平行移轴公式
材料力学第六章 截面的几何性质惯性矩
IP
2dA
A
(y2
A
z2 )dA
IZ
Iy.
返回 下一张 上一张 小结
第三节 惯性矩和惯性积的 y1dA (y a)2 dA A
y2dA 2a ydA a2 dA
I z1 z a2 A; y1 y b2 A;
2dA
A
(y2
A
z2 )dA
IZ
Iy.
Izy
z y dA;
A
五、平行移轴公式:
I z1 z a2 A; y1 y b2 A;
I z1y1 I zy abA;
返回 下一张 上一张 小结
六、主惯性轴和主惯性矩: 主惯性轴(主轴)—使 I zoyo 0 的这对正交坐标轴; 主惯性矩(主惯矩)—截面对主惯性轴的惯性矩; 形心主惯性轴(形心主轴)—通过形心的主惯性轴; 形心主惯性矩(形心主惯矩)—截面对形心主轴的惯性矩。
I z1y1 I zy abA;
注意: y、z轴必须是形心轴。
二、转轴公式:
Iz1
A y12dA
( y cos z sin)2 dA;
A
I z1
Iz
Iy 2
Iz
Iy 2
cos 2
I zy
sin 2;
I y1
Iz
2
Iy
Iz
2
Iy
cos 2
I zy
sin 2;
I z1y1
Iz
Iy 2
三、惯性积:
定义:平面图形内, 微面积dA与其两个坐 标z、y的乘积zydA在整个图形内的积分称为 该图形对z、y轴的惯性积。
Izy
z y dA;
A
特点: ①惯性积是截面对某两个正交
6.3平行移轴公式
第6章 平面图形的几何性质6.3 惯性矩和惯性积的平行移轴公式 主轴和主惯性矩6.3.1 惯性矩和惯性积的平行移轴公式任一平面图形如图6.9所示,其面积为A ,形心为C ,坐标轴y c 和z c 为形心轴。
正交坐标轴y 、z 与形心轴y c 、z c 平行,两对平行轴之间的间距分别为a 和b 。
截面对y c 轴、z c 轴的惯性矩I y c、I z c 及惯性积I y z c c 为已知,现求图形对y 、z 轴的惯性矩和惯性积。
图中任一点在两坐标系下的坐标关系为=+z z a c =+y y b c由式(6.5)⎰⎰⎰⎰==+=++I z A z a A z A a z A a AAAAy c c c d ()d d 2d 2222其中⎰=z A I Ac y cd 2,⎰=A A Ad ,⎰=z A S Ac y cd 。
因y c 为形心轴,所以=S y c 0,于是可得同理 ⎭⎪=+⎪⎬=+⎪⎪=+⎫I I abA I I b A I I a A yz y z z z y y c c c 22c (6.9)上式即为惯性矩和惯性积的平行移轴公式(parallel-axis theorem )。
因为a A 2和b A 2均为正,所以在所有相互平行的轴中,同一图形对形心轴的惯性矩最小。
在应用公式(6.9)时需注意,a 、b 是图形的形心C 在yOz 坐标下的坐标,有正、负之分。
同时,y c 、z c 轴一定是形心轴。
6.3.2 主轴和主惯性矩由式(6.6)可知,同一图形对不同的一对直角坐标轴的惯性积是不同的,若图形对某一对直角坐标轴的惯性积等于零,则该直角坐标轴称为主惯性轴,或简称为主轴(principal axes )。
图形对主轴的惯性矩称为主惯性矩(principal moment of inertia )。
通过图形形心的主轴称为形心主轴(centroidal axis ),图形对形心主轴的惯性矩称为形心主惯性矩(principal moment of inertia for an area )。
平行移轴公式
IyC , IzC , IyCzC ̄ 截面对形心轴 yC , zC的惯性矩
和惯性积。
z
zC
I yC z12dA z z1 b
z1
I y z2dA
b
C(a,b)
z yC
y
(z1 b)2dA
Oa
平行移轴公式
(z12 2z1b b2 )dA
A z12dA
A 2z1bdA
b2dA
A
I yC
?
