六年级数学圆柱圆锥练习题及答案
圆柱圆锥练习题及答案
圆柱圆锥练习题及答案### 圆柱圆锥练习题及答案#### 一、选择题1. 圆柱的底面半径为3厘米,高为5厘米,其体积是()立方厘米。
A. 141.3B. 94.2C. 235.5D. 47.12. 圆锥的底面半径为4厘米,高为9厘米,其体积是()立方厘米。
A. 50.24B. 100.48C. 150.72D. 200.963. 一个圆柱与一个圆锥等底等高,圆柱的体积是圆锥体积的()倍。
A. 1B. 2C. 3D. 4#### 二、填空题4. 圆柱的体积公式是V = πr²h,其中 r 代表________,h 代表________。
5. 圆锥的体积公式是V = ________πr²h,其中 1/3 是因为圆锥的体积是与它等底等高的圆柱体积的________。
#### 三、计算题6. 一个圆柱形水桶,底面直径为20厘米,高为30厘米,求水桶的体积。
7. 一个圆锥形沙堆,底面半径为6米,高为10米,求沙堆的体积。
8. 一个圆柱形容器内装满了水,容器的底面半径为8厘米,高为12厘米。
如果将容器内的水倒入一个底面半径为4厘米,高为18厘米的圆锥形容器中,问水能否完全倒入?#### 四、解答题9. 一个圆柱形的油桶,底面半径为0.5米,高为3米。
如果油桶里的油占油桶体积的75%,求油桶里油的体积。
10. 一个圆锥形的奖杯,底面半径为0.2米,高为0.5米。
如果奖杯的材质是铜,铜的密度为8.96克/立方厘米,求这个奖杯的质量。
#### 答案1. A. 141.3 立方厘米(V = π × 3² × 5 = 141.3)2. B. 100.48 立方厘米(V = 1/3 × π × 4² × 9 = 100.48)3. C. 3 倍(等底等高的圆柱体积是圆锥体积的3倍)4. 底面半径,高5. 1/3,三分之一6. 体积为3.14 × (20/2)² × 30 = 3.14 × 100 × 30 = 9420 立方厘米7. 体积为1/3 × 3.14 × 6² × 10 = 3.14 × 12 × 10 = 376.8 立方米8. 圆柱体积为3.14 × 8² × 12 = 2411.52 立方厘米,圆锥体积为1/3 × 3.14 × 4² × 18 = 301.44 立方厘米。
圆柱圆锥练习题和答案
圆柱圆锥练习题和答案一、选择题1. 圆柱的体积公式是()A. V = πr²hB. V = πr² + hC. V = πr² - hD. V = πrh2. 圆锥的体积公式是()A. V = 1/3πr²hB. V = 3πr²hC. V = πr²h/3D. V = πr²h3. 圆柱的表面积公式是()A. S = 2πrh + 2πr²B. S = πrh + πr²C. S = 2πrhD. S = πr²4. 圆锥的侧面展开图是()A. 圆形B. 长方形C. 扇形D. 三角形5. 圆柱和圆锥的底面都是()A. 圆形B. 长方形C. 扇形D. 三角形二、填空题6. 一个圆柱的底面半径为3厘米,高为5厘米,其体积是_________立方厘米。
7. 一个圆锥的底面半径为4厘米,高为9厘米,其体积是_________立方厘米。
8. 一个圆柱的底面周长为12.56厘米,高为4厘米,其表面积是_________平方厘米。
9. 一个圆锥的底面半径为2厘米,高为6厘米,其表面积是_________平方厘米。
三、计算题10. 一个圆柱形容器的底面直径为20厘米,高为30厘米,求其容积。
11. 一个圆锥形沙堆,底面半径为5米,高为3米,如果将沙堆铺在长10米,宽6米的长方形地面上,求铺成的沙堆高度。
四、解答题12. 一个圆柱形油桶,底面半径为0.8米,高为1.5米,求油桶的表面积和体积。
13. 一个圆锥形漏斗,底面半径为0.6米,高为0.9米,求漏斗的体积。
答案:1. A2. A3. A4. C5. A6. 141.37. 75.368. 150.729. 37.6810. 圆柱形容器的容积为3.14 × (20/2)² × 30 = 3000π 立方厘米。
11. 圆锥形沙堆的体积为1/3 × 3.14 × 5² × 3 = 78.5π 立方米。
人教版数学6年级下册 第3单元(圆柱和圆锥)课后作业练习题(含答案)
人教版六年级下册第三单元圆柱和圆锥课后作业练习题一.选择题1.把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,它的体积是()立方分米。
A.50.24B.56.52C.16.75D.200.962.36个铁圆柱,可以熔铸成等底等高的圆锥体的个数是()A.12个B.18个C.36个D.108个3.两个圆柱的底面积相等,高之比是3:2,它们的体积之比是()A.3:2B.2:3C.9:44.一个圆柱与一个圆锥等底等高,已知圆柱的体积比圆锥的体积多9立方米,圆锥的体积是()立方米.A.4.5B.3C.95.用两张同样的长方形硬纸板围成两个不同的圆柱形纸筒,再分别装上两个底面,那么这两个圆柱形纸筒的()一定相等。
A.底面积B.侧面积C.表面积D.体积6.一个圆柱与一个圆锥体积相等,底面直径也相等,则圆锥的高是圆柱的高的()A.13B.23C.3倍D.6倍7.一个圆柱和一个圆锥的底面直径相等,圆柱的高是圆锥的3倍,圆锥的体积是5立方分米,圆柱的体积是()立方分米.A.5B.15C.458.一个圆柱的体积比与它等底等高的圆锥的体积大()A.3倍B.2倍C.1 3二.填空题9.底面积是212cm、高是9cm的圆锥的体积是3cm,和它等底等高的圆柱的体积是3cm.10.把6个形状完全相同的圆柱体铁块熔化后,可浇铸成与这种圆柱体等底等高的圆锥体铁块件。
