导数计算练习习题
高中数学导数练习题
高中数学导数练习题一、基础题1. 求函数 $f(x) = x^3 3x$ 的导数。
2. 求函数 $f(x) = \sqrt{1+x^2}$ 的导数。
3. 求函数 $f(x) = \frac{1}{x^2}$ 的导数。
4. 求函数 $f(x) = \ln(x^2 + 1)$ 的导数。
5. 求函数 $f(x) = e^{2x}$ 的导数。
二、应用题1. 已知函数 $f(x) = ax^2 + bx + c$,求 $f'(x)$ 并说明其几何意义。
2. 某物体做直线运动,其位移 $s$ 与时间 $t$ 的关系为 $s =t^2 2t + 1$,求物体在 $t=2$ 时的瞬时速度。
3. 已知函数 $f(x) = \frac{1}{\sqrt{x}}$,求曲线在$x=4$ 处的切线方程。
4. 求函数 $f(x) = \sin(x)$ 在区间 $[0, \pi]$ 上的最大值和最小值。
5. 已知函数 $f(x) = \ln(x 1)$,求 $f(x)$ 的单调区间。
三、综合题1. 设函数 $f(x) = (x^2 1)^3$,求 $f'(x)$。
2. 已知函数 $f(x) = \frac{2x + 3}{x 1}$,求 $f'(x)$。
3. 求函数 $f(x) = \sqrt{1 + \sqrt{1 + x^2}}$ 的导数。
4. 已知函数 $f(x) = e^{x^2}$,求曲线在 $x=0$ 处的切线方程。
5. 设函数 $f(x) = \ln(\sin^2 x)$,求 $f'(x)$。
四、拓展题1. 已知函数 $f(x) = \frac{1}{x^2 + 1}$,求 $f''(x)$。
2. 设函数 $f(x) = (x^3 + 1)^4$,求 $f'''(x)$。
3. 已知函数 $f(x) = \arctan(x)$,求 $f'(x)$。
导数的计算练习题及答案
导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。
解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。
f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。
化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。
2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。
导数的运算练习题
导数的运算练习题在微积分学中,导数是非常重要的概念之一,它用于描述函数在某一点附近的变化率。
掌握导数的运算是学习微积分的基础,本文将为大家提供一些导数的运算练习题,帮助读者巩固掌握导数的计算方法。
1. 计算下列函数的导数:(1)f(x) = x^3 + 2x^2 - 5x + 1(2)g(x) = sin(x) - cos(x)(3)h(x) = e^x + ln(x)(4)i(x) = √(x^2 + 1)2. 计算下列函数的导数:(1)f(x) = 2x^3 - 3x^2 + 4x - 1(2)g(x) = cos(x) + sin(x) + tan(x)(3)h(x) = ln(x^2) - e^(2x)(4)i(x) = √x + 1/x3. 计算下列函数的导数:(1)f(x) = x^4 + 2x^3 - 3x^2 + 4x - 1(2)g(x) = sin(2x) - cos(2x)(3)h(x) = e^(x^2) + ln(x^3)(4)i(x) = ln(x) + e^x4. 计算下列函数的导数:(1)f(x) = x^5 + 2x^4 - 3x^3 + 4x^2 - 5x + 1(2)g(x) = sin(x)cos(x)(3)h(x) = ln(x) + e^x - x(4)i(x) = e^(2x) + ln(x^2)通过以上的练习题,读者可以熟悉导数的计算方法,掌握常用函数的导数运算规则。
在计算导数时,读者需要注意以下几点:1. 基本函数的导数规则:对于多项式函数,求导后,指数降低1,系数不变;对于三角函数,求导后,正弦变余弦,余弦变负正弦;对于指数函数,求导后,底数不变,指数变形式的导数。
2. 乘法法则:若函数为两个函数的乘积,则导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。
3. 除法法则:若函数为两个函数的商,则导数等于分子函数的导数乘以分母函数,减去分母函数的导数乘以分子函数,再除以分母函数的平方。
(完整版)导数的计算练习题及答案
【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。
9.设y=(2x+a)2,且2'|20x y ==,则a=________。
10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。
掌握函数的导数与微分练习题
掌握函数的导数与微分练习题函数的导数与微分是微积分的重要内容,对于学习者而言,掌握这一部分知识对于提高解题能力和理解数学概念非常重要。
本文将通过练习题的方式,帮助读者巩固对函数的导数与微分的理解,并培养解题的思维能力。
1. 求解下列函数的导数:(1) f(x) = 3x² - 2x + 1解答:f'(x) = 6x - 2(2) g(x) = 5sin(x) + 2cos(x)解答:g'(x) = 5cos(x) - 2sin(x)2. 对下列函数进行微分:(1) h(x) = x³ - 4x² + 2x解答:dh(x) = 3x² - 8x + 2(2) k(x) = 2e^x + 3ln(x)解答:dk(x) = 2e^x + 3/x3. 求解给定函数在指定点的导数:(1) y = 2x³,求导数在x=2处的值。
解答:y' = 6x²y'(2) = 6(2)² = 24(2) y = x^4 - 2x²,求导数在x=-1处的值。
解答:y' = 4x³ - 4xy'(-1) = 4(-1)³ - 4(-1) = -44. 求解给定函数的极值点:(1) y = x³ - 12x² + 36x解答:为求取极值点,先求导数:y' = 3x² - 24x + 36令y' = 0,求解方程得:x = 2 或 x = 6将以上两个x值代入原函数求y值得到极值点:当x=2时,y = 2³ - 12(2)² + 36(2) = 16 - 48 + 72 = 40当x=6时,y = 6³ - 12(6)² + 36(6) = 216 - 432 + 216 = 0因此,函数y = x³ - 12x² + 36x在x = 2处有极小值,极小值为40,在x = 6处有极大值,极大值为0。
三角函数与导数练习题
三角函数与导数练习题在微积分学习的过程中,三角函数与导数是非常重要的概念。
理解和掌握它们对于解决各种微积分问题至关重要。
本文将为你提供一些与三角函数和导数相关的练习题,帮助你巩固这些知识点。
练习题一:三角函数的导数计算计算下列函数的导数:1. y = sin(x)2. y = cos(x)3. y = tan(x)4. y = cot(x)解答:1. y = sin(x)y' = cos(x)2. y = cos(x)y' = -sin(x)3. y = tan(x)y' = sec^2(x)4. y = cot(x)y' = -csc^2(x)练习题二:三角函数与导数的应用1. 求函数 y = sin(x) 在点x = π/2 处的导数值,并说明其物理意义。
2. 设 y = cos(x),求函数 y' 的最小正周期是多少?3. 对函数 y = atan(x) ,求其在点 x = 0 处的导数,并说明其物理意义。
解答:1. 在点x = π/2 处,函数 y = sin(x) 的导数为y' = cos(x) = cos(π/2) = 0。
这表示在x = π/2 处,函数 y = sin(x) 的变化率为零。
物理上,这可以理解为在该点附近,物体的运动速度不再发生变化。
2. 函数 y = cos(x) 的最小正周期是2π。
这是因为在区间[0, 2π] 内,cos(x) 展现出了与整个函数图像相似的特征。
3. 求函数 y = atan(x) 在点 x = 0 处的导数:y' = 1 / (1 + x^2)当 x = 0 时,函数的导数为 y' = 1 / (1 + 0^2) = 1。
物理上,这表示函数 y = atan(x) 在 x = 0 处的变化率为1。
练习题三:三角函数与导数的求解1. 求函数 y = 3sin(2x) 的导数。
2. 求函数 y = 2cos(3x) 的导数。
导数练习题及答案
导数练习题及答案一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( ) A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx =4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( )A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的.图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x →0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。
导数练习题及答案
