轴的设计计算

合集下载

轴的设计、计算、校核

轴的设计、计算、校核

轴得设计、计算、校核以转轴为例,轴得强度计算得步骤为:一、轴得强度计算1、按扭转强度条件初步估算轴得直径机器得运动简图确定后,各轴传递得P与n为已知,在轴得结构具体化之前,只能计算出轴所传递得扭矩,而所受得弯矩就是未知得。

这时只能按扭矩初步估算轴得直径,作为轴受转矩作用段最细处得直径dmin,一般就是轴端直径。

根据扭转强度条件确定得最小直径为:(mm)式中:P为轴所传递得功率(KW)n为轴得转速(r/min)Ao为计算系数,查表3若计算得轴段有键槽,则会削弱轴得强度,此时应将计算所得得直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。

以dmin为基础,考虑轴上零件得装拆、定位、轴得加工、整体布局、作出轴得结构设计。

在轴得结构具体化之后进行以下计算。

2、按弯扭合成强度计算轴得直径l)绘出轴得结构图2)绘出轴得空间受力图3)绘出轴得水平面得弯矩图4)绘出轴得垂直面得弯矩图5)绘出轴得合成弯矩图6)绘出轴得扭矩图7)绘出轴得计算弯矩图8)按第三强度理论计算当量弯矩:式中:α为将扭矩折合为当量弯矩得折合系数,按扭切应力得循环特性取值:a)扭切应力理论上为静应力时,取α=0、3。

b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=0、59。

c)对于经常正、反转得轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生得弯曲应力属于对称循环应力)。

9)校核危险断面得当量弯曲应力(计算应力):式中:W为抗扭截面摸量(mm3),查表4。

为对称循环变应力时轴得许用弯曲应力,查表1。

如计算应力超出许用值,应增大轴危险断面得直径。

如计算应力比许用值小很多,一般不改小轴得直径。

因为轴得直径还受结构因素得影响。

一般得转轴,强度计算到此为止。

对于重要得转轴还应按疲劳强度进行精确校核。

此外,对于瞬时过载很大或应力循环不对称性较为严重得轴,还应按峰尖载荷校核其静强度,以免产生过量得塑性变形。

轴的设计计算

轴的设计计算

轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。

一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。

对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。

此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。

下面介绍几种常用的计算方法:按扭转强度条件计算。

1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。

若有弯矩作用,可用降低许用应力的方法来考虑其影响。

扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。

当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。

应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。

若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。

此外,也可采用经验公式来估算轴的直径。

如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。

几种轴的材料的[]和C值轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52160~135148~125135~118118~107107~982、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。

轴的设计计算

轴的设计计算

轴的设计计算2)根据轴向定位的要求确定轴的各段直径和长度如上图 从左到右依次为1d 2d 3d 4d 5d 6d 7d 与大带轮配合的轴 mm d 381= mm d d d 08.4408.63808.02112=+=⨯+= 取mm d 452= mm d d 4523=≥ 且此处为基孔制配合(其中孔为轴承内孔) 取mm d 503=mm d d 5034=≥ 取mm d 554= mmd d d 8.638.85508.02445=+=⨯+=取mm d 645=mm d d d 5885008.02336=+=⨯+= mm d d 5037== mm l 831=mm l 502252=⨯=∆++=s b l 3由于使用的轴承为深沟球轴承6010(GB/T276-1993)查《机械设计手册》P64表6-1得b=16mm主动轴如左图的装配方案mm d 381=mm d 452=mm d 503=mm d 554=mm d 645=mm d 586=对于从动轴:1)拟定轴上零件的装配方案现选用如图所示的装配方案从动轴如左图所示的装配方案mm mm h b 1422⨯=⨯,键槽用键槽铣刀加工,长为80mm ,选择齿轮轴毂与轴的配合为67k H ;同样半联轴器与轴的连接,选用平键为mm mm mm l h b 901118⨯⨯=⨯⨯,半联轴器与轴的配合为67k H 。

滚动轴承与轴的周向定位是通过过渡配合来保证的,此处选轴的直径尺寸公差为m64)确定轴上圆角和倒角尺寸 参考《机械设计》教材P365表15-2 mm d 601= mm d 757= 取轴端倒角为0452⨯,各轴肩处的圆角半径见轴的俯视图上标注(3) 按弯扭合成应力校核轴的强度 1)主动轴的强度校核圆周力 1t F =112000d T =2000×255.86/93=5502.37N 径向力1r F =1t F tan α=5502.37×tan20°=5502.37×0.36=1980.85N 由于为直齿圆柱齿轮,轴向力1a F =0带传动作用在轴上的压力齿轮轴毂与轴的配合为67k H半联轴器与轴的配合为67k H 。