b2 A
A 2z1bdA 2b A z1dA
z
zC
2bSyC
0
b
C(a,b)
ቤተ መጻሕፍቲ ባይዱOa
z1 z yC
y
平行移轴公式
I y I yC b2 A Iz IzC a2 A
I yz I yCzC abA
z
zC
b
C(a,b)
Oa
z1 z yC
y
截面对形心轴的惯性矩最小, 但惯性积不能确定是否最小
平行移轴公式
二、组合截面的惯性矩和惯性积
n
I y I yi i 1
n
Iz Izi i 1
n
I yz I yzi i 1
I yi , Izi , I yzi —第 i个简单截面对 y, z 轴的惯性矩
和惯性积。
平行移轴公式
平行移轴公式
一、 平行移轴公式
zzC
y, z —任意一对坐标轴;
b
C(a,by)C
C ―截面形心;
y
Oa
(a , b ) ―形心C在 yOz坐标系下的坐标;
yC , zC —过截面的形心 C 且与 y, z轴平行 的坐标轴(形心轴)。
第七章 静矩及其性质
Iy Iy i i 1 n I z I z i i 1 n I yz I yz i i 1
n
I z i 、 I y i、 I yz i 分别为第个i简单图形对y轴和z轴的惯 式中, 性矩和惯性积。
22
§7-3
17
例2
求图示矩形的 I z , I y , I yz ,i y ,iz z
dz z
h
c
y
b
1 3 b 3 bh I y z dA z A 12 3 h 2 1 3 2 I z y dA hb A 12 Iy 3 iy h A 6
2
h 2
Iz 3 iz b A 6 I yz yzdA 0
z
60 96 65 (77 ) 39.7(mm ) 96 77 13
§7-2
惯性矩和惯性积
y
z y dA z
一、简单图形的惯性矩 1、定义: dA对z轴的惯性距: dA对y轴的惯性距: 图形对z轴的惯性矩:
2
dIz y dA 2 dIy z dA o
I z y 2 dA,
求圆环圆形的 I z , I y z D d y
I P I P大 I P小
1 1 D 4 d 4 32 32 1 D 4 ( 1 4 ) 32
d D
I y I z I z大 I z小
1 D 4 (1 4 ) 64
21
三、组合图形的惯性矩及惯性积 根据定义可知,组合图形对某坐标轴的惯性矩 等于各个简单图形对同一轴的惯性矩之和;组合图 形对于某一对正交坐标轴的惯性积等于各个简单图 形对同一对轴的惯性积之和。用公式可表示为
第七章 截面几何性质 平行移轴公式
课时授课计划
第七章截面的几何性质
通过例子引入(让学生知道截面的重要性)
截面尺寸和形状完全相同的杆件,因为放置的方式不同,
其承载能力是大不相同的。
思考:抗弯能力与截面形状有何关系?
一、静矩与形心
平面图形对某轴的静矩等于其面积与形心
坐标(形心到该轴的距离)的乘积。
特性:
当坐标轴通过该平面图形的形心(简称形心轴)时,静矩等于零;反之,若平面图形对某轴的静矩等于零,则该轴必通过形心。
二、惯性矩
简单图形对其形心轴的的惯性矩
(见课本111页表7-1)
三、惯性矩的平行移轴公式
已知
对z 轴的惯性矩:
平行移轴定理,或称为平行移轴公式:截面对任意轴的惯性矩,等于截面对与该轴平行的形心轴的惯性矩加上截面面积与两轴间距离平方的乘积。
四、例题分析
1、T 字形截面尺寸及形心位置如下图所示,求该截面对其形心轴的惯性矩。
2、讲解:例8-7
五、讨论
形心的计算。
⎩⎨⎧+=+=b z z a y y C
C
⎰=A c z dA y I C
2
⎰=A z dA
y I 2⎰⎰++=+=A
C C A C z dA a a y y dA a y I )2()(2
2
2。
惯性矩和平行移轴公式课件
01
深入研究惯性矩和平行 移轴公式的理论和应用, 提高计算精度和效率。
Байду номын сангаас
02
探索新的计算方法和算 法,以适应更复杂和大 规模的结构分析。