章末检测一、选择题1.已知曲线y=x2+2x-2在点M处的切线与x轴平行,则点M的坐标是( )A.(-1,3) B.(-1,-3)C.(-2,-3)D.(-2,3)答案B解析∵f′(x)=2x+2=0,∴x=-1.f(-1)=(-1)2+2×(-1)-2=-3.∴M(-1,-3).2.函数y=x4-2x2+5的单调减区间为( )A.(-∞,-1)及(0,1)B.(-1,0)及(1,+∞)C.(-1,1)D.(-∞,-1)及(1,+∞)答案A解析y′=4x3-4x=4x(x2-1),令y′<0得x的范围为(-∞,-1)∪(0,1),故选A.3.函数f(x)=x3+ax2+3x-9,在x=-3时取得极值,则a等于( )A.2B.3C.4D.5答案D解析f′(x)=3x2+2ax+3.由f(x)在x=-3时取得极值,即f′(-3)=0,即27-6a+3=0,∴a=5.4.函数y=ln错误!的大致图象为()答案D解析函数的图象关于x=-1对称,排除A、C,当x>-1时,y=-ln(x+1)为减函数,故选D.5.二次函数y=f(x)的图象过原点,且它的导函数y=f′(x)的图象过第一、二、三象限的一条直线,则函数y=f(x)的图象的顶点所在象限是( )A.第一B.第二C.第三D.第四答案C解析∵y=f′(x)的图象过第一、二、三象限,故二次函数y=f(x)的图象必然先下降再上升且对称轴在原点左侧,又因为其图象过原点,故顶点在第三象限.6.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是()A.(-∞,-3) B.[-错误!,错误!]C.(错误!,+∞) D.(-错误!未定义书签。
,错误!未定义书签。
)答案B解析f′(x)=-3x2+2ax-1≤0在(-∞,+∞)恒成立,Δ=4a2-12≤0⇒-错误!≤a≤错误!未定义书签。
.7.设f(x)=x ln x,若f′(x0)=2,则x0等于( )A.e2B.ln 2C.错误!未定义书签。
导数练习题含答案完整版
导数练习题含答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】导数练习题班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( )A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40 B.0.41 C.0.43D.0.443.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A.4 B.4+2ΔxC.4+2(Δx)2D.4x4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6 B.18C.54D.815.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A.3 B.-3C. 2D.-26.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x-2 B.y=xC.y=x+ 2D.y=-x-28.已知曲线y=2x2上一点A(2,8),则A处的切线斜率为( )A.4 B.16 C.8D.29.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0) B.(2,4)C.(14,116)D.(12,14)10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b= 1B.a=-1,b=1C.a=1,b=- 1D.a=-1,b=-111.已知f(x)=x2,则f′(3)=( )A.0 B.2xC. 6D.912.已知函数f(x)=1x,则f′(-3)=( )A. 4 B.19C .-14D .-1913.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2xx +3?2D.3x 2+6x x +3?2 14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( )A .0B .-1C .1D .215.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤18.函数y =4x 2+1x的单调递增区间是( ) A .(0,+∞) B .(-∞,1)C .(12,+∞)D .(1,19.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 20.设x 0为可导函数f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为022.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =( ) A .2 B .3C .4D .523.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有( )A .1个B .2个C .3个D .4个24.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,- 1C .-1D .-325.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5)C .f (2),f (5)D .f (5),f (3)26.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .427.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( )A .-10B.-71C .-15D .-22 28.(2010年高考山东卷)已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件29.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1秒末B .0秒C .4秒末D .0,1,4秒末二、填空题1.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________.2.若曲线y =2x 2-4x +a 与直线y =1相切,则a =________.3.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________.4.令f (x )=x 2·e x ,则f ′(x )等于________.5.函数y =x 2+4x 在x =x 0处的切线斜率为2,则x 0=________. 6.若y =10x ,则y ′|x =1=________.7.一物体的运动方程是s (t )=1t,当t =3时的瞬时速度为________.8.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.9.y =x 3-6x +a 的极大值为________.10.函数y =x e x 的最小值为________.11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.12.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.三、解答题1.求下列函数的导数:(1)y=3x2+x cos x; (2)y=x1+x;(3)y=lg x-e x.2.已知抛物线y=x2+4与直线y=x +10,求:(1)它们的交点; (2)抛物线在交点处的切线方程.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=12x .4.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.导数练习题答案班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( ) A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数答案:A2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44解析:选 B.Δy=f(2.1)-f(2)=2.12-22=0.41.3.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A. 4B.4+2ΔxC.4+2(Δx)2D.4x解析:选B.因为Δy=[2(1+Δx)2-1]-(2×12-1)=4Δx+2(Δx)2,所以ΔyΔx=4+2Δx,故选B.4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6B.18C.54D.81解析:选B.ΔsΔt=3?3+Δt2-3×32Δt,s′=li mΔt→0ΔsΔt=li mΔt→0(18+3Δt)=18,故选B.5.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A. 3B.-3C. 2D.-2解析:选B.6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直解析:选 B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x- 2B.y=xC.y=x+ 2D.y=-x-2解析:选 A.f′(1)=li mΔx→0-11+Δx+11Δx=li mΔx→011+Δx=1,则在(1,-1)处的切线方程为y+1=x-1,即y=x-2.8.