2020年高一数学上期中试题(及答案)

合集下载

潍坊市2020-2021学年高一上学期期中数学试题(解析版)

潍坊市2020-2021学年高一上学期期中数学试题(解析版)
【详解】解: 不等式组 解得 ,所以不等式组的解集是 ,
关于 的不等式 解集包含 ,令 ,
,解得 ,
故选: .
【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.
二、多项选择题:本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分.
9.下列命题中是假命题的是().
A. , B. ,
C. , D. ,
【答案】ACD
【解析】
【分析】
举反例即可判断选项A、C,解方程 即可判断选项B、D.
(1)求 ;
(2)若 ,求实数 的取值范围.
【答案】(1) ;(2) .
【解析】
【分析】
(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;
(2)分集合C为空集和不是空集两种情况分别建立不等式(组),可求得所求的范围.
【详解】解:( 时,满足 ,即 ,解得 .
【详解】对于A选项,函数 为奇函数,且该函数在定义域上不单调,A选项中的函数不合乎要求;
对于B选项,函数 为奇函数,且该函数在定义域上为减函数,B选项中的函数合乎要求;
对于C选项,当 时, ,则 ,
当 时, ,则 ,
又 ,所以,函数 为奇函数,
当 时,函数 单调递减;当 时,函数 单调递减.
由于函数 在 上连续,所以,函数 在 上为减函数,C选项中的函数合乎要求;
画出函数的图象,如图所示:
对于 :根据函数的图象, 的定义域为 ,值域为 ,故 错误;

2020-2021学年重庆市高一上学期期中数学试题(解析版)

2020-2021学年重庆市高一上学期期中数学试题(解析版)

2020-2021学年重庆市高一上学期期中数学试题一、单选题1.已知集合{0,1,2}A =,则A 的子集个数为( ) A .6 B .7 C .8 D .16【答案】C【分析】根据子集的个数为2n (n 为集合元素的个数),即可求得答案. 【详解】{0,1,2}A =.根据子集的个数为2,n (n 为集合元素的个数)∴A 的子集个数328=.故选:C .【点睛】本题考查了求集合子集个数问题,解题关键是掌握子集概念,考查了分析能力和计算能力,属于基础题.2.已知()f x 是偶函数,()g x 是奇函数,且2()()(1)f x g x x +=-,则(1)f -=( ) A .2 B .2- C .1 D .1-【答案】A【分析】分别取1x =和1x =-,代入函数根据奇偶性得到答案. 【详解】()f x 是偶函数,()g x 是奇函数,2()()(1)f x g x x +=-,取1x =得到(1)(1)0f g +=,即(1)(1)0f g ---=;取1x =-得到(1)(1)4f g -+-=; 解得(1)2f -= 故选:A【点睛】本题考查了根据函数奇偶性求函数值,意在考查学生对于函数性质的灵活运用. 3.2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,对实数m 满足2()(1)f x m ≤+恒成立,则m 的取值范围是( ) A .(,3][1,)-∞-+∞ B .[3,1]- C .(,1][3,)-∞-⋃+∞ D .[1,3]-【答案】A【分析】根据奇偶性得到0b =,1a =-得到2()4f x x =-+,计算函数的最大值,解不等式得到答案.【详解】2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,则0b =,且()12a a -=--即1a =-,故2()4f x x =-+,()max ()04f x f ==故24(1)m ≤+,解得m 1≥或3m ≤- 故选:A【点睛】本题考查了根据函数奇偶性求参数,函数最值,解不等式,意在考查学生的综合应用能力.4.若,a b ,R c ∈,a b >,则下列不等式成立的是 A .11a b< B .22a b > C .||||a cbc >D .()()2222a c b c +>+【答案】D【分析】结合不等式的性质,利用特殊值法确定. 【详解】当1,1a b ==-排除A ,B 当0c 排除C 故选:D【点睛】本题主要考查了不等式的性质,特殊值法,还考查了特殊与一般的思想,属于基础题.5.已知函数)25fx =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x x x =≥【答案】B【分析】利用换元法求函数解析式.【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+()2x ≥.故选:B【点睛】本题考查利用换元法求函数解析式,考查基本分析求解能力,属基础题.6.已知()f x 是定义域为R 的奇函数,当0x >时,()223f x x x =--,则不等式()20f x +<的解集是A .()() 5,22,1--⋃-B .()(),52,1-∞-⋃-C .()(,1)52,--⋃+∞D .(),1()2,5-∞-⋃【答案】B【分析】根据函数奇偶性的性质,求出函数当0x <时,函数的表达式,利用函数的单调性和奇偶性的关系即可解不等式. 【详解】解:若0x <,则0x ->,∵当0x >时,()223f x x x =--,∴()223f x x x -=+-,∵()f x 是定义域为R 的奇函数,∴()223()f x x x f x -=+-=-,即2()23f x x x =--+,0x <.①若20x +<,即2x <-,由()20f x +<得,()()222230x x -+-++<,解得5x <-或1x >-,此时5x <-;②若20x +>,即2x >-,由()20f x +<得,()()222230x x +-+-<,解得31x -<<,此时21x -<<,综上不等式的解为5x <-或21x -<<. 即不等式的解集为()(),52,1-∞-⋃-. 故选:B.【点睛】本题主要考查不等式的解法,利用函数的奇偶性的性质求出函数的解析式是解决本题的关键. 7.若函数()f x =R ,则实数a 的取值范围是( )A .(0,4)B .[0,2)C .[0,4)D .(2,4]【答案】C【分析】等价于不等式210ax ax ++>的解集为R, 结合二次函数的图象分析即得解. 【详解】由题得210ax ax ++>的解集为R, 当0a =时,1>0恒成立,所以0a =.当0a ≠时,240a a a >⎧⎨∆=-<⎩,所以04a <<. 综合得04a ≤<.故选:C【点睛】本题主要考查函数的定义域和二次函数的图象性质,意在考查学生对这些知识的理解掌握水平.8.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,4【答案】D【分析】画出函数22y x x =--的图象,结合图象及题意分析可得所求范围.【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D .【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系. 二、多选题9.若0a >,0b >,且2a b +=,则下列不等式恒成立的是( )A 1B .11ab≥ C .222a b +≥ D .112a b+≥【答案】BCD【分析】由条件可得12211112a a b a b a abb b ab ++=≥+==⇒≥⇒≥,结合2222()()a b a b ++,即可得出.【详解】因为0a >,0b >,所以12211112a a b a b a abb b ab ++=≥+≤==⇒≥⇒≥, 所以A 错,BD 对;因为22222()()(0)a b a b a b -+=-≥+,则22222()()2a b a b ++=,化为:222a b +,当且仅当1a b ==时取等号,C 对. 故选:BCD .【点睛】本题考查了不等式的基本性质以及重要不等式的应用,考查了推理能力与计算能力,属于基础题.10.给出下列命题,其中是错误命题的是( )A .若函数()f x 的定义域为[0,2],则函数(2)f x 的定义域为[0,4].B .函数1()f x x=的单调递减区间是(,0)(0,)-∞+∞ C .若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,则()f x 在R 上是单调增函数.D .1x 、2x 是()f x 在定义域内的任意两个值,且1x <2x ,若12()()f x f x >,则()f x 减函数.【答案】ABC【分析】对于A ,由于()f x 的定义域为[0,2],则由022x ≤≤可求出(2)f x 的定义域;对于B ,反比例函数的两个单调区间不连续,不能用并集符号连接;对于C ,举反例可判断;对于D ,利用单调性的定义判断即可【详解】解:对于A ,因为()f x 的定义域为[0,2],则函数(2)f x 中的2[0,2]x ∈,[0,1]x ∈,所以(2)f x 的定义域为[0,1],所以A 错误; 对于B ,反比例函数1()f x x=的单调递减区间为(,0)-∞和(0,)+∞,所以B 错误; 对于C ,当定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,而()f x 在R 上不一定是单调增函数,如下图,显然,(1)(0)f f < 所以C 错误;对于D ,根据函数单调性的定义可得该选项是正确的, 故选:ABC11.若a ,b 为正数,则( )A .2+aba bB .当112a b+=时,2a b +≥C .当11a b a b+=+时,2a b +≥D .当1a b +=时,221113a b a b +≥++【答案】BCD【分析】利用基本不等式,逐一检验即可得解.【详解】解:对A ,因为+a b ≥2aba b≤+,当a b =时取等号,A 错误;对B ,()11111+=2+2=2222b a a b a b a b ⎛⎛⎫⎛⎫++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝,当a b =时取等号,B 正确;对C ,11=+=a ba b a b ab++,则1ab =,+2a b ≥=,当1a b ==时取等号,C 正确;对D ,()()()2222222211+111+111+b a a b a b a b a b a b a b b a ++⎛⎫+++=+++≥++ ⎪++⎝⎭2222()1a b ab a b =++=+=, 当12a b ==时取等号,即221113a b a b +≥++,D 正确.故选:BCD.【点睛】本题考查了基本不等式的应用,重点考查了运算能力,属中档题.12.已知连续函数f (x )对任意实数x 恒有f (x +y )=f (x )+f (y ),当x >0时,f (x )<0,f (1)=-2,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x -<+的解集为213x x ⎧⎫<<⎨⎬⎩⎭∣ 【答案】ABC【分析】根据函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,令0x y ==,可得(0)0f =,判断奇偶性和单调性,即可判断选项;【详解】解:对于A ,函数()f x 对任意实数x 恒有()()()f x y f x f y +=+, 令0x y ==,可得(0)0f =,A 正确;对于B ,令x y =-,可得(0)()()0f f x f x =+-=,所以()()f x f x =--, 所以()f x 是奇函数;B 正确;对于C ,令x y <,则()()()()()f y f x f y f x f y x -=+-=-, 因为当x >0时,f (x )<0,所以()0f y x -<,即()()0f y f x -<, 所以()f x 在()()0,,,0+∞-∞均递减, 因为()0f x <,所以()f x 在R 上递减;12f ,可得(1)2f -=;令1y =,可得()()12f x f x +=-()24f =-, ()36f =-;()3(3)6f f =--=,()f x ∴在[3-,3]上的最大值是6,C 正确;对于D ,由不等式2(3)2()(3)4f x f x f x -<+的可得2(3)()()(3)4f x f x f x f x <+++, 即2(3)(23)4f x f x x <++,4(2)f =-,2(3)(23)(2)f x f x x f ∴<++-,则2(3)(52)f x f x <-,2352x x ∴>-,解得:23x <或1x >; D 不对;故选:ABC .【点睛】本题主要考查函数求值和性质问题,根据抽象函数条件的应用,赋值法是解决本题的关键. 三、填空题13.函数y _________. 【答案】[]2,5【分析】先求出函数的定义域,再结合复合函数的单调性可求出答案. 【详解】由题意,2450x x -++≥,解得15x -≤≤,故函数y []1,5-.函数y =二次函数245u x x =-++的对称轴为2x =,在[]1,5-上的增区间为[)1,2-,减区间为[]2,5,故函数y []2,5. 故答案为:[]2,5.【点睛】本题考查复合函数的单调性,考查二次函数单调性的应用,考查学生的推理能力,属于基础题.14.奇函数f (x )在(0,)+∞内单调递增且f (1)=0,则不等式()01f x x >-的解集为________. 【答案】{|1x x >或01x <<或1x <-}.【分析】根据题意,由函数()f x 的奇偶性与单调性分析可得当01x <<时,()0f x <,当1x >时,()0f x >,当10x -<<时,()0f x >,当1x <-时,()0f x <,而不等式()01f x x >-等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;分析可得答案.【详解】解:根据题意,()f x 在(0,)+∞内单调递增,且f (1)0=, 则当01x <<时,()0f x <,当1x >时,()0f x >,又由()f x 为奇函数,则当10x -<<时,()0f x >,当1x <-时,()0f x <, 不等式()01f x x >-,等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;解可得:1x >或01x <<或1x <-; 即不等式()01f x x >-的解集为{|1x x >或01x <<或1x <-}. 故答案为:{|1x x >或01x <<或1x <-}. 15.已知函数()f x 的定义域为()0,∞+,则函数1f x y +=__________. 【答案】(-1,1)【分析】先求()1f x +的定义域为()1,-+∞,再求不等式组21340x x x >-⎧⎨--+>⎩的解集可以得到函数的定义域.【详解】由题意210340x x x +>⎧⎨--+>⎩,解得11x -<<,即定义域为()1,1-.【点睛】已知函数()f x 的定义域D ,()g x 的定义域为E ,那么抽象函数()f g x ⎡⎤⎣⎦的定义域为不等式组()x Eg x D ∈⎧⎨∈⎩的解集.16.定义:如果函数()y f x =在区间[],a b 上存在00()x a x b <<,满足0()()()f b f a f x b a-=-,则称0x 是函数()y f x =在区间[],a b 上的一个均值点.已知函数2()1f x x mx =-++在区间[]1,1-上存在均值点,则实数m 的取值范围是________. 【答案】(0,2).【详解】试题分析:由题意设函数2()1f x x mx =-++在区间[1,1]-上的均值点为,则0(1)(1)()1(1)f f f x m --==--,易知函数2()1f x x mx =-++的对称轴为2m x =,①当12m≥即2m ≥时,有0(1)()(1)f m f x m f m -=-<=<=,显然不成立,不合题意;②当12m≤-即2m ≤-时,有0(1)()(1)f m f x m f m =<=<-=-,显然不成立,不合题意;③当112m -<<即22m -<<时,(1)当20m -<<有0(1)()()2m f f x f <≤,即214m m m <≤+,显然不成立;(2)当0m =时, 0()0f x m ==,此时01x =±,与011x -<<矛盾,即0m ≠;(3)当02m <<时,有0(1)()()2mf f x f -<≤,即214m m m -<≤+,解得02m <<,综上所述得实数m 的取值范围为(0,2).【解析】二次函数的性质. 四、解答题17.已知集合{}22|430,|03x A x x x B x x -⎧⎫=-+≤=>⎨⎬+⎩⎭(1)分别求A B ,R R A B ⋃();(2)若集合{|1},C x x a A C C =<<⋂=,求实数a 的取值范围. 【答案】(1)(2,3]A B ⋂=,(,2](3,)R R A B ⋃=-∞⋃+∞(2)3a ≤【分析】(1)化简集合,,A B 根据交集定义,补集定义和并集定义,即可求得答案; (2)由A C C =,所以C A ⊆,讨论C =∅和C ≠∅两种情况,即可得出实数a 的取值范围.【详解】(1)集合{}2|430[1,3]A x x x =-+≤=∴(,1)(3,)RA =-∞⋃+∞,[3,2]RB =-∴(2,3]A B ⋂=,(,2](3,)RR A B ⋃=-∞⋃+∞,(2)A C C =∴ 当C 为空集时,1a ≤∴ 当C 为非空集合时,可得 13a ≤<综上所述:a 的取值范围是3a ≤.【点睛】本题考查了不等式的解法,交集和补集的运算,解题关键是掌握集合的基本概念和不等式的解法,考查了计算能力,属于基础题.18.已知函数()f x 是定义在R 上的偶函数,已知当0x ≤时,()243f x x x =++.(1)求函数()f x 的解析式;(2)画出函数()f x 的图象,并写出函数()f x 的单调递增区间; (3)求()f x 在区间[]1,2-上的值域.【答案】(1)()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩; (2)见解析; (3)[]1,3-.【分析】(1)设x >0,则﹣x <0,利用当x≤0时,f (x )=x 2+4x+3,结合函数为偶函数,即可求得函数解析式;(2)根据图象,可得函数的单调递增区间;(3)确定函数在区间[﹣1,2]上的单调性,从而可得函数在区间[﹣1,2]上的值域. 【详解】(1)∵函数()f x 是定义在R 上的偶函数∴对任意的x ∈R 都有()()f x f x -=成立∴当0x >时,0x -<即()()()()224343f x f x x x x x =-=-+-+=-+∴ ()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩(2)图象如右图所示函数()f x 的单调递增区间为[]2,0-和[)2,+∞. (写成开区间也可以)(3)由图象,得函数的值域为[]1,3-.【点睛】本题考查函数的解析式,考查函数的单调性与值域,考查数形结合的数学思想,属于中档题.19.若二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭,且(0)1,(1)3f f =-=.(1)求()f x 的解析式;(2)若函数()(),()g x f x ax a R =-∈在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增,求a 的值及当[1,1]x ∈-时函数()g x 的值域.【答案】(1)2()1f x x x =-+(2)2a =,值域为[1,5]-. 【分析】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠,由11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭可得()f x 对称轴为12x =,结合条件,即可求得答案;(2)根据增减性可知32x =为函数()g x 的对称轴,即可得到a 的值,而根据()g x 在[1,1]x ∈-上递减可得出()g x 在[1,1]x ∈-上的值域.【详解】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭∴二次函数()f x 的对称轴为:12x =. ∴122b a -=,可得:=-b a ——① 又(0)1f =,∴(0)1f c ==,可得:1c =.(1)3f -=.即:13a b -+=,可得:2a b -=——②由①②解得: 1,1a b ==-∴()f x 的解析式为2()1f x x x =-+.(2) 函数()(),()g x f x ax a R =-∈()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增. ∴()g x 的对称轴为32x =, 即:1322a +=.解得:2a =. ∴2()31g x x x =-+.()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减, ∴()g x 在[1,1]x ∈-上递减,则有:在[1,1]x ∈-上,min ()(1)1g x g ==-.函数()g x 在[1,1]x ∈-上的值域为[1,5]-【点睛】本题考查了待定系数法的运用以及对称轴的形式,根据增减性判断函数的对称轴及在区间上值域问题,解题关键是掌握二次函数的基础知识,考查了分析能力和计算能力,本题属中档题.20.已知函数24()x ax f x x++=为奇函数. (1)若函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,求m 的取值范围; (2)若函数()f x 在区间[]1,k 上的最小值为3k ,求k 的值.【答案】(1)4m ≥或02m <≤;(2【分析】(1)函数()f x 为奇函数,可知对定义域内所有x 都满足()()f x f x -=-,结合解析式,可得0ax =恒成立,从而可求出a 的值,进而可求出()f x 的解析式,然后求出函数()f x 的单调区间,结合()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,可求得m 的取值范围;(2)结合函数()f x 的单调性,分12k <≤和2k >两种情况,分别求出()f x 的最小值,令最小值等于3k ,可求出k 的值.【详解】(1)由题意,函数()f x 的定义域为()(),00,-∞+∞,因为函数()f x 为奇函数,所以对定义域内所有x 都满足()()f x f x -=-,即()()2244x a x x ax x x-+-+++=--, 整理可得,对()(),00,x ∈-∞+∞,0ax =恒成立,则0a =, 故244()x f x x x x +==+. 所以()f x 在()0,2上单调递减,在[)2,+∞上单调递增,又函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,则2m ≤或22m ≥,解得4m ≥或02m <≤.(2)()f x 在()0,2上单调递减,在[)2,+∞上单调递增,若12k <≤,则()()min 43f x f k k k k ==+=,解得k =12k <≤,只有k =合题意;若2k >,则()()min 42232f x f k ==+=,解得43k =,不满足2k >,舍去.故k 【点睛】本题考查函数的奇偶性,考查函数单调性的应用,考查了函数的最值,利用对勾函数的单调性是解决本题的关键,考查学生的计算求解能力,属于基础题. 21.已知二次函数2()(0)f x ax x a =+≠.(1)当0a <时,若函数y a 的值;(2)当0a >时,求函数()()2||g x f x x x a =---的最小值()h a .【答案】(1)-4;(2)()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩ 【分析】(1)当0a <时,函数y 而可求出a 的值; (2)当0a >时,求出()g x 的表达式,分类讨论求出()g x 的最小值()h a 即可.【详解】(1)由题意,()0f x ≥,即()200ax x a +≥<,解得10x a≤≤-,即函数y 定义域为10,a ⎡⎤-⎢⎥⎣⎦, 又当0a <时,函数()2f x ax x =+的对称轴为12x a =-,21111222(4)f a a aa a ⎛⎫= ⎪⎝-=-⎭--,故函数y⎡⎢⎣,函数y1a -=4a =-. (2)由题意,0a >,2()||g x ax x x a =---,即()()22()2,,x a x ax g a a x a x ax -+≥-<⎧⎪=⎨⎪⎩, ①当01a <≤,则10a a≥>, x a ≥时,2min 1111(2)()()()g x g a a a a a a a-+=-==, x a <时,min ()(0)g x g a ==-, 若1a a a -≥-1a ≤≤, 若1a a a -<-,解得0a <<即0a <<min 1()g x a a =-1a ≤≤时,min ()g x a =-. ②当1a >时,1a a <, x a ≥时,33min ())2(g x g a a a a a a ==-+=-,x a <时,min ()(0)g x g a ==-,因为3a a a ->-,所以1a >时,min ()g x a =-.综上,函数()g x 的最小值()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩. 【点睛】本题考查函数的定义域与值域,考查二次函数的性质,考查函数的最小值,考查分类讨论的数学思想,考查学生的逻辑推理能力,属于中档题.22.定义在R 上的函数()f x 满足:①对一切x ∈R 恒有()0f x ≠;②对一切,x y R ∈恒有()()()f x y f x f y +=⋅;③当0x >时,()1f x >,且(1)2f =;④若对一切[,1]∈+x a a (其中0a <),不等式()224(2||2)f x a f x +≥-恒成立.(1)求(2),(3)f f 的值;(2)证明:函数()f x 是R 上的递增函数;(3)求实数a 的取值范围.【答案】(1)4,8(2)证明见解析(3)(,-∞ 【分析】1)用赋值法令1,1x y ==求解.(2)利用单调性的定义证明,任取12x x <,由 ()()()f x y f x f y +=⋅,则有()()()2211f x f x x f x =-,再由条件当0x >时,()1f x > 得到结论.(3)先利用()()()f x y f x f y +=⋅将4(2||2)-f x 转化为(2||)f x ,再将()22(2||)+≥f x a f x 恒成立,利用函数()f x 是R 上的递增函数,转化为222||≥+x a x 恒成立求解.【详解】(1)令1,1x y == 所以(2)(1)(1)4f f f =⋅=所以(3)(2)(1)8f f f =⋅=(2)因为()()()f x y f x f y +=⋅任取12x x <因为当0x >时,()1f x >所以()211f x x ->所以()()12f x f x <,所以函数()f x 是R 上的递增函数,(3)因为()4(2||2)2(2||2)[2(2||2)](2||)-=-=+-=f x f f x f x f x又因为()224(2||2)f x a f x +≥-恒成立且函数()f x 是R 上的递增函数,所以222||≥+x a x ,[,1]∈+x a a (其中0a <)恒成立所以222||+≥-a x x 若对一切[,1]∈+x a a (其中0a <),恒成立.当11a ≤-+ ,即2a ≤-时()()2max 143=+=---g x g a a a所以2243≥---a a a ,解得2a ≤-当21a -<≤-时,()max 1g x =解得21a -<≤-当10a -<≤,()()(){}max max ,1=+g x g a g a所以222≥--a a a 且221≥-+a a解得1a -<≤-综上:实数a 的取值范围(,-∞ 【点睛】本题主要考查了抽象函数的求值,单调性及其应用,还考查了分类讨论的思想和运算求解的能力,属于难题.。

