反比例函数题型专项练习试题
中考数学复习《反比例函数》专项测试卷(带答案)
中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
反比例函数练习题及答案6套
反比例函数练习(1)一、判断题1.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数( ) 2.如果一个函数不是正比例函数,就是反比例函数 ( )3.y 与2x 成反比例时y 与x 并不成反比例( ) 二.填空题4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________; 5.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成_______; 6.如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是____ ____;7. 有一面积为60的梯形,其上底长是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是______________;三、选择题: 8.如果函数12-=m x y 为反比例函数,则m 的值是 ( )A1- B 0 C 21 D 19.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是( )10、下列函数中,y 是x 反比例函数的是( ) (A )12+=x y (B )22x y =(C )x y 51=(D )x y =2四.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:①写出兄吃饺子数y 与弟吃饺子数x 之间的函数关系式(不要求写xy 的取值范围).¥②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y )在减少,但y 与x 是成反例吗(2)水池中有水若干吨,若单开一个出水口,水流速v 与全池水放光所用时t 如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系. ②这是一个反比例函数吗③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.。
反比例函数考试题(含答案)
反比例函数考试题(含答案)1. 对于反比例函数 $y = \frac{k}{x}$,已知 $y = 3$ 时,$x = 6$,求 $k$ 的值。
解答:当 $y=3$,$x=6$ 时,代入原函数得:$$3 = \frac{k}{6}$$解出 $k=18$,因此反比例函数为 $y=\frac{18}{x}$。
2. 已知反比例函数 $y=\frac{6}{x}$ 的图像和 $y=-12$ 的水平渐近线,求该反比例函数图像的方程和垂直渐近线方程。
解答:由于已知 $y=-12$ 是反比例函数的水平渐近线,因此 $y$ 趋向于 $0$ 时,$x$ 的值趋近于无穷大或负无穷大,即垂直于 $x$ 轴。
反比例函数的图像为双曲线,因此垂直渐近线分别为 $x=0$ 和$y=0$。
同时,已知 $y=\frac{6}{x}$,可得 $x=\frac{6}{y}$。
将其化简可得反比例函数的图像方程为 $xy=6$。
因此该反比例函数的图像方程为 $xy=6$,垂直渐近线方程为$x=0$ 和 $y=0$。
3. 已知反比例函数 $y=\frac{12}{x-1}$ 的图像和点 $P(5, 2)$,求 $P$ 点在反比例函数图像上的对称点 $Q$ 的坐标。
解答:首先,求出点$P$ 关于直线$x=1$ 的对称点$P'(p,q)$ 的坐标。
由于直线 $x=1$ 为反比例函数 $y=\frac{12}{x-1}$ 的渐近线,因此$P$ 点到该直线的距离为 $0$。
点 $P$ 到直线 $x=1$ 的距离公式为:$$d(P, x=1)=\frac{|\ ax+by+c\ |}{\sqrt{a^2+b^2}}$$将反比例函数化为标准形式 $y=\frac{12}{x-1}$,可得:$$d(P, x=1)=\frac{|\ x-1\ |}{\sqrt{1+0}}=5-1=4$$因此,点 $P$ 到直线 $x=1$ 的距离为 $4$。
点 $P'$ 在直线$x=1$ 上,因此其 $x$ 坐标为 $1$,根据点 $P$ 和 $P'$ 的对称性,其 $y$ 坐标应该等于 $2-4=-2$。
(完整版)反比例函数基础练习题及答案
反比例函数练习一一.选择题(共22小题)1.(2015春•泉州校级期中)下列函数中,y是x的反比例函数的为()A.y=2x+1 B.C.D.2y=x2.(2015春•兴化市校级期中)函数y=k是反比例函数,则k的值是()A.﹣1 B.2 C.±2 D.±3.(2015春•衡阳县期中)若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A.m=2 B.m=﹣1 C.m=1 D.m=04.(2014•汕尾校级模拟)若y与x成反比例,x与z成反比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定5.(2014春•常州期末)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥6.(2015•贺州)已知k1<0<k2,则函数y=和y=k2x﹣1的图象大致是()A.B. C.D.7.(2015•滦平县二模)在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A.B.C.D.8.