11.一个圆柱的体积是3188.4cm,高是15cm,它的底面积是2cm.12.一个圆柱的底面周长是9.42分米,高3分米,它个圆柱的侧面积是平方分米,体积是立方分米。
13.把一根3米长的圆柱体木材截成三段圆柱体,表面积增加了12平方分米,这根木料的体积是立方分米。
14.一个圆柱和一个圆锥等底等高,它们的体积差是94.2立方厘米,这个圆柱的体积是立方厘米.又知圆锥的底面半径是3厘米,这个圆柱的侧面面积是平方厘米.15.做一节底面直径是10厘米,长为1米的圆柱形烟囱,至少需要一张平方厘米的铁皮。
六年级下册数学《圆柱与圆锥》专项练习题50道附答案【达标题】
六年级下册数学《圆柱与圆锥》专项练习题50道一.选择题(共10题,共20分)1.在半径为50cm的圆形铁皮上剪去一块扇形铁皮,用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为()。
A.228°B.144°C.72°D.36°2.把这面小旗旋转后得到的图形是()。
A.长方形B.圆柱C.圆锥D.球3.圆柱的底面直径是10厘米,高8厘米,它的表面积是()。
A.408.2cm2B.251.2cm2C.157cm2D.517cm24.把一个圆柱削成一个最大的圆锥,圆柱与削去部分的体积比是()。
A.3:1B.2:1C.3:2D.2:35.下面的平面图形分别绕虚线旋转一周会形成圆柱的是()。
A. B. C.D .6.一个圆柱的侧面积是125.6平方米,高是10分米,它的体积是()立方分米。
A.125.6B.1256C.12560D.12560007.一根圆柱形木料底面半径是0.2米,长是3米。
将它截成6段,如下图所示,这些木料的表面积比原木料增加了()平方米。
A.1.5072B.1.256C.12.56D.0.75368.求圆柱形罐头盒的用料就是求圆柱()。
A.体积B.容积C.表面积9.两块同样的长方形纸板,卷成形状不同的圆柱(接头处不重叠),并装上两个底面,那么制成的两个圆柱体的()相等。
A.底面积B.侧面积C.表面积10.求做一个汽油桶至少需要多少铁皮,就是求汽油桶的()。
A.体积B.侧面积C.表面积二.判断题(共10题,共20分)1.一个圆锥和一个圆柱等底等高,圆锥的体积是圆柱体积的。
()2.圆柱体的底面直径是3厘米,高是9.42厘米,它的侧面展开后是一个正方形。
()3.圆锥有无数条高。
()4.一个圆锥的底面积是18cm2,高是2cm,体积就是36cm3。
()5.一个圆锥的体积是与它等底等高的圆柱体积的三分之一。
()6.圆柱的体积一般比它的表面积大。
人教版数学六年级下册圆柱和圆锥专项练习题附答案
圆柱和圆锥练习一、单选题(每道小题 5分共 20分 )1.、等底等高的圆柱、正方体、长方体的体积相比较. [ ]A.正方体体积大 B.长方体体积大C.圆柱体体积大 D.一样大2、圆柱体的体积和底面积与一个圆锥体相等, 圆柱体的高是圆锥体的[ ]3.、24个铁圆锥, 可以熔铸成等底等高的圆柱体的个数是: [ ]A.12个B.8个 C.36个 D.72个4. 圆柱体的底面半径和高都扩大3倍, 它的体积扩大的倍数是: [ ]A.3B.6C.9D.27二、填空题1. 用一张边长是20厘米的正方形铁皮, 围成一个圆柱体, 这个圆柱体的侧面积是().2. 直圆柱的底面周长6.28分米, 高1分米, 它的侧面积是( )平方分米, 体积是()3. 一个圆柱体的底面直径和高都是0.6米, 它的体积是( )立方分米.4. 一个圆锥体和它的等底等高的圆柱体的体积相差12立方厘米, 圆锥体的体积是()。
5. 一个圆柱形铅块, 可以熔铸成( )个和它等底等高的圆锥形零件.6. 做一个圆柱体, 侧面积是9.42平方厘米, 高是3厘米, 它的底面半径是()。
7. 一个圆锥体体积是2立方米, 高是4分米, 底面积是( ).8. 一个圆柱体和一个圆锥体的体积与高都相等, 圆柱的底面积是18平方厘米, 圆锥的底面积是( )平方厘米.9. 一个圆柱体和一个圆锥体的底面积和高都相等.已知圆锥体的体积是7.8立方米, 那么圆柱体的体积是( ).10. 一个圆锥的体积是76立方米, 底面积是19平方米, 这个圆锥的高是()。
11. 把一个高6厘米的圆柱体削成最大圆锥体, 这个圆锥的体积是9.42立方厘米, 它的底面积是( ).12. 一个圆锥的体积是62.4立方厘米, 它的体积是另一个圆锥的4倍.如果另一个圆锥的高是2.5厘米, 这个圆锥的底面积是( ).14. 一个圆柱体削成一个与它等底等高的圆锥体, 削去的部分是圆锥体的()%。
15. 等底等高的圆柱体和圆锥体, 其中圆锥体的体积是126立方厘米, 这两个形体的体积之和是( ).三、应用题1. 一个圆锥形砂堆, 底面周长是31.4米, 高3米, 每方砂重1.8吨, 用一辆载重4.5吨的汽车, 几次可以运完? (得数保留整数)(5分)2. 一个圆形水池, 它的内直径是10米, 深2米, 池上装有5个同样的进水管, 每个管每小时可以注入水7.85立方米, 五管齐开几小时可以注满水池?3. 一个圆锥形的稻谷堆, 底周长12.56米, 高1.5米, 把这堆稻谷装进一个圆柱形粮仓, 正好装满.这个粮仓里面的底直径为2米, 高是多少米?4. 把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长是5厘米的正方体铁块, 熔铸成一个圆柱体, 这个圆柱体的底面直径是20厘米, 高是多少厘米?5. 一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?6. 一个圆柱体底面半径是2分米, 圆柱侧面积是62.8平方分米, 这个圆柱体的体积是多少立方分米?7. 用一张长2.5米, 宽1.5米的铁皮做一个圆柱形烟筒, 这个烟筒的侧面积是多少? (接口处忽略不计) 8. 一个无盖的圆柱形铁皮水桶, 高50厘米, 底面直径30厘米, 做一对水桶大约需用多少铁皮? (得数保留整数)9. 一个圆柱形水池, 底面半径3米, 池高1.5米, 这个水池最多可盛水多少吨? (1立方米的水重1吨)10. 晒谷场上有一个近似圆锥形的小麦堆, 测得底面周长为12.56米, 高1.2米.每立方米小麦约重730千克. 这堆小麦大约有多少千克? (得数保留整千克)。
