近几年高考数学全国卷零点问题规律探寻
考前送招,不看后悔:零点对称有妙解
考前送招,不看后悔:零点对称有妙解2017年全国卷考到了下面这道函数题.1命题人的意图全国卷的命题,要考虑到各省市的情况,所以命题比较稳定、可预测.拿小题来说,越靠后的题目会越难,这一点好理解.更重要的事情是,小题难题设置的目标,是考察学生灵活处理新问题的能力,并不是让你死算.要大算的地方有,但不是在这里,比如圆锥曲线综合题就承担了考察学生运算能力的任务.所以,小题要综合运用数形结合、特殊极限、选项比较等综合手段巧解巧算.2多思少算回到本题.观察所给函数的特点.不难看出,这个函数的图象关于x=1对称.既然函数图象关于x=1对称,那么函数的零点也必然关于x=1对称.也就是说,如果在x=1的左边有一个零点,那么在x=1的右边也应该有一个对称的零点.这样说来,零点的个数不应该是偶数个吗?为什么题目告诉我们,只有一个零点呢?稍加思考,我们恍然大悟:原来1就是函数的一个零点.所以f(1)=0,计算得a=½,选C.3故伎重演1:零点、交点的平均值2016年全国卷第12题:分析:由函数方程f(-x)=2-f(x),我们知道,f(x)的图象是关于(1,0)对称的.然后,我们画出y=(x+1)/x,发现它的图象也是关于(1,0)对称的.于是,它们的交点也关于(1,0)对称.故,交点的横坐标的平均值是1,纵坐标的平均值是0.4故伎重演2:反向利用零点对称2013年全国卷第16题.分析:函数f(x)有两个明显的零点:1和-1.因为函数图象关于x=-2对称,所以零点也关于x=-2对称.于是,我们轻松地找到了另外两个零点:-5和-3.这样,我们就能够秒写函数的解析式.求函数的最大值,我们当然可以求导.也可以不求导,还是利用式子的对称性,实现速解.经验证,取等条件可以取到.5今年考不考?大家看到了吗?这一类经典问题,反复考,从不同角度考,正反考,为什么是这样呢?当然,首先是因为,这个内容是函数的重点和热点.更重要的是,教育部考试中心有个专家库,每年从这些库里抽人出题,为保证命题的稳定性,通常每隔几年换一拨人.你可能问我:今年考不考这类的题目?我也不知道.谁知道这拨人换没换呢?准备一下总是有必要的.时间紧迫,如果你身边有参加高考的孩子,转发给他们看看.。
专题06 重温高考压轴题----函数零点问题集锦-2019年高考数学压轴题之函数零点问题(原卷版)
专题六 重温高考压轴题----函数零点问题集锦函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题精选高考压轴题及最新高考模拟压轴题,形成函数零点问题集锦,例题说法,高效训练,进一步提高处理此类问题的综合能力.【典型例题】类型一 已知零点个数,求参数的值或取值范围例1.【2018年理新课标I 卷】已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 例2.【2018年理数全国卷II 】已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.类型二 利用导数确定函数零点的个数 例3.【2018年全国卷II 文】已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.类型三 挖掘“隐零点”,证明不等式例4.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202ef x --<<.类型四 利用函数单调性,确定函数零点关系例5.【2016高考新课标1理】已知函数2()(2)e (1)xf x x a x =-+-有两个零点. (I )求a 的取值范围;(II )设x 1,x 2是()f x 的两个零点,证明:122x x +<. 类型五 借助导函数零点,解答综合性问题例6.【2016高考新课标2文】已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 例7.【2016高考新课标Ⅲ文】设函数()ln 1f x x x =-+. (I )讨论()f x 的单调性; (II )证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)xc x c +->. 例8.【2018年理数天津】已知函数,,其中a >1.(I )求函数的单调区间;(II )若曲线在点处的切线与曲线在点处的切线平行,证明;(III )证明当时,存在直线l ,使l 是曲线的切线,也是曲线的切线.【规律与方法】1.研究方程根的情况时,通过导数研究函数的单调性、最大(小)值、函数图象的变化趋势等,根据题目画出函数图象的草图,通过数形结合的思想去分析问题,使问题的解决有一个直观的形象,然后在此基础上再转化为不等式(组)的问题,通过求解不等式可得到所求的参数的取值(或范围).2. 利用导数证明不等式常见类型及解题策略(1) 构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.3. 导数中函数的含参数的问题的讨论,需要考虑下面的几个方面:(1)把导函数充分变形,找出决定导数符号的核心代数式,讨论其零点是否存在,零点是否在给定的范围中;(2)零点不容易求得时,需要结合原函数的形式去讨论,有时甚至需要把原函数放缩去讨论,常见的放缩有1,ln 1xe x x x ≥+≤-等;(3)如果导数也比较复杂,可以进一步求导,讨论导函数的导数.4. 对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要通过论坛和联系多加体会.5. 函数有零点等价于相应的方程有实根,然后将方程进行适当的变形,转化为两个函数图象有交点.交点的个数就是函数零点个数.在实际解题中,通常先求出()/f x ,然后令()/0f x =,移项,转化为判断两个函数图象的交点个数.【提升训练】1.【2019届高三第一次全国大联考】若函数恰有三个零点,则的取值范围为( )A .B .()C .D .()2.【2017课标3,理11】已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .13.【2018年理数天津卷】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________. 4.【2018年江苏卷】若函数在内有且只有一个零点,则在上的最大值与最小值的和为________. 5.【2018年天津卷文】设函数,其中,且是公差为的等差数列. (I )若 求曲线在点处的切线方程;(II )若,求的极值;(III )若曲线与直线有三个互异的公共点,求d 的取值范围.6.【江西省南昌市2019届高三一模】已知函数(为自然对数的底数),,直线是曲线在处的切线.(Ⅰ)求的值;(Ⅱ)是否存在,使得在上有唯一零点?若存在,求出的值;若不存在,请说明理由.7.【2016年高考四川理数】设函数f (x )=ax 2-a -ln x ,其中a ∈R. (Ⅰ)讨论f (x )的单调性;(Ⅱ)确定a 的所有可能取值,使得11()xf x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).8.【2017年新课标1】已知函数2()e(2)e xx f x a a x =+--.(1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.9.【2017江苏,20】 已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围. 10.【2016高考山东理】已知()221()ln ,R x f x a x x a x-=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立. 11.【2016高考新课标2理数】(Ⅰ)讨论函数xx 2f (x)x 2-=+e 的单调性,并证明当0x >时,(2)20x x e x -++>;(Ⅱ)证明:当[0,1)a ∈时,函数2x =(0)x e ax ag x x-->()有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.12.【辽宁省大连市2019届高三3月测试】已知函数.(1)讨论函数 的单调性;(2)若曲线上存在唯一的点,使得曲线在该点处的切线与曲线只有一个公共点,求实数的取值范围.。
2025版新教材高考数学全程一轮总复习高考大题研究课二利用导数研究函数的零点问题
高考大题探讨课二利用导数探讨函数的零点问题题型一函数零点个数问题例 1 [2024·皖南八校联考]已知函数f(x)=+x ln x-x.(1)若f(x)有两个极值点,求实数a的取值范围;(2)当a=0时,求函数h(x)=f(x)-x+的零点个数.题后师说利用导数确定函数零点个数的方法巩固训练1设函数f(x)=ln x+,探讨函数g(x)=f′(x)-的零点个数.题型二利用函数的零点个数求参数范围例 2[2024·河北沧州模拟]已知函数f(x)=ln x+ax(a∈R).(1)当a=-1时,求f(x)的极值;(2)若f(x)在(0,e2)上有两个不同的零点,求a的取值范围.题后师说利用函数的零点个数求参数范围的方法巩固训练2已知函数f(x)=x3-ax2-2x(a∈R)在x=2处取得极值.(1)求f(x)在[-2,1]上的最小值;(2)若函数g(x)=f(x)+b(b∈R)有且只有一个零点,求b的取值范围.题型三与零点有关的证明例 3[2024·河北邯郸模拟]已知函数f(x)=x-a ln x(a≠0).(1)探讨函数f(x)的单调性;(2)若g(x)=x e x-a(ln x+x),且a>e,证明:g(x)有且仅有两个零点.(e为自然对数的底数)题后师说解决证明此类问题的思路一般对条件等价转化,构造合适的新函数,利用导数学问探讨该函数的性质(如单调性、极值状况等)再结合函数图象.巩固训练3已知函数f(x)=x3-a(x2+2x+2).(1)若a=2,求函数f(x)的单调区间;(2)证明:函数f(x)只有一个零点.1.