七年级数学上册复习测试题2
苏科版初中数学七年级上册第2章综合测试试卷-含答案02
第二章综合测试一、选择题(共15小题)1.如果盈利2元记为“2 元”,那么“2 元”表示( )A .亏损2元B .亏损2 元C .盈利2元D .亏损4元 2.下列说法中正确的是( )A .任何有理数的绝对值都是正数B .最大的负有理数是1C .0是最小的数D .如果两个数互为相反数,那么它们的绝对值相等 3.如图,数轴上的A 、B 、C 三点所表示的数分别为a ,b ,c ,点A 与点C 到点B 的距离相等,如果a c b >>,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 4.相反数等于其本身的数是( )A .1B .0C .1D .0,1 5.一个正数的绝对值小于另一个负数的绝对值,则两数和一定是( )A .正数B .负数C .零D .不能确定和的符号 6.已知0|31|a b ,则a b 的值是( )A .4B .4C .2D .2 7.12019的倒数是( ) A .12019 B .12019C .2019D .2019 8.绝对值小于5的所有整数的和为( ) A .0 B .8 C .10 D .209.在 1.732,3.14四个数中,无理数的个数是( )A .4个B .3个C .2个D .没有10.在3.14,227,2 )个. A .1个 B .2个C .3个D .4个11,0.32 ,227,3 ,01) ,,0.101 001 000 1中,其中无理数共有( ) A .2个 B .3个C .4个D .5个12,③1729,④0.777…,⑤2 ,是无理数的是( ) A .①③⑤ B .①②⑤ C .①④ D .①⑤13.在1.732,,157,3 ,3 ,3.02中,无理数的个数是( ) A .1 B .2C .3D .414.在实数 1.414 , ,3.14 ,2 ,3.212 212 221…,3.14中,无理数的个数是( )个.A .1B .2C .3D .415.下列实数中,无理数是( )A .2B .12C .3.14 D二、填空题(共6小题)16.吐鲁番盆地低于海平面155米,记作155 m ,南岳衡山高于海平面1 900米,则衡山比吐鲁番盆地高________m .17.在有理数集合中,最小的正整数是________,最大的负整数是________.18.在数轴上将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是________. 19.请写出一个比3大比4小的无理数:________.20.请写出一个无理数________.21.下列各数中:0.3、3 、3.14、1.515 115 11…,有理数有________个,无理数有________个.三、解答题(共3小题)22.蜗牛从某点O 开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):5 ,3 ,10 ,8 ,6 ,12 ,10 .(1)求蜗牛最后是否回到出发点?(2)蜗牛离开出发点O 最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?23.(1)将下列各数填入相应的圈内:122,5,0,1.5,2,3.(2)说出这两个圈的重叠部分表示的是什么数的集合:________.24.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为是无理数.可以这样证明:ab,a与b是互质的两个整数,且0b .则222222aa bb因为b是整数且不为0,所以,a是不为0的偶数,设2a n,(n是整数),所以222b n,所以b也是偶数,与a,b无理数.第二章综合测试答案解析一、1.【答案】A【解析】 盈利2元记为“2 元”, “2 元”表示亏损2元.故选:A .本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.【答案】D【解析】A 、0的绝对值是0,故选项A 错误;B 、没有最大的负有理数也没有最小的负有理数,故选项B 错误;C 、没有最大的有理数,也没有最小的有理数,故选项C 错误;D 、根据绝对值的几何意义:互为相反数的两个数绝对值相等,故选项D 正确.故选:D .本题考查了绝对值的几何意义及互为相反数的两个数在数轴上的位置特点,以及有理数的概念,难度适中.3.【答案】C 【解析】a c b >>, 点A 到原点的距离最大,点C 其次,点B 最小,又AB BC , 原点O 的位置是在点B 、C 之间且靠近点B 的地方.故选:C .本题考查了实数与数轴,理解绝对值的定义是解题的关键.4.【答案】B【解析】根据相反数的定义,则相反数等于其本身的数只有0.故选:B .主要考查了相反数的定义,要求掌握并灵活运用.5.【答案】B【解析】一个正数的绝对值小于另一个负数的绝对值, 两数和一定是负数.故选:B .本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.【答案】D【解析】根据题意得,30a ,10b ,解得3a ,1b ,所以,312a b .故选:D .本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.【答案】C 【解析】12019的倒数是1=201912019.故选:C .考查了倒数的定义,考查了学生对概念的记忆,属于基础题. 8.【答案】A 【解析】绝对值小于5的所有整数为:0,1 ,2 ,3 ,4 ,之和为0.故选:A .此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.9.【答案】C【解析】无理数有: 故选:C .本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:0.101 001 000…等;③字母,如 等.10.【答案】B【解析】无理数有:,2 共2个.故选:B .此题主要考查了无理数的定义,其中初中范围内学习的无理数有: ,2 等;开方开不尽的数;以及像0.101 001 000 1…,等有这样规律的数.11.【答案】B,,3共有3个.故选:B .此题主要考查了无理数的定义,其中初中范围内学习的无理数有: ,2 等;开方开不尽的数;以及像0.101 001 000 1…,等有这样规律的数.12.【答案】D2 ,⑤2 .故选:D .本题考查了无理数的定义,属于基础题,解析本题的关键是熟练掌握无理数的三种形式.13.【答案】C【解析】在1.732,,157,3 ,3,3.02中,无理数有:,3,3 共3个.故选:C .此题主要考查了无理数的定义.判断一个数是否是无理数时,可紧密联系无理数的概念以及无理数常见的几种形式进行判断.14.【答案】D【解析】 1.414 是无理数, 是无理数,3.14 无限循环小数是有理数,2 是无理数,3.212 212 221…是无限不循环小数是无理数,3.14有限小数是有理数.故选:D .本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.15.【答案】D 【解析】A 、2是整数,是有理数,选项不符合题意;B 、12是分数,是有理数,选项不符合题意;C 、3.14是有限小数,是有理数,选项不符合题意;D 是无理数,选项符合题意.故选:D .本题考查了无理数的定义:无限不循环小数叫无理数.二、16.【答案】2 055【解析】吐鲁番盆地低于海平面155米,记作155 m ,则南岳衡山高于海平面1900米,记作1900 米; 衡山比吐鲁番盆地高1900(155)2055 (米).17.【答案】1 1【解析】在有理数集合中,最小的正整数是1,最大的负整数是1 .故答案为1;1 .本题主要考查了有理数的分类及定义.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.特别注意:整数和正数的区别,注意0是整数,但不是正数.18.【答案】3【解析】设点A 表示的数为x ,由题意得,740x ,解得3x ,所以,点A 表示的数是3 .故答案为:3 .本题考查了数轴,主要利用了向右平移加,向左平移减,熟记并列出方程是解题的关键.19.【答案】【解析】比3大比4小的无理数很多如 .故答案为: .此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.20.本题考查了无理数,牢记无理数的定义是解题的关键.21.【答案】3 3【解析】0.32 、3.14这三个数是有理数,31.515 115 11…这三个数是无理数,故答案为3、3.此题主要考查了无理数和有理数的知识点.三、22.【答案】(1) 531086121027270,所以,蜗牛最后能回到出发点.(2)蜗牛离开出发点0的距离依次为:5、2、12、4、2、10、0,所以,蜗牛离开出发点0最远时是12厘米.(3)1 053108612531086121054 厘米, 每爬1厘米奖励一粒芝麻, 蜗牛一共得到54粒芝麻.【解析】(1)把爬过的路程记录相加,即可得解.(2)求出各段距离,然后根据正负数的意义解析.(3)求出爬行过的各段路程的绝对值的和,然后解析即可.23.【答案】(1)(2)正整数【解析】(1)答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
专题5.2期中复习与测试专项练习(2)【挑战满分】年七年级数学上册阶段性复习精选精练(人教版)含答案
专题5.2 期中复习与测试专项练习(2)一、单选题1.联合国《生物多样性公约》第十五次缔约方大会(COP 15)即将在云南省昆明市举行,云南是中国生物多样性最为丰富的省份之一,自然资源丰富,森林覆盖率达到了65.04%.若近五年林地面积增加了2.99亿立方米,记为:+2.99亿立方米,则十年前因自然灾害林地面积减少0.28亿立方米应记为( )A .+0.28亿立方米B .-0.28亿立方米C .+2.99亿立方米D .-2.99亿立方米2.中国人最早使用负数,可追溯到两千多年前的秦汉时期,12021-的相反数( )A .2021B .12021C .﹣2021D .12021-3.下列运算正确的是( )A .3a +2b =5ab B .﹣14y 2﹣12y =﹣34y 3C .5a 2b ﹣3ba 2=2a 2bD .﹣(6x +2y )=﹣6x +2y4.据猫眼实时数据显示,电影《长津湖》在上映第12天,累计票房正式突破40.2亿,这一数字用科学记数法表示为( )A .40.2×108B .4.02×109C .40.2×109D .4.02×10105.下列计算正确的是( )A .(﹣16)÷(﹣4)=﹣4B .﹣|2﹣5|=3C .(﹣3)2=9D .(﹣2)3=﹣66.关于整式,下列说法正确的是( )A .x 2y 的次数是2B .0不是单项式C .3πmn 的系数是3D .x 3﹣2x 2﹣3是三次三项式7.若52n a b -与325m n a b +的差仍是单项式,则n m 的值是( )A .2B .0C .1-D .18.有理数a 、b 在数轴上的位置如图所示,则下列式子中成立的是( )A .a +b >0B .a ﹣b >0C .ab >0D .0ab<9.书店里有x 本书,第一天卖出了全部的14,第二天卖出了余下的13,还剩( )本书.()A .11412x -- B .11412x x x --C .1143x x x --D .111434x x x x æö---ç÷èø10.若52345012345(13)x a a x a x a x a x a x -=+++++,则下列说法中正确的有().①01234532a a a a a a +++++=-;②01234532a a a a a a -+-+-=;③01a =;④024496a a a ++=;⑤135528a a a ++=.A .5个B .4个C .3个D .1个二、填空题11.单项式﹣234x yp 的次数是___________.12.数轴上点A 表示的数为-5,点B 与点A 的距离为4,则点B 表示的数为__________.13.已知a ,b 为有理数且满足()2120a b -++=,则()()3423a b -´+=__________.14.当x =3时,px 3+qx +1=2020,则当x =﹣3时,px 3+qx +1的值为_____.15.有理数a ,b ,c 在数轴上的位置如图所示,化简|b ﹣c|﹣|c|+|c ﹣a|=_____.16.点A 在数轴上距原点 5 个单位长度,将A 点先向左移动 2 个单位长度,再向右移动 6 个单位长度,此时A 点所表示的数是______________17.已知m 为最大的负整数,x 与y 互为相反数,则(x+y )2018+m 2=_____.18.点A 在数轴上距离原点为3个单位,且位于原点左侧,若将A 向右移动4个单位,再向左移动1个单位,这时A 点表示的数是_________.19.如图,在甲,乙两个十字路口各方向均设有人行横道和交通信号灯,小宇在甲路口西南角的A 处,需要步行到对面乙路口东北角B 处附近的餐馆用餐,已知两路口人行横道交通信号灯的切换时间与小宇的步行时间如下表所示:(图中箭头↑所示方向为北)人行横道交通信号灯的切换时间小宇的步行时间甲路口每1min 沿人行横道穿过一条马路0.5min乙路口每2min在甲、乙两路口之间(CD 段)6min假定人行横道的交通信号灯只有红、绿两种,且在任意时刻,同一十字路口东西向和南北向的交通信号灯颜色不同,行人步行转弯的时间可以忽略不计.若小宇在A 处时,甲、乙两路口人行横道东西向的交通信号灯均恰好转为红灯,小宇从A 处到达B 处所用的最短时间为________min .20.阅读下列运算程序,探究其运算规律:a b t =※,且()()1312a b t a b t +=--=+※,※,若2010220=※,则120※等于________.21.定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为35n +;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如,取26n =,则:26134411F F F ¾¾¾®¾¾¾®¾¾¾®×××②①②第一次第二次第二次,若449n =,则第2007次“F 运算”的结果是_______.三、解答题22.计算(1) 113223æöæö-´-ç÷ç÷èøèø(2)()()310722----+---+-(3)3132.2513 1.758.735444æöæö-+--+ç÷ç÷èøèø (4)311()(1)(2424-´-¸-(4)1213(5)6(5)33æöæö-¸-+-¸-ç÷ç÷èøèø(6)22213151()4(4)1417éù---´--ëû23.学习有理数的乘法后,老师给同学们这样一道题目,计算()2449525´-,看谁算得又快又对,有两位同学的解法如下小明:原式12491249452492555=-´=-=-小军:原式()()()24244495495524925255æö=+´-=´-+´-=-ç÷èø(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算()1519816´-24.先化简,再求代数式()22322x y xy xy x y xy éù----ëû的值,其中2x =-,1y =-.25.化简,求值:(1)已知31323m x y -与52114n x y +-是同类项,求53m n +的值;(2)2222211355422a b ab a b ab a -+---+,其中112a =,12b =-;(3)已知2253x x +-=,求代数式2248x x ++的值;(4)三角形的一边长为2a b +,第二边比第一边长2+a b ,第三边长33a b +.①用代数式表示三角形的周长;②当2a =,3b =时,求三角形的周长.26.从2020年开始,我市中考总分中要加大体育分值,某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价140元,跳绳每条定价30元.现有A 、B 两家网店均提供包邮服务,并提出了各自的优惠方案.A 网店:买一个足球送一条跳绳;B 网店:足球和跳绳都按定价的90%付款.已知要购买足球60个,跳绳x 条(x >60)(1)若在A 网店购买,需付款 元(用含x 的代数式表示);若在B 网店购买,需付款 元(用含x 的代数式表示);(2)若x =100时,通过计算说明此时在哪家网店购买较为合算?(3)当x =100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?27.如图1.在数轴上点M 表示的数为m ,点N 表示的数为n ,点M 到点N 的距离记为MN .我们规定:MN 的大小可以用位于右边的点表示的数减去左边的点表示的数表示,即MN n m =-.请用上面的知识解答下面的问题:如图2,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,b 是最大的负整数.且a ,c 满足3a +与()25c -互为相反数.(1)a =,b =,c =;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数表示的点重合;(3)点,,A B C 开始在数轴上运动,若点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t 秒钟过后,①请问,32BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值;②探究,若点,A C 向右运动,点B 向左运动,速度保持不变,3-4BC AB 的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案1.B【分析】根据相反意义的量去判断,增加记为+,减少记作-,后面跟上相应数值即可解:∵增加了2.99亿立方米,记为:+2.99亿立方米,∴减少0.28亿立方米应记为-0.28亿立方米,故选B.【点拨】本题考查了相反意义的量,正确判断相反意义的量的意义是解题的关键.2.B【分析】根据相反数的定义求解即可.解:根据相反数的定义:12021-的相反数是12021,故选B.【点拨】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3.C【分析】根据合并同类项法则和去括号法则分别对每一项进行分析,即可得出答案.解:A、3a+2b不能合并,故本选项错误;B、﹣14y2﹣12y不能合并,故本选项错误;C、5a2b﹣3ba2=2a2b,故本选项正确;D、﹣(6x+2y)=﹣6x﹣2y,故本选项错误;故选:C.【点拨】此题考查了去括号和合并同类项,熟练掌握去括号法则和合并同类项的法则是解题的关键.4.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:1亿=108,40.2亿=40.2×108=4.02×10×108=4.02×109.故选:B.【点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.C【分析】原式利用有理数的乘方,乘法,以及除法法则计算得到结果,即可做出判断.解:A、(﹣16)÷(﹣4)=4,故A错误;B、﹣|2﹣5|=﹣3,故B错误;C、(﹣3)2=9,故C正确;D、(﹣2)3=﹣8,故D错误;故选C.【点拨】本题考查有理数的除法,绝对值的化简,有理数的减法,有理数的乘方,解题关键是熟练掌握法则.6.D【分析】根据单项式的次数和系数的定义,多项式的定义进行逐一判断即可.解:A、x2y的次数是3,故不符合题意;B、0是单项式,故不符合题意;C、3πmn的系数是3π,故不符合题意;D、x3﹣2x2﹣3是三次三项式,故符合题意.故选D.【点拨】本题主要考查了单项式和多项式的定义,单项式次数和系数的判定,解题的关键在于能够熟练掌握单项式的定义:表示数或字母的积的式子叫做单项式,单独的一个数或字母也是一个单项式,单项式的系数为其数字部分,次数为字母部分各个字母的指数的和;多项式的定义:几个单项式的和叫做多项式,每个单项式叫做多项式的项,次数最高项的次数,叫做多项式的次数.7.D【分析】先根据题意得出5a b+是同类项,再根据同类项的定义得出m和n的值,5m n2n a b-与32即可得出nm的值;解:∵5a b+的差仍是单项式,5m n-与322n a b∴5a b+是同类项,5m n2n a b-与32∴n=3,2m+n=5,∴m=1,则m n=13=1,故选:D.【点拨】本题主要考查同类项和合并同类项,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.8.D【分析】首先根据数轴确定a ,b 的符号和大小,再根据有理数的运算法则进行分析判断.解:由数轴,得a <0<b ,|a |>|b |.A 、根据异号两数相加,取绝对值较大的数的符号,则a +b <0,故本选项不符合题意;B 、较小的数减去较大的数,则差一定小于0,则a ﹣b <0,故本选项不符合题意;C 、异号两数相乘,积小于0,则ab <0,故本选项不符合题意;D 、异号两数相除,商小于0,则0ab<,故本选项正确.故选D .【点拨】本题主要考查了有理数与数轴,解题的关键在于能够根据数轴判断出a <0<b ,|a |>|b |.9.D【分析】根据书店有书x 本,第一天卖出了全部的14,求出第一天还余下的本数,再根据第二天卖出了余下的13,即可求出剩下的本数.解:∵书店有书x 本,第一天卖出了全部的14,∴第一天还余下(x −14x )本,∵第二天卖出了余下的13,∴还剩下x −14x −13 (x −14x )本;故选D .【点拨】本题考查列代数式,解题的关键在于能够准确读懂题意.10.C【分析】根据当1x =时,当1x =-时,当0x =时,分别代入52345012345(13)x a a x a x a x a x a x -=+++++可判断①,②,③;再根据01234532a a a a a a +++++=-,0123451024a a a a a a --=-++,可判断④,⑤.解:∵()5234501234513x a a x a x a x a x a x -=+++++∴当1x =时,2345012345a a x a x a x a x a x+++++234501234511111a a a a a a =+++++g g g g g012345a a a a a a =+++++()5131=-´()52=-32=-,故①正确;当1x =-时, 2345012345a a x a x a x a x a x+++++()()()()()234501234511111a a a a a a =+-+-+-+-+-g g g g g 450123a a a a a a =-+-+-()5131=-´-éùëû()54=1024=,故②不正确;当0x =时,2345012345a a x a x a x a x a x+++++01234500000a a a a a a =+++++g g g g g 0a =()5130=-´()51=1=,故③正确;∵01234532a a a a a a +++++=-,0123451024a a a a a a --=-++,∴024222992a a a ++=,1352221056a a a ++=-∴024496a a a ++=,135528a a a ++=-故④正确,⑤不正确综上所述,正确的是:①③④,故选:C .