轴的设计计算

轴的设计计算

轴的设计计算【一】能力目标1.了解轴的功用、分类、常用材料及热处理。

2.能合理地进行轴的结构设计。

【二】知识目标1.了解轴的分类,掌握轴结构设计。

2.掌握轴的强度计算方法。

3.了解轴的疲劳强度计算和振动。

【三】教学的重点与难点重点:轴的结构设计难点:弯扭合成法计算轴的强度【四】教学方法与手段采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。

【五】教学任务及内容任务 知识点轴的设计计算 1. 轴的分类、材料及热处理2. 轴的结构设计3. 轴的设计计算一、轴的分类(一)根据承受载荷的情况,轴可分为三类1、心轴 工作时只受弯矩的轴,称为心轴。

心轴又分为转动心轴(a )和固定心轴(b)。

2、传动轴 工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。

3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。

(二)按轴线形状分:1、直轴(1)光轴作传动轴(应力集中小)(2)阶梯轴优点:1)便于轴上零件定位;2)便于实现等强度2、曲轴另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置。

如牙铝的传动轴。

二、轴的结构设计轴的结构设计就是确定轴的外形和全部结构尺寸。

但轴的结构设计原则上应满足如下要求:1)轴上零件有准确的位置和可靠的相对固定;2)良好的制造和安装工艺性;3)形状、尺寸应有利于减少应力集中;4)尺寸要求。

(一)轴上零件的定位和固定轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。

作为轴的具体结构,既起定位作用又起固定作用。

1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。

2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。

(二)轴的结构工艺性轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。

为此,常采用以下措施:1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。

轴的设计计算

轴的设计计算

第七章 轴的设计计算一、初步确定轴的尺寸1、高速轴的设计及计算:高速轴功率kw p 11.21=,转速min /7101r n =。

选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取1000=A ,得mm 377.14mm 71011.210033110min ≈⨯==n p A d 考虑轴上开有一个键槽对轴强度的削弱,轴径增大%7~%5,并圆整后mm d 15=,轴承选用角接触球轴承7205C ,B=15mm ,综合减速器其他零件的布置和减速器箱体的轮廓,高速轴初步设计如下:2、中间轴的设计及计算:中间轴功率kw p 03.22=,转速min /4.1612r n =。

选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取1050=A ,得mm 419.24mm 4.16103.210533220min ≈⨯==n p A d 考虑轴上开有两个键槽对轴强度的削弱,轴径增大%15~%10,并圆整后mm d 25=,轴承选用角接触球轴承7205C ,B=15mm ,综合减速器其他零件的布置和减速器箱体的轮廓,中间轴初步设计如下:安装大齿轮处的键型号为:键10⨯36GB1096-79 安装小齿轮处的键型号为:键10⨯70GB1096-79 3、低速轴的设计及计算:低速轴功率kw p 95.13=,转速min /4.433r n =。

选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取970=A ,得mm 484.34mm 4.4395.19733330min ≈⨯==n p A d 考虑轴上开有两个键槽对轴强度的削弱,轴径增大%15~%10,并圆整后mm d 35=,轴承选用角接触球轴承7209C ,B=19mm ,综合减速器其他零件的布置和减速器箱体的轮廓,低速轴初步设计如下:安装大齿轮的键型号为:键18⨯65GB1096-97 安装联轴器处的键为:键16⨯125GB1096-97二、轴的校核以中间轴的校核为代表,中间轴的功率为kw p 03.22=,转速为min /4.1612r n =,转矩11.1202=T N ·m 。