[2024·全国甲卷]已知a>0且a≠1,函数f(x)=(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.2.[2024·全国乙卷]已知函数f(x)=ax--(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.高考大题探讨课二利用导数探讨函数的零点问题例1 解析:(1)f(x)的定义域为(0,+∞),f′(x)=ln x-2ax,由题意得f′(x)=0在(0,+∞)上有两解,即2a=有两解.令g(x)=(x>0),即g(x)的图象与直线y=2a有两个交点.g′(x)==0,得x=e,当x∈(0,e)时,g′(x)>0,g(x)单调递增;当x∈(e,+∞)时,g′(x)<0,g(x)单调递减,∴g(x)max=g(e)=,g(1)=0,当x趋于正无穷时,g(x)趋于零,∴0<2a<,∴0<a<,∴a的取值范围是(0,).(2)h(x)=x ln x-2x+(x>0),h′(x)=ln x-1-,令m(x)=ln x-1-,则m′(x)=,当x>0时,m′(x)>0,所以h′(x)在(0,+∞)上单调递增.因为h′(e)=-<0,h′(e2)=1->0,∴存在唯一的x0∈(e,e2),使得h′(x0)==0,当x∈(0,x0)时,h′(x)<0,h(x)单调递减;当x∈(x0,+∞)时,h′(x)>0,h(x)单调递增,∴h(x)min=h(x0).又∵x0∈(e,e2),h′(x0)==0,∴h(x0)=x0ln x0-2x0+=-x0+=-x0+<-e+<0.又∵h(1)=0,h(x)在(0,x0)上单调递减,∴h(x)在(0,x0)上有一个零点.∵h(x)在(x0,+∞)上单调递增,且h(e2)=>0,∴h(x)在(x0,+∞)上有一个零点.综上可知,函数h(x)在(0,+∞)上有两个零点.巩固训练1 解析:由题设,可知g(x)=f′(x)-=(x>0).令g(x)=0,得m=-x3+x(x>0).设φ(x)=-x3+x(x>0),则φ′(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.所以x=1是φ(x)的极大值点,也是φ(x)的最大值点.所以φ(x)的最大值为φ(1)=.画出y=φ(x)的大致图象(如图),可知①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点.例2 解析:(1)当a=-1时,f′(x)=-1=,x>0.由f′(x)=0,得x=1.当x∈(0,1)时,f′(x)>0,f(x)在(0,1)上单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)在(1,+∞)上单调递减,∴f(x)只有极大值,无微小值,且f(x)极大值=f(1)=-1.(2)f′(x)=+a=(x>0).当a≥0时,∵f′(x)=>0,∴函数f(x)=ln x+ax在(0,+∞)上单调递增,从而f(x)至多有一个零点,不符合题意.当a<0时,∵f′(x)=(x>0),∴f(x)在(0,-)上单调递增,在(-,+∞)上单调递减.由f(-)=ln (-)-1>0得-<a<0.由f=2+a e2<0得a<-.当-<a<-时,f(1)=a<0,满意f(x)在(0,e2)上有两个不同的零点.∴a的取值范围是(-,-).巩固训练2 解析:(1)∵f(x)=x3-ax2-2x(a∈R),∴f′(x)=x2-ax-2,∵f(x)在x=2处取得极值,∴f′(2)=0,即22-2a-2=0解得a=1,∴f(x)=x3-x2-2x,∴f′(x)=x2-x-2=(x+1)(x-2),∴当x<-1或x>2时f′(x)>0,当-1<x<2时f′(x)<0,∴f(x)在[-2,-1)上单调递增,在(-1,1]上单调递减,又f(-2)=×(-2)3-×(-2)2-2×(-2)=-,f(1)=×13-×12-2×1=-,∴f(x)在[-2,1]上的最小值为-.(2)由(1)知,f(x)=x3-x2-2x,若函数g(x)=f(x)+b(b∈R)有且只有一个零点,则方程-b=f(x)(b∈R)有唯一解,即-b=x3-x2-2x(b∈R)有唯一解,由(1)知,f(x)在(-∞,-1),(2,+∞)上单调递增,在(-1,2)上单调递减,又f(-1)=,f(2)=-,函数图象如图所示:∴-b<-或-b>,得b>或b<-,即b的取值范围为(-∞,-,+∞).例3 解析:(1)由题意得函数f(x)的定义域为(0,+∞),f′(x)=1-=,当a>0时,令f′(x)>0,得x>a,所以f(x)在(a,+∞)上单调递增;令f′(x)<0,得0<x<a,所以f(x)在(0,a)上单调递减;当a<0时,因为f′(x)>0恒成立,所以f(x)在(0,+∞)上单调递增.综上所述,当a>0时,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,当a<0时,f(x)在(0,+∞)上单调递增.(2)证明:g(x)=x e x-a(ln x+x)=x e x-a ln (x e x)(x>0),令t=x e x,则t′=(x+1)e x>0在x>0时恒成立,所以t=x e x在x>0时单调递增,且t∈(0,+∞),所以g(x)=x e x-a ln (x e x)有两个零点等价于f(t)=t-a ln t有两个零点.因为a>e,由(1)知,f(t)在(a,+∞)上单调递增,在(0,a)上单调递减,所以f(t)min=f(a)=a-a ln a=a(1-ln a),因为a>e,所以f(a)<0.下面证明当a>e时,f(e a)=e a-a2>0,设h(x)=e x-x2,则h′(x)=e x-2x,令m(x)=e x-2x,又m′(x)=e x-2,当x>e时,m′(x)=e x-2>0恒成立,所以m(x)单调递增,得h′(x)=e x-2x>e e-2e>0,故h(x)=e x-x2在(e,+∞)上单调递增,得e x-x2>e e-e2>0,即f(e a)=e a-a2>0,又因为f(1)=1>0,所以f(t)在(1,a),(a,e a)上各存在一个零点,所以a>e时,函数f(t)有且仅有两个零点,即当a>e时,函数g(x)有且仅有两个零点.巩固训练3 解析:(1)若a=2,则f(x)=x3-2x2-4x-4,f′(x)=x2-4x-4,令f′(x)=0,解得x1=2-2,x2=2+2,当x∈(-∞,2-2,+∞)时,f′(x)>0,f(x)单调递增,当x∈(2-2,2+2)时,f′(x)<0,f(x)单调递减,所以f(x)在(-∞,2-2),(2+2,+∞)单调递增,f(x)在(2-2,2+2)单调递减.(2)证明:由于x2+2x+2=(x+1)2+1>0,所以f(x)=0等价于-3a=0,设g(x)=-3a,则g′(x)=,因为x2+4x+6=(x+2)2+2>0,所以g′(x)≥0,所以g(x)在(-∞,+∞)上单调递增,故g(x)至多有一个零点,从而f(x)至多有一个零点,又f(3a-1)=-9a2+2a-=-9(a-)2-<0,f(3a+3)=3a2+10a+9=3(a+)2+>0,所以存在唯一的x0∈(3a-1,3a+3),使得f(x)=0,故f(x)有一个零点,综上,f(x)只有一个零点.真题展台——知道高考考什么?1.解析:(1)当a=2时,f(x)=(x>0),f′(x)=(x>0),令f′(x)>0,则0<x<,此时函数f(x)单调递增,令f′(x)<0,则x>,此时函数f(x)单调递减,所以函数f(x)的单调递增区间为(0,),单调递减区间为(,+∞).(2)曲线y=f(x)与直线y=1有且仅有两个交点,可转化为方程=1(x>0)有两个不同的解,即方程=有两个不同的解.设g(x)=(x>0),则g′(x)=(x>0),令g′(x)==0,得x=e,当0<x<e时,g′(x)>0,函数g(x)单调递增,当x>e时,g′(x)<0,函数g(x)单调递减,故g(x)max=g(e)=,且当x>e时,g(x)∈(0,),又g(1)=0,所以0<<,所以a>1且a≠e,即a的取值范围为(1,e)2.解析:(1)当a=0时,f(x)=--ln x(x>0),则f′(x)==.当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0.所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,故f(x)的最大值即为f(x)的极大值f(1)=-1.(2)因为函数f(x)恰有一个零点,所以方程a(x-ln x)--ln x=0在(0,+∞)上恰有一个解,即方程a(x-ln x)=+ln x在(0,+∞)上恰有一个解.又易知当x>0时,x-ln x>0,所以方程a=在(0,+∞)上恰有一个解.令g(x)=(x>0),则g′(x)=.令h(x)=x-1-(x+1)ln x(x>0),则h′(x)=1-ln x-=-ln x-.由(1)知,h′(x)≤-1,所以h(x)在(0,+∞)上单调递减.又h(1)=0,所以当x∈(0,1]时,h(x)≥0;当x∈(1,+∞)时,h(x)<0.则当x∈(0,1]时,g′(x)≤0;当x∈(1,+∞)时,g′(x)<0.所以g(x)在(0,+∞)上单调递减.又当x→0时,g(x)→+∞,当x→+∞时,g(x)→0,所以a∈(0,+∞).。
全国卷中零点与极值问题Microsoft Word 文档 (3)
全国卷中零点与极值问题例1:已知0k >,且()xf x e kx =-:有两个零点,求k 的范围 解法1:/()0xx f x e k e k =->⇒>Q ln x k ∴>()f x ∴在(,ln ),(ln ,)k k -∞+∞]Z(ln )0ln 0ln 1f k k k k k k e <⇒-<⇒>⇒> (0)10f =>----观察尝试法11()10k f e k=->---行吗?为什么?222(ln )ln 0f k k k k =->会吗? 20x x e e kx x kx x k >->->⇒>时,取max{,}b e k =,则2()()0bf b e kb b kb b b k >->-=-≥ 所以当k e >时,()xf x e kx =-:有两个零点。