【点拨】本题考查了代数式的求值,熟练掌握相关性质是解题的关键.11.3【分析】单项式的次数是所含所有字母指数的和,由此即可求解.解:单项式234x yp -的次数是2+1=3,故答案为:3.【点拨】此题主要考查了单项式的次数的定义,解题的关键是熟练掌握相关的定义即可求解.12.-9或-1【分析】分为两种情况:B 点在A 点的左边和B 点在A 点的右边,求出即可.解:当B 点在A 点的左边时,点B 表示的数为−5−4=−9,当B 点在A 点的右边时,点B 表示的数为−5+4=-1,故答案为:−9或-1.【点拨】本题考查了数轴的应用,能求出符合的所有情况是解此题的关键.13.1-【分析】根据绝对值和平方的非负性求出a ,b ,代入计算即可;解:∵()2120a b -++=,∴10a -=,20b +=,∴1a =,2b =-,∴()()()343423111a b -´+=-´=-;故答案是1-.【点拨】本题主要考查了绝对值非负性的应用、有理数的乘方运算,准确计算是解题的关键.14.-2018【分析】把x =3代入代数式得27p +3q =2019,再把x =﹣3代入,可得到含有27p +3q 的式子,直接解答即可.解:当x =3时, px 3+qx +1=27p +3q +1=2020,即27p +3q =2019,所以当x =﹣3时, px 3+qx +1=﹣27p ﹣3q +1=﹣(27p +3q )+1=﹣2019+1=﹣2018.故答案为:﹣2018.【点拨】此题考查了代数式求值;代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式27p+3q的值,然后利用“整体代入法”求代数式的值.15.a+b﹣c.【分析】首先根据数轴,确定a、b、c的大小及b﹣c 、c﹣a正负,然后根据绝对值的意义化简,绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号.①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0时);│a│= -a (a为负值,即a≤0时)解:由图知:c<b<0<a,∴b﹣c>0,c﹣a<0,∴|b﹣c|﹣|c|+|c﹣a|=b﹣c+c+a﹣c=a+b﹣c.故答案为a+b﹣c.【点拨】本题考查绝对值意义和整式的加减,解题关键是根据数轴上点的位置确定需要化简的式子的绝对值.16.9或1-【分析】先分类讨论求得平移之前点A的坐标,再根据平移的方式求得平移后的坐标.解:依题意点A在数轴上距原点 5 个单位长度,\点A所表示的数为5±①当A所表示的数为5时,将A点先向左移动2 个单位长度,再向右移动6 个单位长度,得到5-2+6=9,②当A所表示的数为-5时,将A点先向左移动2 个单位长度,再向右移动6 个单位长度,得到-5-2+6=-1.故答案为:9或1-.【点拨】本题考查了数轴上的点的平移,分类讨论是解题的关键.17.1.【分析】根据有理数中最大的负整数为-1,可得m=﹣1;相反数的定义:实数a与-a叫做互为相反数,0的相反数是0本身,有理数中最大的负整数为-1解:由题意得:m=﹣1,x+y=0,∴原式=02018+(﹣1)2=1.故答案为1.【点拨】本题考查有理数、相反数、乘方的相关知识,解题关键是有理数中最大的负整数为-1,有理数中最大的负整数为-1.18.0【分析】根据平移法则:左减右加,起始位置对应的数±移动单位=结束位置对应的数,可列式:3410-+-=.解:Q 点A 在数轴上距离原点为3个单位,且位于原点左侧,\ A 点所表示的数为3-,将A 向右移动4个单位,再向左移动1个单位,\ 3410-+-=这时A 点表示的数是0.故答案为:0.【点拨】本题考查的是数轴上点的左右平移规律,与原点的距离的理解,熟悉“数轴上点的移动后对应的数的规律:左减右加.”是解题的关键.19.8【分析】根据A 向东过路口,等待0.5秒后,再向北过路口,在CD 对面平行的路线到乙路口,共用时间7.5秒,当到达乙路口时东西向的交通信号灯正处于绿灯,不用等待,过路口后直接到达B 点.解:由已知得:0.50.50.560.5=8++++(min )故答案为:8.【点拨】本题考查有理数的加法运算.理清时间,弄清路口是否等待是解题关键.20.2001【分析】根据a b t =※,()13a b t +=-※得出()322020193196020-´==※,根据()12a b t -=+※即可得出结果.解:∵a b t =※,()13a b t +=-※,∴()11202013201720-´=+=※,()1202023201420-´==※2+,()1202033201120-´==※3+,......()322020193196020-´==※;∵()12a b t -=+※,∴()201201963121965-=+´=※,()202201963221967-=+´=※,()203201963321969-=+´=※,......()20192019631922001-=+´=※,故答案为:2001.【点拨】本题主要考查的是有理数在特定条件下的运算能力,根据所给的条件找出规律是解题的关键.21.8【分析】计算出n =449时第1、2、3、4、5、6次运算的结果,找出规律再进行解答即可求解.解:根据提供的“F 运算”,需要对正整数n 分情况(奇数、偶数)循环计算,由于n =449为奇数应先进行F ①运算,即3×449+5=1352(偶数),需再进行F ②运算,即1352÷25=41(奇数),再进行F ①运算,得到3×41+5=128(偶数),再进行F ②运算,即128÷27=1(奇数),再进行F ①运算,得到3×1+5=8(偶数),再进行F ②运算,即8÷23=1(奇数),再进行F ①运算,得到3×1+5=8(偶数),…,即第1次运算结果为1352,第2次运算结果为41,第3次运算结果为128,第4次运算结果为1,第5次运算结果为8,第6次运算结果为1,…,则3次之后两次一循环,从第四次开始双数次运算结果为1,奇数次运算结果为8则第2007次“F 运算”的结果是8.故答案为8.【点拨】本题考查了有理数的混合运算,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、分析、应用能力.22.(1)496;(2)4-;(3) 1.52-;(4)12-;(5)4;(6)1-【分析】(1)把带分数化为假分数,根据乘法法则计算即可;(2)先计算绝对值,再把加减法统一为加法计算即可,能简算的先简算;(3)先算括号里的,再把加减运算统一为加法运算;既有分数又有小数的,可以统一为分数或统一为小数进行运算;(4)统一为乘法运算,同时带分数化为假分数;(5)除法转化为乘法,再用乘法分配律计算更简单;(6)先算中括号里的乘方即可.解:(1)1177493223236æöæö-´-=´=ç÷ç÷èøèø;(2)()()310722----+---+-310+72(2)=--+-3+(10)+7(2)(2)=-+-+-4=-;(3)3132.2513 1.758.735444æöæö-+--+ç÷ç÷èøèø()2.255 1.758.73 5.75=---+()()2.255 1.23=+---()2.255 1.23=+-+1.52=-;(4)311((1(2)424-´-¸-334(()(429=-´-´-12=-;(5)1213(5)6(5)33æöæö-¸-+-¸-ç÷ç÷èøèø11211363535=´+´12113+6335æö=´ç÷èø1205=´4=;(6)22213151()4(4)1417éù---´--ëû13151((1616)1417=---´-13151(01417=---´1=-.【点拨】本题考查了有理数的混合运算,掌握有理数的加、减、乘、除、乘方五种运算法则是关键,注意运算顺序和符号不要出错,用简便算法可以使运算简便.23.(1)小军;(2)24954-;(3)11592-【分析】(1)根据计算判断小军的解法好;(2)把244925写成1(50)25-,然后利用乘法分配律进行计算即可得解;(3)把151916写成1(20)16-,然后利用乘法分配律进行计算即可得解.解:(1)小军的方法计算量较小,解法较好;(2)还有更好的解法,2449(5)25´-1(50(5)25=-´-150(5)(5)25=´--´-12505=-+42495=-;(3)1519(8)16´-1(20(8)16=-´-120(8)(8)16=´--´-11602=-+11592=-.【点拨】本题考查了有理数的乘法,主要是对乘法分配律的应用,把带分数进行适当的转化是解题的关键.24.2x 2y ﹣xy ;﹣10【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.解:原式=3x 2y ﹣(2xy ﹣2xy +x 2y )﹣xy=3x 2y ﹣2xy +2xy ﹣x 2y ﹣xy=2x 2y ﹣xy ,当x =﹣2,y =﹣1时,原式=﹣8﹣2=﹣10.【点拨】本题考查了整式的加减-化简求值,熟练掌握运算法则是解题的关键.25.(1)13;(2)2226a b -,3;(3)24;(4)①87a b +;②三角形的周长37=【分析】(1)根据同类项的定义即可求出m 、n 的值,然后代值计算即可;(2)先合并同类项,然后代值计算即可;(3)根据2253x x +-=得到228x x +=,从而得到22416x x +=,由此求解即可;(4)①根据三角形周长的定义进行求解即可;②根据①计算的结果代值计算即可.解:(1)因为31323m x y -与52114n x y +-是同类项,所以315m -=,213n +=,解得2m =,1n =,5310313m n \+=+=;(2)2222211355422a b ab a b ab a -+---+2226a b =-,当112a =,12b =-时,原式22312()6(22=´-´-912644=´-´9322=-3=;(3)因为2253x x +-=,所以228x x +=,所以22416x x +=,所以224816824x x ++=+=;(4)因为三角形的一边长为2a b +,第二边比第一边长2+a b ,第三边长33a b +.①所以三角形的周长为(2)(22)(33)87a b a b a b a b a b +++++++=+;②当2a =,3b =时,三角形的周长8273162137=´+´=+=.【点拨】本题主要考查了同类项的定义,合并同类项,代数式求值,解题的关键在于能够熟练掌握相关知识进行求解.26.(1)(6600+30x ),(7560+27x );(2)应选择在A 网店购买合算,见解析;(3)省钱的购买方案是:在A 网店购买60个足球配送,60个跳绳,再在B 网店购买40个跳绳,付款9480元,见解析.【分析】(1)由题意在A 网店购买可列式:60×140+(x -60)×30;在网店B 购买可列式:(60×140+30x )×0.9;(2)将x =100分别代入A 网店,B 网店的代数式计算,再比较即可求解;(3)由于A 店是买一个足球送跳绳,B 店是足球和跳绳按定价的90%付款,所以可以在A 店买60个足球,剩下的40条跳绳在B 店购买即可.解:(1)A 店购买可列式:60×140+(x ﹣60)×30=(6600+30x )元;在网店B 购买可列式:(60×140+30x )×0.9=(7560+27x )元;故答案为:(6600+30x ),(7560+27x );(2)当x =100时,在A 网店购买需付款:6600+30×100=9600(元),在B 网店购买需付款:7560+27×100=10260(元),∵9600<10260,∴当x =100时,应选择在A 网店购买合算.(3)由(2)可知,当x =100时,在A 网店付款9600元,在B 网店付款10260元,在A 网店购买60个足球配送60个跳绳,再在B 网店购买40个跳绳合计需付款:140×60+30×40×0.9=9480,∵9480<9600<10260,∴省钱的购买方案是:在A 网店购买60个足球配送,60个跳绳,再在B 网店购买40个跳绳,付款9480元.【点拨】本题考查了列代数式、求代数式的值,理解题意并把握总价、单价与数量间的关系是关键.27.(1)-3,-1,5;(2)3;(3)①不变,14;②见解析【分析】(1)利用|a+3|+(c-5)2=0,得a+3=0,c-5=0,解得a,c的值,由b是最大的负整数,可得b=-1;(2)先求出对称点,即可得出结果;(3)①由 3BC-2AB=3(2t+6)-2(3t+2)求解即可;②由3BC-4AB=3(4t+6)-4|3t-2|.求解即可.解:(1)∵|a+3|+(c-5)2=0,∴a+3=0,c-5=0,解得a=-3,c=5,∵b是最大的负整数,∴b=-1.故答案为:-3,-1,5.(2)(5-3)÷2=1,对称点为1-(-1)=2,1+2=3.故答案为:3.(3)①AB=2t+t+2=3t+2,BC=3t-t+6=2t+6,3BC-2AB=3(2t+6)-2(3t+2)=14.故3BC-2AB的值不随着时间t的变化而改变;②AB=|2t+t-2|=|3t-2|,BC=3t+t+6=4t+6,3BC-4AB=3(4t+6)-4|3t-2|.当3t-2<0时,即0<t<2 , 3原式=24t+10,3BC-4AB的值随着时间t的变化而改变;当3t-2³0时,即23t³时,原式=26,3BC-4AB的值不随着时间t的变化而改变.【点拨】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
七年级数学上学期期末复习检测试卷(2)
2018-2019学年七年级数学上学期期末复习检测试卷一、选择题(每小题3分,共30分)1.(3分)﹣3的相反数是()A.B.C.3 D.﹣32.(3分)﹣3πxy2z3的系数和次数是()A.﹣3,6 B.﹣3π,5 C.﹣3π,6 D.﹣3,5 3.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段4.(3分)A看B的方向是北偏东21°,那么B看A的方向()A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°5.(3分)如果a,b互为相反数,x,y互为倒数,则(a+b)+xy的值是()A.2 B.3 C.3.5 D.46.(3分)已知方程(m﹣1)x|m|=6是关于x的一元一次方程,则m的值是()A.±1 B.1 C.0或1 D.﹣17.(3分)我国南海海域面积约为3500000km2,用科学记数法表示正确的是()A.3.5×105 km2B.3.5×106 km2C.3.5×107 km2D.3.5×108 km28.(3分)有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是()A.①②B.①③C.①②③D.①②③④9.(3分)若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b的大小关系是()A.b<﹣a<﹣b<a B.b<﹣b<﹣a<aC.b<﹣a<a<﹣b D.﹣a<﹣b<b<a10.(3分)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1 B.5 C.4 D.3二、填空题(每小题3分,共15分)11.(3分)绝对值大于1而小于4的整数有个.12.(3分)如果x=2是方程mx﹣1=2的解,那么m= .13.(3分)9时45分时,时钟的时针与分针的夹角是.14.(3分)如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF长为cm.15.(3分)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.三、解答题(共75分)16.(8分)计算题(1)﹣22×2+(﹣3)3×(﹣)(2)×(﹣5)+(﹣)×9﹣×8.17.(8分)解方程.(1)=1﹣(2) [(x﹣2)﹣6]=118.(9分)求代数式﹣2x2﹣ [3y2﹣2(x2﹣y2)+6]的值,其中x=﹣1,y=﹣2.19.(9分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB 的度数.20.(9分)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B 地,然后溯江而上到C地下船,共乘船4小时.已知A,C两地相距10千米,船在静水中的速度为7.5千米/时.求A,B两地间的距离.21.(12分)用火柴棒按下列方式搭建三角形:(1)填表:(2)当三角形的个数为n时,火柴棒的根数多少?(3)求当n=1000时,火柴棒的根数是多少?22.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:﹣=﹣,“□”是被污染的内容.他很着急,翻开书后面的答案,这道题的解是x=2,你能帮他补上“□”的内容吗?23.(12分)某市上网有两种收费方案,用户可任选其一,A为计时制﹣﹣1元/时;B为包月制﹣﹣80元/月,此外每种上网方式都附加通讯费0.1元/时.(1)某用户每月上网40小时,选哪种方式比较合适?(2)某用户每月有100元钱用于上网,选哪种方式比较合算?(3)请你设计一个方案,使用户能合理地选择上网方式.参考答案一、选择题(每小题3分,共30分)1.(3分)﹣3的相反数是()A.B.C.3 D.﹣3【分析】根据相反数的概念解答即可.【解答】解:∵互为相反数相加等于0,∴﹣3的相反数,3.故选:C.【点评】此题主要考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)﹣3πxy2z3的系数和次数是()A.﹣3,6 B.﹣3π,5 C.﹣3π,6 D.﹣3,5【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.所有字母指数的和是次数.【解答】解:﹣3πxy2z3的系数是:﹣3π,次数是6.故选:C.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.3.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段【分析】此题为数学知识的应用,由题意弯曲的河道改直,肯定为了尽量缩短两地之间的里程,就用到两点间线段最短定理.【解答】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.故选:C.【点评】此题为数学知识的应用,考查知识点两点之间线段最短.4.(3分)A看B的方向是北偏东21°,那么B看A的方向()A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°【分析】根据A看B的方向是北偏东21°,是以A为标准,反之B看A的方向是以B为标准,从而得出答案.【解答】解:A看B的方向是北偏东21°,那么B看A的方向南偏西21°;故选:D.【点评】本题主要考查了方向角的定义,在叙述方向角时一定要注意以哪个图形为参照物是本题的关键.5.(3分)如果a,b互为相反数,x,y互为倒数,则(a+b)+xy的值是()A.2 B.3 C.3.5 D.4【分析】根据相反数和倒数求出a+b=0,xy=1,代入求出即可.【解答】解:∵a,b互为相反数,x,y互为倒数,∴a+b=0,xy=1,∴(a+b)+xy=×0+×1==3.5,故选:C.【点评】本题考查了相反数、倒数和求代数式的值,能求出a+b=0和xy=1是解此题的关键.6.(3分)已知方程(m﹣1)x|m|=6是关于x的一元一次方程,则m的值是()A.±1 B.1 C.0或1 D.﹣1【分析】根据一元一次方程的定义即可求出答案.【解答】解:由题意可知:解得:m=﹣1故选:D.【点评】本题考查一元一次方程的定义,解题的关键是正确理解一元一次方程的定义,本题属于基础题型.7.(3分)我国南海海域面积约为3500000km2,用科学记数法表示正确的是()A.3.5×105 km2B.3.5×106 km2C.3.5×107 km2D.3.5×108 km2【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3500000km2用科学记数法表示为3.5×106 km2,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是()A.①②B.①③C.①②③D.①②③④【分析】要判断两角的关系,可根据角的性质,两角互余,和为90°,互补和为180°,据此可解出本题.【解答】解:①锐角的补角一定是钝角;根据补角的定义和钝角的定义可判断其正确性,故此选项正确;②一个角的补角一定大于这个角;当这个角为钝角时,它的补角小于90°,故此选项错误;③如果两个角是同一个角的补角,那么这两个角相等;利用同补角定义得出,此选项正确;④中没有明确指出是什么角,故此选项错误.故正确的有:①③,故选:B.【点评】此题主要考查了补角以及同位角定义与性质,理解补角的定义中数量关系是解题的关键.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.9.(3分)若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b的大小关系是()A.b<﹣a<﹣b<a B.b<﹣b<﹣a<a C.b<﹣a<a<﹣b D.﹣a<﹣b<b<a【分析】根据a>0,b<0,且|a|<|b|,可用取特殊值的方法进行比较.【解答】解:设a=1,b=﹣2,则﹣a=﹣1,﹣b=2,因为﹣2<﹣1<1<2,所以b<﹣a<a<﹣b.故选:C.【点评】此类题目比较简单,由于a,b的范围已知,可用取特殊值的方法进行比较,以简化计算.10.(3分)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1 B.5 C.4 D.3【分析】正方体的六个面分别标有1,2,3,4,5,6六个数字,这六个数字一一对应,通过三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,然后由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.【解答】解:由三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,利用三个数相邻的两个图形进行判断即可.二、填空题(每小题3分,共15分)11.(3分)绝对值大于1而小于4的整数有 4 个.【分析】求绝对值大于1且小于4的整数,即求绝对值等于2或3的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.【解答】解:绝对值大于1且小于3的整数有±2,±3.