(2015•上海模拟)下列函数的图象中,与坐标轴没有公共点的是()A.B.y=2x+1 C.y=﹣x D.y=﹣x2+19.(2015•宝安区二模)若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.(2015•鱼峰区二模)若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.611.(2012•颍泉区模拟)如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()第11题图第12题图A.πB.2πC.4πD.条件不足,无法求12.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=13.(2014•随州)关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小14.(2014•昆明)如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k 的图象大致是()A.B.C.D.15.(2014•天水)已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个16.(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=17.(2014•阜新)反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣118.(2015•凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()第18题图第19题图A.10 B.11 C.12 D.1319.(2015•眉山)如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D 点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3 D.420.(2014•绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()第20题图第21题图A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2 21.(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小22.(2014•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24二.填空题(共4小题)23.(2015•锦江区一模)已知y=(a﹣1)是反比例函数,则a=.24.(2014•江西模拟)已知反比例函数的解析式为y=,则最小整数k=.25.(2013•路北区二模)函数y=,当y≥﹣2时,x的取值范围是(可结合图象求解).26.(2014•贵阳)若反比例函数的图象在其每个象限内,y随x的增大而增大,则k的值可以是.(写出一个符合条件的值即可)三.解答题(共4小题)27.(2014春•东城区校级期中)已知反比例函数y=﹣(1)说出这个函数的比例系数;(2)求当x=﹣10时函数y的值;(3)求当y=6时自变量x的值.28.(2013春•汉阳区校级期中)已知函数y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?29.(2013•德宏州)如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?30.(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.答案:一.选择题(共22小题)1.C 2.D 3.B 4.A 5.C 6.C 7.B 8.A 9.C 10.C 11.B 12.D 13.D 14.B 15.B 16.A 17.D 18.C 19.B20.B 21.C 22.C二.填空题(共4小题)23.-1 24.1 25.x≤-2或x>0 26.-1(答案不唯一)三.解答题(共4小题)27.28.29.30.。
完整版)反比例函数经典习题及答案
完整版)反比例函数经典习题及答案反比例函数练题1.下列函数中,经过点(1.-1)的反比例函数解析式是()A。
y = 1/xB。
y = -1/xC。
y = 2/xD。
y = -2/x2.反比例函数y = -(k/ x)(k为常数,k ≠ 0)的图象位于()A。
第一、二象限B。
第一、三象限C。
第二、四象限D。
第三、四象限3.已知反比例函数y = (k - 2)/x的图象位于第一、第三象限,则k的取值范围是()A。
k。
2B。
k ≥ 2C。
k ≤ 2D。
k < 24.反比例函数y = k/x的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果三角形MON 的面积是2,则k的值为()A。
2B。
-2C。
4D。
-45.对于反比例函数y = 2/x,下列说法不正确的是()A。
点(-2.-1)在它的图象上B。
它的图象在第一、三象限C。
当x。
0时,y随x的增大而增大D。
当x < 0时,y随x的增大而减小6.反比例函数y = (2m - 1)x/(m^2 - 2),当x。
0时,y随x 的增大而增大,则m的值是()A。
±1B。
小于1的实数C。
-1D。
1/27.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形P1A1O、P2A2O、P3A3O,设它们的面积分别是S1、S2、S3,则()。