已知曲线y=2x2上一点A(2,8),则A 处的切线斜率为( )A. 4B.16C.8D.2解析:选C.9.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0)B.(2,4)C.(14,116)D.(12,14)故选D.10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A .a =1,b = 1B .a =-1,b =1C .a=1,b=-1D .a =-1,b =-1 解析:选A.11.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9解析:选 C.∵f ′(x )=2x ,∴f ′(3)=6.12.已知函数f (x )=1x,则f ′(-3)=( )A .4B.19C .-14D .-19解析:选 D.∵f ′(x )=-1x 2,∴f ′(-3)=-19.13.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2x x +3?2D.3x 2+6x x +3?2解析:选A14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .0B .-1C .1D .2解析:选 B.∵f (x )=12f ′(-1)x 2-2x +3, ∴f ′(x )=f ′(-1)x -2.∴f ′(-1)=f ′(-1)×(-1)-2.∴f ′(-1)=-1.15.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:选 D.f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤0解析:选D.因为y ′=3ax 2-1,函数y =ax 3-x 在(-∞,+∞)上是减函数,所以y ′=3ax 2-1≤0恒成立,即3ax 2≤1恒成立.当x =0时,3ax 2≤1恒成立,此时a ∈R ;当x ≠0时,若a ≤13x2恒成立,则a ≤0.综上可得a ≤0. 18.函数y =4x 2+1x的单调递增区间是( )A .(0,+∞)B .(-∞,C .(12,+∞)D .(1,+解析:选 C.∵y′=8x-1x2=8x3-1 x2>0,∴x>12.即函数的单调递增区间为(12,+∞).19.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.20.设x0为可导函数f(x)的极值点,则下列说法正确的是( )A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A22.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=( )A.2 B.3C.4 D.5解析:选D.f′(x)=3x2+2ax+3,∵f(x)在x=-3处取得极值,∴f′(-3)=0,即27-6a+3=0,∴a=5.23.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个解析:选A.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如题图所示,函数f(x)在开区间(a,b)内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.24.函数f(x)=-13x3+12x2+2x取极小值时,x的值是( )A.2 B.2,-1C.-1 D.-3解析:选 C.f′(x)=-x2+x+2=-(x-2)(x+1).∵在x=-1的附近左侧f′(x)<0,右侧f′(x)>0,如图所示:∴x=-1时取极小值.25.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分别是( )A.f(2),f(3)B.f(3),f(5)C.f(2),f(5) D.f(5),f(3)解析:选B.∵f′(x)=-2x+4,∴当x∈[3,5]时,f′(x)<0,故f(x)在[3,5]上单调递减,故f(x)的最大值和最小值分别是f(3),f(5).26.f(x)=x3-3x2+2在区间[-1,1]上的最大值是( )A.-2 B.0C.2 D.4解析:选C.f′(x)=3x2-6x=3x(x-2),令f′(x)=0可得x=0或x=2(舍去),当-1≤x<0时,f′(x)>0,当0<x≤1时,f′(x)<0.所以当x=0时,f(x)取得最大值为2. 27.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10 B.-71C.-15 D.-22解析:选B.f′(x)=3x2-6x-9=3(x -3)(x+1).由f′(x)=0得x=3,-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.28.(2010年高考山东卷)已知某生产厂家的年利润y(单元:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A.13万件B .11万件C.9万件D .7万件解析:选C29.一点沿直线运动,如果由始点起经过t秒运动的距离为s=14t4-53t3+2t2,那么速度为零的时刻是( )A.1秒末B .0秒C.4秒末D .0,1,4秒末解析:选D.∵s′=t3-5t2+4t,令s′=0,得t1=0,t2=1,t3=4,此时的函数值最大,故选D.二、填空题1.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________.答案:12.若曲线y=2x2-4x+a与直线y=1相切,则a=________.答案:33.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________.答案:24.令f(x)=x2·e x,则f′(x)等于________.解析:f′(x)=(x2)′·e x+x2·(e x)′=2x·e x+x2·e x=e x(2x+x2).答案:e x(2x+x2)5.函数y=x2+4x在x=x0处的切线斜率为2,则x0=________.解析:2=li mΔx→0x+Δx2+4?x0+Δx-x20-4x0Δx=2x0+4,∴x0=-1.答案:-16.若y=10x,则y′|x=1=________.解析:∵y′=10x ln10,∴y′|x=1=10ln10.答案:10ln107.一物体的运动方程是s(t)=1t,当t=3时的瞬时速度为________.解析:∵s′(t)=-1t2,∴s′(3)=-132=-19.答案:-198.设f(x)=ax2-b sin x,且f′(0)=1,f′(π3)=12,则a=________,b=________.解析:∵f′(x)=2ax-b cos x,f′(0)=-b=1得b=-1,f ′(π3)=23πa +12=12,得a =0.答案:0 -19.y =x 3-6x +a 的极大值为________.解析:y ′=3x 2-6=0,得x =± 2.当x <-2或x >2时,y ′>0;当-2<x <2时,y ′<0.∴函数在x =-2时,取得极大值a +4 2.答案:a +4210.函数y =x e x 的最小值为________.解析:令y ′=(x +1)e x =0,得x =-1.当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.解析:设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x2×x =x 2+256×4x,S ′=2x -256×4x 2,令S ′=0,则x =8,则高h =25664=4 (dm).答案:412.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.解析:设矩形的长为x m ,则宽为16-2x2=(8-x ) m(0<x <8), ∴S (x )=x (8-x )=-x 2+8x∴S ′(x )=-2x +8,令S ′(x )=0,则x =4,又在(0,8)上只有一个极值点,且x∈(0,4)时,S(x)单调递增,x∈(4,8)时,S(x)单调递减,故S(x)max=S(4)=16.答案:16三、解答题1.求下列函数的导数:(1)y=3x2+x cos x;(2)y=x1+x;(3)y=lg x-e x.解:(1)y′=6x+cos x-x sin x.(2)y′=1+x-x1+x2=11+x2.(3)y′=(lg x)′-(e x)′=1x ln10-e x.2.已知抛物线y=x2+4与直线y=x+10,求:(1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎨⎧y=x2+4,y=x+10,得x2+4=10+x,即x2-x-6=0,∴x=-2或x=3.代入直线的方程得y=8或13.∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y=x2+4,∴y′=limΔx→0x+Δx2+4-x2+4?Δx=limΔx→0Δx2+2x·ΔxΔx=limΔx→0(Δx+2x)=2x.∴y′|x=-2=-4,y′|x=3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6.