MATLAB数值实验一(数据的插值运算及其应用完整版)

合集下载

(完整版)MATLAB)课后实验[1]

(完整版)MATLAB)课后实验[1]

实验一 MATLAB 运算基础1. 先求以下表达式的值,尔后显示 MATLAB 工作空间的使用情况并保存全部变量。

(1)2sin 85 z1 21 e(2) 12z ln( x 1 x ) ,其中22 x2 1 2i5(3)ae e az sin( a 0.3) ln , a 3.0, 2.9, L , 2.9, 32 22t 0 t 1(4) 2z t 1 1 t 242t 2t 1 2 t 3,其中解:M 文件:z1=2*sin(85*pi/180)/(1+exp(2))x=[2 1+2*i;-.45 5];z2=1/2*log(x+sqrt(1+x^2))a=-3.0:0.1:3.0;z3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2)t=0:0.5:2.5;z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)4. 完成以下操作:(1) 求[100,999] 之间能被 21 整除的数的个数。

(2) 建立一个字符串向量,删除其中的大写字母。

解:(1) 结果:m=100:999;n=find(mod(m,21)==0);length(n)ans =43(2). 建立一个字符串向量比方:ch='ABC123d4e56Fg9'; 那么要求结果是:ch='ABC123d4e56Fg9';k=find(ch>='A'&ch<='Z');ch(k)=[]ch =123d4e56g9实验二 MATLAB矩阵解析与办理1. 设有分块矩阵 A E R3 3 3 2O S2 3 2 2,其中 E、R、O、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试经过数值计算考据 2A E R RS2O S。

数据插值、拟合方法的MATLAB实现

数据插值、拟合方法的MATLAB实现
2.2用6阶多项式拟合的命令
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
n=6;
p=polyfit(hours,temps,n)
t=linspace(0,23,100);
z=polyval(p,t); %多项式求值
plot(hours,temps,'o',t,z,'k:',hours,temps,'b',’r’,'linewidth',1.5)
legend('原始数据','6阶曲线')
2.3用8阶多项式拟合的命令
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
实验结果:
1.一元插值图像
图1.1一元插值图
经分析三次样条插值法效果最好,以三次样条插值法得出每个0.5小时的温度值:
时间
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
温度
12
11.9
12
12.0
12
11.6
11
10.4
10
9.9
10
10.0
时间
6
6.5
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5

MATLAB插值实验报告 数学实验

MATLAB插值实验报告  数学实验
三次样条插值:[xi,yi]=meshgrid(1200:10:4000,1200:10:3600);
zi=interp2(x,y,z,xi,yi,'spline');
mesh(xi,yi,zi)
title('三次样条插值'),xlabel('x'),ylabel('y'),zlabel('z')
立方差值:[xi,yi]=meshgrid(1200:10:4000,1200:10:3600);
1500 1550 1600 1550 1600 1600 1600 1550;
1500 1200 1100 1550 1600 1550 1380 1070;
1500 1200 1100 1350 1450 1200 1150 1010;
1390 1500 1500 1400 900 1100 1060 950;
新乡学院数学与信息科学系
实验报告
实验项目名称插值实验
所属课程名称数学实验
实验类型综合性实验
实验日期
班级
学号
姓名
成绩
一、实验概述:
【实验目的】
掌握用Matlab插值的方法,了解拉格朗日插值、线性插值、样条插值的基本思想,了解三种网格节点数据的插值方法的基本思想,了解掌握用Matlab计算一维差值和二维插值的方法。
【实验原Байду номын сангаас】
1.一位握又性插值、样条插值的基本思想,了解三种网格节点数据的差拉格朗日(Lagrange)插值。
已知函数f(x)在n+1个点x0,x1,…,xn处的函数值为y0,y1,…,yn.求一n次多项式函数Pn(x),使其满足:Pn(xi)=yi,i=0,1,…,n.解决此问题的拉格朗日插值多项式公式如下 其中Li(x)为n次多项式:

Matlab数据插值

Matlab数据插值

Matlab数据插值插值就是已知一组离散的数据点集,在集合内部某两个点之间预测函数值的方法。

一、一维插值插值运算是根据数据的分布规律,找到一个函数表达式可以连接已知的各点,并用此函数表达式预测两点之间任意位置上的函数值。

插值运算在信号处理和图像处理领域应用十分广泛。

1.一维插值函数的使用若已知的数据集是平面上的一组离散点集(x,y),则其相应的插值就是一维插值。

MATLAB中一维插值函数是interp1。

y=interp([x,]y,xi,[method],['extrap'],[extrapval]),[]代表可选。

method:'nearest','linear','spline','pchip','cubic','v5cubic'。

2.内插运算与外插运算(1)只对已知数据点集内部的点进行的插值运算称为内插,可比较准确的估测插值点上的函数值。

(2)当插值点落在已知数据集的外部时的插值称为外插,要估计外插函数值很难。

MATLAB对已知数据集外部点上函数值的预测都返回NaN,但可通过为interp1函数添加'extrap'参数指明也用于外插。

MATLAB的外插结果偏差较大。

二、二维插值已知点集在三维空间中的点的插值就二维插值问题,在图像处理中有广泛的应用。

二维插值函数是interp2,用法与一维插值函数interp1类似。

ZI=interp2(X, Y, Z, XI, YI, method, extrapval):在已知的(X,Y,Z)三维栅格点数据上,在(XI, YI)这些点上用method指定的方法估计函数值,外插使用'extrapval'。

二维插值中已知数据点集(X, Y)必须是栅格格式,一般用meshgrid函数产生。

interp2要求(X, Y)必须是严格单调的并且是等间距的,如果(X, Y)不是等间距的,会将其变换为等间距形式,如果已知是等间距的,可在method参数前加星号,如:'*cubic'。

数值计算方法实验之Newton多项式插值(MATLAB代码)