(9) 减速器轴的设计计算.doc

(9) 减速器轴的设计计算.doc

轴的设计1、轴的机构设计 (1) 轴的设计计算① 轴的直径的确定(Ⅰ轴) 按扭转强度条件计算: 3npA do ≥ 其中:首选45号钢进行设计,查表A O =120,P=10.56 ,n=486.7r/min 于是d 1≥33.47取d 1=34m②作用在齿轮上的力F t =112d T =31033.7723.2072⨯⨯=5.34⨯103N (其中:T 1为Ⅰ轴受到的转矩,d 1为齿轮1的直径)F r =F t βcos tan n a ⨯=2⨯103N (其中:αn 为齿轮的压力角,β为螺旋角)F a =F t ·tan β=1342N同理可求得Ⅱ轴、Ⅲ轴的直径和轴上齿轮的受力: Ⅱ轴 d 2≥42.4 mm 取d 2=45 mm 轴上齿轮的受力:F t =2700 N 、F r = 1023 N 、 F a =780 NⅢ轴 d 3≥63.7 mm 取d 3=65 mm 轴上齿轮的受力:F t =8340 N 、F r =3100 N 、 F a =1800 N (2) 校核轴上轴承的受力和轴承的寿命 Ⅰ轴1、求轴承受到的径向载荷F r1和F r2将轴系部件受到的空间力系分解为铅垂面和水平面的两个力系,如下图所示根据图示力的分析可知道:由图(b )得F r1v =5.1905.6625.661+⨯-⨯d Fa Fr =5.1905.6625.678145.661007.13+⨯-⨯⨯=170N F r2v =F r -F r1v =1070-170=900NF r1H =5.1905.665.66+F t =7.29⨯102F r2H =F r -F r1H =2820-729=2091F r1=2211Hr F F v r +=22900170+=748.6 NF r2=2222H r v r F F +=222091729+=2276.5 N 2 求两轴承的计算轴向力F a1和F a2对于70000AC 型轴承,按表13-7轴承的派生轴向力为F d =0.68⨯F r (5-8)F d1=0.68×F r1=0.68×748.6=509.6 N F d2=0.68×F r2=0.68×2276.5=1547.99 N 根据轴向力和轴承的安装方向分析可知,轴承2压紧:∴ F a1=F d1=509.6 NF a2=F a +F d1=1323 N3 求轴承的当量动载荷 11r a F F =6.7486.509=0.68=e(5-9)22r a F F =5.22761323=0.58<e 由表13-5分别进行查表或插值计算得径向载荷系数和轴向载荷系数为: 对与轴承1: X 1=1 ; Y 1=0 对轴承2: X 2=1 ; Y 2=0 因轴承运转中有轻微的冲击载荷,按照表13-6,f p =1.0~1.2则 P 1=f p(X 1F r1+Y 1F a1)=1.1×(1×748.6+0×2362)=823.46(5-10)P 2=f p (X 2F r2+Y 2F a22)=1.1×(1×2276.5+0)=2504.15 (5-11) 4 计算轴承的寿命L h =ε⎪⎪⎭⎫⎝⎛266010P C n =72060106⨯⨯315.250423500⎪⎭⎫ ⎝⎛=19131 h<28800 h(5-12)寿命不能满足工作要求,所以应选择中载系列,选用型号为7307AC,在次进行验证:L h ’=72060106⨯⨯398.259732800⎪⎭⎫ ⎝⎛=420839 h>28800 h(5-13)满足工作寿命的要求,所以轴承选用7307AC 系列。