∴在点(-2,8)处的切线方程为4x+y=0;在点(3,13)处的切线方程为6x-y-5=0.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=1 2x .解:(1)函数的定义域为(0,+∞).其导数为y′=1-1 x .令1-1x>0,解得x>1;再令1-1x<0,解得0<x<1.因此,函数的单调增区间为(1,+∞),函数的单调减区间为(0,1).4.已知函数f(x)=x3+ax2+bx+c,当x =-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.解:f′(x)=3x2+2ax+b,依题意可知-1,3是方程3x2+2ax+b=0的两个根,则有⎩⎪⎨⎪⎧-1+3=-23a,-1×3=b3,解得⎩⎨⎧a=-3,b=-9,∴f(x)=x3-3x2-9x+c.由f(-1)=7,得-1-3+9+c=7,∴c=2.∴极小值为f(3)=33-3×32-9×3+2=-25.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.解:(1)f′(x)=x2-4,解方程x2-4=0,得x1=-2,x2=2.当x变化时,f′(x),f(x)的变化情况如下表:从上表可看出,当x=-2时,函数有极大值,且极大值为283;而当x=2时,函数有极小值,且极小值为-4 3 .(2)f(-3)=13×(-3)3-4×(-3)+4=7,f(4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.。
函数求导练习题(含解析)
一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=,C为常数;(2)(xα)′=,α为常数;(3)(a x)′=,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=;(6)(cos x)′=.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).4.求下列函数的导数:(1)y=ln(2x+1);(2).5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.6.求下列函数的导数.(Ⅰ);(Ⅱ).7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).9.求下列函数的导数:(1);(2).10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).11.求下列函数的导数.(1);(2).12.求下列函数的导数:(1)y=;(2)y=.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2)解析一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=0,C为常数;(2)(xα)′=αxα﹣1,α为常数;(3)(a x)′=a x lna,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=cos x;(6)(cos x)′=﹣sin x.分析:根据初等函数的导数公式,直接求解即可.解答:解:(1)(C)′=0,(2)(xα)′=αxα﹣1,(3)(a x)′=a x lna,(4)(log a x)′=,(5)(sin x)′=cos x,(6)(cos x)′=﹣sin x.故答案为:(1)0;(2)αxα﹣1;(3)a x lna;(4);(5)cos x;(6)﹣sin x.点评:本题主要考查初等函数的导数公式,比较基础.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).分析:利用导数的运算性质逐个化简即可求解.解答:解:(1)由已知可得y′=2x﹣7;(2)由已知可得y′=1+2cos x.点评:本题考查了导数的运算性质,属于基础题.3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).分析:(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.解答:解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.点评:本题主要考查导数的基本运算,比较基础.4.求下列函数的导数:(1)y=ln(2x+1);(2).分析:根据导数的公式即可得到结论.解答:解:(1)∵y=ln(2x+1),∴y′=×2=,(2)∵,∴y′=﹣sin(﹣2x)×(﹣2)=2sin(﹣2x)=﹣2sin(2x﹣).点评:本题主要考查导数的基本运算,比较基础.5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.分析:根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.解答:解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x﹣3).(4)∵w(x)=ln(5x+6)2,∴点评:本题考查导数的计算,注意复合函数的导数计算,属于基础题.(Ⅰ);(Ⅱ).分析:根据导数的公式即可得到结论.解答:解:(Ⅰ)=.(Ⅱ).点评:本题主要考查导数的基本运算,比较基础.7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.分析:利用导数的运算性质化简即可求解.解答:解:(1)因为f(x)=sin x cos x=sin2x,所以f′(x)=cos2x×=cos2x,(2)∵y=,∴y′==.点评:本题考查了导数的运算性质,考查了学生的运算求解能力,属于基础题.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).分析:根据导数的公式,即可依次求解.解答:解:(1)y'==.(2)因为y=(2x2+3)(3x﹣2)=6x3﹣4x2+9x﹣6,所以y′=18x2﹣8x+9.点评:本题主要考查导数的运算,属于基础题.(1);(2).分析:(1)先展开f(x),然后求导即可;(2)根据基本初等函数和商的导数的求导公式求导即可.解答:解:(1),;(2).点评:本题考查了基本初等函数和商的导数的求导公式,考查了计算能力,属于基础题.10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).分析:结合基本初等函数的求导公式及求导法则求解即可.解答:解:(1)S(t)==t+,所以S′(t)=1﹣;(2)h(x)=(2x2+3)(3x﹣2),所以h′(x)=4x(3x﹣2)+3(2x2+3)=18x2﹣8x+9.点评:本题主要考查了基本初等函数的求导公式及求导法则,属于基础题.11.求下列函数的导数.(1);(2).分析:利用复合函数的导函数的求法,结合导数的运算求解即可.解答:解:(1),所以;(2)所以.点评:本题考查了导函数的求法,重点考查了导数的运算,属基础题.12.求下列函数的导数:(1)y=;(2)y=.分析:直接利用基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算求解即可.解答:解:(1)令t=1﹣2x2,则,所以;(2).点评:本题考查了导数的运算,解题的关键是掌握基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算,考查了运算能力,属于基础题.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).分析:由已知结合函数的求导公式即可求解.解答:解:(1)y′=cos x+;(2)y′=﹣sin x+1;(3)y′=sin x+x cos x;(4)y′==;(5)y′=6x+cos x﹣x sin x;(6)y′==﹣.点评:本题主要考查了函数的求导公式的应用,属于基础题.14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).分析:根据基本初等函数和复合函数的求导公式求导即可.解答:解:(1)y′=3x2﹣2;(2)y′=sin(2x+5)+2x cos(2x+5).点评:本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2).分析:利用导数的运算法则以及常见函数的导数进行求解即可.解答:解:(1)因为y=(x2+3x+3)e x+1,所以y'=[(x2+3x+3)e x+1]'=(x2+3x+3+2x+3)e x+1=(x2+5x+6)e x+1=(x+2)(x+3)e x+1;(2)因为,所以.点评:本题考查了导数的运算,主要考查了导数的运算法则以及常见函数的导数公式,考查了化简运算能力,属于基础题.。
导数概念练习题