故答案为:4.【点评】主要考查了绝对值的性质,绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.12.(3分)如果x=2是方程mx﹣1=2的解,那么m= .【分析】把x=2代入方程mx﹣1=2,即可求得m的值.【解答】解:把x=2代入方程mx﹣1=2,得:2m﹣1=2,解得:m=.故答案为:.【点评】本题考查的是一元一次方程解的概念:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.13.(3分)9时45分时,时钟的时针与分针的夹角是22.5°.【分析】9点45分时,分针指向9,时针在指向9与10之间,则时针45分钟转过的角度即为9时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算0.5°×45即可.【解答】解:∵9点45分时,分针指向9,时针在指向9与10之间,∴时针45分钟转过的角度即为9时45分时,时钟的时针与分针的夹角度数,即0.5°×45=22.5°.故答案为22.5°.【点评】本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°.14.(3分)如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF长为10cm.【分析】由已知条件可知,AC+BD=AD+BC,又因为E,F分别是AB,CD的中点,则EB+CF=0.5(AB+CD)=0.5(AD﹣BC),故EF=BE+CF+BC可求.【解答】解:由图可知BC=AC+BD﹣AD=10+10﹣16=4cm,∵E,F分别是AB,CD的中点,∴EB+CF=0.5(AB+CD)=0.5(AD﹣BC)=0.5(16﹣4)=6cm,∴EF=BE+CF+BC=6+4=10cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.15.(3分)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了20或25 张电影票.【分析】本题分票价每张60元和票价每张60元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.【解答】解:①1200÷60=20(张);②1200÷(60×0.8)1200÷48=25(张).答:他们共买了20或25张电影票.故答案为:20或25.【点评】考查了销售问题,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系..三、解答题(共75分)16.(8分)计算题(1)﹣22×2+(﹣3)3×(﹣)(2)×(﹣5)+(﹣)×9﹣×8.【分析】(1)根据幂的乘方、有理数的乘法和加法可以解答本题;(2)根据乘法分配律可以解答本题.【解答】解:(1)﹣22×2+(﹣3)3×(﹣)=﹣4×=﹣9+8=﹣1;(2)×(﹣5)+(﹣)×9﹣×8===﹣7.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(8分)解方程.(1)=1﹣(2) [(x﹣2)﹣6]=1【分析】(1)首先去分母,再去括号移项合并同类项解方程得出答案;(2)直接去括号再移项合并同类项解方程得出答案.【解答】解:(1)=1﹣2(x+3)=12﹣3(3﹣2x),则2x+6=12﹣9+6x,故﹣4x=﹣3解得:x=;(2) [(x﹣2)﹣6]=1x﹣2﹣8=1,则x=11,解得:x=55.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.18.(9分)求代数式﹣2x2﹣ [3y2﹣2(x2﹣y2)+6]的值,其中x=﹣1,y=﹣2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=﹣2x2﹣y2+x2﹣y2﹣3=﹣x2﹣y2﹣3,当x=﹣1,y=﹣2时,原式=﹣1﹣10﹣3=﹣14.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(9分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB 的度数.【分析】根据角平分线的定义得到∠BOE=∠AOB=45°,∠COF=∠BOF=∠BOC,再计算出∠BOF=∠EOF﹣∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.【解答】解:∵OE平分∠AOB,OF平分∠BOC,∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,∴∠BOC=2∠BOF=30°;∠AOC=∠BOC+∠AOB=30°+90°=120°.【点评】本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.20.(9分)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B 地,然后溯江而上到C地下船,共乘船4小时.已知A,C两地相距10千米,船在静水中的速度为7.5千米/时.求A,B两地间的距离.【分析】由于C的位置不确定,此题要分情况讨论:(1)C地在A、B之间;(2)C地在A地上游.设A、B间的距离是x千米,则根据共用时间可列方程求解.【解答】解:设A、B两地间的距离为x千米,(1)当C地在A、B两地之间时,依题意得:+=4,解得:x=20;(2)当C地在A地上游时,依题意得:+=4,解得:x=.答:A、B两地间的距离为20千米或千米.【点评】考查了一元一次方程的应用,注意此题由于C点的位置不确定,所以一定要考虑两种情况.还要注意顺水速、静水速、水流速三者之间的关系.21.(12分)用火柴棒按下列方式搭建三角形:(1)填表:(2)当三角形的个数为n时,火柴棒的根数多少?(3)求当n=1000时,火柴棒的根数是多少?【分析】(1)按照图中火柴的个数填表即可;(2)当三角形的个数为:1、2、3、4时,火柴棒的个数分别为:3、5、7、9,由此可以看出三角形的个数每增加一个,火柴棒的个数增加2根,所以当三角形的个数为n时,三角形个数增加n ﹣1个,那么此时火柴棒的个数应该为:3+2(n﹣1);(3)当n=1000时,直接代入(2)所求的规律中即可.【解答】解:(1)由图可知:该表中应填的数依次为:3、5、7、9(2)当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:每当三角形的个数增加1个时,火柴棒的个数相应的增加2,所以,当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.(3)由(2)得出的规律:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1,所以,当n=1000时,2n+1=2×1000+1=2001.【点评】考查了规律型:图形的变化类,本题解题关键根据第一问的结果总结规律,得到规律:三角形的个数每增加一个,火柴棒的个数增加2根,然后由此规律解答第三问.22.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:﹣=﹣,“□”是被污染的内容.他很着急,翻开书后面的答案,这道题的解是x=2,你能帮他补上“□”的内容吗?【分析】先设□=m,再把x=2代入方程即可求出m的值.【解答】解:设□=m,则由原方程,得﹣=﹣.∵所给方程的解是x=2,∴,解得:m=4.【点评】本题考查了一元一次方程的解法,解决此题的关键是把方程的解代入原方程再求被污染的内容.23.(12分)某市上网有两种收费方案,用户可任选其一,A为计时制﹣﹣1元/时;B为包月制﹣﹣80元/月,此外每种上网方式都附加通讯费0.1元/时.(1)某用户每月上网40小时,选哪种方式比较合适?(2)某用户每月有100元钱用于上网,选哪种方式比较合算?(3)请你设计一个方案,使用户能合理地选择上网方式.【分析】(1)根据上网时间分别计算费用,比较后回答问题;(2)根据上网所用费用,分别计算出时间,比较后回答问题;(3)设每月上网x小时,收费y元,根据题意得:y A=x+0.1x=1.1x,y B=80+0.1x,分别计算出当y A=y B 时,当y A>y B时,当y A<y B时的上网时间,合理地选择上网方式.【解答】解:(1)A种上网方式:40×1+0.1×40=44(元),B种上网方式:80+40×0.1=84(元),答:每月上网40小时,选A种方式比较合适;(2)设每月上网x小时,A种上网方式:x+0.1x=100,解得:x=(小时),B种上网方式:80+0.1x=100,解得:x=200(小时);答:每月有100元钱用于上网,选B种方式比较合算;(3)设每月上网x小时,收费y元,根据题意得:y A=x+0.1x=1.1x,y B=80+0.1x,当y A=y B时,即1.1x=80+0.1x,解得:x=80,当y A>y B时,即1.1x>80+0.1x,解得:x>80,当y A<y B时,即1.1x<80+0.1x,解得:x<80,∴当每月上网为80小时时,选择两种上网方式都可以;当每月上网大于80小时时,选择乙种上网方式合算;当每月上网小于80小时时,选择甲种上网方式合算.【点评】此题考查一元一次方程的实际运用,理解两种收费方式,正确利用关系式表示,列出方程解决问题.。
苏科版七年级上册数学期末复习:一元一次方程实际应用 专项练习题 2套(含答案)
苏科版七年级上册数学期末复习:一元一次方程实际应用专项练习题11.A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()A.2.5 B.2或10 C.2.5或3 D.32.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.3.超市正在热销某种商品,其标价为每件100元,若这种商品打7折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一次方程为()A.100×0.7﹣x=15 B.100﹣x×0.7=15C.(100﹣x)×0.7=15 D.100﹣x=15×0.74.某电商销售某款羽绒服,标价为300元,若按标价的八折销售,仍可获利60元.设这款羽绒服的进价为x元,根据题意可列方程为()A.300×0.8﹣x=60 B.300﹣0.8x=60C.300×0.2﹣x=60 D.300﹣0.2x=605.我国古代有一问题:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果设快马x天可追上慢马,下面所列方程中正确的是()A.240x=150(x+12)B.150x=240(x+12)C.240x=150(x﹣12)D.150x=240(x﹣12)6.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相遇后又相距20km?③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()A.①②③④B.①③④C.②③④D.①②7.一件工程甲单独做50天可完成,乙单独做75天可完成,现在两个人合作.但是中途乙因事离开几天,从开工后40天把这件工程做完.则乙中途离开了多少天.()A.10 B.25 C.30 D.358.某人驾驶一小船航行在甲,乙码头之间,顺水航行需6h,逆水航行比顺水航行多用2h,若水流的速度是每小时2km,那么船在静水中的平均速度为每小时多少千米()A.14 B.15 C.16 D.179.学校把一些图书分给某班学生阅读,如果每人分4本,则剩余30本;如果每人分5本,则还缺15本.设这个班有学生x人,依据题意可列方程为()A.4x﹣30=5x+15 B.4x+30=5x﹣15C.4x﹣30=5x﹣15 D.4x+30=5x+1510.为进一步深化课堂教学改革,武侯区初中数学开展了分享学习课堂之“生讲生学”活动,某中学决定购买甲、乙两种礼品共30件,用于表彰在活动中表现优秀的学生.已知某商店甲乙两种礼品的标价分别为25元和15元,购买时恰逢该商店全场9折优惠活动,买完礼品共花费495元,问购买甲、乙礼品各多少件?设购买甲礼品x件,根据题意,可列方程为()A.25x+15(30﹣x)=495 B.[25x+15(30﹣x)]×0.9=495 C.[25x+15(30﹣x)]×9=495 D.[25x+15(30﹣x)]÷0.9=495 11.甲、乙两地相距180km,一列慢车以40km/h的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h的速度也从甲地匀速驶往乙地,两车相继到达终点乙地,在此过程中,两车恰好相距10km的次数是()A.1 B.2 C.3 D.412.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x13.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()A.200s B.205s C.210s D.215s14.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母正好配套,设有x名工人生产螺钉,其他工人生产螺母,则根据题意可列方程为()A.2000x=1200(22﹣x)B.2×1200x=2000(22﹣x)C.2×2000x=1200(22﹣x)D.1200x=2000(22﹣x)15.一项工程,甲队单独做需10天完成,乙队单独做需8天完成,甲乙两队的工作效率的最简整数比是()A.5:4 B.10:8 C.4:5 D.8:1016.随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180 B.170 C.160 D.15017.中国总理李克强2020年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40% B.20% C.60% D.30%18.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x元,则可列方程为()A.x+x+1964=x B.x+x+1964=xC.x+x+1964=x D.x+x+1964=3x19.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250 元C.270元D.300 元20.某球队参加了10场足球赛,共积17分,已知胜一场得3分,平一场得1分,负一场得0分,其中该队输了3场,则该队胜的场次为()A.4 B.5 C.6 D.7参考答案1.解:依题意,得:110t+90t=550﹣50或110t+90t=550+50,解得:t=2.5或t=3.故选:C.2.解:A、设最小的数是x.x+x+7+x+7+1=19x=故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+7=19,x=,故本选项不符合题意.D、设最小的数是x.x+x+1+x+8=19,x=,故本选项不符合题意.故选:B.3.解:设该商品每件的进价为x元,依题意,得:100×0.7﹣x=15.故选:A.4.解:设这款羽绒服的进价为x元,依题意,得:300×0.8﹣x=60.故选:A.5.解:设快马x天可追上慢马,则慢马跑了(x+12)天,依题意,得:240x=150(x+12).故选:A.6.解:①设两人开始工作x小时后还有20个零件没有加工,依题意,得:4x+6x+20=60,∴①可以用方程4x+6x+20=60来表述;②设经过x小时后两人相遇后又相距20km,依题意,得:4x+6x﹣20=60,∴②不可以用方程4x+6x+20=60来表述;③设乙出发后x小时两人相遇,依题意,得:4x+20+6x=80,∴③方程4x+6x+20=60来表述;④设经过x小时后两人相距60km,依题意,得:4x+6x+20=60,∴④可以用方程4x+6x+20=60来表述.故选:B.7.解:设乙中途离开了x天,×40+(40﹣x)=1,解得,x=25即乙中途离开了25天,故选:B.8.解:设船在静水中的速度为x千米每小时,根据题意得:6(x+2)=(6+2)(x﹣2),解得:x=14,故选:A.9.解:设这个班有学生x人,由题意得:4x+30=5x﹣15,故选:B.10.解:设购买甲礼品x件,则购买乙种礼品(30﹣x)件,由题意,得[25x+15(30﹣x)]×0.9=495.故选:B.11.解:∵10÷40=(h),∴快车未出发,慢车出发小时时,两车相距10km;设快车出发x小时时,两车相距10km.快车未超过慢车时,40(x+)﹣10=60x,解得:x=;快车超过慢车10km时,40(x+)+10=60x,解得:x=;快车到达乙地后,40(x+)=180﹣10,解得:x=.∴两车恰好相距10km的次数是4.故选:D.12.解:设x人生产镜片,由题意得,90x=2×60(28﹣x).故选:C.13.解:设从排尾到排头需要t1秒,从排头到排尾需要t2秒,根据题意,得(4﹣2)t1=300,(4+2)t2=300,解得t1=150,t2=50,t1+t2=150+50=200(秒).答:此人往返一趟共需200秒,故选:A.14.解:∵有x名工人生产螺钉,∴有(22﹣x)名工人生产螺母.∵每天生产螺母的总数是生产螺钉总数的2倍,∴2×1200x=2000(22﹣x).故选:B.15.解:根据工作量=工作效率×工作时间,可得工作量一定时,工作效率和工作时间成反比,所以甲队和乙队的工作效率的比是甲乙的工时间的反比;因此甲队和乙队的工作效率的最简整数比是8:10=4:5.答:甲乙两队的工作效率的最简整数比是4:5.故选:C.16.解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.17.解:设该小商品的利润率为x,依题意,得:10×(1+100%)×0.6﹣10=10x,解得:x=0.2=20%.故选:B.18.解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.19.解:设该商品的原售价为x元,根据题意得:75%x+25=90%x﹣20,解得:x=300,则该商品的原售价为300元.故选:D.20.解:设该队胜了x场,由题意得:3x+(10﹣3﹣x)=17解得:x=5;故选:B.苏科版七年级上册数学期末复习:一元一次方程实际应用专项练习题2 1.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340 B.2x﹣4×72=4×340C.2x+4×72=4×340 D.2x﹣4×20=4×3402.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.53.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款()A.288元B.332元C.288元或316元D.332元或363元4.一列匀速前进的火车,从它进入600米的隧道到离开,共需30秒,又知在隧道顶部的一固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是()A.100米B.120米C.150米D.200米5.在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是()A.1.6秒B.4.32秒C.5.76秒D.345.6秒6.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元7.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里8.某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.89.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的,则这个长方形的面积是()A.4cm2B.6cm2C.8cm2D.12cm211.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套.设用x张铝片制瓶身,则下面所列方程正确的是()A.2×16x=45(100﹣x)B.16x=45(100﹣x)C.16x=2×45(100﹣x)D.16x=45(50﹣x)12.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是()A.8 B.7 C.6 D.513.小明买书需用34元钱,付款时恰好用了1元和5元的纸币共10张,设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A.x+10(x﹣50)=34 B.x+5(10﹣x)=34C.x+5(x﹣10)=34 D.5x+(10﹣x)=3414.如图,在长为a厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于()A.厘米B.厘米C.厘米D.厘米15.某种商品因换季准备打折出售,若按定价的七五折出售将赔25元,若按定价的九折出售将赚20元,则这种商品的定价为()A.280元B.300元C.320元D.200元16.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.17.某个体户在一次买卖中同时卖出两件上衣,售价都是225元,若按成本价计算,其中一件盈利25%,另一件亏损25%,在这次买卖中他()A.赚30元B.赚15元C.亏30元D.不赚不亏18.小明在新亚百货大楼以8折(即标价的80%)的优惠价买了一双沃特牌运动鞋,节省了45元,那么小明买鞋子时应付给营业员()A.150元B.180元C.200元D.225元19.一船在静水中的速度为20km/h,水流速度为4km/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm,则下列方程正确的是()A.(20+4)x+(20﹣4)x=15 B.20x+4x=5C.D.20.在矩形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若AE=x(cm),依题意可得方程()A.6+2x=14﹣3x B.6+2x=x+(14﹣3x)C.14﹣3x=6 D.6+2x=14﹣x参考答案1.解:设汽车离山谷x米,则汽车离山谷距离的2倍即2x,因为汽车的速度是72千米/时即20米/秒,则汽车前进的距离为:4×20米/秒,声音传播的距离为:4×340米/秒,根据等量关系列方程得:2x+4×20=4×340,故选:A.2.解:(1)当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50,解得t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.故选:A.3.解:(1)若第二次购物超过100元,但不超过300元,设此时所购物品价值为x元,则90%x=252,解得x=280两次所购物价值为80+280=360>300所以享受8折优惠,因此王波应付360×80%=288(元).(2)若第二次购物超过300元,设此时购物价值为y元,则80%y=252,解得y=315 两次所购物价值为80+315=395,因此王波应付395×80%=316(元)故选:C.4.解:设这火车的长为x米,则=,x=120.因此选择B.5.解:设需要的时间为x秒,110千米/小时=米/秒,100千米/小时=米/秒,根据轿车走的路程等于超越卡车的路程加上两车的车身长,得出:解得:x=5.76故选:C.6.解:设小慧同学不买卡直接购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150即:小慧同学不凭卡购书的书价为150元.故选:B.7.解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.8.解:根据题意得:200×﹣80=80×50%,解得:x=6.故选:B.9.解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选:D.10.解:设围成的长方形的宽为x,则长为2x,根据题意得:2(x+2x)=12,解得:x=2,∴2x=4,∴围成长方形的面积为2×4=8(cm2).故选:C.11.解:设用x张制瓶身,则用(100﹣x)张制瓶底才能正好制成整套的饮料瓶,根据题意列方程得,2×16x=45(100﹣x),故选:A.12.解:(方法一)设甲计划完成此项工作的天数为x,根据题意得:x﹣(1+)=3,解得:x=7.(方法二)设甲计划完成此项工作的天数为x,依题意,得:+=1,解得:x=7,经检验,x=7是所列分式方程的解,且符合题意.故选:B.13.解:设所用的1元纸币为x张,根据题意得:x+5(10﹣x)=34,故选:B.14.解:由题意可得,5x+2×4=a,解得,x=,故选:A.15.解:设这种商品的定价为x元,由题意,得0.75x+25=0.9x﹣20,解得:x=300.故选:B.16.解:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有+1只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴+1+1=x﹣1,即x+1=2(x﹣3)故选:C.17.解:设两件上衣的进价分别为a元,b元,根据题意得:(1+25%)a=225,(1﹣25%)b=225,解得:a=180,b=300,∴这次买卖中盈利的钱为225﹣180+225﹣300=﹣30(元),则这次买卖中他亏了30元.18.解:设运动鞋原价x元,由题意得:x﹣80%x=45,解得:x=225,225﹣45=180(元),故选:B.19.解:若设甲、乙两码头的距离为xkm,由题意得:+=5,故选:D.20.解:设AE为xcm,则AM为(14﹣3x)cm,根据题意得出:∵AN=MW,∴AN+6=x+MR,即6+2x=x+(14﹣3x)故选:B.。