例2:已知0k >,且g()ln x x kx =-有两个零点,求k 的范围/11g ()0x k x x k=->⇒< 所以11(x)(0,),(,)g kk+∞Z ]在111()ln 1001g k k k e=->⇒<<< (1)00g k =-<(1在左侧)21g()ln 0()x x kx x kx x k=-<-<⇒>取2111,g(b)lnb kb 0b b kb k k k==-<-=-=则,即()0g b > 所以当10k e<<时,g()ln x x kx =-有两个零点。
(2016.全国Ⅰ)已知函数2()(2)(1)xf x x e a x =-+- 有两个零点.,求a 的取值范围;'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+.(i )设0a =,则()(2)xf x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞单调递减,在(1,)+∞单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2ab <,则 223()(2)(1)()022a fb b a b a b b >-+-=->, 故()f x 存在两个零点.本质是找一个01x <,使0()0f x > 本质是“解2(2)(1)0x x e a x -+->”---含参的超越不等式---没法解所以我们目标就是“放缩成一个可解的含参不等式”2(2)(1)0x x e a x -+->>,而且最后不等号还得是x <0,20a x >-<Q 2(2)(1)(2)(2)0e 0x x x x e a x x e a x a -+->-+->⇒+<----差一点 0,3a x ><-Q 令 ,2(2)(1)(2)(2)0e 0ln x x x x e a x x e a x a x a -+->-+->⇒-<⇒<取min{3,ln }b a =-【例1】(2018.全国Ⅰ)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性; (2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【例2】(2017.全国Ⅱ)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.【例3】(2016.全国Ⅰ)已知函数2()(2)(1)x f x x e a x =-+- 有两个零点.(I )求a 的取值范围; (II )设x 1,x 2是()f x 的两个零点,证明:122x x +<.【例4】(2018.全国Ⅲ)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .【例1参考答案】解:(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当)x ∈+∞U 时,()0f x '<;当(22a a x -∈时,()0f x '>.所以()f x在(0,),()22a a -++∞单调递减,在(,22a a +单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----,所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <. 所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 【例2参考答案】(1)()f x 的定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g 综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x 因为x=x 0是f(x)在(0,1)的最大值点,由()()110,1,'0e f e --∈≠得()()120>f x f e e --=所以()2-20<<2e f x -【例3参考答案】试题解析:(Ⅰ)'()(1)2(1)(1)(2)x xf x x e a x x e a =-+-=-+. (i )设0a =,则()(2)xf x x e =-,()f x 只有一个零点.学科&网(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞单调递减,在(1,)+∞单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2ab <,则 223()(2)(1)()022a fb b a b a b b >-+-=->, 故()f x 存在两个零点.考点:导数及其应用【例4解答】解:(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1xf x x x'=+-+.设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+.当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax ==+-++++.由于当||min{x <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-.。
高考数学函数零点问题
专题二 函数零点问题函数的零点作为函数、方程、图象的交汇点,充分体现了函数与方程的联系,蕴含了丰富的数形结合思想.诸如方程的根的问题、存在性问题、交点问题等最终都可以转化为函数零点问题进行处理,因此函数的零点问题成为了近年来高考新的生长点和热点,且形式逐渐多样化,备受青睐.模块1 整理方法 提升能力对于函数零点问题,其解题策略一般是转化为两个函数图象的交点.对于两个函数的选择,有3种情况:一平一曲,一斜一曲,两曲(凸性一般要相反).其中以一平一曲的情况最为常见.分离参数法是处理零点问题的常见方法,其本质是选择一平一曲两个函数;部分题目直接考虑函数()f x 的图象与x 轴的交点情况,其本质是选择一平一曲两个函数;部分题目利用零点存在性定理并结合函数的单调性处理零点,其本质是选择一平一曲两个函数.函数的凸性1.下凸函数定义设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭,当且仅当12x x =时取等号,则称()f x 为(),a b 上的下凸函数. 2.上凸函数定义设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,当且仅当12x x =时取等号,则称()f x 为(),a b 上的上凸函数.3.下凸函数相关定理定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的下凸函数⇔()f x '为(),a b 上的递增函数⇔()0f x ''≥且不在(),a b 的任一子区间上恒为零. 4.上凸函数相关定理定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的上凸函数⇔()f x '为(),a b 上的递减函数⇔()0f x ''≤且不在(),a b 的任一子区间上恒为零.例1已知函数()()2e 2e x x f x a a x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】(1)()()()()22e 2e 12e 1e 1x x x x f x a a a '=+--=+-,2e 10x +>. ①当0a ≤时,e 10x a -<,所以()0f x '<,所以()f x 在R 上递减. ②当0a >时,由()0f x '>可得1lnx a >,由()0f x '<可得1ln x a<,所以()f x 在1,ln a ⎛⎫-∞ ⎪⎝⎭上递减,在1ln ,a ⎛⎫+∞ ⎪⎝⎭上递增.(2)法1:①当0a ≤时,由(1)可知,()f x 在R 上递减,不可能有两个零点.②当0a >时,()min 11ln 1ln f x f a a a ⎛⎫⎡⎤==-+ ⎪⎣⎦⎝⎭,令()()min g a f x =⎡⎤⎣⎦,则()2110g a a a'=+>,所以()g a 在()0,+∞上递增,而()10g =,所以当1a ≥时,()()min 0g a f x =⎡⎤≥⎣⎦,从而()f x 没有两个零点.当01a <<时,1ln 0f a ⎛⎫< ⎪⎝⎭,()22110e e e a a f -=++->,于是()f x 在11,ln a ⎛⎫- ⎪⎝⎭上有1个零点;因为()2333333ln 1121ln 11ln 10f a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+----=---> ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且31ln 1ln a a ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,所以()f x 在1ln ,a ⎛⎫+∞ ⎪⎝⎭上有1个零点. 综上所述,a 的取值范围为()0,1.法2:()2222e e 2e 0e e 2e e e x xxxxxx x x a a x a a x a ++--=⇔+=+⇔=+.令()22e e e x x xxg x +=+,则()()()()()()()()()2222222e 1e e 2e 2e e e 2e 1e 1eeeexx x x x x x x x xx xx x x g x ++-++++-'==-++,令()e 1x h x x =+-,则()e 10x h x '=+>,所以()h x 在R 上递增,而()00h =,所以当0x <时,()0h x <,当0x >时,()0h x >, 于是当0x <时,()0g x '>,当0x >时,()0g x '<,所以()g x 在(),0-∞上递增,在()0,+∞上递减.