轴的设计计算

轴的设计计算

轴的设计计算
轴的设计计算主要包括以下步骤:
1.确定轴上零件的布局:根据工作要求确定轴上零件的位置和装配关系,为后续计算提供依据。

2.确定各轴段的直径:根据轴上零件的布局和载荷情况,确定各轴段的直径。

通常情况下,轴段直径与轴上零件的尺寸有关,需要考虑轴的弯曲刚度和疲劳强度等因素。

3.确定轴的结构细节:根据轴上零件的布局和装配要求,确定轴的结构细节,如轴承盖、密封件、联轴器等。

这些细节对轴的设计计算和制造都有重要影响。

4.计算轴的载荷:根据轴的工作要求和载荷情况,计算轴的载荷。

需要考虑径向载荷、轴向载荷和扭矩等,为后续的强度校核提供依据。

5.强度校核:根据轴的载荷和材料特性,进行强度校核。

通常需要进行弯扭合成校核和剪切校核等,以确保轴的强度满足工作要求。

6.确定支承方式:根据轴的工作要求和载荷情况,确定合适的支承方式。

支承方式的选择对轴的稳定性和疲劳寿命有很大影响。

7.确定润滑方式:根据轴的工作要求和润滑剂特性,选择合适的润滑方式。

润滑方式的选择对轴的摩擦磨损性能和寿命有很大影响。

以上是轴的设计计算的主要步骤,具体计算过程需要根据实际情况进行调整和完善。

机械设计轴的设计计算

机械设计轴的设计计算

机械设计轴的设计计算
机械设计轴的设计计算主要包括以下几个方面:
1. 轴的尺寸计算:根据所需的扭矩及转速计算轴的直径及轴长,选择合适的轴材料及表面加工方式。

2. 轴的强度计算:根据轴材料的抗拉强度、抗压强度、弹性模量等参数,计算轴的最大等效应力及安全系数。

3. 轴的转动稳定性计算:根据轴的几何形状、转动速度、转动方向等参数,计算轴的临界转速及转动稳定性。

4. 轴的支撑方式计算:根据轴的重量及受力情况,计算轴的支撑方式以及所需的轴承类型、尺寸及数量。

5. 轴的动态平衡设计:根据轴的转动速度、质量分布情况等参数,计算轴的动态不平衡力,并设计相应的平衡装置。

6. 轴的表面处理设计:根据轴的使用环境及要求,选择适当的表面处理方式,如镀铬、喷涂、硬化等,以提高轴的耐磨性及抗腐蚀性。

以上是机械设计轴的设计计算的主要内容,要根据具体情况进行细致的计算与设
计。

机械设计 轴的计算

机械设计 轴的计算

e k m ω
2
ω m
Fc
− 1
k mω
2
⇒ 1 时,y ⇒ ∞ 共振
k mω
2
⇒ 1 时,y ⇒ ∞,共振 ω c =
k g = y0 m
产生共振时的角速度(或转速) 产生共振时的角速度(或转速)称临界角速 度
ω (或临界转速 c
y0
nc =
30ωc
π

避免共振, 工作转速 避免共振,
n 不能接近临界转速。 不能接近临界转速。
[σ − 1 ]b
σ −1 = S
对于心轴, 对于心轴,T=0,
σ ca
M = ≤ [σ −1 ]b W
3、按安全系数法的精确校核计算 、按安全系数法的精确校核计算 Sσ Sτ S ca = ≥ S S σ2 + S τ2 σ −1 Sσ = kσ有效应力集中系数 Kσσ a +ψ σσ m ε σ 尺寸系数
m 3z3 n csin β3 = ar m z sinβ2 n2 2
n1
F1 a
3
nⅡ
F3 a
nⅢ
F4 r
4
F3 r
F2 t
· F
t3
F4 t
1
F1 r
F4 a
F2 r
· F1 t
注意: 注意:
F2 a
2

1、力画在啮合线 、力画在啮合线 附近; 附近; 2、标明各力符号; 、标明各力符号;
= 9 . 4 kW
n1 n3 = = 93 . 6 r / min i 6 P3 T3 = 9.55 × 10 = 959100 N ⋅ mm n3 2、求齿轮受力 Ft = 5000 N

轴的设计计算

轴的设计计算

轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。

一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。

对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。

此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。

下面介绍几种常用的计算方法:按扭转强度条件计算。

1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。

若有弯矩作用,可用降低许用应力的方法来考虑其影响。

扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。

当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。

应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。

若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。

此外,也可采用经验公式来估算轴的直径。

如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。

几种轴的材料的[]和C值[]2、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。

计算时,先根据结构设计所确定的轴的几何结构和轴上零件的位置,画出轴的受力简图,然后,绘制弯矩图、转矩图,按第三强度理论条件建立轴的弯扭合成强度约束条件:考虑到弯矩所产生的弯曲应力和转矩所产生的扭剪应力的性质不同,对上式中的转矩乘以折合系数,则强度约束条件一般公式为:式中:称为当量弯矩;为根据转矩性质而定的折合系数。

轴的设计计算(主动轴)

轴的设计计算(主动轴)

d1 =25 (mm ) , d 2 = d1 +2h=25+2×1.5=28 (mm )
考虑到该轴段上的密封件尺寸,取 d 2 =28 (mm )
轴承初选 6306 深沟球轴承。轴承宽度 B=19 (mm )
d 3 =30mm
d 4 =32mm
d 7 =30mm
d 6 =37mm
d 5 = d 4 +2h=32+2×(0.07~0.1)×37
联轴器处
4T = 22.64 <[ σ p ]=(100~120)MPa dhl
L=40mm
l=40- =36 h=7 l=40-4=36 h=7mm
σp =
4 × 43500 = 27.62 <[ σ p ]=(100~120)MPa 25 × 7 × 36
故所选键连接合适
3
则 从动轴 d ≥ c
P =(118~107) n
3
2.23 =19.55~17.73 490
考虑键槽 d×1.05≥18.62~20.53
该轴外端安装有联轴器,选用弹性套柱销联轴器
T
C
=KT=1.5×9550 2.23 =261.84
122
孔径为 25 (mm )
3 轴的结构设计 根据轴上零件的定位、装拆方便的需要,同时考虑到强度的原则,主动轴和从 动轴均设计为阶梯轴。 (1) 轴径确定
R VA = RVB =0.5 Ft =836.5N
M HC = 49.5 × 304.5 = 15073 ( N ⋅ mm)
M VC =49.5×836.5=41407 ( N ⋅ mm) 转矩 T=43500 ( N ⋅ m)
M C = M HC + M VC = 15073 2 + 41407 2 =44065 ( N ⋅ mm)