数值计算方法实验之Newton多项式插值(MATLAB代码)

数值计算⽅法实验之Newton多项式插值(MATLAB代码)⼀、实验⽬的在⼰知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]⽽⼜需要给出其在[a,b]上的值时,按插值原则f(x i)=y i (i=0,1,……, n)求出简单函数P(x)(常是多项式),使其在插值基点x i处成⽴(x i)= y i(i=0,1,……,n),⽽在[a,b]上的其它点处成⽴f(x)≈P(x).⼆、实验原理三、实验内容求f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式四、实验程序(1).m⽂件%输⼊的量:X是n+1个节点(x_i,y_i)(i = 1,2, ... , n+1)横坐标,Y是纵坐标,%x是以向量形式输⼊的m个插值点,M在[a,b]上满⾜|f~(n+1)(x)|≤M%注:f~(n+1)(x)表⽰f(x)的n+1阶导数%输出的量:向量y是向量x处的插值,误差限R,n次⽜顿插值多项式L及其系数向量C,%差商的矩阵Afunction[y,R,A,C,L] = newton(X,Y,x,M)n = length(X);m = length(x);for t = 1 : mz = x(t);A = zeros(n,n);A(:,1) = Y';s = 0.0; p = 1.0; q1 = 1.0; c1 = 1.0;for j = 2 : nfor i = j : nA(i,j) = (A(i,j-1) - A(i-1,j-1))/(X(i)-X(i-j+1));endq1 = abs(q1*(z-X(j-1)));c1 = c1 * j;endC = A(n, n); q1 = abs(q1*(z-X(n)));for k = (n-1):-1:1C = conv(C, poly(X(k)));d = length(C);C(d) = C(d) + A(k,k);%在最后⼀维,也就是常数项加上新的差商endy(t) = polyval(C,z);R(t) = M * q1 / c1;endL = poly2sym(C); (2)命令窗⼝输⼊X = [0 0.5 1.0 1.5 2.0];Y = [0 0.0625 1 5.0625 16];x = linspace(0,pi,50);M = 1;[y,R,A,C,L] = newton(X, Y, x, M);y1 = x.*x.*x.*x; %可根据所给函数更改errorbar(x,y,R,'.g')hold onplot(X, Y, 'or', x, y, '.k', x, y1, '-b');legend('误差','样本点','⽜顿插值估算','x^4');五、运算结果(1) 图像(2) 运算结果第⼀列为所得多项式系数:。

如何利用Matlab技术进行数据插值

如何利用Matlab技术进行数据插值

如何利用Matlab技术进行数据插值数据插值是一种常用的数学方法,用于根据已知数据点的信息,推断出未知位置的数据。

在各个学科领域,如地理学、环境科学、经济学等,数据插值都被广泛应用于实际问题的解决中。

在这篇文章中,我们将探讨如何利用Matlab技术进行数据插值。

数据插值的目标是根据已有的数据点,建立一个适当的函数模型,并利用该模型对未知位置处的数据进行估计。

Matlab作为一种功能强大的数学计算和可视化软件,提供了各种强大的函数和工具箱,使得数据插值变得更加便捷和高效。

首先,我们需要将已有的数据点导入到Matlab中。

一般来说,数据以文本文件的形式存储,每一行代表一个数据点,包含该点的横坐标和纵坐标。

我们可以使用Matlab内置的读取文本数据的函数,如`dlmread`或`importdata`来导入数据。

导入后,我们可以使用`plot`函数将数据点绘制出来,以便于观察数据的分布情况。

在进行数据插值之前,首先需要对数据进行预处理。

如果数据中存在异常值或者缺失值,我们可以使用Matlab提供的函数来进行数据清洗。

例如,可以使用`isnan`函数判断数据是否缺失,并使用`interp1`函数对缺失值进行插值处理。

接下来,我们将介绍几种常用的数据插值方法,并演示如何在Matlab中应用这些方法。

首先是最简单的线性插值方法。

线性插值基于已知数据点之间的直线拟合,通过求解直线方程,来推测未知位置处的数据值。

Matlab提供了`interp1`函数来实现线性插值,我们可以指定插值的方法为`'linear'`,并传入已知数据点的横坐标和纵坐标,以及待插值的位置进行插值计算。

此外,Matlab还提供了其他更高级的插值方法,如多项式插值、样条插值等。

多项式插值使用多项式函数拟合已知数据点,通过计算多项式函数的值来进行插值。

Matlab提供了`polyfit`函数来拟合多项式函数,以及`polyval`函数来计算多项式函数的值。

matlab数值计算实验报告

matlab数值计算实验报告

matlab数值计算实验报告Matlab数值计算实验报告引言:Matlab是一种广泛应用于科学与工程领域的高级计算机语言和环境,它提供了丰富的函数库和工具箱,方便用户进行数值计算、数据分析和可视化等任务。

本实验报告将介绍我在使用Matlab进行数值计算实验中的一些经验和心得体会。

一、数值计算方法数值计算方法是一种利用数值近似来解决实际问题的方法,它在科学和工程领域具有广泛的应用。

在Matlab中,我们可以利用内置的函数和工具箱来实现各种数值计算方法,例如插值、数值积分、数值微分等。

二、插值方法插值是一种通过已知数据点来推测未知数据点的方法。

在Matlab中,我们可以使用interp1函数来进行插值计算。

例如,我们可以通过已知的一些离散数据点,利用interp1函数来估计其他位置的数值。

这在信号处理、图像处理等领域具有重要的应用。

三、数值积分数值积分是一种通过分割曲线或曲面来近似计算其面积或体积的方法。

在Matlab中,我们可以使用quad函数来进行数值积分计算。

例如,我们可以通过quad函数来计算某个函数在给定区间上的积分值。

这在概率统计、物理学等领域具有广泛的应用。

四、数值微分数值微分是一种通过数值逼近来计算函数导数的方法。

在Matlab中,我们可以使用diff函数来进行数值微分计算。

例如,我们可以通过diff函数来计算某个函数在给定点上的导数值。

这在优化算法、控制系统等领域具有重要的应用。

五、数值求解数值求解是一种通过数值近似来计算方程或方程组的根的方法。

在Matlab中,我们可以使用fsolve函数来进行数值求解计算。

例如,我们可以通过fsolve函数来求解某个非线性方程的根。

这在工程计算、金融分析等领域具有广泛的应用。

六、实验应用在本次实验中,我使用Matlab进行了一些数值计算的应用实验。

例如,我利用插值方法来估计某个信号在给定位置的数值,利用数值积分方法来计算某个曲线下的面积,利用数值微分方法来计算某个函数在给定点的导数值,以及利用数值求解方法来求解某个方程的根。