()01g =,当x →-∞时,()g x →-∞,当x →+∞时,()0g x +→.若()f x 有两个零点,则y a =与()g x 有两个交点,所以a 的取值范围是()0,1.法3:设e 0x t =>,则ln x t =,于是()22e 2e 02ln x x a a x at at t t +--=⇔+=+⇔22ln t t a t t +=+,令()22ln t t G t t t +=+,则()()()()()222122ln 21t t t t t t G t t t ⎛⎫++-++ ⎪⎝⎭'==+ ()()()22211ln t t t tt +-+-+,令()1ln H t t t =-+,则()110H t t'=+>,所以()H t 在()0,+∞上递增,而()10H =,所以当01t <<时,()0H t <,()0G t '>,当1t >时,()0H t >,()0G t '<,所以()G t 在()0,1上递增,在()1,+∞上递减.()11G =,当0t +→时,()G t →-∞,当t →+∞时,()0G t +→.若()f x 有两个零点,则y a =与()G t 有两个交点,所以a 的取值范围是()0,1.法4:设e 0x t =>,则ln x t =,于是()22e 2e 02ln 0x x a a x at at t t +--=⇔+--=⇔()ln 12t a t t +-=.令()()12k t a t =+-,()ln t t tϕ=,则()f x 有两个零点等价于()y k t =与()y t ϕ=有两个交点.因为()21ln tt tϕ-'=,由()0t ϕ'>可得0e t <<,由()0t ϕ'<可得e t >,所以()t ϕ在()0,e 上递增,在()e,+∞上递减,()1e e ϕ=,当x →+∞时,()0t ϕ+→.()y k t =是斜率为a ,过定点()1,2A --的直线.当()y k t =与()y t ϕ=相切的时候,设切点()00,P t y ,则有()0000002ln 121ln t y t y a t ta t ⎧=⎪⎪⎪=+-⎨⎪-⎪=⎪⎩,消去a 和0y ,可得()000200ln 1ln 12t t t t t -=+-, 即()()00021ln 10t t t ++-=,即00ln 10t t +-=.令()ln 1p t t t =+-,显然()p t 是增函数,且()10p =,于是01t =,此时切点()1,0P ,斜率1a =.所以当()y k t =与()y t ϕ=有两个交点时,01a <<,所以a 的取值范围是()0,1.法5:()()20e e 2e x x x f x a x =⇔+=+,令()()2e e x x M x a =+,()2e e x x m x =+,()2e x n x x =+,则()f x 有两个零点⇔()M x 与()n x 的图象有两个不同交点.()()002m n ==,所以两个函数图象有一个交点()0,2.令()()()2e e x x T x m x n x x =-=--,则()()()22e e 12e 1e 1x x x x T x '=--=+-,由()0T x '>可得0x >,由()0T x '<可得0x <,于是()T x 在(),0-∞上递减,在()0,+∞上递增,而()00T =,所以()()m x n x ≥,因此()m x 与()n x相切于点()0,2,除切点外,()m x 的图象总在()n x 图象的上方.由(1)可知,0a >.当1a >时,将()m x 图象上每一点的横坐标固定不动,纵坐标变为原来的a 倍,就得到了()M x 的图象,此时()M x 与()n x 的图象没有交点.当1a =时,()m x 的图象就是()M x 的图象,此时()M x 与()n x 的图象只有1个交点.当01a <<时,将()m x 图象上每一点的横坐标固定不动,纵坐标变为原来的a 倍,就得到了()M x 的图象,此时()M x 与()n x 的图象有两个不同交点.综上所述,a 的取值范围是()0,1.法6:()()()20e e 2e e 12e x x x x xx f x a x a =⇔+=+⇔+-=,令()()e 12xp x a =+-,()e xxq x =,则()f x 有两个零点⇔()p x 与()q x 的图象有两个不同交点. ()1ex xq x -'=,由()0q x '>可得1x <,由()0q x '<可得1x >,所以()q x 在(),1-∞上递增,在()1,+∞上递减,当x →+∞时,()0q x +→.由(1)可知,0a >,所以()p x 是下凸函数,而()q x 是 上凸函数.当()p x 与()q x 相切时,设切点为()00,P x y ,则有()00000000e 12e 1e e xx x x y a x y x a ⎧=+-⎪⎪⎪=⎨⎪-⎪=⎪⎩,消去a ,0y 可得()0000021e 12e e x x x x x -+-=,即()()0002e 1e 10x x x ++-=,即00e 10x x +-=.令()e 1x W x x =+-,显然()W x 是增函数,而()00W =,于是00x =,此时切点()0,0P ,1a =.所以当()p x 与()q x 的图象有两个交点时,01a <<,所以a 的取值范围是()0,1.【点评】函数零点问题,其解题策略是转化为两个函数图象的交点,三种方式中(一平一曲、一斜一曲、两曲)最为常见的是一平一曲.法1是直接考虑函数()f x 的图象与x 轴的交点情况,法2是分离参数法,法3用了换元,3种方法的本质都是一平一曲,其中法3将指数换成了对数,虽然没有比法2简单,但是也提示我们某些函数或许可以通过换元,降低函数的解决难度.法4是一斜一曲情况,直线与曲线相切时的a 值是一个重要的分界值.法5和法6都是两曲的情况,但法6比法5要简单,其原因在于法5的两曲凸性相同而法6的两曲凸性相反.函数零点问题对函数图象说明的要求很高,如解法2当中的()g x 是先增后减且极大值()01g =,但x →-∞和x →+∞的状态会影响a 的取值范围,所以必须要说清楚两个趋势的情况,才能得到最终的答案.例2设函数设()21n n f x x x x =+++-L ,n ∈*N ,2n ≥. (1)求()2n f ';(2)证明:()n f x 在20,3⎛⎫⎪⎝⎭内有且仅有一个零点(记为n a ),且1120233nn a ⎛⎫<-< ⎪⎝⎭.【解析】(1)因为()112n n f x x nx -'=+++L ,所以()121222n n f n -'=+⨯++⋅L …①.由()2222222n n f n '=+⨯++⋅L …②,①-②,得()21212222n n n f n -'-=++++-⋅=L()12212112nn n n n --⋅=---,所以()()2121n n f n '=-+. 【证明】(2)因为()010f =-<,22213322211121202333913nn n f ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦=-=-≥-=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-,由零点存在性定理可知()n f x 在20,3⎛⎫⎪⎝⎭内至少存在一个零点.又因为()1120n n f x x nx -'=+++>L ,所以()n f x 在20,3⎛⎫ ⎪⎝⎭内递增,因此()n f x 在20,3⎛⎫⎪⎝⎭内有且只有一个零点n a .由于()()111n n x x f x x-=--,所以()()1101n n n n n na a f a a -=-=-,由此可得11122n n n a a +=+,即11122n n na a +-=.因为203n a <<,所以111120223n n n a ++⎛⎫<< ⎪⎝⎭,所以1111212022333n nn na ++⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,所以1120233nn a ⎛⎫<-< ⎪⎝⎭.【点评】当函数()f x 满足两个条件:连续不断,()()0f a f b <,则可由零点存在性定理得到函数()f x 在(),a b 上至少有1个零点.零点存在性定理是高中阶段一个比较弱的定理,首先,该定理的两个条件缺一不可,其次,就算满足两个条件,也只能得到有零点的结论,究竟有多少个零点,也不确定.零点存在性定理常与单调性综合使用,这是处理函数零点问题的一种方法.例3已知函数()()e ln x f x x m =-+.(1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (2)当2m ≤时,证明:()0f x >. 【解析】(1)()1e xf x x m'=-+,由0x =是()f x 的极值点,可得()00f '=,解得1m =.于是()()e ln 1x f x x =-+,定义域为()1,-+∞,()1e 1xf x x '=-+,则()()21e 01x f x x ''=+>+,所以()f x '在()1,-+∞上递增,又因为()00f '=,所以当10x -<<时()0f x '<,当0x >时()0f x '>,所以()f x 在()1,0-上递减,在()0,+∞上递增.【证明】(2)法1:()f x 定义域为(),m -+∞,()1e xf x x m'=-+,()()21e 0xf x x m ''=+>+,于是()f x '在(),m -+∞上递增.