黑龙江省大庆实验中学2020学年高一数学上学期期中试卷(含解析)

黑龙江省大庆实验中学2020学年高一数学上学期期中试卷(含解析)

黑龙江省大庆实验中学2020学年高一数学上学期期中试卷(含解析)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题1.已知集合,,则A. B. C . D .2.的值为A. B. C. D .3.下列函数中,是偶函数且在上为减函数的是A. B. C. D.4.下列说法正确的有①大庆实验中学所有优秀的学生可以构成集合;②;③集合与集合表示同一集合;④空集是任何集合的真子集.A .1个B .2个 C.3个 D.4个5.已知函数的一个零点在区间内,则实数的取值范围是A . B. C . D.6.已知,,,则A .B . C. D .7.已知函数是幂函数,且其图像与轴没有交点,则实数A.或 B . C . D .8.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为( )A .B .C . D.9.已知,,若,则实数的取值范围是( )A. B. C . D.10.已知在单调递减,则实数的取值范围是A. B . C. D.11.已知,且,若存在,,使得成立,则实数的取值范围是A .B . C. D.12.已知函数在上有且只有一个零点,则正实数的取值范围是A. B.C. D.二、填空题13.已知4510a b==,则12a b+=__________.14124cos4sin-=________.15.若关于的方程的两实根是,则_____.16.已知函数和同时满足以下两个条件:(1)对于任意实数,都有或;(2)总存在,使成立.则实数的取值范围是 __________.三、解答题17.(1)将写成的形式,其中;(2)写出与(1)中角终边相同的角的集合并写出在的角. 18.已知关于的不等式的解集为.(1)求集合;(2)若,求的最大值与最小值.19.已知函数是定义在的增函数,对任意的实数,都有,且.(1)求的值;(2)求的解集.20.已知.(1)求的值;(2)若为第二象限角,且角终边在上,求的值.21.已知二次函数对任意的实数都有成立,且.(1)求函数的解析式;(2)函数在上的最小值为,求实数的值.22.已知定义域为的函数是奇函数.(1)求的值;(2)当时,恒成立,求实数的取值范围.2020学年黑龙江省大庆实验中学高一上学期期中考试数学试题数学答案参考答案1.D【解析】【分析】题干可得到集合A,B再由函数补集的概念得到结果.【详解】集合,,则故答案为:D。

2020-2021学年江苏省徐州一中高一(上)期中数学试卷及答案

2020-2021学年江苏省徐州一中高一(上)期中数学试卷及答案

2020-2021学年江苏省徐州一中高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x2﹣3x﹣4<0},B={﹣4,1,3,5},则A∩B=()A.{﹣4,1}B.{1,5}C.{3,5}D.{1,3}2.(5分)已知幂函数f(x)=x a的图象过点(3,27),则f(2)=()A.4B.8C.9D.163.(5分)函数y=的定义域为()A.[﹣1,0)B.(0,+∞)C.[﹣1,0)∪(0,+∞)D.(﹣∞,0)∪(0,+∞)4.(5分)己知函数f(x)=,则f(f(4))的值为()A.﹣B.0C.1D.45.(5分)某中学高一年级的学生积极参加体育锻炼,其中有1056名学生喜欢足球或游泳,660名学生喜欢足球,902名学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数是()A.682B.616C.506D.4626.(5分)函数y=的值域是()A.(﹣∞,+∞)B.(﹣∞,)∪(﹣,+∞)C.(﹣∞,)∪(﹣,+∞)D.(﹣∞,﹣)∪(﹣,+∞)7.(5分)若关于x的不等式x2﹣2x+c2<0的解集为(a,b),则+的最小值为()A.9B.﹣9C.D.﹣8.(5分)已知f(x)是定义在R上的奇函数,对任意两个正数x1,x2,都有<0,且f(2)=0,则满足(x﹣1)f(x)>0的x的取值范围是()A.(﹣∞,﹣2)∪(0,1)∪(2,+∞)B.(﹣2,0)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣∞,﹣2)∪(1,2)二.选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,有选错的得0分,部分选对的得了分。

9.(5分)若a<b<0,则()A.|a|>|b|B.a2>b2C.<D.>10.(5分)下列函数与y=x2﹣2x+3的值域相间的是()A.y=4x(x≥)B.y=+2C.y=D.y=2x﹣11.(5分)已知2a=3.b=log32,则()A.a+b>2B.ab=1C.3b+3﹣b=D.=log91212.(5分)某学习小组在研究函数f(x)=的性质时,得出了如下的结论,其中正确的是()A.函数f(x)的图象关于y轴对称B.函数f(x)的图象关于点(2,0)中心对称C.函数f(x)在(﹣2,0)上是增函数D.函数f(x)在[0,2)上有最大值﹣三、填空题:本题共4小题,每小题5分,共20分。

江苏省徐州市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析

江苏省徐州市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析

2019~2020学年度江苏省徐州市高一第一学期期中数学试卷一、选择题(本大题共12小题)1.已知集合A={1,3,5},B={3,5,7},则A∩B=( )A.3,5,B.C.D.2.函数f(x)=+ln(1-x)的定义域为( )A. B. C. D.3.已知幂函数f(x)的图象过点(2,16),则f(3)=( )A.27B.81C.12D.44.函数f(x)=a x+1+2(a>0且a≠1)的图象恒过定点( )A. B., C. D.5.设a=logπ3,b=π0.3,c=log0.3π,则( )A. B. C. D.6.已知函数,则的值是( )A.27B.C.D.7.已知函数f(x)=ax5-bx3+cx-3,f(-3)=7,则f(3)的值为( )A.13B.C.7D.8.函数y=(a>1)的图象的大致形状是( )A. B. C. D.9.已知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)-1<0的解集是( )A. B.或C. D.或10.已知函数f(x)=x2•(a+)是R上的奇函数,则实数a=( )A. B. C. D.111.若函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则函数的单调递增区间( )A. B. C. D.12.若函数f(x)=|lg x|-()x+a有2个零点,则实数a的取值范围是( )A. B. C. D.二、填空题(本大题共4小题)13.已知集合A={-2,0,1,3},B={x|-<x<},则A∩B的子集个数为______.14.若函数f(x)=lg x+x-3的零点在区间(k,k+1),k∈Z,则k=______.15.若函数f(x)=的值域为R,则实数a的范围是______.16.已知函数y=x+有如下性质:常数a>0,那么函数在(0,]上是单调减函数,在[,+∞)上是单调增函数.如果函数f(x)=|x+-m|+m在区间[1,4]上的最小值为7,则实数m的值是______.三、解答题(本大题共6小题)17.计算:(1);(2)2lg5+lg8+lg5•lg20+(lg2)2.18.已知集合A={x|3≤3x≤27},B={x|1<log2x<2}.(1)分别求A∩B,(∁R B)∪A;(2)已知集合C={x|2a<x<a+2},若C⊆A,求实数a的取值范围.19.已知函数f(x)是定义在(-4,4)上的奇函数,满足f(2)=1,当-4<x≤0时,有f(x)=.(1)求实数a,b的值;(2)求函数f(x)在区间(0,4)上的解析式,并利用定义证明函数f(x)在(0,4)上的单调性.20.某公司生产一种化工产品,该产品若以每吨10万元的价格销售,每年可售出1000吨,若将该产品每吨分价格上涨x%,则每年的销售数量将减少mx%,其中m为正常数,销售的总金额为y万元.(1)当m=时,该产品每吨的价格上涨百分之几,可使销售总金额最大?(2)当x=10时,若能使销售总金额比涨价前增加,试设定m的取值范围.21.已知函数f(x)=x|x-a|+x(a∈R)(1)若函数f(x)是R上的奇函数,求实数a的值;(2)若对于任意x∈[1,2],恒有f(x)≥2x2,求实数a的取值范围;(3)若a≥2,函数f(x)在区间[0,2]上的最大值为4,求实数a的值.22.已知函数f(x)=lg(m+),m∈R.(1)当m=-1时,求函数f(x)的定义域;(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,求实数m的取值范围;(3)任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,求实数m的取值范围.答案和解析1.【参考答案】C【试题分析】解:∵集合A={1,3,5},B={3,5,7},∴A∩B={3,5}.故选:C.利用交集定义直接求解.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【参考答案】B【试题分析】解:要使f(x)有意义,则,解得,∴f(x)的定义域为.故选:B.可看出,要使得f(x)有意义,则需满足,解出x的范围即可.本题考查了函数定义域的定义及求法,对数函数的定义域,考查了计算能力,属于基础题.3.【参考答案】B【试题分析】解:设幂函数f(x)=xα,又f(x)过点(2,16),∴2α=16,解得α=4,∴f(x)=x4,∴f(3)=34=81.故选:B.用待定系数法求出f(x)的解析式,再计算f(3)的值.本题考查了幂函数的定义与应用问题,是基础题.4.【参考答案】D【试题分析】解:由x+1=0,解得x=-1,此时y=1+2=3,即函数的图象过定点(-1,3),故选:D.根据指数函数过定点的性质,直接领x+1=0即可得到结论本题主要考查指数函数过定点问题,利用指数幂等于0是解决本题的关键.5.【参考答案】D【试题分析】解:0=logπ1<logπ3<logππ=1,π0.3>π0=1,log0.3π<log0.31=0,∴b>a>c.故选:D.容易得出,从而得出a,b,c的大小关系.考查对数函数、指数函数的单调性,以及增函数和减函数的定义.6.【参考答案】B【试题分析】解:∵∴=f(-3)=故选B.由已知中的函数的解析式,我们将代入,即可求出f()的值,再代入即可得到的值.本题考查的知识点是分段函数的函数值,根据分析函数的解析式,由内到外,依次代入求解,即可得到答案.7.【参考答案】B【试题分析】解:∵函数f(x)=ax5-bx3+cx-3,f(-3)=7,令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,∴g(3)=-10,故f(3)=g(3)-3=-13,故选:B.令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,故有g(3)=-10,故f(3)=g(3)-3.本题考查函数的奇偶性的应用,求函数值,令g(x)=ax5-bx3+cx,求出g(3)=-10,是解题的关键.8.【参考答案】C【试题分析】解:当x>0时,y=a x,因为a>1,所以函数y=a x单调递增,当x<0时,y=-a x,因为a>1,所以函数y=-a x单调递减,故选:C.根据函数的单调性即可判断.本题考查了函数图象和识别,关键掌握函数的单调性,属于基础题9.【参考答案】B【试题分析】解:因为y=f(x)为奇函数,所以当x>0时,-x<0,根据题意得:f(-x)=-f(x)=-x+2,即f(x)=x-2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)-1<0,即2x<-3,解得x<-,则原不等式的解集为x<-;当x≥0时,f(x)=x-2,代入所求的不等式得:2(x-2)-1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<-或0≤x<}.故选:B.根据f(x)为奇函数,得到f(-x)=-f(x),设x大于0,得到-x小于0,代入已知的解析式中化简即可求出x 大于0时的解析式,然后分两种情况考虑,当x小于0时和x大于0时,分别把所对应的解析式代入所求的不等式中,得到关于x的两个一元一次不等式,求出不等式的解集的并集即为原不等式的解集.此题考查了其他不等式的解法,考查了函数奇偶性的应用,是一道基础题.10.【参考答案】A【试题分析】解:根据题意,函数f(x)=x2•(a+)是R上的奇函数,则有f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形可得:a+=-(a+),则有2a=-1,即a=-;故选:A.根据题意,由函数奇偶性的定义可得f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形分析可得a的值,即可得答案.本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.11.【参考答案】C【试题分析】解:∵函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则0<a<1.则函数的单调递增区间,即y=x2+2x-3在y>0时的减区间.由y=x2+2x-3>0,求得x<-3,或x>1.再利用二次函数的性质可得,y=x2+2x-3在y>0时的减区间为(-∞,-3),故选:C.复合函数的单调性,指数函数、二次函数的性质,先判断0<a<1,本题即求y=x2+2x-3在y>0时的增区间,再利用二次函数的性质得出结论.本题主要考查复合函数的单调性,指数函数、二次函数的性质,属于中档题.12.【参考答案】B【试题分析】解:原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,函数有2个零点,相当于y=|lg x|与y=()x-a有两个交点,根据图象:当x=1时,y=()x-a的值-a>0即可所以a∈(-∞,).故选:B.原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,根据图象:当x=1时,y=()x-a的值-a>0即可.把零点问题转换为两个函数的交点问题,考察图象法的应用,中档题.13.【参考答案】8【试题分析】解:∵A={-2,0,1,3},B={x|-<x<},∴A∩B={-2,0,1},∴A∩B的子集个数为:23=8个.故答案为:8.进行交集的运算求出A∩B,从而得出A∩B的元素个数,进而可得出A∩B的子集个数.本题考查了描述法、列举法的定义,交集的运算,集合子集个数的计算公式,考查了计算能力,属于基础题.14.【参考答案】2【试题分析】解:因为函数y=lg x与y=x-3都是定义域上的增函数,所以函数f(x)=lg x+x-3也为定义域上的增函数.因为f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,所以由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,所以k=2.故答案为:2.确定函数f(x)=lg x+x-3也为定义域上的增函数.计算f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,即可得出结论.本题考查零点存在性定理,考查学生的计算能力,比较基础.15.【参考答案】[0,+∞)【试题分析】解:x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,∴①a>1时,f(x)≥1-a2,且f(x)的值域为R,∴2+a≥1-a2,解得a∈R,∴a>1;②a≤1时,f(x)>(1-a)2+1-a2=2-2a,且f(x)的值域为R,∴2+a≥2-2a,解得a≥0,∴0≤a≤1,∴综上得,实数a的范围是[0,+∞).故答案为:[0,+∞).根据f(x)的解析式得出,x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,从而得出:a>1时,f(x)≥1-a2,进而得出2+a≥1-a2;a≤1时,f(x)>2-2a,进而得出2+a≥2-2a,从而解出a的范围即可.本题考查分段函数值域的求法,配方求二次函数值域的方法,考查计算能力,属于中档题.16.【参考答案】6【试题分析】解:设t=在[1,2]上单调递减,在[2,4]上单调递增,所以t∈[4,5],问题化为y=|t-m|+m在区间[4,5]上的最小值为7,当m>5时,y min=y(5)=m-5+m=7,m=6;当m∈[4,5]时,y min=y(m)=m=7(舍去);当m<4时,y min=y(4)=4-m+m=7,不成立.故答案为:6.换元将问题化为绝对值函数在闭区间上的最小值问题,根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.本题是一个经典题目,通过换元将问题化为绝对值函数在闭区间上的最小值问题,接下来根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.17.【参考答案】解:(1)原式==4-4+3-π-1+π=2.(2)原式=2lg5+2lg2+lg5•(lg2+1)+(lg2)2=2+lg2(lg5+lg2)+lg5=2+lg2+lg5=3.【试题分析】(1)利用指数幂的运算性质即可得出.(2)利用对数的运算性质及其lg2+lg5=1即可得出.本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于基础题.18.【参考答案】解:(1)因为A={x|3≤3x≤27}={x|1≤x≤3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x≤3},从而(C R B)∪A={x|x≤3或x≥4}.(2)当2a≥a+2,即a≥2时C=∅,此时C⊆A,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需即.故要使C⊆A,实数a的取值范围是{a|a≥2或}.【试题分析】(1)求出集合A,B,由此能求出A∩B和(C R B)∪A.(2)当2a≥a+2,即a≥2时C=∅,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需由此能求出实数a的取值范围是.本题考查交集、补集、并集的求法,考查交集、补集、并集定义等基础知识,考查运算求解能力,是基础题.19.【参考答案】解:(1)∵函数f(x)是定义在(-4,4)上的奇函数,∴f(0)=0,即,∴b=0,又因为f(2)=1,所以f(-2)=-f(2)=-1,即,所以a=1,综上可知a=1,b=0,(2)由(1)可知当x∈(-4,0)时,,当x∈(0,4)时,-x∈(-4,0),且函数f(x)是奇函数,∴,∴当x∈(0,4)时,函数f(x)的解析式为,任取x1,x2∈(0,4),且x1<x2,则=,∵x1,x2∈(0,4),且x1<x2,∴4-x1>0,4-x2>0,x1-x2<0,于是f(x1)-f(x2)<0,即f(x1)<f(x2),故在区间(0,4)上是单调增函数.【试题分析】(1)根据f(x)是定义在(-4,4)上的奇函数及-4<x≤0时的f(x)解析式即可得出b=0,并可求出f(-2)=-1,从而可得出,求出a=1;(2)根据上面知,x∈(-4,0)时,,从而可设x∈(0,4),从而得出,从而得出x∈(0,4)时,,然后根据函数单调性的定义即可判断f(x)在(0,4)上的单调性:设任意的x1,x2∈(0,4),且x1<x2,然后作差,通分,提取公因式,然后判断f(x1)与f(x2)的大小关系即可得出f(x)在(0,4)上的单调性.本题考查了奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,求奇函数在对称区间上的解析式的方法,以及函数的单调性,考查了推理能力和计算能力,属于基础题.20.【参考答案】解:(1)由题设,当价格上涨x%时,每年的销售数量将减少mx%,销售总金额y=10(1+x%)•1000(1-mx%)=-mx2+100(1-m)x+10000().当时,y=[-(x-50)2+22500],当x=50时,y max=11250.即该产品每吨的价格上涨50%时,销售总金额最大.(2)当x=10时,若能使销售总金额比涨价前增加,能使销售总金额增加,则存在使y>10×10000,由得,所以m<10.由y>10×10000,即-100m+1000(1-m)+10000>10000亦即,所以.故若能使销售总金额比涨价前增加,m的取值范围设定为.【试题分析】(1)得出y关于x的函数,根据二次函数的性质求出结论;(2)根据题意列不等式得出m的范围.本题考查了函数解析式,函数最值的计算,考查不等式的解法,属于中档题.21.【参考答案】解:(1)∵f(x)是奇函数,∴f(-1)=-f(1),∴-|-1-a|-1=-(1•|1-a|+1)∴-|1+a|-1=-|1-a|-1,∴|1+a|=|1-a|,∴a=0,当a=0时,f(x)=x•|x|+x是奇函数,∴a=0;(2)任意的x∈[1,2],f(x)≥2x2恒成立,∴x|x-a|+x≥2x2恒成立,∴|x-a|+1≥2x恒成立,∴|x-a|≥2x-1恒成立, ∵x∈[1,2],∴2x-1∈[1,3],2x-1>0,∴x-a≥2x-1恒成立或x-a≤-2x+1恒成立,∴a≤-x+1恒成立或a≥3x-1恒成立,而-x+1∈[-1,0],3x-1∈[2,5],∴a≤-1或a≥5;(3)∵a≥2,x∈[0,2],∴x-a≤0,∴|x-a|=-(x-a),∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,开口向下,对称轴为x=≥,①当,即2≤a≤3时,f(x)max=f()==4,∴a=3或a=-5(舍),②当>2,即a>3时,f(x)max=f(2)=-4+2a+2=2a-2=4,∴a=3,又a>3,矛盾,综上a=3.【试题分析】(1)由奇函数的性质f(-x)=-f(x),进而求解;(2)x∈[1,2],2x-1∈[1,3],2x-1>0,f(x)≥2x2等价于x-a≥2x-1恒成立或x-a≤-2x+1恒成立,进而求解;(3))∵a≥2,x∈[0,2],∴x-a≤0,∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,进而比较对称轴与区间端点的关系求解;(1)考查奇函数的性质,去绝对值号;(2)考查不等式恒成立的转化,得出x-a≥2x-1恒成立或x-a≤-2x+1恒成立,是突破本题的关键点;(3)考查不等式在特定区间上的最值问题,将不等式恒成立转化为二次函数在特定区间上的最值.22.【参考答案】解:(1)当m=-1时,,要使函数f(x)有意义,则需,即2x<2,从而x<1.故函数f(x)的定义域为{x|x<1};(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,即有且仅有一个根,亦即,即,即m(2x)2+2•2x-1=0有且仅有一个根.令2x=t>0,则mt2+2•t-1=0有且仅有一个正根,当m=0时,2•t-1=0,,即x=-1,成立;当m≠0时,若△=4+4m=0即m=-1时,t=1,此时x=0成立;若△=4+4m>0,需,即m>0,综上,m的取值范围为[0,+∞)∪{-1};(3)若任取x1,x2∈[t,t+2],不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,即f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,因为在定义域上是单调减函数,所以,,即,即,,所以,即,又有意义,需,即,所以,t∈[1,2],.所以m的取值范围为.【试题分析】(1)将m=-1代入f(x)中,根据,解不等式可得f(x)的定义域;(2)函数g(x)=f(x)+2x lg2有且仅有一个零点,则可得方程m(2x)2+2•2x-1=0有且仅有一个根,然后求出m的范围;(3)由条件可得f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,求出f(x)的最大值和最小值代入该式即可得到m 的范围.本题考查了函数定义域的求法,函数的零点判定定理和不等式恒成立问题,考查了分类讨论思想和转化思想,属难题.。

