电工技术11 磁路与变压器
《电工电子技术基础》课程标准
《电工电子技术基础》课程标准课程编号:062040使用专业:城市轨道交通运营管理专业课程类别:基础学习领域课程修课方式:必修课教学时数:180一、课程定位和课程设计:(一)课程性质与作用《电工电子技术基础》课程是高职高专机电、数控等专业学生必修的一门技术基础课,包括电工技术、电机与控制以及模拟电子技术和数字电子技术等部分内容。
《电工电子技术基础》是研究电路的基本定律、基本分析方法及基本知识和应用;变压器、电动机以及常用控制电器的基本原理和应用;常用电子元件及模拟电子电路、数字电子电路的原理及应用。
《电工电子技术》是机电、数控等专业前导课程,后续课程有《单片机原理与应用》、《传感器与检测技术》、《液压与气压传动技术》《城轨交通供电》、《城轨电气控制及PLC技术》等。
《电工电子技术基础》又是学生考取中级和高级电工职业资格证书的核心课程。
(二)课程设计思路课程设计的总体思路:基于工作过程和工作任务的结构模式。
遵循以“应用为目的,以必须、够用为度”的原则,以“掌握概念、强化应用、培养技能”为重点,以“精选内容、降低理论、加强基础、突出应用”为主线,坚持基本知识点的学习,在相关知识的学习中注重培养学生分析问题、解决问题的能力。
结合现场参观、实践环节和课程设计等技能训练,突出对学生综合能力及创新能力的培养。
《电工电子技术》课程的任务是使学生在以有的物理知识基础上,掌握有关电工技术与电子技术方面必备的基本理论、基本知识和基本实践技能,为学好专业知识、从事生产第一线的专业技术工作以及进一步提高科学技术知识水平打下一定的基础,同时培养学生辩证唯物主义观点和分析问题、解决问题的能力。
二、课程目标(一)知识目标1、掌握电路的基本概念、基本知识,能用电路的基本定律对直流、交流电路进行分析计算。
2、掌握变压器、电动机的基本原理和应用,掌握常用控制电器的基本结构和功能,了解安全用电知识和安全用电措施。
3、掌握半导体元件的结构、工作原理和伏安特性,掌握基本放大电路的组成原理和分析方法,整流、滤波、稳压、调压电路的原理和应用。
《电工技术》电子教案
图1-3
电流的方向
三、电流的大小
通常用单位时间内通过导体横截面的电量来表示电流的大小,以字母 表示。若在 秒钟内通过导体横截面的电量是q,则电流可用下式表示: q (1-1)
I=
t
电流的单位是安培,简称安,用符号A表示,电量的单位是库仑,简称库, 用C表示。若在1s内通过导体横截面的电量为lC,则导体中的电流就是lA。电 流的常用单位还有kA(千安)、mA(毫安)、µA(微安),其换算关系是: 1kA=1×1000 A 1A=1×1000 mA 1mA=1×1000µA 例1-1 某导体在0.5min的时间内均匀通过导体横截面的电荷量为120C,求 导体中的电流是多少? 解:
异步电动机的工作原理及应用 单相正弦交流电路 三相正弦交流电路 非正弦交流电
第一章 电路的基木知识和基本定律
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 电路及电路图 电流 电压和电位 电源 电阻与电导 欧姆定律 电路中各点电位的计算 电功与电功率
图1-15 线性电阻的电压、电流关系
图1-16
全电路
三、全电路欧姆定律
全电路是指含有电源的闭合电路,如图1-l6所示。 图中的点划线框内代表一个实际的电源。电源的内部一般都是有电阻的,这个电阻称为 电源的内电阻,用字母r表示。为了看起来方便,通常在电路图上把r单独画出。
(a)实物图
(b)电路图
1-1 电路的组成
三、电路的工作状态
1.通路 通路是指电源与负载接成闭合回路时的工作状态,这时电路中有电流通过。 如图1-1中当开关闭合时,电路就是通路状态。 2.开路 开路也叫断路,是指电源与负载未接成闭合电路时的工作状态,这时电路中 没有电流通过,如图1-1中当开关断开时,电路就是断路状态。 3.短路 短路是指电源未经负载而直接由导线 (导体)构成通路时的工作状态, 如图1-2所示。
电工技术:磁路的分析方法
l H1l1 H2l2 H 3
图a
Φ1Rm1 Φ2 Rm2 Φ Rm
图b
三、磁路基尔霍夫定律
2.磁路基尔霍夫第二定律
注意事项: 1)式中Hl(ΦRm)为磁压降, ∑Hl为闭合磁路上磁压降的代数和。 2)F为磁动势, ∑F为闭合磁路上磁动势的代数和。 3)磁通的参考方向与绕行方向一致时,该段磁压降取正,反之取负。
磁路的分析方法
一、磁路
1、磁路的概念
是磁通流经的闭合路径。磁路中可以有空气隙,也可无空气隙。
If
N
+ –
S N
S
S
壳式变压器磁路 直流电机磁路
N
磁电式仪表磁路
一、磁路
2.磁通
电机、变压器等设备中,应 用铁磁物质制成一定形状, 人为的构成磁通的路径, 由于铁心的导磁性比空气好 得多,所以绝大部分磁通在 铁心中通过,这部分磁通称 为主磁通。 经过空气隙闭合的磁路为 漏磁通。
磁路
磁通势F 磁通Φ 磁感应强度B 磁阻Rm 磁路欧姆定律Φ=F/Rm
电路
电动势E 电流I 电流密度J 电阻R 电路欧姆定律I=U/R
四、磁路与电路的比较
3.磁路与电路的区别
1)电路中有电流I时,就有功率损耗;而在直流磁路中,维持一定磁通量,铁心 中没有功率损耗。
