2015年高考陕西卷(文科数学)

合集下载

2015陕西高考数学试题及答案word版

2015陕西高考数学试题及答案word版

2015陕西高考数学试题及答案word版2015年陕西省高考数学试题(文科)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若集合A={x|x^2+x-2=0},B={x|x^2-3x+2=0},则A∩B=A. {1}B. {2}C. {1,2}D. {-1,2}2. 若复数z满足z^2+z+1=0,则z的实部为A. -1B. 0C. 1D. 23. 若函数f(x)=x^3-3x+1在x=1处取得极值,则f'(x)=A. 3x^2-3B. 3x^2-2C. 3x^2+3D. 3x^2+24. 若直线l:y=kx+b与圆C:x^2+y^2=1相交于点A和点B,且|AB|=√2,则k的取值范围是A. (-∞,-1]∪[1,+∞)B. (-1,1)C. [-1,1]D. (-∞,-1)∪(1,+∞)5. 若等差数列{an}的前n项和为Sn,且S3=3,S6=9,则S9=A. 15B. 12C. 9D. 66. 若a,b,c是等比数列{bn}的连续三项,则A. ac=b^2B. a^2=bcC. ab=c^2D. a^2=c^27. 若函数f(x)=x^2-4x+m在区间[2,+∞)上单调递增,则实数m的取值范围是A. m≥-4B. m≤4C. m≥4D. m≤-48. 若双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的一条渐近线方程为y=√2x,则A. a=bB. a=√2bC. b=√2aD. b=2a9. 若从4名男生和3名女生中选出3人参加比赛,其中至少有1名女生,则不同的选法种数为A. 35B. 42C. 45D. 4810. 若从52张扑克牌中随机抽取一张,抽到红桃的概率为1/4,则A. 有13张红桃B. 有26张红桃C. 有39张红桃D. 有52张红桃11. 若函数f(x)=x^3-3x+1在区间[1,2]上存在零点,则A. f(1)f(2)<0B. f(1)f(2)>0C. f(1)f(2)=0D. f(1)=f(2)12. 若抛物线C:y^2=2px(p>0)的焦点为F,点P在抛物线上,且|PF|=2p,则点P的坐标为A. (p,2p)B. (p,-p)C. (2p,2p)D. (2p,-p)二、填空题:本题共4小题,每小题5分,共20分。

2015年陕西省高考数学试卷(文科)教师版

2015年陕西省高考数学试卷(文科)教师版

2015 年陕西省高考数学试卷(文科)一.选择题:在每题给出的四个选项中,只有一项切合题目要求(每题 5 分,共 60分)1.(5 分)(2015?陕西)设会合M={ x| x2=x} , N={ x| lgx≤ 0} ,则M∪N=()A.[ 0,1]B.(0,1]C.[ 0,1)D.(﹣∞, 1]【剖析】求解一元二次方程化简M,求解对数不等式化简N,而后利用并集运算得答案.【解答】解:由 M={ x| x2=x} ={ 0, 1} ,N={ x| lgx≤0} =( 0, 1] ,得 M∪N={ 0,1} ∪(0,1] =[ 0,1] .应选: A.2.( 5 分)(2015?陕西)某中学初中部共有110 名教师,高中部共有 150 名教师,其性别比比以下图,则该校女教师的人数为()A.93B.123C.137D.167【剖析】利用百分比,可得该校女教师的人数.【解答】解:初中部女教师的人数为110× 70%=77;高中部女教师的人数为150×40%=60,∴该校女教师的人数为77+60=137,应选: C.3.(5 分)(2015?陕西)已知抛物线y2 =2px( p> 0)的准线经过点(﹣ 1,1),则该抛物线焦点坐标为()A.(﹣ 1,0)B.(1,0)C.(0,﹣1)D.(0,1)【剖析】利用抛物线 y2(>)的准线经过点(﹣1,1),求得,即可=2px p0=1求出抛物线焦点坐标.【解答】解:∵抛物线 y2=2px( p> 0)的准线经过点(﹣ 1,1),∴=1,∴该抛物线焦点坐标为(1, 0).应选: B.,4.(5 分)(2015?陕西)设 f( x) =,则f(f(﹣2))=(),<A.﹣ 1B.C.D.【剖析】利用分段函数的性质求解.,【解答】解:∵,,<∴f(﹣ 2) =2﹣2= ,f(f(﹣ 2)) =f()=1﹣= .应选: C.5.(5 分)(2015?陕西)一个几何体的三视图以下图,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4【剖析】由已知中的三视图可得,该几何体是以俯视图为底面的半圆柱,底面半径为 1,高为 2,代入柱体表面积公式,可得答案.【解答】解:由已知中的三视图可得,该几何体是以俯视图为底面的半圆柱,底面半径为 1,高为 2,故该几何体的表面积S=2× π+(2+π)× 2=3π+4,应选: D.6.(5 分)(2015?陕西)“ sin α =cos是α”“cos2 α =0的(”)A.充足不用要条件B.必需不充足条件C.充足必需条件D.既不充足也不用要条件22【剖析】由 cos2α=cosα﹣sinα,即可判断出.22【解答】解:由 cos2α=cosα﹣sin α,∴“sin α=cos是α”“cos2α=0的”充足不用要条件.应选: A.7.(5 分)(2015?陕西)依据如图框图,当输入x 为 6 时,输出的 y=()A.1B.2C.5D.10【剖析】模拟履行程序框图,挨次写出每次循环获取的x 的值,当x=﹣ 3 时不满足条件 x≥0,计算并输出 y 的值为 10.【解答】解:模拟履行程序框图,可得x=6x=3知足条件 x≥ 0, x=0知足条件 x≥ 0, x=﹣3不知足条件 x≥0,y=10输出 y 的值为 10.应选: D.8.(5 分)(2015?陕西)对随意愿量、,以下关系式中不恒成立的是()A.||≤||||B.||≤|||﹣|||C.()2=|| 2D.()?() =2﹣2【剖析】由向量数目积的运算和性质逐一选项考证可得.【解答】解:选项 A 恒成立,∵|| =||||| cos<,>|,又 | cos<,> | ≤1,∴ || ≤ ||||恒成立;选项B 不恒成立,由三角形的三边关系和向量的几何意义可得|| ≥||| ﹣||| ;选项C 恒成立,由向量数目积的运算可得()2=||2;选项D 恒成立,由向量数目积的运算可得() ?()=2﹣2.应选: B.9.(5 分)(2015?陕西)设 f( x) =x﹣sinx,则 f (x)()A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数【剖析】利用函数的奇偶性的定义判断f(x)为奇函数,再利用导数研究函数的单一性,从而得出结论.【解答】解:因为 f (x)=x﹣sinx 的定义域为 R,且知足 f(﹣ x)=﹣x+sinx=﹣f (x),可得 f (x)为奇函数.再依据 f ′( x)=1﹣cosx≥ 0,可得 f(x)为增函数,应选: B.10.( 5 分)(2015?陕西)设f( x)=lnx,0<a<b,若p=f(), q=f(),r=(f (a) +f (b)),则以下关系式中正确的选项是)(A.q=r<p B.p=r<q C.q=r>p D.p=r> q【剖析】由题意可得p=(lna+lnb),q=ln()≥ln()=p,r=( lna+lnb),可得大小关系.【解答】解:由题意可得若p=f()=ln()= lnab= ( lna+lnb ),q=f()=ln()≥ ln()=p,r= (f(a)+f(b))= (lna+lnb),∴ p=r< q,应选: B.11.( 5 分)( 2015?陕西)某公司生产甲、乙两种产品均需用A、B 两种原料.已知生产 1 吨每种产品所需原料及每日原料的可用限额如表所示.假如生产一吨甲、乙产品可获取收益分别为 3 万元、 4 万元,则该公司每日可获取最大利润为()甲乙原料限额A(吨)3212B(吨)128A.12 万元B.16 万元C.17 万元D.18 万元【剖析】设每日生产甲乙两种产品分别为x,y 吨,收益为 z 元,而后依据题目条件成立拘束条件,获取目标函数,画出拘束条件所表示的地区,而后利用平移法求出 z 的最大值.【解答】解:设每日生产甲乙两种产品分别为x, y 吨,收益为 z 元,则,,目标函数为z=3x+4y.作出二元一次不等式组所表示的平面地区(暗影部分)即可行域.由 z=3x+4y 得 y=﹣ x+ ,平移直线 y=﹣ x+ 由图象可知当直线y=﹣ x+ 经过点 B 时,直线 y=﹣ x+ 的截距最大,此时 z 最大,解方程组,解得,即 B 的坐标为 x=2, y=3,∴z max=3x+4y=6+12=18.即每日生产甲乙两种产品分别为2,3 吨,可以产生最大的收益,最大的收益是18万元,应选: D.12.( 5 分)(2015?陕西)设复数 z=(x﹣ 1) +yi( x,y∈R),若 | z| ≤ 1,则 y≥x 的概率为()A.+. +.﹣.﹣B C D【剖析】判断复数对应点图形,利用几何概型求解即可.【解答】解:复数 z=(x﹣1)+yi( x,y∈R),若| z| ≤1,它的几何意义是以( 1,0)为圆心, 1 为半径的圆以及内部部分. y≥ x 的图形是图形中暗影部分,如图:复数 z=(x﹣1)+yi( x,y∈R),若| z| ≤1,则 y≥x 的概率:=.应选: C.二 .填空题:把答案填写在答题的横线上(本大题共 4 小题,每题 5 分,共 20分)13.(5 分)(2015?陕西)中位数为 1010 的一组数组成等差数列,其末项为 2015,则该数列的首项为5.【剖析】由题意可得首项的方程,解方程可得.【解答】解:设该等差数列的首项为a,由题意和等差数列的性质可得2015+a=1010×2解得 a=5故答案为: 514.( 5 分)( 2015?陕西)如图,某港口一天 6 时到 18 时的沟渠变化曲线近似满足函数 y=3sin(φ)+k .据此函数可知,这段时间水深(单位:m)的最x+大值为8.【剖析】由图象察看可得: y min=﹣ 3+k=2,从而可求 k 的值,从而可求y max=3+k=3+5=8.【解答】解:∵由题意可得: y min=﹣3+k=2,∴可解得: k=5,∴y max=3+k=3+5=8,故答案为: 8.15.( 5 分)(2015?陕西)函数 y=xe x在其极值点处的切线方程为y=﹣.【剖析】求出极值点,再联合导数的几何意义即可求出切线的方程.x x【解答】解:依题解:依题意得y′=e+xe ,令y′=0,可得x=﹣1,∴ y=﹣.所以函数 y=xe x在其极点的切方程y=.故答案: y=.16.( 5 分)(2015?西)察以下等式:1=1+= +1++= + +⋯据此律,第n 个等式可+⋯+=+⋯+.【剖析】由已知可得:第 n 个等式含有 2n ,此中奇数.其等式右后n 的之和.即可得出.【解答】解:由已知可得:第n 个等式含有 2n ,此中奇数.其等式右后n 的之和.∴第 n 个等式:+⋯+=+⋯+,偶数,偶数.三 .解答:解答写出文字明、明程或演算步(共 5 小,共 70 分)17.( 12 分)( 2015?西)△ ABC的内角 A,B,C 所的分a, b,c.向量 =(a, b)与 =(cosA, sinB)平行.(Ⅰ)求 A;(Ⅱ)若 a=,b=2,求△ ABC的面.【剖析】(Ⅰ)利用向量的平行,列出方程,通正弦定理求解A;(Ⅱ)利用 A,以及 a=,b=2,通余弦定理求出c,而后求解△ ABC的面.【解答】解:(Ⅰ)因向量=( a,b)与=(cosA,sinB)平行,所以 asinB=0,由正弦定理可知: sinAsinB sinBcosA=0,因 sinB ≠0,所以 tanA=,可得A=;(Ⅱ) a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得 c=3,△ ABC的面积为:=.18.( 12分)(2015?陕西)如图,在直角梯形ABCD 中, AD∥ BC,∠ BAD=,AB=BC=AD=a,E 是 AD 的中点, O 是 AC 与 BE的交点.将△ ABE沿 BE折起到如图 2 中△ A1BE的地点,获取四棱锥 A1﹣BCDE.(Ⅰ)证明: CD⊥平面 A;1OC(Ⅱ)当平面 A1BE⊥平面 BCDE时,四棱锥 A1﹣BCDE的体积为36,求 a 的值.【剖析】(I)运用 E 是 AD 的中点,判断得出 BE⊥ AC,BE⊥面 A,考虑∥1OC CD DE,即可判断 CD⊥面 A1OC.( II)运用好折叠以前,以后的图形得出A1O 是四棱锥 A1﹣BCDE的高,平行四2的值.边形 BCDE的面积 S=BC?AB=a,运用体积公式求解即可得出 a【解答】解:( I)在图 1 中,因为 AB=BC=,E 是AD的中点,=a∠BAD= ,所以 BE⊥AC,即在图 2 中, BE⊥A1O,BE⊥OC,从而 BE⊥面 A1OC,由 CD∥ BE,所以 CD⊥面 A1OC,( II)即 A1O 是四棱锥 A1﹣ BCDE的高,依据图 1 得出 A1O= AB=a,2∴平行四边形 BCDE的面积 S=BC?AB=a,V==a=a3,由 V= a3=36 ,得出 a=6.19.( 12 分)(2015?陕西)随机抽取一个年份,对西安市该年 4 月份的天气状况进行统计,结果以下:(Ⅰ)在 4 月份任取一天,预计西安市在该天不下雨的概率;(Ⅱ)西安市某学校拟从 4 月份的一个晴日开始举行连续2 天的运动会,预计运动会时期不下雨的概率.日期 1 2 3 4 5 6 7 8 9 10 11 12 13 1415天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期16 17 18 19 20 21 22 23 24 25 26 27 28 2930天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨【剖析】(Ⅰ)在 4 月份任取一天,不下雨的天数是26,即可预计西安市在该天不下雨的概率;(Ⅱ)求得 4 月份中,前一天为晴日的互邻日期对有16 个,此中后一天不下雨的有 14 个,可得晴日的第二天不下雨的概率,即可得出结论.【解答】解:(Ⅰ)在 4 月份任取一天,不下雨的天数是26,以频次预计概率,预计西安市在该天不下雨的概率为;(Ⅱ)称相邻的两个日期为“互邻日期对”,由题意,4月份中,前一天为晴日的互邻日期对有16 个,此中后一天不下雨的有14 个,所以晴日的第二天不下雨的概率为,从而预计运动会时期不下雨的概率为.20.( 12 分)( 2015?陕西)如图,椭圆E: +=1(a>b>0)经过点 A( 0,﹣1),且离心率为.(Ⅰ)求椭圆 E 的方程;(Ⅱ)经过点( 1,1),且斜率为 k 的直线与椭圆E交于不一样的两点 P,Q(均异于点 A),证明:直线 AP 与 AQ 斜率之和为 2.【剖析】(Ⅰ)运用离心率公式和a, b, c 的关系,解方程可得 a,从而获取椭圆方程;(Ⅱ)由题意设直线 PQ 的方程为 y=k(x﹣1)+1(k≠0),代入椭圆方程+y2=1,运用韦达定理和直线的斜率公式,化简计算即可获取结论.【解答】解:(Ⅰ)由题设知,=,b=1,联合 a2=b2+c2,解得 a=,所以+y2=1;(Ⅱ)证明:由题意设直线PQ 的方程为 y=k(x﹣1)+1(k≠0),代入椭圆方程+y2=1,可得( 1+2k2) x2﹣4k(k﹣1)x+2k(k﹣2)=0,设 P(x1,y1),Q(x2, y2), x1 x2≠0,则 x1+x2=, x1 2,x =且△ =16k2(k﹣1)2﹣8k(k﹣2)(1+2k2)> 0,解得 k>0 或 k<﹣ 2.则有直线 AP, AQ 的斜率之和为 k AP+k AQ+==+(﹣)( +)=2k+(2﹣ k) ?=2k+ 2 k=2k+(2﹣k)?=2k﹣2(k﹣ 1)=2.即有直线 AP 与 AQ 斜率之和为 2.21.( 12 分)( 2015?西) f n( x)=x+x2+⋯+x n1,x≥ 0, n∈ N,n≥2.(Ⅰ)求 f n′(2);(Ⅱ)明: f n(x)在( 0,)内有且有一个零点(a n),且 0<a n<()n.【剖析】(Ⅰ)将已知函数求,取x=2,获取 f n′( 2);(Ⅱ)只需明f n(x)在( 0,)内有增,获取有一个零点,而后f n (a n)形获取所求.【解答】解:(Ⅰ)由已知, f ′n(x)=1+2x+3x2+⋯+nx n﹣1,所以,①2f ′n(2)=2+2×22+3× 23+⋯+n2n,②,23n﹣1n?2n()n1,① ②得 f ′(2)=1+2+2+2 +⋯+2= 1 n=2n所以.(Ⅱ)因 f(0)= 1<0,f n()=1=1 2×≥12×>0,所以 f n(x)在( 0,)内起码存在一个零点,又 f ′n(x)=1+2x+3x2+⋯+nx n﹣1>0,所以 f n(x)在( 0,)内增,所以 f n(x)在( 0,)内有且有一个零点a n,因为 f n( x)=,所以 0=f n( a n)=,所以>,故<<,所以 0<<.三.在 22、23、24 三中任一作答,假如多做,按所做的第一分[修 4-1:几何明]22.( 10 分)( 2015?西)如, AB 切⊙ O 于点 B,直 AO 交⊙ O 于 D,E 两点, BC⊥DE,垂足 C.(Ⅰ)证明:∠ CBD=∠ DBA;(Ⅱ)若 AD=3DC, BC=,求⊙ O的直径.【剖析】(Ⅰ)依据直径的性质即可证明:∠CBD=∠DBA;(Ⅱ)联合割线定理进行求解即可求⊙O 的直径.【解答】证明:(Ⅰ)∵ DE是⊙ O 的直径,则∠ BED+∠EDB=90°,∵BC⊥DE,∴∠ CBD+∠EDB=90°,即∠ CBD=∠ BED,∵AB切⊙ O 于点 B,∴∠ DBA=∠BED,即∠ CBD=∠DBA;(Ⅱ)由(Ⅰ)知BD 均分∠ CBA,则=3,∵BC= ,∴ AB=3,AC=,则 AD=3,由切割线定理得AB2=AD?AE,即 AE=,故 DE=AE﹣ AD=3,即可⊙ O 的直径为 3.[ 选修4-4:坐标系与参数方程 ]23.( 2015?陕西)在直角坐标系 xOy 中,直线 l 的参数方程为( t 为参数),以原点为极点, x 轴正半轴为极轴成立极坐标系,⊙ C 的极坐标方程为ρ=2sin θ.(Ⅰ)写出⊙ C 的直角坐标方程;(Ⅱ) P 为直线 l 上一动点,当 P 到圆心 C 的距离最小时,求 P 的直角坐标.2,把【剖析】( I )由⊙ C 的极坐标方程为 ρ=2 sin θ.化为 ρ=2代入即可得出;.(II )设 P,,又C ,.利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.【解答】 解:(I )由⊙ C 的极坐标方程为 ρ=2 sin θ.2 22 ,∴ρ,化为 x +y==2配方为 =3.( II )设 P ,,又 C ,.∴| PC| ==≥2 ,所以当 t=0 时, | PC| 获得最小值 2.此时 P (3,0).[ 选修 4-5:不等式选讲 ]24.( 2015?陕西)已知对于 x 的不等式 | x+a| <b 的解集为 { x| 2<x <4}(Ⅰ)务实数 a ,b 的值;(Ⅱ)求+ 的最大值.【剖析】(Ⅰ)由不等式的解集可得 ab 的方程组,解方程组可得;(Ⅱ)原式 =+ = + ,由柯西不等式可得最大值.【解答】 解:(Ⅰ)对于 x 的不等式 | x+a| <b 可化为﹣ b ﹣a <x <b ﹣a , 又∵原不等式的解集为 { x| 2<x <4} ,∴,解方程组可得;(Ⅱ)由(Ⅰ)可得+ =+=+ ≤=2=4,当且仅当=即t=1时取等,∴所求最大值为4。