2019-2020学年山东省潍坊市高一(上)期中数学试卷试题及答案(解析版)

2019-2020学年山东省潍坊市高一(上)期中数学试卷试题及答案(解析版)

2019-2020学年山东省潍坊市高一(上)期中数学试卷一、选择题:本题共11小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1U =-,0,1,2},{1A =-,1},则集合(U A =ð ) A .{0,2}B .{1-,0}C .{0,1}D .{1,2}2.命题“(0,)x ∃∈+∞,13x x +…”的否定是( )A .(0,)x ∃∈+∞,13x x+…B .(0,)x ∃∈+∞,13x x+<C .(0,)x ∀∈+∞,13x x +< D .(0,)x ∀∈+∞,13x x+…3.设x R ∈,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<5.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:)m 与时间t (单位:)s 之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米6.对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( )A .[2,6]B .[2,6){2}-C .(,2)[2-∞-,6)D .[2,6)7.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( )A .120B .130C .150D .1808.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <>;②若1a b +=,则14a b+的最小值是10; ③11()()4a b a b ++…;④函数11y a a =++的最小值为1. A .1 B .2 C .3 D .49.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x --剟的x 的取值范围是( ) A .[2-,2]B .[2-,1]C .[1-,3]D .[0,2]10.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( )A .(3,1)--B .(11)(3,17)-+C .(2-,1)(2-⋃,3)D .(2,6)11.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图象交点为1(x ,1)y ,2(x ,2)y ,⋯,8(x ,8)y ,则128128x x x y y y ++⋯++++⋯+的值为( )A .20B .24C .36D .40二、填空题:本题共4小题,每小题5分,共20分.12.函数1()1f x x =+-的定义域为 . 13.已知函数()f x 是定义域为R 的奇函数,当0x …时,()(1)f x x x =-,则(2)f -= . 14.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为 .15.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1x a ∀∈-,1]a +,都有[1y b ∈-,1]b +,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图象上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是 .三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 16.已知集合{|26}A x x =-剟,{|35}B x x =-剟. (1)求AB ,AB ;(2)若{|121}C x m x m =+-剟,()C A B ⊆,求实数m 的取值范围.17.已知函数2()(0)1x af x a x -=>+,若不等式()1f x -…的解集为(,1)[0-∞-,)+∞.(1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.18.已知函数223,(02)()43,(2)x x f x x x x -+<⎧=⎨-+⎩……,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图象;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围.19.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1a ∀∈-,1],()0f x …恒成立,求实数x 的取值范围.20.第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2020年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+⎪⎩….经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2020年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2020年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少? 注:利润=销售额-成本21.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图象与x 轴两交点间距离为4.(1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1x ∈-,2]. (Ⅰ)若()g x 为单调函数,求k 的取值范围;(Ⅱ)记()g x 的最小值为()h k ,讨论2(4)h t λ-=的零点个数.2019-2020学年山东省潍坊市高一(上)期中数学试卷参考答案与试题解析一、选择题:本题共11小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1U =-,0,1,2},{1A =-,1},则集合(U A =ð ) A .{0,2}B .{1-,0}C .{0,1}D .{1,2}【解答】解:因为全集{1U =-,0,1,2},{1A =-,1}, 所以:{0U A =ð,2}, 故选:A .2.命题“(0,)x ∃∈+∞,13x x +…”的否定是( )A .(0,)x ∃∈+∞,13x x+…B .(0,)x ∃∈+∞,13x x+<C .(0,)x ∀∈+∞,13x x +< D .(0,)x ∀∈+∞,13x x+…【解答】解:命题“(0,)x ∃∈+∞,13x x+…”的否定是:否定限定量词和结论,故为:(0,)x ∀∈+∞,13x x+<, 故选:C .3.设x R ∈,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解答】解:由|3|1x -<,131x ∴-<-<,解得24x <<. 则由“24x <<” ⇒ “2x >”, 由“2x >”推不出“24x <<”,则“|3|1x -<”是“2x >”的充分不必要条件; 故选:A .4.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<【解答】解:()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,()f x ∴在(,0)-∞上单调递减,距对称轴越远,函数值越大, (1)(3)()f f f π-<-<,则c a b <<, 故选:D .5.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:)m 与时间t (单位:)s 之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米【解答】解:2() 4.914.717h t t t =-++, ∴烟花冲出后在爆裂的最佳时刻为14.71.52( 4.9)t =-=⨯-,此时2(1.5) 4.9 1.514.7 1.51728h =-⨯+⨯+≈, 故选:B .6.对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( )A .[2,6]B .[2,6){2}-C .(,2)[2-∞-,6)D .[2,6)【解答】解:对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立, ①当240m -=且20m +≠,即2m =时,104>对x R ∈恒成立, 2m ∴=满足题意;②当2m ≠且2m ≠-时,则有2240(2)4(2)0m m m ⎧->⎨=---<⎩,解得26m <<. 综合①②,可得26m <…,故实数m 的取值范围为[2,6), 故选:D .7.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( )A .120B .130C .150D .180【解答】解:本题的大意为:《毛诗》、《春秋》和《周易》共94本,3个人读《毛诗》一册,4个人读《春秋一册》,5个人读《周易》一册,问由多少个学生? 11194()345÷++479460=÷120=(人)故选:A .8.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <>;②若1a b +=,则14a b+的最小值是10; ③11()()4a b a b ++…;④函数11y a a =++的最小值为1. A .1 B .2 C .3 D .4【解答】解:已知a ,b 为正实数,①11a b a b<⇒>⇒>①正确; ②1414414()()14529b b a a b a b a b a a a b+=++=++++=…,所以②不正确; ③1122a a a a +=…,同理12b b +…,11()()4a b a b∴++…,所以③正确;④11111)11111y a a a a a =+=++--=+++…,当且仅当111a a +=+,即0a =时取等号,而0a >,所以1y >,不能取等号,所以 ④不正确. 故选:B .9.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x --剟的x 的取值范围是( ) A .[2-,2]B .[2-,1]C .[1-,3]D .[0,2]【解答】解:由奇函数()f x 在[0,)+∞是减函数,可知()f x 在(,0)-∞是减函数,从而可得,()f x 在R 上单调递减, 由(2)1f -=,可知f (2)1=-, f (2)1(1)1(2)f x f =--=-剟,212x ∴--剟,解可得,13x -剟,即解集为[1-,3] 故选:C .10.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( ) A .(3,1)--B.(11)(3,17)-+C .(2-,1)(2-⋃,3)D .(2,6)【解答】解:设函数22()5(9)2f x x a x a a =-++--,方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内, ∴函数22()5(9)2f x x a x a a =-++--的两个零点分别在区间(0,1)和(1,2)内,∴(0)0(1)0(2)0f f f >⎧⎪<⎨⎪>⎩,即2222026030a a a a a a ⎧-->⎪--<⎨⎪->⎩,解得:11a -<<-或31x <<+, 故选:B .11.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图象交点为1(x ,1)y ,2(x ,2)y ,⋯,8(x ,8)y ,则128128x x x y y y ++⋯++++⋯+的值为( )A .20B .24C .36D .40【解答】解:函数()f x 满足(2)(2)6f x f x -++=的对称中心为(2,3), 函数315()322x g x x x -==+--也关于(2,3)中心对称, 则若交点为1(x ,1)y 时,1(4x -,16)y -也为交点,若交点为2(x ,2)y 时,2(4x -,26)y -也为交点,⋯,所以128128112288()()()x x x y y y x y x y x y ++⋯++++⋯+=++++⋯++1111222288881[()(46)()(46)()(46)]402x y x y x y x y x y x y =++-+-+++-+-+⋯+++-+-=.故选:D .二、填空题:本题共4小题,每小题5分,共20分. 12.函数1()1f x x =+-的定义域为 [2-,1)(1⋃,)+∞ . 【解答】解:由题意得: 2010x x +⎧⎨-≠⎩…, 解得:2x -…且1x ≠,故函数的定义域是[2-,1)(1⋃,)+∞, 故答案为:[2-,1)(1⋃,)+∞.13.已知函数()f x 是定义域为R 的奇函数,当0x …时,()(1)f x x x =-,则(2)f -= 2 . 【解答】解:因为()f x 是定义在R 上的奇函数,且当0x …时,2()f x x x =-, 所以(2)f f -=-(2)(24)2=--=, 故答案为:2.14.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为 {|6x x <或1}2x > . 【解答】解:不等式20ax bx c ++>的解集为{|26}x x <<, 所以方程20ax bx c ++=的解为2和6,且0a <; 由根与系数的关系得, 26260b a c a a ⎧+=-⎪⎪⎪⨯=⎨⎪<⎪⎪⎩, 解得8b a =-,12c a =,且0a <;所以不等式20cx bx a ++<化为212810x x -+>, 解得16x <或12x >,所以所求不等式的解集为1{|6x x <或1}2x >. 故选:1{|6x x <或1}2x >. 15.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1x a ∀∈-,1]a +,都有[1y b ∈-,1]b +,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图象上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是 11[,]22- .【解答】解:(,)B m n 在函数212y x =-的图象上,∴212n m =-,[1x m ∴∀∈-,1]m +,都有2211[1,1]22y m m ∈---+,①10m +…,即1m -…时,212y x =-在[1m -,1]m +上单调递增,∴2211[(1),(1)]22y m m ∈---+,∴22221111[(1),(1)][1,1]2222m m m m ---+⊆---+,∴222211(1)12211(1)122m m m m ⎧----⎪⎪⎨⎪-+-+⎪⎩……,解得12m -…,又1m -…,∴这种情况不合题意; ②1010m m +>⎧⎨-<⎩,即11m -<<时,由[1x m ∈-,1]m +可得21[(1),0]2y m ∈--或21[(1),0]2y m ∈-+,∴222111[(1),0][1,1]222m m m --⊆---+且222111[(1),0][1,1]222m m m -+⊆---+,∴2222211(1)12211(1)1221102m m m m m ⎧----⎪⎪⎪-+--⎨⎪⎪-+⎪⎩………,解得1122m-剟, ③10m -…,即1m …时,212y x =-在[1m -,1]m +上单调递减,∴2211[(1),(1)]22y m m ∈-+--,∴22221111[(1),(1)][1,1]2222m m m m -+--⊆---+,∴222211(1)12211(1)122m m m m ⎧-+--⎪⎪⎨⎪---+⎪⎩……,解得12m …,又1m …,∴这种情况不合题意,综上得,m 的取值范围是11[,]22-.故答案为:11[,]22-.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 16.已知集合{|26}A x x =-剟,{|35}B x x =-剟. (1)求AB ,AB ;(2)若{|121}C x m x m =+-剟,()C A B ⊆,求实数m 的取值范围.【解答】解:(1)由已知可得{|25}AB x x =-剟,{|36}AB x x =-剟.(2)①若C =∅,则121m m +>-,2m ∴<; ②若C ≠∅,则12112215m m m m +-⎧⎪+-⎨⎪-⎩………,解得23m 剟, 综上可得3m …. 17.已知函数2()(0)1x af x a x -=>+,若不等式()1f x -…的解集为(,1)[0-∞-,)+∞.(1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数. 【解答】解:(1)由题意211x ax --+…, 变形2311011x a x a x x --++=++…, 这等价于(31)(1)0x a x -++…且10x +≠, 解得1x <-或13a x -…,所以103a -=,解得1a =. (2)由(1)得21()1x f x x -=+, 任取1x ,2[0x ∈,)+∞,且12x x <,则210x x ->, 那么212121*********()()()11(1)(1)x x x x f x f x x x x x ----=-=++++, 210x x ->,12(1)(1)0x x ++>, 21()()0f x f x ∴->,∴函数()f x 在[0,)+∞上是增函数.18.已知函数223,(02)()43,(2)x x f x x x x -+<⎧=⎨-+⎩……,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图象;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围.【解答】解:(1)由题意知()F x 定义域为R ,关于原点对称, 又()(||)(||)()F x f x f x F x -=-==, ()F x ∴在R 上是偶函数.函数()F x 的大致图象如下图:观察图象可得:函数()F x 的单调递增区间为:(2,0)-,(2,)+∞,单调递减区间为:(,2)-∞-,(0,2).(2)当()()H x F x t =-有两个零点时, 即()F x 的图象与直线y t =图象有两个交点, 观察函数图象可得3t >或1t =-.19.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1a ∀∈-,1],()0f x …恒成立,求实数x 的取值范围. 【解答】解:(1)不等式2(1)0x a x a +--<等价于()(1)0x a x -+<,当1a <-时,不等式的解集为(,1)a -; 当1a =-时,不等式的解集为∅; 当1a >-时,不等式的解集为(1,)a -. (2)22(1)(1)x a x a a x x x +--=-+++, 设g (a )2(1)a x x x =-+++,[1a ∈-,1],要使g (a )0…在[1a ∈-,1]上恒成立, 只需(1)0(1)0g g -⎧⎨⎩……,即22210,10,x x x ⎧++⎨-⎩……解得1x …或1x -…, 所以x 的取值范围为{|1x x -…或1}x ….20.第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2020年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+⎪⎩….经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2020年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2020年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少? 注:利润=销售额-成本【解答】解:(1)由题意2(10)1010104000R a =⨯+=,所以300a =, 当040x <<时,22()900(10300)26010600260W x x x x x x =-+-=-+-;当40x …时,22901945010000919010000()900260x x x x W x x x x-+-+-=--=,所以2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-⎪⎩….(2)当040x <<,2()10(30)8740W x x =--+ 当30x =时,()8740max W x =⋯当40x …,29190100001000010000()9190()9190x x W x x x x x x -+-==--+=-++, 因为0x >,所以10000200x x +=…,当且仅当10000x x=时,即100x =时等号成立, 此时()20091908990W x -+=…, 所以()8990max W x =万元, 因为87408990<,所以2020年产量为100(千台)时,企业所获利润最大,最大利润是8990万元. 21.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图象与x 轴两交点间距离为4.(1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1x ∈-,2]. (Ⅰ)若()g x 为单调函数,求k 的取值范围;(Ⅱ)记()g x 的最小值为()h k ,讨论2(4)h t λ-=的零点个数. 【解答】解:(1)设2()(0)f x ax bx c a =++≠,由题意知对称轴12bx a=-=-①;(0)3f c ==-②; 设()0f x =的两个根为1x ,2x ,则12b x x a+=-,12c x x a=,12||4x x -===;③由①②③解得1a =,2b =,3c =-,2()23f x x x ∴=+-.(2)2()()(2)2I g x x k x =+++,其对称轴22k x +=-.由题意知:212k +--…或222k +-…, 0k ∴…或6k -….()II ①当0k …时,对称轴212k x +=--…,()g x 在[1-,2]上单调递增,()(1)1h k g k =-=-+, ②当60k -<<时,对称轴2(1,2)2k x +=-∈-,2244()()24k k k h k g +--+=-=, ③当6k -…时,对称轴222k x +=-…,()g x 在[1-,2]单调递减,()h k g =(2)210k =+,∴21,0,44(),604210,6k k k k h k k k k -+⎧⎪--+⎪=-<<⎨⎪+-⎪⎩……, 令244m t =--…,即()(4)h m m λ=-…,画出()h m 简图,)i 当1λ=时,()1h m =,4m =-或0,244t ∴-=-时,解得0t =,240t -=时,解得2t =±,有3个零点.)ii 当1λ<时,()h m λ=有唯一解10m >,2140t m -=>,t =有2个零点. )iii 当12λ<<时,()h m λ=有两个不同的零点2m ,3m ,且2m ,3(4m ∈-,2)(2--⋃,0),240m +>,340m +>,224t m ∴-=时,解得t =,234t m -=时,解得t =有4个不同的零点.)iv 当2λ=时,()2h m =,224m t =-=-,∴t =2个零点.)v 当2λ>时,()h m λ=无解.综上所得:2λ>时无零点;12λ<<时,有4个零点;1λ=时,有3个零点;2λ=或1λ<时,有2个零点.。