2)电路中的电流全部在导线中流动;而在磁路中,总有一部分漏磁通。
3)电路中导体的电阻率在一定的温度下是恒定的;而磁路中铁心的磁导率随着饱 和程度而有所变化。
4)在线性电路中,计算时可以用叠加原理;而在磁路中,B和H之间的关系为非
线性,因此计算时不可以用叠加原理。 5)在电路中,当E=0时,I=0;但在磁路中,由于有剩磁,当F=0时,磁通不为
《电工电子技术》——磁路与变压器
已制成的变压器、互感器等,通常都无法从外观上看出 绕组的绕向,如果使用时需要知道它的同名端,可通过实验 方法测定同名端。
直流电感法
交流感应法
3.4 特殊变压器
3.4.1 自耦变压器
若变压器的原、副绕组有一部分是共用的,这类的变 压器叫自耦变压器。自耦变压器的原、副绕组之间既有磁 的耦合,又有电的联系。
在实际工作中可以选用不同匝数比的变压器,将负载阻抗变换 为所需要的阻抗值。在电子线路中常利用变压器的这种阻抗变 换作用实现阻抗匹配。
4. 变压器的外特性、损耗和效率 (1)变压器的外特性
当原绕组上外加电压和副绕组的负载功率因数cosφ2不变 时,副边端电压U2随负载电流I2变化的规律,称为变压器 的外特性。 从图中可看出,负载性质和功率因数不同时,从空载(I2=0) 到满载(I2=I2N),变压器副边电压U2变化的趋势和程度是 不同的。,我们用副边电压变化率(或称电压调整率)来表示。 副边电压变化率ΔU(%)规定为:当原边接在额定电压和额 定频率的交流电源上,副边开路电压U2N和在指定的功率 因数下副边输出额定电流时的副边电压U2的算术差与副边 额定电压U2N的百分比值,即
r 0
4. 磁场强度H 同一通电线圈内的磁场强弱(用磁感应强度B来表征), 不仅与所同电流的大小有关,而且与线圈内磁场介质的导磁性 能有关。
在通电线圈中,H这个单位只与电流的大小有关,而与线圈 中被磁化的物质,即与物质的磁导率μ无关。但通电线圈中的磁 感应强度B的大小却与线圈中被磁化的物质的磁导率μ有关。H 的大小由B与μ的比值决定,即磁场强度为
2.额定电流
额定电流是根据变压器允许温升而规定的电流值,以 安或千安为单位,变压器的额定电流有原边额定电流I1N和 副边额定电流I2N。
谭久刚电工电子技术基础电子教案_电工电子技术课件_第4章___磁路和变压器
把变压比和变流比公式代入可得:
Z1
U1 I1
kU 2 I2
k
k2
U2 I2
k2ZL
改接成 ZL 4扬声器后
k
'2
6400 4
1600,则k
'
40
所以: N 2
N1
k'
600 40
15匝
第2页
例:设交流信号源电压U 100 V ,内阻Ro 800 Ω,负载RL 8 Ω。 (1)将负载直接接至信号源,负载获得多大功率?
(2)变压器的负载运行与变换电流作用
i1 A X u1
Φ
N1N2
i2 S a
u2
x
|ZL|
变压器在能量传递的 过程中损耗甚小,因此:
P1 P2 或:U1I1 U 2 I 2
变压器的一次侧接电源,二次侧与 负载接通,这种运行状态称为负载运行。
变压器负载运行时由于副边电流存 在的去磁作用,因此原边电流由 i10增 大至i1。原边磁动势增加的数值恰好等 于二次侧负载所需要的磁动势。即:
第2页
B
bc段是磁化曲线的膝部
c
b
C点以后是饱和段
ab段是上升段
a H
0 起始磁化曲线
起始磁化 曲线反映 了什么?
oa段是线性段
起始磁化曲线的ab段反映了铁磁材料的 高导磁性;c点以后说明铁磁材料具有 磁饱和性。
铁磁性材料具有高导磁性、磁饱和性、磁滞性和剩磁性。
高导磁性 磁导率可达102~104,由铁磁材料组成的 磁路磁阻很小,在线圈中通入较小的电流即可获得较 大的磁通。
2.变压器的工作原理
(1)变压器的空载运行与变换电压作用
华南师范大学电工学-磁路和变压器试题
1. 下列说法中正确的是( )a . 硅钢片具有高导磁率,可制造永久磁铁;b . 调压器(自耦变压器)既可调节交流电压,也可调节直流电压;c . 交流继电器铁心上有短路铜环,是为了防震;d . 直流电磁铁消耗的功率有铜损和铁损。
2. 变压器的容量S N 一定,其输出有功功率不仅取决于负载的______大小,还取决于负载的______高低。
3. 某信号源内阻为512Ω,若要使它向8Ω的喇叭输出最大功率,则输出变压器的变比K应为多大?4. 将直流继电器接在同样电压的交流电源上使用,结果( )a . 没有影响,照常工作;b . 电流过小,吸力不足,铁心发热;c . 电流过大,烧坏线圈。
5. 某变压器额定电压为220V/110V ,今电源电压为220V ,欲将其升高到440V ,可采用( )a . 将副绕组接到电源上,由原绕组输出;b . 将副绕组匝数增加到4倍;c . 将原绕组匝数减少为1/4。
6. 某电源变压器的容量为100V A ,额定电压为380V/220V 。
(1)若接一只220V ,40W 的白炽灯,则消耗铜损R Cu =2W ,铁损R Fe =3W ,试求副边电流和效率,输出视在功率占容量百分之几?(2)若接一只220V ,40W ,功率因数5.0cos =ϕ的日光灯(不计镇流器的功率损失),试求副边电流,铜损,和效率(铁损正比于电压),输出视在功率占容量百分之几?7. 有一空载变压器,原边加额定电压220V ,并测得原绕组电阻R 1=10Ω,试问原边电流是否等于22A ?8. 如果变压器原绕组的匝数增加一倍,而所加电压不变,试问励磁电流将有何变化?9. 有一台电压为220V/110V 的变压器,N 1=2000,N 2=1000。