七年级上册数学第二章测试卷(含答案)
七年级上册数学第二章测试卷(含答案) 七年级上册数学第二章测试卷知识要点一:单项式1.下列说法正确的是()A。
x不是单项式B。
x+2y是单项式C。
-x的系数是-1D。
0不是单项式改写:哪个说法是正确的?A。
x不是单项式B。
x+2y是单项式C。
-x的系数是-1D。
0不是单项式10.下列说法正确的是()A。
8-是多项式B。
-x3yz是三次单项式,系数为3C。
x2-3xy+2x2y3-1是五次多项式D。
-5b/x是单项式改写:哪个说法是正确的?A。
8-是多项式B。
-x3yz是三次单项式,系数为3C。
x2-3xy+2x2y3-1是五次多项式D。
-5b/x是单项式2.在式子20a,4t2,50,3.5x,vt+1,-m中,单项式的个数是()A。
3个B。
4个C。
5个D。
6个改写:在20a,4t2,50,3.5x,vt+1,-m中,有几个单项式?A。
3个B。
4个C。
5个D。
6个3.单项式-x2yz2的系数、次数分别是()A。
0,2B。
0,4C。
-1,5D。
1,4改写:单项式-x2yz2的系数和次数分别是多少?A。
0,2B。
0,4C。
-1,5D。
1,44.单项式(-1)mabm的()A。
系数是-1,次数是mB。
系数是1,次数是m+1C。
系数是-1,次数是2m+1D。
系数是(-1)m,次数是m+1改写:单项式(-1)mabm的系数和次数分别是多少?A。
系数是-1,次数是mB。
系数是1,次数是m+1C。
系数是-1,次数是2m+1D。
系数是(-1)m,次数是m+15.若单项式a4b-2m+1与-2am2bm+7是同类项,则m的值为()A。
4B。
2或-2C。
2D。
-2改写:若单项式a4b-2m+1与-2am2bm+7是同类项,则m 的值为多少?A。
4B。
2或-2C。
2D。
-26.若-2axbx-y与5a2b5的和仍是单项式,则x=,y=。
删除:这段话有问题,无法改写。
7.单项式3x2yz3-5的系数是,次数是。
改写:单项式3x2yz3-5的系数和次数分别是多少?系数是3,次数是5.8.四次单项式(m-n)xm-3y的系数为-3,求m,n的值。
人教版数学七年级上册第二章测试题及答案
人教版数学七年级上册第二章测试题及答案人教版数学七年级上册第二章测试卷一、选择题1.下列式子中,是单项式的是()A。
x+yB。
-x3yz2C。
x-yD。
22x2.在下列单项式中,与2xy是同类项的是()A。
2x2y2B。
3yC。
xyD。
4x3.下列各式计算正确的是()A。
3x+x2B。
-2a+5b=3abC。
4m2n+2mn2=6mnD。
3ab2-5b2a=-2ab24.如图,用式子表示三角尺的面积为()A。
ab-r2B。
ab-r2C。
ab-πr2D。
Ab其中的11和22是下标。
5.已知P=-2a-1,Q=a+1且2P-Q=0,则a的值为()A。
2B。
1C。
-0.6D。
-16.观察下列各式:-2x,4x2,-8x3,16x4,-32x5,…则第n个式子是()A。
-2n1xnB。
(-2)n1xnC。
-2nxnD。
(-2)nxn二、填空题7.单项式的系数是-2,次数是2次y。
8.一个三位数,个位数字为a,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为100a+10(a-2)+a+1=111a-19.9.已知多项式x|m|+(m-2)x+8(m为常数)是二次三项式,则m3=8.10.如果3x2y3与xm1yn-1的和仍是单项式,则(n-3m)2016的值为2016.11.如图所示,点A、B、C分别表示有理数a、b、c,O为原点,化简:|a-c|-|b-c|=|a-c|-|b-c|。
12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是-4.三、计算题13.化简:1) -3m+2m-5m=-6m;2) (2a2-1+2a)-(a-1+a2)=a2+3a-2.14.列式计算:整式(x-3y)的2倍与(2y-x)的差。
2(x-3y)-(2y-x)=3x-8y。
15.先化简再求值:-9y+6x2+3/(2y-x/2),其中x=2,y =-1.15.9*(-1.15)+6*2^2+3/(2*(-1.15)-2/2)=12.45.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:a2b-2ab2)+ab2=2(a2b+ab2)。
人教版七年级数学上册第二章复习题2详细答案课件
课本第75页 复习巩固
4. 计算:
(7)(5a2 + 2a - 1)- 4(3 - 8a + 2a2);
= 4a3b - 10b3 - 3a2b2 + 10b3 = 4a3b - 3a2b2 (2)(4x2y - 5xy2)-(3x2y - 4xy2) = 4x2y - 5xy2 - 3x2y + 4xy2 = x2y - xy2
课本第75页 复习巩固
4. 计算:
(3)5a2 -[a2 +(5a2 - 2a)- 2(a2 - 3a)];
= 3x2 - 5x + 0.5x - 3 - 2x2
= x2 - 4.5x - 3
课本第75页 复习巩固 5. 先化简下式,再求值:
5x2 + 4 - 3x2 - 5x - 2x2 - 5 + 6x, 其中,x = - 3。
解: 5x2 + 4 - 3x2 - 5x - 2x2 - 5 + 6x =(5x2 - 3x2 - 2x2)+(6x - 5x)+(4 - 5) =x-1 当 x = - 3时,原式 =(- 3)- 1 = - 4
(4)15 + 3(1 - a)- (1 - a - a2)+(1 - a + a2 - a3) = 15 + 3 - 3a - 1 + a + a2 + 1 - a + a2 - a3 = 18 - 3a + 2a2 - a3
人教版七年级数学上册期末复习第1-2章基础必刷题 含答案
人教版七年级数学上册期末复习第1-2章基础必刷题一.选择题1.﹣的倒数是()A.﹣B.﹣C.D.2.﹣是一个数的相反数,则这个数是()A.﹣B.﹣7C.D.73.﹣的绝对值是()A.﹣2020B.﹣C.D.20204.在四个数0,﹣2,﹣3,2中,最小的数是()A.0B.﹣2C.﹣3D.25.在1、﹣2、﹣5.6、﹣0、、﹣、π中负数有()A.3个B.4个C.5个D.6个6.2018年7月份,我国居民消费价格同比上涨2.1%,记作+2.1%,其中水产品价格下降0.4%,应记作()A.0.4%B.﹣0.4%C.0.4D.﹣0.47.下列计算正确的是()A.(﹣3)﹣(﹣3)=﹣6B.(﹣18)﹣(+9)=﹣9C.|5﹣2|=﹣(5﹣2)D.0﹣(﹣7)=78.据统计,某城市去年接待旅游人数约为89 000 000人,89 000 000这个数据用科学记数法表示为()A.8.9×106B.8.9×105C.8.9×107D.8.9×108 9.按括号内的要求用四舍五入法取近似数,下列正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.02(精确到0.01)D.0.0136≈0.014(精确到0.0001)10.下列说法中,正确的为()A.两数之差一定小于被减数B.对任意有理数,若a+b=0,则|a|=|b|C.若两个有理数的和是负数,则这两个有理数都是负数D.0减去任何一个数,都得负数11.数a,b在数轴上的位置如图所示,下列式子中错误的是()A.a<b B.﹣a<b C.a+b<0D.b﹣a>0 12.单项式﹣3πa2的系数是()A.3B.﹣3C.3πD.﹣3π13.下列各项是同类项的是()A.1与﹣2B.xy与2y C.ab2与a2b D.5ab与6ab2 14.下列运算正确的是()A.2a﹣a=1B.2a+b=3abC.2a+3a=5a D.3a2+2a2=5a415.下列说法中正确的是()A.单项式πx2的系数是,次数是3B.多项式x2﹣2x﹣1的项是x2,2x,1 C.单项式的系数是﹣2D.多项式y﹣x2y+5xy2是三次三项式16.下列计算正确的是()A.43=4×3B.﹣=﹣C.4﹣4÷2=4﹣2=2D.32÷6×=9×1=917.下面去括号正确的是()A.2n+(﹣m﹣n)=2n+m﹣n B.a﹣2(3a﹣5)=a﹣6a+10C.n﹣(﹣m﹣n)=n+m﹣n D.x2+2(﹣x+y)=x2﹣2x+y18.现规定一种新运算“*”:a*b=4ab﹣(a+b),如6*2=4×6×2﹣(6+2)=48﹣8=40,则(﹣4)*(﹣2)=()A.﹣8B.C.38D.19.若代数式x2+ax﹣(bx2﹣x﹣3)的值与字母x无关,则a﹣b的值为()A.0B.﹣2C.2D.120.如图,把半径为0.5的圆放到数轴上,圆上一点A与表示1的点重合,圆沿着数轴滚动一周,此时点A表示的数是()A.0.5+π或0.5﹣πB.0.25+π或0.25﹣πC.1+π或1﹣πD.2+π或2﹣π二.填空题21.2020年12月9日世卫组织公布,全球新冠肺炎确诊病例超6810万例,请用科学记数法表示6810万例为例.22.1﹣|﹣2|=.23.比较大小:﹣﹣.(填“>”或“<”)24.计算(﹣48)÷÷(﹣12)×的结果是.25.数轴上的A点表示的数是2,则距A点5个单位的B点表示的数是.26.用四舍五入法把1.8049精确到0.01为.27.去括号:﹣3(a+3b)=.28.代数式系数为;多项式3x2y﹣7x4y2﹣xy4的最高次项是.29.若整式a2+a的值为7,则整式a2+a﹣3的值为.30.12a x﹣1b3与﹣5a5b y+1是同类项,则x y=.31.若关于x的多项式x3﹣4x2﹣2与2x3+mx2﹣3的和不含二次项,则m=.32.已知|x|=3,|y|=5,且x>y,则2x+y的值为.三.解答题33.把下列各数填在相应的表示集合的括号内.﹣1,,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2).整数:{…};非负整数:{…};非正数:{…};有理数:{…}.34.计算:(1)(+3)﹣(﹣9)+(﹣4)﹣(+2)(2)22﹣5×+|﹣2|;(3)﹣22×÷(﹣)2×(﹣2)3 (4)(﹣1)100×5+(﹣2)4÷4.35.把下列各数在数轴上表示出来,并用“<”号连接起来:3,﹣(+2),﹣|﹣4|,0,1.5,(﹣1)336.先去括号,再合并同类项.(1)3a﹣(4b﹣2a+1)(2)2(5a﹣3b)﹣3(a2﹣2b).37.(1)已知a<b<0<c,化简|a﹣b|+|a+b|﹣|c﹣a|.(2)若|a|=21,|b|=27,且|a+b|=a+b,求a﹣b的值.38.先化简,再求值:2(3a2b﹣ab2)﹣3(2a2b+4ab2),其中a=﹣1,b=.39.x,y表示两个数,规定新运算“※”及“△”如下:x※y=6x+5y,x△y=3xy,那么(﹣2※3)△(﹣4)是多少?40.已知a、b互为相反数,x、y互为倒数,m到原点距离2个单位.(1)根据题意,m=;(2)求m2++(﹣xy)2020的值.41.已知:A+B=﹣3x2﹣5x﹣1,A﹣C=﹣2x+3x2﹣5.求:(1)B+C;(2)当x=﹣1时,求B+C的值?42.仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,﹣1,+1.2,+1.3,﹣1.3,﹣1.2,+1.8,+1.1.(1)这10袋小麦总计超过或不足多少千克?(2)若每千克小麦的售价为25元,估计这100袋小麦总销售额是多少元?参考答案一.选择题1.解:的倒数是.故选:A.2.解:∵﹣是一个数的相反数,∴这个数是:.故选:C.3.解:|﹣|=.故选:C.4.解:因为﹣3<﹣2<0<2,所以在四个数0,﹣2,﹣3,2中,最小的数是﹣3.故选:C.5.解:在1、﹣2、﹣5.6、﹣0、、﹣、π中负数有﹣2、﹣5.6、﹣共3个,故选:A.6.解:若上涨记作“+”,那么下降就记作“﹣”.所以下降0.4%应记作“﹣0.4%”.故选:B.7.解:A、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项不合题意;B、(﹣18)+(﹣9)=﹣27,故本选项不合题意;C、|5﹣2|=5﹣2,故本选项不合题意;D、0﹣(﹣7)=7,故本选项符号题意;故选:D.8.解:89 000 000这个数据用科学记数法表示为8.9×107.故选:C.9.解:A、403.53≈404(精确到个位),所以A选项错误;B、2.604≈2.6(精确到十分位),所以B选项错误;C、0.0234≈0.02(精确到0.01),所以C选项正确;D、0.0136≈0.0136(精确到0.0001),所以D选项错误.故选:C.10.解:A、两数之差不一定小于被减数,如1﹣(﹣1)=2,所以原说法错误,故本选项不合题意;B、对任意有理数,若a+b=0,则|a|=|b|,说法正确,故本选项符合题意;C、若两个有理数的和是负数,则这两个有理数不一定都是负数,如(﹣2)+1=﹣1,所以原说法错误,故本选项不合题意;D、0减去任何一个数,不一定都得负数,如0﹣(﹣1)=1,所以原说法错误,故本选项不合题意;故选:B.11.解:由数轴可得,a<0<b,|a|>|b|,则a<b,﹣a>b,a+b<0,b﹣a>0,错误的是B.故选:B.12.解:单项式﹣3πa2的系数是:﹣3π.故选:D.13.解:A、1和2是同类项,故本选项符合题意;B、xy与2y,所含字母不尽相同,不是同类项,故本选项不合题意;C、ab2与a2b,所含字母相同,但相同字母的指数不相同,不是同类项,故本选项不合题意;D、5ab与6ab2,所含字母相同,但相同字母的指数不尽相同,不是同类项,故本选项不合题意;故选:A.14.解:A、2a﹣a=a,故本选项不合题意;B、2a与b不是同类项,所以不能合并,故本选项不合题意;C、2a+3a=5a,故本选项符合题意;D、3a2+2a2=5a2,故本选项不合题意;故选:C.15.解:A.单项式x2的系数是,次数是2,故本选项不符合题意;B.多项式x2﹣2x﹣1的项是x2,﹣2x,﹣1,故本选项不符合题意;C.单项式﹣的系数是﹣,故本选项不符合题意;D.多项式y﹣x2y+5xy2是三次三项式,故本选项符合题意;故选:D.16.解:43=4×4×4,故选项A错误;=﹣,故选项B错误;4﹣4÷2=4﹣2=2,故选项C正确;32÷6×=9×=,故选项D错误;故选:C.17.解:2n+(﹣m﹣n)=2n﹣m﹣n,因此选项A不符合题意;a﹣2(3a﹣5)=a﹣6a+10,因此选项B符合题意;n﹣(﹣m﹣n)=n+m+n,因此选项C不符合题意;x2+2(﹣x+y)=x2﹣2x+2y,因此选项D不符合题意;故选:B.18.解:∵a*b=4ab﹣(a+b),∴(﹣4)*(﹣2)=4×(﹣4)×(﹣2)﹣[(﹣4)+(﹣2)]=32﹣(﹣6)=38.故选:C.19.解:∵x2+ax﹣(bx2﹣x﹣3)=x2+ax﹣bx2+x+3=(1﹣b)x2+(a+1)x+3,且代数式的值与字母x无关,∴1﹣b=0,a+1=0,解得:a=﹣1,b=1,则a﹣b=﹣1﹣1=﹣2,故选:B.20.解:∵半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A点,∴A点与1之间的距离是:2×π×0.5=π,当A点在1的左边时表示的数是1﹣π,当A点在1的右边时表示的数是1+π,故选:C.二.填空题21.解:6810万=68100000=6.81×107.故选:6.81×107.22.解:1﹣|﹣2|=1﹣2=1+(﹣2)=﹣1.故答案为:﹣1.23.解:∵|﹣|==,||==,,∴.故答案为:>.24.解:原式=(﹣48)×=4.故答案为:4.25.解:当B点在A点的左边时,点B表示的数为2﹣5=﹣3,当B点在A点的右边时,点B表示的数为2+5=7.故点B表示的数为7或﹣3.故答案为:7或﹣3.26.解:用四舍五入法把1.8049精确到0.01为1.80.故答案为:1.80.27.解:﹣3(a+3b)=﹣3a﹣9b.故答案为:﹣3a﹣9b.28.解:系数为﹣;多项式3x2y﹣7x4y2﹣xy4的最高次项是﹣7x4y2.故答案为:,﹣7x4y2.29.解:∵a2+a=7,∴a2+a﹣3=7﹣3=4.故答案为:4.30.解:根据题意得:x﹣1=5,y+1=3,解得x=6,y=2,∴x y=62=36.故答案是:36.31.解:x3﹣4x2﹣2+2x3+mx2﹣3=3x3+(m﹣4)x2﹣5,∵关于x的多项式x3﹣4x2﹣2与2x3+mx2﹣3的和不含二次项,∴m﹣4=0.解得,m=4.故答案为:4.32.解:∵|x|=3,|y|=5,∴x=±3,y=±5,∵x>y,∴y必小于0,y=﹣5.当x=3或﹣3时,均大于y.所以当x=3时,y=﹣5,代入2x+y=2×3﹣5=1.当x=﹣3时,y=﹣5,代入2x+y=2×(﹣3)﹣5=﹣11.所以2x+y=1或﹣11.故答案为:1或﹣11.三.解答题33.解:整数:{﹣1,﹣|﹣3|,0,﹣(﹣2)…};非负整数:{0,﹣(﹣2)…};非正数:{﹣1,﹣,﹣|﹣3|,0,﹣0.3…};有理数:{﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2)…}.故答案为:﹣1,﹣|﹣3|,0,﹣(﹣2);0,﹣(﹣2);﹣1,﹣,﹣|﹣3|,0,﹣0.3;﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2).34.解:(1)原式=3+9﹣4﹣2=12﹣6=6;(2)原式=4﹣1+2=5;(3)原式=﹣4××4×(﹣8)=32;(4)原式=1×5+16÷4=5+4=9.35.解:如图所示:,﹣|﹣4|<﹣(+2)<(﹣1)3.36.解:(1)原式=3a﹣4b+2a﹣1=5a﹣4b﹣1;(2)原式=10a﹣6b﹣3a2+6b=10a﹣3a2.37.解:(1)∵a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,|a﹣b|+|a+b|﹣|c﹣a|=b﹣a﹣a﹣b﹣c+a=﹣a﹣c;(2)∵|﹣a|=21,|+b|=27,∴a=±21,b=±27,∵|a+b|=a+b,∴a+b≥0,∴①a=﹣21,b=27,则a﹣b=﹣21﹣27=﹣49;②a=21,b=﹣27,则a﹣b=21+27=49;③a=21,b=27,则a﹣b=21﹣27=﹣6.故a﹣b的值为﹣49或49或﹣6.38.解:原式=6a2b﹣2ab2﹣6a2b﹣12ab2=﹣14ab2,当a=﹣1,b=时,原式=﹣14ab2=﹣14×(﹣1)×()2=14×=.39.解:∵x※y=6x+5y,x△y=3xy,∴(﹣2※3)△(﹣4)=[6×(﹣2)+5×3]△(﹣4)=[(﹣12)+15]△(﹣4)=3△(﹣4)=3×3×(﹣4)=﹣36.40.解:(1)∵m到原点距离2个单位,∴m=2或﹣2,故答案为:2或﹣2;(2)根据题意知a+b=0,xy=1,m=2或﹣2,当m=2时,原式=22+0+(﹣1)2020=4+1=5;当m=﹣2时,原式=(﹣2)2+0+(﹣1)2020=4+1=5;综上,m2++(﹣xy)2020的值为5.41.解:(1)∵A+B=﹣3x2﹣5x﹣1,A﹣C=﹣2x+3x2﹣5,∴A+B﹣(A﹣C)=﹣3x2﹣5x﹣1﹣(﹣2x+3x2﹣5),∴B+C=﹣3x2﹣5x﹣1+2x﹣3x2+5,∴B+C=﹣6x2﹣3x+4,(2)把x=﹣1代入﹣6x2﹣3x+4,得,B+C=﹣6×1﹣3×(﹣1)+4=1.42.解:(1)+1+1+1.5+(﹣1)+1.2+1.3+(﹣1.3)+(﹣1.2)+1.8+1.1=5.4(千克).答:这10袋小麦总计超过5.4千克;(2)总质量:(90+5.4÷10)×100=9054(千克),9054×25=226350(元).答:这100袋小麦总销售额是226350元.。
人教版七年级上册数学期末复习:计算强化练习题 2(含答案)
合并同类项得:7x=﹣14,
系数化为1得:x=﹣2;
(2) ,
去分母得:2(3x﹣2)=x+2﹣12,
去括号得:6x﹣4=x+2﹣12,
移项得:6x﹣x=2﹣12+4,
合并同类项得:5x=﹣6,
系数化为1得:x=﹣ .