A。
S1 < S2 < S3B。
S2 < S1 < S3C。
S3 < S1 < S2D。
S1 = S2 = S38.在同一直角坐标系中,函数y = -2与y = 2x的图象的交点个数为()A。
3B。
2C。
1D。
09.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()10.如图,直线y = mx与双曲线y = k/(x-2)交于A、B两点,过点A作AM⊥x轴,垂足为M,连结BM,若三角形ABM的面积为2,则k的值是()A。
专题. 反比例函数(对称性问题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.23反比例函数(对称性问题)(基础篇)(专项练习)反比例函数图象是中心对称图形,同时也是轴对称图形,其对称中心是坐标原点,其对称轴是y=x 和y=-x ,近些年,此知识点成了中考中的热点,更是压轴题的常考点,这些题型不仅利用双曲线的对称性,还综合了关于某直线对称和特殊四边形的对称性问题,为此,本专题精选部分有代表性的题型供师生选择使用。
一、单选题1.已知点()13A -,关于y 轴的对称点A '在反比例函数ky x=的图象上,则实数k 的值为()A .3B .13C .﹣3D .﹣132.如图,A ,B 是函数y =mx(m >0)的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则()A .S m =B .2S m =C .2m S m <<D .2S m>3.若点()32A --,关于x 轴的对称点A '恰好在反比例函数()0ky k x=≠的图象上,则k 的值为()A .6B .1-C .5-D .6-4.如图,1l 是反比例函数ky x=在第一象限内的图象,且经过点A (1,2).1l 关于x 轴对称的图象为2l ,那么2l 的函数解析式为()A .()40y x x =<B .()20y x x =<C .4(0)y x x =->D .2(0)y x x=->5.设A ,B 是反比例函数32y x=-的图象上关于原点对称的两点,AD 平行于y 轴交x 轴于D ,BC 平行于x 轴交y 轴于C ,设四边形ABCD 的面积S ,则()A .32s =B .34s =C .94s =D .6s =6.已知点()1,P a 在反比例函数3y x=的图象上,则点P 关于原点对称的点的坐标是()A .()1,3B .()1,3-C .()3,1-D .()1,3--7.如图,在平面直角坐标系中,点O 为坐标原点,点A (﹣3,0)和点B (0,2)都在坐标轴上,若反比例函数y =kx的图象经过矩形AOBC 的对称中心,则k 的值为()A .3B .﹣3C .1.5D .﹣1.58.如图,边长为8的正方形ABCD 的对称中心是坐标原点O ,AB //x 轴,BC //y 轴,反比例函数8y x =与8y x=-的图象均与正方形ABCD 的边相交,则图中阴影部分的面积之和是()A .8B .16C .32D .649.如图,在平面直角坐标系中,O 为ABCD Y 的对称中心,5AD =,//AD x 轴交y 轴于点E ,点A 的坐标点为()2,2-,反比例函数ky x=的图像经过点D .将ABCD Y 沿y 轴向上平移,使点C 的对应点C '落在反比例函数的图像上,则平移过程中线段AC 扫过的面积为()A .6B .8C .24D .2010.已知一个函数中,两个变量x 与y 的部分对应值如下表:如果这个函数图象是轴对称图形,那么对称轴可能是()A .x 轴B .y 轴C .直线x =1D .直线y =x二、填空题11.在平面直角坐标系中,若点()1,2P a +与点()1,1Q b -关于原点对称,则经过(),a b 的反比例函数解析式是______.12.如图,点D 是矩形AOBC 的对称中心,()0,6A ,()8,0B ,若反比例函数ky x=的图象经过点D ,交AC 于点M ,则点M 的坐标为______.13.已知点()112,P y 、点()22,3P x 是同一个反比例函数()22220my m x-=-≠图象上的两点.若点1P 与2P 关于原点对称,则m 的值为______.14.如图,点A 、C 是反比例函数图象上的点,且关于原点对称.过点A 作AB x ⊥轴于点B ,若ABC 的面积为7,则反比例函数的表达式为__________.15.如图,点D 是矩形ABCO 的对称中心,点()6,0A ,()0,4C ,经过点D 的反比例函数的图象交AB 于点P ,则点P 的坐标为______.16.已知点A (−2,m )在一个反比例函数的图象上,点A ′与点A 关于y 轴对称.若点A ′在正比例函数12y x =的图象上,则这个反比例函数的表达式为_______.17.已知A 、B 两点分别在反比例函数2(0)m y m x=≠和611(6m y m x -=≠的图像上,若点A 与点B 关于x 轴对称,则m 的值为______.18.如图,在平面直角坐标系中,点B 在第一象限,BA ⊥x 轴于点A ,反比例函数()0ky x x=>的图象与线段AB 相交于点C ,且C 是线段AB 的中点,点C 关于直线y =x 的对称点C '的坐标为(1,n )(n ≠1),若△OAB 的面积为3,则k 的值为_______三、解答题19.如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图像与反比例函数4y x=-的图像相交于(),1A m ,()1,B n -两点.