matlab插值实验报告

matlab插值实验报告

matlab插值实验报告Matlab插值实验报告引言:在数学和工程领域中,插值是一种常见的数据处理方法。

它通过已知数据点之间的推断来填补数据的空缺部分,从而获得连续的函数或曲线。

Matlab是一种功能强大的数值计算软件,具备丰富的插值函数和工具包。

本实验旨在通过使用Matlab进行插值实验,探索插值方法的原理和应用。

实验步骤:1. 数据准备首先,我们需要准备一组实验数据。

以一个简单的二维函数为例,我们选择f(x) = sin(x),并在区间[0, 2π]上取若干个等间隔的点作为已知数据点。

2. 线性插值线性插值是插值方法中最简单的一种。

它假设函数在两个已知数据点之间是线性变化的。

在Matlab中,可以使用interp1函数进行线性插值。

我们将已知数据点和插值结果绘制在同一张图上,以比较它们之间的差异。

3. 多项式插值多项式插值是一种常用的插值方法,它通过已知数据点构造一个多项式函数来逼近原始函数。

在Matlab中,polyfit函数可以用来拟合多项式。

我们可以选择不同的多项式次数进行插值,并观察插值结果与原始函数之间的差异。

4. 样条插值样条插值是一种更为精确的插值方法,它通过在每个小区间内构造局部多项式函数来逼近原始函数。

在Matlab中,可以使用spline函数进行样条插值。

我们可以选择不同的插值节点数目,并比较插值结果的平滑程度和逼近效果。

5. 拉格朗日插值拉格朗日插值是一种基于多项式的插值方法,它通过构造插值多项式来逼近原始函数。

在Matlab中,可以使用polyval函数进行拉格朗日插值。

我们可以选择不同的插值节点数目,并观察插值结果与原始函数之间的差异。

实验结果:通过实验,我们得到了不同插值方法的结果,并将其与原始函数进行了比较。

在线性插值中,我们观察到插值结果与原始函数之间存在一定的误差,特别是在函数变化较快的区域。

而多项式插值和样条插值在逼近原始函数方面表现更好,特别是在插值节点数目较多的情况下。

(整理)matlab插值计算.

(整理)matlab插值计算.

插值方法晚上做一个曲线拟合,结果才开始用最小二乘法拟合时,拟合出来的东西太难看了!于是尝试用其他方法。

经过一番按图索骥,终于发现做曲线拟合的话,采用插值法是比较理想的方法。

尤其是样条插值,插完后线条十分光滑。

方法付后,最关键的问题是求解时要积分,放这里想要的时候就可以直接过来拿,不用死去搜索啦。

呵呵插值方法的Matlab实现一维数据插值MATLAB中用函数interp1来拟合一维数据,语法是YI = INTERP1(X,Y,XI,方法)其中(X,Y)是已给的数据点,XI 是插值点,其中方法主要有'linear' -线性插值,默认'pchip' -逐段三次Hermite插值'spline' -逐段三次样条函数插值其中最后一种插值的曲线比较平滑例:x=0:.12:1; x1=0:.02:1;%(其中x=0:.12:1表示显示的插值点,x1=0:.02:1表示插值的步长)y=(x.^2-3*x+5).*exp(-5*x).*sin(x);plot(x,y,'o'); hold on;y1=interp1(x,y,x1,'spline');plot(x1,y1,':')如果要根据样本点求函数的定积分,而函数又是比较光滑的,则可以用样条函数进行插值后再积分,在MATLAB中可以编写如下程序:function y=quadspln(x0,y0,a,b)f=inline('interp1(x0,y0,x,''spline'')','x','x0','y0');y=quadl(f,a,b,1e-8,[],x0,y0);现求sin(x)在区间[0,pi]上的定积分,只取5点x0=[0,0.4,1,2,pi];y0=sin(x0);I=quadspln(x0,y0,0,pi)结果得到的值为2.01905,精确值为2求一段matlab插值程序悬赏分:20 - 解决时间:2009-12-26 19:57已知5个数据点:x=[0.25 0.5 0.75 1] y=[0 0.3104 0.6177 0.7886 1] ,求一段matlab插值程序,求过这5个数据点的插值多项式,并在x-y坐标中画出y=f(x)图形,并且求出f (x)与x轴围成图形的面积(积分),不胜感激!使用Lagrange 插值多项式的方法:首先把下面的代码复制到M文件中,保存成lagranfunction [C,L]=lagran(X,Y)% input - X is a vector that contains a list of abscissas% - Y is a vector that contains a list of ordinates% output - C is a matrix that contains the coefficients of the lagrange interpolatory polynomial%- L is a matrix that contains the lagrange coefficients polynomialw=length(X);n=w-1;L=zeros(w,w);for k=1:n+1V=1;for j=1:n+1if k~=jV=conv(V,poly(X(j)))/(X(k)-X(j));endendL(k,:)=V;endC=Y*L;然后在命令窗口中输入以下内容:x=[0 0.25 0.5 0.75 1];y=[0 0.3104 0.6177 0.7886 1];lagran(x,y)ans =3.3088 -6.3851 3.3164 0.7599 0得到的数据就是多项式各项的系数,注意最后一个是常数项,即x^0,所以表达式为:f=3.3088*x.^4-6.3851*x.^3+3.3164*x.^2 +0.7599*x求面积就是积分求解>> f=@(x)3.3088*x.^4-6.3851*x.^3+3.3164*x.^2 +0.7599*x;>> quad(f,0,1)ans =0.5509这些点肯定是通过这个多项式的!MATLAB插值与拟合§1曲线拟合实例:温度曲线问题气象部门观测到一天某些时刻的温度变化数据为:试描绘出温度变化曲线。