浙江金兰教育合作组织2019-2020年高一第1学期期中考试数学试题及参考答案解析

浙江金兰教育合作组织2019-2020年高一第1学期期中考试数学试题及参考答案解析

浙江金兰教育合作组织2019-2020年度第一学期高一数学期中考试试卷一、选择题(本大题共10小题)1.已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.1,2,B.1,C. D.2.幂函数f(x)=k•xα的图象过点,则k+α=()A. B.1 C. D.23.若a=20.3,b=logπ3,c=log40.3,则()A. B. C. D.4.函数的零点所在的区间是()A. B. C. D.5.函数y=的图象大致为()A. B.C. D.6.已知函数,则等于()A. B.0 C.1 D.27.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x.则方程f(x)-x+3=0的解集()A.1,B.1,C.1,D.8.若函数f(x)=log2(x2-ax-3a)在区间(-∞,-2]上是减函数,则实数a的取值范围是()A. B.C.,D.9.已知函数f(x)=e x-1,g(x)=-x2+4x-3,若存在f(a)=g(b),则实数b的取值范围为()A. B. C. D.10.已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=()A.16B.C.D.二、填空题(本大题共7小题,共36.0分)11.已知全集R,集合A={x|y=ln(1-x)},B={x|2x(x-2)<1},则A∪B=______,A∩(∁R B)=______.12.函数的定义域为______,值域为______.13.已知函数,则f(f(-2))=______;若f(x)=2,则实数x的值是______.14.已知函数是奇函数,则实数m的值是______;若函数f(x)在区间[-1,a-2]上满足对任意x1≠x2,都有成立,则实数a的取值范围是______.15.计算:=______.16.已知函数f(x)=若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)的取值范围是______ .17.已知奇函数f(x)=(a-x)|x|,常数a∈R,且关于x的不等式mx2+m>f[f(x)]对所有的x∈[-2,2]恒成立,则实数m的取值范围是______.三、解答题(本大题共5小题,共74.0分)18.已知全集为R,设集合A={x|(x+2)(x-5)≤0},,C={x|a+1≤x≤2a-1}.(1)求A∩B,(∁R A)∪B;(2)若C⊆(A∩B),求实数a的取值范围.19.已知函数.(1)求f(x)的定义域;(2)当x∈(1,+∞),①求证:f(x)在区间(1,+∞)上是减函数;②求使关系式f(2+m)>f(2m-1)成立的实数m的取值范围.20.经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t ∈N).(1)写出该种商品的日销售额S与时间t的函数关系;(2)求日销售额S的最大值.21.已知函数f(x)=x2+ax+a+1.(1)若函数f(x)存在两个零点x1,x2,满足x1<1<x2<3,求实数a的取值范围;(2)若关于x的方程f(2x)=0有实数根,求实数a的取值范围.22.已知函数f(x)=x2-2ax+5.(1)若f(x)的定义域和值域均是[1,a],求实数a的值;(2)若a≤1,求函数y=|f(x)|在[0,1]上的最大值.答案和解析1.【参考答案】D【试题分析】本题考查交集的求法,是基础题,解题时注意交集定义的合理运用.先求出集合A和B,由此利用交集的定义能求出A∩B的值.【试题答案】解:∵集合A={1,2,3},B={x|x2<9}={x|-3<x<3},∴A∩B={1,2}.故选D.2.【参考答案】C【试题分析】解:∵函数f(x)=k•xα是幂函数,∴k=1,∵幂函数f(x)=xα的图象过点,∴()α=,得α=,则k+α=1+=.故选:C.由函数f(x)=k•xα是幂函数,根据幂函数的定义可知,其系数k=1,再将点的坐标代入可得α值,从而得到幂函数的解析式.本题考查幂函数的性质及其应用,解题时要认真审题,注意熟练掌握基本概念.3.【参考答案】B【试题分析】解:a=20.3>1,b=logπ3∈(0,1),c=log40.3<0,则a>b>c.故选:B.利用对数函数的单调性即可得出.本题考查了对数函数的单调性,考查了推理能力与计算能力,属于基础题.4.【参考答案】C【试题分析】解:∵函数(x>0),∴y′=+1+>0,∴函数y=ln x+x--2在定义域(0,+∞)上是单调增函数;又x=2时,y=ln2+2--2=ln2-<0,x=e时,y=ln e+e--2=+e--2>0,因此函数的零点在(2,e)内.故选:C.先判断函数y是定义域上的增函数,再利用根的存在性定理,即可得出结论.本题主要考查了函数的零点问题,将零点问题转化为交点问题,是解决本题的关键.5.【参考答案】A【试题分析】本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考查其余的性质.欲判断图象大致图象,可从函数的定义域{x|x≠0}方面考虑,还可从函数的单调性(在函数当x>0时函数为减函数)方面进行考虑即可.【试题答案】解:函数有意义,需使e x-e-x≠0,其定义域为{x|x≠0},排除C,D,又因为,所以当x>0时函数为减函数,故选A故选:A.6.【参考答案】D【试题分析】解:根据题意,函数,则f(-x)=,则f(-x)+f(x)=ln1+2=2,则有f(lg2)+f(lg)=f(lg2)+f(-lg2)=2,故选:D.根据题意,由函数的解析式求出f(-x),进而可得f(-x)+f(x)=2,据此可得f(lg2)+f(lg)的值,即可得答案.本题考查函数的奇偶性的性质以及应用,涉及对数的计算,属于基础题.7.【参考答案】A【试题分析】解:若x<0,则-x>0,∵定义在R上的奇函数f(x),当x≥0时,f(x)=x2-3x.∴当x<0时,f(-x)=x2+3x=-f(x).则当x<0时,f(x)=-x2-3x.若x≥0,由f(x)-x+3=0得x2-4x+3=0,则x=1或x=3,若x<0,由f(x)-x+3=0得-x2-4+3=0,则x2+4x-3=0,则x==-2±,∵x<0,∴x=-2-,综上方程f(x)-x+3=0的解集为{-2-,1,3};故选:A根据函数奇偶性的性质求出当x<0时的解析式,解方程即可.本题主要考查方程根的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键.注意要进行分类讨论.8.【参考答案】D【试题分析】解:令t=x2-ax-3a=--3a,则由题意可得函数f(x)=log2t,函数t在区间(-∞,-2]上是减函数且t>0恒成立.∴,求得-4≤a<4,故选:D.令t=x2-ax-3a,则得函数f(x)=log2t,由条件利用复合函数的单调性、二次函数、对数函数的性质可得,由此求得a的范围.本题主要考查复合函数的单调性、二次函数、对数函数的性质,属于中档题.9.【参考答案】D【试题分析】解:由题可知f(x)=e x-1>-1,g(x)=-x2+4x-3=-(x-2)2+1≤1,若有f(a)=g(b),则g(b)∈(-1,1],即-b2+4b-3>-1,即b2-4b+2<0,解得.所以实数b的取值范围为故选:D.确定两个函数的值域,根据f(a)=g(b),可得g(b)∈(-1,1],即可求得实数b的取值范围.本题考查函数的值域,考查解不等式,同时考查学生分析解决问题的能力.10.【参考答案】B【试题分析】解:取a=-2,则f(x)=x2+4,g(x)=-x2-8x+4.画出它们的图象,如图所示.则H1(x)的最小值为两图象右边交点的纵坐标,H2(x)的最大值为两图象左边交点的纵坐标,由解得或,∴A=4,B=20,A-B=-16.故选:B.本选择题宜采用特殊值法.取a=-2,则f(x)=x2+4,g(x)=-x2-8x+4.画出它们的图象,如图所示.从而得出H1(x)的最小值为两图象右边交点的纵坐标,H2(x)的最大值为两图象左边交点的纵坐标,再将两函数图象对应的方程组成方程组,求解即得.本题主要考查了二次函数的图象与性质、函数最值的应用等,考查了数形结合的思想,属于中档题.11.【参考答案】{x|x<2} {x|x≤0}【试题分析】解:集合A={x|y=ln(1-x)}={x|1-x>0}={x|x<1},B={x|2x(x-2)<1}={x|x(x-2)<0}={x|0<x<2},则A∪B={x|x<2},∁R B={x|x≤0或x≥2},所以A∩(∁R B)={x|x≤0}.故答案为:{x|x<2};{x|x≤0}.化简集合A、B,根据并集和补集与交集的定义,计算即可.本题考查了集合的化简与运算问题,是基础题.12.【参考答案】(-2,1] [-log23,+∞)【试题分析】解:由题意可得,,解可得,-2<x≤1,故定义域为(-2,1],∵在(-2,1]上单调递减,∴f(x)≥-log23.故答案为:(-2,1],[-log23,+∞).由题意可得,,解不等式即可求解定义域;由在(-2,1]上单调递减,可求函数的值域.本题主要考查了函数的定义域及值域的求解,求解值域的关键是单调性的应用.13.【参考答案】2 1或-4【试题分析】解:∵函数,∴f(-2)=log22=1,f(f(-2))=f(1)=2,f(x)=2,当x≥0时,f(x)=2x=2,解得x=1,当x<0时,f(x)=log2(-x)=2,解得x=-4.∴实数x的值是1或-4.故答案为:1或-4.推导出f(-2)=log22=1,从而f(f(-2))=f(1),由此能求出结果;由f(x)=2,当x≥0时,f(x)=2x=2,当x<0时,f(x)=log2(-x)=2,由此能求出实数x的值.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.14.【参考答案】2 1<a≤3【试题分析】解:f(x)为奇函数,则f(-x)=-f(x);所以f(-1)=1-m=-(-1+2)=-1,则m=2;函数f(x)在区间[-1,a-2]上满足对任意x1≠x2,都有成立;则函数f(x)在[-1,2]上为增函数;又函数f(x)的增区间为[-1,1];则[-1,1]⊆[-1,a-2],得1<a≤3;故答案为:2,1<a≤3;f(x)为奇函数,有,可计算出m的值为2,;函数f(x)在区间[-1,a-2]上满足对任意x1≠x2,都有成立,即函数f(x)在[-1,2]上为增函数,由函数f(x)在[-1,1],则[-1,1]⊆[-1,a-2],得<a≤3;考查函数奇偶性求参数,分段函数的单调性,根据函数单调性求参数的值,属于基础题.15.【参考答案】1【试题分析】解::=-1+lg4,=-1,=1.故答案为:1.结合指数与对数的运算性质即可直接求解.本题主要考查了指数与对数的运算性质的简单应用,属于基础试题.16.【参考答案】[,)【试题分析】本题主要考查了利用一元二次函数的单调性求函数的值域,较难.解题的关键是根据函数的图象得出x1的取值范围,进而转化为y=+在x1的取值范围上的值域,即为所求,先作出函数图象,然后根据图象可得,要使存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则必有0≤x1<且x+在[0,)的最小值大于等于2x-1在[,2)的最小值,从而得出x1的取值范围,然后再根据x1f(x2)=x1f(x1)=+,即问题转化为求y=+在x1的取值范围上的值域.解:作出函数的图象:∵存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2)∴0≤x1<∵x+在[0,)上的最小值为;2x-1在[,2)的最小值为∴x1+≥,x1≥∴≤x1<∵f(x1)=x1+,f(x1)=f(x2)∴x1f(x2)=x1f(x1)=+令y=+(≤x1<)∴y=+为开口向上,对称轴为x=-的抛物线∴y=+在区间[,)上递增∴当x=时y=当x=时y=∴y∈[,)即x1f(x2)的取值范围为[,)故答案为[,).17.【参考答案】(,+∞)【试题分析】解:∵f(x)是奇函数,∴f(-1)=-f(1),即(a+1)•1=-(a-1)•1,∴a=0,∴f(x)=-x|x|,f[f(x)]=x3|x|,∴mx2+m>f[f(x)]=x3|x|,即对所有的x∈[-2,2]恒成立.∵x∈[-2,2],∴x2+1∈[1,5];∴==≤,∴;∴实数m的取值范围为(,+∞).故答案为:(,+∞).由f(x)为奇函数求出a=0,再求出f[f(x)]=x3|x|,然后由关于x的不等式mx2+m>f[f(x)]对所有的x∈[-2,2]恒成立,可得对所有的x∈[-2,2]恒成立,进一步求出m的范围.本题考查了函数的奇偶性,基本不等式和函数恒成立问题,考查了转化思想和计算能力,属中档题.18.【参考答案】解:(1)集合A={x|(x+2)(x-5)≤0}={x|-2≤x≤5},={x|-2≥0}={x|≤0}={x|3<x≤6},所以A∩B={x|3<x≤5},∁R A={x|x<-2或x>5},则(∁R A)∪B={x|x<-2或x>3};(2)若C⊆(A∩B),则当C=∅时,a+1>2a-1,解得a<2;当C≠∅时,由,解得2<a≤3;综上知,实数a的取值范围是a<2或2<a≤3.【试题分析】(1)化简集合A、B,根据交集、补集和并集的定义计算即可;(2)当C⊆(A∩B)时,讨论C=∅和C≠∅时,分别求出对应a的取值范围.本题考查了集合的化简与运算问题,也考查了运算与推理能力,是基础题.19.【参考答案】解:(1)由>0,得x<-1或者x>1,即函数的定义域为(-∞,-1)∪(1,+∞).(2)①证明:设1<x1<x2,f(x1)-f(x2)=()==,因为1<x1<x2,所以x2-x1>0,所以x1x2-1+(x2-x1)>x1x2-1-(x2-x1)>0,所以,所以f(x₁)>f(x₂),故f(x)在(1,+∞)上是减函数.②由(1)知函数f(x)在(1,+∞)上是减函数,由f(2+m)>f(2m-1),得1<2+m<2m-1,得m>3.【试题分析】(1)由>0,得x<-1或者x>1,解出即可;(2)①设1<x1<x2,f(x1)-f(x2)=()==,判断正负得出结论;②由(1)知函数f(x)在(1,+∞)上是减函数,由f(2+m)>f(2m-1)得出m.考查函数求定义域,判断函数单调性,单调性的应用,中档题.20.【参考答案】解:(1)当1≤t≤30时,由题知f(t)•g(t)=(-2t+200)•()=-t2+40t+6000,当31≤t≤50时,由题知f(t)•g(t)=45(-2t+200)=-90t+9000,所以日销售额S与时间t的函数关系为S=;(2)当1≤t≤30,t∈N时,S=-(t-20)2+6400,当t=20时,S max=6400元;当31≤t≤50,t∈N时,S=-90t+9000是减函数,当t=31时,S max=6210元.∵6210<6400,则S的最大值为6400元.【试题分析】(1)根据销售额等于销售量乘以售价得S与t的函数关系式,此关系式为分段函数;(2)求出分段函数的最值即可.考查学生根据实际问题选择函数类型的能力.理解函数的最值及其几何意义的能力.21.【参考答案】解(1)函数f(x)存在两个零点x1,x2,满足x1<1<x2<3,∴,即,解得;(2)设t=2x(t>0),则原方程可化为t2+at+a+1=0(*),原方程有实根,即方程(*)有正根,令g(t)=t2+at+a+1,①若方程(*)有两个正实根t1,t2,则,解得;②若方程(*)有一个正实根和一个负实根(负实根不符合题意,舍去),则g(0)=a+1<0,解得a<-1;③若方程(*)有一个正实根和一个零根,则g(0)=0且-,解得a=-1;综上所求:实数a的取值范围为(-∞,2-2].【试题分析】(1)根据函数的零点存在区间,利用零点存在定理,列出不等式组,即可求出实数a的取值范围. (2)利用换元法把原方程转化为一元二次方程,分3种情况讨论方程根的正负,利用根与系数的关系列出不等式组,求出实数a的取值范围.考查了二次函数的图象和性质,考查了一元二次方程根的分布,做题时注意对根的正负分情况讨论,是中档题.22.【参考答案】解:(1)函数f(x)=x2-2ax+5=(x-a)2+5-a2,且a>1,∴f(x)在[1,a]上是减函数,又定义域和值域均是[1,a],∴,即,解得a=2.(2)①当a≤0时,函数y=|f(x)|在[0,1]上单调递增,故y max=f(1)=6-2a,②当0<a≤1时,此时△=4a2-5<0,且f(x)图象开口向上,对称轴在(0,1)内,故y max=max{f(0),f(1)}=max{5,6-2a}=,综上所求:y max=.【试题分析】(1)利用二次函数的图象,求出二次函数的最值,列出不等式组,即可解出a的值.(2)对对称轴的位置分类讨论,结合二次函数的图象,求出函数的最大值.考查了二次函数的图象和性质,考查了利用二次函数图象求最值的方法,是基础题.。