2015年陕西省高考数学试卷(文科)教师版

2015年陕西省高考数学试卷(文科)教师版

2015年陕西省高考数学试卷(文科)一.选择题:在每小题给出的四个选项中,只有一项符合题目要求(每小题5分,共60分)1.(5分)(2015•陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]【分析】求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案.【解答】解:由M={x|x2=x}={0,1},N={x|lgx≤0}=(0,1],得M∪N={0,1}∪(0,1]=[0,1].故选:A.2.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.167【分析】利用百分比,可得该校女教师的人数.【解答】解:初中部女教师的人数为110×70%=77;高中部女教师的人数为150×40%=60,∴该校女教师的人数为77+60=137,故选:C.3.(5分)(2015•陕西)已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【分析】利用抛物线y2=2px(p>0)的准线经过点(﹣1,1),求得=1,即可求出抛物线焦点坐标.【解答】解:∵抛物线y2=2px(p>0)的准线经过点(﹣1,1),∴=1,∴该抛物线焦点坐标为(1,0).故选:B.4.(5分)(2015•陕西)设f(x)=,,<,则f(f(﹣2))=()A.﹣1B.C.D.【分析】利用分段函数的性质求解.【解答】解:∵,,<,∴f(﹣2)=2﹣2=,f(f(﹣2))=f()=1﹣=.故选:C.5.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4【分析】由已知中的三视图可得,该几何体是以俯视图为底面的半圆柱,底面半径为1,高为2,代入柱体表面积公式,可得答案.【解答】解:由已知中的三视图可得,该几何体是以俯视图为底面的半圆柱,底面半径为1,高为2,故该几何体的表面积S=2×π+(2+π)×2=3π+4,故选:D.6.(5分)(2015•陕西)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由cos2α=cos2α﹣sin2α,即可判断出.【解答】解:由cos2α=cos2α﹣sin2α,∴“sinα=cosα”是“cos2α=0”的充分不必要条件.故选:A.7.(5分)(2015•陕西)根据如图框图,当输入x为6时,输出的y=()A.1B.2C.5D.10【分析】模拟执行程序框图,依次写出每次循环得到的x的值,当x=﹣3时不满足条件x≥0,计算并输出y的值为10.【解答】解:模拟执行程序框图,可得x=6x=3满足条件x≥0,x=0满足条件x≥0,x=﹣3不满足条件x≥0,y=10输出y的值为10.故选:D.8.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤||||B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2【分析】由向量数量积的运算和性质逐个选项验证可得.【解答】解:选项A恒成立,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B不恒成立,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C恒成立,由向量数量积的运算可得()2=||2;选项D恒成立,由向量数量积的运算可得()•()=2﹣2.故选:B.9.(5分)(2015•陕西)设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数【分析】利用函数的奇偶性的定义判断f(x)为奇函数,再利用导数研究函数的单调性,从而得出结论.【解答】解:由于f(x)=x﹣sinx的定义域为R,且满足f(﹣x)=﹣x+sinx=﹣f (x),可得f(x)为奇函数.再根据f′(x)=1﹣cosx≥0,可得f(x)为增函数,故选:B.10.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q【分析】由题意可得p=(lna+lnb),q=ln()≥ln()=p,r=(lna+lnb),可得大小关系.【解答】解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B.11.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元【分析】设每天生产甲乙两种产品分别为x,y吨,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.【解答】解:设每天生产甲乙两种产品分别为x,y吨,利润为z元,,则,目标函数为z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z max=3x+4y=6+12=18.即每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元,故选:D.12.(5分)(2015•陕西)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x 的概率为()A.+B.+C.﹣D.﹣【分析】判断复数对应点图形,利用几何概型求解即可.【解答】解:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,它的几何意义是以(1,0)为圆心,1为半径的圆以及内部部分.y≥x的图形是图形中阴影部分,如图:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率:=.故选:C.二.填空题:把答案填写在答题的横线上(本大题共4小题,每小题5分,共20分)13.(5分)(2015•陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为5.【分析】由题意可得首项的方程,解方程可得.【解答】解:设该等差数列的首项为a,由题意和等差数列的性质可得2015+a=1010×2解得a=5故答案为:514.(5分)(2015•陕西)如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin(x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为8.【分析】由图象观察可得:y min=﹣3+k=2,从而可求k的值,从而可求y max=3+k=3+5=8.【解答】解:∵由题意可得:y min=﹣3+k=2,∴可解得:k=5,∴y max=3+k=3+5=8,故答案为:8.15.(5分)(2015•陕西)函数y=xe x在其极值点处的切线方程为y=﹣.【分析】求出极值点,再结合导数的几何意义即可求出切线的方程.【解答】解:依题解:依题意得y′=e x+xe x,令y′=0,可得x=﹣1,∴y=﹣.因此函数y=xe x在其极值点处的切线方程为y=﹣.故答案为:y=﹣.16.(5分)(2015•陕西)观察下列等式:1﹣=1﹣+﹣=+1﹣+﹣+﹣=++…据此规律,第n个等式可为+…+=+…+.【分析】由已知可得:第n个等式含有2n项,其中奇数项为,偶数项为﹣.其等式右边为后n项的绝对值之和.即可得出.【解答】解:由已知可得:第n个等式含有2n项,其中奇数项为,偶数项为﹣.其等式右边为后n项的绝对值之和.∴第n个等式为:+…+=+…+.三.解答题:解答题应写出文字说明、证明过程或演算步骤(共5小题,共70分)17.(12分)(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.【分析】(Ⅰ)利用向量的平行,列出方程,通过正弦定理求解A;(Ⅱ)利用A,以及a=,b=2,通过余弦定理求出c,然后求解△ABC的面积.【解答】解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB ≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.18.(12分)(2015•陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为36,求a的值.【分析】(I)运用E是AD的中点,判断得出BE⊥AC,BE⊥面A1OC,考虑CD∥DE,即可判断CD⊥面A1OC.(II)运用好折叠之前,之后的图形得出A1O是四棱锥A1﹣BCDE的高,平行四边形BCDE的面积S=BC•AB=a2,运用体积公式求解即可得出a的值.【解答】解:(I)在图1中,因为AB=BC==a,E是AD的中点,∠BAD=,所以BE⊥AC,即在图2中,BE⊥A1O,BE⊥OC,从而BE⊥面A1OC,由CD∥BE,所以CD⊥面A1OC,(II)即A1O是四棱锥A1﹣BCDE的高,根据图1得出A1O=AB=a,∴平行四边形BCDE的面积S=BC•AB=a2,V==a=a3,由V=a3=36,得出a=6.19.(12分)(2015•陕西)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.【分析】(Ⅰ)在4月份任取一天,不下雨的天数是26,即可估计西安市在该天不下雨的概率;(Ⅱ)求得4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,可得晴天的次日不下雨的概率,即可得出结论.【解答】解:(Ⅰ)在4月份任取一天,不下雨的天数是26,以频率估计概率,估计西安市在该天不下雨的概率为;(Ⅱ)称相邻的两个日期为“互邻日期对”,由题意,4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的概率为,从而估计运动会期间不下雨的概率为.20.(12分)(2015•陕西)如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ斜率之和为2.【分析】(Ⅰ)运用离心率公式和a,b,c的关系,解方程可得a,进而得到椭圆方程;(Ⅱ)由题意设直线PQ的方程为y=k(x﹣1)+1(k≠0),代入椭圆方程+y2=1,运用韦达定理和直线的斜率公式,化简计算即可得到结论.【解答】解:(Ⅰ)由题设知,=,b=1,结合a2=b2+c2,解得a=,所以+y2=1;(Ⅱ)证明:由题意设直线PQ的方程为y=k(x﹣1)+1(k≠0),代入椭圆方程+y2=1,可得(1+2k2)x2﹣4k(k﹣1)x+2k(k﹣2)=0,由已知得(1,1)在椭圆外,设P(x1,y1),Q(x2,y2),x1x2≠0,则x1+x2=,x1x2=,且△=16k2(k﹣1)2﹣8k(k﹣2)(1+2k2)>0,解得k>0或k<﹣2.则有直线AP,AQ的斜率之和为k AP+k AQ=+=+=2k+(2﹣k)(+)=2k+(2﹣k)•=2k+(2﹣k)•=2k﹣2(k﹣1)=2.即有直线AP与AQ斜率之和为2.21.(12分)(2015•陕西)设f n(x)=x+x2+…+x n﹣1,x≥0,n∈N,n≥2.(Ⅰ)求f n′(2);(Ⅱ)证明:f n(x)在(0,)内有且仅有一个零点(记为a n),且0<a n﹣<()n.【分析】(Ⅰ)将已知函数求导,取x=2,得到f n′(2);(Ⅱ)只要证明f n(x)在(0,)内有单调递增,得到仅有一个零点,然后f n (a n)变形得到所求.【解答】解:(Ⅰ)由已知,f′n(x)=1+2x+3x2+…+nx n﹣1,所以,①则2f′n(2)=2+2×22+3×23+…+n2n,②,①﹣②得﹣f′n(2)=1+2+22+23+…+2n﹣1﹣n•2n==(1﹣n)2n﹣1,所以.(Ⅱ)因为f(0)=﹣1<0,f n()=﹣1=1﹣2×≥1﹣2×>0,所以f n(x)在(0,)内至少存在一个零点,又f′n(x)=1+2x+3x2+…+nx n﹣1>0,所以f n(x)在(0,)内单调递增,所以f n(x)在(0,)内有且仅有一个零点a n,由于f n(x)=,所以0=f n(a n)=,所以>,故<<,所以0<<.三.请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分[选修4-1:几何证明选讲]22.(10分)(2015•陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.【分析】(Ⅰ)根据直径的性质即可证明:∠CBD=∠DBA;(Ⅱ)结合割线定理进行求解即可求⊙O的直径.【解答】证明:(Ⅰ)∵DE是⊙O的直径,则∠BED+∠EDB=90°,∵BC⊥DE,∴∠CBD+∠EDB=90°,即∠CBD=∠BED,∵AB切⊙O于点B,∴∠DBA=∠BED,即∠CBD=∠DBA;(Ⅱ)由(Ⅰ)知BD平分∠CBA,则=3,∵BC=,∴AB=3,AC=,则AD=3,由切割线定理得AB2=AD•AE,即AE=,故DE=AE﹣AD=3,即可⊙O的直径为3.[选修4-4:坐标系与参数方程]23.(2015•陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.【分析】(I)由⊙C的极坐标方程为ρ=2sinθ.化为ρ2=2,把代入即可得出;.(II)设P,,又C,.利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.【解答】解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,,又C,.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).[选修4-5:不等式选讲]24.(2015•陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.【分析】(Ⅰ)由不等式的解集可得ab的方程组,解方程组可得;(Ⅱ)原式=+=+,由柯西不等式可得最大值.【解答】解:(Ⅰ)关于x的不等式|x+a|<b可化为﹣b﹣a<x<b﹣a,又∵原不等式的解集为{x|2<x<4},∴,解方程组可得;(Ⅱ)由(Ⅰ)可得+=+=+≤=2=4,当且仅当=即t=1时取等,∴所求最大值为4。

