式的所有解. 不等式的解与不等式的解集的区别:解集是能使不等式成立的未知 数的取值范围,是所有解的集合,而不等式的解则是使不等式成立 的未知数的值,二者的关系是:解集包括解,所有的解组成了解 集.Biblioteka 2.4.4 一元一次不等式组
1.定义:含有相同未知数的若干个一元一次不等式组成的不等式组 叫作一元一次不等式组. 2.解不等式组一般先分别求出不等式组中各个不等式的解集并表示 在数轴上,再求出它们公共部分就得到不等式组的解集.
3.由两个一元一次不等式组成的不等式组的解集可划分为四种情况(假设a< b).
解:(1)设批发青菜x市斤,批发西兰花y市斤.则,
x y 200
x 100
2.8x 3.2 y 600
解得
y
. 100
即批发青菜100市斤,批发西兰花100市斤, ∴100×(4-2.8)+100×(4.5-3.2)=250(元). 答:当天售完后老王能盈利250元钱. (2)设给青菜定价为a元/市斤.根据题意可得:
第二单元 方程(组) 与不等式(组)
第9课时 一元一次不等式(组)及其应用
考纲考点
1.结合具体问题,了解不等式的意义,掌握不等式得基本性质. 2.会解一元一次不等式组,并会用数轴确定解集. 3.能够根据具体问题中的数量关系,列出一元一次不等式解决简单 的问题. 4.能根据具体问题的实际意义,检验结果是否合理. 一元一次不等式组的解法及在数轴上表示解集,江西近几年中考每 年都是考查一道题,预测未来一元一次不等式(组)的考查在江西 中考中仍会以这几种形式出现.

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

2021年中考数学总复习第二章 方程(组)与不等式(组)第四节 一元一次不等式(组)及其应用

2021年中考数学总复习第二章  方程(组)与不等式(组)第四节  一元一次不等式(组)及其应用
玩转真题 变式训 练
5. 不等式 3 x - x 4 可以表示( C ) 2
A. 3 x 与x的差大于4 2
B. 3 x 与x的差小于4 2
C. 3 x 与x的差最小值为4 2
D. 3 x 与x的差最大值为4 2
返回目录
第四节 一元一次不等式(组)及其应用
返回目录
6. (2011河北22题8分)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40 分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工. (1)问乙单独整理多少分钟完工?
(1)求购进A,B两种型号的口罩机各多少台;
【分层分析】(1)设购进A种型号的口罩机x台,B种型号的口罩机y台,由表格和题干① 可得等式为__1_6_x_+_1_4_._8_y=__4_5_6__;由题干②可得等式为_x_+_y_=_3_0__,列方程组求解即可,
也可只设一个未知数,列一元一次方程求解;
第四节 一元一次不等式(组)及其应用
返回目录
(2)①嘉嘉在去分母和去括号时出错了,去分母时漏乘了没有分母的常数项-1,去 括号时没有变号. 正确的解法是: 去分母,得 2(x+2)-3(x-1)≥-6, 去括号,得 2x+4-3x+3≥-6, 移项,得 2x-3x≥-6-4-3, 合并同类项,得 -x≥-13, 系数化为1,得 x≤13;
第四节 一元一次不等式(组)及其应用
返回目录
(4)若2x-6<3x的解集能使关于x的不等式 a 2 x x - 2 - a 成立,求常数a的取值范
围.
3
3
(4)∵不等式2x-6<3x的解集为x>-6,
不等式 a 2 x x - 2 - a 的解集为x≤6a+2,

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。

中考数学总复习第一部分基础知识复习第2章方程组与不等式组第4讲一元一次不等式组课件21

中考数学总复习第一部分基础知识复习第2章方程组与不等式组第4讲一元一次不等式组课件21

★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识要点导航 ★热点分类解析

2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)一元一次不等式(组)及其应用

2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)一元一次不等式(组)及其应用
x<3
(2)不等式②的解集为________;
(3)把不等式组的解集在如图的数轴上表示出来;
解:在数轴上表示不等式组的解集如解图.
1≤x<3
(4)不等式组的解集为____________;
1,2
(5)不等式组的整数解为________.
解图


变式2-1
是(
C
-+3<5,
(2023·娄底)不等式组ቊ
的单价为380元/个.若学校购买这两种灭火器的总价不超过21 000元,则最多
可购买这种型号的水基灭火器多少个?
解:设可购买这种型号的水基灭火器x个,则购买这种型
号的干粉灭火器(50-x)个.
根据题意,得540x+380(50-x)≤21 000,解得x≤12.5.
∵x为整数,∴x的最大值为12.
∴最多可购买这种型号的水基灭火器12个.