有人想省些铜线,将匝数减为400和200,是否也可以?10. 变压器的额定电压为220V/110V ,如果不慎将低压绕组接到220V 电源上,试问励磁电流有何变化?后果如何?11. 交流电磁铁在吸合过程中气隙减小,试问磁路磁组、线圈电感、线圈电流以及铁中心磁通的最大值将作何变化(增大、减小、不变或近于不变)?12. 有一线圈,其匝数N =1000,绕在由铸钢制成的闭合铁心上,铁心的截面积S Fe =20cm 2,铁心的平均长度l Fe =50cm 。
《电工与电子技术基础》课程教学大纲
《电工与电子技术基础》课程教学大纲总学时:72;其中理论学时:56,实验学时:16学时一、课程的性质和任务:本课程就是高等本科院校非电类有关专业必修课程的一门专业基础课。
本课程的任务就是:并使学生通过本课程的自学,赢得电工和电子技术必要的基本理论、基本知识和基本技能。
介绍电工基础和电子技术发展的概况,为自学时程课程及专门从事与本专业有关的电工与电子技术工作奠定一定的基础。
二、课程内容与基本要求:本课程主要内容包括电路、电机与继电―接触器控制、模拟电子技术、数字电子技术四部分。
1、电路理解电路模型及理想电路元件(电阻、电感、电容、电压源和电流源)的物理性质。
理解电压、电流参考方向的意义。
认知实际电源的两种模型的耦合转换。
理解克希荷夫定律。
掌握支路电流法、叠加原理和戴维南定理分析电路的方法。
了解电工率和额定值的意义。
认知电路的暂态和稳态及时间常数的物理意义,掌控直流或无源一阶电路的三要素分析法。
理解正弦交流电的三要素、相位差、有效值及相量表示方法。
理解电路基本定律的相量形式、复阻抗和相量图,掌握用相量法计算简单正弦交流电路的方法。
介绍正弦交流电路瞬时功率的概念,掌控军功功率、无功功率、视在功率的计算方法,掌控功率因数提升的方法。
了解正弦交流电路串联谐振和并联谐振的条件及特征。
掌握三相四线制电路中单相及三相负载的正确联接,了解中线的作用,掌握对称三相电路的计算。
2、电机与品轩―接触器掌控了解磁路的基本概念。
了解交流铁心线圈电路的基本电磁关系。
介绍单相变压器的基本结构、工作原理、额定值的意义、外特性及绕组的同极性端的。
掌控其电压、电流、电阻转换功能。
介绍三接法的转换。
了解鼠笼式三相异步电动机的结构、工作原理、机械特性和经济运行,了解名牌和技术数据的意义。
掌握起动和反转的方法。
了解调速方法及其发展。
了解线绕式异步机和单相异步电动机的基本结构、特点及应用。
介绍低压电器的结构和功能。
掌控品轩―接触器掌控的自锁、变压以及行程和时间掌控的原则,介绍负载、短路和失压维护的方法。
《电工与电子技术》课程标准
电工与电子技术课程标准课程代码:58010614 课程性质:必修课课程类型:B类课(一)课程目标本课程总的教学目标是:学习并掌握关于《电工与电子技术》课程的基本知识和应用实例,启迪思维模式,联系实际应用,建立科学的、辨证的思维方法,掌握解决有关模拟电子技术方面问题的分析方法,给予学生有益的启发,拓展学生的眼界。
1、知识目标掌握电路分析的基本方法;掌握三相异步电动机基本控制电路的工作原理;了解电子技术的基本知识。
2、能力目标通过对电工电子线路的分析、综合、比较、归纳、概括、计算等认知活动,培养思维、分析和创新能力。
3、思想教育目标培养学生具有创新精神和实践能力;培养严谨的科学态度和良好的职业道德。
(二)课程内容与要求项目一电路的基本概念与分析方法教学要求1. 掌握电流电压正方向、参考方向及二者的关系,电位概念;电功率计算;2. 掌握电阻欧姆定律及各种特殊电阻工作特性,电桥电路平衡特征及条件;3. 掌握电压源、电流源伏安特性及等效变换;4. 掌握基尔霍夫定律及支路电流法;5. 掌握叠加原理与戴维南定理;6. 掌握电容伏安关系及工作特性;7. 掌握万用表使用、元件焊接及直流电路组装基本技能。
教学内容实验1 万用表组装课题1 电路的基础知识课题2 电路分析教学建议1.本项目内容较多,从中引出的有关电路的基本概念、基本定律和定理,以及计算方法等不仅适用于直流电路,而且具有普遍的适用意义。
本章的内容十分重要,是整个课程的理论基础。
2.教师应注重基础知识的教学,培养学生运用基本理论的能力。
项目二正弦交流电路教学要求1. 掌握正弦交流电量的三要素及表示方法,正弦交流电路的相量分析法2. 掌握相量形式欧姆定律形式;复阻抗定义及合并方法;有功功率、无功功率和视在功率公式及意义;提高功率因数的意义和方法3. 掌握三相电源线电压与相电压的关系;三相负载线电流与相电流的关系;三相四线制中性线的作用4. 掌握单相交流电路和三相交流电路的分析和计算;5. 掌握交流电表使用;交流电路操作知识。
汽车电子电工技术-磁路和变压器
E
Em 2
2πfNΦm 2
4.44 fNΦm
由于线圈电阻 R 和感抗X(或漏磁通)较小, 其
电压降也较小,与主磁电动势 E 相比可忽略,故有
U E
U E 4.44 fNm 4.44 fNBmS (V)
式中:Bm是铁心中磁感应强度的最大值,单位为T; S 是铁心截面积,单位为m2。
3.2.3 功率损耗
e -N d dt