圆柱与圆锥的易错练习题
圆柱与圆锥的易错练习题一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。
【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。
2.一个圆柱形钢管,内直径是20cm,水在钢管内的流速是每秒40cm,每秒流过的水是多少cm3?【答案】解:3.14×(20÷2)2×40=314×40=12560(cm3)答:每秒流过的水是12560cm3。
【解析】【分析】钢管是圆柱形,流出的水也是圆柱形。
用钢管的横截面面积乘每秒流出水的长度即可求出流过水的体积。
3.工地上有一个圆锥形的沙堆,高是1.5米,底面半径是6米,每立方米的沙约重1.7吨。
这堆沙约重多少吨?(得数保留整吨数)【答案】解:3.14×6²×1.5××1.7=3.14×18×1.7=56.52×1.7≈96(吨)答:这堆沙约重96吨。
【解析】【分析】圆锥的体积=底面积×高×,先计算圆锥的体积,再乘每立方米沙的重量即可求出总重量。
4.一个圆锥形沙堆,占地面积是30平方米,高2.7米,每立方米沙重1.7吨。
如果用一辆载重8吨的汽车把这些沙子运走,至少需要运多少次?【答案】解:30×2.7× ×1.7÷8≈6(次)答:至少需要运6次。
【解析】【分析】根据圆锥的体积公式V=×底面积×高求出这个沙堆的体积,然后乘 1.7吨求出沙堆的重量,最后根据沙堆总重量÷每次载重量=运输次数,代入数据即可求出需要运多少次。
六年级数学《圆柱和圆锥》同步练习题及答案
六年级数学《圆柱和圆锥》同步练习题及答案六年级数学《圆柱和圆锥》同步练习题及答案一、填空(1)一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的( ),圆柱的体积是圆锥体积的( ).(2)一个圆柱底面半径是1厘米,高是2.5厘米。
它的侧面积是 ( )平方厘米。
(3)一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是 ( )厘米。
(4)底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是( )立方米,圆锥的体积是( )立方米。
(5)一个圆锥体的底面周长是12.56分米,高是6分米,它的体积是( )立方分米。
(6)一个圆锥体底面直径和高都是6厘米,它的体积是( )立方厘米。
(7)一根长2米的圆木,截成两同样大小的圆柱后,表面积增加48平方厘米,这根圆木原来的体积是( )立方厘米。
(8)一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是( )立方厘米。
(9)圆柱的底面半径是3厘米,体积是6.28立方厘米,这个圆柱的高是( )厘米。
(10) 圆锥的底面半径是6厘米,高是20厘米,它的体积是( )立方厘米。
(11) 一个圆柱体高4分米,体积是40立方分米,比与它等底的圆锥体的体积多10立方分米。
这个圆锥体的高是( )分米。
(12) 把一段圆钢切削成一个最大的圆锥体,切削掉的部分重8千克,这段圆钢重( )千克.(13) 一个圆锥的体积是7.2立方米,与它等底等高的圆柱的体积是( )立方米.(14) 一个棱长是4分米正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是( )分米。
(15) 一个圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是( )厘米.(16) 一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的( ),圆柱的体积是圆锥体积的( ).(17) 一个直圆柱底面半径是1厘米,高是2.5厘米。
六年级下册数学圆柱圆锥练习题(含答案)
六年级下册数学圆柱圆锥练习题(含答案)一、1. 一个圆柱的底面直径为8厘米,高为10厘米,求其体积和表面积。
解:圆柱的体积公式为V = πr^2h,表面积公式为S = 2πr(r+h)。
其中r为底面半径,h为高度。
先求出底面半径r = 8/2 = 4厘米。
体积V = π(4^2)×10 = 160π≈ 502.65 cm^3表面积S = 2π×4(4+10) = 2π×4×14 ≈ 351.86 cm^22. 一个圆锥的底面半径为6厘米,高为8厘米,求其体积和表面积。
解:圆锥的体积公式为V = 1/3πr^2h,表面积公式为S = πr(r+√(r^2+h^2))。
先求出底面半径r = 6厘米。
体积V = 1/3π(6^2)×8 = 96π≈ 301.59 cm^3表面积S = π×6(6+√(6^2+8^2)) ≈ 150.80 cm^2二、3. 一个圆柱的底面直径是12.6厘米,高是16厘米,求其体积和表面积。
解:首先计算底面半径r = 12.6/2 = 6.3厘米。