又因为当x m +→-时,()f x '→-∞,当x →+∞时,()f x '→+∞,所以()0f x '=在(),m -+∞上有唯一的实根0x ,当0m x x -<<时,()0f x '<,当0x x >时,()0f x '>,所以()f x 在()0,m x -上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取得最小值.由()00f x '=可得001e 0x x m-=+,即()00ln x m x +=-,于是()()000000011e ln 2xf x x m x x m m m x m x m=-+=+=++-≥-++.当2m <时,()00f x >;当2m =时,等号成立的条件是01x =-,但显然()11e 012--≠-+,所以等号不成立,即()00f x >.综上所述,当2m ≤时,()()00f x f x ≥>.法2:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,于是()()e ln 2x f x x ≥-+,所以只要证明()()e ln 20x x x ϕ=-+>,()2,x ∈-+∞,就能证明当2m ≤时,()0f x >.()1e 2x x x ϕ'=-+,()()21e 02x x x ϕ''=+>+,于是()x ϕ'在()2,-+∞上递增.又因为()1110eϕ'-=-<,()10102ϕ'=->,所以()0x ϕ'=在()2,-+∞上有唯一的实根0x ,且()01,0x ∈-.当02x x -<<时,()0x ϕ'<,当0x x >时,()0x ϕ'>,所以()x ϕ在()02,x -上递减,在()0,x +∞上递增,所以当0x x =时,()x ϕ取得最小值.由()00x ϕ'=可得001e 02x x -=+,即()00ln 2x x +=-.于是()()()0200000011e ln 2022x x x x x x x ϕ+=-+=+=>++,于是()()00x x ϕϕ≥>.综上所述,当2m ≤时,()0f x >.法3:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,于是()()e ln 2x f x x ≥-+,所以只要证明()e ln 20x x -+>(2x >-),就能证明当2m ≤时,()0f x >.由ln 1x x ≤-(0x >)可得()ln 21x x +≤+(2x >-),又因为e 1x x ≥+(x ∈R ),且两个不等号不能同时成立,所以()e ln 2x x >+,即()e ln 20x x -+>(2x >-),所以当2m ≤时,()0f x >.【点评】法1与法2中出现的0x 的具体数值是无法求解的,只能求出其范围,我们把这种零点称为“隐性零点”.法2比法1简单,这是因为利用了函数单调性将命题()e ln 0x x m -+>模块2 练习巩固 整合提升练习1:设函数()2e ln x f x a x =-.(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时,()22lnf x a a a≥+. 【解析】(1)()f x 的定义域为()0,+∞,()22e x af x x'=-. ()f x '的零点的个数⇔22e x x a =的根的个数⇔()22e x g x x =与y a =在()0,+∞上的交点的个数.因为()()2221e 0x g x x '=+>,所以()g x 在()0,+∞上递增,又因为()00g =,x →+∞时,()g x →+∞,所以当0a ≤时,()g x 与y a =没有交点,当0a >时,()g x 与y a =有一个交点.综上所述,当0a ≤时,()f x '的零点个数为0,当0a >时,()f x '的零点个数为1. 【证明】(2)由(1)可知,()f x '在()0,+∞上有唯一的零点0x ,当00x x <<时,()0f x '<,当0x x >时,()0f x '>,所以()f x 在()00,x 上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取得最小值,且最小值为()0f x .因为0202e 0x a x -=,所以020e 2x a x =,00ln ln 22ax x =-,所以()020000002e ln ln 22ln 2ln 2222x a a aa f x a x a x ax a a a x x a ⎛⎫=-=--=+-≥+ ⎪⎝⎭. 练习2:设函数()2e 2ln x f x k x x x ⎛⎫=-+ ⎪⎝⎭(k 为常数,e 2.71828=⋅⋅⋅是自然对数的底数).(1)当0k ≤时,求函数()f x 的单调区间;(2)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围.【解析】(1)函数()f x 的定义域为()0,+∞,()32e 2e 21x x x f x k x xx -⎛⎫'=--+= ⎪⎝⎭ ()()32e x x kx x--.当0k ≤时,e 0x kx ->,所以当02x <<时,()0f x '<,当2x >时,()0f x '>.所以()f x 的递减区间为()0,2,递增区间为()2,+∞.(2)函数()f x 在()0,2内存在两个极值点()0f x '⇔=在()0,2内有两个不同的根. 法1:问题e 0x kx ⇔-=在()0,2内有两个不同的根.设()e x h x kx =-,则()e x h x k '=-. 当1k ≤时,()0h x '>,所以()h x 在()0,2上递增,所以()h x 在()0,2内不存在两个不同的根.当1k >时,由()0h x '>可得ln x k >,由()0h x '<可得ln x k <,所以()h x 的最小值为()()ln 1ln h k k k =-.e 0xkx -=在()0,2内有两个不同的根()()()()20102e 20ln 1ln 00ln 2g g k g k k k k ⎧=>⎪=->⎪⇔⎨=-<⎪⎪<<⎩,解得2e e 2k <<.综上所述,k 的取值范围为2e e,2⎛⎫⎪⎝⎭.法2:问题e x k x ⇔=在()0,2内有两个不同的根y k ⇔=与()e xg x x=在()0,2内有两个不同的交点.()()221ee e xx x x x g x x x --'==,当01x <<时,()0g x '<,当1x >时,()0g x '>.()1e g =,()2e22g =,当0x +→时,()g x →+∞.画出()g x 在()0,2内的图象,可知要使y k =与()g x 在()0,2内有两个不同的交点,k 的取值范围为2e e,2⎛⎫⎪⎝⎭.练习3:已知函数()e x f x =和()()ln g x x m =+,直线l :y kx b =+过点()1,0P -且与曲线()y f x =相切.(1)求切线l 的方程;(2)若不等式()ln kx b x m +≥+恒成立,求m 的最大值;(3)设()()()F x f x g x =-,若函数()F x 有唯一零点0x ,求证:0112x -<<-. 【解析】(1)设直线l 与函数()f x 相切于点()11,e x A x ,则切线方程为()111e e x x y x x -=-,即1111e e e x x x y x x =-+,因为切线过点()1,0P -,所以11110e e e x x x x =--+,解得10x =,所以切线l 的方程为1y x =+.(2)设()()1ln h x x x m =+-+,()1x m h x x m+-'=+.当(),1x m m ∈--时,()0h x '<,当()1,x m ∈-+∞时,()0h x '>,所以()h x 在1x m =-时取极小值,也是最小值.因此,要原不等式成立,则()120h m m -=-≥,所以m 的最大值是2.【证明】(3)由题设条件知,函数()1e x F x x m'=-+(x m >-),令()()H x F x '=,则()()21e 0x H x x m '=+>+,于是()H x 在(),m -+∞上单调递增.因为当x m +→-时,()F x '→-∞,当x →+∞时,()F x '→+∞,所以()0F x '=有唯一的实根,设为1x ,则当()1,x m x ∈-时,()0F x '<,当()1,x x ∈+∞时,()0F x '>,于是()F x 有唯一的极小值1x ,也是最小值.当x m +→-时,()F x →+∞,当x →+∞时,()F x →+∞.因此函数()F x 有唯一零点的充要条件是其最小值为0,即()00F x =(01x x =),所以()00e ln 0x x m -+=,又因为001e x x m=+,所以00e 0x x +=.设()e x x x ϕ=+,则()e 10x x ϕ'=+>,所以()x ϕ在(),m -+∞上单调递增,又因为1211e 022ϕ-⎛⎫-=-> ⎪⎝⎭,()1110e ϕ-=-<,由零点存在性定理可知0112x -<<-.。
透视高考中“函数零点”问题
(x-1)x2- k x2=x2(x- k+2 ).
2
2
取 x0=k+1, 则 f(x0)>0. 又 k+1>k-1>lnk(k>1), 此时函数 f(x)在(lnk,x0)内只有一个零点.
综上所述, 当 k>0 时, 函数 f(x)=(x-1)ex- k x2 在 R 上只 2
(Ⅱ)
当
x∈[
仔 4
,
仔 2
]
时,
证明:
f(x)+g(x)(
仔 2
-x)≥0;
(Ⅲ)
设
xn
为函数
u(x)=f(x)-1在区间(2n仔+
仔 4
,
2n仔+
仔 2
)
内的零点,
其中 n∈N. 证明:
2n仔+
仔 2
-xn<
e-2n仔 sinx0-cosx0
.
解析:
(Ⅰ)
易得 f(x)的单调递增区间是
[2k仔-
零点是-3, 3, 符合条件. 此时 f ′(x)=3(x+3)(x-1), f(x)的极
小值是 f(1)=-32.
当 b=1,
2a+b 3
=-3
时,
a=-5,
不合题意. 当 b=1,
2a+b 3
=3
时, a=4 不合题意.
当
b=3,
2a+b 3
=1
时,
a=0,
不合题意.