3.1.3 磁路的基本定律
(2)自感和互感
自感:当线圈中电流变化时,便在线圈周围产生 变化的磁通,这个变化的磁通穿过线圈本身时,线 圈中便产生感应电动势。这种由于线圈本身电流变 化而产生感应电动势的现象称为自感,所产生的电 动势称为自感电动势。
d d
eL -N dt = dt
(a)整块铁块 (b)叠层铁芯
3.1.2 磁性材料的磁性能
3.涡流损耗 涡流的存在会使电气设备的铁芯发热而消耗电
功率,称为涡流损耗,这对电气设备是不利的。 为了减小涡流损耗,电气设备的铁芯一般都不
用整体的铁芯,而用硅钢片叠成。硅钢片由含硅 2.5%的硅钢轧制而成,其厚度为0.35~1mm。硅钢 片表面涂有绝缘层,使片间相互绝缘。图(b)所示 为由硅钢片压制成的线圈铁芯,使得涡流大大减小。
U RI ( E σ ) ( E ) RI jXσ I ( E )
E jX I X L 称为漏磁感抗
3.2.2 电压电流关系
设主磁通 msin t, 则
e
N
d
dt
N
d dt
( msin t )
N mcos t
2πfNmsin( t 90) Emsin( t 90)
有效值
(a)磁场中通电导体所受作用力 (b)左手定则
电工电子技术全套课件备课讲稿
E2 4.44f N2Φm U1 E1 N1 K U2 E2 N2
i2 0 时 u2 u20
K为变比
结论:改变匝数比,就能改变输出电压。
2. 电流变换
带负载运行情况
i1
一有次载侧时接,交铁流心中
电主源磁,通二是次由侧一
接次负、载二。次绕组磁
+
u
–
1
e+–σe11+–
s2 s1
3.3 变压器
变压器是变换各种交流电压的电器。它是利 用电磁感应定律并通过磁路的耦合作用, 把某一 个数量级的交流电压,变换成同频率的另一个数 量级的交流电压的能量变换装置。
变压器的分类
电力变压器 (输配电用)
按用途分 仪用变压器
整流变压器 三相变压器
按相数分 单相变压器
S9-M-400/10配电变压器
性 物 质 的 磁 化
二、磁饱和性
当外磁场(或励磁电流)增大到一定值时,磁 性材料的全部磁畴的磁场方向都转向与磁场的方 向一致,磁化磁场的磁感应强度BJ达到饱和值。
B,
B
B
H
O
H
磁化曲线
注:当有磁性物质存在时B与 H不成比例,Φ与I也不成比例。
三、磁滞性
当铁心线圈中通有交变电流(大小和方向都变化) 时,铁心就受到交变磁化,电流变化时,B随H而变化, 当H已减到零值时,但B未回到零,这种磁感应强度滞
041 07H/m
•一般材料的磁导率 和真空磁导率 0 的比值, 称为该物质的相对磁导率 r
r
0
或
r
H 0H
B B0
r1非磁性 r 材 1磁 料 性材
磁路与变压器PPT课件
(2)硬磁材料:
磁滞回线较宽,比 如碳钢等。
一般用来制造永久 磁铁。
(3)矩磁材料:
磁滞回线接近矩形, 比如铁氧体材料。一 般用于计算机或控制 系统中的记忆元件。
B
B
B
H
H
H
磁路与变压器
§3 磁路及磁路的基本定律
1 磁路
i
u
: 主磁通 :漏磁通
2 磁路的基本定律 2.1 安培环路定律(全电流定律)
I2 I1
I3
安培环路定律指出:在磁场 中,任取一闭合路径,并指定其
方向,沿此闭合路径的方向对磁
H 场强度H 的矢量进行线积分,则
线积分值等于通过该闭合路径的
所有电流的代数和。
H d l I I1 I2 I3
若电流方向和磁场强度H 的方向之间符合右手螺旋关
ninihl整理ppt17对于均匀磁路称为磁阻22磁路欧姆定律nihl整理ppt18磁路电路磁动势fni电动势e电流i磁压降hl电压降u磁通密度b磁阻电阻23磁路与电路的比较整理ppt19磁路电路磁路欧姆定律电路欧姆定律安培环路定律基尔霍夫电压定律磁通的连续性基尔霍夫电流定律hlni整理ppt20磁路欧姆定律安培环路定律磁通的连续性分别与电路欧姆定律基尔霍夫电压定律基尔霍夫电流定律具有相同的形式
的单位 韦伯(Wb) 1T=1Wb/m2
通常用磁力线来描述磁场,使磁力线的疏密反 映磁感应强度的大小。显然,通过某一面积的磁力 线疏密也反映了通过该面积的磁通的大小。
由于磁通的连续性,磁磁路与力变压线器 总是闭合的空间曲线。
3 磁导率
磁导率是一个用来表示磁场媒质磁性的物理量,也
《电工电子技术(少学时)》(第4版_林平勇) 学习指导第05章
第5章磁路和变压器一、要点和基本要求许多电工器件均是利用电磁原理工作的。
了解电与磁之间的关系,掌握构成磁路的材料和磁路的结构,对掌握各种包含磁路的电工器件的工作原理是很有必要的。
电磁铁、继电器、变压器、电动机均是电磁变换和转换元件可以完成电-磁-力;电-磁-电等能量之间的变换和转换。
注意物理课中对磁的分析,重点是磁场。
而本课程重点分析的是限制在磁路中的磁场、组成磁路的磁材料和包含磁路的电工元件。
(一)要点1.磁路及磁路定律磁路是磁通通过的闭合路径它与电路类似,它可以用各种导磁材料制作。
磁路中的磁通、磁动势、磁阻之间具有一定的关系,这一关系可以用磁路的磁欧姆定律表示。
它也具有类似电路中基尔霍夫电压定律的规律,称其为磁路环路定律。
磁路环路定律表明任意一闭合磁路中,各段磁路的磁压降的代数和一定等于磁动势。
2.铁磁材料及应用铁磁材料在制作磁路方面有重要用途,用其高导磁率特性,可以制作许多电工器件;利用其磁滞特性可以制作许多特殊器件。