(1)求一次函数的解析式,并在网格中画出一次函数的图像;(2)结合图像,请直接写出不等式4kx b x-≤+的解集;(3)点C 与点B 关于原点对称,求ABC 的面积.20.如图,反比例函数()1110,0k y k x x=>>与正比例函数22y k x =交于点A ,点A 是点B 关于y 轴的对称点,点B 的坐标为()1,2-.(1)求1k 的值;(2)若将正比例函数22y k x =的图象向下平移2个单位长度得到函数33y k x b =+,求此函数的表达式.21.如图,在平面直角坐标系中,已知点(0,4)A ,(3,0)B -,(2,0)C ,点D 为点B 关于AC 所在直线的对称点,反比例函数(k 0,x 0)ky x=≠>的图像经过点D .(1)求证:四边形ABCD 为菱形;(2)求反比例函数的表达式.22.在平面直角坐标系中,设函数:11k y x=(1k 是常数,10k >,0x >)与函数,22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .若点B 的坐标为()1,2-.(1)求1k ,2k 的值;(2)当12y y ≤时,直接写出x 的取值范围.23.如图,反比例函数4y x=与一次函数()0y ax b a =+≠交于()()4,,,2A m B n -两点.(1)求一次函数的解析式,并在网格中画出一次函数的图象;(2)根据函数图象,直接写出关于x 的不等式4xax b ≤+的解集;(3)若点A 关于x 轴的对称点为点D ,求ABD △的面积.24.探究函数性质时,我们经历了列表、描点、连线画出函数图像,观察分析图像特征,概括函数性质的过程.结合已有的学习经验,请画出函数262y x =-+的图像并探究该函数的性质.x…4-3-2-1-01234…y …13-a 1-2-b 2-1-611-13-…(1)列表,写出表中a ,b 的值:=a __________,b =_________;描点、连线,在所给的平面直角坐标系中画出该函数的图像;(2)观察函数图像,判断下列关于函数性质的结论是否正确,请把正确结论的序号填在横线上.正确的结论是__________.①函数262y x =-+的图像关于y 轴对称;②当0x =时,函数262y x =-+有最小值,最小值是3-;③在自变量x 的取值范围内,函数y 的值随自变量x 的增大而增大;④函数262y x =-+与x 轴必有两个交点;(3)已知函数1533y x =--的图像如图所示,结合所画的函数图像,直接写出不等式2615233x x -<--+的解集.参考答案1.A【分析】根据对称的性质得到点()13A '--,,代入解析式即可求出k .解:∵点A '与点()13A -,关于y 轴的对称,∴点()13A '--,,∵点()13A '--,在反比例函数()0ky k x=≠的图象上,∴()()133k =-⨯-=,故选:A .【点拨】此题考查了关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标相等,利用待定系数法求反比例函数的解析式.2.B【分析】根据A 、B 两点在曲线上可设A 、B 两点的坐标,再根据三角形面积公式列出方程,即可得到答案.解:设点A (x ,y ),则点B (-x ,-y ),∴xy =m ,∴AC =2y ,BC =2x ,∴11222222ABC S AC BC y x xy m ==== ,故选:B .【点拨】本题考查反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数关系式得到所求三角形的两直角边的积.3.D【分析】根据对称性求出点A '的坐标,把点A '的坐标代入反比例函数()0ky k x=≠可求出k 的值.解:∵点A '与点()32A --,关于x 轴对称,∴点()32A '-,,又∵点()32A '-,在反比例函数()0ky k x=≠的图象上,∴()326k =-⨯=-,故选:D .【点拨】本题考查轴对称的坐标变化,反比例函数图象上点的坐标特征,求出点的坐标是解决问题的关键.4.D【分析】写出点A (1,2)关于x 轴对称的点的坐标(1,-2),求出经过这点的反比例函数的解析式.解:点A(1,2)关于x轴对称的点的坐标为(1,-2),设2l的解析式为'kyx =,则' 21k-=,'2 k=-,∴2yx=-(x>0).故选D.【点拨】本题考查了关于x轴对称点的坐标和反比例函数,熟练掌握关于x轴对称的点的坐标特征,用待定系数法求反比例函数解析式,是解决此类问题的关键.5.C【分析】根据反比例函数y=kx中k的几何意义,图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系S=12|k|即可解答.解:设点A的坐标为(x,y),点A在反比例函数解析式上,∴点B的坐标为(-x,-y),k=xy=(-x)(-y)=-3 2,∵AD平行于y轴,BC平行于x轴,∴OD=|x|,AD=|y|,OC=|y|,BC=|x|,∴S=△ADO+S△DOC+S△BCO=12|xy|+12|xy|+12|xy|=12×32+12×32+12×32=94.故选:C .【点拨】此题主要考查反比例函数的比例系数的意义;用到的知识点为:关于原点对称的点的横坐标互为相反数,纵坐标互为相反数;在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.6.D【分析】将点的坐标代入求解,根据坐标关于原点的对称规律直接求解即可.解:将()1,P a 代入3y x =,则331a ==,那么()1,3P ,则点()1,3P 关于原点对称的点的坐标()1,3--故选:D【点拨】此题考查反比例函数上的点的坐标,解题关键是明确关于原点对称的点的坐标规律.7.D【分析】先求出矩形的中心点,然后根据待定系数法即可求得.