03
加强与其他学科的交叉 研究,如计算机科学、 数学等,以推动相关领 域的发展。
04
推广惯性矩和平行移轴 公式的应用,提高工程 和科学研究的水平。
THANKS
感谢观看
实例二:复杂结构的平行移轴公式应用
总结词:深入浅
详细描述:以一个复杂的组合结构为例,介绍如何利用平行移轴公式计算其惯性矩。首先,对平行移轴公式的应用条件进行 说明,然后通过逐步解析和推导,展示如何将复杂的结构拆分成简单的部分,并分别计算其惯性矩,最后利用平行移轴公式 得出整个结构的惯性矩。
实例三
05
总结与展望
CHAPTER
惯性矩和平行移轴公式的重要性和意义
惯性矩
描述物体在转动时保持其转动轴不变 的特性,是工程和物理学中常用的物 理量。
平行移轴公式
应用领域
广泛应用于机械、航空、船舶、车辆 等领域,用于设计和优化各种结构。
用于计算多个轴上的惯性矩,是解决 复杂问题的重要工具。
未来研究方向和展望
工程应用
02
平行移轴公式
CHAPTER
平行移轴公式的推导
平行移轴公式的应用 01 02
平行移轴公式的证明
平行移轴公式的证明可以通过几 何证明和代数证明两种方法进行。
几何证明方法利用了平行四边形 的性质和平行线的性质,通过图 形变换和比较证明平行移轴公式
的正确性。
代数证明方法基于矩的性质和线 性代数中的向量运算,通过数学 推导证明平行移轴公式的正确性。
《工程力学》课件第6章 截面图形的几何性质
Ip
r2dA A
D 2
r2
2
rdr
D4
0
32
Ip Iy Iz
Iy
பைடு நூலகம்
Iz
Ip 2
D4
64
四、组合截面的惯性矩与惯性积
z
I
例如工字型截面 A AI AII AIII
II
y
III
Iy
z 2 dA
A
z2dA z2dA z2dA
AI
AII
AIII
m
I yI I yII I yIII I yi
包括:形心、静矩、极惯性矩、惯性矩、惯性半径、惯 性积、主轴和形心主轴、主矩和形心主矩等
6.1 静矩和形心
一、静矩
截面对z轴的静矩
z
Sz
ydA
A
截面对y轴的静矩
y
dA
A
z
Sy
zdA
A
o
单位: m3
y
静矩的数值可大于零、等于零或小于零。
二、形心
如图所示均质薄板,重心与形心C重合,
由静力学可知形心坐标在yoz:
何关系, y R sin , dy R cosd ,
dA 2R cosdy 2R2 cos2 d
Sz
A
(2)形心
ydA yC
2 0
Sz A
R sin 2R2 cos2 d
2 R3 3
4R
1 R2 3
zC
2 3
0
R3
2
三、组合截面的静矩和形心 z
D d
y
整个图形对某一轴的静矩等于各个分图形对同一轴的静矩之和。
z1
y1 z
结构力学
本章重点1、静矩与形心2、惯性矩、极惯性矩和惯性积3、平行移轴公式、转轴公式关键概念静矩、惯性矩、极惯性矩、惯性积、主惯性轴、形心主惯性轴目录§I-1 静矩和形心§I-2极惯性矩·惯性矩·惯性积§I-3 平行移轴公式§I-4 惯性矩和惯性积的转轴公式.截面的§I -1 静矩和形心一、基本概念1. 静矩(或一次矩)O xd A y yx C x ydA x ⋅——微面积对y 轴的静矩dA y ⋅——微面积对x 轴的静矩A x S A y d ⎰=A y S A x d ⎰=——整个平面图形对y 轴的静矩——整个平面图形对x 轴的静矩2.形心坐标公式AS A Ay y A S A A x x x A yA ====⎰⎰d d 常用单位:m 3或mm 3。
数值:可为正、负或0 。
3.静矩与形心坐标的关系yA S x A S x y ==推论:截面对形心轴的静矩恒为0,反之,亦然。
1.组合截面的静矩根据静矩的定义:整个平面图形对某轴的静矩应等于它的各组成部分对同一轴的静矩的代数和,即:∑=∑===ni i i x n i i i y y A S x A S 11 和面积。