12.解:(1)去括号得:x﹣2x+8=3﹣3x,
移项合并得:2x=﹣5,
解得:x=﹣2.5;
(2)去分母得:4﹣3x+1=6+2x,
移项合并得:﹣5x=1,
解得:x=﹣0.2.
13.解:(1)去括号,可得:5x﹣6+4x=﹣3,
移项,合并同类项,可得:9x=3,
系数化为1,可得:x= .
(2)去分母,可得:5(x﹣1)=10+2(x+1),
去括号,可得:5x﹣5=10+2x+2,
=﹣27×(﹣ +15)
=45﹣405
=﹣360.
4.解:(1)| ﹣ |÷(﹣ )﹣ ×(﹣2)3
= ÷(﹣ )﹣ ×(﹣8)
=﹣2+1
=﹣1.
(2)( ﹣ + )÷(﹣ )
= ×(﹣24)﹣ ×(﹣24)+ ×(﹣24)
=﹣16+18﹣4
=﹣2.
5.解:(1)原式=﹣7﹣4+10=﹣1;
(2)原式= × × = ;
(2)(﹣1 )÷(﹣2 )× ;
(3)(﹣7)×(﹣5)﹣90÷(﹣15)+3×(﹣1);
(4)﹣ ×(﹣2)2﹣(﹣ )×42.
6.化简:
(1)3x2﹣1﹣2x﹣5+3x+(﹣5x2);
北师大版七年级数学上册第二章《有理数及其运算》检测试卷(含答案)
北师大版七年级数学上册第二章《有理数及其运算》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分) 1.若有理数a ,a+2b ,b 在数轴上对应点如图所示,则下列运算结果是正数的是( ) A .a+b B .a - b C .1.5a+b D .0.5a+1.5b2.下列各式:①-(-5),②-|-2|,③-(-2)2,④-52,计算结果为负数的个数有( ) A .4个 B .3个 C .2个 D .1个3.下列说法中正确的选项是( )A .温度由﹣3℃上升 3℃后达到﹣6℃B .零减去一个数得这个数的相反数C .3π既是分数,又是有理数 D .20.12 既不是整数,也不是分数,所以它不是有理数 4.把数3120000用科学记数法表示为( )A .3.12×105B .3.12×106C .31.2×105D .0.312×1075.下列各式中一定成立的是( )A .221(1)-=-B .331(1)=-C .221(1)=--D .33(1)(1)-=- 6.数轴上如果点A 表示的数2,将点A 向左移动6个单位长度后表示的数是( ) A .6 B .-4 C .-6 D .-87.如图,数轴的单位长度为1,如果P ,R 表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )A .PB .RC .QD .T8.下列说法不正确的是( )A .0既不是正数,也不是负数B .一个有理数不是整数就是分数C .1是绝对值是最小的有理数D .0的绝对值是09.下列有理数-2,(-1)2,0,|-5|,其中负数的个数有( )A .1个B .2个C .3个D .4个10.下列说法中,正确的是( )A .一个数的相反数是负数B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点,可以在原点的同一侧二、填空题(每小题4分,共32分) 1.已知a 、b 互为相反数,m 、n 互为倒数,则28a b mn +-+的值是 . 2.你吃过拉面吗?如图把一个面团拉开,然后对折,再拉开再对折,如此往复下去折5次, 会拉出 根面条.3.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“1cm ”和“9cm ”分别对应数轴上的5-和x ,那么x 的值为 .4.已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,则a+b+c+d= . 5.“腊味香肠”是居民冬季特别是春节餐桌上必不可少的传统美食,每年入冬以后,便进入灌香肠的好时节.老李、老陈、老杨三人约定每人拿出相同数目的钱共同去灌制香肠.香肠灌制完成后,老李、老陈分别比老杨多分了8、13斤香肠,最后结算时,老李需付给老杨30元,则老陈应付给老杨 元.6.34--的倒数是 ,24-()的相反数是 . 7.纸上画有一条数轴,将纸对折后,表示5的点与表示2-的点恰好重合,则此时与表示 3.5-的重合的点所表示的数是 .8.北京与纽约的时差为-13h (负号表示同一时刻纽约时间比北京时间晚),如果现在是北京时间16:00,那么纽约时间是 .三、解答题(每小题8分,共48分)1.如图,周长为2个单位长度的圆片上的一点A 与数轴上的原点O 重合,圆片沿数轴来回无滑动地滚动.(1)把圆片沿数轴向左滚动一周,点A到达数轴上点B的位置,则点B表示的数为__________.(2)圆片在数轴上向右滚动的周数记为正数,向左滚动的周数记为负数,依次滚动情况记录如下表:第1次第2次第3次第4次第5次第6次滚动周数+3 -1 -2 +4 -3 a①第6次滚动a周后,点A距离原点4个单位长度,请求出a的值;②当圆片结束第6次滚动时,点A一共滚动了多少个单位长度?2.计算:(1)﹣10﹣(﹣18)+(﹣4)(2)(﹣54)÷(﹣3)+83×(﹣92)(3)(513638-+)×(﹣24)(4)(﹣12)3+[﹣8﹣(﹣3)×2]÷43.甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时乙在前,甲在后,出发后8分钟甲、乙第一次相遇,出发后的24分钟时甲、乙第二次相遇.假设两人的速度保持不变,你知道出发时乙在甲前多少米吗?4.计算:(1)﹣7﹣11+4+(﹣2)(2)3×(—4)+(—28)÷7(3)111135 532114⎛⎫⨯-⨯÷⎪⎝⎭参考答案一、单选题(每小题2分,共20分)1.D 2.B 3.B 4.B 5.C6.B 7.D 8.C 9.A 10.C二、填空题(每小题4分,共32分)三、解答题(每小题8分,共48分)- 5 -。
初中七年级上册数学测试卷2
54D3E21C B A七年级期末复习21、若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则 点P 的坐标是 ( ) A 、(-4,3) B 、(4,-3) C 、(-3,4) D 、(3,-4)2、通过平移,可将图(1)中的福娃“欢欢”移动到图( )(图1) A B C D 3、下列每组数分别是三根小木棒的长度,其中能摆成三角形的是( ) A .cm cm cm 5,4,3 B. cm cm cm 15,8,7 C .cm cm cm 20,12,3 D. cm cm cm 11,5,5 4、如右图,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B . A.1 B.2 C.3 D.45、两架编队飞行(即平行飞行)的两架飞机A 、B 在坐标系中的坐标分别为A (-1,2)、B (-2,3),当飞机A 飞到指定位置的坐标是(2,-1)时,飞机B 的坐标是( ) A.(l ,5); B.(-4,5); C .(1,0); D.(-5,6) 6、下列图形中,只用一种作平面镶嵌,这种图形不可能是 ( ) (A)三角形 (B)凸四边形 (C)正六边形 (D)正八边形7、如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )(A) (3,2) (B) (3,1) (C)(2,2) (D)(-2,2)8、若方程组⎩⎨⎧=-=+a y x yx 224中的x 是y 的2倍,则a 等于( )A .-9B .8C .-7D .-69、点P (2,—4)关于x 轴的对称点的坐标为 ( )A .(2,4)B .(2,-4)C .(-2,4)D .(-2,-4) 10、已知点P (a ,a-1),则点p 不可能在( )A .第一象限 B.第二象限 C.第三象限 D.第四象限11、木工师傅做完门框后,为防止变形,通常在角上钉一斜条,他的根据是 ___________________.12、内角和与外角和之比是1∶5的多边形是______边形13、两边分别长4cm 和10cm的等腰三角形的周长是________cm14、五子棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜。
七年级数学上册 第2章 有理数单元复习 试题
§2. 有理数本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
【知识扫描】1、有理数的概念像13、155、117.3、0.03%这样的数是 数,它们都是比0大的数;像-13、-155、-117.3、-0.03%这样的数是 数,它们都是比0小的数;既不是 数也不是 数。
2、正整数、负整数、与0统称为 ,正分数、负分数统称为 ,整数、分数统称为 。
例1、将以下各数分别填入相应的集合里-2.05、 0.32、 -3 、 -71、 32-、0 、 43 、 1- 、 2 整数集合 { ……}负数集合 { ……}负整数集合 { ……}有理数集合 { ……}负分数数集合{ ……}非正整数集合{ ……}非负数集合 { ……}3、规定了 、 、 的直线叫做数轴;在数轴上,右边的点表示的数大于左边的点表示的数;正数都大于0,负数都小于0,正数大于负数;例2、判断:所有的有理数都可以用数轴上的点来表示 ( )数轴上的点都表示有理数 ( )4、数轴上 ,叫做这个数的绝对值。
当a >0时, ︱a ︱= ;当a= 0时, ︱a ︱= ;当a <0时, ︱a ︱= ;例3、假设︱X ︱=︱Y ︱,那么x 和y 的关系是 〔 〕A 、都是零B 、互为相反数C 、相等D 、互为相反数或者相等5、像5与-5、-2.5与2.5、32 与32…… 、 的两个数互为相反数,0的相反数是 6、正数的绝对值是它的 ;负数的绝对值是它的 ;0的绝对值是 ;7、两个正数,绝对值大的正数 ;两个负数,绝对值大的 。
二、有理数运算8、有理数加法法那么: 同号两数相加,取 ,并把 相加;异号两数相加,绝对值相等时,和为________;__________不等时,取___________的加数的符号,并用 减去 ;9、有理数加法运算律:交换律:结合律:10、有理数减法法那么:减去一个数,等于 这个数 。
11、有理数乘法法那么:两数相乘, , 并把绝对值相乘。
人教版数学七年级上册。第二章测试题含答案
人教版数学七年级上册。
第二章测试题含答案人教版数学七年级上册第二章测试题含答案2.1 整式一.选择题1.下列说法正确的是(B)。
A。
是单项式B。
x2+2x-1的常数项为1C。
的系数是2D。
xy的次数是2次2.在下面四个式子中,为单项式的是(A)。
A。
y=x2B。
C。
2D。
23.x3+x2(b+1)+1是关于x的二次多项式,则a,b的值可以是(C)。
A。
B。
C。
2,-1D。
4.下列说法中,正确的为(D)。
A。
单项式-的系数是-2,次数是3B。
单项式a的系数是,次数是1C。
是二次单项式D。
单项式-的系数是-,次数是35.多项式有(B)个。
A。
4B。
3C。
2D。
16.多项式2x5+4xy3-5x2-1的次数和常数项分别是(B)。
A。
5,-1B。
4,-1C。
10,-1D。
4,17.关于整式的概念,下列说法正确的是(B)。
A。
的系数是B。
32x3y的次数是6C。
的常数项是D。
-x2y+xy-7是5次三项式8.下列说法正确的是(D)。
A。
单项式的系数是B。
m的系数和次数都是1C。
m+n+1是一次单项式D。
多项式2m3+3m2-4的项数是49.下列式子:x2+2,+4,5x,中,整式的个数是(C)。
A。
3B。
4C。
5D。
610.下列说法正确的是(①,②,④)。
①-的相反数是-3;②a3b的次数是3;③多项式-5x+6x2-1是二次三项式;④-6.1是负分数;⑤的系数是-。
二.填空题11.多项式2x+3x2y-4的次数是3,次数最高的项是3x2y2,常数项是-4.12.若x2y3-πx4yn+xy2是关于x,y的六次多项式,则正整数n的值为4.13.同时符合下列条件:①同时含有字母a,b;②常数项是-1,且最高次项的系数是2的一个4次2项式,请你写出满足以上条件的一个整式。
答案:2a2b-1.14.已知(b-3)x2y|b|+(a+2)是关于x,y的五次单项式,a2-3ab+b2的值为-1.15.把多项式2x3y-4y2x+5x2-1重新排列:则按x降幂排列:5x2-4y2x+2x3y-1.三.解答题16.若关于x,y的多项式3x2-nxmy-x是一个三次三项式,且最高次项的系数是-3,求m-n的值。
部审初中数学七年级上《复习题2》廖联芳PPT课件 一等奖新名师优质公开课获奖比赛新课标
重庆市綦江实验中学校:廖联芳
专题一:用字母表示数
1.用含有字母的式子表示: (1)边长为x的正方形的周长为 4x ; (2)温度由5℃上升t℃后是 (5+t) ℃; (3)一个长方体包装盒的长河宽都是a㎝,高是h ㎝,则长方体的体积为 a²h ㎝; (4)丽丽去鲜花店买花,买了m枝玫瑰,每枝a元, n枝康乃馨,每枝b元,则共应付 (ma+nb) 元; (5)一个三位数,个位数字是a,十位数字是b, 百位数字是c,则这个三位数可表示为100c+10b+a .
4
分别回答下列问题: (1)它是几项式? (2)写出它的各项; (3)写出它的最高次项; (4)写出最高次项的次数; (5)写出多项式的次数; (6)写出常数项.
解:(1)多项式 3x2 3 x4 y 1.3 2xy2 ,由4项
4
组成,是四项式;
(2)它的各项分别是:3x2 , 3 x4 y ,-1.3,
当 x 2 时, 原式 (2)2 3 (2) 5
=15
2.方法总结:
合并同类项: 把多项式中的同类项合并成一项,叫合并同类项; 一相加:同类项的系数相加 合并同类项的法则: 两不变 字母不变 字母的指数不变
3.拓展练习:
(1)如果关于x的代数式 3x4 2x5 5x2 kx5 mx2 4x 5 7x
解:(1)参加枫江旅行社的总费用为:3 500 250a 250a 1500 参加东方旅行社的总费用为:(3 a) 500 0.8 400a 1200 答:参加枫江旅行社的总费用为(250a 1500) 元,参加东方旅行 社的总费用为 (400a 1200)元;
(2)当 a 50 时, 参加枫江旅行社的总费用为:250×50+1500=14000(元); 参加东方旅行社的总费用为:400×50+1200=21200(元). 14000<21200 ∴参加枫江旅行社合算. 答:参加枫江旅行社合算.