解:∵点A (-3,0)和点B (0,2)都在坐标轴上,∴矩形AOBC 的中心点为(32-,1),∵反比例函数y =k x的图象经过矩形AOBC 的对称中心,∴k =33122-⨯=-,故选:D .【点拨】本题考查了待定系数法求反比例函数的解析式,求得矩形的中心点是解题的关键.8.C【分析】根据题意,观察图形可得图中的阴影部分的面积是图中正方形面积的一半,且AB ∥x 轴,BC ∥y 轴,而正方形面积为64,由此可以求出阴影部分的面积.解:根据题意:观察图形可得,图中以B 、D 为顶点的小阴影部分,绕点O 旋转90度,正好和以A 、C 为顶点的小空白部分重合,所以阴影的面积是图中正方形面积的一半,且AB ∥x 轴,BC ∥y 轴,反比例函数8y x =与8y x=-的图象均与正方形ABCD 的边相交,而边长为8的正方形面积为64,所以图中的阴影部分的面积是32.故选:C.【点拨】本题主要通过橄榄形面积的计算来考查反比例函数图象的应用,关键是要分析出其图象特点,再结合性质作答.9.D【分析】根据O为▱ABCD的对称中心,AD=5,AD∥x轴交y轴于点E,点A的坐标为(-2,2),可求点C、D的坐标,进而求出反比例函数的关系式,由平移可求出点'C的坐标,知道平移的距离,即平行四边形的底,再根据面积公式求出结果.解:∵AD=5,AD∥x轴交y轴于点E,点A的坐标为(-2,2),∴DE=5-2=3,OE=2,∴D(3,2),把(3,2)D代入反比例函数的关系式得,k=2×3=6,∵O为▱ABCD的对称中心,点A的坐标为(-2,2),∴点C的坐标为(2,-2),当x=2时,y=63 2=,∴点'C(2,3)∴C'C=CF+F'C=2+3=5,'CC上的高是是4,∴平行四边形AC'C N的面积为5420,⨯=∴平移过程中线段AC 扫过的面积为20.故选:D .【点拨】考查反比例函数的图象和性质,平行四边形的性质及面积,将点的坐标转化为线段的长是常用的方法,将AC 平移后扫过的面积就是平行四边形AC 'C N 的面积是关键.10.D【分析】根据题意可得y 与x 的函数关系式,进一步即可进行判断.解:由表格中的数据可得y 与x 的函数关系式为:1y x=,其图象是双曲线,是轴对称图形,对称轴是直线:y =x 和y =-x .故选:D.【点拨】本题考查了反比例函数的图象与性质以及函数解析式的确定,解题的关键是正确求得反比例函数的解析式、熟练掌握反比例函数的图象与性质.11.2y x =【分析】根据关于原点对称的坐标特点列式求出a 、b 的值,然后利用待定系数法求反比例函数解析式即可.解:∵点()1,2P a +与点()1,1Q b -关于原点对称,∴11a +=-,12b -=-,解得2a =-,1b =-,∴(),a b 即()2,1--,设()0k y k x=≠,∴()()212k =-⨯-=,∴反比例函数解析式是2y x=.故选:2y x =.【点拨】本题考查了关于原点对称的坐标特点和利用待定系数法求反比例函数解析式,熟练掌握关于原点对称的坐标特点和待定系数法是解题的关键.12.()2,6【分析】根据矩形的性质得到()4,3,6D OA =,OB AC ,将()4,3D 代入k y x =,求出反比例函数的解析式,再计算6y =时的x 值即可得到点M 的坐标.解:∵点D 是矩形AOBC 的对称中心,()0,6A ,()8,0B ,∴()4,3,6D OA =,OB AC ,将()4,3D 代入k y x =,得4312k =⨯=,∴12y x=,当6y =时,126x =,解得2x =,∴M 的坐标为()2,6,故答案为:()2,6.【点拨】此题考查了矩形的性质,待定系数法求反比例函数的解析式,正确理解矩形的性质得到点()4,3D 的坐标是解题的关键.13.±【分析】关于原点对称的两个点,其横坐标互为相反数,纵坐标也互为相反数,由此求解.解: 11(2,)P y 与22(,3)P x 关于原点对称,∴22x =-,13y =-,∴1(2,3)P -,2(2,3)P -,点1(2,3)P -在反比例函数22m y x-=的图象上,∴22(3)2m ⨯-=-,解得m =±故答案为:±.【点拨】本题考查了待定系数法求反比例函数解析式,坐标与中心对称的性质,熟练掌握相关性质是解题的关键.14.7y x=【分析】设反比例函数的表达式为k y x =,点A 的坐标为k a a ⎛⎫ ⎪⎝⎭,,即可表示出点B 和点C 的坐标,那么ABC 的面积就可以表示为122k a a⋅⋅,即可求解.解:设反比例函数的表达式为k y x =,点A 的坐标为k a a ⎛⎫ ⎪⎝⎭,,则点C 的坐标为k a a ⎛⎫-- ⎪⎝⎭,,点B 的坐标为()0a ,,∴ABC 的面积可以表示为122k a a⋅⋅,∵ABC 的面积为7,即1272k a a⋅⋅=,解得 7k =,∴反比例函数的表达式为7y x=,故答案为:7y x =.【点拨】本题考查反比例函数的图象与性质,掌握反比例函数的中心对称性,表示出点C 的坐标,是解决本题的关键.15.()6,1【分析】先求得D 点的坐标,然后根据待定系数法求得反比例函数的解析式,把6x =代入解析式即可求得点P 的坐标.解: 点D 是矩形ABCO 的对称中心,∴点D 是矩形OABC 的对角线AC 的中点,又()6,0A ,()0,4C ,∴点D 的坐标为()3,2.反比例函数k y x=的图象经过点D ,326k ∴=⨯=,6y x∴=,把6x =代入得,616y ==,∴点P 的坐标为()6,1.故答案为:()6,1.