matlab插值(详细 全面)范文

matlab插值(详细 全面)范文

Matlab中插值函数汇总和使用说明MATLAB中的插值函数为interp1,其调用格式为:yi= interp1(x,y,xi,'method')其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, 'method'表示采用的插值方法,MATLAB提供的插值方法有几种: 'method'是最邻近插值, 'linear'线性插值; 'spline'三次样条插值; 'cubic'立方插值.缺省时表示线性插值注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。

例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13,推测中午12点(即13点)时的温度.x=0:2:24;y=[12 9 9 10 18 24 28 27 25 20 18 15 13];a=13;y1=interp1(x,y,a,'spline')结果为: 27.8725若要得到一天24小时的温度曲线,则:xi=0:1/3600:24;yi=interp1(x,y,xi, 'spline');plot(x,y,'o' ,xi,yi)命令1 interp1功能一维数据插值(表格查找)。

该命令对数据点之间计算内插值。

它找出一元函数f(x)在中间点的数值。

其中函数f(x)由所给数据决定。

x:原始数据点Y:原始数据点xi:插值点Yi:插值点格式(1)yi = interp1(x,Y,xi)返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。

参量x 指定数据Y 的点。

若Y 为一矩阵,则按Y 的每列计算。

yi 是阶数为length(xi)*size(Y,2)的输出矩阵。

matlab数据插值运算

matlab数据插值运算

matlab数据插值运算Matlab是一种强大的科学计算软件,用于数值计算、数据分析和可视化等应用。

在许多科研和工程项目中,我们经常需要对数据进行插值运算,以填补缺失值或对离散数据进行平滑处理。

本文将介绍如何使用Matlab进行数据插值运算。

数据插值是一种通过已知数据点来估计未知数据点的方法。

在Matlab中,有多种插值算法可以选择,包括线性插值、拉格朗日插值、样条插值等。

这些插值方法各有特点,根据不同的数据特征和需求,我们可以选择合适的插值算法。

我们需要准备好待插值的数据。

假设我们有一组离散的数据点,用来描述某个函数在一定范围内的取值情况。

为了方便演示,我们可以生成一组简单的数据点。

```Matlabx = 0:0.5:10;y = sin(x);```上述代码中,我们生成了一个从0到10的等间隔数据点,然后计算了对应的正弦函数值。

这样,我们就得到了一组离散的数据点。

接下来,我们可以使用Matlab提供的插值函数进行插值运算。

以线性插值为例,使用`interp1`函数可以实现对数据的线性插值。

```Matlabxi = 0:0.1:10;yi = interp1(x, y, xi, 'linear');```上述代码中,我们指定了插值的目标点`xi`,然后使用`interp1`函数对原始数据进行线性插值。