体积V = π(6.3^2)×16 = 633.6π≈ 1991.05 cm^3表面积S = 2π×6.3(6.3+16) ≈ 570.97 cm^24. 一个圆锥的底面直径是9.8厘米,高是12厘米,求其体积和表面积。
解:先计算底面半径r = 9.8/2 = 4.9厘米。
体积V = 1/3π(4.9^2)×12 ≈ 237.67 cm^3表面积S = π×4.9(4.9+√(4.9^2+12^2)) ≈ 145.55 cm^2三、5. 一个圆柱的底面半径是5厘米,高是18厘米,求其体积和表面积。
解:底面半径r = 5厘米。
体积V = π(5^2)×18 = 450π≈ 1413.72 cm^3表面积S = 2π×5(5+18) ≈ 376.99 cm^26. 一个圆锥的底面半径是7厘米,高是10厘米,求其体积和表面积。
圆柱圆锥练习题以及答案
圆柱圆锥练习题以及答案圆柱圆锥练习题以及答案圆柱和圆锥是几何学中常见的几何体,它们具有广泛的应用。
在学习几何学时,我们经常会遇到与圆柱和圆锥相关的练习题。
下面,我将给大家提供一些圆柱和圆锥的练习题以及相应的答案,希望能帮助大家更好地理解和掌握这些概念。
练习题一:计算圆柱的体积已知一个圆柱的底面半径为5cm,高度为10cm,求其体积。
解答:圆柱的体积公式为V = πr²h,其中r为底面半径,h为高度。
将已知数据代入公式,可得V = 3.14 × 5² × 10 = 785 cm³。
因此,该圆柱的体积为785立方厘米。
练习题二:计算圆锥的体积已知一个圆锥的底面半径为8cm,高度为12cm,求其体积。
解答:圆锥的体积公式为V = (1/3)πr²h,其中r为底面半径,h为高度。
将已知数据代入公式,可得V = (1/3) × 3.14 × 8² × 12 = 803.84 cm³。
因此,该圆锥的体积为803.84立方厘米。
练习题三:计算圆柱的表面积已知一个圆柱的底面半径为6cm,高度为15cm,求其表面积。
解答:圆柱的表面积由底面积和侧面积组成。
底面积为πr²,侧面积为2πrh。
将已知数据代入公式,底面积为3.14 × 6² = 113.04平方厘米,侧面积为2 ×3.14 × 6 × 15 = 565.2平方厘米。
因此,该圆柱的表面积为113.04 + 565.2 = 678.24平方厘米。
练习题四:计算圆锥的表面积已知一个圆锥的底面半径为10cm,高度为16cm,求其表面积。
解答:圆锥的表面积由底面积、侧面积和底面到顶点的距离构成。
底面积为πr²,侧面积为πrl,其中l为底面到顶点的距离。
根据勾股定理,l = √(r² + h²)。
(完整版)小学数学六年级圆柱圆锥练习题
圆柱与圆锥练习题一(1)一个圆柱形蓄水池,直径10米,深2米。
这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?(2)做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?(3)压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分可以压多大的路面?(4)大厅里有10根圆柱,圆柱底面直径1米,高8米。
在这些圆柱的表面涂油漆,平均每平方米用油漆0.8千克,共需油漆多少千克?(5)一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?(6)把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?(7)将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面积是多少平方米?(8)一个蓄水池是圆柱形的,底面面积为31.4平方分米,高2.8分米,这个水池最多能容多少升水?(9)一个圆柱体的高是37.68厘米,它的侧面展开后恰好是正方形,这个圆柱体的体积是多少?(保留整数)(10)一个圆柱形水桶的体积是24立方分米,底面积是6平方分米,桶的装满了水,求水面高是多少分米?(11)一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?(12)把一根长1.5米的圆柱形钢材截成三段后,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?(13) 把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?(14)砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?(15)一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重1.5吨,这堆沙重多少吨?(16)一个无盖的圆柱形水桶,底面直径20厘米,高30厘米,制造这样一对水桶,至少要多少铁皮?如果用这对水桶盛水,能盛多少千克?(每升水重1千克,得数保留整千克)(17)大厅内有8根同样的圆柱形木柱,每根高5米,底面周长是3.2米,如果每千克油漆可漆4.5平方米,漆这些木柱需油漆多少千克?(18)一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺0.04厘米厚,可以铺多少米长?(19)一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。
人教版小学数学六年级《圆柱与圆锥》练习题(有答案)
3 / 10
【巩固练习】 1.圆柱体的底面半径和高都扩大 2 倍.它的体积扩大(
)倍.
①2
②4
③6
④8
2.等底等高的圆柱体.正方体.长方体的体积相比较.( ).