【高考试题】2015年陕西省高考数学试卷(文科)

【高考试题】2015年陕西省高考数学试卷(文科)

【高考试题】2015年陕西省高考数学试卷(文科)一.选择题:在每小题给出的四个选项中,只有一项符合题目要求(每小题5分,共60分)1.(5分)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1) D.(﹣∞,1]2.(5分)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.1673.(5分)已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0) C.(0,﹣1)D.(0,1)4.(5分)设f(x)=,则f(f(﹣2))=()A.﹣1 B.C.D.5.(5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+46.(5分)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)根据如图框图,当输入x为6时,输出的y=()A.1 B.2 C.5 D.108.(5分)对任意向量、,下列关系式中不恒成立的是()A.||≤||||B.||≤|||﹣|||C.()2=||2D.()•()=2﹣29.(5分)设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数10.(5分)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q11.(5分)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元12.(5分)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣二.填空题:把答案填写在答题的横线上(本大题共4小题,每小题5分,共20分)13.(5分)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为.14.(5分)如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为.15.(5分)函数y=xe x在其极值点处的切线方程为.16.(5分)观察下列等式:1﹣=1﹣+﹣=+1﹣+﹣+﹣=++…据此规律,第n个等式可为.三.解答题:解答题应写出文字说明、证明过程或演算步骤(共5小题,共70分)17.(12分)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.18.(12分)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE 的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为36,求a的值.19.(12分)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.20.(12分)如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ斜率之和为2.21.(12分)设f n(x)=x+x2+…+x n﹣1,x≥0,n∈N,n≥2.(Ⅰ)求f n′(2);(Ⅱ)证明:f n(x)在(0,)内有且仅有一个零点(记为a n),且0<a n﹣<()n.三.请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分[选修4-1:几何证明选讲]22.(10分)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.[选修4-5:不等式选讲]24.已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.。

普通高等学校招生全国统一考试数学文试题(陕西卷,含解析).docx

普通高等学校招生全国统一考试数学文试题(陕西卷,含解析).docx

高中数学学习材料马鸣风萧萧*整理制作2015年普通高等学校招生全国统一考试(陕西卷)文科数学一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(本大题共10小题,每小题5分,共50分).1. 设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A考点:集合间的运算.2. 某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167(高中部)(初中部)男男女女60%70%【答案】C 【解析】试题分析:由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+= 故答案选C 考点:概率与统计.3. 已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【答案】B 【解析】试题分析:由抛物线22(0)y px p =>得准线2px =-,因为准线经过点(1,1)-,所以2p =,所以抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程.4. 设1,0()2,0xx x f x x ⎧-≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1- B .14 C .12 D .32【答案】C考点:1.分段函数;2.函数求值.5. 一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+【答案】D【解析】试题分析:由几何体的三视图可知该几何体为圆柱的截去一半,所以该几何体的表面积为21121222342πππ⨯⨯+⨯⨯⨯+⨯=+,故答案选D考点:1.空间几何体的三视图;2.空间几何体的表面积. 6. “sin cos αα=”是“cos20α=”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要 【答案】A考点:1.恒等变换;2.命题的充分必要性.7. 根据右边框图,当输入x 为6时,输出的y =( ) A .1 B .2 C .5 D .10【答案】D 【解析】试题分析:该程序框图运行如下:6330x =-=>,330x =-=,0330x =-=-<,2(3)110y =-+=,故答案选D .考点:程序框图的识别.8. 对任意向量,a b ,下列关系式中不恒成立的是( )A .||||||a b a b ∙≤B .||||||||a b a b -≤-C .22()||a b a b +=+D .22()()a b a b a b +-=- 【答案】B考点:1.向量的模;2.数量积.9. 设()sin f x x x =-,则()f x =( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数【答案】B 【解析】 试题分析:()sin ()()sin()sin (sin )()f x x x f x x x x x x x f x =-⇒-=---=-+=--=-又()f x 的定义域为R 是关于原点对称,所以()f x 是奇函数;()1cos 0()f x x f x '=-≥⇒是增函数.故答案选B 考点:函数的性质.10. 设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 【答案】C 【解析】试题分析:1()ln ln 2p f ab ab ab===;()ln 22a b a bq f ++==;11(()())ln 22r f a f b ab=+=因为2a b ab +>,由()ln f x x =是个递增函数,()()2a bf f ab +>所以q p r >=,故答案选C考点:函数单调性的应用.11. 某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲乙原料限额A(吨)3212B(吨)128A .12万元B .16万元C .17万元D .18万元【答案】D当直线340x y z+-=过点(2,3)A时,z取得最大值324318z=⨯+⨯=故答案选D考点:线性规划.12. 设复数(1)z x yi=-+(,)x y R∈,若||1z≤,则y x≥的概率()A.3142π+B.112π+C.1142π-D.112π-【答案】C 【解析】试题分析:2222(1)||(1)1(1)1 z x yi z x y x y=-+⇒=-+≤⇒-+≤如图可求得(1,1)A,(1,0)B,阴影面积等于21111114242ππ⨯-⨯⨯=-若||1z ≤,则y x ≥的概率211142142πππ-=-⨯ 故答案选C考点:1.复数的模长;2.几何概型.填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).13、中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________ 【答案】5考点:等差数列的性质.14、如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.【答案】8 【解析】试题分析:由图像得,当sin()16x π+Φ=-时min 2y =,求得5k =, 当sin()16x π+Φ=时,max 3158y =⨯+=,故答案为8.考点:三角函数的图像和性质.15、函数xy xe =在其极值点处的切线方程为____________.【答案】1y e =-考点:导数的几何意义. 16、观察下列等式:1-1122= 1-1111123434+-=+1-1111111123456456+-+-=++ …………据此规律,第n 个等式可为______________________.【答案】111111111234212122n n n n n -+-+⋅⋅⋅+-=++⋅⋅⋅+-++ 【解析】试题分析:观察等式知:第n 个等式的左边有2n 个数相加减,奇数项为正,偶数项为负,且分子为1,分母是1到2n 的连续正整数,等式的右边是111122n n n ++⋅⋅⋅+++. 故答案为111111111234212122n n n n n -+-+⋅⋅⋅+-=++⋅⋅⋅+-++ 考点:归纳推理.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) 17.ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量(,3)m a b =与(cos ,sin )n A B =平行. (I)求A ; (II)若7,2a b ==求ABC ∆的面积.【答案】(I)3A π=;(II) 332.试题解析:(I)因为//m n ,所以sin 3cos 0a B b A -= 由正弦定理,得sin sin 3sin cos 0A B B A -=, 又sin 0B ≠,从而tan 3A =,由于0A π<<所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而7,2a b ==,3A π=,得2742c c =+-,即2230c c --= 因为0c >,所以3c =,故ABC ∆面积为133sin 22bc A =. 解法二:由正弦定理,得72sin sin3Bπ=从而21sin 7B =又由a b >知A B >,所以27cos 7B =故sin sin()sin()3C A B B π=+=+321sin coscos sin3314B B ππ=+=,所以ABC ∆面积为133sin 22ab C =. 考点:1.正弦定理和余弦定理;2.三角形的面积.18.如图1,在直角梯形ABCD 中,//,,2AD BC BAD AB BC π∠==12AD a ==,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE-.(I)证明:CD ⊥平面1AOC ;(II)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE-的体积为362,求a 的值.【答案】(I) 证明略,详见解析;(II) 6a =.(II)由已知,平面1A BE ⊥平面BCDE ,且平面1A BE平面BCDE BE = ,又由(I)知,1A O BE⊥,所以1AO ⊥平面BCDE ,即1A O是四棱锥1A BCDE-的高,易求得平行四边形BCDE 面积2S BC AB a =⋅=,从而四棱锥1A B C D E -的为311236V S A O a =⨯⨯=,由323626a =,得6a =.(II)由已知,平面1A BE ⊥平面BCDE ,且平面1A BE平面BCDE BE =又由(I)知,1AO BE ⊥,所以1AO ⊥平面BCDE , 即1A O 是四棱锥1A BCDE-的高,由图1可知,12222AO AB a ==,平行四边形BCDE 面积2S BC AB a =⋅=,从而四棱锥1A BCDE-的为23111223326V S AO a a a =⨯⨯=⨯⨯=, 由323626a =,得6a =.考点:1.线面垂直的判定;2.面面垂直的性质定理;3.空集几何体的体积.19.随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期16 17 18 19 20 21 22 23 24 25 26 27 28 29 30天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨(I)在4月份任取一天,估计西安市在该天不下雨的概率;(II)西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率.【答案】(I) 1315;(II)78.【解析】试题分析:(I)在容量为30的样本中,从表格中得,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率是2613 3015=.(II)称相邻两个日期为“互邻日期对”(如1日与2日,2日与3日等)这样在4月份中,前一天为晴天的互邻日期对有16对,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为147168=,以频率估计概率,运动会期间不下雨的概率为78.试题解析:(I)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率是13 15.(II)称相邻两个日期为“互邻日期对”(如1日与2日,2日与3日等)这样在4月份中,前一天为晴天的互邻日期对有16对,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为7 8,以频率估计概率,运动会期间不下雨的概率为7 8.考点:概率与统计.20.如图,椭圆2222:1(0)x yE a ba b+=>>经过点(0,1)A-,且离心率为22.(I)求椭圆E的方程;(II)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点,P Q(均异于点A),证明:直线AP与AQ的斜率之和为2.【答案】(I) 2212x y +=; (II)证明略,详见解析.【解析】试题分析:(I)由题意知2,12c b a ==,由222a b c =+,解得2a =,继而得椭圆的方程为2212x y +=;(II) 设()()1122,P x y Q x y ,120x x ≠由题设知,直线PQ 的方程为(1)1(2)y k x k =-+≠,代入2212x y +=,化简得22(12)4(1)2(2)0k x k k x k k +--+-=,则1212224(1)2(2),1212k k k k x x x x k k --+==++,由已知∆>, 从而直线AP与AQ的斜率之和121212111122AP AQ y y kx k kx kk k x x x x +++-+-+=+=+化简得12122(2)AP AQ x x k k k k x x ++=+-()4(1)222(21)22(2)k k k k k k k k -=+-=--=-.试题解析:(I)由题意知2,12c b a ==,综合222a b c =+,解得2a =,所以,椭圆的方程为2212x y +=.(II)由题设知,直线PQ 的方程为(1)1(2)y k x k =-+≠,代入2212x y +=,得22(12)4(1)2(2)0k x k k x k k +--+-=, 由已知0∆>,设()()1122,P x y Q x y ,120x x ≠则1212224(1)2(2),1212k k k k x x x x k k --+==++,从而直线AP 与AQ 的斜率之和121212111122AP AQ y y kx k kx kk k x x x x +++-+-+=+=+121212112(2)2(2)x xk k k k x x x x ⎛⎫+=+-+=+- ⎪⎝⎭()4(1)222(21)22(2)k k k k k k k k -=+-=--=-. 考点:1.椭圆的标准方程;2.圆锥曲线的定值问题. 21. 设2()1,, 2.n n f x x x x n N n =+++-∈≥(I)求(2)n f ';(II)证明:()n f x 在20,3⎛⎫ ⎪⎝⎭内有且仅有一个零点(记为n a ),且1120233nna ⎛⎫<-< ⎪⎝⎭. 【答案】(I) (2)(1)21n n f n '=-+ ;(II)证明略,详见解析.【解析】试题分析:(I)由题设1()12n n f x x nx -'=+++,所以1(2)1222n n f n -'=+⨯++,此式等价于数列1{2}n n -⋅的前n 项和,由错位相减法求得(2)(1)21n n f n '=-+;(II)因为(0)10f =-<,2222()12120333n n f ⎛⎫⎛⎫=-⨯≥-⨯> ⎪ ⎪⎝⎭⎝⎭,所以()n f x 在2(0,)3内至少存在一个零点,又1()120n n f x x nx-'=+++>,所以()n f x 在2(0,)3内单调递增,因此,()n f x 在2(0,)3内有且只有一个零点n a ,由于1()11n n x f x x -=--,所以10()11n n n n n a f a a -==--,由此可得1111222n n n a a +=+> 故1223n a <<,继而得111112120222333n nn nn a a ++⎛⎫⎛⎫<-=<⨯=⨯ ⎪ ⎪⎝⎭⎝⎭.试题解析:(I)由题设1()12n n f x x nx -'=+++,所以1(2)1222n n f n -'=+⨯++ ①由22(2)12222nn f n'=⨯+⨯++ ②①-②得21(2)12222n nn f n -'-=++++-2122(1)2112n n n n -=-⋅=---,所以(2)(1)21n n f n '=-+(II)因为(0)10f =-<222133222()112120233313nn n f ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎝⎭=-=-⨯≥-⨯> ⎪ ⎪⎝⎭⎝⎭-,所以()n f x 在2(0,)3内至少存在一个零点, 又1()120n n f x x nx -'=+++>所以()n f x 在2(0,)3内单调递增, 因此,()n f x 在2(0,)3内有且只有一个零点n a ,由于1()11nn x f x x -=--,所以10()11nn n n n a f a a -==--由此可得1111222n n n a a +=+>故1223n a <<所以111112120222333n nn n n a a ++⎛⎫⎛⎫<-=<⨯=⨯ ⎪⎪⎝⎭⎝⎭考点:1.错位相减法;2.零点存在性定理;3.函数与数列.考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目的题是以后的方框涂黑.22. 选修4-1:几何证明选讲如图,AB 切O 于点B ,直线AO 交O 于,D E 两点,,BC DE ⊥垂足为C . (I)证明:CBD DBA ∠=∠ (II)若3,2AD DC BC ==,求O 的直径.【答案】(I)证明略,详见解析; (II)3. 【解析】试题分析::(I)因为DE 是O 的直径,则90BED EDB ∠+∠=︒,又BC DE ⊥,所以90CBD EDB ∠+∠=︒,又AB 切O 于点B ,得D B A B E D ∠=∠,所以CBD DBA ∠=∠;(II)由(I)知BD 平分CBA ∠,则3BA ADBC CD ==,又2BC =,从而32AB =,由222AB BC AC =+,解得4AC =,所以3AD =,由切割线定理得2AB AD AE =⋅,解得6AE =,故3DE AE AD =-=,即O 的直径为3.试题解析:(I)因为DE 是O 的直径, 则90BED EDB ∠+∠=︒又BC DE ⊥,所以90CBD EDB ∠+∠=︒ 又AB 切O 于点B , 得DBA BED ∠=∠ 所以CBD DBA ∠=∠ (II)由(I)知BD 平分CBA ∠,则3BA ADBC CD ==,又2BC =,从而32AB =,所以224AC AB BC =-=所以3AD =,由切割线定理得2AB AD AE =⋅即26AB AE AD ==,故3DE AE AD =-=, 即O 的直径为3.考点:1.几何证明;2.切割线定理.23. 选修4-4:坐标系与参数方程在直角坐标版权法xOy 吕,直线l 的参数方程为132(32x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,C 的极坐标方程为23sin ρθ=.(I)写出C 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标. 【答案】(I) ()2233x y +-=; (II) (3,0).【解析】试题分析:(I)由23sin ρθ=,得223sin ρρθ=,从而有2223x y y +=,所以()2233x y +-=(II)设133,22P t t ⎛⎫+ ⎪⎝⎭,又(0,3)C ,则22213331222PC t t t ⎛⎫⎛⎫=++-=+ ⎪ ⎪⎝⎭⎝⎭,故当0t =时,PC取得最小值,此时P 点的坐标为(3,0).试题解析:(I)由23sin ρθ=,得223sin ρρθ=, 从而有2223x y y += 所以()2233x y +-=(II)设133,22P t t ⎛⎫+ ⎪⎝⎭,又(0,3)C ,则22213331222PC t t t ⎛⎫⎛⎫=++-=+ ⎪ ⎪⎝⎭⎝⎭,故当0t =时,PC取得最小值,此时P 点的坐标为(3,0).考点:1. 坐标系与参数方程;2.点与圆的位置关系.24. 选修4-5:不等式选讲 已知关于x 的不等式x a b+<的解集为{|24}x x <<(I)求实数,a b 的值;(II)求12at bt ++的最大值.【答案】(I) 3,1a b =-=;(II)4. 【解析】试题分析:(I)由x a b +<,得b a x b a --<<-,由题意得24b a b a --=⎧⎨-=⎩,解得3,1a b =-=;(II)柯西不等式得31234t tt t -++=-+2222[(3)1t t ≤+-+24t t =-+=,当且仅当413t t-=即1t =时等号成立,故()min3124t t-++=.试题解析:(I)由x a b+<,得b a x b a --<<-则24b a b a --=⎧⎨-=⎩,解得3, 1.a b =-= (II)31234t t t t -++=-+2222[(3)1][(4)()t t ≤+-+ 244t t =-+=当且仅当413t t-=即1t =时等号成立, 故()min3124t t-++=考点:1.绝对值不等式;2.柯西不等式.。