最后,我们得到了一组新的插值数据`yi`。

除了线性插值,Matlab还提供了其他插值方法,如拉格朗日插值和样条插值。

这些方法可以通过设置插值函数的参数来选择。

```Matlabyi = interp1(x, y, xi, 'spline');```上述代码中,我们使用`spline`参数来指定样条插值方法。

通过调整参数,我们可以根据数据的特点选择最合适的插值方法。

有时候我们还需要对插值结果进行进一步的平滑处理,以减少插值误差。

Matlab提供了一些平滑滤波函数,如`smoothdata`和`smooth`等。

MATLAB中的插值方法及其应用

MATLAB中的插值方法及其应用

MATLAB中的插值方法及其应用引言数据在科学研究和工程应用中起着至关重要的作用。

然而,在实际问题中,我们常常遇到数据不完整或者不连续的情况。

为了填补这些数据的空隙,插值方法应运而生。

插值方法可以通过已知的点估计未知点的值,从而使得数据连续化。

MATLAB作为一款强大的数值计算软件,提供了丰富的插值方法及其应用。

本文将对MATLAB中常用的插值方法进行介绍,并探讨它们在实际应用中的价值和效果。

一、线性插值方法线性插值是最简单和常用的插值方法之一。

它假设两个已知数据点之间的插值点在直线上。

MATLAB中的线性插值可以通过interp1函数实现。

例如,对于一组已知的点(x1,y1)和(x2,y2),我们可以使用interp1(x,y,xq,'linear')来估计插值点(xq,yq)的值。

线性插值方法的优点在于简单易懂,计算速度快。

然而,它的缺点在于无法处理非线性关系和复杂的数据分布。

因此,在实际应用中,线性插值方法往往只适用于简单的数据场景。

二、多项式插值方法多项式插值是一种常用的插值技术,它假设插值点在已知数据点之间的曲线上,而非直线。

MATLAB中的polyfit和polyval函数可以帮助我们实现多项式插值。

多项式插值方法的优点在于可以逼近各种形状的曲线,对数据的逼真度较高。

然而,当插值点之间的数据分布不均匀时,多项式插值容易产生振荡现象,即“龙格现象”。

因此,在实际应用中,我们需要根据具体问题选择合适的插值阶数,以避免过拟合和振荡现象的发生。

三、样条插值方法样条插值是一种光滑且精确的插值方法。

它通过在已知数据点之间插入一系列分段多项式,使得插值曲线具有良好的光滑性。

MATLAB中的spline函数可以帮助我们实现样条插值。

样条插值方法的优点在于可以处理数据分布不均匀和曲线形状复杂的情况。

它能够减少振荡现象的发生,并保持曲线的光滑性。

然而,样条插值方法的计算复杂度较高,需要更多的计算资源。

matlab实验报告 插值和拟合

matlab实验报告 插值和拟合

建模中数据处理和分析班级 学号 姓名 实验地点 完成日期 成绩(一)实验目的与要求应用matlab 处理数据并分析,主要学会并熟练掌握数据拟合和插值。

(二)实验内容1. 用下面一组数据拟合ktbea t c 02.0)(-+=中的参数a ,b ,k2.在某山区测得一些地点的高程如下表。

平面区域为 1200<=x<=4000,1200<=y<=3600) 试作出该山区的地貌图X Y 120016002000240028003200360040001200 1130 1250 1280 1230 1040 900 500 700 1600 1320 1450 1420 1400 1300 700 900 850 2000 1390 1500 1500 1400 900 1100 1060 950 2400 1500 1200 1100 1350 1450 1200 1150 1010 2800 1500 1200 1100 1550 1600 1550 1380 1070 3200 1500 1550 1600 1550 1600 1600 1600 1550 36001480 1500 1550 1510 1430 1300 1200 980(三)实验具体步骤 实验1要先建立一个M 文件,文件中代码如下: function F=myfun(x,xdata) F=x(1)+x(2)*exp(-0.02*x(3)*xdata) 接下来在command window 中输入如下代码: Clc Clearxdata=[100:100:1000];ydata=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]/1000; x0=[0.2 0.05 0.05];[x,resnorm]=lsqcurvefit(@myfun,x0,xdata,ydata) 接着MATLAB 会进行若干次运算,并给出结果:所以拟合的结果是a=0.0063,b=-0.0034,c=0.2542 然后,我们作图看看拟合的结果,输入代码plot(xdata,0.0063-0.0034*exp(-0.02*0.2542*xdata),xdata,ydata,'o') 得到图像如下:实验二建立一个m 文件,在其中输入代码如下: x=1200:400:4000;y=1200:400:3600;100200300400500600700800900100044.555.566.57x 10-3temps=[1130 1250 1280 1230 1040 900 500 700;1320 1450 1420 1400 1300 700 900 850;1390 1500 1500 1400 900 1100 1060 950;1500 1200 1100 1350 1450 1200 1150 1010;1500 1200 1100 1550 1600 1550 1380 1070;1500 1550 1600 1550 1600 1600 1600 1550;1480 1500 1550 1510 1430 1300 1200 980];mesh(x,y,temps)xi=1200:30:4000;yi=1200:30:3600;zi=interp2(x,y,temps,xi',yi,'cubic');mesh(xi,yi,zi)meshz(xi,yi,zi)colordef black运行后打开图形窗口的属性设置对话框,对背景,颜色等属性进行设置,得到下图:(四)实验结果实验中顺利得到拟合结果以及一个三维图像,虽然过程艰辛,但结果十分美好。

Matlab插值实验

Matlab插值实验

Matlab插值实验一、实验目的1.熟悉MATLAB的运行环境.2.学会使用MATLAB作图.3.学会使用MATLAB编程.二、实验内容实验一:几何物理中的插值问题1. 轮船的甲板成近似半椭圆面形,为了得到甲板的面积。

首先测量得到横向最大相间8.534米;然后等间距地测得纵向高度,自左向右分别为:0.914, 5.060, 7.772, 8.717, 9.083, 9.144, 9.083, 8.992, 8.687, 7.376, 2.073,计算甲板的面积。

2. 物体受水平方向外力作用,在水平直线上运动。

测得位移与受力如下表求 (1) 物体从位移为0到0.4所做的功;(2) 位移为0.4时的速度是多少?3.火车行驶的距离(路程)﹑速度数据如下,计算从静止开始20 分钟内走过的路程。

4. 确定地球与金星之间的距离天文学家在1914年8月份的7次观测中,测得地球与金星之间距离(单位:米),并取其常用对数值,与日期的一组历史数据如下表:由此推断何时金星与地球的距离(米)的对数值为9.9351799?实验二1.山区地貌图在某山区(平面区域(0,2800) (0,2400)内,单位:米)测得一些地点的高程(单位:米)如表4.12所示,试作出该山区的地貌图和等高线图。

三、实验环境Windows 操作系统; MATLAB 7.0.四、实验过程 实验一:1. 因为插值点越多,划分越细则,又因为等间距则,当0x ∆→时,我们视插值点的矩形面积为i y x ⨯∆,则总面积为1ni i S y x ==∆∑,8.534x n∆=,则 x=linspace(0,8.534,11);y=[0.914 5.060 7.772 8.717 9.083 9.144 9.083 8.992 8.687 7.376 2.073]; plot(x,y)123456789012345678910cx=linspace(0,8.534,100); s=0;cy=interp1(x,y,cx, 'spline'); for i=1:100s=s+8.534./100.*cy(i);endz =sz =64.74762.x=linspace(0,0.4,5);y=[20 21 21 20 19];plot(x,y)cx=linspace(0,0.4,20);s=0;for i=1:20cy(i)=interp1(x,y,cx(i));s=s+0.4.*cy(i)./20;endz=sz =8.1316(2)假设初始速度为0,则0.4时刻的速度为v=(2*z/m).^(1./2)(其中m为物体的质量)。

数值分析matlab实验报告

数值分析matlab实验报告

数值分析matlab实验报告数值分析 Matlab 实验报告一、实验目的数值分析是研究各种数学问题数值解法的学科,Matlab 则是一款功能强大的科学计算软件。

本次实验旨在通过使用 Matlab 解决一系列数值分析问题,加深对数值分析方法的理解和应用能力,掌握数值计算中的误差分析、数值逼近、数值积分与数值微分等基本概念和方法,并培养运用计算机解决实际数学问题的能力。

二、实验内容(一)误差分析在数值计算中,误差是不可避免的。

通过对给定函数进行计算,分析截断误差和舍入误差的影响。

例如,计算函数$f(x) =\sin(x)$在$x = 05$ 附近的值,比较不同精度下的结果差异。

(二)数值逼近1、多项式插值使用拉格朗日插值法和牛顿插值法对给定的数据点进行插值,得到拟合多项式,并分析其误差。

2、曲线拟合采用最小二乘法对给定的数据进行线性和非线性曲线拟合,如多项式曲线拟合和指数曲线拟合。

(三)数值积分1、牛顿柯特斯公式实现梯形公式、辛普森公式和柯特斯公式,计算给定函数在特定区间上的积分值,并分析误差。

2、高斯求积公式使用高斯勒让德求积公式计算积分,比较其精度与牛顿柯特斯公式的差异。

(四)数值微分利用差商公式计算函数的数值导数,分析步长对结果的影响,探讨如何选择合适的步长以提高精度。

三、实验步骤(一)误差分析1、定义函数`compute_sin_error` 来计算不同精度下的正弦函数值和误差。