人教版七年级上册数学第一章测试题二(附答案)
人教版七年级上册数学第一章测试题二(附答案)一、单选题(共12题;共24分)1.﹣12等于()A. 1B. ﹣1C. 2D. ﹣22.下列各数中,没有平方根的是()A. B. C. D.3.2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12 050 000枚,用科学记数法表示正确的是( )A. 1.205×107B. 1.20×108C. 1.21×107D. 1.205×1084.用科学记数法表示537万正确的是( )A. 537×104B. 5.37×105C. 5.37×106D. 0.537×1075.2016年,我国约有9400000人参加高考,将9400000用科学记数法表示为()A. 9.4×105B. 9.4×106C. 0.94×106D. 94×1046.若a、b、c都是有理数,那么2a﹣3b+c的相反数是()A. 3b﹣2a﹣cB. ﹣3b﹣2a+cC. 3b﹣2a+cD. 3b+2a﹣c7.﹣2013的相反数是()A. ﹣2013B.C. 2013D. -8.下列各组数中,互为相反数的是()A. 2与B. (-1)2与1C. 2与|-2|D. -1与(-1)29.下列说法:①所有有理数都能用数轴上的点表示;②若两个有理数的绝对值相等,则这两个数互为相反数;③如果一个数的绝对值是它的相反数,那么这个数一定是负数;④两数相加,和一定大于任何一个加数;⑤如果三个有理数的积为负数,则这三个有理数中恰有一个或三个负数.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个10.据统计,2016年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为()A. 67×106B. 6.7×105C. 6.7×107D. 6.7×10811.a、b在数轴上的位置如图所示,则等于()A. -b-aB. a-bC. a+bD. -a+b12.据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是()A. 4B. 5C. 6D. 7二、填空题(共7题;共14分)13.已知x,y是有理数,则满足(x+2y﹣7)2+|3x﹣y|=0的x的值为________,y的值为________.14.规定a※b= ,例如2※3= ,则[2※(-5)]※4=________15.________ 、________ 、________ 统称有理数.16.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数,根据刘徽的这种表示法,观察可推算出图①中所得的数值为1,则图②中所得的数值为________.17.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当取得最大值时,这个四位数的最小值是________.18.已知|a|=2,|b|=3,|c|=4,且a>b>c,则a+b+c=________.19.已知a,b,c表示3个互不相等的整数,这3个数的绝对值都大于1,且满足|a|+10b2+100c2=2020,则a+b+c的最小值是________。
七年级数学苏科版上册第2单元复习《单元测试》02 练习试题试卷 含答案
苏科七年级上单元测试第2单元班级________姓名________一、单选题1.有理数a 、b 、c 在数轴上对应点的位置如图所示,若|b |>|c |,则下列结论中正确的是()A .abc <0B .b +c <0C .a +c >0D .ac >ab2.求23201913333+++++ 的值,可令23201913333S =+++++ ①,①式两边都乘以3,则2333S =+342020333++++ ②,②-①得2020331S S -=-,则2020312S -=仿照以上推理,计算出2155++342019555++++ 的值为()A .201951-B .202051-C .2020514-D .2010514-3.若||4=a ,||2=b ,且+a b 的绝对值与相反数相等,则-a b 的值是()A .2-B .6-C .2-或6-D .2或64.已知2ab -和1a -是一对互为相反数,()()()()()()1111112220202020ab a b a b a b ++++++++++ 的值是()A .12020B .12021C .20212022D .202020215.已知a 、b 、c 在数轴上的位置如图所示,试化简|a +b |﹣|b |+|b +c |+|c |的结果是()A .a +bB .a +b ﹣2cC .﹣a ﹣b ﹣2cD .a +b +2c6.如图所示,在这个数据运算程序中,若开始输入的x 的值为4,输出的结果是2,返回进行第二次运算则输出的是1,…,则第2020次输出的结果是()A .﹣1B .-2C .-4D .-67.现有以下五个结论:①整数和分数统称为有理数;②绝对值等于其本身的有理数是0和1;③每一个有理数都可以用数轴上的一个点表示;④若两个非0数互为相反数,则它们相除的商等于﹣1;⑤几个有理数相乘,负因数个数是奇数时,积是负数.其中正确的有()A .1个B .2个C .3个D .4个二、填空题8.观察下列等式:11111222=-=´111112112232233+=-+-=´´1111111131122334223344++=-+-+-=´´´……请按上述规律,写出第n 个式子的计算结果(n 为正整数)______.(写出最简计算结果即可)9.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块剪成4块,像这样依次地进行下去,到剪完某一次为止,那么2018、2019、2020、2021这四个数中______可能是剪出的纸片数.10.你玩过24点游戏吧,请你运用加、减、乘、除运算和括号,写出数5、5、5、1得到24的算式__________(每个数只能用一次).11.观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述的数字宝塔中,从上往下数,2020在第_____层.12.阅读理解:12-111-22112==´,13-211-63223==´,14-311-124334==´……阅读以上材料后计算:111111111357911131517612203042567290++++++++=__.13.数轴上一个点到-1所表示的点的距离为4,那么这个点在数轴上所表示的数是______.14.有两组数,第一组:-0.25,314-,3,第二组数:-0.35,45,310-,从这两组数中各取一个数,将它们相乘,那么所有这样的乘积的总和是______.15.计算:14(81)249-¸´¸_______15=-.三、解答题16.计算(1)45554559696æöæöæö--++---ç÷ç÷ç÷èøèøèø(2)()33312121315137474æöæö´--´+-´+´-ç÷ç÷èøèø(3)()()3311624 2.52æö¸---´-+ç÷èø(4)()()2019211112424248æö-+-+--+´-ç÷èø17.计算:(1)()()221110.5222éù---´´--ëû;(2)18191919-´(简便计算).18.简算(1)﹣(2).19.先计算,再阅读材料,解决问题:(1)计算:11112362æö-+´ç÷èø.(2)认真阅读材料,解决问题:计算:121123031065æö¸-+-ç÷èø.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:211213106530æö-+-¸ç÷èø21123031065æö=-+-´ç÷èø21123030303031065=´-´+´-´20351210=-+-=.故原式110=.请你根据对所提供材料的理解,选择合适的方法计算:1351252426213æöæö-¸-+-ç÷ç÷èøèø.20.已知点M ,N 在数轴上分别表示m ,n ,动点P 表示的数为x .(1)填写表格:m 23-2-n625-M ,N 两点间的距离4_____________(2)由表可知,点M ,N 之间的距离可以表示为m n -,则2x -可以看成是表示为x 的数到2的距离,若数轴上表示数x 的点位于2与6-之间(包含2和6-),那么①()26x x -+--=_______.②126x x x -++++的最小值=_______.(3)12399100x x x x x -+++-++-++ 的最小值=________.参考答案题号1234567答案BCCCCBC8.1n n +9.202010.5×(5-1÷5)=2411.44.12.281513.-5或314.0.15.15.161516.解:(1)45554559696æöæöæö--++---ç÷ç÷ç÷èøèøèø=45554559696---+=4555(45)(5)9966--+-+=105--=15-(2)()33312121315137474æöæö´--´+-´+´-ç÷ç÷èøèø=[][()33312115213137744æöæöù´-+-´+-´+´-ç÷ç÷ûèøèø=3311(52)13(2)744æö-´++´--ç÷èø=-10-39=-49(3)()()3311624 2.52æö¸---´-+ç÷èø=()()11684 2.58æö¸---´-+ç÷èø=12 2.52--+=0(4)()()2019211112424248æö-+-+--+´-ç÷èø=()()()11110242424248éù-+-´--´-+´-êúëû=11263-+-+=817.(1)12-;(2)379-解:(1)()()221110.5222éù---´´--ëû=()1112422--´´-=()1124--´-=11+2-=12-(2)18191919-´=1201919æö-+´ç÷èø=12019+1919-´´=380+1-=379-.18.解:(1)原式=×(﹣1.05﹣11.35+7.7)=×(﹣4.7)=﹣;(2)原式=﹣9×﹣18+4﹣9=﹣24.19.(1)8;(2)147-解:(1)计算:111111121212124268362362æö-+´=´-´+´=-+=ç÷èø;(2)原式的倒数是:()351252426213æö-+-´-ç÷èø,()()()()351252525252426213=´--´-+´--´-,3910268=-+-+,47=-,故原式147=-.20.解:(1)2-(-3)=5,(-2)-(-5)=3,填表如下:m 23-2-n625-M ,N 两点间的距离453(2)①()26x x -+--表示数轴上x 到2和x 到-6的距离之和,∴()()26268x x -+--=--=;②126x x x -++++表示数轴上x 到1和x 到-2以及x 到-6的距离之和,∵表示数x 的点位于2与-6之间(包含2和-6),∴当x 与-2重合时,126x x x -++++最小,即为1-(-6)=7;(3)12399100x x x x x -+++-++-++ 表示数轴上x 分别到1,-2,3,-4,...,99,-100的距离之和,∴当x =()991002+-=12-时,取最小值,最小值为111111239910022222--+-++--++--+- =()1.5 3.5 5.5...99.52++++´=5050.。
初一上册数学复习题2答案
初一上册数学复习题2答案初一上册数学复习题2答案数学是一门需要不断练习和巩固的学科,通过复习题的做题和答案分析,可以帮助我们更好地理解和掌握数学知识。
下面是初一上册数学复习题2的答案解析。
一、选择题1. 选B。
根据题意,当a=2时,b=3,c=4,d=5,e=6。
所以,a的值为2。
2. 选C。
根据题意,当x=2时,y=4,z=6。
所以,x的值为2。
3. 选A。
根据题意,当a=1时,b=2,c=3,d=4,e=5。
所以,a的值为1。
4. 选D。
根据题意,当x=3时,y=6,z=9。
所以,x的值为3。
5. 选B。
根据题意,当a=4时,b=8,c=12,d=16,e=20。
所以,a的值为4。
二、填空题1. x=5。
根据题意,当y=10时,x=5。
2. a=3。
根据题意,当b=6时,a=3。
3. x=7。
根据题意,当y=14时,x=7。
4. a=2。
根据题意,当b=4时,a=2。
5. x=6。
根据题意,当y=12时,x=6。
三、解答题1. 解:根据题意,已知a=2,b=3,c=4,d=5,e=6,求a+b+c+d+e的值。
解题步骤如下:a+b+c+d+e=2+3+4+5+6=20。
所以,a+b+c+d+e的值为20。
2. 解:根据题意,已知x=3,y=6,z=9,求x+y+z的值。
解题步骤如下:x+y+z=3+6+9=18。
所以,x+y+z的值为18。
通过以上的答案解析,我们可以发现,数学复习题的解答过程并不复杂,只需要根据题意进行逐步推导和计算即可。
同时,通过复习题的做题和答案分析,我们可以加深对数学知识的理解和掌握,提高解题的能力和思维灵活性。
数学是一门需要不断练习和积累的学科,只有通过不断地做题和巩固知识,才能在数学学习中取得好成绩。
希望同学们能够利用好复习题和答案解析,不断提升自己的数学水平,为未来的学习打下坚实的基础。
2021-2022学年人教版七年级数学上册期末综合复习训练2(附答案)
2021-2022学年人教版七年级数学上册期末综合复习训练2(附答案)1.下列各数﹣2,2,﹣5,0,π,0.0123中,负数的个数有()A.1个B.2个C.3个D.4个2.一种产品的质量标识为“25千克”,则下列产品中合格的有()A.25.30千克B.25.51千克C.24.80千克D.24.70千克3.一滴墨水洒在数轴上,根据图中标出的数值判断墨迹盖住的整数个数是()A.14B.13C.12D.114.数轴上点A表示的数是﹣2,将点A在数轴上移动5个单位长度得到点B,则点B表示的数是()A.3B.3或﹣7C.﹣7D.﹣3或75.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2022的点与圆周上表示数字()的点重合.A.50B.1C.2D.36.﹣2022的相反数是()A.﹣2022B.2022C.±2022D.20217.若xy≠0,则的值不可能是()A.0B.1C.2D.﹣28.如果|m﹣3|=3﹣m,那么m的取值范围是()A.m≤3B.m<3C.m≥3D.m>39.若abc≠0,则++的值为()A.±3或±1B.±3或0或±1C.±3或0D.0或±110.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b+c等于()A.﹣1B.0C.1D.211.如图,约定:上方相邻两数之和等于这两个数下方箭头共同指向的数.当y=10时,n是()A.﹣2B.1C.0D.612.若|a|=3,|b|=5,且ab<0,则a+b的值是()A.2B.﹣8C.8或﹣8D.2或﹣213.下列各数中,数值相等的是()A.(﹣2)3和﹣23B.﹣|23|和|﹣23|C.(﹣3)2和﹣32D.23和32 14.2021年5月,由中国航天科技集团研制的天问一号探测器的着陆巡视器成功着陆于火星乌托邦平原南部预选着陆区.中国航天器首次奔赴火星,就“毫发未损”地顺利出现在遥远的红色星球上,完成了人类航天史上的一次壮举.火星与地球的最近距离约为5500万千米,该数据用科学记数法可表示为()千米.A.5.5×108B.5.5×107C.0.55×109D.0.55×108 15.已知一个数由四舍五入法得到近似数4.11万,则关于这个数的精确位数,下列说法正确的是()A.精确到百位B.精确到万位C.精确到千分位D.精确到百分位16.下列各式﹣mn,8,,x2+2x+6,,,﹣a中,整式有()A.4个B.5个C.6个D.7个17.如果代数式2x+3y+1的值为4,那么代数式3﹣4x﹣6y的值为()A.1B.﹣5C.3D.﹣318.单项式4x a+3y与6x5y3的次数相同,则a的值是()A.2B.﹣3C.3D.419.若关于x的方程(m﹣3)x|m﹣2|﹣3=0是一元一次方程,则m值是()A.1或2B.1或3C.1D.320.下列变形中,不正确的是()A.若3a=3b,则a=b B.若=,则a=bC.若a=b,则a+3=b+3D.若a=b,则=21.某书中有一方程,其中一个数字被污渍盖住了,书后该方程的答案为x=﹣1,那么■处的数字应是()A.5B.﹣5C.D.22.我国古代问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”其题意是:用绳子测量水井深度,把绳三折来量,井外余绳四尺;把绳四折来量,井外余绳一尺.问绳长和井深各多少尺?若假设井深为x尺,则下列符合题意的方程是()A.B.3(x+4)=4(x+1)C.D.3x+4=4x+123.几个人共同种一批树苗,如果每人种6棵,则少4棵树苗;如果每人种5棵,则剩下3棵树苗未种.若设参与种树的人数为x人,则下面所列方程中正确的是()A.5x﹣3=6x﹣4B.5x+3=6x+4C.5x+3=6x﹣4D.5x﹣3=6x+4 24.某校举办班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.如果七年级(1)班在8场比赛中共得13分,那么该班获胜的场数是()A.4B.5C.6D.725.如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的2021所对应的点与圆周上字母()所对应的点重合.A.A B.B C.C D.D26.若|x﹣1|=3,|y|=5,﹣>0,那么x﹣y的值是()A.2或0B.﹣2或0C.﹣1或3D.﹣7或927.如图,表中给出的是某月的月历,任意选取“U”型框中的5个数(如阴影部分所示),请你运用所学的数学知识来研究,在本月历中这5个数的和可能的是()A.64B.75C.86D.12628.绝对值不大于2.5的所有整数的和为.29.若a、b互为相反数,c、d互为倒数,且m的绝对值是1,则(a+b)﹣cd+2021m2的值是.30.已知关于x的一元一次方程的解为x=8,则关于y的一元一次方程:的解为y=.31.假设“▲、●、■”分别表示三种不同的物体.如图,前两架天平保持平衡,如果要使第三架天平也保持平衡,那么“?”处应放个■.32.往返于甲、乙两地的火车,途中停靠三个站,则至多要准备种车票.33.如图,OB在∠AOC的内部,已知OM是∠AOC的平分线,ON平分∠BOC,若∠AOC =120°,∠BOC=40°,则∠MON=.34.把一副三角尺按如图所示拼在一起,其中B,C,D三点在同一直线上,CM平分∠ACB,CN平分∠DCE,则∠MCN.35.如图,将三个边长相同的正方形的一个顶点重合放置,已知∠1=38°,∠2=32°,则∠3=度.36.一件衣服价格为1650元,打八折售出仍可盈利10%.若以1650元售出,可盈利元.37.10月1日上午,庆祝中华人民共和国成立70周年阅兵活动在北京天安门广场隆重举行.阅兵副总指挥小李为了协调各项准备工作,他的指挥车在东西走向的长安街来回奔波于各个方阵之间,如果规定向东为正,向西为负,从出发点开始所走的路程(单位:千米)为:+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣10,+6.(1)小李的指挥车最终距离出发点多远?(2)若指挥车每千米耗油0.3升,问共耗油多少升?38.把下列各数分别填在相应的集合内:﹣11,4.8,73,﹣2.7,,3.1415926,﹣,,0.正分数集合:{…};负分数集合:{…};非负整数集合:{…};非正整数集合:{…}.39.数形结合是数学解题中的一种重要思想,利用数轴可以将数与形完美结合.一般地,数轴上越往右边的点表示的数越大,例如:若数轴上点M表示数m,则点M向右移动n 个单位到达的点N表示的数为m+n,若点M向左移动n个单位到达的点表示的数为m﹣n.如图,已知数轴上点A表示的数为10,点B与点A距离16个单位,且在点A的左边,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.(1)数轴上点B表示的数为,点P表示的数为.(用含t的式子表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发.①求点P运动多少秒追上点Q?②求点P运动多少秒时与点Q相距6个单位?并求出此时点P表示的数.40.如图,数轴上的三点A、B、C所对应的数分别为a、b、c.(1)填空:a﹣b0;a+c0;b+c0.(填“>”“<”或“=”)(2)化简:|a﹣b|﹣|a+c|+|b+c|.41.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是;(3)从下到上前35个台阶上数的和为.42.请根据图示的对话,解答下列问题.(1)分别求出a,b,c的值;(2)求9﹣a+b﹣c的值.43.对于有理数a、b定义一种新运算,规定a☆b=a2﹣ab.(1)2☆(﹣3)的值;(2)求(﹣2)☆(3☆4)的值.44.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,求mn的值.45.某中学召开运动会,七年级某班要中性笔和笔记本作为奖品,已知笔记本每本定价10元,中性笔每支定价2元,某商店开展促销活动,可以向客户提供两种优惠方案:方案一:买一个笔记本赠送一支中性笔;方案二:笔记本和中性笔都按定价的90%付款.现某班要购买笔记本20个,中性笔x支(x>20,且x为整数).(1)若该班按方案一购买,需付款元(用含x的式子表示);(2)若该班按方案二购买,需付款元(用含x的式子表示);(3)当x=80时,按以上方案购买,哪种方案更划算?请通过计算说明理由.46.某市居民使用自来水按如下标准收费(水费按月缴纳):果户月用水量单价不超过12m3的部分a元/m3超过12m3但不超过20m3的部分 1.5a元/m3超过20m3的部分2a元/m3(1)设某户月用水量为n立方米,当n=10时,则该用户应缴纳的水费元(用含a的整式表示).(2)设某户月用水量为n立方米,当n>20时,则该用户应缴纳的水费元(用含a、n的整式表示).(3)当a=2时,某用户一个月用了28m3水,求该用户这个月应缴纳的水费.(4)当a=2时,甲、乙两用户一个月共用水30m3,已知甲用户缴纳的水费不足24元,设甲用户这个月用水xm3,请直接写出甲、乙两用户一个月共缴纳的水费(用含x的整式表示).47.已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值;(3)若3A﹣(2A+3B)的值与y的取值无关,求此时3A﹣(2A+3B)的值.48.先化简后求值:5(x2﹣xy)﹣[5x2﹣6y+3(xy+2y)],其中x=﹣,y=﹣3.49.先阅读材料,再回答问题:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,如|2|=2,|2﹣1|=2﹣1=1;当a≤0时,|a|=﹣a,如|﹣2|=2,|1﹣2|=﹣(1﹣2)=2﹣1=1.根据以上信息完成下列问题:(1)|5﹣2|=;|3﹣6|=;(2)|π﹣3.14|=;(3)计算:50.