云南省昆明市第一中学2020-2021学年高一上学期期中考试数学试题 Word版含答案

云南省昆明市第一中学2020-2021学年高一上学期期中考试数学试题 Word版含答案

昆一中2020—2021学年度上学期期中考试高一数学一、选择题:(在每小题给出的四个选项中,选出符合题目要求的一项.) 1.已知A ={-1,0,1},B ={x|x 2<1},则A∩B 等于( ) A .{-1,0,1} B .∅ C .{0} D .{0,1} 2.不等式x 2-3x +2≤0的解集是( )A .{x|x >2或<1}B .{x|x≥2或x≤1}C .{x|1≤x≤2}D .D .{x|1<x <2} 3.下列各组集合中,满足E =F 的是( )A .E =,F ={1.414}B .E ={(2,1)},F ={(1,2)}C .E ={x|y =x 2},F ={y|y =x 2}D .E ={2,1},F ={1,2} 4.设x ∈R ,则“x≤2”是“|x -1|≤1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.不等式111x ≥-的解集为( ) A .(-∞,1)∪[2,+∞) B .(-∞,0]∪(1,+∞) C .(1,2] D .[2,+∞) 6.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如图示,那么水瓶的形状可以是下图中的( )A .B .C .D .7.已知A ={x|x =2k +1,k ∈Z },{|}2xB x =∈Z ,C =Z ,下列关系判断正确的是( )A .C =A ∪B B .C =A∩B C .A =C ∪BD .A =C∩B8.已知一元二次不等式ax 2+bx +c≤0的解集为[1,2],则cx 2+bx +a≤0的解集为( )A .1[,1]2B .[1,2]C .[-2,-1]D .1[1,]2--9.已知集合A ={x|a≤x <3),B =[1,+∞),若A 是B 的子集,则实数a 取值范围为( ) A .[0,3) B .[1,3) C .[0,+∞) D .[1,+∞)10.已知集合A ={x|x≥0},集合B ={x|x >1},则以下真命题的个数是( )①0x ∃∈A ,0x ∉B ;②0x ∃∈B ,0x ∉A ;③x ∀∈A ,x ∈B ;④x ∀∈B ,x ∈A . A .4 B .3 C .2 D .111.已知集合A ={1,a ,b},B ={a 2,a ,ab},若A =B ,则a 2021+b 2020=( ) A .-1 B .0 C .1 D .2 12.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( )A .0B .12C .1D .2 二、填空题:13.设命题p :1x ∀≥,x 2-4x +3≥0,则命题p 的否定形式为:________. 14.若集合A ={0,1,2},则集合A 的真子集个数为________.15.已知m ∈R ,x 1,x 2是方程x 2-2mx +m =0的两个不等实根,则12121x x x x ++的最小值为________.16.若集合A 具有以下两条性质,则称集合A 为一个“好集合”.(1)0∈A 且1∈A ; (2)若x ,y ∈A ,则x -y ∈A ;且当x≠0时,有1A x∈.给出以下命题:①集合P ={-2,-1,0,1,2}是“好集合”; ②Z 是“好集合”; ③Q 是“好集合”; ④R 是“好集合”;⑤设集合A 是“好集合”,若x ,y ∈A ,则x +y ∈A ; 其中真命题的序号是________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.设集合A ={x|x 2+2x -3<0},集合B ={x||x +a|<1}. (1)若a =3,求A ∪B ;(2)设命题p :x ∈A ,命题q :x ∈B ,若p 是q 成立的必要不充分条件,求实数a 的取值范围.18.已知正数a ,b 满足a +3b =4.(1)求ab 的最大值,且写出取得最大值时a ,b 的值;(2)求13a b+的最小值,且写出取得最小值时a ,b 的值. 19.关于x 的不等式ax 2-(a +2)x +2<0. (1)当a =-1时,求不等式的解集; (2)当a >0时,求不等式的解集.20.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是20,025,,100,2530,.t t t p t t t +<<∈⎧=⎨-+≤≤∈⎩N N该商品的日销售量Q (件)与时间t (天)的函数关系是Q =-t +40(0<t≤30,t ∈N ),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天. 21.已知二次函数f (x )=ax 2+bx +2a -1的对称轴为x =-1.(1)设x 1,x 2为方程f (x )=0的两个实数根,且1232x x =,求f (x )的表达式; (2)若f (x )≥0对任意,x ∈[-3,0]恒成立,求实数a 的取值范围. 22.设函数()f x =,b >0的定义域为A ,值域为B . (1)若a =-1,b =2,c =8,求A 和B ;(2)若A =B ,求满足条件的实数a 构成的集合.昆明第一中学2020-2021学年度上学期期中考试高一数学参考答案13.01x ∃≥,20430x x -+< 14.7 15. 16.③④⑤ 17.解:(1)解不等式x 2+2x -3<0,得-3<x <1,即A =(-3,1).当a =3时,由|x +3|<1,解得-4<x <-2,即集合 B =(-4,-2),所以A ∪B =(-4,1).(2)因为p 是q 成立的必要不充分条件,所以集合B 是集合A 的真子集. 又集合A =(-3,1),B =(-a -1,-a +1), 所以13,11a a --≥-⎧⎨-+<⎩或13,1 1.a a -->-⎧⎨-+≤⎩解得0≤a≤2,即实数a 的取值范围是0≤a≤2.18.解:(1)由基本不等式可知:43a a =+≥,43ab ≤, 当且仅当a =3b ,即a =2,23b =时,ab 的取得最大值43.(2)13(3)131535()(1033)()444242a b b a b a a b a b a b a b ++=+=++=++≥+= 当且仅当b a a b =,即a =b =1时,13a b+的取得最小值4. 19.解(1)当a =-1时,此不等式为-x 2-x +2<0,可化为x 2+x -2>0, 化简得(x +2)(x -1)>0,解得即{x|x <-2或x >1} (2)不等式ax 2-(a +2)x +2<0,化为(ax -2)(x -1)<0,当a >0时,不等式化为2()(1)0x x a --<,若21a<,即a >2,解不等式得21x a <<;若21a =,即a =2,解不等式得x ∈∅;若21a>,即0<a <2,解不等式得21x a <<;综上所述:当0<a <2时,不等式的解集为2{|1}x x a <<;当a =2时,不等式的解集为∅当a >2时,不等式的解集为2{|1}x x a<<. 20.解:设日销售金额为y (元),则y =p·Q .∴2220800,025,,1404000,2530,.t t t t y t t t t ⎧-++<<∈⎪=⎨-+≤≤∈⎪⎩N N22(10)900,025,,(70)900,2530,.t t t t t t ⎧--+<<∈⎪=⎨--≤≤∈⎪⎩N N 当0<t <25,t ∈N ,t =10时,y max =900(元); 当25≤t≤30,t ∈N ,t =25时,y max =1125(元). 由1125>900,知y max =1125(元),且第25天,日销售额最大.21.解:(1)因为12b x a =-=-,所以b =2a ,由根与系数的关系可得122132a x x a -==, 解得:a =2,则b =4,则f (x )=2x 2+4x +3;(2)因为f (x )=ax 2+2ax +2a -1的对称轴为x =-1,若a >0,y =f (x )开口向上,则f (x )在[-3,0]的最小值在x =-1处取得, 则f (-1)=a -1≥0,解得a≥1;若a <0,y =f (x )开口向下,又因为|-3-(-1)|>|0-(-1)|, 则f (x )在[-3,0]的最小值在x =-3处取得,则f (-3)=5a -1≥0,解得15a ≥(舍);综上所述,a ∈[1,+∞).22.解:(1)()f x 因为(x +2)(4-x )≥0,所以A =[-2,4],因为()f x 又0≤9-(x -1)2≤9,所以B =[0,3];(2)当a =0时,()f x =[,)cA b-=+∞,B =[0,+∞),又A =B ,故c =0满足题意;当a≠0时,设二次函数g (x )=ax 2+bx +c 的判别式为Δ, 当Δ≥0时,设方程g (x )=0的两实数根为x 1,x 2(x 1≤x 2) 假设a >0,当Δ≥0时,则A ={x|x≤x 1或x≥x 2},B =[0,+∞),则A≠B ,矛盾;当Δ<0时,则A =R ,)B =∞,则A≠B ,矛盾; 当a <0时,假设Δ<0,则A =∅,B =∅,虽有A =B ,但不符合函数的定义,舍去;当Δ≥0,则A ={x|x 1≤x≤x 2},B =,要使A =B ,则x 1=0,且2x =即c =0,又g (x 2)=0得2b x a -==2224b b a a-=,解得a =-4; 综上,满足条件的实数a 构成的集合为{-4,0}.。

2020-2021学年江苏省盐城市高一上期中数学试卷及答案解析

2020-2021学年江苏省盐城市高一上期中数学试卷及答案解析

【解答】解:∵a⊗b ∴函数 y=2x+1⊗2﹣x
, <
, ,<
的图象如下图所示:
由图可得:函数 y=2x+1⊗2﹣x 的减区间为(﹣∞, ],最小值为 ,
故选:B.
8.(5 分)若 loga3=m,loga5=n,则 a2m+n 的值是( )
A.15
B.75
C.45
【解答】解:loga3=m,loga5=n, 所以 am=3,an=5, 所以 a2m+n=a2man=9×5=45.
故选:C.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)下列各式中,是函数的有( )
A.y=1
B.y=x2
C.y=1﹣x
D.225 D.y
【解答】解:根据题意,依次分析选项, 对于 A,y=1,是常数函数,是函数, 对于 B,y=x2,是二次函数,是函数, 对于 C,y=1﹣x,是一次函数,是函数,
D.(2,3)
【解答】解:因为集合 A={y|y ,0≤x≤4}={y|0≤y≤2};
故(∁RA={y|y>2 或 y<0},
∵B={x|0<x<3},
∴(∁RA)∩B=(2,3)
故选:D.
2.(5 分)命题 p:∃x0∈R,x02﹣x0+2≤0,则¬p 为( )
A.∃x0∈R,

B.∀x∈R,x2﹣x+2≤0
(1)若 a=2,求 M∩(∁RN); (2)若 M∪N=M,求实数 a 的取值范围.
18.(12 分)计算:
(1)0.064
( )0+16 ⺁ 0.25 ;
(2)log3
lg25+2lg2﹣7 뗘 log42.

山东省济南市第一中学2020_2021学年高一数学上学期期中试题含解析

山东省济南市第一中学2020_2021学年高一数学上学期期中试题含解析

山东省济南市第一中学2020-2021学年高一数学上学期期中试题(含解析)本试卷共4页,满分150分.考试用时120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3M =-,{}|13N x x =-≤<,则M N =( )A. {0,1,2}B. {1,0,1}-C. MD.{1,0,1,2}-【答案】D 【解析】 【分析】根据交集的定义写出M N ⋂即可.【详解】集合{}1,0,1,2,3M =-,{}|13N x x =-≤<, 则{}1,0,1,2M N ⋂=-. 故选:D .2. 已知R a ∈,则“1a >”是“11a<”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件【答案】A 【解析】 【分析】“a>1”⇒“11a <”,“11a<”⇒“a>1或a <0”,由此能求出结果. 【详解】a∈R ,则“a>1”⇒“11a<”,“11a<”⇒“a>1或a <0”, ∴“a>1”是“11a<”的充分非必要条件.故选A .【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.3. 下列各组函数中,表示同一函数的是( ) A. ()1f x =,0()g x x = B. ()1f x x ,21()1x g x x -=+C. ()f x x =,()g x =D. ()||f x x =,2()g x =【答案】C 【解析】 【分析】根据对应关系和定义域均相同则是同一函数,对选项逐一判断即可.【详解】选项A 中,0()1()g x x f x ===,但()g x 的定义域是{}0x x ≠,()f x 定义域是R ,不是同一函数;选项B 中,21()()11x g x x x f x -=+=-=,但()g x 的定义域是{}1x x ≠-,()f x 定义域是R ,对应关系相同,定义域不同,不是同一函数;选项C 中,()f x x =,定义域R ,()g x x ==,定义域为R ,对应关系相同,定义域相同,是同一函数;选项D 中,()||f x x =,定义域R ,与2()g x =,定义域[0,)+∞,对应关系不相同,定义域不相同,不是同一函数. 故选:C.4. 设053a =.,30.5b =,3log 0.5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b a c >>C. c b a >>D.a cb >>【解析】 【分析】利用对数函数和指数函数的性质求解.【详解】解:∵00.51333<<,∴0.5131<<,即13a <<, ∵3000.80.8<<,∴300.81<<,即01b <<, ∵3log y x =在(0,)+∞上为增函数,且0.51<, ∴33log 0.5log 10<=,即0c < ∴a b c >>, 故选:A .【点睛】此题考查对数式、指数式比较大小,属于基础题 5. 已知函数 ()()2231m m f x m m x+-=-- 是幂函数,且 ()0x ∈+∞,时,()f x 单调递减,则 m 的值为( ) A. 1 B. -1 C. 2或-1 D. 2【答案】B 【解析】 分析】由题意可得211m m --=,且230m m +-<,解出即可. 【详解】解:∵()()2231m m f x m m x+-=-- 是幂函数,∴211m m --=,即()()210m m -+=, ∴2m =,或1m =-,又当()0x ∈+∞,时,()f x 单调递减, ∴230m m +-<,当2m =时,2330m m +-=>,不合题意,舍去; 当1m =-,2330m m +-=-<,符合题意, ∴1m =-,6. 已知1a >,函数1x y a -=与log ()a y x =-的图象可能是( )A B. C. D.【答案】B 【解析】 【分析】根据函数的定义域,1a >判断两个函数的单调性,即可求解. 【详解】1a >,函数1x y a -=在R 上是增函数, 而函数log ()a y x =-定义域为(,0)-∞, 且在定义域内是减函数,选项B 正确》 故选:B.【点睛】本题考查函数的定义域、单调性,函数的图像,属于基础题.7. 已知函数22,(1)()(21)36,(1)x ax x f x a x a x ⎧-+≤=⎨--+>⎩,若()f x 在(),-∞+∞上是增函数,则实数a的取值范围是( ) A. 1,12⎛⎤ ⎥⎝⎦B. 1,2⎛⎫+∞ ⎪⎝⎭C. [1,)+∞D. []1,2【答案】D 【解析】 【分析】根据分段函数()f x 在(),-∞+∞上是增函数,则由每一段都是增函数且1x =左侧函数值不大于右侧的函数值求解.【详解】因为函数22,(1)()(21)36,(1)x ax x f x a x a x ⎧-+≤=⎨--+>⎩,在(),-∞+∞上是增函数,所以1210122136a a a a a ≥⎧⎪->⎨⎪-+≤--+⎩,解得12a ≤≤, 故选:D【点睛】本题主要考查分段函数的单调性,属于基础题.8. 定义在R 上的偶函数()f x 满足:对任意的()1212,[0,),x x x x ∈+∞≠,有()()21210f x f x x x -<-,且(2)0f =,则不等式 ()0x f x <的解集是( )A. (2,2)-B. (2,0)(2,)-+∞ C. (,2)(0,2)-∞-⋃D.(,2)(2,)-∞-+∞【答案】B 【解析】 【分析】由题意可知()f x 在[0,)+∞上是减函数,再根据对称性和(2)0f =得出()f x 在各个区间的函数值的符号,从而可得出答案.【详解】解:∵()()21210f x f x x x -<-对任意的()1212,[0,),x x x x ∈+∞≠恒成立, ∴()f x 在[0,)+∞上是减函数, 又(2)0f =,∴当2x >时,()0f x <,当02x ≤<时,()0f x >, 又()f x 是偶函数,∴当2x <-时,()0f x <,当20x -<<时,()0f x >, ∴()0xf x <的解为(2,0)(2,)-+∞.故选B .【点睛】本题考查了函数的单调性与奇偶性,考查了学生分析问题、解决问题的能力,属于中档题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9. 下列不等式成立的是( ) A. 若a <b <0,则a 2>b 2B. 若ab =4,则a +b ≥4C. 若a >b ,则ac 2>bc 2D. 若a >b >0,m >0,则b b m a a m+<+ 【答案】AD 【解析】 【分析】由不等式的性质对各个选项进行推理、验证可得正确答案.【详解】解:对于A ,若0a b <<,根据不等式的性质则22a b >,故A 正确; 对于B ,当2a =-,2b =-时,44a b +=-<,显然B 错误; 对于C ,当0c时,22ac bc =,故C 错误;对于D ,()()()()()b a m a b m b a m b b m a a m a a m a a m +-+-+-==+++, 因为0a b >>,0m >,所以0b a -<,0a m +>,所以()()-<+b a m a a m所以0+-<+b b ma a m ,即b b m a a m+<+成立,故D 正确. 故选AD .【点睛】本题主要考查不等式的性质及应用,考查学生的推理论证能力,属于基础题. 10. 下列叙述正确的是( )A. 已知函数22,[4,0]()2(4),(0,)x x f x f x x ⎧-+∈-=⎨-∈+∞⎩,则f (6)=8 B. 命题“对任意的1x >,有21x >”的否定为“存在1x ≤,有21x ≤” C. 已知正实数a ,b 满足4a b +=,则1113a b +++的最小值为12D. 已知250x ax b -+>的解集为{}|41x x x ><或,则a+b=5【答案】ACD 【解析】 【分析】直接由分段函数表达式代入求解即可判断A ,由全称命题的否定为特称命题可判断B ,由基本不等式结合138a b +++=,巧用“1”即可求最值,根据一元二次不等式解与系数的关系可判断C. 【详解】对于A,22,[4,0]()2(4),(0,)x x f x f x x ⎧-+∈-=⎨-∈+∞⎩,所以(6)2(2)4(2)4(20)8f f f ==-=-=,正确;对于B ,命题“对任意的1x >,有21x >”为全称命题,否定为特称命题,即“存在1x >,有21x ≤”,不正确;对于C ,由4a b +=,可得138a b +++=, 所以11111()(13)13813a b a b a b +=++++++++13111(11)(281382b a a b ++=+++≥+=++, 当且仅当3113b a a b ++=++,即3,1a b ==时,1113a b +++取得最小值12,正确.对于D ,250x ax b -+>的解集为{}|41x x x ><或,所以250x ax b -+=的两个根式1和4,所以1451144a ab b +==⎧⎧⇒⎨⎨⨯==⎩⎩,所以5a b +=,正确.故选:ACD. 11. 关于函数()1x f x x,下列结论正确的是( )A. ()f x 的图象过原点B. ()f x 是奇函数C. ()f x 在区间(1,+∞)上单调递增D. ()f x 是定义域上的增函数【答案】AC 【解析】 【分析】根据函数奇偶性定义、单调性定义以及计算函数值进行判断选择.【详解】()(0)01x f x f x,所以A 正确,101x x ,因此()1x f x x不是奇函数,B 错误,1()111xf x xx ()f x 在区间(1,+∞)和(,1)-∞上单调递增,所以C 正确,D 错误, 故选:AC【点睛】本题考查函数奇偶性与单调性,考查基本分析判断能力,属基础题.12. 德国著名数学家狄利克雷在数学领域成就显著,狄利克雷函数就以其名命名,其解析式为1,()0,x D x x ⎧=⎨⎩是有理数是无理数,关于函数D()x 有以下四个命题,其中真命题是( )A. ,D(D())1x R x ∀∈=B. ,,D()D()D()x y R x y x y ∃∈+=+C. 函数D()x 是偶函数D. 函数D()x 是奇函数【答案】ABC 【解析】【分析】根据自变量x 是有理数和无理数进行讨论,可判定A 、C 、D ,举特例根据x =和x =判断B 即可得到答案.【详解】对于A 中,若自变量x 是有理数,则[]()(1)1D D x D ==, 若自变量x 是无理数,则[]()(0)1D D x D ==,所以A 是真命题;当x=y =x y +=则D()0,D()D()000x y x y +=+=+=,满足D()D()D()x y x y +=+,所以B 正确; 对于C ,当x 为有理数时,则x -为有理数, 则()()1D x D x -==. 当x无理数时,则x -为无理数,则()()0D x D x -==.故当x ∈R 时,()()D x D x -=,∴函数为偶函数,所以C 是真命题;对于D 中,若自变量x 是有理数,则x -也是有理数,可得()()112D x D x +-=+=,所以D()x 不是奇函数,D 不正确. 所以D 是假命题; 故选:ABC.三、填空题:本题共4小题,每小题5分,共20分. 13. 若)12fx x x =-()f x 的解析式为________.【答案】()()2431f x x x x =-+≥ 【解析】 【分析】 换元法令1t x =即可求出函数解析式;或者配凑法求解析式.【详解】解:(换元法)令1t x =,则1t ≥,1x t =-,()21x t =-, ∵)12fx x x =-∴()()()2212143f t t t t t =---=-+,(配凑法)∵)12fx x x =-)2141x x =-))21413x x =-+,11x ≥,∴()()2431f x x x x =-+≥,故答案为:()()2431f x x x x =-+≥.【点睛】方法点睛:本题主要考查函数解析式的求法,常用方法有:(1)换元法或配凑法:已知()()f g x 求()f x ,一般采用换元法或配凑法,令()t x g =,代入求出()f t ,或者将()()f g x 中配凑成关于()g x 的式子,由此可求得()f x ; (2)待定系数法:已知函数类型常用待定系数法; (3)方程组法:已知()f x 、1f x ⎛⎫⎪⎝⎭满足的关系式或()f x 、()f x -满足的关系式常用方程组法,将条件中的x -或1x替换成x 得另一方程,再解方程组即可求得答案. 14. 已知函数22x y a -=+(0a >且1a ≠)恒过定点(),m n ,则m n +=________________. 【答案】5 【解析】 【分析】当20x -=时,函数值域与a 没有关系,由此求得恒过的定点(),m n ,并求得表达式的值. 【详解】当20x -=,即2x =时,函数值域与a 没有关系,此时3y =,故函数过定点()2,3,即2m =,3n =,所以235m n +=+=.【点睛】本小题主要考查指数函数横过定点的问题,当指数函数底数为0的时候,01a =,由此求得恒过的定点,属于基础题.15. 若不等式2(2)2(2)40a x a x -+--<对一切x ∈R 成立,则a 的取值范围是 _ _ . 【答案】(]2,2- 【解析】【详解】当20a -=,2a =时不等式即为40-< ,对一切x ∈R 恒成立 ①当2a ≠时,则须()()220{421620a a a -<-+-<= ,∴22a -<<② 由①②得实数a 的取值范围是(]2,2-, 故答案为(]2,2-.16. 定义区间[1x ,2x ]的长度为2x -1x ,若函数y =|log 2x |的定义域为[a ,b ],值域为[0,3]到,则区间[a ,b ]的长度最大值为______ 【答案】638【解析】 【分析】先由函数值域求出函数定义域的取值范围,然后求出区间[a ,]b 的长度的最大值. 【详解】因为函数2|log |y x =的定义域为[a ,]b ,值域为[0,3],23log 3x ∴-, 解得188x ,故函数的定义域为1[8,8], 此时,函数的定义域的区间长度为163888-=, 故答案为638. 【点睛】本题主要考查新定义的理解及应用,考查对数函数的图象和性质,考查绝对值不等式的解法,意在考查学生对这些知识的理解掌握水平.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 计算:(110421()0.25(22-+⨯;(2)7log 2334log lg25lg47log 8log +-+⋅【答案】(1)7-;(2)2.【解析】【分析】(1)利用分数指数幂运算及根式求解即可(2)利用对数运算求解【详解】(1)原式4181(72=--+⨯=-; (2)原式32332131log 3lg1002(3log 2)(log 3)222622=+-+⋅=+-+=. 【点睛】本题考查指数幂及对数运算,是基础题 18. 已知集合{}{}22|560|60A x x x B x x ax =-+==++=,. 若B A ⊆,求实数a 的取值范围.【答案】{|5a a =-或a -<<.【解析】【分析】由题意,求得{}23A =,,再根据B A ⊆,结合韦达定理分B ≠∅和B =∅两种情况讨论即可求出答案.【详解】解:∵{}2|560A x x x =-+=, ∴{}23A =,, ∵{}2|60B x x ax =++=,B 为方程260x ax ++=的解集, ①若B ≠∅,由B A ⊆ ,∴{}2B =,或{}3B =,或{}23B =,, 当{}2B =时,方程260x ax ++=有两个相等实根,即122x x ==,1246x x =≠,∴ 不合题意,同理{}3B ≠,同理当{}23B =,时, 5a =-,符合题意; ②若B =∅,则2460a ∆=-⨯<,∴a -<<综上所述,实数a 的取值范围为{|5a a =-或a -<.【点睛】易错点睛:本题主要考查根据集合间的包含关系求参数的取值范围,解题时容易忽略子集可能为空集的情况,属于基础题.19. 已知()f x 是定义在R 上的奇函数,当0x >时,2()4f x x x =-,(1)求()f x 的解析式;(2)求不等式()f x x >的解集.【答案】(1)224,0()0,04,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩;(2)(5,0)(5,)-⋃+∞.【解析】【分析】(1)根据奇函数的性质进行求解即可;(2)根据函数的解析式分类讨论进行求解即可.【详解】(1)∵()f x 是定义在R 上的奇函数,∴(0)0f =.又当0x <时,0x ->,∴22()(4)4()f x x x x x ---=+-=.又()f x 为奇函数,∴()()f x f x -=-,∴2()4(0)f x x x x =--<,∴224,0()0,04,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩.(2)当0x >时,由()f x x >得24x x x ->,解得5x >;当0x =时,()f x x >无解;当0x <时,由()f x x >得24x x x -->,解得5x 0-<<.综上,不等式()f x x >的解集用区间表示为(5,0)(5,)-⋃+∞.【点睛】本题考查了奇函数的性质,考查了分类讨论思想,考查了数学运算能力.20. 已知lg(3x)+lgy =lg(x +y +1).(1)求xy 的最小值;(2)求x +y 的最小值.【答案】(1)1 (2)2【解析】解:由lg(3x)+lgy =lg(x +y +1)得0{031x y xy x y >>=++(1)∵x>0,y>0,∴3xy=x +y1,∴3xy-即2-当且仅当x =y =1时,等号成立.∴xy 的最小值为1.(2)∵x>0,y>0,∴x+y +1=3xy≤3·(2x y +)2, ∴3(x+y)2-4(x +y)-4≥0,∴[3(x+y)+2][(x +y)-2]≥0,∴x+y≥2,当且仅当x =y =1时取等号,∴x+y 的最小值为2.21. 已知二次函数()225f x x ax =-+,其中1a >. (Ⅰ)若函数()f x 的定义域和值域均为[]1,a ,求实数a 的值;(Ⅱ)若函数()f x 在区间(],2-∞上单调递减,且对任意的1x ,[]21,1x a ∈+,总有()()123f x f x -≤成立,求实数a 的取值范围.【答案】(Ⅰ)2;(Ⅱ)2,1a ⎡∈⎣.【解析】【分析】(Ⅰ)求出()f x 的单调性,求出函数的最值,得到关于a 的方程,解出即可;(Ⅱ)根据()f x 在区间(],2-∞上是减函数,得出a 的一个取值范围;再对任意的1x ,[]21,1x a ∈+,()()()()12max 13f x f x f a f -=-≤,又可求出a 的一个取值范围;最后两者取交集,则问题解决.【详解】(Ⅰ)()225f x x ax =-+,开口向上,对称轴是1x a => ∴()f x []1,a 递减,则()1f a =,即22251a a -+=,故2a =;(Ⅱ)因为()f x 在区间(],2-∞上是减函数,所以2a ≥.因此任意的1x ,[]21,1x a ∈+,总有()()123f x f x -≤,只需()()13f a f -≤即可解得:11a ≤,又2a ≥因此2,1a ⎡∈+⎣.【点睛】本题主要考查了已知二次函数单调区间求参数的范围以及根据二次函数的值域求参数的值,属于中档题.22. 已知()f x 是定义在区间[1,1]-上的奇函数,且(1)1f =,若,[1,1]a b ∈-,0a b +≠时,有()()0f a f b a b+>+. (1)判断函数()f x 在[1,1]-上是增函数,还是减函数,并证明你的结论;(2)若2()55f x m mt ≤--对所有[1,1]x ∈-,[1,1]t ∈-恒成立,求实数m 的取值范围.【答案】(1)是增函数,证明见解析;(2)(,6][6,)-∞-+∞.【解析】【分析】(1)根据函数单调性的定义即可证明f (x )在[﹣1,1]上是的增函数;(2)利用函数奇偶性和单调性之间的关系将不等式max ()f x ≤m 2﹣5mt -5进行转化,结合二次函数性质即可求实数m 的取值范围.【详解】(1)函数()f x 在[-1,1]上是增函数.设1211x x∵()f x 是定义在[-1,1]上的奇函数,∴2121()()()()f x f x f x f x -=+-.又1211x x ,∴21()0x x +->, 由题设2121()()0()f x f x x x +->+-有21()()0f x f x +->,即12()()f x f x <, 所以函数()f x 在[-1,1]上是增函数.(2)由(1)知max ()(1)1f x f ==,∴2()55f x m mt ≤--对任意[1,1]x ∈-恒成立,只需2155m mt ≤--对[1,1]t ∈-]恒成立,即2560m mt --≥对[1,1]t ∈-恒成立,设2()56g t m mt =--,则(1)0(1)0g g -≥⎧⎨≥⎩22560560m m m m ⎧+-≥⇔⎨--≥⎩6,11,6m m m m ≤-≥⎧⇔⎨≤-≥⎩, 解得6m ≤-或6m ≥,-∞-+∞.∴m的取值范围是(,6][6,)【点睛】本题主要考查函数奇偶性和单调性的应用,将不等式转化为函数问题是解决本题的关键.综合性较强,运算量较大.。