```matlabfunction value, error = compute_sin_error(x, precision)true_value = sin(x);computed_value = vpa(sin(x), precision);error = abs(true_value computed_value);end```2、在主程序中调用该函数,分别设置不同的精度进行计算和分析。

(二)数值逼近1、拉格朗日插值法```matlabfunction L = lagrange_interpolation(x, y, xi)n = length(x);L = 0;for i = 1:nli = 1;for j = 1:nif j ~= ili = li (xi x(j))/(x(i) x(j));endendL = L + y(i) li;endend```2、牛顿插值法```matlabfunction N = newton_interpolation(x, y, xi)n = length(x);%计算差商表D = zeros(n, n);D(:, 1) = y';for j = 2:nfor i = j:nD(i, j) =(D(i, j 1) D(i 1, j 1))/(x(i) x(i j + 1));endend%计算插值结果N = D(1, 1);term = 1;for i = 2:nterm = term (xi x(i 1));N = N + D(i, i) term;endend```3、曲线拟合```matlab%线性最小二乘拟合p = polyfit(x, y, 1);y_fit_linear = polyval(p, x);%多项式曲线拟合p = polyfit(x, y, n);% n 为多项式的次数y_fit_poly = polyval(p, x);%指数曲线拟合p = fit(x, y, 'exp1');y_fit_exp = p(x);```(三)数值积分1、梯形公式```matlabfunction T = trapezoidal_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);T = h ((y(1) + y(end))/ 2 + sum(y(2:end 1)));end```2、辛普森公式```matlabfunction S = simpson_rule(f, a, b, n)if mod(n, 2) ~= 0error('n 必须为偶数');endh =(b a) / n;x = a:h:b;y = f(x);S = h / 3 (y(1) + 4 sum(y(2:2:end 1))+ 2 sum(y(3:2:end 2))+ y(end));end```3、柯特斯公式```matlabfunction C = cotes_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);w = 7, 32, 12, 32, 7 / 90;C = h sum(w y);end```4、高斯勒让德求积公式```matlabfunction G = gauss_legendre_integration(f, a, b)x, w = gauss_legendre(5);%选择适当的节点数t =(b a) / 2 x +(a + b) / 2;G =(b a) / 2 sum(w f(t));end```(四)数值微分```matlabfunction dydx = numerical_derivative(f, x, h)dydx =(f(x + h) f(x h))/(2 h);end```四、实验结果与分析(一)误差分析通过不同精度的计算,发现随着精度的提高,误差逐渐减小,但计算时间也相应增加。

matlab插值方法

matlab插值方法

y1

x x2

x0 x0

x x1 x2 x1
y2
直接验证可知 , Ln x满足插值条件 .
8

g (x)

1 1 x2
,
5 x 5
采用拉格朗日多项式插值:选取不同插值 节点个数n+1,其中n为插值多项式的次数,当n 分别取2,4,6,8,10时,绘出插值结果图形.
To Matlab lch(larg1)
拉格朗日多项式插值的 这种振荡现象叫 Runge现象
返回
9
分段线性插值
y


o x0
xj-1
n
Ln ( x) y jl j ( x) j 0
x x j1

x
j

x j 1
,
x j 1

x

xj
l j (x)

x x j1
4) S(x0 ) S(xn ) 0 (自然边界条件)
2) 3) 4) ai , bi , ci , di S ( x)
lnim S(x) g(x)
g(x)为被插值函数。 13

g(x)

1 1 x2
,
6 x6
用三次样条插值选取11个基点计算插值(ych)
To MATLAB ych(larg1)
1) si ( x) ai x3 bi x2 ci x di 2) S (xi ) yi (i 0,1,n) 3) S ( x) C 2[ x0 , xn ]
(i 1,n)
si (xi ) si1(xi ), si(xi ) si1(xi ), si(xi ) si1(xi ) (i 1, , n 1)