2015年高考文数真题试卷(陕西卷)

2015年高考文数真题试卷(陕西卷)

第1页,总13页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………2015年高考文数真题试卷(陕西卷)考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共8题)1. (2015·陕西)设集合M={x|x 2=x},N={x|lgx≤0},则M N ( )A . [0,1]B . (0,1]C . [0,1)D . (-,1]2. (2015·陕西)设f(x)=,f(f(-2))=则( )A . -1B .C .D .3. (2015·陕西)根据右边框图,当输入x为6时,输出的y=( )答案第2页,总13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 1B . 2C . 5D . 104. (2015·陕西)“sin =cos ”是“cos2=0”的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件5. (2015·陕西)设f(x)=lnx, 0<a<b ,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是( )A . q=r<pB . q=r>pC . p=r<qD . p=r>q6. (2015·陕西)已知抛物线y 2=2px(p>0)的准线经过点(-1,1),则抛物线焦点坐标为( ) A . (-1,0) B . (1,0) C . (0,-1) D . (0,1)7. (2015·陕西)设f(x)=x -sinx ,则f(x)( )A . 既是奇函数又是减函数B . 既是奇函数又是增函数C . 是有零点的减函数D . 是没有零点的奇函数8. (2015·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )。

2015年普通高等学校招生全国统一考试文科数学(陕西卷) (2)

2015年普通高等学校招生全国统一考试文科数学(陕西卷) (2)

2015年普通高等学校招生全国统一考试陕西文科数学一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共12小题,每小题5分,共60分). 1.(2015陕西,文1)设集合M={x|x 2=x },N={x|lg x ≤0},则M ∪N=( )A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案:A解析:∵M={0,1},N={x|0<x ≤1},∴M ∪N={x|0≤x ≤1},即为[0,1].2.(2015陕西,文2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167答案:C解析:由性别比例图知,该校女教师的人数为110×70%+150×(1-60%)=77+60=137.3.(2015陕西,文3)已知抛物线y 2=2px (p>0)的准线经过点(-1,1),则该抛物线焦点坐标为( ) A.(-1,0) B.(1,0) C.(0,-1) D.(0,1)答案:B解析:由题意知,该抛物线的准线方程为x=-1,则其焦点坐标为(1,0). 4.(2015陕西,文4)设f (x )={1-√x,x ≥0,2x , x <0,则f (f (-2))=( )A.-1B.14C.12D.32答案:C解析:f (f (-2))=f (14)=1-√14=12.5.(2015陕西,文5)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+4答案:D解析:由三视图知,该几何体为半圆柱,故其表面积为S 侧+S 上底+S 下底=(π+2)×2+π=3π+4.6.(2015陕西,文6)“sin α=cos α”是“cos 2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:∵cos 2α=cos2α-sin2α=(cos α+sin α)(cos α-sin α),∴cos 2α=0⇔cos α=-sin α或cos α=sin α,故选A.7.(2015陕西,文7)根据右边框图,当输入x为6时,输出的y=()A.1B.2C.5D.10答案:D解析:由程序框图可得流程如下:x=6→x=3→x=0→x=-3→y=(-3)2+1=10.8.(2015陕西,文8)对任意平面向量a,b,下列关系式中不恒成立的是()A.|a·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a2-b2答案:B解析:当a与b为非零向量且反向时,B显然错误.9.(2015陕西,文9)设f(x)=x-sin x,则f(x)()A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数答案:B解析:∵当x=0时,f(x)=0,∴f(x)存在零点.∵f(-x)=-x-sin(-x)=-(x-sin x)=-f(x),且f'(x)=1-cos x≥0,∴f(x)既是奇函数又是增函数.10.(2015陕西,文10)设f(x)=ln x,0<a<b,若p=f(√ab),q=f(a+b2),r=12(f(a)+f(b)),则下列关系式中正确的是()A.q=r<pB.q=r>pC.p=r<qD.p=r>q答案:C解析:∵f(x)=ln x,∴p=f(√ab)=ln√ab=12(ln a+ln b)=r.又∵0<a<b,∴a+b2>√ab.又∵y=ln x 为递增函数,∴lna+b2>ln √ab ,即q>r ,综上p=r<q.11.(2015陕西,文11)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B.16万元C.17万元D.18万元答案:D解析:设该企业每天生产甲、乙两产品分别为x 吨、y 吨,由题意知,x ,y 需满足约束条件{3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,每天可获得利润z=3x+4y.由约束条件画出可行域,如图所示,l 0:y=-34x ,平移l 0得点C ,使z 取得最大值.由{3x +2y =12,x +2y =8,得C (2,3),故z max =6+12=18(万元). 12.(2015陕西,文12)设复数z=(x-1)+y i(x ,y ∈R),若|z|≤1,则y ≥x 的概率为( )A.34+12πB.12+1πC.14-12πD.12-1π答案:C解析:∵|z|=√(x -1)2+y 2≤1,∴(x-1)2+y 2≤1,其几何意义表示为以(1,0)为圆心,1为半径的圆面,如图所示,而y ≥x 所表示的区域如图中阴影部分,故P=π4-12π=14-12π. 二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共4小题,每小题5分,共20分).13.(2015陕西,文13)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为 . 答案:5解析:由等差数列的性质,得a 1+a n2=1 010,故a 1=2 020-a n =5.14.(2015陕西,文14)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin (π6x +φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为 .答案:8解析:由题中图象知,y min =2=-3+k ,∴k=5.∴函数解析式为y=3sin (π6x +φ)+5,故y max =8.15.(2015陕西,文15)函数y=x e x 在其极值点处的切线方程为 . 答案:y=-1e解析:令y'=(x+1)e x =0,得x=-1,则切点为(-1,-1e).∵函数在极值点处的导数为0,即切线斜率为0,则切线方程为y=-1e .16.(2015陕西,文16)观察下列等式1-12=121-12+13-14=13+141-12+13-14+15-16=14+15+16……据此规律,第n 个等式可为 . 答案:1-12+13-14+…+12n -1-12n =1n+1+1n+2+ (12)解析:经观察知,第n 个等式的左侧是数列{(-1)n -1·1n }的前2n 项和,而右侧是数列{1n}的第n+1项到第2n 项的和,故为1-12+13-14+…+12n -1-12n =1n+1+1n+2+…+12n. 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共70分).17.(本小题满分12分)(2015陕西,文17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.向量m=(a ,√3b )与n=(cos A ,sin B )平行. (1)求A ;(2)若a=√7,b=2,求△ABC 的面积.解:(1)因为m ∥n ,所以a sin B-√3b cos A=0.由正弦定理,得sin A sin B-√3sin B cos A=0. 又sin B ≠0,从而tan A=√3. 由于0<A<π,所以A=π3.(2)解法一:由余弦定理,得a 2=b 2+c 2-2bc cos A ,而a=√7,b=2,A=π3,得7=4+c 2-2c ,即c 2-2c-3=0. 因为c>0,所以c=3.故△ABC 的面积为12bc sin A=3√32. 解法二:由正弦定理,得√7sin π3=2sinB,从而sin B=√217.又由a>b ,知A>B ,所以cos B=2√77. 故sin C=sin(A+B )=sin (B +π3)=sin B cos π3+cos B sin π3=3√2114. 所以△ABC 的面积为12ab sin C=3√32. 18.(本小题满分12分)(2015陕西,文18)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD=π2,AB=BC=12AD=a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图②中△A 1BE 的位置,得到四棱锥A 1-BCDE.图①图②(1)证明:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为36√2,求a的值.(1)证明:在题图①中,因为AB=BC=12AD=a,E是AD的中点,∠BAD=π2,所以BE⊥AC.即在题图②中,BE⊥A1O,BE⊥OC,从而BE⊥平面A1OC,又CD∥BE,所以CD⊥平面A1OC.(2)解:由已知,平面A1BE⊥平面BCDE,且平面A1BE∩平面BCDE=BE,又由(1),A1O⊥BE,所以A1O⊥平面BCDE, 即A1O是四棱锥A1-BCDE的高.由题图①知,A1O=√22AB=√22a,平行四边形BCDE的面积S=BC·AB=a2.从而四棱锥A1-BCDE的体积为V=13×S×A1O=13×a2×√22a=√26a3,由√26a3=36√2,得a=6.19.(本小题满分12分)(2015陕西,文19)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78.以频率估计概率,运动会期间不下雨的概率为78.20.(本小题满分12分)(2015陕西,文20)如图,椭圆E :x 2a 2+y 2b2=1(a>b>0)经过点A (0,-1),且离心率为√22.(1)求椭圆E 的方程; (2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.解:(1)由题设知c a =√22,b=1,结合a 2=b 2+c 2,解得a=√2. 所以椭圆的方程为x 22+y 2=1.(2)由题设知,直线PQ 的方程为y=k (x-1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k-1)x+2k (k-2)=0. 由已知Δ>0.设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k(k -1)1+2k2,x 1x 2=2k(k -2)1+2k2.从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k+(2-k )(1x 1+1x 2)=2k+(2-k )x 1+x 2x 1x 2=2k+(2-k )4k(k -1)2k(k -2)=2k-2(k-1)=2.21.(本小题满分12分)(2015陕西,文21)设f n (x )=x+x 2+…+x n -1,x ≥0,n ∈N,n ≥2. (1)求f n '(2);(2)证明:f n (x )在(0,23)内有且仅有一个零点(记为a n ),且0<a n -12<13(23)n . (1)解法一:由题设f n '(x )=1+2x+…+nx n-1.所以f n '(2)=1+2×2+…+(n-1)2n-2+n ·2n-1, ① 则2f n '(2)=2+2×22+…+(n-1)2n-1+n ·2n .②①-②得,-f n '(2)=1+2+22+…+2n-1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1.所以f n '(2)=(n-1)2n +1. 解法二:当x ≠1时,f n (x )=x -x n+11-x-1, 则f n '(x )=(1-(n+1)x n )(1-x)+(x -x n+1)(1-x)2,可得f n '(2)=-(1-(n+1)2n )+2-2n+1(1-2)2=(n-1)2n +1.(2)证明:因为f (0)=-1<0,f n (23)=23(1-(23)n )1-23-1 =1-2×(23)n ≥1-2×(23)2>0,所以f n (x )在(0,23)内至少存在一个零点.又f n '(x )=1+2x+…+nx x-1>0, 所以f n (x )在(0,23)内单调递增, 因此f n (x )在(0,23)内有且仅有一个零点a n .由于f n(x)=x-x n+11-x-1,所以0=f n(a n)=a n-a n n+11-a n-1.由此可得a n=12+12a n n+1>12,故12<a n<23.所以0<a n-12=12a n n+1<12×(23)n+1=13(23)n.考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B铅笔在答题卡上把所选题目的题号后的方框涂黑.22.(本小题满分10分)(2015陕西,文22)选修4—1:几何证明选讲如图,AB切☉O于点B,直线AO交☉O于D,E两点,BC⊥DE,垂足为C.(1)证明:∠CBD=∠DBA;(2)若AD=3DC,BC=√2,求☉O的直径.(1)证明:因为DE为☉O直径,则∠BED+∠EDB=90°.又BC⊥DE,所以∠CBD+∠EDB=90°.从而∠CBD=∠BED.又AB切☉O于点B,得∠DBA=∠BED,所以∠CBD=∠DBA.(2)解:由(1)知BD平分∠CBA,则BABC =ADCD=3,又BC=√2,从而AB=3√2.所以AC=√AB2-BC2=4,所以AD=3.由切割线定理得AB2=AD·AE,即AE=AB2AD=6,故DE=AE-AD=3,即☉O直径为3.23.(本小题满分10分)(2015陕西,文23)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为{x=3+12t,y=√32t(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,☉C的极坐标方程为ρ=2√3sin θ.(1)写出☉C的直角坐标方程;(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.解:(1)由ρ=2√3sin θ,得ρ2=2√3ρsin θ,从而有x2+y2=2√3y,所以x2+(y-√3)2=3.(2)设P(3+12t,√32t),又C(0,√3),则|PC|=√(3+12t)2+(√32t-√3)2=√t2+12,故当t=0时,|PC|取得最小值,此时,P点的直角坐标为(3,0).24.(本小题满分10分)(2015陕西,文24)选修4—5:不等式选讲已知关于x的不等式|x+a|<b的解集为{x|2<x<4}.(1)求实数a,b的值;(2)求√at+12+√bt的最大值.解:(1)由|x+a|<b,得-b-a<x<b-a, 则{-b-a=2,b-a=4,解得a=-3,b=1.(2)√-3t+12+√t=√3√4-t+√t≤√[(√3)2+12][(√4-t)2+(√t)2]=2√4-t+t=4,当且仅当√4-t√3=√t1,即t=1时等号成立.故(√-3t+12+√t)max=4.。