个简单图形的形心坐标分别为第和 式中: i A y x i i i ,二、讨论:2.组合截面的形心坐标公式∑=∑===n i i i x n i i i y y A S x A S 11 组合截面静矩∑==n i i A A 1组合截面面积组合截面的形心坐标公式为:∑∑==∑∑======n i i ni i i x n i i n i i i y A y A A S y A x A A S x 1111 ,例I —1:计算由抛物线、y 轴和z 轴所围成的平面图形对y 轴和z 轴的静矩,并确定图形的形心坐标。
z h y b =-⎛⎝ ⎫⎭⎪122O y z 解:S z A y A =⎰2d S y A z A =⎰d =-⎛⎝ ⎫⎭⎪⎰12102222b h y b y d =-⎛⎝ ⎫⎭⎪⎰yh y b y b0221d =4152bh =b h 24O y z y d y bh A A A =⎰d =-⎛⎝ ⎫⎭⎪⎰0221b h y b y d =23bh 形心坐标为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧======52321548332422hbh bh A S z bbh bhA S y y C z C例I —2:确定图示图形形心C 的位置。
理论力学 第五章 平面图形的几何性质
y
2)、求形心
xc
Ax
A
i ci
A1 xc1 A2 xc 2 A1 A2
C2
c(-20.3;34.7)
C1 80
35 1100 20.3(mm) 10 110 80 10
i ci
x
yc
A y
A
A1 y c1 A2 y c 2 A1 A2
60 1100 34.7(mm) 10 110 80 10
§5-3
极惯性矩
y
dA
定义:I p dA
2 A
I p:极惯性矩
极惯性矩恒为正 单位:长度4
x
O
圆截面
d
2
I p A dA
1、实心圆截面——
O
d
I P dA 2 d
2 2 A A
d 2 0
1 4 2 d d 32
y 10
A2 1200mm2 , xc 2 5mm, yc 2 60mm
2)、求形心
C2
120
c(19.7;39.7)
C1
A1 xc1 A2 xc 2 zc A A1 A2 45 700 5 1200 19.7mm) 700 1200
i ci
Ax
80
2 2 A A 2 A c 2 2 A A
y
I x I xc a 2 A I y I yc b A
2
yc xc
x
b
c
a
y
dA yc
xc
——平行移轴公式
o
x
•图形对任意轴的惯性矩,等于图形对于与该轴平 行的形心轴的惯性矩加上图形面积与两平行轴间距 平方的乘积;
惯性矩和平行移轴公式
x
整个图形 A 对x 轴的惯性矩
Ix
y2dA
A
整个图形 A 对 y 轴的惯性矩
Iy
x2dA
A
单位:m4
其值:+
二、惯性矩与极惯性矩的关系 y
若 x 、 y 轴为一对正交坐标轴
x dA
Ip
2dA (x2y2)dA
A
A
A
y
x2dA y2dA
A
A
O
x
即:
Ip Iy Ix
性质 :
平面图形对任意一点的极惯性矩等于该图形对通过 该点的任意一对相互垂直的坐标轴的惯性矩之和
200 157.5 30 I
xC1
a 1 57.5 xC
a 2 57.5 xC2
结语
谢谢大家!
由对称性
y
O
x
1 D4
Ix Iy 2 I p 64
d
D
3.环形截面
Ix
Iy
1 2Ip
(
D4 6
4
d
4
)
D4
64
(14
)
特别指出: 惯 性 矩——对某一轴而言 极 惯 性 矩——对某一点而言
三、惯性半径
在力学计算中,有时把惯性矩写成
即:
Ix
Ai
2 x
Iy
Ai
2 y
ix
I x ——图形对 x 轴的惯性半径 A
iy
I y ——图形对 y 轴的惯性半径 A
单位:m
三、惯性半径
试问: 即:
IxAy2dAAix 2A yC2 ?
ix yC ?