用MATLAB进行数据插值课件

用MATLAB进行数据插值课件

线性插值
通过两点之间的直线进行插值, 计算简单但精度较低。
非线性插值
使用非直线函数进行插值,如 多项式、样条函数等,精度较
高但计算复杂度也较高。
02
Matlab插值函数
interp1函数
总结词
一维数据插值函数
详细描述
interp1函数用于在一维数据上进行插值。它接受两个参数:x和y,分别表示数 据点的x坐标和y坐标。通过指定新的x坐标,可以计算出对应的y坐标,从而实 现插值。
要点二
详细描述
多维线性插值的基本思想是通过已知点之间的线性关系来 估计未知点的值。在多维空间中,可以使用多个线性方程 来表示已知点之间的关系,然后解这些方程来得到未知点 的估计值。
多维多项式插值
总结词
多项式插值是一种常用的数据插值方法,适用于一维数 据的插值。在多维数据插值中,可以使用多维多项式插 值来估计未知点的值。
多重二次插值
在多个维度上进行二次插 值,适用于各维度间关系 较复杂的情况。
多重样条插值
在多个维度上进行样条插 值,适用于需要平滑估计 的情况。
实际应用中的插值案例
时间序列数据插值
在金融、经济等领域,时间序列数据经常需要进行插值以填补缺 失值。
图像处理中的插值
在图像缩放、旋转等操作中,需要进行插值以平滑图像。
线性插值
通过已知的点对,使用线性函数进行插值,适用 于数据点分布较均匀的情况。
二次插值
使用二次函数进行插值,适用于已知三个或更多 数据点的情况,能够提供更精确的估计。
三次样条插值
通过构建三次样条函数进行插值,适用于需要平 滑插值的情况。
多维数据插值的案例
多元线性插值
在多个维度上进行线性插 值,适用于各维度间关系 较简单的情况。

Matlab教程 插值

Matlab教程 插值
实验2: 实验 :插值
本章目标
熟悉各种插值方法的原理和算法 掌握利用MATLAB命令进行插值的方法
2ቤተ መጻሕፍቲ ባይዱ
1.1 用MATLAB作一元插值
yi = interp1( x0, y 0, xi, ' method ')
被插值点的函数 值 插值节点 被插值点 插值方法
要求x0,y0单调;xi可 要求x0,y0单调;xi可 x0,y0单调 取为向量,xi的值不能超 取为向量,xi的值不能超 x0的范围 的范围。 出x0的范围。
>> x=[0.00 0.20 0.40 0.60 0.80 1.00]; >> y=[0.00 0.32 0.21 0.10 0.04 0.02]; >> xi=[0.30 0.51 0.92]; >> y1i=interp1(x,y,xi); >> y2i=interp1(x,y,xi,'cubic'); >> y3i=interp1(x,y,xi,'spline'); >> xi,y1i,y2i,y3i
8
6
执行后结果为
xi = 0.30000000000000 0.51000000000000 0.92000000000000 y1i = 0.26500000000000 0.14950000000000 0.02800000000000 y2i = 0.27875000000000 0.14509595588235 0.02416000000000 y3i = 0.28579166666667 0.14107812500000 0.02324266666667
7
对例1-2,分别用三种插值方法做插值函数, 对例 ,分别用三种插值方法做插值函数,绘制出 三条插值曲线,要求:数据点(黑色小圈ko),分段线 三条插值曲线,要求:数据点(黑色小圈 ),分段线 ), 性插值(蓝色虚线 ),分段三次插值(红色点划线r-.), ),分段三次插值 性插值(蓝色虚线b:),分段三次插值(红色点划线 ), 三次样条插值(洋红色实线 三次样条插值(洋红色实线m-)

(完整word版)matlab插值法实例

(完整word版)matlab插值法实例
SeveralTypicalInterpolationinMatlab
Lagrange Interpolation
Supposing:
x
144
169
225
y
12
13
15Ifxຫໍສະໝຸດ 175,whiley=?Solution:
Lagrange Interpolation in Matlab:
function y=lagrange(x0,y0,x);
y4 = interp1(x, y, xi, ’cubic’);
plot(x, y , 'o', xi ,y1 ,'g-' ,xi ,y2 ,’r:' ,xi ,y3 ,’k—.', xi, y4, ’b-—');
legend('Original’, 'Nearest’, 'Linear', 'Spline', ’Cubic’);
for i=1:n;
z=ones(1,m);
for k=1:i-1;
z=z.*(xi-x(k));
end
yi=yi+Y(1,i)*z;
end
input:
x=[1 4 9];
y=[1 2 3];
xi=[5 6];
yi=newint(x,y,xi);
operate the program and obtain the answer:
Solution:
Inputx=[ 1 4 9 6];y=[ 1 4 9 6];x=[ 1 4 9 6];pp=spline(x,y)
pp =
form: 'pp’
breaks: [1 4 6 9]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

佛山科学技术学院实 验 报 告课程名称 数值分析 实验项目 插值法与数据拟合 专业班级 机械工程 姓 名 余红杰 学 号 10 指导教师 陈剑 成 绩 日 期 月 日一、实验目的1、学会Lagrange 插值、牛顿插值和三次样条插值等基本插值方法;2、讨论插值的Runge 现象3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。

二、实验原理1、拉格朗日插值多项式2、牛顿插值多项式3、三次样条插值 三、实验步骤1、用MATLAB 编写独立的拉格朗日插值多项式函数2、用MATLAB 编写独立的牛顿插值多项式函数3、用MATLAB 编写独立的三次样条函数(边界条件为第一、二种情形)4、已知函数在下列各点的值为:根据步骤1,2,3编好的程序,试分别用4次拉格朗日多项式4()L x 、牛顿插值多项式4()P x 以及三次样条函数()S x (自然边界条件)对数据进行插值,并用图给出 {(,),0.20.08,0,1,2,,10i i i x y x i i =+=},4()L x 、4()P x 和()S x 。

5、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21(),(11)125f x x x=-≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图形。

6、下列数据点的插值可以得到平方根函数的近似,在区间[0,64]上作图。

(1)用这9个点作8次多项式插值8()L x 。

(2)用三次样条(第一边界条件)程序求()S x 。

7、对于给函数21()125f x x =+在区间[-1,1]上取10.2(0,1,,10)i x i i =-+=,试求3次曲线拟合,试画出拟合曲线并打印出方程,与第5题的结果比较。