了解铁磁材料的微观结构有助于了解铁磁材料的宏观特性。
磁与电是紧密联系的,磁场强度与电流之间有密切的关系,而磁感应强度又与磁场强度密切相关。
掌握它们之间的关系结合铁磁材料,可以设计或分析磁路,获得需要磁通的电激励条件;或根据给定的条件分析计算磁路参数。
3.变压器的变换原理及应用变压器是一种电-磁-电的转换元件,可以实现三种变换,电压、电流、阻抗变换。
利用三种变换可以达到多种目的,解决许多工业和电讯方面的问题,特别是在电力传输和信号传输匹配方面有着极其重要的用途。
(二)基本要求1.掌握磁路的欧姆定律和环路定律利用磁路的欧姆定律和环路定律确定磁路的结构或根据磁路的结构和给定磁路参数计算磁路的其它参数。
2.熟练掌握变压器的参数计算了解变压器的变换原理。
熟练掌握变压器的电压变换计算方法;变压器原、副绕组电流变换计算方法;原、副绕组阻抗变换计算方法。
掌握变压器功率和效率的计算方法。
3.掌握变压器的用途掌握普通变压器在电子电路中的应用;了解自藕变压器的结构及用途;了解互感器的结构及应用方法;了解电力变压器的结构连接方式。
第3章 磁路和变压器习题与解答
第3章 磁路和变压器习题解答习题A 选择题3-1磁感应强度单位是( )。
AA.特[斯拉](T)B.韦[伯](Wb)C.伏秒(V·s)3-2磁性物质的磁导率不是常数,因此( )。
CA.Φ与I 成正比B.Φ与B 不成正比C. B 与H 不成正比3-3在直流空心线圈置入铁心后,如在同一电压作用下,则电流I( )。
BA.增大B.减小C.不变3-4在直流空心线圈置入铁心后,如在同一电压作用下,则磁通( )。
AA.增大B.减小 C .不变3-5在直流空心线圈置入铁心后,如在同一电压作用下,则电感L( )。
AA.增大B.减小C.不变3-6在直流空心线圈置入铁心后,如在同一电压作用下,则功率P( )。
BA.增大B.减小C.不变3-7 铁心线圈中的铁心到达磁饱和时,则线圈电感L( )。
BA. 增大B.减小C.不变3-8在交流铁心线圈中,如将铁心截面积减小,其它条件不变,则磁动势( ) 。
AA.增大B.减小C.不变3-9交流铁心线圈的匝数固定,当电源频率不变时,则铁心中主磁通的最大值基本上决定于( )。
CA.磁路结构B.线圈阻抗C.电源电压3-10为了减小涡流损耗,交流铁心线圈中的铁心由钢片( )叠成。
CA. 垂直磁场方向B.任意C. 顺磁场方向3-11 当变压器的负载增加后,则( )。
AA.一次侧电流1I 和二次侧电流2I 同时增大B.二次侧负载电流2I 增大, 一次侧电流1I 保持不变C.铁芯中磁通m Φ增大3-12 50Hz 的变压器用于30Hz 是,则( )。
CA.一次侧电压1U 降低B.m Φ近于不变C.可能烧坏绕组3-13 一台10/0.4Kv,Δ/Y 连结的三相变压器的变比是( )。
BA.25B.43.3C.14.433-14变压器额定容量的单位是( )。
BA.kVarB. kV·AC. kWB 基本题电工与电子技术2 3-15有一交流铁心线圈,接在f=50Hz 的正弦电源上,在铁心得到磁通的最大值3104−×=Φm Wb。
深职院 电工技术 05变压器
退出 章目录 上一页 下一页 返回
深圳职业技术学院
电工技术
5.1.2 变压器的结 构
变压器的电路:
Φ
ZL
一次 绕组
+
一次绕组 绕组: 二次绕组 – 变压器的磁路: 铁芯
二次 绕组
u1
由高导磁硅钢片叠成 厚0.35mm 或 0.5mm
退出 章目录 上一页 下一页 返回
5.1 变压器的工作原理
此时的变压器相当 于交流铁心线圈
空载电流
φ
s
I0
~ u
U1
U20
Z2
U1 N1 = U 20 N 2
=k
变比
结论:原副边电压之比等于原幅边匝数之比,等于常数 k K>1 K<1
5.1 变压器的工作原理
降压变压器 升压变压器
退出 章目录 上一页 下一页 返回
深圳职业技术学院
电工技术
电压变换应用
应用1:电压互感器 电压互感器的一、二次线圈额定电压之比,称为电压互感器 的额定电压比。即:kn=U1n/U2n, 其中U1n是电网的额定电压, 且已标准化(如10,35,110,220,330,500千伏等),二次电 压U2n,则统一定为100伏,所以 kn也标准化。 应用2:自耦调压器
5.2 变压器的应用
退出 章目录 上一页 下一页
返回
深圳职业技术学院
电工技术
5.2.3 阻抗变换 I1 ~ 变压器带负载运行: u U1
I2 U2
φ
Z2
Z1 = Z2 =
U1 I1 U2 I2
Z1 Z2
或
=
U1 / I1 U2 / I2
2
电工电子技术-变压器
按电源的相数不同,变压器可分为单相变压器、三相变 压器和多相变压器。
5.3.2 变压器的结构
1.铁芯
铁芯是变压器的磁路部分,它由铁芯柱和铁轭两部分组 成。其中,铁芯柱上装有绕组;铁轭用于连接铁芯柱以使磁 路闭合。
为了减小磁滞损耗及涡流损耗,铁芯通常由表面涂有绝 缘漆、厚度为0.35mm或0.5mm的硅钢片叠装而成。
【例5-1】有一单相变压器,其一、二次绕组的匝数为 N1=160匝,N2=20匝。若一次绕组上接上220V的交流电 压,求:(1)空载时,二次绕组的电压为多少?(2)二 次绕组上接上R=5Ω的负载时,一、二次绕组的电流各为 多少?