1.若a>b,则下列四个选项一定成立的是( A )
A.a+2>b+2
B.-3a>-3b


C. <
4
4
D.a-1<b-1
2.(2022·益阳)若x=2是下列四个选项中的某个不等式组的一个解,则这个不
等式组是( D )
<1,
A.ቊ
<-1
<1,
B.ቊ
> -1
> 1,
C.ቊ
<-1
> 1,
不等式的解集 不等式的解的全体称为不等式的解集
2.不等式的性质
性质
性质1
内容
应用
不等式两边都加上(或减去)同一个数(或式),不等号
b±c
的方向不变,即如果a>b,那么a±c>_______

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
x+y=40, x+y=12, A.4x+3y=12 B.4x+3y=40
x+y=40, x+y=12, C.3x+4y=12 D.3x+4y=40
6.(2019·岳阳第 15 题 4 分)我国古代的数学名著《九章算术》中有下 列问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”其意思 为:今有一女子很会织布,每日加倍增长,5 日共织布 5 尺.问每日各织 多少布?根据此问题中的已知条件,可求得该女子第一天织布335115 尺.
8. (2019·娄底第 23 题 9 分)某商场用 14 500 元购进甲、乙两种矿泉水
共 500 箱,矿泉水的成本价与销售价如表所示:
类别
成本价(元/箱)
销售价(元/箱)

25
35

35
48
求:(1)购进甲、乙两种矿泉水各多少箱?
解:设购进甲矿泉水 x 箱,购进乙矿泉水 y 箱,依题意,得
x+y=500, 25x+35y=14 500,
2 次,2020 年考查 2 次)
2x-y=5, 1.(2021·郴州第 6 题 3 分)已知二元一次方程组x-2y=1,则 x-y 的
值为
( A)
A.2
B.6
C.-2
D.-6
2.(2021·株洲第 2 题 4 分)方程x2-1=2 的解是 A.x=2 B.x=3 C.x=5 D.x=6
( D)
3.(2019·湘潭第 6 题 4 分)若关于 x 的方程 3x-kx+2=0 的解为 2,则 k 的值为 44 .
m=8,m=5, m=2, ∴n=2,n=6,或n=10, ∴共有 3 种运输方案,
方案 1:安排 A 型车 8 辆,B 型车 2 辆, 所需费用:500×8+400×2=4 800(元); 方案 2:安排 A 型车 5 辆,B 型车 6 辆, 所需费用:500×5+400×6=4 900(元); 方案 3:安排 A 型车 2 辆,B 型车 10 辆, 所需费用:500×2+400×10=5 000(元). ∵4 800<4 900<5 000, ∴安排 A 型车 8 辆,B 型车 2 辆最省钱,最省钱的运输费用为 4 800 元.