全国高考文科数学试题及答案陕西卷

全国高考文科数学试题及答案陕西卷

2015年普通高等学校招生全国统一考试(陕西卷)文科数学一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(本大题共10小题,每小题5分,共50分).1. 设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =U ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞2. 某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .1673. 已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )A .(1,0)-B .(1,0)C .(0,1)-D .(0,1) 4. 设1,0()2,0xx x f x x ⎧-≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1- B .14 C .12D .325. 一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+6. “sin cos αα=”是“cos20α=”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要7. 根据右边框图,当输入x 为6时,输出的y =( )A .1B .2C .5D .108. 对任意向量,a b r r,下列关系式中不恒成立的是( )A .||||||a b a b •≤r r r rB .||||||||a b a b -≤-r r r rC .22()||a b a b +=+r r r rD .22()()a b a b a b +-=-r r r r r r9. 设()sin f x x x =-,则()f x =( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数 10. 设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 11. 某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A .12万元B .16万元C .17万元D .18万元 12. 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( )A .3142π+B . 112π+C .1142π-D . 112π- 二.填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).13、中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________14、如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.15、函数x y xe =在其极值点处的切线方程为____________. 16、观察下列等式:1-1122=1-1111123434+-=+1-1111111123456456+-+-=++…………据此规律,第n 个等式可为______________________.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)17.ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量()m a =u r与(cos ,sin )n A B =r平行.(Ⅰ)求A ;(Ⅱ)若2a b ==求ABC ∆的面积.18.如图1,在直角梯形ABCD 中,//,,2AD BC BAD AB BC π∠==12AD a ==,E是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE -. (Ⅰ)证明:CD ⊥平面1AOC ;(Ⅱ)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为,求a 的值.19.随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率.20.如图,椭圆2222:1(0)x y E a b a b+=>>经过点(0,1)A -,且离心率为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.21. 设2()1,, 2.n n f x x x x n N n =+++-∈≥L(Ⅰ)求(2)n f ';(Ⅱ)证明:()n f x 在20,3⎛⎫⎪⎝⎭内有且仅有一个零点(记为n a ),且1120233nn a ⎛⎫<-< ⎪⎝⎭.考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目的题是以后的方框涂黑.22. 选修4-1:几何证明选讲如图,AB 切O e 于点B ,直线AO 交O e 于,D E 两点,,BC DE ⊥垂足为C . (Ⅰ)证明:CBD DBA ∠=∠(Ⅱ)若3,AD DC BC ==O e 的直径. 23. 选修4-4:坐标系与参数方程在直角坐标版权法xOy 吕,直线l的参数方程为132(x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C e的极坐标方程为ρθ=.(Ⅰ)写出C e 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标.24. 选修4-5:不等式选讲已知关于x的不等式x a b+<的解集为{|24}<<x x (Ⅰ)求实数,a b的值;.参考答案一、选择题:1.A2.C3.B4.C5.D6.A7.D8.B9.B 10.C 11.D 12.C 二、填空题:13.5 14.8 15.1y e=- 16.111111111 (234)212122n n n n n-+-++-=+++-++ 三、解答题: 17.解:(Ⅰ)因为//m n ,所以sin cos 0a B A -=由正弦定理,得sin sin cos 0A B B A -=,又sin 0B ≠,从而tan A =, 由于0A π<< 所以3A π=(Ⅱ)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得2742c c =+-,即2230c c --= 因为0c >,所以3c =,故ABC ∆面积为1sin 22bc A =.解法二:由正弦定理,得2sin sin3Bπ=从而sin 7B =又由a b >,知A B >,所以cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin3314B B ππ=+=所以ABC ∆面积为1sin 2ab C =18.解:(Ⅰ)在图1中,因为1,2AB BC AD a E ===是AD 的中点,2BAD π∠=,所以BE AC ⊥即在图2中,1,BE AO BE OC ⊥⊥, 从而BE ⊥平面1A OC , 又//CD BE , 所以CD ⊥平面1A OC(Ⅱ)由已知,平面1A BE ⊥平面BCDE ,且平面1A BE I 平面BCDE BE = ,又由(Ⅰ),1AO BE ⊥, 所以1AO ⊥平面BCDE ,即1A O 是四棱锥1A BCDE -的高,由图1知,122A O AB ==,平行四边形BCDE 的面积2S BC AB a =⋅=, 从而四棱锥1A BCDE -的为由36a =,得6a = 19.解:(Ⅰ)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率是1315(Ⅱ)称相邻两个日期为“互邻日期对”(如1日与2日,2日与3日等),这样在4月份中,前一天为晴天的互邻日期对有16对,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78, 以频率估计概率,运动会期间不下雨的概率为78. 20.解:(Ⅰ)由题意知12cb a==,结合222a b c =+,解得a =,所以,椭圆的方程为2212x y +=;(Ⅱ)由题设知,直线PQ 的方程为(1)1(2)y k x k =-+≠,代入2212x y +=,得22(12)4(1)2(2)0k x k k x k k +--+-=,由已知0∆>,设()()1122,P x y Q x y ,120x x ≠ 则1212224(1)2(2),1212k k k k x x x x k k--+==++, 从而直线AP 与AQ 的斜率之和()4(1)222(21)22(2)k k k k k k k k -=+-=--=-.21.解:(Ⅰ)解法一:由题设1()12n n f x x nx -'=+++L ,所以1(2)1222n n f n -'=+⨯++L ① 则 22(2)12222n n f n '=⨯+⨯++L ② ①-②得21(2)12222n n n f n -'-=++++-L2122(1)2112n n n n -=-⋅=---, 所以 (2)(1)21n n f n '=-+ 解法二:当1x ≠时,1()11n n x x f x x+-=--, 则12(1(1))(1)()()(1)n n n n x x x x f x x +-+-+-'=-可得12(1(1)2)22(2)(1)21(12)n n nn n f n +--++-'==-+- (Ⅱ)因为(0)10f =-<222133222()112120233313nn n f ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎝⎭=-=-⨯≥-⨯> ⎪ ⎪⎝⎭⎝⎭-,所以()n f x 在2(0,)3内至少存在一个零点, 又1()120n n f x x nx -'=+++>L 所以()n f x 在2(0,)3内单调递增, 因此,()n f x 在2(0,)3内有且只有一个零点n a , 由于1()11nn x f x x -=--, 所以10()11n n n n na f a a -==-- 由此可得1111222n n n a a +=+> 故1223n a << 所以111112*********n nn n n a a ++⎛⎫⎛⎫<-=<⨯=⨯ ⎪ ⎪⎝⎭⎝⎭ 22.解:(Ⅰ)因为DE 是O e 的直径,则90BED EDB ∠+∠=︒ 又BC DE ⊥,所以90CBD EDB ∠+∠=︒ 从而CBD BED ∠=∠又AB 切O e 于点B , 得DBA BED ∠=∠所以CBD DBA ∠=∠(Ⅱ)由(Ⅰ)知BD 平分CBA ∠, 则3BA AD BC CD==,又BC =,从而AB =所以4AC == 所以3AD =, 由切割线定理得2AB AD AE =⋅ 即26AB AE AD==, 故3DE AE AD =-=, 即O e 的直径为3.23.解: (Ⅰ)由ρθ=, 得2sin ρθ=,从而有22x y +=所以(223x y +-=(Ⅱ)设132P t ⎛⎫+ ⎪⎝⎭,又C ,则PC == 故当0t =时,PC 取得最小值, 此时,P 点的直角坐标为(3,0).24.解: (Ⅰ)由x a b +<,得b a x b a --<<-则24b a b a --=⎧⎨-=⎩,解得3, 1.a b =-===1t=时等号成立,故max4 =。

【高考试卷】2015年陕西省高考数学试卷(文科)及答案

【高考试卷】2015年陕西省高考数学试卷(文科)及答案

【高考试卷】2015年陕西省高考数学试卷(文科)一.选择题:在每小题给出的四个选项中,只有一项符合题目要求(每小题5分,共60分)1.(5分)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1) D.(﹣∞,1]2.(5分)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.1673.(5分)已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0) C.(0,﹣1)D.(0,1)4.(5分)设f(x)={1−√x,x≥02x,x<0,则f(f(﹣2))=()A.﹣1 B.14C.12D.325.(5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+46.(5分)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)根据如图框图,当输入x 为6时,输出的y=( )A .1B .2C .5D .10 8.(5分)对任意向量a →、b →,下列关系式中不恒成立的是( )A .|a →⋅b →|≤|a →||b →|B .|a →−b →|≤||a →|﹣|b →||C .(a →+b →)2=|a →+b →|2D .(a →+b →)•(a →−b →)=a →2﹣b →2 9.(5分)设f (x )=x ﹣sinx ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数10.(5分)设f (x )=lnx ,0<a <b ,若p=f (√ab ),q=f (a+b 2),r=12(f (a )+f (b )),则下列关系式中正确的是( )A .q=r <pB .p=r <qC .q=r >pD .p=r >q11.(5分)某企业生产甲、乙两种产品均需用A 、B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨)3 2 12 B (吨) 1 2 8A .12万元B .16万元C .17万元D .18万元12.(5分)设复数z=(x ﹣1)+yi (x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( )A .34+12πB .12+1πC .14﹣12πD .12﹣1π二.填空题:把答案填写在答题的横线上(本大题共4小题,每小题5分,共20分)13.(5分)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为 .14.(5分)如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin (π6x +φ)+k .据此函数可知,这段时间水深(单位:m )的最大值为 .15.(5分)函数y=xe x 在其极值点处的切线方程为 .16.(5分)观察下列等式:1﹣12=121﹣12+13﹣14=13+141﹣12+13﹣14+15﹣16=14+15+16…据此规律,第n 个等式可为 .三.解答题:解答题应写出文字说明、证明过程或演算步骤(共5小题,共70分)17.(12分)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m →=(a ,√3b )与n →=(cosA ,sinB )平行.(Ⅰ)求A ;(Ⅱ)若a=√7,b=2,求△ABC 的面积.18.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,∠BAD=π2,AB=BC=12AD=a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE .(Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为36√2,求a 的值.19.(12分)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 天气 晴 雨 阴 阴 阴 雨 阴 晴 晴 晴 阴 晴 晴 晴 晴日期 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 天气 晴 阴 雨 阴 阴 晴 阴 晴 晴 晴 阴 晴 晴 晴 雨20.(12分)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,﹣1),且离心率为√22. (Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.。