【解】(1)空载时二次绕组的电压为:
U 20
N2 N1
U1
20 160
根据铁芯和绕组的组合结构不同,通常又将变压器分为芯 式和壳式两种。芯式变压器的绕组套在铁芯柱上,结构较简单, 绕组的装配和绝缘都较方便,因此多用于容量较大的变压器。 壳式变压器的绕组被铁芯包围,其制造工艺复杂,仅用于小容 量的变压器。
2.绕组
绕组是变压器的电路部分,它可由一个或多个线圈串联 组成。线圈用具有良好绝缘的漆包线、纱包线等绕制而成, 线圈的层间和匝间、线圈和铁芯之间及不同线圈之间都要进 行绝缘。
5.3.3 变压器的工作原理
如左图所示为变压器的结构示意图。变压器的符号如右图 所示。
1.电压变换
一、二次绕组的电压变换关系为:
U1 E1 N1 K U 20 E2 N2
由上式可以看出,当输入电压一定时,只要改变匝数比, 就可得到不同的输出电压。K>1时,N2>N1,U2>U1,这种 变压器称为升压变压器;反之,K<1时,N2<N1,U2<U1, 这种变压器称为降压变压器。
磁路与变压器的详细原理
磁通 的单位:韦[伯](Wb) 1Wb =1V·s
3、磁导率
表示物质导磁性能的物理量。真空中的磁导率 μ0=4π×10-7H/m.相对磁导率μr=μ/μ0
单位:亨/米 H/m
济南武铁汉道交职通业职技业术学学院院
4、磁场强度
电工电技工术学
磁场强度H :介质中某点的磁感应强度 B 与介质
磁导率 之比。 HB
齐,显示磁性,称这些小区域为磁畴。
在没有外磁场作用的普通磁性物质中,各个磁畴
排列杂乱无章,磁场互相抵消,整体对外不显磁性。
磁
外
畴
磁
场
在外磁场作用下,磁畴方向发生变化,使之与外 磁场方向趋于一致,物质整体显示出磁性来,称为 磁化。即磁性物质能被磁化。
济南武铁汉道交职通业职技业术学学院院
电工电技工术学
磁路的欧姆定律是分析磁路的基本定律
电工电技工术学
1. 引例
环形线圈如图,其中媒质是均 匀的,磁导率
为, 试计算线圈内部 的磁通 。
解:根据安培环路定律,有
Hdl I
设磁路的平均长度为 l,则有
N匝 x
NI
Hl
B l
l
S
即有:
Φ
NI
F
I
l
Rm
S
Hx S
济南武铁汉道交职通业职技业术学学院院
磁场,也称匀强磁场。
济南武铁汉道交职通业职技业术学学院院
2、 磁通
电工电技工术学
磁通 :穿过垂直于B方向的面积S中的磁力线总数。
在均匀磁场中 = B S 或 B= /S
说明: 如果不是均匀磁场,则取B的平均值。 磁感应强度B在数值上可以看成为与磁场方向垂直
电工电子技术试题库
率电工电子技术试题库第五章磁路和变压器一、填空题1、磁感应强度是表示磁场内某点的磁场( )和( )的物理量。
2、变压器由( )和( )组成。
3、变压器的三变作用是变( )、变( )和变( ) 。
4、变压器线圈极性测定的方法有( )法和( )法。
5、变压器运行时其内部存在( )损耗和( )损耗。
6、变压器原、副边电压和原、副边线圈匝数成( )比。
7、变压器是根据( )原理制成的( )电器。
8、自耦变压器原、副边之间不仅有( )耦合,而且有( )的联系。
9、交流铁心线圈的磁路分为( )磁路和( )磁路。
10、在电力系统中传输电能的变压器称为( )变压器。
二、选择题1、铁磁性物质的磁导率( ) 。
A 、μ r >1B μr =1C 、μ r <1D 、μ r >>12、变压器的负载为感性负载时,随着负载的增大副边电压将( ) 。
A 、上升 B 、下降 C 、不变 D 、可能上升、也可能下降3、变压器原、副边的电流和原、副边线圈匝数( ) 。
A 、成正比B 、成反比C 、无关D 、可能成正比,也可能成反比 4、一台变压器 U 1=220V,N 1=100 匝,N 2=50 匝,则 U 2=( )V 。
A 、 110 B 、440 C 、220 D 、505、Y,yn 联接的三相变压器常用于低压为( )电力变压器。
A 、220V B 、500V C 、 110V D 、400V6、磁场强度和磁场中某点的磁感应强度( ) 。
A 、成正比 B 、成反比 C 、相等 D 、无关7、变压器的额定容量 S n 表示( ) 。
A 、输入的视在功率B 、输出的视在功率C 、输入的有功功率D 、输出的有功功8、交流铁心线圈的主磁通与电源电压( ) 。
A 、成正比 B 、成反比 C 、无关 D 、相等 9、变压器的变比 K>1 时,变压器为( )。
A 、升压变压器B 、降压变压器C 、升压降压变压器D 、电流互感器 10、变压器副边负载增加时,变压器的铁耗( ) 。
《电工电子技术与技能》教案