试卷第1页,共1页导数概念练习题(含解析)一、填空题1.若函数()f x 在R 上可导,()()2e ln f x xf x +'=,则()e f '=.2.若函数()sin 22cos f x x x =+的导函数为()f x ',则π6f ⎛⎫= ⎪⎝⎭'.3.设函数()f x =,则()f x '=4.函数()2πsin π32f x x ⎛⎫=- ⎪⎝⎭在3x =处的导数()3f '=.5.函数()ln 2f x x x =⋅的导函数()f x '=.6.函数2y x =的极值点为.7.函数()322f x x x =-的图象在点()()22f ,处的切线方程为.8.已知函数()cos f x x =,则()f x '=.9.某汽车启动阶段的路程函数为32()355S t t t =-+,则2t =秒时,汽车的加速度是.10.曲线21e x y x-=在点()01,y 处的切线方程为.11.已知函数()a y f x x x ==-在1x =处的导数()12f '=,则a 的值为.12.若函数2()f x x c =-在区间[]1,m 上的平均变化率为3,则m 等于.13.已知函数2()3f x x x =-,则曲线()y f x =在点(1,2)-处的切线方程为.14.函数21y x =-在区间[]3,4上的平均变化率为.15.函数2()f x x =-在2x =处的导数为16.函数232y x =-在1x =处的导数为.17.已知()cos f x x =,则π3f ⎛⎫'= ⎪⎝⎭.18.函数πcos(3)4y x =-的导数为.19.函数y =是由两个函数复合而成的.。
(完整版)导数的运算经典习题
(完整版)导数的运算经典习题1. 概述本文档列举了一些有关导数的运算的经典题,以帮助读者巩固和提高对该知识点的理解和应用能力。
2. 题集2.1 一阶导数1. 计算函数 $f(x) = 3x^2 + 2x + 1$ 的导函数 $f'(x)$。
2. 求函数 $g(x) = \sqrt{x}$ 的导数 $g'(x)$。
3. 计算函数 $h(x) = e^x - \sin(x)$ 在 $x = 0$ 处的导数 $h'(0)$。
4. 求函数 $k(x) = \ln(x)$ 的导函数 $k'(x)$。
2.2 高阶导数1. 计算函数 $f(x) = \cos(x)$ 的二阶导数 $f''(x)$。
2. 求函数 $g(x) = \frac{1}{x^2}$ 的二阶导数 $g''(x)$。
3. 计算函数 $h(x) = e^x \cos(x)$ 的二阶导数 $h''(x)$。
4. 求函数 $k(x) = \ln(x^2)$ 的二阶导数 $k''(x)$。
2.3 乘积法则和商积法则1. 使用乘积法则计算函数 $f(x) = (3x^2 + 2x + 1)(4x + 1)$ 的导函数 $f'(x)$。
2. 使用商积法则计算函数 $g(x) = \frac{x^2 + 1}{x}$ 的导数$g'(x)$。
2.4 链式法则1. 使用链式法则计算函数 $f(x) = \sin(3x^2 + 2x + 1)$ 的导数$f'(x)$。
2. 使用链式法则计算函数 $g(x) = e^{2x^3}$ 的导函数 $g'(x)$。
3. 总结本文档提供了一些有关导数的运算的经典习题,涵盖了一阶导数、高阶导数、乘积法则和商积法则、链式法则等知识点。
通过完成这些习题,读者可以巩固对导数运算的理解,并提高应用能力。
希望这些习题对您有所帮助!。
高三数学导数练习题
高三数学导数练习题1. 求函数$f(x) = 2x^3 + 3x^2 - 12x + 4$的导函数$f'(x)$。
解答:首先,我们可以利用导数的定义求出$f'(x)$。
导数的定义为:\[f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}\]代入函数$f(x) = 2x^3 + 3x^2 - 12x + 4$,我们得到:\[f'(x) = \lim_{\Delta x \to 0} \frac{2(x+\Delta x)^3 + 3(x+\Delta x)^2 - 12(x+\Delta x) + 4 - (2x^3 + 3x^2 - 12x + 4)}{\Delta x}\]化简后得到:\[f'(x) = \lim_{\Delta x \to 0} \frac{2(x^3 + 3x^2 \Delta x + 3x (\Delta x)^2 + (\Delta x)^3) + 3(x^2 + 2x\Delta x + (\Delta x)^2) - 12x - 12\Delta x + 4 - 2x^3 - 3x^2 + 12x - 4}{\Delta x}\]继续化简:\[f'(x) = \lim_{\Delta x \to 0} \frac{6x^2\Delta x + 6x(\Delta x)^2 +2(\Delta x)^3 + 2x^2\Delta x + 6x(\Delta x)^2 + 3(\Delta x)^2 - 12\Delta x}{\Delta x}\]这时,我们可以将分子的各项进行合并和抵消:\[f'(x) = \lim_{\Delta x \to 0} (6x^2 + 8x\Delta x + 3(\Delta x)^2 - 12)\]根据极限性质,当$\Delta x$趋近于0时,其中的线性项$\Delta x$和常数项12都趋近于0。
高等数学——导数练习题
一.选择题1.若k x x f x x f x =∆-∆+→∆)()(lim000,则xx f x x f x ∆-∆⋅+→∆)()2(lim000等于( ) A.k 2 B.k C.k 21D.以上都不是2.若f (x )=sinα-cosx ,则f ′(a )等于 ( )A .sinαB .cosαC .sinα+cosαD .2sinα3.f (x )=ax 3+3x 2+2,若f ′(−1)=4,则a 的值等于( )A .319 B .316 C .313D .3104.函数y =x sin x 的导数为( )A .y ′=2x sin x +x cos xB .y ′=x x 2sin +x cos xC .y ′=xx sin +x cos x D .y ′=xx sin -x cos x5.函数y =x 2cos x 的导数为( )A .y ′=2x cos x -x 2sin xB .y ′=2x cos x +x 2sin xC .y ′=x 2cos x -2x sin xD .y ′=x cos x -x 2sin x6.函数y =22xax +(a >0)的导数为0,那么x 等于( )A .aB .±aC .-aD .a 27. 函数y =xxsin 的导数为( )A .y ′=2sin cos xxx x + B .y ′=2sin cos xxx x - C .y ′=2cos sin x xx x -D .y ′=2cos sin x xx x +8.函数y =2)13(1-x 的导数是( )A .3)13(6-x B .2)13(6-x C .-3)13(6-x D .-2)13(6-x9.已知y =21sin2x +sin x ,那么y ′是( ) A .仅有最小值的奇函数 B .既有最大值,又有最小值的偶函数 C .仅有最大值的偶函数 D .非奇非偶函数10.函数y =sin 3(3x +4π)的导数为( )A .3sin 2(3x +4π)cos (3x +4π)B .9sin 2(3x +4π)cos (3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos (3x +4π)11.函数y =cos (sin x )的导数为( )A .-[sin (sin x )]cos xB .-sin (sin x )C .[sin (sin x )]cos xD .sin (cos x )12.函数y =cos2x +sin x 的导数为( )A .-2sin2x +xx2cos B .2sin2x +xx 2cosC .-2sin2x +xx 2sin D .2sin2x -xx 2cos13.过曲线y =11+x 上点P (1,21)且与过P 点的切线夹角最大的直线的方程为( )A .2y -8x +7=0B .2y +8x +7=0C .2y +8x -9=0D .2y -8x +9=014.函数y =ln (3-2x -x 2)的导数为( )A .32+x B .2231x x -- C .32222-++x x xD .32222-+-x x x15.函数y =lncos2x 的导数为( )A .-tan2xB .-2tan2xC .2tan xD .2tan2x16.已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是( )A. 21>-<b b ,或B.21≥-≤b b ,或C. 21<<-bD. 21≤≤-b 17.函数的单调递增区间是 ( )A. B.(0,3) C.(1,4) D.x e x x f )3()(-=)2,(-∞),2(+∞18.函数y =xx a22-(a >0且a ≠1),那么y ′为( )A .xxa 22-ln aB .2(ln a )xx a 22- C .2(x -1)xx a 22-·ln aD .(x -1)xxa 22-ln a19.函数y =sin32x 的导数为( )A .2(cos32x )·32x ·ln3B .(ln3)·32x ·cos32xC .cos32xD .32x ·cos32x20.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .421.曲线1323+-=x x y 在点(1,-1)处的切线方程为( )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y22.函数)1()1(2-+=x x y 在1=x 处的导数等于( )A .1B .2C .3D .423.