【点拨】本题考查了反比例函数图象上点的坐标特征,矩形的性质,待定系数法求反比例函数的解析式,求得点D 的坐标是解题的关键.16.y =2x-【分析】根据点A 与点A ′关于y 轴对称,得到A ′(2,m ),由点A ′在正比例函数12y x =的图象上,求得m 的值,再利用待定系数法求解即可.解:∵点A 与点A ′关于y 轴对称,且A (−2,m ),∴A ′(2,m ),∵点A ′在正比例函数12y x =的图象上,∴m =12×2,解得:m =1,∴A (−2,1),设这个反比例函数的表达式为y =k x,∵A (−2,1)在这个反比例函数的图象上,∴k =-2×1=-2,∴这个反比例函数的表达式为y =2x-,故答案为:y =2x-.【点拨】本题考查反比例函数图象上点的坐标特征、关于x 轴、y 轴对称的点的坐标特征,解答本题的关键是明确题意,求出m 的值.17.18##0.125【分析】先设A 、B 的坐标,然后把A 、B 的坐标代入函数关系式,列出方程组,解方程组即可.解:根据题意设A (a ,b ),则B (a ,-b ),则有:261m b a m b a ⎧=⎪⎪⎨-⎪-=⎪⎩,所以261m m a+-=0,即8m -1=0,解得18m =.故答案为18.【点拨】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得261m m a+-=0,即8m -1=0是解题的关键.18.3【分析】连接OC ,由C 是线段AB 的中点,可得1322AOC OAB S S == ,然后根据比例系数k 的几何意义即可求得答案.解:如图,连接OC,∵C 是线段AB 的中点,∴1322AOC OAB S S == ,∵1322AOC k S ==△,0k >,∴3k =.故答案为:3.【点拨】本题主要反比例函数的比例系数k 的几何意义、与中线有关的三角形的面积关系,熟记反比例函数的比例系数k 的几何意义是解题的关键.19.(1)5y x =+,一次函数的图像见分析;(2)41x --≤≤或0x >;(3)15【分析】(1)将点(),1A m ,点()1,B n -代入4y x =-中得4141m n ⎧-=⎪⎪⎨⎪-=⎪-⎩解得,44m n =-⎧⎨=⎩,则点A 的坐标为:(4,1)-,点B 的坐标为(1,4)-,将点(4,1)A -和(1,4)B -代入()0y kx b k =+≠中得414k b k b -+=⎧⎨-+=⎩,解得,15k b =⎧⎨=⎩,即可得一次函数解析式为:5y x =+;(2)观察函数图像,即可得不等式4kx b x-≤+的解集是41x --≤≤或0x >;(3)根据点C 与点B 关于原点对称得点C 的坐标为(1,4)-,根据网格和勾股定理得AB ==,AC ==BC ==222AB AC BC +=,即ABC 是直角三角形,即可得.(1)解:将点(),1A m ,点()1,B n -代入4y x=-中,4141m n ⎧-=⎪⎪⎨⎪-=⎪-⎩解得,44m n =-⎧⎨=⎩,则点A 的坐标为:(4,1)-,点B 的坐标为(1,4)-,将点(4,1)A -和(1,4)B -代入()0y kx b k =+≠中,414k b k b -+=⎧⎨-+=⎩,解得,15k b =⎧⎨=⎩,即一次函数解析式为:5y x =+,函数图像如下:(2)解:观察函数图像,不等式4kx b x-≤+的解集是41x --≤≤或0x >;(3)解:∵点C 与点B 关于原点对称,∴点C 的坐标为(1,4)-,三角形ABC 如图所示,∵223318AB =+=,225550AC =+=222868BC =+=∴222AB AC BC +=,即ABC 是直角三角形,∴1111850325215222ABC S AB AC =⨯⨯==⨯=△.【点拨】本题考查了反比例函数,一次函数,函数与不等式,三角形的面积,勾股定理,关于原点对称,解题的关键是掌握反比例函数,一次函数,函数与不等式,勾股定理.20.(1)12k =;(2)322y x =-.【分析】(1)先求出()1,2A ,再将()1,2A 代入11k y x=,得1122k =⨯=;(2)求出正比例函数解析式为22y x =,再利用平移的规律解答即可.(1)解:∵点A 和点B 关于y 轴对称,()1,2B -,∴()1,2A ,把()1,2A 代入11k y x=,得1122k =⨯=.(2)解:把()1,2A 代入22y k x =,得22k =,∴直线的表达式为22y x =,∵33y k x b =+是由22y x =向下平移2个单位长度得到,∴322y x =-.【点拨】本题考查反比例函数和一次函数的综合,点关于y 轴对称的性质,一次函数的平移,解题的关键是掌握待定系数法求解析式,点关于y 轴对称的性质以及一次函数的平移.21.(1)证明见分析;(2)20y x=【分析】(1)根据(0,4)A ,(3,0)B -,(2,0)C 即可得5AB =,5BC =,根据D 点为B 点关于AC 所在直线的对称点得5AD AB ==,5CD CB ==,可得AB BC CD DA ===,即可得;(2)根据四边形ABCD 为菱形,得AD BC ∥,根据5AD =,(0,4)A 得(5,4)D ,把(5,4)D 代入k y x=得5420k =⨯=,即可得.解:(1)证明:∵(0,4)A ,(3,0)B -,(2,0)C ,∴5AB =,5BC =,∵D 点为B 点关于AC 所在直线的对称点,∴5AD AB ==,5CD CB ==,∴AB BC CD DA ===,∴四边形ABCD 为菱形;(2)解:∵四边形ABCD 为菱形,∴AD BC ∥,又∵5AD =,(0,4)A ,∴(5,4)D ,把(5,4)D 代入k y x=得5420k =⨯=,∴反比例函数的表达式为20y x =.