解方程:(1)4(x﹣1)﹣3(2x+1)=7;(2)1﹣;(3)+3=0.51.某学校组织七年级同学参加社会实践活动,计划前往博物馆参观;若博物馆的门票只能当日有效,且价格规定如表:购票张数1~49张50~99张100张以上每张门票的价格15元12元9元现有七年级三个班共129人参观,其中每个班都不足50人;(1)若学校为七年级集体购票,共需购票款多少元?(2)因七年一班需要在校参加另外一项活动,参观时间另外安排,这样学校两次购票共花费1674元,求七年一班有多少学生?(3)当七年一班去博物馆参观时,班长同学采取了新的购票方案,结果比(2)中方案省钱.你知道班长是如何购票的吗?请计算班长同学节约了多少钱.52.某市用电实施“阶梯电价”收费,具体收费标准如下(电费按月缴纳):若用户月用电不超过100度,按0.5元/度收费;若超过100度但不超过200度的部分,按0.6元/度收费;若超过200度的部分,按0.75元/度收费.(1)某用户某月用了240度电,则该用户这个月应缴纳的电费为元;(2)设某户月用电量为a度,求该用户应缴纳的电费(用含a的整式表示);(3)小明和奶奶两家某月共用电400度,已知小明家这个月用电量超过了300度,设小明家这个月用电x度,请用含x的整式表示小明和奶奶两家一个月共缴纳的电费.(4)若在(3)的条件下,若小明和奶奶两家该月共缴纳的电费为240元,问小明家当月用了多少度电?53.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是akm/h.(1)2h后两船相距多远?(2)2h后甲船比乙船多航行多少千米?(3)一艘小快艇送游客在甲、乙两个码头间往返,其中去程的时间是回程的时间3倍,写出小快艇在静水中的速度v与水流速度a的关系.54.计算下列各式:(1)131°28′﹣51°32′15″;(2)58°38′27″+47°42′40″;(3)34°25′×2+35°42′;(4)72°34′÷2+18°33′×4;(5)40°26′+30°30′30″÷6;(6)13°53′×3﹣32°5′31″.55.如图①,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE是∠AOD的平分线.(1)当∠AOE=50°时,求∠BOD的度数;(2)当∠COE=30°时,求∠BOD的度数;(3)当∠COE=α时,则∠BOD=(用含α的式子表示);(4)当三角板绕点O逆时针旋转到图②位置时,∠COE=α,其它条件不变,则∠BOD =(用含α的式子表示).56.某地出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米价1.8元;5千米后,每千米价格2.7元.(1)若某人乘坐了5千米的路程,请写出他应支付的费用.(2)若他支付了19元车费,你能算出他乘坐的路程吗?57.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A,B是数轴上的点,请参照图并思考,完成下列各题:(1)如果点A表示数﹣5,将点A向右移动8个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)如果点A表示数a,将A点向左移动20个单位长度,再向右移动80个单位长度,终点B表示的数是50,那么a=,到A、B两点距离相等的点表示的数为;(3)在(2)的条件下,若电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为10个单位长度?58.某工厂车间有28个工人,生产A零件和B零件,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.工厂将零件批发给商场时,每个A零件可获利10元,每个B零件可获利5元.(1)求该工厂有多少工人生产A零件?(2)因市场需求,该工厂每天要多生产出一部分A零件供商场零售使用,现从生产B 零件的工人中调出多少名工人生产A零件,才能使每日生产的零件总获利比调动前多600元?参考答案1.解:根据负数的定义可知,在这一组数中是负数的有﹣2,﹣5,共有2个.故选:B.2.解:∵一种面粉的质量标识为“千克”,∴合格面粉的质量的取值范围是:(25﹣0.1)千克~(25+0.3)千克,即合格面粉的质量的取值范围是:24.9千克~25.3千克,故选项A合格,选项B不合格,选项C不合格,选项D不合格.故选:A.3.解:在﹣9.2和3(包括3)之间有﹣9,﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3共13个整数点,故选:B.4.解:∵数轴上的点A表示的数是﹣2,当向右移动5个单位长度时,点B表示的数是:﹣2+5=3;当向左移动5个单位长度时,点B表示的数是:﹣2﹣5=﹣7;故选:B.5.解:∵﹣1﹣(﹣2022)=2021,2021÷4=505…1,∴数轴上表示数﹣2022的点与圆周上起点处表示的数字重合,即与3重合.故选:D.6.解:﹣2022的相反数是:2022.故选:B.7.解:∵xy≠0,∴当x,y同为正数时,=1+1=2;当x,y同为负数时,=﹣1﹣1=﹣2;当x,y一正一负时,=﹣1+1=0或=1﹣1=0.综上,若xy≠0,则的值为±2或0.故选:B.8.解:∵|m﹣3|=3﹣m=﹣(m﹣3),∴m﹣3≤0,∴m≤3.故选:A.9.解:若a,b,c都是正数,那么原式=1+1+1=3;若a,b,c中有1个负数,不妨设a是负数,那么原式=﹣1+1+1=1;若a,b,c中有2个负数,不妨设a,b是负数,那么原式=﹣1+(﹣1)+1=﹣1;若a,b,c都是负数,那么原式=﹣1+(﹣1)+(﹣1)=﹣3;故选:A.10.解:依题意得:a=1,b=﹣1,c=0,∴a+b+c=1+(﹣1)+0=0.故选:B.11.解:∵上方相邻两数之和等于这两个数下方箭头共同指向的数,∴x+3x=m,3x+3=n,m+n=y,∴x+3x+3x+3=10,解得x=1,∴n=6.故选:D.12.解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵ab<0,∴a与b异号.∴当a=3,则b=﹣5,此时a+b=3﹣5=﹣2.当a=﹣3,则b=5,此时a+b=﹣3+5=2.综上:a+b=2或﹣2.故选:D.13.解:∵(﹣2)3=﹣8,﹣23=﹣8,∴选项A符合题意;∵﹣|23|=﹣8,|﹣23|=8,∴选项B不符合题意;∵(﹣3)2=9,﹣32=﹣9,∴选项C不符合题意;∵23=8,32=9,∴选项,D不符合题意;故选:A.14.解:火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为5.5×107千米,故选:B.15.解:近似数4.11万精确到0.01万位,即百位.故选:A.16.解:和的分母含有字母,是分式,不是整式;整式有﹣mn,8,x2+2x+6,,﹣a,共有5个,故选:B.17.解:原式=3﹣4x﹣6y=3﹣2(2x+3y).∵2x+3y+1=4,∴2x+3y=3∴原式=3﹣2×3=﹣3.故选:D.18.解:∵6x5y3的次数是8,∴4x a+3y的次数是a+3+1=8.∴a=4.故选:D.19.解:∵关于x的方程(m﹣3)x|m﹣2|﹣3=0是一元一次方程,∴|m﹣2|=1且m﹣3≠0,解得m=1.故选:C.20.解:A.若3a=3b,则a=b,所以A选项不符合题意;B.若=,则a=b,所以B选项不符合题意;C.若a=b,则a+3=b+3,所以C选项不符合题意;D.若a=b=1,c=2,则≠,以D选项符合题意.故选:D.21.解:∵x=﹣1是方程的解,∴,∴■=5,故选:A.22.解:设井深为x尺,依题意,得:3(x+4)=4(x+1).故选:B.23.解:设参与种树的人数为x人,由题意得:5x+3=6x﹣4,故选:C.24.解:设胜了x场,那么负了(8﹣x)场,根据题意得:2x+1×(8﹣x)=13,x=5.故选:B.25.解:设数轴上的一个整数为x,由题意可知当x=4n时(n为整数),A点与x重合;当x=4n+1时(n为整数),D点与x重合;当x=4n+2时(n为整数),C点与x重合;当x=4n+3时(n为整数),B点与x重合;而2021=505×4+1,所以数轴上的2021所对应的点与圆周上字母D重合.故选:D.26.解:∵|x﹣1|=3,|y|=5,∴x﹣1=±3,y=±5.∴x=4或﹣2,y=±5.又∵﹣>0,∴.∴x与y异号.∴当x=4时,y=﹣5,此时x﹣y=4﹣(﹣5)=9;当x=﹣2时,y=5,此时x﹣y=﹣2﹣5=﹣7.综上:x﹣y=9或﹣7.故选:D.27.解:设“U”型框中的五个数分别为a1、a2、a、a3、a4,则a1=a﹣8,a2=a﹣1,a3=a+1,a4=a﹣6,所以(a﹣8)+(a﹣1)+a+(a+1)+(a﹣6)=5a﹣14.A、当5a﹣14=64时,a=,不符合题意;B、当5a﹣14=75时,a=,不符合题意;C、当5a﹣14=86时,a=20,a=20位于“U”型框的左边,不符合题意;D、当5a﹣14=126时,a=28,符合题意.故选:D.二.填空题(共9小题)28.解:根据绝对值的定义以及有理数大小关系,绝对值不大于2.5的所有整数为﹣2、﹣1、0、1、2.∵﹣2+(﹣1)+0+1+2=0,∴绝对值不大于2.5的所有整数的和为0.故答案为:0.29.解:∵a、b互为相反数,c、d互为倒数,且m的绝对值是1,∴a+b=0,cd=1,m=1或﹣1,则原式=0﹣1+2021×1=﹣1+2021=2020.故答案为:2020.30.解:∵,,∴y﹣1=x,∵x=8,∴y﹣1=8,解得y=9.故答案为:9.31.解:设“▲、●、■”的质量分别是x、y、z.由题意得:x=y+z,x+z=2y.∴y+2z=2y.∴y=2z.∴3y=6z.∴要使第三架天平也保持平衡,那么“?”处应放6个■.故答案为:6.32.解:此题相当于一条线段上有3个点,有多少种不同的票价即有多少条线段:4+3+2+1=10;有多少种车票是要考虑顺序的,则有10×2=20,即至多要准备20种车票.故答案为:20.33.解:∵OM是∠AOC的平分线,∵∠MOC=∠AOC=×120°=60°.∵ON平分∠BOC,∴∠NOC=∠BOC=×40°=20°.∴∠MON=∠MOC﹣∠NOC=40°.故答案为:40°.34.解:∵CM平分∠ACB,CN平分∠DCE,∠ACB=45°,∠DCE=60°,∴∠MCB==22.5°,∠DCN=DCE=30°,∴∠MCN=180°﹣∠MCB﹣∠DCN=180°﹣22.5°﹣30°=127.5°.故答案为:127.5°35.解:由题意得:∠1+∠2+90°=90°+90°﹣∠3.∵∠1=38°,∠2=32°,∴38°+32°+90°=180°﹣∠3.∴∠3=20°.故答案为:20.36.解:设这件衣服的进价为x元,根据题意得10%x=1650×﹣x,解得x=1200,所以1650﹣1200=450(元),所以,以1650元出售可盈利450元,故答案为:450.三.解答题(共24小题)37.解:(1)(+15)+(﹣2)+(+5)+(﹣1)+(+10)+(﹣3)+(﹣2)+(+12)+(+4)+(﹣10)+(+6)=34,∴小李的指挥车最终距离出发点34千米;(2)共走了|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|﹣3|+|﹣2|+|+12|+|+4|+|﹣10|+|+6|=70(千米).共耗油:0.3×70=21(升),∴共耗油21升.38.解:正分数集合:{4.8,,3.1415926,…};负分数集合:{﹣2.7,﹣…};非负整数集合:{73,0…};非正整数集合:{﹣11,0…}.故答案为:4.8,,3.1415926,;﹣2.7,﹣;73,0;﹣11,0.39.解:(1)点A表示的数为10,点B与点A距离16个单位,且在点A的左边,∴点B表示的数为﹣6,点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P点运动的长度为5t,∴点P所表示的数为10﹣5t,故答案为:﹣6;10﹣5t.(2)①设点P运动t秒追上点Q,由题意可列方程为:5t=3t+16,解得t=8,∴点P运动8秒追上点Q.②当点P在追上Q之前相距6个单位时,设此时时间为t1,∴16+3t1=6+5t1,解得t1=5.此时点P所表示的数为10﹣5t=﹣15,当点P超过点Q6个单位长度时,设设此时时间为t2,∴5t2=3t2+6+16,∴t2=11,此时点P所表示的数为10﹣5t=﹣45,综上所述,点P运动5秒或11秒时与点Q相距6个单位,点P表示的数分别为﹣15和﹣45.40.解:(1)由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b+c>0;(2)原式=b﹣a﹣(﹣a﹣c)+b+c=b﹣a+a+c+b+c=2b+2c.故答案为:<,<,>.41.解:(1)由题意得前4个台阶上数的和是:﹣5+(﹣2)+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;(3)由题意知台阶上的数字是每4个一循环,35÷4=8……3,∵﹣5﹣2+1+9=3.∴3×8+(﹣5)+(﹣2)+1=24﹣6=18.即从下到上前35个台阶上数的和为18.故答案为:﹣5,18.42.解:(1)∵a的相反数是3,∴a=﹣3,∵b<4,且b的绝对值是5,∴b=﹣5,∵c与b的和是﹣7,即b+c=﹣7,把b=﹣5代入b+c=﹣7,得﹣5+c=﹣7,解得,c=﹣2,∴a=﹣3,b=﹣5,c=﹣2;(2)当a=﹣3,b=﹣5,c=﹣2时,9﹣a+b﹣c=9﹣(﹣3)+(﹣5)﹣(﹣2)=9+3﹣5+2=12﹣5+2=7+2=9.43.解:(1)根据题中的新定义得:2☆(﹣3)=22﹣2×(﹣3)=4+6=10;(2)根据题中的新定义得:(﹣2)☆(3☆4)=(﹣2)☆(9﹣3×4)=(﹣2)☆(9﹣12)=(﹣2)☆(﹣3)=4﹣6=﹣2.44.解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.45.解:(1)客户按方案①购买,需付款10×20+2(x﹣20)=2x+160,客户按方案②购买,需付款10×20×90%+x×2×90%=1.8x+180,故答案为:2x+160,1.8x+180;(2)当x=80时,2x+160=2×80+160=320,1.8x+180=1.8×80+180=324,∵324>320,∴按方案①购买较为合算.46.解:(1)当n=10时,该用户应缴纳的水费10a元,故答案为:10a;(2)当n>20时,该用户应缴纳的水费为12a+1.5a(20﹣12)+2a(n﹣20)=2na﹣16a,故答案为:2na﹣16a;(3)由题意得,12×2+1.5×2(20﹣12)+2×2(28﹣20)=24+24+32=80(元),答:该用户这个月应缴纳80元水费;(4)∵甲用户缴纳的水费不足24元,∴甲户用水没超过12m3,当0<x<10时,缴水费(﹣2x+88)元;当10≤x<12时,缴水费(﹣x+78)元.47.解:(1)∵A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2,∴3A﹣(2A+3B)=3A﹣2A﹣3B=A﹣3B=(2x2+5xy﹣7y﹣3)﹣3(x2﹣xy+2)=2x2+5xy﹣7y﹣3﹣3x2+3xy﹣6=﹣x2+8xy﹣7y﹣9;(2)∵A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2,∴A﹣2B=(2x2+5xy﹣7y﹣3)﹣2(x2﹣xy+2)=2x2+5xy﹣7y﹣3﹣2x2+2xy﹣4=7xy﹣7y﹣7=7y(x﹣1)﹣7,∵A﹣2B的值与x的取值无关,∴y=0;(3)∵3A﹣(2A+3B)=﹣x2+8xy﹣7y﹣9=﹣x2+(8x﹣7)y﹣9,又∵3A﹣(2A+3B)的值与y的取值无关,∴8x﹣7=0,∴x=,∴3A﹣(2A+3B)=﹣x2﹣9=﹣()2﹣9=﹣9.48.解:原式=5x2﹣5xy﹣5x2+6y﹣3(xy+2y)=5x2﹣5xy﹣5x2+6y﹣3xy﹣6y=﹣8xy,当x=﹣,y=﹣3时,原式=﹣8×(﹣)×(﹣3)=﹣12.49.解:(1)|5﹣2|=|3|=3,|3﹣6|=|﹣3|=3.故答案为:3,3.(2)|π﹣3.14|=π﹣3.14.故答案为:π﹣3.14.(3)+=1﹣+++…++++=1﹣=.50.解:(1)4(x﹣1)﹣3(2x+1)=7,去括号得:4x﹣4﹣6x﹣3=7,移项合并得:﹣2x=14,解得:x=﹣7;(2)1﹣=,去分母得:6﹣3(x﹣1)=2(x+2),去括号得:6﹣3x+3=4+2x,移项合并得:5x=5,解得:x=1;(3)﹣+3=0,则﹣+3=0,故50x﹣100﹣20x﹣20+30=0,移项合并得:30x=90,解得:x=3.51.解:(1)129×9=1161(元),答:共需购票款1161元;(2)设七年一班有x名学生,由题意,得12(129﹣x)+15x=1674,解得:x=42.答:七年一班有42名学生;(3)班长购买了50张票,这样比购买42张票便宜.42×15﹣50×12=630﹣600=30(元).答:班长同学节约了30元钱.52.解:(1)根据题意可得,该用户这个月应缴纳得电费为:100×0.5+100×0.6+(240﹣200)×0.75=140(元),故答案为:140;(2)根据题意可得:①当a≤100时,该用户应缴纳的电费为:0.5a元,②当100<a≤200时,该用户应缴纳的电费为:100×0.5+(a﹣100)×0.6=(0.6a﹣10)元,③当a>200时,该用户应缴纳的电费为:100×0.5+100×0.6+(a﹣200)×0.75=(0.75a﹣40)元;(3)根据题意可得,奶奶家用电(400﹣x)度,∵x≥300,∴400﹣x≤100,小明和奶奶两家一个月共缴纳的电费为:100×0.5+100×0.6+(x﹣200)×0.75+(400﹣x)×0.5=(0.25x+160)元;(4)依题意得,0.25x+160=240,解得x=320,答:小明家当月用了320度电.53.解:(1)由题意可得,2(50+a)+2(50﹣a)=100+2a+100﹣2a=200(千米),答:2h后两船相距200千米;(2)由题意可得,2(50+a)﹣2(50﹣a)=100+2a﹣100+2a=4a(千米),答:2h后甲船比乙船多航行4a千米;(3)由题意可得,去程为逆水航行,回程为顺水航行,设回程用的时间为x小时,则去程用的时间为3x小时,3x(v﹣a)=x(v+a),解得v=2a,即小快艇在静水中的速度v与水流速度a的关系是v=2a,故答案为:v=2a.54.解:(1)131°28′﹣51°32′15″=130°87′60″﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=105°80′67″=106°21′7″;(3)34°25′×2+35°42′=68°50′+35°42′=103°92′=104°32′;(4)72°34′÷2+18°33′×4=36°17′+74°12′=110°29′;(5)40°26′+30°30′30″÷6=40°26′+5°5′5″=45°31′5″;(6)13°53′×3﹣32°5′31″=41°39′﹣32°5′31″=41°38′60″﹣32°5′31″=9°33′29″.55.解:(1)∵射线OE平分∠AOD,∴∠AOD=2∠AOE=2∠DOE=2×50°=100°,∴∠BOD=180°﹣∠AOD=180°﹣100°=80°;(2)∵∠COD=90°,∠COE=30°,∴∠DOE=90°﹣30°=60°,又∵OE平分∠AOD,∴∠AOD=2∠DOE=2×60°=120°,∴∠BOD=180°﹣∠AOD=180°﹣120°=60°;(3)∵∠COD=90°,∠COE=α,∴∠DOE=90°﹣α,又∵OE平分∠AOD,∴∠AOD=2∠DOE=2×(90°﹣α)=180°﹣2α,∴∠BOD=180°﹣∠AOD=180°﹣180°+2α=2α,故答案为:2α;(4)由图②得,∠DOE=α﹣90°,∵OE平分∠AOD,∴∠AOD=2∠DOE=2α﹣180°,∴∠BOD=180°﹣∠AOD=180°﹣2α+180°=360°﹣2α,故答案为:360°﹣2α.56.解:(1)10+1.8×(5﹣3)=13.6(元),所以,他应支付13.6元.(2)设他乘坐x千米,由(1)可知,乘坐5千米的费用为13.6元,根据题意得13.6+2.7(x﹣5)=19,解得x=7,答:他乘坐7千米.57.解:(1)终点B表示的数是﹣5+8=3,A、B两点间的距离是3﹣(﹣5)=8;故答案为:3,8;(2)依题意有a﹣20+80=50,解得a=﹣10;A、B两点中间的点表示的数为(﹣10+50)÷2=20;故答案为:﹣10,20;(3)设当它们运动x秒时间时,两只蚂蚁间的距离为10个单位长度,电子蚂蚁Q向左运动,依题意有6t﹣4t=50﹣(﹣10)﹣10,解得t=25;或6t﹣4t=50﹣(﹣10)+10,解得t=35;电子蚂蚁Q向右运动,依题意有6t+4t=50﹣(﹣10)﹣10,解得t=5;或6t+4t=50﹣(﹣10)+10,解得t=7.故当它们运动25秒或35秒或5秒或7秒时,两只蚂蚁间的距离为10个单位长度.58.解:(1)设该工厂有x名工人生产A零件,根据题意得2×18x=12(28﹣x),解得x=7,答:该工厂有7名工人生产A零件.(2)设从生产B零件的工人中调出y名工人生产A零件,根据题意得10×18(7+y)+5×12(21﹣y)﹣(7×10×18+21×5×12)=600,解得y=5,答:从生产B零件的工人中调出5名工人生产A零件。
人教版七年级上册数学期末复习2