轴的设计计算及校核实例

轴的设计计算及校核实例

轴的设计计算及校核实例
轴是用来支撑旋转的机械零件,如齿轮、带轮、链轮、凸轮等。

轴的设计计算主要包括选材、结构设计和工作能力计算。

以下是一个轴的设计计算及校核实例:
1. 按扭矩初算轴径:选用45#调质,硬度217-255HBS。

根据()2表14-1、P245(14-2)式,并查表14-2,取c=115,得d≥115×(5.07/113.423)1/3mm=40.813mm。

考虑有键槽,将直径增大5%,则d=40.813×(1+5%)=4
2.854mm。

初选d=50mm。

2. 选择轴承:因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承。

参照工作要求并根据,根据d=50mm,选取单列角接触球轴承7208AC型。

在进行轴的设计时,需要考虑多方面的因素,并进行详细的计算和校核。

如果你需要进行轴的设计计算,建议咨询专业的工程师或查阅相关设计手册。

轴的设计计算

轴的设计计算

轴的设计和计算需要考虑到以下因素:
1. 轴的材料及其特性,如弹性模量、屈服强度、硬度、疲劳极限等;
2. 轴的几何形状,如直径、长度、转角等;
3. 轴所承受的载荷类型、大小和方向,如弯曲载荷、剪切载荷、轴向载荷等;
4. 轴所处的工作环境,如温度、湿度、腐蚀等因素的影响。

轴的计算公式主要有以下几个:
1. 轴的直径计算公式:d=K*P^(1/3),其中d为轴的直径,K为系数,P为功率。

2. 轴的弯曲应力计算公式:σ=M*y/I,其中σ为弯曲应力,M为弯矩,y为轴截面上的距离,I为轴截面的惯性矩。

3. 轴的扭转应力计算公式:τ=T*r/J,其中τ为扭转应力,T为扭矩,r为轴半径,J为极限扭转惯性矩。

4. 轴的疲劳强度计算公式:S=Kf*S0,其中S为轴的疲劳强度,Kf为系数,S0为基本疲劳强度。

以上公式仅为轴的设计和计算中的一部分,实际应用中需要根据具体情况进行综合考虑和计算。

轴的设计计算校核

轴的设计计算校核

轴的设计计算校核一、轴的设计原则轴是机械传动系统中承载和传递力矩的元件,其设计应遵循以下原则:1.强度足够:轴的设计应保证其强度足够,能够承受传递的力矩和应力,并且在工作条件下不会发生破坏。