少平方米? (取)
1 0.5
1 1
1 1.5
【解析】从上面看到图形是右上图.所以上下底面积和为(立方米).侧面积为(立方米).所以该物体的表 面积是(立方米). 23.141.52 14.13 23.14 (0.5 11.5)118.84 14.1318.84 32.97 【例题 2】有一个圆柱体的零件.高厘米.底面直径是厘米.零件的一端有一个圆柱形的圆孔.圆孔的直径 是厘米.孔深厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆.那么一共要涂多少平方厘米? 10 6 4 5
22
瓶中剩余空间的体积
酒瓶容积:
(30
25)π
10 2
10 2
125π
375π
125π
500π
1500(ml)
【变式 3】一个盖着瓶盖的瓶子里面装着一些水.瓶底面积为平方厘米.(如下图所示).请你根据图中标
明的数据.计算瓶子的容积是______.10
7cm
5cm
4cm
【解析】由已知条件知.第二个图上部空白部分的高为.从而水与空着的部分的比为.由图 1 知水的体积
157.7536 25.12 182.8736
6 / 10
【例题 5】一个圆柱体形状的木棒.沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆 柱体的表面积大.则这个圆柱体木棒的侧面积是________.(取) 2008cm2 cm2 π 3.14
【数学】圆柱与圆锥练习题培优_
【数学】圆柱与圆锥练习题(培优)_一、圆柱与圆锥1.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。
大棚内的空间有多大?【答案】解:3.14X (2“)2x15+2=23.55 (立方米)答:大棚内的空间有23.55立方米。
【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积+2=大棚内的空间大小,据此列式解答.2.一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm。
把瓶口塞紧后使其瓶口向下倒立,这时酒深25cm。
求酒瓶的容积。
【答案】解:3.14x (10+2) 2x[15+(30-25)]=1570(cm3)答:酒瓶的容积是1570 cm3。
【解析】【分析】酒瓶的容积相当于高15厘米的圆柱形酒的体积,和高是(30-25)厘米的圆柱形空气的体积,把这两部分体积相加就是酒瓶的容积。
3.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。
这条装饰圈宽5cm,装饰圈的面积是多少cm2【答案】解:3.14x6x5 = 94.2 (cm2)答:装饰圈的面积是94.2cm2。
【解析】【分析】解:装饰圈的面积就是高5cm的圆柱的侧面积,用底面周长乘5即可求出装饰圈的面积。
4.一个圆柱形铁皮水桶(无盖),高10dm,底面直径是6dm,做这个水桶大约要用多少铁皮?【答案】解:3.14x6x10+3.14x (6“) 2= 18.84x10+3.14x9= 188.4+28.26= 216.66 (平方分米)答:做这个水桶大约要用铁皮216.66平方分米。
【解析】【分析】水桶无盖,因此用底面积加上侧面积就是需要铁皮的面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。
5.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?1【答案】解:x3.14x32x2= 3.14x6= 18.84 (立方厘米)答:这个零件的体积是18.84立方厘米。
六年级数学圆柱圆锥练习题及答案
(四)圆柱圆锥底面两个底面完全相同,都就是圆形。
一个底面,就是圆形。
侧面曲面,沿高剪开,展开后就是长方形。
曲面,沿顶点到底面圆周上得一条线段剪开,展开后就是扇形。
高两个底面之间得距离,有无数条。
顶点到底面圆心得距离,只有一条。
例半径3厘米直径米例3、判断圆柱与圆锥都有无数条高。
例4、(圆柱得侧面积)体育一个圆柱,底面直径就是5厘米,高就是12厘米。
求它得侧面积。
例6、(辨析)一个无盖得圆柱铁皮水桶,底面直径就是30厘米,高就是50厘米。
做这样一个水桶,至少需用铁皮6123平方厘米。
例7、(考点透视)一个圆柱得侧面积展开就是一个边长15、7厘米得正方形。
这个圆柱得表面积就是多少平方厘米?例8、(考点透视)一个圆柱形得游泳池,底面直径就是10米,高就是4米。
在它得四周与底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?例9、(考点透视)把一个底面半径就是2分米,长就是9分米得圆柱形木头锯成长短不同得三小段圆柱形木头,表面积增加了多少平方分米?4、求下列圆柱体得侧面积(1)底面半径就是3厘米,高就是4厘米。
(3)底面周长就是12、56厘米,高就是4厘米。
5、求下列圆柱体得表面积(1)底面半径就是4厘米,高就是6厘米。
(3)底面周长就是25、12厘米,高就是8厘米。
6、用铁皮制作一个圆柱形烟囱,要求底面直径就是3分米,高就是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请您制作一个无盖圆柱形水桶,有以下几种型号得铁皮可供搭配选择。
8、一个圆柱形蓄水池,底面周长就是25、12米,高就是4米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥20千克,一共要用多少千克水泥?一、圆柱体积1、求下面各圆柱得体积。
(3)底面直径就是8米,高就是10米。
(4)底面周长就是25、12分米,高就是2分米。
2、有两个底面积相等得圆柱,第一个圆柱得高就是第二个圆柱得4/7。
第一个圆柱得体积就是24立方厘米,第二个圆柱得得体积比第一个圆柱多多少立方厘米?3、在直径0、8米得水管中,水流速度就是每秒2米,那么1分钟流过得水有多少立方米?4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长得牙膏。
圆柱圆锥练习题及答案
圆柱圆锥练习题及答案一、选择题1. 下列图形中,可以看作是圆柱的是:A. 棱台B. 球体C. 圆锥D. 圆筒答案:D. 圆筒2. 已知圆锥的底面半径为3cm,高度为4cm,求圆锥的体积(取π=3.14)。