当
b=-3,
2a+b 3
=3时,
例谈高考数学题的函数零点问题
例谈高考数学题的函数零点问题梁关化, 2015,11,12高考数学题的函数零点问题,早前都是以小题出现为多,但近几年却变成大题,甚至是难题。
比如,今年全国卷( 1)、广东和江苏等省的高考数学题都把函数零点问题作为大题、难题来出。
函数零点问题,概括起来,常有以下几种种类:一、求零点的值或判断零点所在区间;二、议论能否有零点或零点个数;三、由零点个数求函数分析式中参数取值范围。
解决零点问题,第一要掌握好零点观点的三个等价形式:( 1)函数值为零的自变量值;( 2)方程 f(x)=0 的解(也能够把方程 f(x)=0 变形为 g(x)=h(x), 那么两函数 g(x) 和 h(x) 的图象的交点的横坐标即为方程 f(x)=0 的解);( 3)函数图象与 x 轴的交点的横坐标。
所以,零点与方程知识,与数形联合的数学思想密切有关。
其次,还需要掌握好零点存在性的判判定理;别的,还需要掌握好利用函数的导数来研究函数的单一性,极值,最值的方法。
求函数分析式中参数取值范围问题,常常还需要分类议论的数学思想。
下边一同剖析几道高考题或高考题的改编题。
例1 (广东2015 年高考数学理科题)设 a 1 ,函数 f ( x ) (1 x 2)e x a(1)求 f ( x )的单一区间;(2) 证明 f ( x )在( , ) 上仅有一个零点;(3) 若曲线 y f ( x )在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP 平行,( O 是坐标原点),证明:m 3 a 2 1 .e解:( 1)解略。
(答案:f(x)的单一递加区间为( , ) )(2)由( 1)得f(x)在区间( , ) 上单一递加,又f (0) 1 a 0(a 1), f ( a 1) ae a 1 a a(e a 1 1) 0,从而有 f (0) f ( a 1) 0 ,x0 (0, a 1) 使得 f ( x0) 0 ,f ( x )在( , ) 上仅有一个零点。
掌握高考数学中的函数零点与单调性判断技巧有哪些关键点
掌握高考数学中的函数零点与单调性判断技巧有哪些关键点函数是高考数学的基础知识之一,而在求解函数的零点以及判断函数的单调性时,掌握相应的技巧对于解题至关重要。
本文将探讨在高考数学中,掌握函数零点与单调性判断的关键点。
一、函数零点的判定函数的零点是指函数取零值的点,也就是函数图像与x轴的交点。
在高考数学中,常用的方法有以下几种关键点:1. 方程法:将函数表达式置为零,通过解方程求解。
例如,对于一次函数y=ax+b,零点即为方程ax+b=0的解。
此方法适用于一次函数和二次函数等较简单的函数,但对于高次多项式函数可能较为繁琐。
2. 二分法:对于连续函数,若f(a)和f(b)异号,则函数在(a, b)内至少存在一个零点。
通过不断将区间一分为二,并判断分割后的两个新区间中f(x)的取值情况,可以逐步缩小零点所在的范围。
例如,对于函数f(x)=x^3-3x+1,f(-2)=-13,f(0)=1,故函数在(-2,0)之间存在一个零点。
3. 中间值定理:若连续函数f(x)在区间[a, b]内,且f(a)和f(b)异号,则函数在(a, b)内至少存在一个零点。
该方法常用于判断函数零点的存在性。
例如,对于函数f(x)=x^2-4,在区间(-2,2)内f(-2)=-4,f(2)=0,因此函数在(-2,2)内存在一个零点。
二、单调性判断的技巧判断函数的单调性是在高考数学中常见的问题,以下是几个关键点:1. 导数法:对于可导函数,导数的正负性直接与函数的单调性相关。
当导函数f'(x)大于零时,函数在该区间内单调递增;当导函数f'(x)小于零时,函数在该区间内单调递减。
例如,对于函数f(x)=x^2,导函数f'(x)=2x,因此函数在x>0时单调递增。
2. 函数值法:对于一些无法直接求导的函数,可以通过计算函数在不同区间上的取值来判断函数的单调性。
例如,对于函数f(x)=x^3-3x+1,在函数图像上找到拐点、极值点及与x轴的交点,根据函数图像的变化来判断函数的单调性。
浅谈高中数学零点问题
浅谈高中数学零点问题一、求函数的零点例1求函数y=x2-x<02x-1x的零点≥ 0解:令x2-1=0x<0,解得x=1,2x-1=0x≥ 0,解为x=。
所以原函数的零点为和-1和。
注释:找到函数FX的零点,将其转换为方程FX=0,并通过因子分解将方程转换为二次方程。
二、判断函数零点个数例2求fx=x-的零数。
解:函数的定义域-∞,0∪0,+∞。
设FX=0,即X-=0,解得:x=2或x=-2。
原来的函数有两个零。
点评:转化为方程直接求出函数零点,注意函数的定义域。
三、根据函数零点反算参数例3若方程ax-x-a=0有两个解,求a的取值范围。
分析:将方程ax-x-a=0转化为ax=x+a。
由题知,方程ax-x-a=0有两个不同的实数解,即函数y=ax与y=a+x有两个不同的交点,如图所示。
这种情况与问题的含义不符。
2a>1。
当y轴上直线y=x+A的截距大于1时,函数y=ax和函数y=A+x有两个不同的交点。
所以a<0与0 点评:采用分类讨论与用数形结合的思想。
四、零点的二分法近似解例4求函数fx=x3+x2-2x-2的一个正数零点精确到0.1。
解决方案:1。
第一步是确定零点所在的近似间隔a和B。
可以使用函数属性,也可以使用计算机。
但是,尝试采用端点为整数的间隔,并尽可能缩短间隔长度。
通常,可以确定长度为1的间隔。
2列表如下:零点所在区间内中点函数值的区间长度1,2f1.5>011,1.5f1。
25<00.51.25,1.5f1.375<00.251.375,1.5f1。
438>00.1251.375,1.438f1.4065>00.0625可以看出,区间1.375和1.438的长度小于0.1,因此1.4065可以作为1.375和1.438范围内函数FX正数零点的近似值。
点评:用二分法求函数零点近似值的过程中,首先依据函数性质确定函数零点存在的一个区间,此区间选取应尽量小,并且易于计算,再不断取区间中点,把区间的范围逐步缩小,使得在缩小的区间内存在一零点。
破解全国卷压轴题中零点区间端点选取问题
破解全国卷压轴题中零点区间端点选取问题作者:邹玲平苏圣奎
来源:《福建中学数学》2018年第02期
纵观近几年来高考全国卷,导数压轴题中的零点存在性问题通常与极限思想有关,端点取值在解答中横空出世,让师生一头雾水,不知所措,也难倒了许多顶尖优秀生,成为尖子生取得满分的一个拦路虎,不管用分离参数法还是不分离参数法都存在同样的问题,即在判断给定曲线的图像时,需要用到极限的知识,具有一定的局限性,严格地说需要利用函数的单调性及零点存在性定理来解决,单调性容易解决,判断零点存在需要寻找函数值正负交替的区间,而如何找到一个满足条件的区间端点特别困难,本文以近几年高考全国卷压轴题题为例,探索寻找零点区间端点的一般规律和方法。
高中数学-函数的零点问题及例题分析
高中数学-函数的零点问题及例题分析1. 引言函数是数学中一个非常重要的概念,它在数学和实际问题中发挥着重要的作用。
函数的零点问题是函数中一个常见且重要的问题,它与方程的解有着紧密的联系。
本文将介绍函数的零点问题,并通过一些例题分析来加深理解。
2. 函数的定义与性质回顾函数是一个将一个集合的元素映射到另一个集合的元素的规则。
函数通常用符号表示,如$f(x)$,其中$x$是自变量,$f(x)$是对应的函数值。
函数的零点指的是函数取零值的点,即满足$f(x)=0$的$x$值。
函数的零点问题与方程的解问题紧密相关。
对于一元函数,函数的零点就是方程$f(x)=0$的解。
因此,解方程可以转化为求函数的零点。
函数的零点可以通过图像、图表或数值计算等方法来确定。
下面将通过几个例题来进一步分析。
3. 例题分析3.1 例题一已知函数$f(x)=2x^2-3x+1$,求函数$f(x)$的零点。
解析:要求函数$f(x)$的零点,即求解方程$2x^2-3x+1=0$。
我们可以使用配方法、求根公式或因式分解等方法来解这个二次方程,最终可以得到$x=1$和$x=\frac{1}{2}$两个解。
3.2 例题二已知函数$g(x)=\sqrt{x+3}-2$,求函数$g(x)$的零点。
解析:要求函数$g(x)$的零点,即求解方程$\sqrt{x+3}-2=0$。
为了消除平方根,我们可以将方程两边平方,得到$x+3=4$,然后解得$x=1$。
因此,函数$g(x)$的零点为$x=1$。
3.3 例题三已知函数$h(x)=\frac{1}{x-2}$,求函数$h(x)$的零点。
解析:函数$h(x)$在$x=2$处不存在定义,因此不存在零点。
4. 总结本文介绍了函数的零点问题及其与方程的解之间的联系。
函数的零点是函数取零值的点,可以通过解相应的方程来求得。
通过例题分析,我们进一步了解了求函数零点的具体方法。
在实际问题中,函数的零点问题有时对于确定某个变量的取值非常重要,因此对于函数的零点问题的理解和掌握是非常有益的。
高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?