【点拨】本题考查了勾股定理,菱形的判定与性质,反比例函数的性质,解题的关键是掌握这些知识点.22.(1)1k 的值为2,2k 的值为2;(2)1x ≥【分析】(1)求得A 的坐标,分别代入11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠),即可求得1k ,2k 的值;(2)根据图象即可求得.解:(1)∵点()1,2B -,∴点()1,2A ,把()1,2A 代入11k y x=得12k =,把()1,2A 代入22y k x =得22k =,∴1k 的值为2,2k 的值为2(2)由图象可知:1x ≥【点拨】本题考查一次函数与反比例函数的关系式,解题的关键是根据图象,求出点的坐标,进而求出关系式.23.(1)112y x =-;图象见分析;(2)20x -≤<或4x ≥;(3)6【分析】(1)利用待定系数法求出一次函数解析式,再利用两点法画出函数图象,即可求解;(2)由图象可知,关于x 的不等式4xax b ≤+的解集为20x -≤<或4x ≥,即可;(3)根据点A 关于x 轴的对称点为点D ,可得2AD =,再由三角形的面积公式,即可求解.(1)解:∵点()()4,,,2A m B n -在反比例函数4y x =的图象上,∴414m ==,42n-=∴2n =-,∴()()4,1,2,2A B --.把A 、B 的坐标代入()0y ax b a =+≠得∶4122a b a b +=⎧⎨-+=-⎩,解得121a b ⎧=⎪⎨⎪=-⎩,∴一次函数表达式为112y x =-,在网格中画出一次函数的图象如图:(2)解:由图象可知,关于x 的不等式4xax b ≤+的解集为20x -≤<或4x ≥;(3)解:∵()4,1A ,∴()4,1D -,∴2AD =,∴()124262ABD S ⨯=⨯+= .【点拨】本题是反比例函数与一次函数的交点问题,考查反比例函数图象上点的坐标特征以及待定系数法求函数解析式,三角形的面积,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.24.(1)611-;3-;图见分析;(2)①②;(3)<4x -或2<<1x -【分析】(1)已知解析式,代入x 的值,即可算出对应的y 值,即可得出答案;(2)结合图像即可分析函数的对称性、增减性、最值、交点问题;(3)结合图像分析不等式与函数的关系,即可得出结论.(1)函数262y x =-+,令3x =-,可得611y =-,故611a =-;令0x =,可得=3y -,故3b =-,故答案为:611-;3-.描点、连线,在画出该函数的图像如下:(2)由函数的图像可得:①函数262y x =-+的图像关于y 轴对称,①正确;②当0x =时,函数262y x =-+有最小值,最小值是3-,②正确;③自变量0x >时,函数y 的值随自变量x 的增大而增大;自变量0x <时,函数y 的值随自变量x 的增大而减小,③错误;④由于2602y x =-+<恒成立,故函数的图像与x 轴不可能有交点,④错误,故答案为:①②.(3)不等式2615233x y x --+<-表现在图像上,即函数262y x =-+的图像比函数1533y x =--的图像低,因此观察图像可得到2615233x y x --+<-的解集为:<4x -或2<<1x -.【点拨】本题考查了新函数的研究方法,在学习一次函数,反比例函数以及二次函数时的通用方法是本题解题的关键.。
反比例函数》测试题(含答案)
反比例函数》测试题(含答案)1、选择题(每小题5分,共50分)1、若点(x1.-1)、(x2.-2)、(x3.1)都在反比例函数y= k/x 上,则它们之间的大小关系是()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x2<x3<x12、若反比例函数y=k/x的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在()A.第一、二象限;B.第一、三象限;C.第二、四象限;D.第三、四象限3、在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3/x上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小4、函数y=-kx与函数y=k/x的图象的交点个数是()A。
0B。
1C。
2D.不确定5、函数y=6-x与函数y=k/x的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A。
4,12B。
4,6C。
8,12D。
8,66、已知y1+y2=y,其中y1与x成反比例,且比例系数为k1,而y2与x2成正比例,且比例系数为k2,若x=-1时,y=0,则k1,k2的关系是( )A.k1+k2=0B.k1k2=1C.k1-k2=0D.k1k2=-17、正比例函数y=2kx与反比例函数y=k/(x-1)在同一坐标系中的图象不可能是()18、如图,直线y=mx与双曲线y=k/(x-1)交与A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A、2B、m-2C、mD、49、如图,点A在双曲线y=6/x上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.47B.5C.27D.2210、如图,反比例函数y= k/x的图象经过点(1,2),则k=()。
二、填空题(每小题5分,共20分)11、若y=k/x是反比例函数,且x1y1=x2y2,则k=______。
(完整版)反比例函数练习题集锦(含答案)