A. 18.84cm³B. 37.68cm³C. 25.12cm³D. 75.36cm³答案:B. 37.68cm³(计算公式:体积V = (1/3)πr²h = (1/3) × 3.14 × 3² × 4 = 37.68cm³)3. 在一个圆锥中,底面圆的周长为12cm,高度为5cm,求圆锥的侧面积(取π=3.14)。
A. 52.2cm²B. 57.68cm²C. 62.8cm²D. 63.4cm²答案:C. 62.8cm²(计算公式:侧面积S = πrl = 3.14 × 3 × 5 =47.1cm²)二、填空题1. 已知圆柱的底面半径为4cm,高度为12cm,求圆柱的体积(取π=3.14)。
答案:V = πr²h = 3.14 × 4² × 12 = 602.88cm³2. 在一个圆锥中,底面圆的半径为6cm,高度为8cm,求圆锥的侧面积(取π=3.14)。
答案:S = πrl = 3.14 × 6 × 10 = 188.4cm²3. 在一个圆柱中,底面圆的半径为5cm,高度为7cm,求圆柱的表面积(取π=3.14)。
答案:S = 2πrh + 2πr² = 2 × 3.14 × 5 × 7 + 2 × 3.14 × 5² = 219.8cm²三、解答题1. 一个圆柱的底面圆的周长为20cm,高度为8cm,求圆柱的体积和表面积(取π=3.14)。
(完整版)圆柱圆锥练习题和答案
1、把一个横截面为正方形的长方体,削成一个最大的圆锥体,已知圆锥体的底面周长6.28厘米,高5厘米,长方体的体积是多少?2、一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。
如果圆柱体的底面半径是2厘米,这个圆柱体的侧面积是多少平方厘米?3、一个圆柱体底面周长和高相等.如果高缩短了2厘米,表面积就减少12.56平方厘米.求这个圆柱体的表面积.4、一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如下图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米.瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?5、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的直孔,如下图.圆孔的直径是4厘米,孔深5厘米.如果将这个零件接触空气部分涂上防锈漆,一共需涂多少平方厘米?按CTRL+A看分析答案1、6.28\3.14=2(cm) V长=2*2*5=20(立方厘米)2、 V柱=50.24/(2/3)=75.36 S底=2*2*3.14=12.56(平方厘米)h=75.36/12.56=6(厘米) S侧=2*2*3.14*6=75.36(平方厘米)3.、r=12.56/2/3.14/2=1(厘米) S底=1*1*3.14*2=6.28(平方厘米)S侧=1*2*3.14*(12.56/2)=39.4384(平方厘米)S表=6.28+39.4384=45.7184(平方厘米)4、S底=26.4π/(6+2)=3.3π(平方厘米)V水=3.3π*6=19.8π(平方厘米)=0.0198π(升)5、S大表=(6/2)*(6/2)*3.14*2+6*3.14*10=244.92(平方厘米)S小侧=4*3.14*5=62.8(平方厘米) S总=244.92+62.8=307.72(平方厘米)。
圆柱与圆锥练习题及答案
圆柱与圆锥练习题及答案圆柱与圆锥练习题及答案圆柱与圆锥是几何学中的基本形状,它们在日常生活和工程设计中都有广泛的应用。
掌握圆柱与圆锥的性质和计算方法,对于解决实际问题和提高数学能力都非常重要。
下面将给出一些圆柱与圆锥的练习题及答案,供大家练习和参考。
题目一:已知一个圆柱的底面半径为5cm,高度为10cm,求其体积和表面积。
解答:首先计算圆柱的体积。
圆柱的体积公式为V = πr²h,其中π取3.14。
代入已知数据,得到V = 3.14 × 5² × 10 = 785 cm³。
接下来计算圆柱的表面积。
圆柱的表面积公式为S = 2πrh + 2πr²。
代入已知数据,得到S = 2 × 3.14 × 5 × 10 + 2 × 3.14 × 5² = 471 cm²。
题目二:已知一个圆锥的底面半径为8cm,高度为12cm,求其体积和表面积。
解答:同样先计算圆锥的体积。
圆锥的体积公式为V = 1/3πr²h。
代入已知数据,得到V = 1/3 × 3.14 × 8² × 12 = 803.84 cm³。
然后计算圆锥的表面积。
圆锥的表面积公式为S = πr(r + l),其中l为斜高。
根据勾股定理,可以计算出斜高l为√(r² + h²)。
代入已知数据,得到l = √(8² +12²) = √208 ≈ 14.42 cm。
再代入已知数据,得到S = 3.14 × 8(8 + 14.42) = 602.88 cm²。
题目三:已知一个圆柱的体积为1500 cm³,底面半径为6cm,求其高度和表面积。
解答:根据圆柱的体积公式V = πr²h,可以解出高度h。
人教版小学数学六年级《圆柱与圆锥》练习题(有答案)
圆柱与圆锥立体图形表面积体积h r圆柱222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱h r圆锥22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长21π3V r h =圆锥体【基础练习】一、选一选。
(将正确答案的序号填在括号里) 1、下面物体中,( )的形状是圆柱。
A 、B 、C 、D 、2、一个圆锥的体积是36dm 3,它的底面积是18dm 2,它的高是( )dm 。
A 、23 B 、2 C 、6 D 、183、下面( )图形是圆柱的展开图。
(单位:cm )4、下面( )杯中的饮料最多。
5、一个圆锥有( )条高,一个圆柱有( )条高。
A 、一 B 、二 C 、三 D 、无数条6、如右图:这个杯子( )装下3000ml 牛奶。
A 、能B 、不能C 、无法判断二、判断对错。
()1、圆柱的体积一般比它的表面积大。
()2、底面积相等的两个圆锥,体积也相等。
()3、圆柱的体积等于和它等底等高的圆锥体积的3倍。
()4、“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。
()5、把圆锥的侧面展开,得到的是一个长方形。
三、想一想,连一连。
四、填一填。