注意:
ix yC
iy xC
5.2 惯性矩和平行移轴公式解析
x
整个图形 A 对x 轴的惯性矩
整个图形 A 对 y 轴的惯性矩
I x y 2dA
A
I y x dA
2 A
单位:m4
其值:+
二、惯性矩与极惯性矩的关系
若 x 、 y 轴为一对正交坐标轴
y
x
dA
y
I p 2dA ( x 2 y 2 )dA
A
A
A O
x dA y dA
一、定理推导
同理
I x I xC a A
2
I y I yC b A I xy I xC yC abA
2
——惯性矩和惯性积的平行轴定理
显然:
I x I xC
I y I yC
性质4:在平面图形对所有相互平行的坐标轴的惯性矩
中,以对形心轴的惯性矩为最小。
二、应用
解: 例 求 I xC和 I yC
3.环形截面
d D
( D 4 d 4 ) D 4 1 4 (1 ) I x I y Ip 64 64 2
特别指出: 惯 性 矩——对某一轴而言 极 惯 性 矩——对某一点而言
三、惯性半径
在力学计算中,有时把惯性矩写成
I x A i x2
即:
I y A i y2
2 Ix I A a x 2 2 C C2
30 200 3 57.52 200 30 mm 4 3.98 107 mm 4 12
例2 求 I x 和 I y C C 解:
6.01 10 mm
xC
ix
Ix ——图形对 x 轴的惯性半径 A
iy
5.2惯性矩和平行移轴公式
显然:
Ix IxC
Iy IyC
性质4:在平面图形对所有相互平行的坐标轴的惯性矩 中,以对形心轴的惯性矩为最小。
二、应用
解: 例 求 I 和xC I yC
200 yC
IxC IxC IxC 6.0110 7mm 4
30 I
C
而
I xC
I xC1
a 1
2 A1
200 157.5 30
200 303 5.5 7220 30m 0 4m
I
12
2.0310 7mm 4
xC1
a 1 57.5 x
C
a 2 57.5 xC2
I xC
I xC2
a 2
2 A2
30 2003 5.5 7220 30m 0 4m 3.9810 7mm 4
12
例2 求 I x和C I yC
解:
IxC IxC IxC 6.0110 7mm 4
IyC IyC IyC
x
整个图形 A 对x 轴的惯性矩
Ix
y2dA
A
整个图形 A 对 y 轴的惯性矩
Iy
x2dA
A
单位:m4
其值:+
二、惯性矩与极惯性矩的关系 y
若 x 、 y 轴为一对正交坐标轴
x dA
Ip
2dA (x2y2)dA
A
A
A
y
x2dA y2dA
A
A
O
x
即:
Ip Iy Ix
性质 :
平面图形对任意一点的极惯性矩等于该图形对通过 该点的任意一对相互垂直的坐标轴的惯性矩之和
ix
I x ——图形对 x 轴的惯性半径 A
1、静矩与形心2、惯性矩、极惯性矩和惯性积3、平行移轴公
1. 转轴公式
y
y
A dA
C E
D
O
x
B
新坐标系ox1y1 旧坐标系o x y
x1 x cos y sin y1 y cos x sin
将上述关系代入平 面图形对x1轴的惯性矩:
x
I x1 A y12 d A
Ix1
cos2
y2 d A sin2
(4)由转轴公式得
80 aⅡ 20 10
40 C
bⅠ Ⅰ
aⅠ
xC
tan 20
2I xc yc I xc I yc
1.093
=113°.8
yc0
bⅡ
20 227 .6 0 113 .8
10 Ⅱ
I xc0
Imax
I xc
I yc 2
1 2
I xc
目录
§ I-2 极惯性矩 ·惯性矩 ·惯性积