2.刚度适当:轴的设计应考虑到其在传动过程中的变形情况,尽量使其刚度足够以减小传动误差和能量损耗。

3.成本合理:轴的设计应综合考虑材料成本和制造成本等方面因素,力求设计出成本合理的轴。

二、轴的计算方法轴的计算方法主要有静态强度计算和动态强度计算两种。

1.静态强度计算静态强度计算主要是根据轴所承受的力矩和力的大小,计算轴的最大应力和挠度等参数,判断轴材料的强度是否满足要求。

常用的计算方法有平衡方法、应力法和变形法等。

平衡方法:根据轴所受力的平衡条件,考虑轴上的切线外力和切线内力,计算轴的弯矩和剪力等参数。

应力法:根据轴在受力过程中的应力分布情况,利用杨氏模量和弹性系数等参数,计算轴的最大应力。

变形法:根据轴在受力过程中的挠度和变形情况,利用弯矩和挠度的关系,计算轴的最大挠度。

2.动态强度计算动态强度计算主要是考虑轴在转动过程中的惯性力和振动情况,计算轴的扭转应力和动载荷等参数,判断轴的强度和稳定性。

常用的计算方法有惯性力法、扭转应力法和动力学方法等。

惯性力法:根据轴的质量和转动惯量等参数,计算轴的惯性力和振动情况,进而计算轴的扭转应力。

扭转应力法:根据轴在受到扭转力矩作用下的应力分布情况,利用杨氏模量和切比雪夫公式等,计算轴的扭转应力。

动力学方法:根据轴的转速和转动惯量等参数,计算轴在转动过程中的相对加速度和相对转速等,进而计算轴的动载荷和强度。

三、轴的校核步骤轴的校核是为了确保其设计和计算的准确性,一般按照以下步骤进行:1.确定轴承载力:根据传动系统的参数,确定轴所受的最大力矩和力大小。

2.确定材料:根据轴的使用条件和载荷情况,选取适当的轴材料。

3.进行静态强度计算:根据选定的材料和设计参数,进行静态强度计算,判断轴的强度是否满足要求。

轴的设计计算

轴的设计计算

轴的设计计算 (一)、I 轴的设计1.轴上的功率1P ,转速1n 和转矩1T ,由修正的动力参数可得 17.128P = KW 1970n = r/min417.01810T =⨯ N mm •2.求作用在齿轮上的力已知齿轮1的直径151.389d = mm而 411227.01810273151.389t T F d ⨯⨯=== N'"tan tan 2027311022cos cos13214n r tF F αβ==⨯= N '"tan 2731tan13214648a t F F β==⨯= N3.初步确定轴的最小直径先按式(15-2)初步估算轴的最小直径。

选取轴的材料为45钢,调质处理。

根据表15-3,取112A=,于是得 13min 111221.8P d An === mm 轴的最小直径显然是安在联轴器处的直径d I-II 。

为了使所选的直径与联轴器的孔径相适应,故需同时选取联轴器型号。

联轴器的计算扭矩ca T ,查表14-1,考虑到扭矩变化很小,故 1.3A K =,则41 1.37.0181091234ca A T K T =•=⨯⨯= N mm •按照ca T 应小于联轴器的公称转矩的条件,查手册选用LT5型弹性套柱销联轴器,其公称转矩为125000 N mm •。

半联轴器的孔径125d = mm ,故取25d I-II = mm ,半联轴器长度62L = mm ,半联轴器与轴配合的孔长度144L = mm 。

4.轴的结构设计(1)拟定轴上零件的装配方案如图。

(2)根据轴向定位的要求确定轴的各段直径和长度。

1)为了满足半联轴器的轴向定位要求,I -II 轴段右端需制一个轴肩,故取32d II-III = mm ,左端用轴端挡圈定位,按轴端直径取挡圈直径D=35 mm 。

半联轴器与轴配合的孔长度144L =mm ,为了保证轴端挡圈只压在半联轴器上,故取42l I-II = mm 。

第十五章轴的设计计算习题解答-图文

第十五章轴的设计计算习题解答-图文

第十五章轴的设计计算习题解答-图文轴的设计是机械设计中的一项重要内容。

轴的设计计算涉及到轴的强度、刚度、轴承和若干其他方面的计算。

下面是第十五章轴的设计计算的图文解答,包括轴的强度计算、轴承计算和轴的挠度计算。

1.轴的强度计算轴的强度计算是根据轴所承受的载荷和工作条件来确定轴的尺寸和材料。

通常,轴的强度计算包括以下几个方面的考虑:(1)轴的安全系数的选择:根据轴所承受的载荷和工作条件,选择适当的安全系数。

(2)轴的材料的选择:根据轴的工作条件、载荷和强度要求,选择适当的轴材料。

(3)承载轴承和轴上零件的计算:根据轴所承受的径向和轴向力,计算轴上轴承和其他零件的载荷。

(4)轴的直径计算:根据轴上的载荷和材料的强度,计算轴的直径。

(5)轴的最小直径和变径段计算:根据轴的工作条件和强度要求,计算轴的最小直径和变径段。

2.轴承计算轴承是用于支撑和定位轴的重要零件,轴承的计算包括承载能力、刚度和寿命等方面的计算。

(1)轴承的基本参数计算:根据轴的直径和受力情况,计算轴承的基本参数,包括径向和轴向载荷、轴向刚度和径向刚度等。

(2)轴承的承载能力计算:根据轴承的基本参数和工作条件,计算轴承的承载能力,以确保轴承不会过载。

(3)轴承的刚度计算:根据轴承的基本参数和工作条件,计算轴承的刚度,以确保轴承的位置精度和轴的运动特性。

(4)轴承的寿命计算:根据轴承的负载和工作条件,计算轴承的寿命,以选择适当的轴承。

3.轴的挠度计算轴的挠度计算是为了确认轴的刚度和挠度,在轴的设计中扮演重要角色。

(1)轴的应变能计算:根据轴的材料和载荷情况,计算轴的应变能,用于评估轴材料的选择。

(2)轴的最大挠度计算:根据轴的几何尺寸、材料和载荷情况,计算轴的最大挠度,以确定轴的刚度。

(3)轴的自然频率计算:根据轴的几何尺寸、材料和载荷情况,计算轴的自然频率,以确定轴的挠度和动态特性。

综上所述,轴的设计计算涉及到轴的强度、轴承和挠度等方面的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章:轴的设计计算
第一节:输入轴的设计
:输入轴的设计:
:选取轴的材料和热处理方法:
选取轴的材料为45钢,经过调质处理,硬度240=HB 。