1、2.8立方米=()立方分米6000毫升=()3060立方厘米=()立方分米5平方米40平方分米=()平方米2、一个圆柱的底面半径是5cm,高是10cm,它的底面积是()cm2,侧面积是()cm2,体积是()cm3。
3、用一张长分米,宽分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是()平方分米。
(接口处不计)4、一个圆锥和一个圆柱等底等高,圆锥的体积是76cm3,圆柱的体积是()cm3。
5、一个圆锥的底面直径和高都是6cm,它的体积是( )cm3。
五、求下面图形的体积。
(单位:厘米)六、解决问题。
1、⑴制作这个薯片筒的侧面标签,需要多大面积的纸?⑵这个薯片筒的体积是多少?2、在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高米。
六年级上册圆柱圆锥练习题
六年级上册圆柱圆锥练习题一、圆柱的运算练习题1. 某圆柱的底面半径为4 cm,高为8 cm,求其底面周长和表面积。
解:底面周长= 2πr = 2π × 4 = 8π ≈ 25.12 cm表面积= 2πrh + 2πr² = 2π × 4 × 8 + 2π × 4² = 64π + 32π = 96π ≈ 301.6 cm²2. 某圆柱的底面半径为6 cm,底面周长为36 cm,求其高和体积。
解:底面周长= 2πr = 36,r = 36 ÷ (2π) ≈ 5.73 cm体积 = πr²h = π × 5.73² × h设该圆柱的高为h,则由题意可知2πr = 36,即r ≈ 5.73 cm代入体积公式,得36π × h ≈ 36π × 5.73²,解得h ≈ 5.73² ≈ 32.81 cm所以该圆柱的高约为32.81 cm,体积为36π × 32.81 ≈ 3658.66 cm³二、圆锥的运算练习题1. 某圆锥的底面半径为3 cm,斜高为5 cm,求其侧面积和体积。
解:底面周长= 2πr = 2π × 3 = 6π ≈ 18.85 cm侧面积= πrl= π × 3 × 5 = 15π ≈ 47.12 cm²体积= 1/3πr²h = 1/3π × 3² × 5 = 5π ≈ 15.71 cm³2. 某圆锥的底面半径为8 cm,底面周长为16π cm,求其高和体积。
解:底面周长= 2πr = 16π,r = 8体积= 1/3πr²h = 1/3π × 8² × h = 64πh/3由题意可知,2πr = 16π,即 r = 8代入体积公式,得64πh/3 = 1/3π × 8² × h = 16π²解得h = 16π/(8π/3) = 6所以该圆锥的高为6 cm,体积为64π × 6/3 = 128π ≈ 402.12 cm³总结:通过以上练习题,我们可以灵活运用圆柱和圆锥的相关公式来进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(四)例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?圆柱圆锥底面两个底面完全相同,都是圆形。
一个底面,是圆形。
侧面曲面,沿高剪开,展开后是长方形。
曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。
高两个底面之间的距离,有无数条。
顶点到底面圆心的距离,只有一条。
例2、求下面立体图形的底面周长和底面积。
例3、判断:圆柱和圆锥都有无数条例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
例6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30厘米,高是50厘米。
做这样一个水桶,至少需用铁皮6123平方厘米。
表面积是多少平方厘米?例& (考点透视)一个圆柱形的游泳池,底面直径是10米,高是4米。
在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?例9、(考点透视)把一个底面半径是2分米,长是9分米的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分米?例7、(考点透视)一个圆柱的侧面积展开是一个边长15.7厘米的正方形。
这个圆柱的半径3厘米1.看图选填円(在方框内填序号)选用答案,①底面②高③侧面积④底面周长4、求下列圆柱体的侧面积(1)底面半径是3厘米,高是4厘米。
(3)底面周长是12.56厘米,高是4厘米。
5、求下列圆柱体的表面积(1)底面半径是4厘米,高是6厘米。
(3)底面周长是25.12厘米,高是8厘米。
6、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
8、一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥20千克,一共要用多少千克水泥?、圆柱体积1、求下面各圆柱的体积。
(3)底面直径是8米,高是10米。
(4)底面周长是25.12分米,高是2分米。
2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。
这支牙膏可用36次。
该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。
这样,这一支牙膏只能用多少次?5、一根圆柱形钢材,截下1.5米,量得它的横截面的直径是4厘米。
如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。
)6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?、圆锥体积 1、 选择题。
(1)一个圆锥体的体积是 a立方米,和它等底等高的圆柱体体积是( )_1、、. - 、、. - 、、•① -a 立方米 ②3a 立方米 ③9立方米3(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是()立方米①6立方米 ②3立方米 ③2立方米 2、 判断对错。
(1)圆柱的体积相当于圆锥体积的 3倍 ()(2) 一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是 2 : 1......... ()(3)一个圆柱和圆锥等底等高,体积相差 21立方厘米,圆锥的体积是 7立方厘米.... ()3、 填空(1) 一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是( )立方厘米。