《电工电子技术与技能》教案第一章:电工电子技术基础1.1 电流、电压和电阻的概念1.2 电路的基本元件1.3 电路的基本定律1.4 电路的简单分析方法第二章:直流电路2.1 直流电路的基本概念2.2 直流电路的基本定律2.3 直流电路的简单分析方法2.4 常用电路元件的识别与检测第三章:交流电路3.1 交流电路的基本概念3.2 交流电路的基本定律3.3 交流电路的简单分析方法3.4 交流电路的功率计算第四章:磁路与变压器4.1 磁路的基本概念4.2 变压器的基本原理4.3 变压器的结构与分类4.4 变压器的检测与维护第五章:电子元器件5.1 半导体基础知识5.2 常用半导体元器件5.3 集成电路的基本概念与分类5.4 常用集成电路的功能与应用第六章:电器设备与控制6.1 常用家用电器的结构与原理6.2 常用工业电器设备6.3 电器设备的控制原理与方法6.4 电器设备的安装与维护第七章:电机与变频器7.1 电机的基本原理与结构7.2 电机的分类与应用7.3 变频器的基本原理与功能7.4 变频器的应用与调试第八章:电力电子技术8.1 电力电子器件的基本原理与特性8.2 电力电子变换器的基本电路与控制8.3 电力电子技术的应用实例8.4 电力电子设备的安装与调试第九章:通信电子技术9.1 通信系统的基本原理与组成9.2 模拟通信技术9.3 数字通信技术9.4 通信电子设备的应用与维护第十章:电工电子技术综合应用10.1 电工电子技术在电力系统中的应用10.2 电工电子技术在工业控制中的应用10.3 电工电子技术在日常生活中的应用10.4 电工电子技术的创新与发展趋势重点和难点解析一、电流、电压和电阻的概念:电流、电压和电阻是电路分析的基础,理解这些基本概念对于后续电路分析至关重要。
二、电路的基本元件:电路的基本元件包括电源、导线、开关、电阻、电容和电感等,了解它们的特性和功能对于设计电路至关重要。
三、电路的基本定律:欧姆定律、基尔霍夫电压定律和基尔霍夫电流定律是分析电路的基础,掌握这些定律对于解决电路问题至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
–
(2)额定电流I 1N, I 2N:
• 一, 二次侧额定电流I 1N, I 2N 是指变压器允许绕 组长时间连续工作的最大电流有效值。 • • (3)额定容量SN:在额定工作条件下变压器的视在 功率。
单相变压器: 三相变压器:
S N U 2N I 2N U1N I1N
S N 3U 2N I 2N 3U1N I1N
3.电磁感应定律
d e N dt
d 式中 N 为线圈匝数。感应电动势的方向由 的符 dt d 0 ,即 号与感应电动势的参考方向比较而定出。当 dt 穿过线圈的磁通增加时, e 0 ,这时感应电动势的方向
与参考方向相反,表明感应电流产生的磁场要阻止原磁 d 0 , 即 穿过 线 圈 的 磁 通 减 少 时 , 场的 增 加 ; 当 dt e 0 ,这时感应电动势的方向与参考方向相同,表明感 应电流产生的磁场要阻止原磁场的减少。
空载时副绕组电流I 2 0 ,电压 U 20 E2
U 20 E2 0.44 fN2 m
U1 k称为变压器的变比。 U 20
E1 N1 k E2 N 2
在负载状态下,由于副绕组的电 阻 R2 和漏抗 X 1 很小,其上的电压远 小于 E2 ,仍有:
I1 N 2 1 I2 N1 k
+ u -
A
(2)电压互感器:电压互感器的原绕组 匝数很多,并联于待测电路两端;副绕组 匝数较少,与电压表及电度表、功率表、 继电器的电压线圈并联。用于将高电压变 换成低电压。使用时副绕组不允许短路。
+ u -
U1 N1 k U2 N2
V
交流铁心线圈电路
1.电压、电流和磁通的关系
设线圈的电阻为R,主 磁电动势为e和漏感电动势 为eσ,由KVL,有:
u e e iR
+ u e - i e
Φ Φσ
设主磁通按正弦规律变化: m sin t ,则:
d e N N m cos t Em sin(t 90) dt
U 2 E2 U 2 E 2 0.44 fN 2 m U 1 E1 N 1 k U 2 E2 N 2
三相变压器的两种接法及电压的变换关系
A U1 U1 B 3 C c a U1 3k b U2 U1 k
(a) A U1 U1 B 3
Y/Yo 连接 a c C b U2 U1 性端的标记
1 2 3 4 · · 1 2 3 4 (a) 正接 ·
· (b) 反接
(2)同极性端的测定
1 3 mA 2 4 (a) 直流法 ~ 2 4 (b) 交流法 1 3 V
毫安表的指针正偏1 和3是同极性端;反 偏1和4是同极性端。
U13=U12-U34时1和3是同 极性端; U13=U12+U34时 1和4是同极性端。
1.单相电压变换
原绕组的电压方程:U1 R1I1 jX 1I1 E1
忽略电阻R1和漏抗Xσ1的电压,则: U1 E1
U1 E1 0.44 fN1 m
副绕组的电压方程: U 2 E2 R2 I 2 jX 2 I 2
(1)将负载直接接至信号源,负载获得多大功率? (2)经变压器进行阻抗匹配,求负载获得的最大功率是多少?变压器 变比是多少? 解:(1)负载直接接信号源时,负载获得功率为:
U 2 P I RL R R L o 100 RL 8 0.123 W 800 8
式中 X L 为漏磁感抗,简称漏抗。由于线圈的
电阻 R 和漏磁通 都很小,R 上的电压和漏感电动势 e 也很小,与主磁电动势比较可以忽略不计。于是:
u e u N
d dt
的条件下,当线圈
表明在忽略线圈电阻 R 及漏磁通
匝数 N 及电源频率 f 为一定时,主磁通的幅值Φ m 由励磁线 圈外的电压有效值 U 确定,与铁心的材料及尺寸无关。