2019-2020学年市第六中学高一上学期期中数学试题(解析版)

2019-2020学年市第六中学高一上学期期中数学试题(解析版)

2019-2020学年市第六中学高一上学期期中数学试题(解析版)2019-2020学年市第六中学高一上学期期中数学试题一、单选题1.设集合M=[1,2],N={x∈Z|-1A.[1,2]B.(-1,3)C.{1}D.{1,2}【答案】D【解析】集合N为整数集,所以先用列举法求出集合N,然后根据交集的定义求出即可.【详解】解:,.故选:D.【点睛】本题考查交集的概念和运算,解题的关键是先分析出集合中的代表元素是整数,属于基础题.2.已知集合A={x|x>2},B=,则B∩∁RA等于()A.{x|2≤x≤5}B.{x|-1≤x≤5}C.{x|-1≤x≤2}D.{x|x≤-1}【答案】C【解析】已知集合A,B,则根据条件先求出,然后根据交集的定义求出即可.【详解】解:集合A={x|x>2},所以,又集合,则.故选:C.【点睛】本题考查交集和补集的概念和计算,属于基础题.3.函数f(x)=+lg(3x+1)的定义域是()A.(-∞,1)B.C.【答案】B【解析】函数f(x)的定义域即:即被开方数大于等于0,分母不为0,且对数函数的真数有意义,根据条件列出方程组,解出的范围即为所求.【详解】解:函数f(x)=+lg(3x+1)的定义域是,解得:,所以函数f(x)的定义域是.故选:B.【点睛】本题考查求复合函数的定义域,解题的关键是保证每部分都有意义,属于基础题.4.已知f()=x-x2,则函数f(x)的解析式为()A.f(x)=x2-x4B.f(x)=x-x2C.f(x)=x2-x4(x≥0)D.f(x)=-x(x≥0)【答案】C【解析】令(),解出,利用换元法将代入解析式即可得出答案.【详解】解:令(),则,所以(),所以f(x)=x2-x4().故选:C.【点睛】本题考查利用换元法求函数解析式,解题的关键是注意换元之后的定义域,属于基础题.5.与函数相同的函数是()A.B.C.D.【答案】D【解析】试题分析:A中对应关系不同;B中定义域不同;C中定义域不同;D中对应关系,定义域均相同,是同一函数【考点】函数是同一函数的标准6.下列函数中,既是偶函数又在区间上单调递减的是()A.C.D.【答案】C【解析】试题分析:因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数的图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C。

黑龙江省穆棱林业局第一中学2020-2021学年高一上学期期中考试数学试卷 答案和解析

黑龙江省穆棱林业局第一中学2020-2021学年高一上学期期中考试数学试卷 答案和解析
3.D
【解析】
由 .
所以
故选D.
4.A
【详解】
因为 ,所以 .
和 在 上单调递增
由零点存在性定理知最多有一个零点,又根据题意知有零点,所以只能有一个.
,所以零点必在 故选A.
点睛:本题考查零点存在性定理的应用,属于基础题.如果函数 在区间[a,b]上的图象是连续不断的一条曲线,并且有 ,那么函数 在区间[a,b]内有零点,即存在 ,使得 ,这个c也就是方程 的实数根.但是反之不一定成立.
.
答案为:1.
14. 或
【解析】
因为
所以函数 .
所以函数 的减区间为 或 .
15.
【解析】
函数 若 在 上单调递增,
则 ,解得 .
故答案为: .
点睛:本题考查分段函数的应用,函数的单调性以及指数函数的性质的应用,考查基本知识的应用;要使分段函数单调递增,必须满足左段单调递增,右段单调递增,同时最容易遗漏的是左端的最小值不小于右段的最大值.
12.C
【分析】
画出 的图像,再表达出 分析最值即可.
【详解】
由题意作图,由 有 ,故 .当 时, .所以 ,又 .所以当 时取最大值 ,当 时取最小值2.
所以
故选C
【点睛】
本题主要考查函数的零点问题,主要通过画图求得自变量之间的关系.注意在求函数值的取值范围时先求解自变量的取值范围.
13.1
【解析】
黑龙江省穆棱林业局第一中学【最新】高一上学期期中考试数学试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 , ,则( )
A.A⊆BB.B⊆AC.A∩B= D.A∪B=R

2020-2021学年广东省深圳高级中学高一(上)期中数学试卷(附答案详解)

2020-2021学年广东省深圳高级中学高一(上)期中数学试卷(附答案详解)