1.极惯性矩(或截面二次极矩)
y
I p
2d A
A
2.惯性矩(或截面二次轴矩)
y
I y
x2 d A
A
I x
y2d A
A
O
由于 2 y2 x2
dA
x
x
所以
Ip
2 d A
A
(y2
A
x2)
dA IxIy
(B) Ixy<0 (D) Ix=Iy
(思考题I—2)A
y
bO
(思考题I—3)
x
a
y a
x
Ba
D
思考题I—3:等腰直角三角形如图所示,x、y轴是过斜边中点的
平行移轴公式
截面的几何性质\平行移轴公式
平行移轴公式
1.1 惯性矩和惯性积的平行移轴公式
图示截面的面积为A,xC、yC轴为 其形心轴,x、y轴为一对与形心轴平行
的正交坐标轴,微面积dA在两个坐标系
OxCyC和Oxy中的坐标分别为xC、yC和x、 y。截面对x轴的惯性矩为
Ix
y2dA AA( yC Nhomakorabea)2 dA
目录
力学
24.122 2030mm4
267104 mm4
3)求组合截面对x轴和y轴的惯性矩。组合截面对x轴和y轴的 惯性矩为
Ix=Ix+2 Ix=3690×104 mm4+2×2110×104
mm4=7910×104mm4
Iy=Iy+2 Iy=431×104 mm4+2×267×104 mm4=965×104mm4
组合截面对x、y轴的惯性矩和惯性积为
Ix Ixi , I y I yi , Ixy Ixyi
式中:Ixi、Iyi、Ixyi——各个简单截面对x、y轴的惯性矩和惯性积。 对于工程中常用的截面,其主要的几何性质列于表Ⅰ.1中,以
备查用。
目录
截面的几何性质\平行移轴公式 表Ⅰ.1 常用截面的几何性质
I y I yC b12 A 218.415104 mm4
19.21 26.47 24.12 4491mm4
431104 mm4
目录
截面的几何性质\平行移轴公式 角钢截面对x、y轴的惯性矩为
I x I xC a2 A 149.22104 mm4 98.322 2030mm4
3690104 mm4 I y I yC b2 A 149.22104 mm4
r 4
惯性矩和平行移轴公式课件
实例二:平行移轴公式的应用
总结词
平行移轴公式在工程中有着广泛的应用,它 可以用来计算物体的质心位置和转动惯量。
详细描述
平行移轴公式是一种常用的计算方法,在工 程中广泛应用于机械、航空、航天等领域。 该公式可以用来计算物体的质心位置和转动 惯量,是设计和分析各种机构和机器的关键 工具。通过应用平行移轴公式,可以优化机 构和机器的性能,提高其稳定性和精度。
在计算机图形学和虚拟现实领域, 惯性矩与平行移轴公式被广泛应 用于碰撞检测和响应算法中,以
实现更加真实和精确的模拟效果。
CHAPTER 04
常见问题解答
如何计算截面的惯性矩?
总结词
通过计算截面的面积和边缘到中心的距离,可以计算出截面的惯性矩。
详细描述
首先,需要确定截面的形状,如圆形、矩形、三角形等。然后,根据形状计算截面的面积。接下来,确定截面的 边缘到中心的距离,即截面边缘到截面中心的垂直距离。最后,利用惯性矩的计算公式,即惯性矩 = 面积 × (边 缘到中心的距离)^2,可以计算出截面的惯性矩。
惯性矩和平行移轴公式 课件
• 惯性矩的基本概念 • 平行移轴公式 • 惯性矩与平行移轴公式的应用 • 常见问题解答 • 惯性矩和平行移轴公式的实例
CHAPTER 01
惯性矩的基本概念
定义与公式
惯性矩的定义
惯性矩是物体对于某一点或某轴 线的惯性大小的量度,用I表示。
平行移轴公式
平行移轴公式是计算惯性矩的一 种常用方法,适用于具有平行轴 线的物体。
什么是平行移轴公式?