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为( ) A .)1(3)1()(2-+-=x x x fB .)1(2)(-=x x fC .2)1(2)(-=x x fD .1)(-=x x f24.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A.2B.3C.4D.525.函数32()31f x x x =-+是减函数的区间为( )A.(2,)+∞B.(,2)-∞C.(,0)-∞D.(0,2) 26.函数323922yx x x x 有( )A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大 27.三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则( )A.0>aB.0<aC.1=aD.31=a28.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .029.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个C .3个D .4个 30.下列求导运算正确的是( ) A 、3211)1(xx x -='+B 、(log 2x )′=1xln2C 、(x 2cosx )′=−2xsinxD 、 (3x )′=3x log 3e 31.已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A .0 B .2 C .-1 D .1 32.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 33. 函数y =x ln 的导数为( )A .2x x lnB .x x ln 2C .xx ln 1 D .xx ln 2134.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A .2pB .pC .p 2D .无法确定 35.函数x x y 33-=的极大值为m ,极小值为n ,则n m +为( ) A .0 B .1 C .2D .436.函数xx y 142+=单调递增区间是( )A .),0(+∞B .)1,(-∞C .),21(+∞ D .),1(+∞37.函数在上( )A .是增函数B .是减函数C .有最大值D .有最小值 38.函数xxy ln =的最大值为( ) A .1-e B .e C .2e D .310 二.填空题1.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
导数经典练习题及答案
1.设函数f(x)在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于A .)('0x fB .)('0x f -C .0'()f x -D .0'()f x -- 2.若13)()2(lim000=∆-∆+→∆x x f x x f x ,则)('0x f 等于 A .32 B .23C .3D .23.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的倾斜角为A .90°B .0°C .锐角D .钝角 4.对任意x ,有34)('x x f =,f(1)=-1,则此函数为A .4)(x x f =B .2)(4-=x x fC .1)(4+=x x fD .2)(4+=x x f 5.设f(x)在0x 处可导,下列式子中与)('0x f 相等的是 (1)x x x f x f x ∆∆--→∆2)2()(lim000; (2)x x x f x x f x ∆∆--∆+→∆)()(lim 000;(3)x x x f x x f x ∆∆+-∆+→∆)()2(lim000(4)x x x f x x f x ∆∆--∆+→∆)2()(lim 000.A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)(4) 6.若函数f(x)在点0x 处的导数存在,则它所对应的曲线在点))(,(00x f x 处的切线方程是___. 7.已知曲线xx y 1+=,则==1|'x y _____________.8.设3)('0-=x f ,则=---→hh x f h x f h )3()(lim000_____________.9.在抛物线2x y =上依次取两点,它们的横坐标分别为11=x ,32=x ,若抛物线上过点P的切线与过这两点的割线平行,则P点的坐标为_____________.10.曲线3)(x x f =在点A 处的切线的斜率为3,求该曲线在A 点处的切线方程.11.在抛物线2x y =上求一点P ,使过点P 的切线和直线3x-y+1=0的夹角为4π.12.判断函数⎩⎨⎧<-≥=)0()0()(x x x x x f 在x=0处是否可导.1相切的直线方程.y13.求经过点(2,0)且与曲线x同步练习X030131.函数y =f (x )在x =x 0处可导是它在x =x 0处连续的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.在曲线y =2x 2-1的图象上取一点(1,1)及邻近一点(1+Δx ,1+Δy ),则xy ∆∆ 等于A .4Δx +2Δx 2B .4+2ΔxC .4Δx +Δx 2D .4+Δx3.若曲线y =f (x )在点(x 0,f (x 0))处的切线方程为2x +y -1=0,则A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在4.已知命题p :函数y =f (x )的导函数是常数函数;命题q :函数y =f (x )是一次函数,则命题p 是命题q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设函数f (x )在x 0处可导,则0lim→h hh x f h x )()(00--+等于A .f ′(x 0)B .0C .2f ′(x 0)D .-2f ′(x 0)6.设f (x )=x (1+|x |),则f ′(0)等于A .0B .1C .-1D .不存在7.若曲线上每一点处的切线都平行于x 轴,则此曲线的函数必是___________. 8.曲线y =x 3在点P (2,8)处的切线方程是___________.9.曲线f (x )=x 2+3x 在点A (2,10)处的切线斜率k =___________. 10.两曲线y =x 2+1与y =3-x 2在交点处的两切线的夹角为___________. 11.设f (x )在点x 处可导,a 、b 为常数,则0lim→∆x xx b x f x a x f ∆∆--∆+)()(=___________.12.已知函数f (x )=⎩⎨⎧>+≤++012x b ax x x x ,试确定a 、b 的值,使f (x )在x =0处可导.13.设f (x )=)()2)(1()()2)(1(n x x x n x x x +⋅⋅⋅++-⋅⋅⋅--,求f ′(1).14.利用导数的定义求函数y =|x |(x ≠0)的导数.同步练习 X030211.物体运动方程为s =41t 4-3,则t =5时的瞬时速率为A .5 m/sB .25 m/sC .125 m/sD .625 m/s2.曲线y =x n(n ∈N )在点P (2,)22n 处切线斜率为20,那么n 为A .7B .6C .5D .43.函数f (x )=x x x 的导数是A .81x(x >0) B .-887x(x >0) C .8781x(x >0) D .881x(x >0)4.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足 A .f (x )=g (x )B .f (x )-g (x )为常数函数C .f (x )=g (x )=0D .f (x )+g (x )为常数函数5.两车在十字路口相遇后,又沿不同方向继续前进,已知A 车向北行驶,速率为30 km/h ,B 车向东行驶,速率为40 km/h ,那么A 、B 两车间直线距离的增加速率为 A .50 km/hB .60 km/hC .80 km/hD .65 km/h6.细杆AB 长为20 cm ,AM 段的质量与A 到M 的距离平方成正比,当AM =2 cm 时,AM 段质量为8 g ,那么,当AM =x 时,M 处的细杆线密度ρ(x )为 A .2xB .4xC .3xD .5x7.曲线y =x 4的斜率等于4的切线的方程是___________.8.设l 1为曲线y 1=sin x 在点(0,0)处的切线,l 2为曲线y 2=cos x 在点(2π,0)处的切线,则l 1与l 2的夹角为___________. 9.过曲线y =cos x 上的点(21,6π)且与过这点的切线垂直的直线方程为_____________.10.在曲线y =sin x (0<x <π)上取一点M ,使过M 点的切线与直线y =x 23平行,则M 点的坐标为___________.11.质点P 在半径为r 的圆周上逆时针做匀角速率运动,角速率为1 r a d/s ,设A为起点,那么t 时刻点P 在x 轴上射影点M 的速率为___________.12.求证:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形面积等于常数.13.路灯距地平面为8 m,一个身高为1.6 m的人以84 m/min的速率在地面上行走,从路灯在地平面上射影点C,沿某直线离开路灯,求人影长度的变化速率v.14.