四、实验过程与结果:1、Lagrange 插值多项式源代码:function ya=lag(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 ya=0; mu=1; %初始化%循环方式求L 系数,并求和: for i = 1:length(y) for j = 1:length(x) if i ~= jmu = mu * (xa - x(j) ) / ( x(i) - x(j) ); else continue end endya = ya + y(i) * mu ; mu = 1; end2、Newton 源代码:function ya = newton(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 %建立系数零矩阵D 及初始化:D = zeros(length(x)-1);ya = y(1);xi = 1;%求出矩阵D,该矩阵第一行为牛顿插值多项式系数:for i=1:(length(x)-1)D(i,1) = (y(i+1) -y(i))/(x(i+1) -x(i));endfor j=2:(length(x)-1)for i=1:(length(x)-j)D(i,j) = (D(i+1,j-1) - D(i,j-1)) / (x(i+j) - x(i)); endend%xi为单个多项式(x-x(1))(x-x(2))...的值for i=1:(length(x)-1)for j=1:ixi = xi*(xa - x(j));endya = ya + D(1,i)*xi;xi = 1;end3、三次样条插值多项式(1)(第一边界条件)源代码:function y=yt1(x0,y0,f_0,f_n,x) _____________(1)%第一类边界条件下三次样条插值;%xi 所求点;%yi 所求点函数值;%x 已知插值点;%y 已知插值点函数值;%f_0左端点一次导数值;%f_n右端点一次导数值;n = length(x0);z = length(y0);h = zeros(n-1,1);k=zeros(n-2,1);l=zeros(n-2,1);S=2*eye(n);for i=1:n-1h(i)= x0(i+1)-x0(i);endfor i=1:n-2k(i)= h(i+1)/(h(i+1)+h(i));l(i)= 1-k(i);end%对于第一种边界条件:k = [1;k]; _______________________(2)l = [l;1]; _______________________(3)%构建系数矩阵S:for i = 1:n-1S(i,i+1) = k(i);S(i+1,i) = l(i);end%建立均差表:F=zeros(n-1,2);for i = 1:n-1F(i,1) = (y0(i+1)-y0(i))/(x0(i+1)-x0(i));endD = zeros(n-2,1);for i = 1:n-2F(i,2) = (F(i+1,1)-F(i,1))/(x0(i+2)-x0(i));D(i,1) = 6 * F(i,2);end%构建函数D:d0 = 6*(F(1,2)-f_0)/h(1); ___________(4)dn = 6*(f_n-F(n-1,2))/h(n-1); ___________(5)D = [d0;D;dn]; ______________(6)m= S\D;%寻找x所在位置,并求出对应插值:for i = 1:length(x)for j = 1:n-1if (x(i)<=x0(j+1))&(x(i)>=x0(j))y(i) =( m(j)*(x0(j+1)-x(i))^3)/(6*h(j))+...(m(j+1)*(x(i)-x0(j))^3)/(6*h(j))+...(y0(j)-(m(j)*h(j)^2)/6)*(x0(j+1)-x(i))/h(j)+... (y0(j+1)-(m(j+1)*h(j)^2)/6)*(x(i)-x0(j))/h(j) ; break;else continue;endendend(2)(自然边界条件)源代码:仅仅需要对上面部分标注的位置做如下修改:__(1):function y=yt2(x0,y0,x)__(2):k=[0;k]__(3):l=[l;0]__(4)+(5):删除—(6):D=[0:D:0]4、——————————————PS:另建了一个f方程文件,后面有一题也有用到。

function y=f(x0)y = 1./(1+25.*x0.^2);___________________________clc;clear;x1=[,,,,];y1=[,,,,];plot(x1,y1,'.');hold onxo=[::1];y=lag(x1,y1,xo);plot(xo,y,'o')hold on;y=newton(x1,y1,xo);plot(xo,y,'r');hold on;y=yt2(x1,y1,xo);plot(xo,y,'*')h = legend('原始','拉格','牛顿','自样',4);5、clc,clear;x1=linspace(-1,1,10);x2=linspace(-1,1,20);xo=[-1::1];yo=f(xo);plot(xo,yo);hold on;y=f(x1);y=newton(x1,y,xo);plot(xo,y,'k');hold on;y=f(x2);y=newton(x2,y,xo);plot(xo,y,'r')h = legend('原始','10插','20插',3);6、clc,clear;x1=[0 1 4 9 16 25 36 49 64];y1=[0 1 2 3 4 5 6 7 8 ];xo=[0:1:64];y=lag(x1,y1,xo)plot(xo,y,'k');hold ony=yt2(x1,y1,xo)plot(xo,y,'r')h = legend('拉格','自然样条',2);7、clc,clear;x1=linspace(-1,1,11);xo=[-1::1];y=f(x1);yo=f(xo);plot(xo,yo,'r');hold onp=polyfit(x1,y,3);y1=polyval(p,xo);plot(xo,y1)h = legend('原图','三次曲线拟合',2);p%该曲线的三次多项式系数依次显示五、讨论分析及感想个人感觉就是在数据点比较少,要求比较低的情况下,使用拉格朗日或是牛顿插值就足够了。

但是当数据点比较多的时候,使用样条曲线就更好。

当数据更多时,就可以使用曲线拟合方法来求近似值。

工程数学的基础知识并不是很苦难,但是很实用,是有必要好好学下的。

Matlab 也是比较强大的工具,比较符合人的思维逻辑,上手很快。

看书上的程序例子和实际编写还是有区别的,看得懂不一定编写的好,主要还是思维方式的锻炼吧~格式方法之类,只要了解了其基本功能,然后就是一系列的组合,多训练就熟悉了,比较有趣的课程吧,关键是有数据,有输出图像,看的清晰明白。

而且出现的错误,都有清晰的指导,修改起来也很快捷。

至于具体的分析,在编写三次样条的时候发现,使用矩阵的思想分析世界是有很大优势的,以后自己会多加训练。

相关文档
最新文档