普通高等学校招生全国统一考试文科数学陕西卷

普通高等学校招生全国统一考试文科数学陕西卷

2015年普通高等学校招生全国统一考试陕西文科数学一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共12小题,每小题5分,共60分).1.(2015陕西,文1)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案:A解析:∵M={0,1},N={x|0<x≤1},∴M∪N={x|0≤x≤1},即为[0,1].2.(2015陕西,文2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.167答案:C解析:由性别比例图知,该校女教师的人数为110×70%+150×(1-60%)=77+60=137.3.(2015陕西,文3)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为()A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)答案:B解析:由题意知,该抛物线的准线方程为x=-1,则其焦点坐标为(1,0).4.(2015陕西,文4)设f(x)=则f(f(-2))=()A.-1B.C.D.答案:C解析:f(f(-2))=f=1-=.5.(2015陕西,文5)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4答案:D解析:由三视图知,该几何体为半圆柱,故其表面积为S侧+S上底+S下底=(π+2)×2+π=3π+4.6.(2015陕西,文6)“sin α=cos α”是“cos 2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:∵cos 2α=cos2α-sin2α=(cos α+sin α)(cos α-sin α),∴cos 2α=0⇔cos α=-sin α或cos α=sin α,故选A.7.(2015陕西,文7)根据右边框图,当输入x为6时,输出的y=()A.1B.2C.5D.10答案:D解析:由程序框图可得流程如下:x=6→x=3→x=0→x=-3→y=(-3)2+1=10.8.(2015陕西,文8)对任意平面向量a,b,下列关系式中不恒成立的是()A.|a·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a2-b2答案:B解析:当a与b为非零向量且反向时,B显然错误.9.(2015陕西,文9)设f(x)=x-sin x,则f(x)()A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数答案:B解析:∵当x=0时,f(x)=0,∴f(x)存在零点.∵f(-x)=-x-sin(-x)=-(x-sin x)=-f(x),且f'(x)=1-cos x≥0,∴f(x)既是奇函数又是增函数.10.(2015陕西,文10)设f(x)=ln x,0<a<b,若p=f(),q=f,r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<pB.q=r>pC.p=r<qD.p=r>q答案:C解析:∵f(x)=ln x,∴p=f()=ln=(ln a+ln b)=r.又∵0<a<b,∴>.又∵y=ln x为递增函数,∴ln>ln,即q>r,综上p=r<q.11.(2015陕西,文11)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元答案:D解析:设该企业每天生产甲、乙两产品分别为x吨、y吨,由题意知,x,y需满足约束条件每天可获得利润z=3x+4y.由约束条件画出可行域,如图所示,l0:y=-x,平移l0得点C,使z取得最大值.由得C(2,3),故z max=6+12=18(万元).12.(2015陕西,文12)设复数z=(x-1)+y i(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.-D.-答案:C解析:∵|z|=-≤1,∴(x-1)2+y2≤1,其几何意义表示为以(1,0)为圆心,1为半径的圆面,如图所示,而y≥x所表示的区域如图中-=-.阴影部分,故P=二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共4小题,每小题5分,共20分).13.(2015陕西,文13)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为. 答案:5解析:由等差数列的性质,得=1 010,故a1=2 020-a n=5.14.(2015陕西,文14)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k.据此函数可知,这段时间水深(单位:m)的最大值为.答案:8解析:由题中图象知,y min=2=-3+k,∴k=5.∴函数解析式为y=3sin+5,故y max=8.15.(2015陕西,文15)函数y=x e x在其极值点处的切线方程为.答案:y=-解析:令y'=(x+1)e x=0,得x=-1,则切点为--.∵函数在极值点处的导数为0,即切线斜率为0,则切线方程为y=-.16.(2015陕西,文16)观察下列等式1-=1-+-=+1-+-+-=++……据此规律,第n个等式可为.答案:1-+-+…+--=++…+解析:经观察知,第n个等式的左侧是数列--的前2n项和,而右侧是数列的第n+1项到第2n项的和,故为1-+-+…+--=++…+.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共70分).17.(本小题满分12分)(2015陕西,文17)△ABC的内角A,B,C所对的边分别为a,b,c.向量m=(a,b)与n=(cos A,sin B)平行.(1)求A;(2)若a=,b=2,求△ABC的面积.解:(1)因为m∥n,所以a sin B-b cos A=0.由正弦定理,得sin A sin B-sin B cos A=0.又sin B≠0,从而tan A=.由于0<A<π,所以A=.(2)解法一:由余弦定理,得a2=b2+c2-2bc cos A,而a=,b=2,A=,得7=4+c2-2c,即c2-2c-3=0.因为c>0,所以c=3.故△ABC的面积为bc sin A=.解法二:由正弦定理,得=,从而sin B=.又由a>b,知A>B,所以cos B=.故sin C=sin(A+B)=sin=sin B cos+cos B sin=.所以△ABC的面积为ab sin C=.18.(本小题满分12分)(2015陕西,文18)如图①,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E 是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图②中△A1BE的位置,得到四棱锥A1-BCDE.图①图②(1)证明:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为36,求a的值.(1)证明:在题图①中,因为AB=BC=AD=a,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图②中,BE⊥A1O,BE⊥OC,从而BE⊥平面A1OC,又CD∥BE,所以CD⊥平面A1OC.(2)解:由已知,平面A1BE⊥平面BCDE,且平面A1BE∩平面BCDE=BE,又由(1),A1O⊥BE,所以A1O⊥平面BCDE,即A1O是四棱锥A1-BCDE的高.由题图①知,A1O=AB=a,平行四边形BCDE的面积S=BC·AB=a2.从而四棱锥A1-BCDE的体积为V=×S×A1O=×a2×a=a3,由a3=36,得a=6.19.(本小题满分12分)(2015陕西,文19)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为.以频率估计概率,运动会期间不下雨的概率为.20.(本小题满分12分)(2015陕西,文20)如图,椭圆E:+=1(a>b>0)经过点A(0,-1),且离心率为.(1)求椭圆E的方程;(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.解:(1)由题设知=,b=1,结合a2=b2+c2,解得a=.所以椭圆的方程为+y2=1.(2)由题设知,直线PQ的方程为y=k(x-1)+1(k≠2),代入+y2=1,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0.由已知Δ>0.设P(x1,y1),Q(x2,y2),x1x2≠0,则x1+x2=-,x1x2=-.从而直线AP,AQ的斜率之和k AP+k AQ=+=+=2k+(2-k)=2k+(2-k)=2k-2(k-1)=2.=2k+(2-k)--21.(本小题满分12分)(2015陕西,文21)设f n(x)=x+x2+…+x n-1,x≥0,n∈N,n≥2.(1)求f n'(2);(2)证明:f n(x)在内有且仅有一个零点(记为a n),且0<a n-<.(1)解法一:由题设f n'(x)=1+2x+…+nx n-1.所以f n'(2)=1+2×2+…+(n-1)2n-2+n·2n-1,①则2f n'(2)=2+2×22+…+(n-1)2n-1+n·2n.②①-②得,-f n'(2)=1+2+22+…+2n-1-n·2n=-n·2n=(1-n)2n-1.所以f n'(2)=(n-1)2n+1.解法二:当x≠1时,f n(x)=--1,则f n'(x)=---,-=(n-1)2n+1.可得f n'(2)=----(2)证明:因为f(0)=-1<0,f n=-1=1-2×≥1-2×>0,所以f n(x)在内至少存在一个零点.又f n'(x)=1+2x+…+nx x-1>0,所以f n(x)在内单调递增,因此f n(x)在内有且仅有一个零点a n.由于f n(x)=--1,所以0=f n(a n)=--1.由此可得a n=+>,故<a n<.所以0<a n-=<×=.考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B铅笔在答题卡上把所选题目的题号后的方框涂黑.22.(本小题满分10分)(2015陕西,文22)选修4—1:几何证明选讲如图,AB切☉O于点B,直线AO交☉O于D,E两点,BC⊥DE,垂足为C.(1)证明:∠CBD=∠DBA;(2)若AD=3DC,BC=,求☉O的直径.(1)证明:因为DE为☉O直径,则∠BED+∠EDB=90°.又BC⊥DE,所以∠CBD+∠EDB=90°.从而∠CBD=∠BED.又AB切☉O于点B,得∠DBA=∠BED,所以∠CBD=∠DBA.(2)解:由(1)知BD平分∠CBA,则==3,又BC=,从而AB=3.所以AC=-=4,所以AD=3.由切割线定理得AB2=AD·AE,即AE==6,故DE=AE-AD=3,即☉O直径为3.23.(本小题满分10分)(2015陕西,文23)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,☉C的极坐标方程为ρ=2sin θ.(1)写出☉C的直角坐标方程;(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.解:(1)由ρ=2sin θ,得ρ2=2ρsin θ,从而有x2+y2=2y,所以x2+(y-)2=3.(2)设P,又C(0,),则|PC|=-=,故当t=0时,|PC|取得最小值,此时,P点的直角坐标为(3,0).24.(本小题满分10分)(2015陕西,文24)选修4—5:不等式选讲已知关于x的不等式|x+a|<b的解集为{x|2<x<4}.(1)求实数a,b的值;(2)求+的最大值.解:(1)由|x+a|<b,得-b-a<x<b-a,则---解得a=-3,b=1.(2)-+=+≤=2=4,当且仅当=,即t=1时等号成立.故(-+)max=4.。

2015年陕西省高考数学试卷(文科)学生版

2015年陕西省高考数学试卷(文科)学生版

2015 年陕西省高考数学试卷(文科)一.选择题:在每题给出的四个选项中,只有一项切合题目要求(每题 5 分,共 60分)1.(5 分)(2015?陕西)设会合 M={ x| x2=x} , N={ x| lgx≤ 0} ,则 M ∪N=()A.[ 0, 1]B.( 0, 1]C.[ 0,1)D.(﹣∞, 1]2.( 5 分)(2015?陕西)某中学初中部共有110 名教师,高中部共有 150 名教师,其性别比比以下图,则该校女教师的人数为()A.93B.123C.137D.1673.(5 分)(2015?陕西)已知抛物线y2 =2px( p> 0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣ 1,0)B.(1,0)C.(0,﹣1)D.(0,1)4.(5 分)(2015?陕西)设 f( x) =,,则 f(f(﹣ 2))=(),<A.﹣ 1B.C.D.5.(5 分)(2015?陕西)一个几何体的三视图以下图,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4 6.(5 分)(2015?陕西)“ sinα=cos是α”“cos2 α=0的(”)A.充足不用要条件B.必需不充足条件C.充足必需条件D.既不充足也不用要条件7.(5 分)(2015?陕西)依据如图框图,当输入 x 为 6 时,输出的 y=()A.1B.2C.5D.108.(5 分)(2015?陕西)对随意愿量、,以下关系式中不恒成立的是()A.||≤||||B.||≤|||﹣|||C.()2=|| 2D.()?() =2﹣2 9.(5 分)(2015?陕西)设f( x) =x﹣sinx,则f (x)()A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数10.( 5 分)(2015?陕西)设f( x)=lnx,0<a<b,若p=f(), q=f(),r=(f (a) +f (b)),则以下关系式中正确的选项是)(A.q=r<p B.p=r<q C.q=r>p D.p=r> q 11.( 5 分)( 2015?陕西)某公司生产甲、乙两种产品均需用A、B 两种原料.已知生产 1 吨每种产品所需原料及每日原料的可用限额如表所示.假如生产一吨甲、乙产品可获取收益分别为 3 万元、 4 万元,则该公司每日可获取最大利润为()甲乙原料限额A(吨)3212B(吨)128A.12 万元B.16 万元C.17 万元D.18 万元12.( 5 分)(2015?西)复数 z=(x 1) +yi( x,y∈R),若 | z| ≤ 1, y≥x 的概率()A.+. +..B C D二 .填空:把答案填写在答的横上(本大共 4 小,每小 5 分,共 20分)13.(5 分)(2015?西)中位数 1010 的一数组成等差数列,其末 2015,数列的首.14.( 5 分)( 2015?西)如,某港口一天 6 到 18 的沟渠化曲近似足函数 y=3sin(φ)+k .据此函数可知,段水深(位:m)的最x+大.15.( 5分)(2015?西)函数 y=xe x在其极点的切方程.16.( 5分)(2015?西)察以下等式:1 =1+=+1++=++⋯据此律,第 n 个等式可.三 .解答:解答写出文字明、明程或演算步(共 5 小,共 70 分)17.( 12 分)( 2015?陕西)△ ABC的内角 A,B,C 所对的边分别为a, b,c.向量 =(a, b)与 =(cosA, sinB)平行.(Ⅰ)求 A;(Ⅱ)若 a=,b=2,求△ ABC的面积.18.( 12 分)(2015?陕西)如图,在直角梯形ABCD 中, AD∥ BC,∠ BAD= ,AB=BC=AD=a,E 是 AD 的中点, O 是 AC 与 BE的交点.将△ ABE沿 BE折起到如图 2 中△ A1BE的地点,获取四棱锥A1﹣BCDE.(Ⅰ)证明: CD⊥平面 A1OC;(Ⅱ)当平面 A1BE⊥平面 BCDE时,四棱锥 A1﹣BCDE的体积为 36 ,求 a 的值.19.( 12 分)(2015?陕西)随机抽取一个年份,对西安市该年 4 月份的天气状况进行统计,结果以下:(Ⅰ)在 4 月份任取一天,预计西安市在该天不下雨的概率;(Ⅱ)西安市某学校拟从 4 月份的一个晴日开始举行连续 2 天的运动会,预计运动会时期不下雨的概率.日期 1 2 3 4 5 6 7 8 9 10 11 12 13 1415天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期天气16晴17 18 19阴雨阴20 21 22阴晴阴23 24晴晴25晴26 27阴晴28 2930晴晴雨20.( 12 分)( 2015?陕西)如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为.(Ⅰ)求椭圆 E 的方程;(Ⅱ)经过点( 1,1),且斜率为 k 的直线与椭圆E交于不一样的两点P,Q(均异于点 A),明:直 AP 与 AQ 斜率之和 2.21.( 12 分)( 2015?西) f n( x)=x+x2+⋯+x n1,x≥ 0, n∈ N,n≥2.(Ⅰ)求 f n′(2);(Ⅱ)明: f n(x)在( 0,)内有且有一个零点(a n),且 0<a n<()n.三.在 22、23、24 三中任一作答,假如多做,按所做的第一分[修 4-1:几何明]22.( 10 分)( 2015?西)如, AB 切⊙ O 于点 B,直 AO 交⊙ O 于 D,E 两点, BC⊥DE,垂足 C.(Ⅰ)明:∠ CBD=∠ DBA;(Ⅱ)若 AD=3DC, BC=,求⊙ O的直径.[ 修4-4:坐系与参数方程 ]23.( 2015?西)在直角坐系xOy 中,直 l 的参数方程(t 参数),以原点极点, x 正半极成立极坐系,⊙C 的极坐方程ρ=2 sin θ.(Ⅰ)写出⊙ C 的直角坐方程;(Ⅱ) P 直 l 上一点,当 P 到心 C 的距离最小,求P 的直角坐.[ 选修4-5:不等式选讲 ]24.( 2015?陕西)已知对于 x 的不等式 | x+a| <b 的解集为 { x| 2<x<4}(Ⅰ)务实数 a,b 的值;(Ⅱ)求+的最大值.。