:初步估算轴的直径:
30min n
P A d ≥ 根据选用材料为45钢,0A 的范围为103~126,选取0A 值为120,高速轴功率kW P 81.7=,min /500r n =,
代入数据:
mm d .85.41500
81.71203min =⨯≥ 考虑到轴的外伸端上开有键槽,将计算轴颈增大3%~7%后,取标准直径为45mm 。

输入轴的结构设计:
输入轴系的主要零部件包括一对深沟球轴承,考虑到轴的最小直径为45mm ,而差速器的输入齿轮分度圆为70mm ,设计输入轴为齿轮轴,且外为了便于轴上零件的装卸,采用阶梯轴结构。

(1)外伸段:
输入轴的外伸段与带轮的从动齿轮键连接,开有键槽,选取直径为mm 45,长为mm 78。

(2)密封段:
密封段与油封毡圈5019974406/-ZQ JB 配合,选取密封段长度为mm 60,直径为mm 50。

(3)齿轮段:
此段加工出轴上齿轮,根据主动轮mm B 70=,选取此段的长度为mm 100,齿轮两端的轴颈为mm 5.12,轴颈直径为mm 63。

(4)左右两端轴颈段:
左右两端轴颈跟深沟球轴承6309配合,采用过度配合k6,实现径向定位,根据轴承,25mm B =端轴颈直径为mm 60,长度左端为mm 30和右端为mm 28。

(5)退刀槽:
为保证加工到位,和保证装配时相邻零件的端面靠紧,在齿轮段两端轴颈处加工退刀槽,选取槽宽为mm 5,槽深为mm 2。

(7)倒角:
根据推介值(mm ):50~30>d ,6.15.1或取C 。

80~50>d ,2取C 。

输入轴的基本尺寸如下表:
输入轴的结构图:
:输入轴的受力分析:
:画出受力简图:
:计算支座反力:
(1)作用于齿轮上的圆周力:
N d T F I t 85.4589065
.017.149222=⨯== (2)作用于齿轮上的径向力:
N F F o t r 33.149120tan 85.458920tan ===ο
(3)计算在水平面上的反力:
N .F F F r NV NV 67.7452
331491221====
(4)计算在垂直面上的反力:
N F F F t NH NH 93.2294285.438922
1====
:计算弯矩: (1)计算水平面上的弯矩:
m N .L F M NV V ⋅=⨯=⨯=33.50356767.745111
m N .L F M NV V ⋅=⨯=⨯=33.50356767.745222
21V V V M M M ==
(2)计算垂直面上的弯矩:
m N L F M NH H ⋅=⨯=⨯=08.15495.6793.2294111
m N .L F M NH H ⋅=⨯=⨯=08.154956703.2294222
21H H H M M M ==
(3)计算合成弯矩:
m N M M M H V ⋅=+=+=80.162808.154933.5032221211 m N M M M H V ⋅=+=+=80.162808.154933.5032222222
21M M M ==
(4)计算转矩:
m N n P T I I ⋅=⨯==17.149500
81.795509550 (5)计算截面当量弯矩: ()()m N ..αT M M ⋅=⨯+=+=89.163217.149608016282222 取应力校正系数6.0=α。

(6)绘制输入轴的载荷分析图:
:判断危险截面和校核:
:判断危险截面:
如上计算所得:危险截面位于安装齿轮的位置。

按弯扭合成强度校核:
根据轴是单向旋转,扭转切应力为脉动循环变应力,取6.0=α,轴的计算应力为: W
T M ca 22)(ασ+=
MPa
40.59651.0)1491706.0(16288003
2
2=⨯⨯+= 式中 :M ——轴所受的弯矩,mm N ⋅;
T ——轴所受的扭矩,mm N ⋅;
W ——抗弯截面系数,2mm ,根据截面形状,取31.0d W =; ][1-σ——对称循环变应力时轴的许用弯曲应力,MPa 。