已知直线x+2y-4=0与抛物线y2=4x相交于A、B两点,O是坐标原点,试在抛物线的弧上求一点P,使△PAB面积最大.同步练习 X030311.若f (x )=sin α-cos x ,则f ′(α)等于A .sin αB .cos αC .sin α+cos αD .2sin α2.f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于A .319B .316 C .313D .3103.函数y =x sin x 的导数为A .y ′=2x sin x +x cos xB .y ′=xx 2sin +x cos xC .y ′=xx sin +x cos x D .y ′=xx sin -x cos x4.函数y =x 2cos x 的导数为A .y ′=2x cos x -x 2sin xB .y ′=2x cos x +x 2sin xC .y ′=x 2cos x -2x sin xD .y ′=x cos x -x 2sin x5.若y =(2x 2-3)(x 2-4),则y ’= .6. 若y =3cosx -4sinx ,则y ’= .7.与直线2x -6y +1=0垂直,且与曲线y =x 3+3x 2-1相切的直线方程是______. 8.质点运动方程是s =t 2(1+sin t ),则当t =2时,瞬时速度为___________.9.求曲线y=x3+x2-1在点P(-1,-1)处的切线方程. 10.用求导的方法求和:1+2x+3x2+…+nx n-1(x≠1).11.水以20米3/分的速度流入一圆锥形容器,设容器深30米,上底直径12米,试求当水深10米时,水面上升的速度.同步练习 X030321.函数y =22xax +(a >0)的导数为0,那么x 等于A .aB .±aC .-aD .a 22.函数y =xxsin 的导数为 A .y ′=2sin cos xxx x + B .y ′=2sin cos xxx x - C .y ′=2cos sin xxx x -D .y ′=2cos sin xxx x + 3.若21,2xy x +=-则y ’= .4.若423335,x x y x -+-=则y ’= . 5.若1cos ,1cos xy x+=-则y ’= .6.已知f (x )=354337xx x x ++,则f ′(x )=___________.7.已知f (x )=xx++-1111,则f ′(x )=___________.8.已知f (x )=xx2cos 12sin +,则f ′(x )=___________.9.求过点(2,0)且与曲线y =x1相切的直线的方程.10.质点的运动方程是23,s t t=+求质点在时刻t=4时的速度.同步练习 X030411.函数y =2)13(1-x 的导数是 A .3)13(6-x B .2)13(6-x C .-3)13(6-x D .-2)13(6-x2.已知y =21sin2x +sin x ,那么y ′是A .仅有最小值的奇函数B .既有最大值,又有最小值的偶函数C .仅有最大值的偶函数D .非奇非偶函数 3.函数y =sin 3(3x +4π)的导数为 A .3sin 2(3x +4π)cos (3x +4π) B .9sin 2(3x +4π)cos (3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos (3x +4π)4.若y=(sinx-cosx 3),则y ’= .5. 若y=2cos 1x +,则y ’= .6. 若y=sin 3(4x+3),则y ’= .7.函数y =(1+sin3x )3是由___________两个函数复合而成. 8.曲线y =sin3x 在点P (3π,0)处切线的斜率为___________.9.求曲线2211(2,)(3)4y M x x =-在处的切线方程.10. 求曲线sin 2(,0)y x M π=在处的切线方程.11.已知函数y =(x )是可导的周期函数,试求证其导函数y =f ′(x )也为周期函数.同步练习 X030421.函数y =cos (sin x )的导数为A .-[sin (sin x )]cos xB .-sin (sin x )C .[sin (sin x )]cos xD .sin (cos x )2.函数y =cos2x +sin x 的导数为A .-2sin2x +xx2cos B .2sin2x +xx 2cosC .-2sin2x +xx 2sin D .2sin2x -xx 2cos3.过曲线y =11+x 上点P (1,21)且与过P 点的切线夹角最大的直线的方程为 A .2y -8x +7=0 B .2y +8x +7=0 C .2y +8x -9=0D .2y -8x +9=04.函数y =x sin (2x -2π)cos (2x +2π)的导数是______________. 5.函数y =)32cos(π-x 的导数为______________.6.函数y =cos 3x 1的导数是___________.7.已知曲线y=2400x + +53(100-x) (0100≤≤x ) 在点M 处有水平切线,8.若可导函数f (x )是奇函数,求证:其导函数f ′(x )是偶函数.9.用求导方法证明:21C 2C n n +…+n nn C =n ·2n -1.同步练习 X030511.函数y =ln (3-2x -x 2)的导数为A .32+x B .2231x x -- C .32222-++x x xD .32222-+-x x x2.函数y =lncos2x 的导数为A .-tan2xB .-2tan2xC .2tan xD .2tan2x3.函数y =x ln 的导数为A .2x x lnB .xx ln 2C .xx ln 1 D .xx ln 214.在曲线y =59++x x 的切线中,经过原点的切线为________________. 5.函数y =log 3cos x 的导数为___________. 6.函数y =x 2lnx 的导数为 . 7. 函数y =ln (lnx )的导数为 . 8. 函数y =lg (1+cosx )的导数为 .9. 求函数y =ln 22132x x +-的导数.10. 求函数y =12.求函数y =ln (21x +-x )的导数.同步练习 X030521.下列求导数运算正确的是A .(x +x 1)′=1+21xB .(log 2x )′=2ln 1xC .(3x )′=3x log 3eD .(x 2cos x )′=-2x sin x 2.函数y =xxa 22-(a >0且a ≠1),那么y ′为A .xxa 22-ln aB .2(ln a )xxa 22-C .2(x -1)xxa 22-·ln aD .(x -1)xxa 22-ln a3.函数y =sin32x 的导数为A .2(cos32x )·32x ·ln3B .(ln3)·32x ·cos32xC .cos32xD .32x ·cos32x4.设y =xx ee 2)12(+,则y ′=___________. 5.函数y =x22的导数为y ′=___________.6.曲线y =e x -e ln x 在点(e ,1)处的切线方程为___________.7.求函数y=e 2x lnx 的导数.8.求函数y =x x (x >0)的导数.9.设函数f (x )满足:af (x )+bf (x 1)=xc(其中a 、b 、c 均为常数,且|a |≠|b |),试求f ′(x ).同步练习 x030611.若f (x )在[a ,b ]上连续,在(a ,b )内可导,且x ∈(a ,b )时,f ′(x )>0,又f (a )<0,则A .f (x )在[a ,b ]上单调递增,且f (b )>0B .f (x )在[a ,b ]上单调递增,且f (b )<0C .f (x )在[a ,b ]上单调递减,且f (b )<0D .f (x )在[a ,b ]上单调递增,但f (b )的符号无法判断 2.函数y =3x -x 3的单调增区间是A .(0,+∞)B .(-∞,-1)C .(-1,1)D .(1,+∞) 3.三次函数y =f (x )=ax 3+x 在x ∈(-∞,+∞)内是增函数,则A .a >0B .a <0C .a =1D .a =314.f (x )=x +x2(x >0)的单调减区间是 A .(2,+∞) B .(0,2) C .(2,+∞) D .(0,2) 5.函数y =sin x cos 2x 在(0,2π)上的减区间为 A .(0,arctan 22) B .(arctan2,22π) C .(0,2π)D .(arctan 2,21π)6.函数y =x ln x 在区间(0,1)上是A .单调增函数B .单调减函数C .在(0,e 1)上是减函数,在(e1,1)上是增函数D .在(0,e 1)上是增函数,在(e1,1)上是减函数7.函数f (x )=cos 2x 的单调减区间是___________. 8.函数y =2x +sin x 的增区间为___________.9.函数y =232+-x x x的增区间是___________. 10.函数y =xxln 的减区间是___________.11.已知0<x <2π,则tan x 与x +33x 的大小关系是tan x _____x +33x .12.已知函数f (x )=kx 3-3(k +1)x 2-k 2+1(k >0).