2020-2021学年广东省深圳高级中学高一(上)期中数学试卷一、单选题(本大题共8小题,共40.0分)1. 已知集合A ={x ∈R|3x +2>0},B ={x ∈R|(x +1)(x −3)>0},则A ∩B =( )A. (−∞,−1)B. (−1,−23)C. ﹙−23,3﹚D. (3,+∞)2. 如果a <b <0,那么下列各式一定成立的是( )A. |a|<|b|B. a 2<b 2C. a 3<b 3D. 1a <1b3. 德国数学家秋利克在1837年时提出“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,“这个定义较清楚地说明了函数的内涵,只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(2020))的值为( )A. 1B. 2C. 3D. 20184. 若命题“∃x 0∈R ,使得x 02+mx 0+2m −3<0”为假命题,则实数m 的取值范围是( )A. [2,6]B. [−6,−2]C. (2,6)D. (−6,−2)5. 设a =0.60.3,b =0.30.6,c =0.30.3,则a ,b ,c 的大小关系为( )A. b <a <cB. a <c <bC. b <c <aD. c <b <a6. 若实数a ,b 满足1a +4b =√ab ,则ab 的最小值为( )A. √2B. 2C. 2√2D. 47. 已知函数f(x)={2x ,x ≥2(x −1)2,x <2,若关于x 的方程f(x)=k 有三个不同的实根,则数k 的取值范围是( )A. (0,1)B. (1,2)C. (0,2)D. (1,3)8. 已知函数f(x)=2+x2+|x|,x ∈R ,则不等式f(x 2−2x)<f(2x −3)的解集为( )A. (1,2)B. (1,3)C. (0,2)D. (1,32]二、多选题(本大题共4小题,共20.0分)9.下列函数中,最小值是2的是()A. y=a2−2a+2a−1(a>1) B. y=√x2+2+1√x2+2C. y=x2+1x2D. y=x2+2x10.下列四个结论中正确的是()A. 命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”B. 命题“至少有一个整数n,n2+1是4的倍数”是真命题C. “a>5且b>−5”是“a+b>0”的充要条件D. 当α<0时,幂函数y=xα在区间(0,+∞)上单调递减11.如图1是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入−支出费用).由于目前本条线路亏损,公司有关人员将图1变为图2与图3,从而提出了扭亏为盈的两种建议.下面有4种说法中正确的是()A. 图2的建议是:减少支出,提高票价B. 图2的建议是:减少支出,票价不变C. 图3的建议是:减少支出,提高票价D. 图3的建议是:支出不变,提高票价12.对∀x∈R,[x]表示不超过x的最大整数.十八世纪,y=[x]被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是()A. ∃x∈R,x≥[x]+1B. ∀x,y∈R,[x]+[y]≤[x+y]C. 函数y=x−[x](x∈R)的值域为[0,1)D. 若∃t∈R,使得[t3]=1,[t4]=2,[t5]=3…,[t n]=n−2同时成立,则正整数n的最大值是5三、单空题(本大题共4小题,共20.0分)13.已知函数f(x)=a x−2−4(a>0,a≠1)的图象恒过定点A,则A的坐标为.14.若函数f(x)=ax2+2ax+1在[1,2]上有最大值4,则a的值为.15.y=f(x)是定义域R上的单调递增函数,则y=f(3−x2)的单调递减区间为.16.对于函数f(x),若在定义域存在实数x,满足f(−x)=−f(x),则称f(x)为“局部奇函数”.若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则实数m 的取值范围为.四、解答题(本大题共6小题,共70.0分)17.化简求值:(1)0.064−13−(−18)0+1634+0.2512(2)12lg25+lg2+(13)log32−log29×log32.18.设函数y=√−x2+7x−12的定义域为集合A,不等式1x−2≥1的解集为集合B.(1)求集合A∩B;(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,求实数a的取值范围.19.已知函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值的和为6.(1)求函数f(x)解析式;(2)求函数g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值.20.已知函数f(x)是R上的偶函数,当x≥0时,f(x)=x3.(1)求x<0时f(x)的解析式;(2)解关于x的不等式f(x+1)≥8f(x).21.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度y1与时间t满足关系式:y1=4−at(0<a<43,a为常数),若使用口服方式给药,则药物在白鼠血液内的浓度y2与时间t满足关系式:y2={√t,0<t<13−2t,1≤t≤3,现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.22. 定义在R 上的函数g(x)和二次函数ℎ(x)满足:g(x)+2g(−x)=e x +2e x −9,ℎ(−2)=ℎ(0)=1,ℎ(−3)=−2. (1)求g(x)和ℎ(x)的解析式;(2)若对于x 1,x 2∈[−1,1],均有ℎ(x 1)+ax 1+5≥g(x 2)+3−e 成立,求a 的取值范围;(3)设f(x)={g(x),x >0ℎ(x),x ≤0,在(2)的条件下,讨论方程f[f(x)]=a +5的解的个数.答案和解析1.【答案】D【解析】【分析】本题考查一元二次不等式的解法,交集及其运算,考查计算能力,属于基础题.先求出集合B和A,然后利用交集运算求解A∩B.【解答】解:因为B={x∈R|(x+1)(x−3)>0}={x|x<−1或x>3},},又集合A={x∈R|3x+2>0}={x|x>−23}∩{x|x<−1或x>3}={x|x>3},所以A∩B={x|x>−23故选:D.2.【答案】C【解析】【分析】本题考查了不等式的基本性质,属基础题.根据条件取特殊值a=−2,b=−1,即可排除ABD;由不等式的基本性质,即可判断C.【解答】解:由a<b<0,取a=−2,b=−1,则可排除ABD;由a<b<0,根据不等式的基本性质可知C成立.故选:C.3.【答案】C【解析】【分析】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.先求出f(2020)=2018,从而f(f(2020))=f(2018),由此能求出结果.【解答】解:由题意知:f(2020)=2018,f(f(2020))=f(2018)=3.故选:C.4.【答案】A【解析】【分析】本题考查存在量词命题的真假,二次不等式恒成立,考查转化思想.先写出原命题的否定,再根据原命题为假,其否定一定为真,利用不等式对应的是二次函数,结合二次函数的图象与性质建立不等关系,即可求出实数m的取值范围.【解答】解:命题“∃x0∈R,使得x02+mx0+2m−3<0”的否定为:“∀x∈R,都有x2+mx+2m−3≥0”,由于命题“∃x0∈R,使得x02+mx0+2m−3<0”为假命题,则其否定为真命题,∴Δ=m2−4(2m−3)≤0,解得2≤m≤6.则实数m的取值范围是[2,6].故选:A.5.【答案】C【解析】【分析】本题主要考查了幂函数和指数函数的性质,是基础题.利用幂函数y=x0.3在(0,+∞)上单调递增,比较出a,c的大小,再利用指数函数y=0.3x 在R上单调递减,比较出b,c的大小,从而得到a,b,c的大小关系.【解答】解:∵幂函数y=x0.3在(0,+∞)上单调递增,且0.6>0.3,∴0.60.3>0.30.3,即a>c,∵指数函数y=0.3x在R上单调递减,且0.6>0.3,∴0.30.6<0.30.3,即b<c,∴b<c<a,故选:C.6.【答案】D【解析】【分析】本题考查了利用基本不等式求最值,属于基础题.由已知得a,b>0,利用√ab=1a +4b≥2√1a⋅4b即可得出ab≥4,验证等号成立的条件.【解答】解:实数a,b满足1a +4b=√ab,则a,b>0.∴√ab=1a +4b≥2√1a⋅4b,可得ab≥4,当且仅当1a =4b,a=1,b=4时取等号.则ab的最小值为4.故选:D.7.【答案】A【解析】【分析】本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题.题目等价于函数y=f(x)的图象与直线y=k有3个交点,作出图象,数形结合即可【解答】解:作出函数f(x)的图象如图:若关于x 的方程f(x)=k 有三个不同的实根,即函数y =f(x)的图象与直线y =k 有三个交点,根据图象可知,k ∈(0,1). 故选:A .8.【答案】A【解析】 【分析】本题考查分段函数的性质以及应用,注意将函数解析式写出分段函数的形式,属于中档题.根据题意,将函数的解析式写出分段函数的形式,据此作出函数的大致图象,据此可得原不等式等价于{x 2−2x <0x 2−2x <2x −3,解可得x 的取值范围,即可得答案.【解答】解:根据题意,函数f(x)=2+x2+|x|={−4x−2−1,x <01,x ≥0,其图象大致为:若f(x 2−2x)<f(2x −3),则有{x 2−2x <0x 2−2x <2x −3,解可得:1<x <2,即不等式的解集为(1,2);故选:A.9.【答案】AC【解析】【分析】本题考查了基本不等式的应用,关键掌握应用基本不等式的基本条件,一正二定三相等,属于基础题.根据应用基本不等式的基本条件,分别判断即可求出.【解答】解:对于A:a−1>0,y=a2−2a+2a−1=(a−1)2+1a−1=(a−1)+1a+1≥2√(a−1)⋅1a−1=2,当且仅当a−1=1a−1,即a=2时取等号,故A正确;对于B:y=√x2+2√x2+2≥2,当且仅当√x2+2=√x2+2,即x2=−1时取等号,显然不成立,故B错误;对于C:y=x2+1x2≥2√x2⋅1x2=2,当且仅当x=±1时取等号,故C正确;对于D:当x<0时,无最小值,故D错误.故选:AC.10.【答案】AD【解析】【分析】本题考查命题的真假的判断,考查充要条件,命题的否定,幂函数的性质等知识的应用,是基本知识的考查.利用命题的否定判断A;令n=2k和n=2k+1,k∈Z分析n2+1是不是4的倍数判断B;根据充要条件判断C;由幂函数的性质判断D即可.【解答】解:命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”,满足命题的否定形式,所以A正确;令n=2k,k∈Z,则n2+1=4k2+1不是4的倍数,令n=2k+1,k∈Z,则n2+1=4k2+4k+2不是4的倍数,所以“至少有一个整数n,n2+1是4的倍数”是假命题,所以B不正确;“a>5且b>−5”推出“a+b>0”成立,反之不成立,如a=5,b=−4,满足a+ b>0,但是不满足a>5且b>−5,所以“a>5且b>−5”是“a+b>0”的充要条件不成立,所以C不正确.当α<0时,幂函数y=xα在区间(0,+∞)上单调递减,满足幂函数的性质,所以D正确;故选:AD.11.【答案】BD【解析】【分析】本题考查了用函数图象说明两个量之间的变化情况,主要根据实际意义进行判断,考查了读图能力和数形结合思想.根据题意知图象反应了收支差额y与乘客量x的变化情况,即直线的斜率说明票价问题;当x=0的点说明公司的支出情况,再结合图象进行说明.【解答】解:根据题意和图(2)知,两直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0但是支出的变少了,即说明了此建议是减少支出而保持票价不变;由图(3)看出,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持支出不变,故选:BD.12.【答案】BCD【解析】【分析】本题考查函数新定义,正确理解新定义是解题基础,由新定义把问题转化不等关系是解题关键.由新定义得[x]≤x <[x]+1,可得函数f(x)=x −[x]值域判断C ;根据题意,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,n ≤5时,存在t ∈[√35,√23)满足题意,判断D . 【解答】解:∀x ∈R ,x <[x]+1,故A 错误;由“取整函数”定义可得,∀x ,y ∈R ,[x]≤x ,[y]≤y ,由不等式的性质可得[x]+[y]≤x +y ,所以[x]+[y]≤[x +y],B 正确;由定义得[x]≤x <[x]+1,所以0≤x −[x]<1,所以函数f(x)=x −[x]的值域是[0,1),C 正确;若∃t ∈R ,使得[t 3]=1,[t 4]=2,[t 5]=3,…[t n ]=n −2同时成立,则1≤t <√23,√24≤t <√34,√35≤t <√45,√46≤t <√56,…√n −2n ≤t <√n −1n ,因为√46=√23,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,只有n ≤5时,存在t ∈[√35,√23)满足题意,故选:BCD .13.【答案】(2,−3)【解析】 【分析】本题主要考查指数函数的性质,利用a 0=1的性质是解决本题的关键.比较基础. 根据指数函数的性质,令指数为0进行求解即可求出定点坐标. 【解答】解:由x −2=0得x =2,此时f(2)=a 0−4=1−4=−3, 即函数f(x)的图象过定点A(2,−3), 故答案为:(2,−3)14.【答案】38【解析】 【分析】口向上和向下两种情况判定函数值在何时取最大值,并根据最大值为4,即可求出对应的实数a的值【解答】解:当a=0时,f(x)=1,不符合题意,舍去.当a≠0时,f(x)的对称轴方程为x=−1,(1)若a<0,则函数图象开口向下,函数在[1,2]递减,当x=1时,函数取得最大值4,即f(1)=a+2a+1=4,解得a=1(舍).(2)若a>0,函数图象开口向上,函数在[1,2]递增,当x=2时,函数取得最大值4,即f(2)=4a+4a+1=4,解得a=3,8,综上可知,a=38.故答案为:3815.【答案】[0,+∞)【解析】【分析】本题考查了复合函数的单调性问题,考查二次函数的性质,属于中档题.根据复合函数单调性“同增异减”的原则,问题转化为求y=3−x2的单调递减区间,求出即可.【解答】解:根据复合函数单调性“同增异减”的原则,因为y=f(x)是定义域R上的单调递增函数,要求y=f(3−x2)的单调递减区间,即求y=3−x2的单调递减区间,而函数y=3−x2在[0,+∞)单调递减,故y=f(3−x2)的单调递减区间是[0,+∞),故答案为:[0,+∞).16.【答案】[−2,+∞)【分析】本题考查函数与方程的关系,关键是理解“局部奇函数”的定义,属于拔高题.根据“局部奇函数“的定义便知,若函数f(x)是定义在R上的“局部奇函数”,只需方程(2x+2−x)2−m(2x+2−x)−8=0有解.可设2x+2−x=t(t≥2),从而得出需方程t2−mt−8=0在t≥2时有解,从而设g(t)=t2−mt−8,由二次函数的性质分析可得答案.【解答】解:根据题意,由“局部奇函数”的定义可知:若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则方程f(−x)=−f(x)有解;即4−x−m⋅2−x−3=−(4x−m⋅2x−3)有解;变形可得4x+4−x−m(2x+2−x)−6=0,即(2x+2−x)2−m(2x+2−x)−8=0有解即可;设2x+2−x=t(t≥2),则方程等价为t2−mt−8=0在t≥2时有解;设g(t)=t2−mt−8=0,必有g(2)=4−2m−8=−2m−4≤0,解可得:m≥−2,即m的取值范围为[−2,+∞);故答案为:[−2,+∞).17.【答案】解:(1)0.064−13−(−18)0+1634+0.2512=0.43×(−13)−1+24×34+0.52×12=2.5−1+8+0.5=10;(2)12lg25+lg2+(13)log32−log29×log32=lg5+lg2+3−log32−2(log23×log32)=1+12−2=−12.【解析】本题考查了指数幂和对数的运算的性质,属于基础题.(1)根据指数幂的运算性质计算即可;(2)根据对数的运算性质计算即可.18.【答案】解:由题意得:−x2+7x−12≥0,解得:3≤x≤4,故A=[3,4],∵1x−2≥1,∴x−3x−2≤0,解得:2<x≤3,故B=(2,3],(1)A∩B={3};(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,即[3,4]⫋(a,+∞),故a<3,故a的取值范围是(−∞,3).【解析】本题考查了一元二次不等式的求解,集合的交集运算,考查了充分必要条件,考查了推理能力与计算能力,属于基础题.(1)分别求出集合A,B,求出A∩B即可;(2)根据集合的包含关系求出a的范围即可.19.【答案】解:(1)函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值之和为6,则a+a2=6,即a2+a−6=0,解得a=2或a=−3(舍),故a=2,∴f(x)=2x;(2)g(x)=f(2x)−8f(x)=22x−8⋅2x,令2x=t,则原函数化为ℎ(t)=t2−8t,t∈[2,2m],其对称轴方程为t=4,当2m≤4,即1<m≤2时,函数最小值为(2m)2−8⋅2m=4m−8⋅2m;当2m>4,即m>2时,函数的最小值为42−8×4=−16.∴g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值为g(x)min={4m−8⋅2m,1<m≤2−16,m>2.【解析】本题考查指数函数的解析式、单调性与最值,二次函数的性质,是中档题.(1)根据指数函数的性质建立方程a+a2=6,即可求a的值,进一步得到函数解析式;(2)求出函数g(x)=f(2x)−8f(x)的解析式,换元后对m分类,利用二次函数的性质求最值.20.【答案】解:(1)根据题意,设x <0,则−x >0,则f(−x)=(−x)3=−x 3,又由f(x)为偶函数,则f(x)=f(−x)=−x 3, 故x <0时f(x)的解析式为f(x)=−x 3; (2)根据题意,f(x)为偶函数,则f(x)=f(|x|), 所以8f(x)=8f(|x|)=8×|x|3=(2|x|)3=f(2|x|), 又由当x ≥0时,f(x)=x 3,在[0,+∞)上为增函数;则f(x +1)≥8f(x)⇔f(|x +1|)≥f(|2x|)⇒|x +1|≥|2x|, 变形可得:3x 2−2x −1≤0,解可得:−13≤x ≤1,即不等式的解集为[−13,1].【解析】本题考查函数的奇偶性的性质以及应用,涉及绝对值不等式的解法,属于中档题.(1)根据题意,设x <0,则−x >0,由函数的解析式可得f(−x)=(−x)3=−x 3,结合函数的奇偶性分析可得答案;(2)根据题意,由函数的奇偶性以及解析式分析可得原不等式等价于|x +1|≥|2x|,解可得x 的取值范围,即可得答案.21.【答案】解:(1)当a =1时,药物在白鼠血液内的浓度y 与时间t 的关系为:y =y 1+y 2={−t +√t +4,0<t <17−(t +2t),1≤t ≤3; ①当0<t <1时,y =−t +√t +4=−(√t −12)2+174,所以当t =14时,y max =174;②当1≤t ≤3时,∵t +2t ≥2√2,当且仅当t =√2时取等号, 所以y max =7−2√2(当且仅当t =√2时取到),因为174>7−2√2, 故当t =14时,y max =174.(2)由题意y ={−at +√t +4(0<t <1)7−(at +2t )(1≤t ≤3) ① −at +√t +4≥4 ⇒ −at +√t ≥0 ⇒ a ≤√t ,又0<t <1,得出a ≤1;令u =1t ,则a ≤−2u 2+3u,u ∈[13,1],可得(−2u 2+3u )min =79 所以a ≤79, 综上可得0<a ≤79, 故a 的取值范围为(0,79].【解析】本题考查学生的函数思想,考查学生分段函数的基本思路,用好分类讨论思想,注意二次函数最值问题,基本不等式在求解该题中作用.恒成立问题的处理方法.用好分离变量法.(1)建立血液中药物的浓度与时间t 的函数关系是解决本题的关键,要根据得出的函数关系式采取合适的办法解决该浓度的最值问题;二次函数要注意对称轴和区间的关系、还要注意基本不等式的运用;(2)分段求解关于实数a 的范围问题,注意分离变量法的应用.22.【答案】解:(1)∵g(x)+2g(−x)=e x +2e x −9,∴g(−x)+2g(x)=e −x +2e x −9, 由以上两式联立可解得,g(x)=e x −3; ∵ℎ(−2)=ℎ(0)=1,∴二次函数的对称轴为x =−1,故设二次函数ℎ(x)=a(x +1)2+k , 则{a +k =14a +k =−2,解得{a =−1k =2,∴ℎ(x)=−(x +1)2+2=−x 2−2x +1;(2)由(1)知,g(x)=e x −3,其在[−1,1]上为增函数,故g(x)max =g(1)=e −3,∴ℎ(x 1)+ax 1+5≥e −3+3−e =0对任意x 1∈[−1,1]都成立,即x 12+(2−a)x 1−6≤0对任意x ∈[−1,1]都成立,∴{1−(2−a)−6≤01+(2−a)−6≤0,解得−3≤a ≤7, 故实数的a 的取值范围为[−3,7];(3)f(x)={e x −3,x >0−x 2−2x +1,x ≤0,作函数f(x)的图象如下,令t=f(x),a∈[−3,7],则f(t)=a+5∈[2,12],①当a=−3时,f(t)=2,由图象可知,此时方程f(t)=2有两个解,设为t1=−1,t2=ln5∈(1,2),则f(x)=−1有2个解,f(x)=ln5有3个解,故共5个解;②当−3<a<e2−8时,f(t)=a+5∈(2,e2−3),由图象可知,此时方程f(t)=a+5有一个正实数解,设为t3=ln(a+8)∈(ln5,2),则f(x)=t3=ln(a+8)有3个解,故共3个解;③当a=e2−8时,f(t)=a+5=e2−3,由图象可知,此时方程f(t)=a+5有一个解t4=2,则f(x)=t4=2有2个解,故共2个解;④当e2−8<a≤7时,f(t)=a+5∈(e2−3,12],由图象可知,此时方程f(t)=a+5有一个解t5=ln(a+8)∈(2,ln15],则f(x)=t5有1个解,故共1个解.【解析】本题考查函数解析式的求法,考查不等式的恒成立问题及函数零点与方程解的关系,旨在考查数形结合及分类讨论思想,属于中档题.(1)运用构造方程组法可求g(x),运用待定系数法可求ℎ(x);(2)原问题等价于x12+(2−a)x1−6≤0对任意x1∈[−1,1]都成立,进而求得实数a的取值范围;(3)作出函数f(x)的图象,结合图象讨论即可.。