高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?函数零点问题的4种解题方法一、依据概念化为方程求根对于函数y=f(x),我们把f(x)=0使的实数x叫做函数y=f(x)的零点,因此,该方法就是将函数的零点问题转化为方程f(x)=0的问题来解答。
二、由数到形实现零点交点的互化函数y=f(x)的零点,即函数y=f(x)的图像与x轴的交点的横坐标。
因此,求函数的零点问题可转化为函数y=f(x)图像与x轴的交点的横坐标,或将方程f(x)=0整理成f1(x)=f2(x)形式,然后在同一直角坐标系下,画出两函数的图像,交点的横坐标即为函数的零点,交点的个数即为函数的零点个数。
注:在解题中,若遇到函数形式复杂难以作图时,则不妨先整理表达式,一般以所涉及的函数能作其图像为整理要求。
接着在同一坐标系下,规范作图,然后确定交点的位置或个数,特别在部分区间上是否存在交点,要细心对待,有时还需计算相关的函数值(函数值的趋势)来确定是否有交点。
三、依存定理凭号而论如果函数y=f(x)在区间[a,b]上的图像时联系不断的一条曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点。
即存在c∈(a,b),使得f(c)=0。
通常将此论述称为零点存在性定理。
因此,该解题策略就是将函数零点分布问题转化为判断不等式f(a)f(b)<0是否成立。
四、借助单调确定问题如果函数y=f(x)在区间[a,b]上的图像时连续不断的一条具有单调性曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有唯一零点,即存在唯一的c∈(a,b),使得f(c)=0。
通常将此论述称为零点唯一性定理。
因此,该策略解题需要考虑两个条件:条件一是f(a)f(b)<0是否成立;条件二是否具有单调性。
题型一:已知零点个数求参数范围题型二:求零点所在区间题型三:求零点个数。
高考常考题- 函数的零点问题(含解析)
函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
高考常考题-函数的零点问题(含解析)
函数的零点问题一、题型选讲 题型一、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,英中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要 注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)立义在R 上的奇函数金)满足Λx+4)=Λx),且在区间[2, 4)上例3、【2018年高考全国III 卷理数】函数/(x) = COS^3Λ + ^ ∣^[0,π]的零点个数为 ______ 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范囤.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将 函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便 地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画岀函数的图像,然后数形结合求解.1∏Λ∖X≥ 1例4. (2020届山东省枣庄.滕州市髙三上期末)已知/(X) = {…、f ,若函数y = ∕(x)-l 恰有f(2-x) + k,x<∖一个零点,则实数A ∙的取值范围是( )A. (l,4∙s) B ・ ILC. (YU)D ・(Y M]Z、21og^ x,x≥∖. Z 、例5、(2020全国高三专题练习(文))函数/(M = [f(w]) JI yl ,若方程f(x) = ~2x + m 有且只有两个不相等的实数根,则实数加的取值范围是()A. (-oo,4)B. (Y ,4]C. (-2,4)D. (-2,4]2-x,2≤x<3x-4,3≤x<4则函数y=∕ω-iog s H 的零点的个数为 ____________x<b例2、(2017苏锡常镇调研)若函数Λx)=≤ IInx<x>l, )则函数y=^χ)∣~∣的零点个数为 ______若函数F(X) =/(x)-g(x)在[0,2)上只有两个零点,则实数R 的值不可能为A.丄 3 3 C.——4例6、[2020年高考天津】已知函数f(x) = < Λ j'0,若函数g(γ) =γ,(j).∣AΛ^2点,则k 的取值范围是A. (→>,-∣)U(2√2,+oo)B ∙ U(0,2√Σ)c ・(Y,0)U(0,2√Σ) D ・ YO)U(2√Σ,S例7. [2019年髙考浙江】已知t 函数f(x) = < 1x,x < O1 c ・若函数一F --(α + l)f +ax.x≥O 13 2y = f(x)-cιx -b 恰有3个零点,则A. Λ<-L b<0B. αv -l, b>0C. α>-l, XoD ・ α>-l, b>Q例8. (2020浙江学军中学髙三3月月考)已知函数/(X)=(A -÷4)V5≤X <-3J 若函数 /(x-2),x≥-3g(x) = ∕α)-W(X+ 1)1有9个零点,则实数M 的取值范围是()A.[科丿B.1 1)匕'FD.1 1 <55例9.(2020届浙江省杭州市第二中学髙三3月月考)已知函数/(X)=2/V 『心2'B- 4D ・-1-2彳伙WR)恰有4个零二、达标训练1、(2019 IlJ 东师范大学附中高三月考)函数/(x) = √-W 的零点所在区间为()A- (一 1'O)B- [θ,^j C - (Al D- (1'2)e 丫 X V 02、 【2018年髙考全国I 卷理数】已知函数/(X)=g(χ) = f(χ) + x + a •若g(x)存在2个lnx, x>O,零点,则α的取值范用是A. [一 1, 0)B. [0, +∞)C. [-1, +oo)D. [1, +∞)3、 (2020届浙江省“山水联盟"髙三下学期开学)已知αbwR,函数f(x) = <(A+(l)e +αr "≤°,若函x,x>0数y = f{x)-ax-b 恰有3个零点,则()A. a>∖J)>OB. d>l,D<0C. a<tb>OD. a<^b<O4. (2020届山东实验中学髙三上期中)设定义在/?上的函数/(X)满足/(→) + /(X) = X 2,K 当X WO 时,__________ ・若函数沧)恰有2个零点,则2的取值范圉是 _____________≥∕(1~x ))2}且★为函数 g(x) = e λ-y[ex-aZR 疋为自然对数的底数)的一个零点,则实数α的取值可能是()A. 1√E 2D ・√72√7(0<x≤l)5、(2020届山东师范大学附中髙三月考)已知函数fW = ∖2—(X > DIX若方程/(兀)=一力+ α有三个不同的实根,则实数α的取值范围是 _______6、[2018年髙考浙江】已知z∈R.函数沧)=<X - 4, % ≥ Λ X 2-4x + 3,x<2,当z=2时,不等式√(x)vθ的解集是广(X)Vx .己知存在如Λ 2+2ax + a,x ≤ O 74202O届江苏省南通市如皋市高三下学期二模】已知函数f(x) = \e x_ex I ,,若存在实数+-a2,x>O X 3使得函数y = f(χ)-k有6个零点,则实数。
专题02函数零点问题-2024高考数学尖子生辅导专题
专题02函数零点问题-2024高考数学尖子生辅导专题函数的零点问题在数学中是一个非常重要的概念和问题。
而在2024高考的数学尖子生辅导专题中,函数的零点问题无疑是一个重点内容。
下面,我们来详细探讨一下这个问题。
函数的零点问题即是求解函数的解析式方程$f(x)=0$的解$x$。
在实际问题中,函数的零点往往表示了其中一种特定情况下的平衡点或者特殊点,因此求解函数的零点问题是非常实用和重要的。
那么,如何求解函数的零点问题呢?下面,我们将从三个方面进行讨论。
首先,我们可以通过图像来求解函数的零点问题。
对于一般的函数,我们可以通过画出函数的图像来判断函数的零点。
函数的零点为函数与$x$轴相交的点,在图像上表现为函数曲线与$x$轴的交点。
通过观察函数图像上哪些点与$x$轴相交,我们可以找到函数的零点。
对于简单的函数,我们可以手工画出函数图像,对于复杂的函数,我们可以借助计算机软件进行绘图。
其次,我们可以通过函数的解析式来求解函数的零点问题。
对于一般的函数,我们可以通过解方程$f(x)=0$来求解函数的零点。
通过将方程变形化简,最终得到$x$的解析表达式。
这种方法适用于存在解析解的函数,对于一些特殊函数,解析解并不存在,我们需要采用其他方法进行求解。
最后,我们可以通过数值计算方法来求解函数的零点问题。
对于一些无法通过解析式求解的函数,我们可以采用数值计算方法进行求解。
数值计算方法包括二分法、不动点迭代法、牛顿迭代法等。