(2) 一个圆锥的体积是 18立方厘米,与它等底等高的圆柱的体积是()立方厘米。
(3) —个圆柱与和它等底等高的圆锥的体积和是144立方厘米。
圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米。
4、 求下列圆锥体的体积。
(1) 底面半径4厘米,高6厘米。
(3) 底面周长31.4厘米,高12厘米。
12.56米,高1.2米,如果每立方米小麦重 750千克,这堆小麦重多少千克?7、右图是一个圆柱体,如果把它的高截短个圆柱体积减少多少立方厘米?3厘米,它的表面积减少 94.2平方厘米。
这6、一个近似圆锥形的麦堆,底面周长7、一个长方体容器,长5厘米,宽4厘米,高3厘米,装满水后将水全部倒入一个高6厘米的圆锥形的容器内刚好装满。
这个圆锥形容器的底面积是多少平方厘米?参考答案(四):1.看图选填.(在方框内填序号)5、求下列圆柱体的表面积(1) 底面半径是4厘米,高是6厘米。
底面积: 3.14 × 4 2 = 50.24 (平方厘米)侧面积:3.14 × 4 × 2 × 6 = 150.72 (平方厘米) 表面积:50.24 × 2 + 150.72 = 251.2(平方厘米)(2) 底面直径是6厘米,高是12厘米。
底面积:3.14 × (6 ÷ 2) 2 = 28.26 (平方厘米) 侧面积:3.14 × 6 × 12 = 226.08 (平方厘米)表面积:28.26 × 2 + 226.08 = 282.6(平方厘米)(3) 底面周长是25.12厘米,高是8厘米。
底面积:25.12 ÷ 3.14÷ 2 = 4 (厘米)选用答案,面 面面 底高侧底①②③④中间从左到右依次是:高、高下面从左到右依次是:底面、底面周长、底面周长 4、求下列圆柱体的侧面积(1) 底面半径是3厘米,高是4厘米。
(2) 底面直径是4厘米,高是5厘米。
3.14 × 3× 2× 4 = 75.36 (厘米) 3.14 × 4 × 5 = 62.8 (厘米)(3)底面周长是 12.56 厘米,高是 4 厘米。
12.56 × 4 = 50.24(厘米)上图上面从左到右依次是:底面、侧面积F 面(A )图形旋转会形成圆柱。
)。
3.14 × 4 2 = 50.24 (平方厘米)侧面积:25.12 × 8 = 200.96 (平方厘米)表面积:50.24 × 2 + 200.96 = 301.44 (平方厘米)6、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)侧面积:3.14 × 3 × 15 = 141.3 (平方分米)≈142 (平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
(IJ你选择的材≠4J⅛ ()号和(5.42井米〔刃你选择的材料制成的水桶表面积是多少平方分米?解法一:选择①和④底面积:3.14 ×( 3 ÷ 2)2 = 7.065 (平方分米)侧面积:9.42 × 2 = 18.84 (平方分米)表面积:7.065 × 2 + 18.84 = 32.97 (平方分米)解法二:选择②和③底面积:3.14 ×(4 ÷ 2)2 = 12.56 (平方分米)侧面积:12.56 × 5 = 62.8 (平方分米)表面积:12.56 × 2 + 62.8 = 87.92 (平方分米)8、一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥20千克,一共要用多少千克水泥?底面积:25.12 ÷ 3.14 ÷ 2 = 4 (米)3.14 × 4 2 = 50.24 (平方米)侧面积:25.12 × 4 = 100.48 (平方米)表面积:50.24 + 100.48 = 150.72 (平方米)水泥质量:150.72 × 20 = 3014.4 千克参考答案:一、圆柱体积1、求下面各圆柱的体积。
2、 有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体 积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米? 底面积相等的两个圆柱,第一个圆柱的高是第二个圆柱的 4/7 ,第一个圆柱的体积也就是是第二个圆柱的 4/7。
24 ÷ 4/7- 24 = 18 (立方厘米)答:第二个圆柱的的体积比第一个圆柱多 18立方厘米。
3、 在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米? 3.14 ×( 0.8 ÷ 2) 2 × 2 × 60 = 60.288 (立方米) 答:那么1分钟流过的水有60.288立方米。
4、 牙膏出口处直径为 5毫米,小红每次刷牙都挤出 1厘米长的牙膏。
这支牙膏可用36次。
该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。
这样,这一支牙膏只能用多少次? 牙膏体积:1厘米=10毫米3.14 ×( 5 ÷ 2) 2 × 10 × 36 = 7065 (立方毫米) 7065 ÷ [3.14×( 6÷ 2) 2 × 10] = 25(次)答:这样,这一支牙膏只能用25次。
5、 一根圆柱形钢材,截下 1.5米,量得它的横截面的直径是4厘米。
如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。
)1.5米=150厘米3.14 ×( 4 ÷ 2) 2 × 150 × 7.8 = 14695.2 (克)=14.6952 (千克)≈ 15 (千克)(1) 底面积0.6 平方米,高0.5米 0.6 × 0.5 = 0.3 (立方米)(2) 底面半径是 3厘米,高是5厘米。
3.14 × 3 2 × 5 = 141.3 (立方厘米) (3) 底面直径是 8米,高是10米。
3.14×( 8÷2)2× 10 = 502.4 (立方米)(4) 底面周长是 3.14 ×25.12分米,高是2分米。
(25.12 ÷ 3.14 ÷ 2) 2 × 2 = 100.48 (立方分米)答:截下的这段钢材重15千克。
6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?3.14 ×( 31.4 ÷ 3.14 ÷ 2)2 × 3 = 235.5 (立方厘米)答:这个圆柱体积减少235.5立方厘米。