总结词
平行移轴公式是一种计算组合图形惯性矩的方法,通过将图形分解为简单的组成部分,并分别计算各 部分的惯性矩,再根据平行移轴公式进行组合。
截面的几何性质面积矩惯性矩惯性积平行移轴公式
注意平方问题
10
§A-3 惯性矩Iz=∫ A y2dA
=∫ A (a+yC)2dA
=∫ A
a2dA
+
2a∫ A
yCdA +∫ A
yC2dA
y
C
dA
a
zc
yc
∫ A
yCdA
对形心轴的面积矩=0
b
zc
z
y yc
∫ A yC2dA 对形心轴的惯性矩
故 Iz=∫ A a2dA + IzC
12m 0 m zC 0
5
若y为对称轴,则
§A-2 截面的惯性矩和惯性积
一、惯性矩的定义
Iy=∫
z2dA
A
Iz=∫ A y2dA
惯性矩恒为正
二、惯性积的定义
Iyz=∫
yzdA
A
惯性积可正、可负或为零
o
z
y z dA
y dA dA
z
Iyz= 0
zz
y
y
6
三、形心主轴和形心主惯性轴
主轴: 惯性积为零的一对坐标轴。 主惯性矩: 截面对主轴的惯性矩。
附录A 截面的几何性质
§A-1 截面的面积矩和形心位置
一、面积矩的定义
Sy=∫ zdA A
Sz=∫ ydA A
面积矩可为正、负或为零。
o
z
y z
dA
y
=
∫
ydA
A
A
= SA 二、截z面形心的位置
yc
zc
∫ =
zdA
A
A
=
Sy A
故 Sz = A yc
01. 单击添加标题
Sy = A zc
材料力学惯性矩
y'c
0.6 2.52 (1.26 1.2) 0.6 2.52 2 0.2 2.4
0.16m;
返回 下一张 上一张 小结
第二节 惯性矩和惯性积
一、极惯性矩:
定义:平面图形中任一微面积dA与它到坐 标原点O旳距离ρ平方旳乘积ρ2dA,称为该面积 dA对于坐标原点o旳极惯性矩。
500 500
(2)计算形心主惯性矩:
(z、y轴即形心主轴)
z1
z1
a12 1
50 103 12
20
52
500
1.17
105
cm 4 ;
z2
z2
a22 2
10 503 12
35
202
500
2.17 105 cm4 ;
z z1 z2 117 2 17105 3.34105 cm4;
I zy
z y dA;
A
特点:①惯性积是截面对某两个正交
坐标轴而言。不同截面对同一对轴或同一截面对不同轴旳惯性积
均不同。惯性积是代数值。
②若截面有一根为对称轴,则该截面对涉及此对称轴在 内旳一对正交坐标轴旳惯性积必为零。
单位: m4 , mm4;
返回 下一张 上一张 小结
例5-2 求矩形截面对其对称轴旳惯性矩和惯性积。
Sy
z
A
dA
A
zc ;
当Sz=0或Sy=0时,必有yc=0或zc=0,可知截面对某轴旳
静矩为零时,该轴必经过截面形心;反之,若某轴经过形心,
则截面对该轴旳静矩为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行移轴公式
二、组合截面的惯性矩和惯性积
n
I y I yi
i1
n
Iz Izi
i1
n
I yz I yzi
i1
Iyi , Izi , Iyzi —第 i个简单截面对 y, z 轴的惯性矩 和惯性积。
A
I yC
?
b2A
A 2z1bdA 2b A z1dA
z
zC
2bSyC
0
b
C(a,b)
Oa
z1
z yC
y
平行移轴公式
Iy IyC b2A
I I a2 A
z
zC
Iyz Iy CzC abA
z
zC
b
C(a,b)
Oa
截面对形心轴的惯性矩最小 , 但惯性积不能确定是否最 小
z1
yC z
IyC , IzC , IyCzC ̄ 截面对形心轴 yC , zC的惯性矩
和惯性积。
z
zC
I yC z12dA
I y
z dA 2
z z1b
b
C(a,b)
z1 z yC
y
(z1 b)2dA
z1b b2 )dA
A z12dA
A 2z1bdA
b2dA
平行移轴公式
平行移轴公式
一、 平行移轴公式
zzC
y, z —任意一对坐标轴;
b
C(a,by)C
C ―截面形心;
y
Oa
(a , b ) ―形心C在 yOz坐标系下的坐标;
yC , zC —过截面的形心 C 且与 y, z轴平行 的坐标轴(形心轴)。
平行移轴公式
Iy , Iz , Iyz — 截面对 y, z 轴的惯性矩和惯性积;