BS
3.磁导率μ
磁导率μ表示物质的导磁性能,单位是 亨/米(H/m)。 真空的磁导率 0 4 107 H/m 非铁磁物质的磁导率与真空极为接近, 铁磁物质的磁导率远大于真空的磁导率。 相对磁导率μr:物质磁导率与真空磁
导率的比值。非铁磁物质μr近似为1,铁磁
物质的μr远大于1。
Hl I NI F
F=NI 称为磁动势,单位是安(A)。
2.磁路欧姆定律
NI NI F BS HS S l l Rm S
l Rm S
称为磁阻,表示磁路对磁 通的阻碍作用。
因铁磁物质的磁阻Rm不是常数,它 会随励磁电流I的改变而改变,因而通常 不能用磁路的欧姆定律直接计算,但可 以用于定性分析很多磁路问题。
4.磁场强度H
H B
或 B H
磁场强度只与产生磁场的电流以及 这些电流分布有关,而与磁介质的磁导 率无关,单位是安/米(A/m)。是 为了简化计算而引入的辅助物理量。
磁场的基本定律
1.安培环路定律
l H dl I
计算电流代数和时,与绕行方向符合右 手螺旋定则的电流取正号,反之取负号。 若闭合回路上各点的磁场强度相等且其 方向与闭合回路的切线方向一致,则:
e 的有效值为: Em E
N m
2
2
4.44 fN m
设漏磁电感为Lσ,则:
di d u iR (e ) (e) iR L N uR u u dt dt
di e L dt
写成相量形式: U RI jX I U U R U U
Ro N1 800 k 10 N2 RL 8
变压器的使用
1.外特性
U 20 U 2 U 100% U 20
U20 U2
2 0 2 0
I2N I2
电压变化率反映电压U2 的变化程度。 通常希望U2 的变动愈小愈好,一般变压器 的电压变化率约在5%左右。
2.损耗与效率
B 磁 B a b 磁 Br 化 滞 -Hc Hc H 曲 O 回 线 O H 线 铁磁材料的类型: 软磁材料:磁导率高,磁滞特性不明显,矫顽 力和剩磁都小,磁滞回线较窄,磁滞损耗小。 硬磁材料:剩磁和矫顽力均较大,磁滞性明显, 磁滞回线较宽。 矩磁材料:只要受较小的外磁场作用就能磁化 到饱和,当外磁场去掉,磁性仍保持,磁滞回 线几乎成矩形。
+ -
(a) 电磁铁的磁路
(b)
变压器的磁路
(c) 直流电机的磁路
磁路的基本物理量
1.磁感应强度B
磁感应强度B是表示磁场内某点磁场强弱及 方向的物理量。 B的大小等于通过垂直于磁场方 向单位面积的磁力线数目,B的方向用右手螺旋 定则确定。单位是特斯拉(T)。
2.磁通Φ
均匀磁场中磁通Φ等于磁感应强度B与垂直 于磁场方向的面积S的乘积,单位是韦伯(Wb)。
(b)
Y/Δ连接
2.电流变换
由U1≈E1=4.44N1fΦm 可知,U1 和f不变时 ,E1 和Φm 也都基本不变。因此,有负载时 产生主磁通的原、副绕组的合成磁动势( i1N1+i2N2)和空载时产生主磁通的原绕组的 磁动势i0N1基本相等,即:
i1 N1 i2 N 2 i0 N1
I1 N1 I 2 N 2 I 0 N1 空载电流i0很小,可忽略不计。 I1 N 2 1 N I N I1 1 2 2 I2 N1 k
特殊变压器
1.自耦变压器
特点:副绕组是原绕组的一部分,原、副 压绕组不但有磁的联系,也有电的联系。
U1 N1 k U 2 N2
I1 N 2 1 I2 N1 k
+ u1 N1 -
N2
Z
+ u2 -
2.仪用互感器
(1)电流互感器:原绕组线径较粗,匝数很 少,与被测电路负载串联;副绕组线径较细, 匝数很多,与电流表及功率表、电度表、继电 器的电流线圈串联。用于将大电流变换为小电 流。使用时副绕组电路不允许开路。
+
R
I
jXσ + Ro
U
-
U
-
jXo
变压器
变压器的工作原理
Φ
+ u1 e 1 -
i1 e1
i2 e2
e 2
Φσ2
+ u2 Z -
+ u1 -
+ u2 -
Φσ1
(a) 变压器结构示意图
(b) 变压器的符号
原绕组匝数为N1 ,电压u1 ,电流i1 ,主磁电动 势e1 ,漏磁电动势eσ1;副绕组匝数为N2 ,电压u2 ,电流i2 ,主磁电动势e2 ,漏磁电动势eσ2 。
铁磁材料的磁性能
高导磁性:磁导率可达102~104 ,由铁磁材
料组成的磁路磁阻很小,在线圈中通入较
小的电流即可获得较大的磁通。 磁饱和性:B不会随H的增强而无限增强, H增大到一定值时,B不能继续增强。 磁滞性:铁心线圈中通过交变电流时,H的 大小和方向都会改变,铁心在交变磁场中 反复磁化,在反复磁化的过程中,B的变化 总是滞后于H的变化。
2.功率损耗
P UI cos PCu PFe I 2 R I 2 Ro 式中 I 是线圈电流,R 是线圈电 阻,Ro 是和铁损相应的等效电阻。 铜损 PCu I 2 R 由线圈导线发热引起。
铁损 PFe =I2R0 主要是由磁滞和涡流产生的。
3.等效电路
图中X0是反 映线圈能量储放 的等效感抗。
电工技术11
电子系 电子信息教研室
周玉林
第7章 磁路和铁心线圈
• • • • • 重点: 铁磁物质的磁化 磁路及磁路定律 恒定磁通磁路的计算 电磁铁