若f (x )的单调递减区间是(0,4). (1)求k 的值; (2)当k <x 时,求证:2x >3-x1.13.试证方程sin x =x 只有一个实根.14.三次函数f (x )=x 3-3bx +3b 在[1,2]内恒为正值,求b 的取值范围.同步练习 X030711.下列说法正确的是A .当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B .当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C .当f ′(x 0)=0时,则f (x 0)为f (x )的极值D .当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2.下列四个函数,在x =0处取得极值的函数是①y =x 3 ②y =x 2+1 ③y =|x | ④y =2x A .①②B .②③C .③④D .①③3.函数y =216xx的极大值为 A .3 B .4 C .2 D .54.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为A .0B .1C .2D .4 5.y =ln 2x +2ln x +2的极小值为A .e -1B .0C .-1D .16.y =2x 3-3x 2+a 的极大值为6,那么a 等于A .6B .0C .5D .17.函数f (x )=x 3-3x 2+7的极大值为___________.8.曲线y =3x 5-5x 3共有___________个极值.9.函数y =-x 3+48x -3的极大值为___________;极小值为___________.10.函数f (x )=x -3223x 的极大值是___________,极小值是___________.11.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =___________,b =___________.12.已知函数f (x )=x 3+ax 2+bx +c ,当x =-1时,取得极大值7;当x =3时,取得极小值.求这个极小值及a 、b 、c 的值.13.函数f (x )=x +xa+b 有极小值2,求a 、b 应满足的条件.14.设y =f (x )为三次函数,且图象关于原点对称,当x =21时,f (x )的极小值为-1,求函数的解析式.同步练习 X030811.下列结论正确的是A .在区间[a ,b]上,函数的极大值就是最大值B .在区间[a ,b]上,函数的极小值就是最小值C .在区间[a ,b]上,函数的最大值、最小值在x=a 和x=b 时到达D .在区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值和最小值 2.函数14)(2+-=x x x f 在[1,5]上的最大值和最小值是A .f(1),f(3)B .f(3),f(5)C .f(1),f(5)D .f(5),f(2) 3.函数f(x)=2x-cosx 在(-∞,+∞)上A .是增函数B .是减函数C .有最大值D .有最小值 4.函数a ax x x f --=3)(3在(0,1)内有最小值,则a 的取值范围是 A .0<a<1 B .a<1 C .a>0 D .21<a 5.若函数x x a x f 3sin 31sin )(+=在3π=x 处有最值,那么a 等于A .2B .1C .332 D .0 6.函数5224+-=x x y ,x ∈[-2,2]的最大值和最小值分别为 A .13,-4 B .13,4 C .-13,-4 D .-13,4 7.函数x xe y =的最小值为________________. 8.函数f(x)=sinx+cosx 在]2,2[ππ-∈x 时函数的最大值,最小值分别是___. 9.体积为V 的正三棱柱,底面边长为___________时,正三棱柱的表面积最小.10.函数21)(x x x f -+=的最大值为__________,最小值为____________。
导数练习题专升本
导数练习题专升本导数是高等数学中的一个重要概念,也是专升本考试中常常涉及的一个知识点。
掌握导数的概念和求导方法,对于专升本考试中的数学部分至关重要。
下面,我将提供一些导数练习题,帮助同学们巩固和加深对导数的理解。
1. 求下列函数的导数:a) f(x) = x^2 + 3x - 2b) g(x) = 2x^3 - 5x^2 + 4x + 1c) h(x) = e^x + ln(x)2. 求下列函数关于给定变量的导数:a) f(x) = sin(x),求f'(π/6)b) g(x) = cos(2x),求g'(π/3)c) h(x) = tan(x),求h'(π/4)3. 求下列函数的导数,并求出在给定点处的导数值:a) f(x) = √x,求 f'(9)b) g(x) = 3/x^2,求 g'(2)c) h(x) = ln(x^2 + 1),求 h'(1)4. 求下列函数的高阶导数:a) f(x) = x^3 - 5x^2 + 3x + 2,求 f''(x)b) g(x) = sin(2x),求 g''(x)c) h(x) = e^x + x^2,求 h''(x)5. 求下列函数的导函数:a) f(x) = ln(x) * sin(x)b) g(x) = e^x * cos(x)c) h(x) = ln(x^2 + 1) / x以上都是一些常见的导数练习题,通过反复练习这些题目,可以加深对导数概念和求导方法的理解,提高解题能力。
在解答这些题目时,需要注意使用链式法则、乘法法则、商法则等求导规则,确保计算正确。
此外,要特别注意指数函数、对数函数、三角函数等特殊函数的求导方法。
专升本考试中的数学部分注重基础知识的掌握和运用,所以对于导数的理解和运用是至关重要的。
掌握好导数的概念和求导方法,可以帮助我们解决更复杂的数学问题,提高数学运算能力。
(完整版)导数求导练习题
同步练习1.若f (x )=sin α-cos x ,则f ′(α)等于A .sin αB .cos αC .sin α+cos αD .2sin α2.f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于A .319B .316 C .313D .3103.函数y =x sin x 的导数为A .y ′=2x sin x +x cos xB .y ′=xx 2sin +x cos xC .y ′=xx sin +x cos xD .y ′=xx sin -x cos x4.函数y =x 2cos x 的导数为A .y ′=2x cos x -x 2sin x B .y ′=2x cos x +x 2sin x C .y ′=x 2cos x -2x sin xD .y ′=x cos x -x 2sin x5。
若y =(2x 2-3)(x 2-4),则y ’= . 6。
若y =3cosx -4sinx ,则y ’= .7.与直线2x -6y +1=0垂直,且与曲线y =x 3+3x 2-1相切的直线方程是______. 8.质点运动方程是s =t 2(1+sin t ),则当t =2时,瞬时速度为___________. 9.求曲线y=x3+x2-1在点P(—1,-1)处的切线方程。
同步练习1.函数y =22xax +(a >0)的导数为0,那么x 等于A .aB .±aC .-aD .a 22.函数y =xxsin 的导数为 A .y ′=2sin cos xxx x + B .y ′=2sin cos xxx x - C .y ′=2cos sin xxx x - D .y ′=2cos sin xxx x + 3。
若21,2xy x +=-则y ’= .4。
若423335,x x y x -+-=则y'= 。
5。
若1cos ,1cos xy x+=-则y'= .6.已知f (x )=354337xx x x ++,则f ′(x )=___________.7.已知f (x )=xx++-1111,则f ′(x )=___________.8.已知f (x )=xx2cos 12sin +,则f ′(x )=___________.9.求过点(2,0)且与曲线y =x1相切的直线的方程.10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12) 健康文档放心下载放心阅读
A. B. C. D.
12、求函数 在点 处的导数。
13、求在抛物线 上横坐标为3的点的切线方程。
14、求曲线 上点(1,1)处的切线方程。
15、求下列各函数的导数
(5)
(6)
(7)
16、求下列各函数的导数
(1)
(2)
(3)
(4)
(5)
(6)
17、求下列各函数的导数
(1)
(2)
(3)
ห้องสมุดไป่ตู้(4)
18、(理科)求下列各函数的导数
C. D.
7、在曲线 上的切线的倾斜角为 的点是()
A. B. C. D.
8、(理科)设 是可导函数,则 等于()
A. B.
C. D.
9、(理科)函数 的导数是()
A. B.
C. D.
10、曲线 在点 处的切线方程是()
A. B. C. D.
11、点 在曲线 上移动,设点 处切线的倾斜角为 ,则角 的取值范围是()
导数计算练习题
1、已知 ,则 等于()
A. B. C. D.
2、 的导数是()
A. B. C.不存在D.不确定
3、 的导数是()
A. B. C. D.
4、曲线 在 处的导数是 ,则 等于()
A. B. C. D.
5、若 ,则 等于()
A. B. C. D.
6、 的斜率等于 的切线方程是()
A. B. 或