2020-2021学年度北京市第八中学高一上学期期中考试数学试卷【含解析】

2020-2021学年度北京市第八中学高一上学期期中考试数学试卷【含解析】

2020-2021学年度北京市第八中学高一上学期期中考试数学试卷【含解析】一、单选题1.已知集合{}{}0,1,2,3,4,0,1,2U M ==,则UM =( )A .{}0,1,2B .{}0,1,2,3,4C .{}1,2D .{}3,4【答案】D【分析】直接根据补集概念进行运算即可得解. 【详解】因为集合{}{}0,1,2,3,4,0,1,2U M ==, 所以UM ={3,4}.故选:D 2.若()11xf x x-=+,则()0f =( ) A .1 B .12C .0D .1-【答案】A【分析】直接代入函数解析式计算可得; 【详解】解:因为()11x f x x -=+,所以()100110f -==+ 故选:A【点睛】本题考查函数值的计算,属于基础题. 3.若1x y >>,则下列四个数中最小的数是( )A .2x y+ B .2xyx y+ C x D .1112x y ⎛⎫+ ⎪⎝⎭【答案】D【分析】根据1x y >>可以推出2x y +、2xy x y +x 1,1112x y ⎛⎫+ ⎪⎝⎭1<,故可得答案.【详解】因为1x y >>,所以11122x y ++>=,2xy x y +2211111y x=>=++1x >,1112x y ⎛⎫+ ⎪⎝⎭111()1211<+=, 所以四个数中最小的数是1112x y ⎛⎫+ ⎪⎝⎭. 故选:D【点睛】关键点点睛:利用不等式的性质找中间量1进行比较是解题关键. 4.命题“2R,||0x x x ∀∈+≥”的否定是( ) A .2R,||0x x x ∀∈+<B .2R,||0x x x ∀∈+≤C .2000R,0x x x ∃∈+<D .2000R,0x x x ∃∈+≥【答案】C【分析】根据全称命题的否定是特称命题即可得出. 【详解】根据全称命题的否定是特称命题,则命题“2R,||0x x x ∀∈+≥”的否定是“2000R,0x x x ∃∈+<”.故选:C.5.函数()()2212f x x a x =+-+在区间(],4-∞上递减,则a 的取值范围是( )A .[)3,-+∞B .(],3-∞-C .(],5-∞D .[)3,+∞ 【答案】B【分析】根据二次函数的单调性列式可得结果.【详解】因为函数()()2212f x x a x =+-+在区间(],4-∞上递减,所以(1)4a --≥,即3a ≤-. 故选:B【点睛】关键点点睛:掌握二次函数的单调性是解题关键.6.已知a ,b 为实数,则“a +b >4”是“a ,b 中至少有一个大于2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】A【分析】根据充分条件和必要条件的定义进行判断即可.【详解】“a+b >4”可得“a ,b 中至少有一个大于2”,反之若a=3,b=1,则a +b >4不成立.∴“a+b >4”是“a ,b 中至少有一个大于2”的充分不必要条件. 故选:A .【点睛】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.7.下列从集合M 到集合N 的对应关系中,其中y 是x 的函数的是( ) A .M ={x |x ∈Z },N ={y |y ∈Z },对应关系f :x →y ,其中2xy =B .M ={x |x >0,x ∈R },N ={y |y ∈R },对应关系f :x →y ,其中y =±2xC .M ={x |x ∈R },N ={y |y ∈R },对应关系f :x →y ,其中y =x 2D .M ={x |x ∈R },N ={y |y ∈R },对应关系f :x →y ,其中2y x= 【答案】C【分析】根据函数的定义作出判断即可.【详解】A .M 中的一些元素,在N 中没有元素对应,比如,x =3时,32y N =∉,∴y 不是x 的函数;B .M 中的任意元素x ,在N 中有两个元素±2x 与之对应,不满足对应的唯一性,∴y 不是x 的函数;C .满足在M 中的任意元素x ,在集合N 中都有唯一元素x 2与之对应,∴y 是x 的函数;D .M 中的元素0,通过2y x=在N 中没有元素对应,∴y 不是x 的函数. 故选:C .【点睛】本题主要考查了函数关系的判断,属于中档题.8.设x ∈R ,定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数()f x =sgn x x 的图象大致是( )A .B .C .D .【答案】C【解析】函数f(x)=|x|sgnx=,00,0,0x xxx x>⎧⎪=⎨⎪<⎩=x,故函数f(x)=|x|sgnx的图象为y=x所在的直线,故答案为C.9.设函数f(x)=()()212,1315,1x a x xa x x⎧--+≥⎪⎨+-<⎪⎩在R上是增函数,则a的取值范围是()A.(-13,3]B.( -13,2) C.(-13,2]D.[2,3]【答案】C【分析】利用分段函数是增函数,两段函数都递增列出不等式组,求解即可.【详解】函数2(1)2,1()(31)5,1x a x xf xa x x⎧--+=⎨+-<⎩在R上是增函数,可得:112310315112 aaa a-⎧⎪⎪+>⎨⎪+--++⎪⎩,解得12 3a-<故实数a的取值范围是1(3-,2].故选:C.【点睛】本题考查分段函数的单调性、二次函数的单调性,注意各段函数单调性的应用,属于易错题.10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【详解】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故C 错误;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故D正确故选D.【解析】1、数学建模能力;2、阅读能力及化归思想.二、填空题11.函数23()2x xf xx-=-的定义域为_________.【答案】[0,2)(2,3]【分析】由23020x xx⎧-≥⎨-≠⎩解得结果即可得解.【详解】要使函数23 ()x x f x-=只需23020x xx⎧-≥⎨-≠⎩,解得03x≤≤且2x≠,所以函数()f x的定义域为[0,2)(2,3].故答案为:[0,2)(2,3].【点睛】方法点睛:已知函数解析式,求函数定义域的方法:1、有分式时:分母不为0;2、有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0;3、有指数时:当指数为0时,底数一定不能为0;4、有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;5、有指数函数形式时:底数和指数都含有x,指数底数大于0且不等于1;6、有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1.12.设函数f(x)满足f(x-1)=4x-4,则f(x)=______.【答案】4x【分析】变形f(x-1)得出f(x-1)=4(x-1),从而得出f(x)=4x.【详解】由题意得,f(x-1)=4x-4=4(x-1),∴f(x)=4x.故答案为:4x.【点睛】本题考查了换元法求函数解析式的方法,属于基础题.13.给出下列三个函数:①222x xyx-=-;②321x xyx+=+;③2y x=其中与函数()f x x=相同的函数的序号是_________.【答案】②【分析】依次判断函数的定义域、解析式是否与已知函数的定义域、解析式都相同,找出相同函数【详解】222x xy x -=-的定义域为()(),22-∞⋃+∞,,与()f x x =定义域不同,321x x y x x +==+与()f x x =定义域、解析式均相同,2y x x ==,与()f x x =解析式不同, 故选②【点睛】判断两个函数是否为相同函数,只要比较两个函数的定义域,对应关系是否都相同,如果都相同就是相同函数14.已知()f x 为R 上的奇函数,0x >时,()31f x x x=+,则(1)(0)f f -+=_____. 【答案】2-【分析】由奇函数的性质可得(0)0f =,(1)(1)f f -=-,再由已知的解析式求出(1)f 即可【详解】解:因为()f x 为R 上的奇函数,所以(0)0f =,(1)(1)f f -=-,因为当0x >时,()31f x x x=+,所以(1)112f =+=, 所以(1)(0)202f f -+=-+=-, 故答案为:2- 15.已知函数11()(0,0)f x a x a x =->>,若()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为1,22⎡⎤⎢⎥⎣⎦,则a =________.【答案】25. 【分析】根据函数11()(0,0)f x a x a x =->>在1,22⎡⎤⎢⎥⎣⎦上单调递增,求出函数的最值,列方程组可解得结果.【详解】由题意知函数11()(0,0)f x a x a x =->>在1,22⎡⎤⎢⎥⎣⎦上单调递增, ∴1122(2)2f f ⎧⎛⎫=⎪ ⎪⎝⎭⎨⎪=⎩,即11221122a a ⎧-=⎪⎪⎨⎪-=⎪⎩,解得25a =.故答案为:25. 【点睛】本题考查了由函数解析式得单调性,根据单调性求最值,属于基础题. 16.若关于x 的不等式20ax x b ++>的解集是()1,2-,则a b +=______.【答案】1【分析】根据一元二次不等式的解集得出对应方程的两个根,再由根与系数的关系求出a ,b 即可.【详解】关于x 的不等式ax 2+x+b >0的解集是(-1,2), ∴-1,2是方程ax 2+x+b=0的两个根, ∴-1+2=-1a ,-1×2=b a, 解得a=-1,b=2; ∴a+b=-1+2=1. 故答案为:1.【点睛】本题考查了一元二次不等式对应方程的关系,解题的关键是根据不等式的解集得出不等式相应方程的根,再由根与系数的关系求参数的值.17.已知0,0x y >>,且8x y +=,则(1)(1)x y +⋅+的最大值为_____. 【答案】25【分析】将8x y +=化为(1)(1)10x y +++=后,根据基本不等式可求得结果. 【详解】因为0,0x y >>,且8x y +=,所以(1)(1)10x y +++=2(1)(1)x y ≥++(1)(1)25x y ++≤, 当且仅当4x y ==时,等号成立. 所以(1)(1)x y +⋅+的最大值为25. 故答案为:25【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.18.二次方程222320mx x m ---=的一个根大于1,另一个根小于1,则m 的取值范围是_________. 【答案】0m >或4m -< 【详解】令y=2mx 2﹣2x ﹣3m ﹣2 当m >0时,由题意:x=1时,y <0,∴2m ﹣2﹣3m ﹣2<0, ∴m >﹣4, ∴m >0,当m <0时,x=1时,y >0, ∴2m ﹣2﹣3m ﹣2>0, ∴m <﹣4,综上所述,二次方程2mx 2﹣2x ﹣3m ﹣2=0的一个根大于1,另一个根小于1时,m <﹣4或 m >0.故答案为0m >或4m -<19.已知函数()22121x kx x f x x x ,,⎧-+≤=⎨>⎩,若存在a ,b R ∈,且ab ,使得()()f a f b =成立,则实数k 的取值范围是____________. 【答案】()()-,23,∞⋃+∞【分析】由题意,可知函数()f x 在定义域内不是单调函数,结合二次函数的图象与性质及分段函数的单调性,即可得到结论.【详解】由题意可得函数()f x 在定义域内不是单调函数, 由函数()22,1f x x x =>为增函数,且1x =时,222x =,则1x ≤时,12k<或12k -+>,解得2k <或3k >, 即实数k 的取值范围是(,2)(3,)-∞⋃+∞.【点睛】本题主要考查了分段函数的解析式及其应用,其中根据题意得出分段函数不是单调函数,再利用二次函数的图象与性质求解是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.三、解答题 20.已知函数()((1,1))1||xf x x x =∈--,有下列结论: ①(1,1)x ∀∈-,等式()()0f x f x 恒成立;②[)0,m ∀∈+∞,方程|()|f x m =有两个不等的实根; ③12,,(11)x x ∀∈-,若12x x ≠,则一定有12()()f x f x ≠;④存在无数多个实数k ,使得函数()()g x f x kx =-在(1,1)-上有三个零点 则其中正确结论的序号为? 【答案】①③④【分析】根据()f x 与()f x -的解析式代入运算可知①正确;取0m =可知②错误;分析函数()f x 的单调性可知③正确,由(0)0g =,当1k >时,()g x 在(0,1)和(1,0)-内都必有一个零点,可知④正确. 【详解】对于①,(1,1)x ∀∈-,()()01||1||1||1||x x x x f x f x x x x x ,①正确;对于②,当0m =时,|()|0f x =,即||01||xx =-只有一个实根0,错误; 对于③,任取1201x x ≤<<,则12()()f x f x -=12121||1||x x x x ---121211x x x x =---122112(1)(1)(1)(1)x x x x x x ---=--1212(1)(1)x x x x -=--, 因为1201x x ≤<<,所以120x x -<,12(1)(1)0x x -->,所以12()()f x f x <,所以()f x 在[0,1)上为增函数,又由①知,()f x 为奇函数, 所以()f x 在(1,1)-上为增函数,所以③正确; 对于④,1()()1||1||x g x kx x k x x =-=---,因为(0)0g =,所以0恒是()g x 的一个零点,当1k >,01x <<时,101k x -=-必有一个解, 当1,10k x >-<<时,11k x-+0=也必有一解, 所以④正确,综上所述:正确结论的序号为①③④.【点睛】关键点点睛:对于③,判断出函数的单调性是解题关键;对于④,分01x <<和(1,0)-两种情况判断零点是解题关键.21.已知全集U =R ,集合{}29A x x =<<,{}28B x x =≥.(1)求AB ;()U B A ⋂.(2)已知集合{}2C x a x a =<<+,若C B ⊆,求实数a 的取值范围. 【答案】(1)AB {|229}x x =≤<,()U B A ⋂={|22x x ≤-或9}x ≥(2)222≤--a 或22a ≥【分析】(1)根据交集和补集的概念运算可得解; (2)根据子集关系列式可解得结果.【详解】(1){}28B x x =≥{|22x x =≤-或22}x ≥,{|2UA x x =≤或9}x ≥,所以AB {|229}x x =≤<, ()U B A ⋂={|22x x ≤-或9}x ≥.(2)因为C B ⊆,所以222a +≤-或22a ≥,即222≤--a 或22a ≥. 【点睛】关键点点睛:熟练掌握集合的交集、补集和子集的概念是解题关键. 22.已知函数223y x x =--(1)画出函数223y x x =--,](1,4x ∈-的图象(2)讨论当k 为何范围时,方程2230x x k ---=在](1,4x ∈-上的解集为空集、单元素集、双元素集.【答案】(1)答案见解析(2)答案见解析 【分析】(1)根据解析式作出图象即可;(2)依题意转化为函数223y x x =--,](1,4x ∈-的图象与直线y k =的交点个数进行求解,根据(1)中的图象可得结果.【详解】(1)函数223y x x =--,](1,4x ∈-的图象为:(2)依题意转化为函数223y x x =--,](1,4x ∈-的图象与直线y k =的交点个数进行求解,根据(1)中的图象可得:当4k <-或5k >时,方程2230x x k ---=在](1,4x ∈-上的解集为空集; 当4k =-或05k ≤≤时,方程2230x x k ---=在](1,4x ∈-上的解集为单元素集; 当40k -<<时,方程2230x x k ---=在](1,4x ∈-上的解集为双元素集. 【点睛】关键点点睛:第二问转化为函数223y x x =--,](1,4x ∈-的图象与直线y k =的交点个数进行求解是解题关键.23.已知函数21()x f x x+=.(1)判断()f x 的奇偶性并证明.(2)当(1,)x ∈+∞时,判断()f x 的单调性并证明.(3)在(2)的条件下,若实数m 满足(3)(52)f m f m >-,求m 的取值范围. 【答案】(1)奇函数,证明见解析;(2) 函数()f x 是(1,)+∞上的单调增函数,证明见解析;(3)(1,2).【分析】(1)根据函数奇偶性的定义判断并证明即可; (2)根据函数单调性的定义判断并证明即可;(3)在(2)的条件下,根据函数单调性的性质可得3521m m >->,解不等式即可求出m 的取值范围.【详解】(1) 函数()f x 是奇函数. 证:函数()f x 的定义域为(,0)(0,)-∞+∞,因为22()11()()x x f x f x x x-++-==-=--,所以函数()f x 是奇函数;(2) 函数()f x 是(1,)+∞上的单调增函数. 证:任取12(1,)x x ∈+∞,且12x x >,则2222121221211212121212121211()()()()x x x x x x x x x x x x x x f x f x x x x x x x +++------=-==121212()(1)x x x x x x --=,因为121x x >>,所以120x x ->,1210x x ->,120x x >, 所以12())0(f x f x ->,即12()()f x f x >, 所以函数()f x 是(1,)+∞上的单调增函数.(3)由(2)知函数()f x 是(1,)+∞上的单调增函数,所以3521m m >->,解得12m <<,所以m 的取值范围为(1,2).【点睛】思路点睛:解函数不等式的理论依据是函数单调性的定义,具体步骤是: (1)将函数不等式转化成12()()f x f x >的形式; (2)考查函数()f x 的单调性;(3)根据据函数()f x 在给定区间上的单调性去掉法则“f ”,转化为形如“12x x >”或“12x x <”的常规不等式,从而得解.24.已知函数()()2134f x mx m x =+--,m R ∈.(1)当1m =时,求()f x 在区间[]22-,上的最大值和最小值. (2)解关于x 的不等式()1f x >-.(3)当0m <时,若存在()01,x ∈+∞,使得()0f x >,求实数m 取值范围. 【答案】(1)最小值为5-,最大值为4;(2)答案见解析;(3)1m <-或109m -<<. 【分析】(1)根据二次函数的单调性可求得结果; (2)化为(1)(3)0mx x +->后,先对m 分类讨论,再对1m-与3分类讨论可得结果; (3)转化为()f x 在(1,)+∞上的最大值大于0,根据二次函数的知识求出最大值,再解关于m 的不等式可得结果.【详解】(1)当1m =时,()224f x x x =--在[2,1)-上递减,在(1,2]上递增,所以()f x 的最小值为(1)1245f =--=-,最大值为(2)4444f -=+-=. (2)()1f x >-可化为2(13)30mx m x +-->,即(1)(3)0mx x +->, 当0m >时,不等式化为1()(3)0x x m +->,解得1x m<-或3x >; 当0m =时,不等式化为30x ->,解得3x >;当0m <时,不等式化为1()(3)0x x m +-<, 当13m -<,即13m <-时,解得13x m -<<;当13m -=,即13m =-时,不等式无解;当13m->,即103m -<<时,解得13x m <<-.综上所述:当0m >时,不等式的解集为{|x 1x m<-或3x >}; 当0m =时,不等式的解集为{|x 3x >};当103m -<<时,不等式的解集为{|x 13x m <<-};当13m =-时,不等式的解集为空集;当13m <-时,不等式的解集为{|x 13x m -<<}.(3)当0m <时,若存在()01,x ∈+∞,使得()0f x >,则()f x 在(1,)+∞上的最大值大于0,因为()()2134f x mx m x =+--的图象的开口向下,对称轴13131222m m m --=-+>, 所以max()f x 13()2m f m -=-22(13)13(13)()442m m m m m m --=⋅+-⋅--2(13)44m m-=--, 所以2(13)404m m--->,即2(13)16m m ->-,即291010m m ++>,解得1m <-或109m -<<. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高一数学上期中试题(及答案)一、选择题1.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)2.函数()ln f x x x =的图像大致是( )A .B .C .D .3.如图,点O 为坐标原点,点(1,1)A ,若函数xy a =及log b y x =的图象与线段OA 分别交于点M ,N ,且M ,N 恰好是线段OA 的两个三等分点,则a ,b 满足.A .1a b <<B .1b a <<C .1b a >>D .1a b >>4.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 5.设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( )A .1-B .13-C .12-D .136.函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ).A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]7.若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( )A .1log log b a b aa b a b >>> B .1log log a bb ab a b a >>> C .1log log b a b aa ab b >>> D .1log log a b b aa b a b >>> 8.已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<9.已知函数()f x =2log (1),(1,3)4,[3,)1x x x x ⎧+∈-⎪⎨∈+∞⎪-⎩,则函数[]()()1g x f f x =-的零点个数为( ) A .1B .3C .4D .610.方程 4log 7x x += 的解所在区间是( ) A .(1,2) B .(3,4) C .(5,6) D .(6,7)11.函数y =)A .(41)--,B .(41)-,C .(11)-,D .(11]-, 12.已知函数()f x 的定义域为R .当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则(6)f =( ) A .2-B .1-C .0D .2二、填空题13.下列各式:(1)122[(]--= (2)已知2log 13a〈 ,则23a 〉 . (3)函数2xy =的图象与函数2x y -=-的图象关于原点对称;(4)函数()f x的定义域是R ,则m 的取值范围是04m <≤;(5)函数2ln()y x x =-+的递增区间为1,2⎛⎤-∞ ⎥⎝⎦. 正确的...有________.(把你认为正确的序号全部写上) 14.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________. 15.函数()f x =的定义域是______. 16.己知函数()f x 是定义在R 上的周期为2的奇函数,01x <<时,()4xf x =,5()(2019)2f f -+的值是____.17.已知函数f(x)=log a x +x -b(a >0,且a≠1).当2<a <3<b <4时,函数f(x)的零点为x 0∈(n ,n +1),n ∈N *,则n= . 18.已知()21f x x -=,则()f x = ____.19.已知a >b >1.若log a b+log b a=52,a b =b a ,则a= ,b= . 20.已知函数()()0f x ax b a =->,()()43ff x x =-,则()2f =_______.三、解答题21.已知定义域为R 的函数()221x x af x -+=+是奇函数.()1求实数a 的值;()2判断函数()f x 在R 上的单调性,并利用函数单调性的定义加以证明.22.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x N *∈)件.当20x ≤时,年销售总收人为(233x x -)万元;当20x >时,年销售总收人为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元.(年利润=年销售总收入一年总投资) (1)求y (万元)与x (件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?23.已知函数22()f x x x=+. (1)求(1)f ,(2)f 的值;(2)设1a b >>,试比较()f a 、()f b 的大小,并说明理由; (3)若不等式2(1)2(1)1f x x m x -≥-++-对一切[1,6]x ∈恒成立,求实数m 的最大值. 24.函数是奇函数.求的解析式;当时,恒成立,求m 的取值范围.25.设集合2{|40,}A x x x x R =+=∈,22{|2(1)10,}B x x a x a x R =+++-=∈. (1)若A B B ⋃=,求实数a 的值; (2)若A B B =I ,求实数a 的范围.26.已知函数24,02()(2)2,2x x f x x x a x a x ⎧-<≤⎪=⎨⎪-++->⎩,其中a 为实数.(1)若函数()f x 为定义域上的单调函数,求a 的取值范围.(2)若7a <,满足不等式()0f x a ->成立的正整数解有且仅有一个,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.考点:集合的关系2.A解析:A 【解析】 【分析】从图象来看图象关于原点对称或y 轴对称,所以分析奇偶性,然后再用特殊值确定. 【详解】因为函数()ln f x x x =是奇函数,排除C ,D 又因为2x = 时()0f x >,排除B 故选:A 【点睛】本题主要考查了函数的图象的判断,还考查了数形结合的思想,属于基础题.3.A解析:A 【解析】 【分析】由,M N 恰好是线段OA 的两个三等分点,求得,M N 的坐标,分别代入指数函数和对数函数的解析式,求得,a b 的值,即可求解. 【详解】由题意知(1,1)A ,且,M N 恰好是线段OA 的两个三等分点,所以11,33M ⎛⎫ ⎪⎝⎭,22,33N ⎛⎫ ⎪⎝⎭, 把11,33M ⎛⎫ ⎪⎝⎭代入函数xy a =,即1313a =,解得127a =,把22,33N ⎛⎫ ⎪⎝⎭代入函数log b y x =,即22log 33b =,即得3223b ⎛⎫== ⎪⎝⎭,所以1a b <<. 故选A. 【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答熟练应用指数函数和对数函数的解析式求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.4.B解析:B 【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算5.B解析:B 【解析】 【分析】由题意,函数()f x 在[0,)+∞上单调递减,又由函数()f x 是定义上的偶函数,得到函数()f x 在(,0)-∞单调递增,把不等式(1)()f x f x m -≤+转化为1x x m -≤+,即可求解. 【详解】易知函数()f x 在[)0,+∞上单调递减, 又函数()f x 是定义在R 上的偶函数, 所以函数()f x 在(),0-∞上单调递增, 则由()()1f x f x m -≤+,得1x x m -≥+,即()()221x x m -≥+,即()()22210g x m x m =++-≤在[],1x m m ∈+上恒成立,则()()()()()()3110121310g m m m g m m m ⎧=-+≤⎪⎨+=++≤⎪⎩,解得113m -≤≤-,即m 的最大值为13-. 【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为1x x m -≤+ 求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.6.D解析:D 【解析】 【分析】 【详解】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤-(1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.7.D解析:D 【解析】因为01a b <<<,所以10a a b b a a >>>>, 因为log log 1b b a b >>,01a <<,所以11a>,1log 0a b <.综上1log log a bb aa b a b >>>;故选D. 8.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.9.C解析:C 【解析】 【分析】令[]()()10g x f f x =-=,可得[]()1f f x =,解方程()1f x =,结合函数()f x 的图象,可求【详解】令[]()()10g x f f x =-=,则[]()1f f x =,令()1f x =,若2log (1)1x +=,解得1x =或12x =-,符合(1,3)x ∈-;若411x =-,解得5x =,符合[3,)x ∈+∞.作出函数()f x 的图象,如下图,(]1,0x ∈-时,[)()0,f x ∈+∞;()0,3x ∈时,()()0,2f x ∈;[3,)x ∈+∞时,(]()0,2f x ∈. 结合图象,若()1f x =,有3个解;若1()2f x =-,无解;若()5f x =,有1个解. 所以函数[]()()1g x f f x =-的零点个数为4个. 故选:C.【点睛】本题考查分段函数的性质,考查了函数的零点,考查了学生的推理能力,属于中档题.10.C解析:C 【解析】 【分析】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数,根据(5)(6)0f f ⋅<,可得函数4()log 7xf x x =+-的零点所在的区间为()5,6,由此可得方程4log 7x x +=的解所在区间. 【详解】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数.∵(5)0f <,(6)0>f ∴(5)(6)0f f ⋅<∴故函数4()log 7xf x x =+-的零点所在的区间为()5,6∴方程4log 7x x +=的解所在区间是()5,6 故选C.零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.11.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C12.D解析:D 【解析】 试题分析:当时,11()()22f x f x +=-,所以当时,函数是周期为的周期函数,所以,又函数是奇函数,所以,故选D .考点:函数的周期性和奇偶性.二、填空题13.(3)【解析】(1)所以错误;(2)当时恒成立;当时综上或所以错误;(3)函数上任取一点则点落在函数上所以两个函数关于原点对称正确;(4)定义域为当时成立;当时得综上所以错误;(5)定义域为由复合函解析:(3) 【解析】 (1)(112221222---⎛⎫⎡⎤-== ⎪⎢⎥⎣⎦⎝⎭,所以错误;(2)2log 1log 3aa a <=,当1a >时,恒成立;当01a <<时,023a <<,综上,023a <<或1a >,所以错误; (3)函数2xy =上任取一点(),x y ,则点(),x y --落在函数2x y -=-上,所以两个函数关于原点对称,正确;(4)定义域为R ,当0m =时,成立;当0m >时,240m m ∆=-≤,得04m <≤,综上,04m ≤≤,所以错误;(5)定义域为()0,1,由复合函数的单调性性质可知,所求增区间为10,2⎛⎫ ⎪⎝⎭,所以错误; 所以正确的有(3)。

相关文档
最新文档