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用

4.(2021·荆门第 15 题 3 分)关于 x 的不等式组1+32x≥x-1 恰有 2 个
整数解,则 a 的取值范围是 5≤5a≤<a<6. 6
2x≥x-1, ① 5.(2021·武汉第 17 题 8 分)解不等式组4x+10>x+1 ②请按下列步骤 完成解答. (1)解不等式①,得 x≥x≥--11; (2)解不等式②,得 x>x>--33;
3x-2≥1, (2021·通辽)若关于 x 的不等式组2x-a<5 有且只有 2 个整数 解,则 a 的取值范围是-1-<a1<a≤≤11..
【思路点拨】先求出不等式组的解集(用含字母 a 的代数式表示),再根 据不等式组有且只有 2 个整数解,可推出 a 的取值范围.
解含参不等式(组)的 8 个“母题”: (1)若不等式 ax>a 的解集是 x>1,则 a>0; (2)若不等式 x>a 的解集是 x>2,则 a=2;
第四节 一元一次不等式(组) 及其应用
命题点 1:一元一次不等式组的解法及解集表示(近 3 年考查 18 次)
x-1<-3, 1.(2020·黄石第 6 题 3 分)不等式组2x+9≥3 的解集是
(
C)
A.-3≤x<3
B.x≥-2
C.-3≤x<-2
D.x≤-3
x-4≤2(x-1),
某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和 篮球,用于学校球类比赛活动,每个足球的价格都相同,每个篮球的价 格也相同,已知篮球的单价比足球单价的 2 倍少 30 元,用 1 200 元购买 足球的数量是用 900 元购买篮球数量的 2 倍.
(1)足球和篮球的单价各是多少元? (2)根据学校实际情况,需一次性购买足球和篮球共 200 个,但要求足球 和篮球的总费用不超过 15 500 元,学校最多可以购买多少个篮球?
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节 一元一次不等式(组)及应用
1.(南充中考)若m>n ,下列不等式不一定成立的是( D )
A .m +2>n +2
B .2m>2n
C .m 2>n
2 D .m 2>n 2
2.解集在数轴上表示为如图所示的不等式组是( D )
A .⎩⎪⎨⎪⎧x >-3,x ≥2
B .⎩⎪⎨⎪⎧x <-3,
x ≤2
C .⎩⎪⎨⎪⎧x <-3,x ≥2
D .⎩⎪⎨⎪⎧x >-
3,x ≤2
3.(丽水中考)如图,数轴上所表示关于x 的不等式组的解集是( A )
A .x ≥2
B .x>2
C .x>-1
D .-1<x≤2
4.(2017德州中考)不等式组⎩⎪⎨⎪⎧2x +9≥3,1+2x 3
>x -1的解集为( B ) A .x ≥3 B .-3≤x<4
C .-3≤x<2
D .x >4
5.(滨州中考)对于不等式组⎩⎪⎨⎪⎧12x -1≤7-32x ,5x +2>3(x -1),
下列说法正确的是( B )
A .此不等式组无解
B .此不等式组有7个整数解
C .此不等式组的负整数解是-3,-2,-1
D .此不等式组的解集是-52
<x≤2
6.(南充中考)不等式x +12>2x +23-1的正整数解的个数是( D ) A .1个 B .2个
C .3个
D .4个
7.(2017中考说明)设“○”“□”“△”分别表示三种不同的物体.用天平比较它们质量的大小,两次情况如图所示,那么每个“○”“□”“△”按质量从大到小的顺序排列为( A )
A .○□△
B .○△□
C .□○△
D .△□○
8.(聊城中考)不等式组⎩⎪⎨⎪⎧x +5<5x +1,x -m>1的解集是x>1,则m 的取值范围是( D )
A .m ≥1
B .m ≤1
C .m ≥0
D .m ≤0
9.(2017遵义中考)不等式6-4x≥3x-8的非负整数解的个数是( B )
A .2个
B .3个
C .4个
D .5个
10.(2017大庆中考)若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为( D )
A .2
B .3
C .4
D .5
11.不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x <m
的解集为x <2,则m 的取值范围为__m≥2__. 12.(2017广安中考)不等式组⎩
⎪⎨⎪⎧x -3(x -2)<4,x -1≤1+2x 3的解集为__1<x≤4__. 13.(2017烟台中考)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是__x <8__.
14.(苏州中考)解不等式2x -1>3x -12
,并把它的解集在数轴上表示出来. 解:去分母,得4x -2>3x -1,
移项,得4x -3x>2-1,
合并同类项,得x>1,
将不等式解集表示在数轴上如图:
15.(北京中考)解不等式组⎩
⎪⎨⎪⎧4(x +1)≤7x+10,x -5<x -83,并写出它的所有非负整数解. 解:解集为-2≤x<72
, ∵x 为非负整数,∴x =0,1,2,3.
16.(2016沧州九中模拟)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍
做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍? 解:设购买球拍x 个,依题意得
1.5×20+22x≤200,解得x≤7811. 又∵x 为整数,∴x =7. 答:孔明应该买7个球拍.
17.(泰安中考)若不等式组⎩⎪⎨⎪⎧1+x<a ,x +92
+1≥x +13-1有解,则实数a 的取值范围是( C ) A .a<-36 B .a ≤-36
C .a>-36
D .a ≥-36
18.(台湾中考)若满足不等式20<5-2(2+2x)<50的最大整数解为a ,最小整数解为b ,则a +b 的值为
( C )
A .-15
B .-16
C .-17
D .-18
19.(凉山中考)已知关于x 的不等式组⎩
⎪⎨⎪⎧4x +2>3(x +a ),2x>3(x -2)+5仅有三个整数解,则a 的取值范围是__-13≤a<0__.
20.(2016石家庄中考模拟)已知不等式组:⎩
⎪⎨⎪⎧3(2x -1)<2x +8,2+3(x +1)8>3-x -14的最大整数解满足ax +6=x -2a ,则a =__-1__.
21.(2017宁波中考)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1 500元.
(1)甲种商品与乙种商品的销售单价各多少元;
(2)若甲、乙两种商品的销售总收入不低于5 400万元,则至少销售甲种商品多少万件? 解:(1)设甲种商品的销售单价是x 元,乙种商品的销售单价为y 元.
根据题意得⎩
⎪⎨⎪⎧2x =3y ,3x -2y =1 500, 解得⎩
⎪⎨⎪⎧x =900,y =600. 答:甲种商品的销售单价是900元,乙种商品的单价为600元;
(2)设销售甲种商品a 万件,则销售乙种商品(8-a)万件.
根据题意得900a +600(8-a)≥5 400, 解得a ≥2.
答:至少销售甲种商品2万件.。

相关文档
最新文档