这些方法通过迭代计算,逐渐接近函数的零点。
在实际计算中,我们可以通过计算机软件来进行数值计算,以提高计算的精度和效率。
综上所述,函数的零点问题在数学中具有重要的意义,我们可以通过图像、解析式和数值计算方法等多种途径来求解函数的零点。
在2024高考的数学尖子生辅导专题中,函数的零点问题无疑是一个关键的内容,掌握这个问题对于学生的数学能力提高和应试能力提升都具有重要作用。
因此,我们应该重视并加以学习和实践。
盘点高考数学中函数的零点问题
盘点高考数学中函数的零点问题高二数学 杨社锋函数思想是贯穿高中数学学习中的一个重要思想。
而函数的零点问题可以很好的将函数和方程结合起来,同时也考察了学生分析问题转化问题的能力。
因此这部分内容也是高考考查的重点内容,下面我们一起来盘点一下函数零点问题的考察方法。
首先我们回顾一下函数零点的定义,函数y=f (x )的图像与x 轴交点的横坐标,称为函数的零点。
换句话说,y=f(x)的零点、方程f(x)=0的根与y=f (x )的图像与x 轴交点的横坐标三者之间是等价的。
也就是说,函数的零点问题我们可以通过解方程来解决,也可以通过函数图像来解决。
到底采用什么思路我们还要具体问题具体分析。
函数的零点问题总结起来大致有三种考法。
一、函数y=f(x)的零点个数问题对于这类问题,我们无需考虑零点的具体值是多少,我们只需考虑函数y=f(x)与x 轴有几个交点就可以了;当函数y=f(x)的图象不容易画出时,我们可以将其转化为两个函数图像的交点个数问题例1. (2012天津)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3【分析】如果能画出f(x)的图像一切问题都迎刃而解了,又发现f (x )=2x +x 3-2是增函数,只需计算f(0),f(1)的值就可以了.【解析】:由题意知f (x )为单调增函数且f (0)=-1<0,f (1)=1>0,所以在区间(0,1)内有且只有一个零点.答案:B例2.(2013天津)函数f (x )=2x |log 0.5x |-1的零点个数为( )A .1B .2C .3D .4【分析】首先考虑到直接画出函数f (x )=2x |log 0.5x |-1的图像但是发现行不通,函数f(x)的图像你我都不会画。
于是就考虑到看能不能转化为两个函数的图像的交点问题。
f (x )=2x |log 0.5x |-1的零点等价于方程2x |log 0.5x |=1的根,再转化为方程0.51log 2x x =的根的问题,到这里我们恍然大悟,原来就是研究函数0.5log y x =与函数12x y =图像的交点问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当 x → +∞, g ( x ) → +∞,
h( x ) = -a( x - 1 )2 与 g ( x ) 有两个交点 ,只需 -a <
0, 即 a > 0。
方 法 二 :令 f ( x ) = ( x - 2 ) ex + a( x - 1 )2 = 0,显
然,x ≠
1, ∴
a
=
ex (
( x
2-1
函数 f '( x )的零点个数。
方
法
一
: f '( x ) =
2e2x
-
a x
,
令
2e2x
-
a x
=
0,
2e2x
=
a x
,转化为
两个函数
g
(
x)=
2e2x 与 h (
x)=
a x
的交
点个数。当 a⩽0,没有交点,即导函数 f '( x ) 没有零点。
当 a > 0,一个交点,即导函数 f '( x ) 有一个零点。
方法三: (标准答案)f '( x ) = ( x - 1 )( ex + 2a )
当 a = 0, f ( x ) 只有唯一一个零点。
当 a < 0,令 f'( x ) = 0, x = 1 或 x = ln ( -2a )。∵ x⩽1
基金项目:2016 年度福建省基础教育课程教学研究课题“高考全国卷备考策略成效研究”(课题编号:MJYKT2016-215)。
令 f ( x ) = ( x - 2 ) ex, g'( x ) = ( x - 1 ) ex,
当 x < 1 时 ,g'( x ) < 0, g ( x ) 在 ( -∞, 1 ) 单调递减 ,且
当 x → -∞, g ( x ) → 0,
当 x > 1 时 ,g'( x ) > 0, g ( x ) 在 ( 1, +∞ ) 单调递增 ,且
的取值范围。
方 法 一 :f ( x ) = 0,即 ae2x + ( a - 2 ) ex - x = 0,
∴ a ( e2x + ex ) = 2ex + x,
令 g ( x ) = 2ex + x, g'( x ) = 2ex + 1, ∴ g ( x ) 在 R 上
单调递增,且 g ( 0 ) = 2, g ( x ) ∈ R。
b
满足
b
>
0 ,且
b
<
ln
a 2
,∴
f
(
b
)
=
(
b
-
2
)
eb
+
a( b - 1 )2 > a ( b - 2 ) + a( b - 1 )2 = ab( b - 3 ) > 0
2
2
∴ f ( x ) 有两个零点,a > 0。
2017 全国卷 21: 若 f ( x ) = ae2x +点 ,求 a
x )2
)
,记
g
(
x)=
ex (
( x
2 -
1
x) )2
,
∴
g'(
x
)
=
-
ex [(
x - 2 )2 + ( x - 1 )3
1
]
当 x < 1 时 ,g'( x ) > 0, g ( x ) 在 ( -∞, 1 ) 单调递增 ,且
当 x → -∞, g ( x ) → 0, 当 x → 1-, g ( x ) → 0,
∴ g ( x ) ∈ ( 0, +∞ )。
当 x > 1 时 ,g'( x ) < 0, g ( x ) 在 ( 1, +∞ ) 单调递减 ,且
当 x → 1+, g ( x ) → +∞,当 x → +∞, h( x ) → -∞,
∴ g( x ) ∈ R。
∴ f ( x ) 有两个零点,a > 0。
数 f '( x )有一个零点。
方法三: (标准答案)f '( x ) =
2e2x
-
a x
,
当 a⩽0,f '( x ) > 0 恒成立,即 f '( x ) 没有零点。
当
a
>
0 ,y
=
e2x
单调递增
,y
=
a -x
单调递增
,
∴ f '( x ) 在 x > 0 上单调递增,又 ∵ f '( a ) > 0
假设存在
b
满足
0
<
b
<
a 4
,且
b
<
1 4
,f '(
b
)
<
0,故当
a > 0, f '( x ) 存在唯一零点。
2016 全国卷 21:
f ( x ) = ( x - 2 ) ex + a( x - 1 )2 有 两 个 零 点 ,求 a
的取值范围。
方法一:f ( x ) = 0,即 ( x - 2 ) ex = -a( x - 1 )2
方
法
二
:
2e2x
=
a x,∴
a
=
2xe2x ,
令
g( x)=
2xe2x, g'( x ) = 2e2x ( 1 + 2x ),
当 x > 0, g'( x ) = 2e2x ( 1 + 2x ) 在 x > 0 上单调递增 ,
∴ g( x )> g( 0 ) = 0,
所以当 a⩽0,导函数 f '( x ) 没有零点;当 a > 0,导函
2019·02 ���������
教 学 研 究 数学教学
时,f ( x ) < 0, ∴ f ( x ) 不存在两个零点。
当 a > 0,f ( x ) 在 ( -∞, 1 ) 上单调递减,在 ( 1, +∞ ) 上
单调递增,f ( 1 ) = -e < 0, f ( 2 ) = a > 0,
取
数学教学 教 学 研 究
近几年高考数学全国卷零点问题规律探寻
洪云 (漳州市第三中学,福建 漳州 363000)
摘要 关键词
导数及其应用是高中数学选修 2-2 的内容。零点问题对高中生来说是熟悉的陌生人,学生对之既爱又恨,爱其不落俗套, 恨其戴着神秘面纱,看不透它,高不可攀。纵观近些年全国卷,零点问题亮相多次,这体现了高考的稳定性,简约而不简 单,学生倍感亲切,但望题兴叹。此文深入研究 2015-2018 年高考零点问题,就零点存在区间两端点如何取值这个难点给 出接地气的教学方法。 零点;导数;高考
令 h( x ) = a ( e2x + ex), h'( x ) = a ( 2e2x + ex),当 a⩽0,
不符合题意。
当 a > 0 时 ,h'( x ) > 0, h( x ) = 2a,当 x → -∞, h( x )
一、试题再现,三个角度赏析零点
近四年全国卷 21 题 ,考查导数与函数零点的问
题 ,考生的数形结合思想 、转化与化归思想 、分类讨论
思想、极限思想等数学思想和方法 ,题型内涵深刻丰
富 ,是匠心独具的好题 ,细细读来 ,都存在着关联 ,值
得认真研究和探讨。
2015 全国卷 21: 设函数 f ( x ) = e2x - a ln x( x > 0 ),讨论 f ( x ) 的导