前已选定轴的材料为45钢,调质处理,查表得MPa 60][1=-σ。

因此][1-<σσca ,故安全。

第二节:输出轴的设计
:输出轴的设计:
:选取轴的材料和热处理方法:
选取轴的材料为45钢,经过调质处理,硬度240=HB 。

:计初步估算轴的直径:
30min n
P A d ≥ 根据选用材料为45钢,0A 的范围为103~126,选取0A 值为110,低速轴功率kW P 74.7=,min /100r n =,
代入数据:
mm d 88.46100
74.71103min =⨯≥ 考虑到轴的外伸端上开有键槽,将计算轴颈加大3%~7%后,取标准
直径为50mm 。

输出轴的结构设计:
输出轴系的主要零部件包括一对深沟球轴承,直齿圆柱齿轮和联轴器等,为了便于轴上零件的装卸,采用阶梯轴结构。

(1)外伸段:
设计外伸段与LT9型弹性柱销连轴器配合,以过盈配合作径向定位,且外联轴器的一侧采用轴肩作轴向定位,选取外伸段长为mm 68,直径为mm 50φ。

(2)密封段:
设计密封段与油封毡圈5519974406/-ZQ JB 配合,选取密封段直径长度为mm 48,直径为mm 55φ。

(3)轴肩段:
轴肩与轴承和从动齿轮作轴向定位,选取轴肩段长为mm 30,直径为mm 72φ。

(4)左右两端轴颈段:
左右两端轴颈与6412深沟球轴承配合,轴承内圈与轴承采用过度配合k6,实现径向定位,根据轴承,35mm B =端轴颈直径为mm 60,长度左端为mm 35和右段为mm 75。

(5)齿轮配合段:
此段开有键槽,采用圆头普通平键与减速器的从动配合,根据设计的直齿齿轮的齿宽为mm 70,为使装配紧实,设计配合段长度为mm 64, 直径为mm 68。

(6)退刀槽:
为保证加工到位,和保证装配时相邻零件的端面靠紧,在轴肩和右端轴颈处加工退刀槽,选取槽宽为mm 3,槽深为mm 2。

(8)倒角:
根据推介值(mm ):50~30>d ,6.15.1或取C 。

80~50>d ,2取C 。

输出轴的基本尺寸如下表:
输入轴的结构图:
:输出轴的受力分析:
:画出受力简图:
:计算支座反力:
(1)作用于齿轮上的圆周力:
N d T F II t 91.2309064
.017.739222=⨯== (2)作用于齿轮上的径向力:
N F F o t r 74.84020tan 9.230920tan ===ο
(3)计算在水平面上的反力:
N ...L L F F r NV 85447153
5817484021=⨯== N ...L L F F r NV 89392153
5717484012=⨯== (4)计算在垂直面上的反力:
N ...L L F F t NH 441230153
58191230921=⨯== N ...L L F F t NH 471079153
57191230912=⨯==
:计算弯矩:
(1)计算水平面上的弯矩: m N ...L F M NV V ⋅=⨯=⨯=2132057185447111
m N ...L F M NV V ⋅=⨯=⨯=2132058189392222
21V V V M M M ==
(2)计算垂直面上的弯矩:
m N ...L F M NH H ⋅=⨯=⨯=76879571441230111
m N ...L F M NH H ⋅=⨯=⨯=77879581471079222
21H H H M M M ==
(3)计算合成弯矩:
m N ...M M M H V ⋅=+=+=2293677879213202221211 m N ...M M M H V ⋅=+=+=2393677879213202222222
21M M M ==
(4)计算转矩:
m N n P T II II ⋅=⨯==17.739100
74.795509550 (6)计算截面当量弯矩: ()()m N ....αT M M ⋅=⨯+=+=9510351773960229362222
取应力校正系数6.0=α。

(7)绘制输出轴的载荷分析图:
:判断危险截面和校核:
:判断危险截面:
如上计算所得:危险截面位于安装齿轮的位置。

:按弯扭合成强度校核:
根据轴是单向旋转,扭转切应力为脉动循环变应力,取6.0=α,轴的计算应力为: W
T M ca 22)(ασ+= MPa
71.35641.0)7391706.0(9362203
2
2=⨯⨯+= 式中 :M ——轴所受的弯矩,mm N ⋅;
T ——轴所受的扭矩,mm N ⋅;
W ——抗弯截面系数,2mm ,根据截面形状,近似计算可忽略键槽,取31.0d W =;
][1-σ——对称循环变应力时轴的许用弯曲应力,MPa 。

前已选定轴的材料为45钢,调质处理,查表得MPa 60][1=-σ。


此][1-<σσca ,故安全。

相关文档
最新文档