2015年高考文科数学陕西卷及答案

2015年高考文科数学陕西卷及答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(陕西卷)文科数学注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题.2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.3.所有解答必须填写在答题卡上指定区域内,考试结束后,将本试卷和答题卡一并交回.第一部分(共60分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求(本大题共12小题,每小题5分,共60分). 1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为 ( ) A .93B .123C .137D .1673.已知抛物线22(0)y px p =>的准线经过点(1,1)-,则该抛物线焦点坐标为( )A .(1,0)-B .(1,0)C .(0,1)-D .(0,1) 4.设10,()2,0,x x f x x ⎧⎪=⎨⎪⎩≥<则((2))f f -=( )A .1-B .14C .12 D .325.一个几何体的三视图如图所示,则该几何体的表面积 为 ( ) A .3π B .4π C .2π+4D .3π+46.“sin cos αα=”是“cos20α=”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.根据右边框图,当输入x 为6时,输出的y =( )A .1B .2C .5D .108.对任意平面向量a ,b ,下列关系式中不恒成立的是 ( )A .|a b |≤|a ||b |B .|a -b |≤||a |-|b ||C .(a +b )2=|a +b |2D .(a +b )(a -b )=a 2-b 2 9.设()sin f x x x =-,则()f x( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数10.设()ln f x x =,0a b <<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q =>11.某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产 1 吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1 吨甲、乙产品可获利润分别为3 万元、4 万元,则该企业每天可获得最大利润为( ) A .12 万元B .16 万元C .17 万元D .18 万元 12.设复数(1)i(,R)z x y x y =-+∈,若||1z ≤,则y x ≥的概率为( )A .3142π+ B .112π+ C .1142π- D .112π- 姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共18页)数学试卷第4页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)第二部分(共90分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共4小题,每小题5分,共20分). 13.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为 . 14.如图,某港口一天6时到18时的水深变化曲线近似满足函数π3sin()6y x k ϕ=++.据此函数可知,这段时间水深(单位:m )的最大值为 .15.函数x y xe =在其极值点处的切线方程为 . 16.观察下列等式:111221111112343411111111123456456-=-+-=+-+-+-=++⋅⋅⋅⋅⋅⋅据此规律,第n 个等式可为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共70分). 17.(本小题满分12分)ABC △的内角A ,B ,C 所对的边分别为a ,b ,c .向量m ()a =与n (cos ,sin )A B =平行. (Ⅰ)求A ;(Ⅱ)若a 2b =,求ABC △的面积.18.(本小题满分12分)如图1,在直角梯形ABCD 中,AD BC ∥,π2BAD ∠=,12AB BC AD a ===,E 是AD 的中点,O 是AC 与BE 的交点,将ABE △沿BE 折起到图2中1A BE △的位置,得到四棱锥1A BCDE -.(Ⅰ)证明:CD ⊥平面1A OC ;(Ⅱ)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为求a 的值.19.(本小题满分12分)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.20.(本小题满分12分)如图,椭圆E :22221(0)x y a b a b+=>>经过点(0,1)A -,.(Ⅰ)求椭圆E 的方程; (Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.21.(本小题满分12分)设2()1n n f x x x x =++⋅⋅⋅+-,0x ≥,n ∈Ν,2n ≥. (Ⅰ)求(2)f ';考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目的题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 切O 于点B ,直线AO 交O 于D ,E 两点,BC DE ⊥,垂足为C . (Ⅰ)证明:CBD DBA ∠=∠; (Ⅱ)若3AD DC =,BC ,求O 的直径.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为13,2,x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,C 的极坐标方程为ρθ=. (Ⅰ)写出C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲已知关于x 的不等式||b x a +<的解集为{|24}x x <<. .。

陕西省高考数学试卷(文科)解析

陕西省高考数学试卷(文科)解析

2015年陕西省高考数学试卷(文科)一.选择题:在每小题给出的四个选项中,只有一项符合题目要求(每小题5分,共60分)22.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()3.(5分)(2015•陕西)已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线4.(5分)(2015•陕西)设f(x)=,则f(f(﹣2))=()5.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()7.(5分)(2015•陕西)根据如图框图,当输入x为6时,输出的y=()8.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()|||||||=|=﹣10.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)11.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润)++﹣﹣二.填空题:把答案填写在答题的横线上(本大题共4小题,每小题5分,共20分)13.(5分)(2015•陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为.14.(5分)(2015•陕西)如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为.15.(5分)(2015•陕西)函数y=xe x在其极值点处的切线方程为.16.(5分)(2015•陕西)观察下列等式:1﹣=1﹣+﹣=+1﹣+﹣+﹣=++…据此规律,第n个等式可为.三.解答题:解答题应写出文字说明、证明过程或演算步骤(共5小题,共70分)17.(12分)(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.18.(12分)(2015•陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为36,求a的值.19.(12分)(2015•陕西)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不20.(12分)(2015•陕西)如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ斜率之和为2.21.(12分)(2015•陕西)设f n(x)=x+x2+…+x n﹣1,x≥0,n∈N,n≥2.(Ⅰ)求f n′(2);(Ⅱ)证明:f n(x)在(0,)内有且仅有一个零点(记为a n),且0<a n﹣<()n.三.请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分[选修4-1:几何证明选讲]22.(10分)(2015•陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.[选修4-4:坐标系与参数方程]23.(2015•陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.[选修4-5:不等式选讲]24.(2015•陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.2015年陕西省高考数学试卷(文科)参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项符合题目要求(每小题5分,共60分)22.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()3.(5分)(2015•陕西)已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线,求得=1=14.(5分)(2015•陕西)设f(x)=,则f(f(﹣2))=(),则(﹣﹣= 5.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()7.(5分)(2015•陕西)根据如图框图,当输入x为6时,输出的y=()8.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()|||||||=|=﹣||=|||,>,>|||||||||正确,由向量数量积的运算可得(=|正确,由向量数量积的运算可得((2210.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)())(lnab=()))r==11.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润)﹣x+x+由图象可知当直线x+经过点x+的截解方程组,解得++﹣﹣的概率:二.填空题:把答案填写在答题的横线上(本大题共4小题,每小题5分,共20分)13.(5分)(2015•陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为5.14.(5分)(2015•陕西)如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin(x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为8.15.(5分)(2015•陕西)函数y=xe x在其极值点处的切线方程为y=﹣.﹣﹣﹣16.(5分)(2015•陕西)观察下列等式:1﹣=1﹣+﹣=+1﹣+﹣+﹣=++…据此规律,第n个等式可为+…+=+…+.项,其中奇数项为,偶数项为﹣项,其中奇数项为,偶数项为﹣.其个等式为:++三.解答题:解答题应写出文字说明、证明过程或演算步骤(共5小题,共70分)17.(12分)(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.a=(Ⅰ)因为向量b=﹣sinBcosA=0tanA=A=;a==18.(12分)(2015•陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为36,求a的值.AB=BC=BAD=O=a=aa19.(12分)(2015•陕西)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不该天不下雨的概率为;个,所以晴天的次日不下雨的概率为,从而估计运动会期间不下雨的概率为20.(12分)(2015•陕西)如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ斜率之和为2.,代入椭圆方程+y(Ⅰ)由题设知,=a=+y+y=(+•=2k21.(12分)(2015•陕西)设f n(x)=x+x2+…+x n﹣1,x≥0,n∈N,n≥2.(Ⅰ)求f n′(2);(Ⅱ)证明:f n(x)在(0,)内有且仅有一个零点(记为a n),且0<a n﹣<()n.,,==.(=××,,,,,故<三.请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分[选修4-1:几何证明选讲]22.(10分)(2015•陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.,,,[选修4-4:坐标系与参数方程]23.(2015•陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.=2,又Csin=3,又C|PC|==[选修4-5:不等式选讲]24.(2015•陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4} (Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.++,解方程组可得;(Ⅱ)由(Ⅰ)可得+++≤=4当且仅当即参与本试卷答题和审题的老师有:sxs123;刘长柏;qiss;742048;孙佑中;w3239003;lincy;caoqz;maths;sdpyqzh;双曲线;changq(排名不分先后)菁优网2015年6月13日。

2015年普通高等学校招生全国统一考试陕西卷(文)

2015年普通高等学校招生全国统一考试陕西卷(文)

2015年普通高等学校招生全国统一考试(陕西卷)(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1) D .(-∞,1]2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .1673.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( ) A .(-1,0) B .(1,0) C .(0,-1) D .(0,1)4.设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14C.12D.325.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4 6.“sin α=cos α”是“cos 2α=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件7.根据如图所示框图,当输入x 为6时,输出的y =( )A .1B .2C .5D .108.对任意平面向量a ,b ,下列关系式中不恒成立....的是( ) A .|a ·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2 D .(a +b )·(a -b )=a 2-b 2 9.设f (x )=x -sin x ,则f (x )( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数10.设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q11.某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A .12万元B .16万元C .17万元D .18万元12.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( )A.34+12πB.12+1πC.14-12πD.12-1π二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.14.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为________.16.观察下列等式: 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, …,据此规律,第n 个等式可为 ________________________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =()a ,3b 与n =()cos A ,sin B 平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.18.(本小题满分12分)如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC=12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1-BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1-BCDE 的体积为362,求a 的值.19.(本小题满分12分)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:日期 1 2 3 4 5 6 7 8 9 10 天气 晴雨阴阴阴雨阴晴晴晴日期 11 12 13 14 15 16 17 18 19 20 天气 阴晴晴晴晴晴阴雨阴阴日期 21 22 23 24 25 26 27 28 29 30 天气晴阴晴晴晴阴晴晴晴雨(1)在4月份任取一天,估计西安市在该天不下雨...的概率; (2)西安市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不下雨...的概率. 20.(本小题满分12分)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.21.(本小题满分12分)设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎝⎛⎭⎫0,23内有且仅有一个零点(记为a n ),且0<a n -12<13⎝⎛⎭⎫23n. 22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 切⊙O 于点B ,直线AO 交⊙O 于D ,E 两点,BC ⊥DE ,垂足为C .(1)证明:∠CBD =∠DBA;(2)若AD =3DC ,BC =2,求⊙O 的直径. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 24.(本小题满分10分)选修4-5:不等式选讲 已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求at +12+bt 的最大值.参考答案与详解一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.解析:选A M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},M ∪N =[0,1],故选A.2.解析:选C 初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.3.解析:选B 抛物线y 2=2px (p >0)的准线为x =-p 2且过点(-1,1),故-p2=-1,解得p =2.所以抛物线的焦点坐标为(1,0).4.解析:选C 因为-2<0,所以f (-2)=2-2=14>0,所以f ⎝⎛⎭⎫14=1-14=1-12=12. 5.解析:选D由几何体的三视图可知,该几何体为半圆柱,直观图如图所示. 表面积为2×2+2×12×π×12+π×1×2=4+3π.6.解析:选A cos 2α=0等价于cos 2α-sin 2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立,故选A.7.解析:选D 当x =6时,x =6-3=3,此时x =3≥0; 当x =3时,x =3-3=0,此时x =0≥0; 当x =0时,x =0-3=-3,此时x =-3<0, 则y =(-3)2+1=10.8.解析:选B 根据a ·b =|a ||b |cos θ,又cos θ≤1,知|a ·b |≤|a ||b |,A 恒成立.当向量a 和b 方向不相同时,|a -b |>||a |-|b ||,B 不恒成立.根据|a +b |2=a 2+2a ·b +b 2=(a +b )2,C 恒成立.根据向量的运算性质得(a +b )·(a -b )=a 2-b 2,D 恒成立.9.解析:选B 因为f ′(x )=1-cos x ≥0,所以函数为增函数,排除选项A 和C ;又因为f (0)=0-sin 0=0,所以函数存在零点,排除选项D ,故选B.10.解析:选C 因为b >a >0,故a +b 2>ab .又f (x )=ln x (x >0)为增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p ,即p =r <q .11.解析:选D设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有⎩⎨⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,z =3x +4y ,作出可行域如图阴影部分所示,由图形可知,当直线z =3x +4y 经过点A (2,3)时,z 取最大值,最大值为3×2+4×3=18.12.解析:选C|z |=(x -1)2+y 2≤1,即(x -1)2+y 2≤1,表示的是圆及其内部,如图所示.当|z |≤1时,y ≥x 表示的是图中阴影部分,其面积为S =14π×12-12×1×1=π-24.又圆的面积为π,根据几何概型公式得概率P =π-24π=14-12π.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.解析:设数列首项为a 1,则a 1+2 0152=1 010,故a 1=5.答案:514.解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8. 答案:815.解析:由题知y ′=e x +x e x ,令y ′=0,解得x =-1, 代入函数解析式可得极值点的坐标为⎝⎛⎭⎫-1,-1e , 又极值点处的切线为平行于x 轴的直线,故切线方程为y =-1e .答案:y =-1e16.解析:等式的左边的通项为12n -1-12n ,前n 项和为1-12+13-14+…+12n -1-12n ;右边的每个式子的第一项为1n +1,共有n 项,故为1n +1+1n +2+…+1n +n . 答案:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.解:(1)因为m ∥n ,所以a sin B -3b cos A =0, 由正弦定理,得sin A sin B - 3 sin B cos A =0,又sin B ≠0,从而tan A = 3. 由于0<A <π,所以A =π3.(2)法一:由余弦定理,得 a 2=b 2+c 2-2bc cos A , 而a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0. 因为c >0,所以c =3.故△ABC 的面积为12bc sin A =332.法二:由正弦定理,得7sin π3=2sin B ,从而sin B =217. 又由a >b ,知A >B ,所以cos B =277.故sin C =sin(A +B )=sin ⎝⎛⎭⎫B +π3 =sin B cos π3+cos B sin π3=32114.所以△ABC 的面积为12ab sin C =332.18.解:(1)证明:在图(1)中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在图(2)中,BE ⊥A 1O ,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE ,又由(1)可得A 1O ⊥BE ,所以A 1O ⊥平面BCDE .即A 1O 是四棱锥A 1-BCDE 的高. 由图(1)知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2, 从而四棱锥A 1-BCDE 的体积为 V =13S ·A 1O =13×a 2×22a =26a 3.由26a 3=362,得a =6. 19.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为2630=1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78.以频率估计概率,运动会期间不下雨的概率为78.20.解:(1)由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a = 2. 所以椭圆的方程为x 22+y 2=1.(2)证明:由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2), 代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0. 由已知得Δ>0,设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2 .从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )·⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.21.解:(1)法一:由题设f n ′(x )=1+2x +…+nx n -1, 所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,① 则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,② ①-②,得-f n ′(2)=1+2+22+…+2n -1-n ·2n =1-2n 1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.法二:当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)证明:因为f n (0)=-1<0, f n ⎝⎛⎭⎫23=23⎣⎡⎦⎤1-⎝⎛⎭⎫23n 1-23-1=1-2×⎝⎛⎭⎫23n≥1-2×⎝⎛⎭⎫232>0, 所以f n (x )在⎝⎛⎭⎫0,23内至少存在一个零点. 又f n ′(x )=1+2x +…+nx n -1>0,所以f n (x )在⎝⎛⎭⎫0,23内单调递增, 因此,f n (x )在⎝⎛⎭⎫0,23内有且仅有一个零点a n . 由于f n (x )=x -x n +11-x-1, 所以0=f n (a n )=a n -a n +1n 1-a n-1, 由此可得a n =12+12a n +1n >12,故12<a n <23, 所以0<a n -12=12a n +1n <12×⎝⎛⎭⎫23n +1=13⎝⎛⎭⎫23n. 22.解:(1)证明:因为DE 为⊙O 直径, 所以∠BED +∠EDB =90°.又BC ⊥DE ,所以∠CBD +∠EDB =90°, 从而∠CBD =∠BED .又AB 切⊙O 于点B ,得∠DBA =∠BED , 所以∠CBD =∠DBA .(2)由(1)知BD 平分∠CBA ,则BA BC =AD CD=3. 又BC =2,从而AB =3 2.所以AC =AB 2-BC 2=4,所以AD =3. 由切割线定理得AB 2=AD ·AE ,即AE =AB 2AD=6, 故DE =AE -AD =3,即⊙O 的直径为3.23.解:(1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y ,所以x 2+(y -3)2=3.(2)设P ⎝⎛⎭⎫3+12t ,32t ,又C (0,3),则|PC |=⎝⎛⎭⎫3+12t 2+⎝⎛⎭⎫32t -32=t 2+12, 故当t =0时,|PC |取得最小值,此时,点P 的直角坐标为(3,0).24.解:(1)由|x +a |<b ,得-b -a <x <b -a , 则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1.(2)-3t +12+t =3·4-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4, 当且仅当4-t3=t 1,即t =1时等号成立, 故(-3t +12+t )max =4.。