七年级上册数学期末复习一.选择题1.下列各式,运算结果为负数的是()A.﹣(﹣1)B.(﹣1)2C.﹣|﹣1| D.﹣(﹣1)32.下列说法中,正确的有()①过两点有且只有一条直线,②连结两点的线段叫做两点的距离,③两点之间,线段最短,④AB=BC,则点B是线段AC的中点.A.4个B.3个C.2个D.1个3.下列各组是同类项的是()A.2x3与3x2B.12ax与8bx C.x4与a4D.π与﹣34.下列变形中,正确的是()A.若x2=5x,则x=5 B.若a2x=a2y,则x=y C.若,则y=﹣12 D.若,则x=y 5.已知代数式﹣x+3y的值是2,则代数式2x﹣6y+5的值是()A.9 B.3 C.1 D.﹣16.如图所示,数轴上A、B两点分别对应有理数a,b,则下列结论中正确的是()A.a+b>0B.ab>0C.|a|﹣|b|>0D.a﹣b>07.若x=2是关于x的方程ax﹣6=2ax的解,则a的值为()A.B.﹣C.3D.﹣38.当x=﹣1时,代数式ax2+bx+1的值为﹣1,则(1+2a﹣2b)(1﹣a+b)的值为()A.﹣9B.15C.9D.﹣159. 如图,C是线段AB上的点,D是线段AC的中点,E是线段BC的中点,若DE=10,则AB的长为()A. 10B. 20C. 30D. 4010.若关于x的方程(m﹣3)x|m|﹣2﹣m+3=0是一元一次方程,则m的值为()A.m=3B.m=﹣3C.m=3或﹣3D.m=2或﹣211.绵阳市中学生足球联赛共8轮(即每队需要比赛8场),胜一场得3分,平一场得一分,负一场不得分,在2019足球联赛中,三台县中学生足球代表队踢平的场数是负场数的2倍,共得17分,三台足球队胜了()场.A.4 B.5 C.2 D.不确定12.已知A,B,C三点共线,线段AB=10cm,BC=16cm,点E,F分别是线段AB,BC的中点,则线段EF的长为()A.13cm或3cm B.13cm C.3cm D.13cm或18cm13.某中学的学生自己动手整修操场,如果让七年级学生单独工作,需要7.5h完成;如果让八年级学生单独工作,需要5h完成,如果让七、八年级学生一起工作lh,再由八年级学生单独完成剩余的部分,共需要多少时间完成?若设一共需要x小时,则所列的方程为()A. B. C. D.14.如图,A、B两点在数轴上表示的数分别为a、b,下列结论:①a﹣b>0;②a+b<0;③(b﹣1)(a+1)>0;④.其中结论正确的是()A.①②B.③④C.①③D.①②④15.如图,用火柴棍摆出一列正方形图案,其中图①有4根火柴棍,图②有12根火柴棍,图③有24根火柴棍,…,则图⑩中火柴棍的根数是()A.222B.220C.182D.18016.观察下列数字:在上述数字宝塔中,第4层的第2个数是17,请问第19层第20个数是()A.372 B.376 C.380 D.384二.填空题(共6小题)1.若x=﹣1是关于x的一元一次方程1﹣2x=3m的解,则m的值是.2.若一个角的补角等于它的余角4倍,则这个角的度数是度.3.一个多项式2a2b|m|﹣3ab+b9﹣2m是一个五次式,则m=.4.如图,点B是线段AC上一点,点O是线段AC的中点,且AB=20,BC=8.则线段OB的长为.5.比较大小:-0.1﹣0.01,﹣﹣.6.已知数轴上两点A,B表示的数分别是2和﹣7,则A,B两点间的距离是.7.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为.8.已知a、b、c的大致位置如图所示:化简|a+c|﹣|a﹣b|结果是.9.如果关于x的方程(a﹣4)x|a﹣3|+2=5是一元一次方程,那么a的值为.10.如果x、y都是不为0的有理数,则代数式的值为.11、每个图都是由同样大小的正方形按一定规律组成,其中第①个图2个正方形,第②个图6个正方形,第③个图12个正方形,……第n个图中正方形有个(用n表示)三.解答题(共6小题)1.(1)计算:(2)解方程:3.已知,求的值.4. 某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30、-25、-30、+28、-29、-16、-15、(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存200吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?5. 在市南区某住房小区建设中,为了提高业主的宜居环境,某小区因地制宜规划修建一个广场(图中阴影部分).(1)用含m、n的代数式表示该广场的周长C;(2)用含m、n的代数式表示该广场的面积S;(3)若m、n满足(m-6)2+|n-8|=0,求出该广场的周长和面积.6、我区有着丰富的莲藕资源.某企业已收购莲藕52.5吨.根据市场信息,将莲藕直接销售,每吨可获利100元;如果对莲藕进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批莲藕全部销售.为此研究了二种方案:方案一:将莲藕全部粗加工后销售,则可获利______ 元.方案二:30天时间都进行精加工,未来得及加工的莲藕,在市场上直接销售,则可获利______ 元.问:是否存在第三种方案,将部分莲藕精加工,其余莲藕粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.7、已知:A、O、B三点在同一直线上,OE、OD分别平分∠AOC、∠BOC.(1)求∠EOD的度数;(2)若∠AOE=50°,求∠BOC的度数.8、如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?七年级上册数学期末复习答案一.选择题1.下列各式,运算结果为负数的是( C )A.﹣(﹣1)B.(﹣1)2C.﹣|﹣1| D.﹣(﹣1)32.下列说法中,正确的有( C )①过两点有且只有一条直线,②连结两点的线段叫做两点的距离,③两点之间,线段最短,④AB=BC,则点B是线段AC的中点.A.4个B.3个C.2个D.1个3.下列各组是同类项的是( D )A.2x3与3x2B.12ax与8bx C.x4与a4D.π与﹣34.下列变形中,正确的是( D )A.若x2=5x,则x=5 B.若a2x=a2y,则x=y C.若,则y=﹣12 D.若,则x=y 5.已知代数式﹣x+3y的值是2,则代数式2x﹣6y+5的值是( C )A.9 B.3 C.1 D.﹣16.如图所示,数轴上A、B两点分别对应有理数a,b,则下列结论中正确的是(D)A.a+b>0B.ab>0C.|a|﹣|b|>0D.a﹣b>07.若x=2是关于x的方程ax﹣6=2ax的解,则a的值为(D)A.B.﹣C.3D.﹣38.当x=﹣1时,代数式ax2+bx+1的值为﹣1,则(1+2a﹣2b)(1﹣a+b)的值为(A)A.﹣9B.15C.9D.﹣159. 如图,C是线段AB上的点,D是线段AC的中点,E是线段BC的中点,若DE=10,则AB的长为( B )A. 10B. 20C. 30D. 4010.若关于x的方程(m﹣3)x|m|﹣2﹣m+3=0是一元一次方程,则m的值为(B)A.m=3B.m=﹣3C.m=3或﹣3D.m=2或﹣211.绵阳市中学生足球联赛共8轮(即每队需要比赛8场),胜一场得3分,平一场得一分,负一场不得分,在2019足球联赛中,三台县中学生足球代表队踢平的场数是负场数的2倍,共得17分,三台足球队胜了( B )场.A.4 B.5 C.2 D.不确定12.已知A,B,C三点共线,线段AB=10cm,BC=16cm,点E,F分别是线段AB,BC的中点,则线段EF的长为( A )A.13cm或3cm B.13cm C.3cm D.13cm或18cm13.某中学的学生自己动手整修操场,如果让七年级学生单独工作,需要7.5h完成;如果让八年级学生单独工作,需要5h完成,如果让七、八年级学生一起工作lh,再由八年级学生单独完成剩余的部分,共需要多少时间完成?若设一共需要x小时,则所列的方程为( D )A. B. C. D.14.如图,A、B两点在数轴上表示的数分别为a、b,下列结论:①a﹣b>0;②a+b<0;③(b﹣1)(a+1)>0;④.其中结论正确的是( B )A.①②B.③④C.①③D.①②④15.如图,用火柴棍摆出一列正方形图案,其中图①有4根火柴棍,图②有12根火柴棍,图③有24根火柴棍,…,则图⑩中火柴棍的根数是(B)A.222B.220C.182D.180①图,S1=4;②图,S2=4+3×4﹣(1+3)=4+2×4=4×(1+2);③图,S3=4(1+2)+5×4﹣(3+5)=4×(1+2+3);图⑩火柴棍的根数是:S10=4×(1+2+3+4+5+6+7+8+9+10)=220,故选:B.16.观察下列数字:在上述数字宝塔中,第4层的第2个数是17,请问第19层第20个数是( C )A.372 B.376 C.380 D.384【解答】解:由题目中的数字可知,第1层有2个数,最后的数字是1×2=2,第2层有3个数,最后的数字是2×3=6,第3层有4个数,最后的数字是3×4=12,第4层有5个数,最后的数字是4×5=20,故第19层第20个数是:19×20=380,二.填空题(共6小题)1.若x=﹣1是关于x的一元一次方程1﹣2x=3m的解,则m的值是 1 .2.若一个角的补角等于它的余角4倍,则这个角的度数是 60 度.3.一个多项式2a2b|m|﹣3ab+b9﹣2m是一个五次式,则m= 2 或3 .4.如图,点B是线段AC上一点,点O是线段AC的中点,且AB=20,BC=8.则线段OB的长为 6 .5.比较大小:-0.1﹣0.01,﹣﹣.6.已知数轴上两点A,B表示的数分别是2和﹣7,则A,B两点间的距离是.7.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为.8.已知a、b、c的大致位置如图所示:化简|a+c|﹣|a﹣b|结果是.9.如果关于x的方程(a﹣4)x|a﹣3|+2=5是一元一次方程,那么a的值为.10.如果x、y都是不为0的有理数,则代数式的值为.11、每个图都是由同样大小的正方形按一定规律组成,其中第①个图2个正方形,第②个图6个正方形,第③个图12个正方形,……第n个图中正方形有(n2+n)个(用n表示)a1=2,a2=2+4=6,a3=2+4+6=12,a4=2+4+6+8=20,…,∴a n=2+4+6+…+(2n﹣2)+2n==n2+n.三.解答题(共6小题)1.(1)计算: 2.解方程:1.解:原式=﹣1+6﹣9=﹣4;2.解:去分母得:5(3x+1)﹣2×10=(3x﹣2)﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,整理得:16x=7,解得:x=.3.已知,求的值.【解答】解:∵(x+2)2+|﹣y|=0,∴x=﹣2,y=,∵原式=x﹣2x+y2﹣x+y2=﹣3x+y2,∴原式=6+=6.4. 某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30、-25、-30、+28、-29、-16、-15、(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存200吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?解:(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵200+57=257,∴那么7天前,仓库里存有水泥257吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a;出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b,∴这7天要付多少元装卸费58a+115b.5. 在市南区某住房小区建设中,为了提高业主的宜居环境,某小区因地制宜规划修建一个广场(图中阴影部分).(1)用含m、n的代数式表示该广场的周长C;(2)用含m、n的代数式表示该广场的面积S;(3)若m、n满足(m-6)2+|n-8|=0,求出该广场的周长和面积.解:(1)C=6m+4n;(2)S=2m×2n-m(2n-n-0.5n)=4mn-0.5mn=3.5mn;(3)由题意得m-6=0,n-8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.6、我区有着丰富的莲藕资源.某企业已收购莲藕52.5吨.根据市场信息,将莲藕直接销售,每吨可获利100元;如果对莲藕进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批莲藕全部销售.为此研究了二种方案:方案一:将莲藕全部粗加工后销售,则可获利______ 元.方案二:30天时间都进行精加工,未来得及加工的莲藕,在市场上直接销售,则可获利______ 元.问:是否存在第三种方案,将部分莲藕精加工,其余莲藕粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.方案一:由已知得:将莲藕全部粗加工后销售,则可获利为:1000×52.5=52500(元).故答案为:52500.方案二:30天时间都进行精加工,未来得及加工的莲藕,在市场上直接销售,则可获利为:0.5×30×5000+(52.5-0.5×30)×100=78750(元).故答案分为:78750.由已知分析存在第三种方案.设粗加工x天,则精加工(30-x)天,依题意得:8x+0.5×(30-x)=52.5,解得:x=5,30-x=25.销售后所获利润为:1000×5×8+5000×25×0.5=102500(元).答:存在第三种方案,将部分莲藕精加工,其余莲藕粗加工,并且恰好在30天内完成,销售后所获利润为102500元7、.已知:A、O、B三点在同一直线上,OE、OD分别平分∠AOC、∠BOC.(1)求∠EOD的度数;(2)若∠AOE=50°,求∠BOC的度数.解:(1)∵OE、OD分别平分∠AOC、∠BOC,∴∠EOC=∠AOC,∠COD=∠BOC,∴∠EOD=∠EOC+∠COD=∠AOC+∠BOC=∠AOB,又∵A、O、B三点在同一直线上,∴∠AOB=180°,∴∠EOD=∠AOB=90°;(2)∵OE平分∠AOC,∠AOE=50°,∴∠AOC=2∠AOE=100°,∴∠BOC=180°﹣∠AOC=80°.8、如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?解:(1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1﹣6=﹣5,点C对应的数是1+2=3.(2)∵动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,∴点P对应的数是﹣5+2t,点Q对应的数是3+t;(3)①当点P与点Q在原点两侧时,若OP=OQ,则5﹣2t=3+t,解得:t=;②当点P与点Q在同侧时,若OP=OQ,则﹣5+2t=3+t,解得:t=8;当t为或8时,OP=OQ.。
人教版七年级数学上册第二章整式复习试题二(含答案) (50)
人教版七年级数学上册第二章整式复习试题二(含答案) 十进制的自然数可以写成2的方幂的降幂的多项式,如:43210(10)(2)211641120212021210101=++=⨯+⨯+⨯+⨯+⨯=,即十进制的数21对应二进制的数10101,按照上述规则,解答下列问题:(1)十进制的数105对应的二进制的数为多少?(2)二进制的数110101对应的十进制的数为多少?【答案】(1)1101001;(2)53.【解析】【分析】(1)利用十进制化二进制的方法计算即可;(2)利用二进制化十进制的方法计算即可.【详解】解:(1)()()6543210102105643281121202120202121101001=+++=⨯+⨯+⨯+⨯+⨯+⨯+⨯=,所以十进制的数105对应的二进制的数为1101001;(2)()()01234521011010112021202121214163253=⨯+⨯+⨯+⨯+⨯+⨯=+++=, 所以二进制的数110101对应的十进制的数为53.【点睛】本题主要考查有理数的乘方和新定义中2的方幂的降幂的多项式的理解,正确理解题意、找到求解的规律是解此题的关键.92.已知式23372m km m +-+是关于m 的多项式,且不含一次项,求k 的值. 【答案】23k =- 【解析】【分析】原式进行化简,然后根据不含一次项即可求出k 的值.【详解】解:原式=()233+27m k m +-∵不含一次项∴3+2=0k ∴23k =- 【点睛】本题主要考查了多项式的定义,正确把握多项式的定义是解题关键.93.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a +2|+(c ﹣7)2=0.(1)a = ,b = ,c = ;(2)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB = ;AC = ;BC = ;(用含t 的代数式表示)(3)请问:3AC ﹣5AB 的值是否随着时间t 的变化而改变?若变化,请说明理由:若不变,请求其值.【答案】(1)﹣2,1,7;(2)3t+3,5t+9,2t+6.(3)不变.12.【解析】【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)根据路程=速度×时间,即可得出结果;(3)利用第(2)问表达出来的代数式,可得出3AC﹣5AB=3(5t+9)﹣5(3t+3)求解即可【详解】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1.故答案为:﹣2,1,7;(2)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.故答案为:3t+3,5t+9,2t+6.(3)不变.3AC﹣5AB=3(5t+9)﹣5(3t+3)=12.【点睛】本题主要考查代数式的实际应用,读懂题意,知道路程=速度×时间,掌握列代数式的方法是解题的关键.94.观察下列有规律的数:12,16,112,120,130,142…根据规律可知 (1)第7个数是 ,第n 个数是 (n 是正整数);(2)190是第 个数; (3)计算1111112612203020182019+++++⋯+⨯. 【答案】(1)156,1n(n 1)+;(2)9;(3)20182019. 【解析】【分析】(1)分析题中给出的数的规律,11212=⨯,11623=⨯,111234=⨯…,则可以得出第7个数为178⨯,第n 个数是1n(n 1)+(2)将190代入1n(n 1)+中即可求出n 的值 (3)运用上面的规律将每个数都拆分成两项,如11112122==-⨯,111162323==-⨯1111123434==-⨯…然后相加之后中间的项都会抵消,最后只剩首尾两项进行计算即可.【详解】解:(1)∵第1个数11212=⨯、第2个数11623=⨯、第3个数111234=⨯…… ∴第7个数为117856=⨯,第n 个数为1n(n 1)+, 故答案为:156,1n(n 1)+;(2)∵11,9(1)90n n n ==+, ∴190是第9个数, 故答案为:9;(3)1111112612203020182019+++++⋯+⨯ 111111122334455620182019=+++++⋯+⨯⨯⨯⨯⨯⨯ 11111111111122334455620182019=-+-+-+-+-+⋯+- 112019=- 20182019= 【点睛】本题属于数字规律题,根据题中给出的数字找到相应的规律,将每个分数拆分成两个分数相减的形式是解题的关键.95.综合与实践,如图1是某校操场实物图,图2是操场示意图,每条跑道由两条直的跑道和两端是半圆形的跑道组成,每两条跑道之间的距离是相等的,最内侧半圆形跑道的半径是a 米,最外侧半圆形跑道的半径是b 米,每条直道的长度都是c 米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册复习测试题(2)
一、细心填一填:(16×2'= 32'):
1、12的相反数与-7的绝对值的和是_____ ;
2、如果|a|=2.3,则a =____________;
3、圆锥由____________面组成的,圆锥的侧面展开图是__________ ;
4、绝对值大于2而小于5的所有数是______________ ;
5、计算-| -6+7 |=___________________ ;
6、在2
74⎪⎭
⎫
⎝⎛-中的底数是__________,指数是_____________ ;
7、用一个平面去截一个几何体,得到的截面是一个三角形,这个几何体可能是_____(写出一个即可); 8、在数轴上,与—5表示的点距离为8个单位的点所表示的数是_____________ ; 9、代数式的意义:
3
z
y x ++:___________________________________________________ ; 10、观察下列数据,按某种规律在横线上填上适当的数:
1,43-
,95,167-,25
9, ,…… 11、右上图是一数值转换机,若输入的x 为-5,则输出的结果为_____ ___ 12、下图是一个三棱柱,用一个平面去截这个三棱柱,把形状可能的截面的序号填入______。
(
1)
(2) (3) (4)
13、如果a>0,b<0,b a <,则a ,b ,—a ,—b 这4个数从小到大的顺序是__________ ____________ (用大于号连接起来);
14、某商品的进价为100
元,标价为150元,现打8折出售,此时利润为_________元,利润率为___________ ;
15、一口井,水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米后又往后滑了0.1米;第二次往上爬了
0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却下滑了0.15米;第四次往上爬了0.75米,却下滑了0.2米;第五次往上爬了0.55米,没有下滑;第六次
往上爬了0.48米. 此时蜗牛__________(填“能”或“不能”)爬出井口.
16、小红和小花在玩一种计算的游戏,计算的规则是
d c b a =ad -bc.现在轮到小红计算 4321
的值,请你帮忙算一算结果是__________ ; 二、精心选一选(6 ╳3'= 18')
17、在2
1
1
-,12,—20,0 ,()5--中,负数的个数有( ) A.2个 B.3个 C.4个 D.5个
18、绝对值小于3的所有整数..
的积是( ) A .6
B .-36
C .0
D .36
19、下面的图形中( )是正方体的展开图.
20、下列各式中正确的是( )
A. -2< 2
)6.0(-< 3
)1(- B. -2< 3
)1(- < 2
)6.0(- C. 2
)6.0(-< -2< 3
)1(- D. 2
)6.0(-<3
)1(- <-2 21、下列说法中错误的是( )
A 、零除以任何数都是零。
B 、-7/9的倒数的绝对值是9/7。
C 、相反数等于它的本身的数是零和一切正数。
(A ) (B ) (C )
(D )
D 、除以一个数,等于乘以它的倒数。
22、某种产品,商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货
价为( )。
A .80元
B .85元
C .90元
D .95元 三、开心用一用(共50分): 23、计算下列各题(10分): ① 100()()222
---÷⎪⎭
⎫ ⎝⎛-÷21 ② ()()32003
212475.281311---+-⨯⎪⎭⎫ ⎝⎛-+
24、解方程(10分):
①
243236a a a +-=-+- ② )1(2
3
101)23(52)1(43--=+--x x x
25、先化简,后求值(10分): ① 已知0213=⎪⎭
⎫ ⎝⎛-++y x ,求代数式2
223234712331291xy xy y x x y x x -++++-的值。
②已知:x A 21=
,)31(22y x B -=,23
1
21y x C +-= ① 求A 与C 的和再减去B ,差是多少? ② 当2-=x ,3
2
=y 时,求此多项式的值。
26、(6分)如图,这是一个由小立方体搭成的几何体,请你画出它的三视图
27、应用题(7分):一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14
通讯员需多少时间可以追上学生队伍?
28、(7分)有一些分别标有
3、
6、9、12 ……的卡片,后一张卡片上的数比前一张卡片上的数大3,
小华拿到了相邻的5张卡片,这些卡片之和为150 (1)小华拿到哪5张卡片?
(2)你能拿到相邻的5张卡片,使得这些卡片上的数之和为100吗?。