2015陕西高考真题(文科)解析版

2015陕西高考真题(文科)解析版

2015·陕西卷(文数)1.A1[2015·陕西卷] 设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1) D .(-∞,1]1.A [解析] 由题得集合M ={0,1},N =(0,1],所以M ∪N =[0,1]. 2.I5[2015·陕西卷] 某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图1-1所示,则该校女教师的人数为( )图1-1A .93B .123C .137D .1672.C [解析] 女教师的人数是110×70%+150×40%=137. 3.H7[2015·陕西卷] 已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)3.B [解析] 抛物线y 2=2px (p >0)的准线方程为x =-p 2,由已知得-p 2=-1,所以p2=1,故其焦点坐标为(1,0).4.B6[2015·陕西卷] 设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14C.12D.324.C [解析] f (f (-2))=f (2-2)=f 14=1-14=12. 5.G2[2015·陕西卷] 一个几何体的三视图如图1-2所示,则该几何体的表面积为( )图1-2A .3πB .4πC .2π+4D .3π+45.D [解析] 该几何体是底面半径为1、高为2的圆柱被其轴截面截开的半个圆柱,其表面积为12×2π×1×2+2×12×π×12+2×2=3π+4.6.A2[2015·陕西卷] “sin α=cos α”是“cos 2α=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.A [解析] sin α=cos α时,cos 2α=cos 2α-sin 2α=0,反之,sin α=±cos α,即“sin α=cos α”是“cos 2α=0”的充分不必要条件.7.L1[2015·陕西卷] 根据下面框图,当输入x 为6时,输出的y =( )图1-3A .1B .2C .5D .10 7.D [解析] 循环体的执行情况是x =3→x =0→x =-3,结束循环,故输出的y =(-3)2+1=10.8.F3[2015·陕西卷] 对任意平面向量a ,b ,下列关系式中不恒成立....的是( ) A .|a ·b|≤|a||b| B .|a -b|≤||a|-|b|| C .(a +b )2=|a +b|2 D .(a +b )·(a -b )=a 2-b 2 8.B [解析] 根据数量积的定义知a·b =|a||b|cos 〈a ,b 〉,所以|a·b|=||a||b|cos 〈a ,b 〉|≤|a||b |,选项A 中的关系式一定成立;如果选项B 中的关系式成立,则|a -b|2≤||a|-|b||2,可得a·b ≥|a||b|,此式只可能在a ,b 共线且同向时成立;根据向量的运算法则可知,选项C ,D 中的关系式是恒成立的.9.B3、B4、B12[2015·陕西卷] 设f (x )=x -sin x ,则f (x )( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数 9.B [解析] 因为f (-x )=-x +sin x =-f (x ),所以函数f (x )是奇函数.又f ′(x )=1-cos x ≥0,故函数f (x )为增函数.10.B7、E6[2015·陕西卷] 设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q10.C [解析] r =12(f (a )+f (b ))=12ln(ab )=ln ab =p .因为b >a >0,所以a +b 2>ab ,又函数f (x )在(0,+∞)上单调递增,所以q >p =r ,故选C.11.E5[2015·陕西卷] 某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 B .16C .17万元 D .18万元11.D [解析] 设该企业每天生产甲种产品x 吨、乙种产品y 吨,则x ,y 需满足约束条件⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,可获利润z =3x +4y .约束条件表示的平面区域是以(0,0),(4,0),(2,3),(0,4)为顶点的四边形及其内部,把各顶点坐标代入检验可知,目标函数在点(2,3)处取得最大值3×2+4×3=18,即该企业每天可获得最大利润为18万元.12.K3、L4[2015·陕西卷] 设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12π B.12+1π C.14-12π D.12-1π12.C [解析] 由|z |≤1得(x -1)2+y 2≤1,其表示圆心为(1,0),半径为1的圆及其内部.在此区域内y ≥x 表示的区域为图中的阴影部分,其面积为圆(x -1)2+y 2=1面积的四分之一减去一个等腰直角三角形的面积,即为π4-12,故y ≥x 的概率为π4-12π=14-12π.13.D2[2015·陕西卷] 中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.13.5 [解析] 设首项为a 1,则a 1+2015=2×1010,解得a 1=5. 14.C4[2015·陕西卷] 如图1-4,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.图1-414.8 [解析] 据图可知,-3+k =2,得k =5,所以y max =3+5=8. 15.B11、B12[2015·陕西卷] 函数y =x e x 在其极值点处的切线方程为________. 15.y =-1e [解析] y ′=(x +1)e x ,令y ′=0,得x =-1,此时y =-1e ,即极值点为-1,-1e ,函数在该点处的切线斜率为零,故切线方程为y =-1e. 16.M1[2015·陕西卷] 观察下列等式 1-12=121-12+13-14=13+141-12+13-14+15-16=14+15+16……据此规律,第n 个等式可为____________.16.1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n [解析] 根据给出的等式的规律归纳即得.17.C8[2015·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.17.解:(1)因为m ∥n ,所以a sin B -3b cos A =0, 由正弦定理,得sin A sin B -3sin B cos A =0, 又sin B ≠0,从而tan A = 3.由于0<A <π,所以A =π3.(2)方法一:由余弦定理,得 a 2=b 2+c 2-2bc cos A , 又a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0, 因为c >0,所以c =3.故△ABC 的面积为12bc sin A =332.方法二:由正弦定理,得7sin π3=2sin B , 从而sin B =217. 又由a >b ,知A >B ,所以cos B =277.故sin C =sin(A +B )=sin B +π3= sin B cos π3+cos B sin π3=32114,所以△ABC 的面积为12ab sin C =332.18.G5[2015·陕西卷] 如图1-5(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE的位置,得到四棱锥A 1 ­ BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1 ­ BCDE 的体积为362,求a 的值.图1-518.解:(1)证明:在图(1)中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC ,即在图(2)中,BE ⊥A 1O ,BE ⊥OC , 从而BE ⊥平面A 1OC . 又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE , 又由(1)知,A 1O ⊥BE , 所以A 1O ⊥平面BCDE ,即A 1O 是四棱锥A 1 ­ BCDE 的高. 由图(1)知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2. 从而四棱锥A 1 ­ BCDE 的体积 V =13×S ×A 1O =13×a 2×22a =26a 3.由26a 3=362,得a =6. 19.I2、K2[2015·陕西卷] 随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(1)在4月份任取一天,估计西安市在该天不下雨...的概率; (2)西安市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不.下雨..的概率. 19.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,在4月份任选一天,西安市不下雨的概率为1315.(2)称相邻的两个日期为“互邻日期对”(如1日与2日,2日与3日等),这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78.以频率估计概率,运动会期间不下雨的概率为78.20.H5、H8[2015·陕西卷] 如图1-6,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.图1-620.解:(1)由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a = 2. 所以椭圆E 的方程为x 22+y 2=1.(2)由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知得Δ>0.设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2. 从而直线AP ,AQ 的斜率之和 k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +(2-k )1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.21.D3、B9、B12[2015·陕西卷] 设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在0,23内有且只有一个零点(记为a n ),且0<a n -12<13⎝⎛⎭⎫23n.21.解:(1)方法一:由题设知f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n .②①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1,所以f n ′(2)=(n -1)2n +1.方法二:当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1. (2)证明:因为f n (0)=-1<0,f n 23=231-23n 1-23-1=1-2×23n ≥1-2×232>0, 所以f n (x )在0,23内至少存在一个零点.又f n ′(x )=1+2x +…+nx n -1>0,所以f n (x )在0,23内单调递增,因此f n (x )在0,23内有且仅有一个零点a n .由于f n (x )=x -x n +11-x-1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23, 所以0<a n -12=12a n +1n <12×23n +1=1323n .22.N1[2015·陕西卷] 选修4-1:几何证明选讲如图1-7,AB 切⊙O 于点B ,直线AO 交⊙O 于D ,E 两点,BC ⊥DE ,垂足为C .(1)证明:∠CBD =∠DBA ;(2)若AD =3DC ,BC =2,求⊙O 的直径.图1-722.解:(1)证明:因为DE 为⊙O 的直径, 所以∠BED +∠EDB =90°.又BC ⊥DE ,所以∠CBD +∠EDB =90°, 从而∠CBD =∠BED . 又AB 切⊙O 于点B , 得∠DBA =∠BED , 所以∠CBD =∠DBA .(2)由(1)知BD 平分∠CBA , 则BA BC =ADCD=3. 又BC =2,从而AB =32, 所以AC =AB 2-BC 2=4, 所以AD =3.由切割线定理得AB 2=AD ·AE ,即AE =AB 2AD=6,故DE =AE -AD =3, 即⊙O 的直径为3. 23.N3[2015·陕西卷] 选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.23.解:(1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P 3+12t ,32t ,又C (0,3),则|PC |=3+12t 2+32t -32=t 2+12, 故当t =0时,|PC |取得最小值,此时,P 点的直角坐标为(3,0). 24.N4[2015·陕西卷] 选修4-5:不等式选讲已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求at +12+bt 的最大值. 24.解:(1)由|x +a |<b ,得 -b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1. (2)-3t +12+ t =3×4-t +t ≤[(3)2+12][(4-t )2+(t )2]=24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+ t )max =4.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年陕西高考数学试题(文)
整理 王志军 2015/6/17
一.选择题:(本大题共12小题,每小题5分,共60分). 1. 设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )
A .[0,1]
B .(0,1]
C .[0,1)
D .(,1]-∞
2. 某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )
A .93
B .123
C .137
D .167
3. 已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1)
4.
设10
()2,0
x
x f x x ⎧≥⎪=⎨
<⎪⎩,则((2))f f -=( )A .1- B .14 C .12 D .32 5. 一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+
6. “sin cos αα=”是“cos 20α=”的( )
A 充分不必要条件
B 必要不充分条件
C 充分必要条件
D 既不充分也不必要
(高中部)
(初中部)




60%70%
7. 根据右边框图,当输入x 为6时,输出的y =( ) A .1 B .2 C .5 D .10
8. 对任意向量,a b ,下列关系式中不恒成立的是( ) A. ||||||a b a b ∙≤ B.||||||||a b a b -≤-
C .22()||a b a b +=+
D .2
2
()()a b a b a b +-=- 9. 设()sin f x x x =-,则()f x =( )
A .既是奇函数又是减函数
B .既是奇函数又是增函数
C .是有零点的减函数
D .是没有零点的奇函数
10. 设()ln ,0f x x a b =<<
,若p f =,()2a b q f +=,1
(()())2
r f a f b =+,则下列关系式中正确的是( )
A .q r p =<
B .q r p =>
C .p r q =<
D .p r q =>
11. 某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )
A .12万元
B .16万元
C .17万元
D .18万元
12. 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .
3142π+ B . 112π+ C .1142π- D . 112π
- 二、填空题:(本大题共5小题,每小题5分,共25分).
13、中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________ 14、如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin (
6
π
x +Φ)+k ,据此函数可知,这段时间水深(单位:m )的最大值为____________.
15、函数x y xe =在其极值点处的切线方程为____________. 16、观察下列等式:
1-1122
= 1-1111123434
+-=+
1-1111111123456456
+-+-=++
…………
据此规律,第n 个等式可为______________________.
三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)
17.ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量()m a =与(cos ,sin )n A B =平行.
(I)求A ;
(II)若2a b ==求ABC ∆的面积.
18.如图1,在直角梯形ABCD 中,//,,2
AD BC BAD AB BC π
∠=
=1
2
AD a =
=,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到
四棱锥1A BCDE -.
(I)证明:CD ⊥平面1
AOC ;
(II)当平面1A BE ⊥平面
BCDE 时,四棱锥1A BCDE -的体积为,求a 的值.
19.随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
(I)在4月份任取一天,估计西安市在该天不下雨的概率;
(II)西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率.
20.如图,椭圆2222:1(0)x y E a b a b +=>>经过点(0,1)A -,且离心率为2
.
(I)求椭圆E 的方程;
(II)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.
21. 设2()1,, 2.n n f x x x x n N n =++
+-∈≥
(I)求(2)n f ';
(II)证明:()n f x 在20,3⎛⎫ ⎪⎝⎭
内有且仅有一个零点(记为n a ),且1120233n
n a ⎛⎫<-< ⎪⎝⎭.
考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目的题是以后的方框涂黑. 22. 选修4-1:几何证明选讲
如图,AB 切O 于点B ,直线AO 交O 于,D E 两点,,BC DE ⊥垂足为C . (I)证明:CBD DBA ∠=∠
(II)若3,AD DC BC ==O
的直径.
23. 选修4-4:(坐标系与参数方程)在直角坐标版权法xOy 吕,直线l
的参数方程为
132(x t t y ⎧=+⎪⎪

⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C 的极坐标
方程为ρθ=.
(I)写出C 的直角坐标方程;
(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标.
24. 选修4-5:不等式选讲
已知关于x 的不等式x a b +<的解集为{|24}x x << (I)求实数,a b 的值;
(II)
.。

相关文档
最新文档