反比例函数练习题集锦(含答案)1、综合题1、如图,已知直线与双曲线交于两点,且点的横坐标为.(1)求的值;(2)若双曲线上一点的纵坐标为8,求的面积;(3)过原点的另一条直线交双曲线于两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标.2、已知一次函数与双曲线在第一象限交于A、B两点,A点横坐标为1.B点横坐标为4(1)求一次函数的解析式;(2)根据图象指出不等式的解集;(2) 点P是x轴正半轴上一个动点,过P点作x轴的垂线分别交直线和双曲线于M、N,设P点的横坐标是t(t>0),△OMN的面积为S,求S和t的函数关系式,并指出t的取值范围。
二、简答题3、.已知:如图,在平面直角坐标系中,直线AB 分别与轴交于点B、A,与反比例函数的图象分别交(1)求该反比例函数的解析式;(2)求直线AB的解析式.4、如图,已知正比例函数与反比例函数的图象交于两点.(1)求出两点的坐标;的范围;(2)根据图象求使正比例函数值大于反比例函数值的三、计算题5、为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒。
已知药物释放过程中,室内每立方米空气中含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t 的函数关系为(为常数)。
如下图所示,据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米和含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?6、如图,在直角坐标系xOy中,一次函数y=k1x+b 的图象与反比例函数的图象交于A(1,4).B(3,m)两点。
(1)求一次函数的解析式;的面积。
(2)求△AOB7、如图,一次函数y=kx+b的图象与反比例函数y=图象交于A(-2,1)、B(1,n)两点.(1) 求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积。
完整版)反比例函数练习题含答案
完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。
自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。
1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。
2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。
3) 设三角形的底边、对应高、面积分别为a、h、S。
当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。
4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。
3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。
4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。
5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。
二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。
(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。
)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。
中考数学复习《反比例函数》专题练习-附带参考答案
中考数学复习《反比例函数》专题练习-附带参考答案一、选择题1.下列函数关系式中,y 是x 的反比例函数的是( )A .y =x +3B .y =x 3C .y =3x 2D .y =3x 2.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A .6B .﹣2C .﹣3D .3 3.已知反比例函数y =−1x ,下列结论不正确...的是( ) A .该函数图象经过点(−1,1)B .该函数图象位于第二、四象限C .y 的值随着x 值的增大而增大D .该函数图象关于原点成中心对称 4.反比例函数(其中),当时,y 随x 的增大而增大,那么m 的取值范围是( ) A . B .C .D . 5.在同一直角坐标系中,函数y =−kx +k 与y =k x (k ≠0)的大致图象可能为( )A .B .C .D .6.反比例函数y =6x 图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)其中y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1 7.如图,A 、B 是第二象限内双曲线y =k x 上的点,A 、B 两点的横坐标分别是a ,3a ,线段AB 的延长线交x轴于点C ,S △AOC =12.则k 的值为( )A .﹣6B .﹣5C .﹣4D .﹣38.如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.32D.−32二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为.三、解答题14.如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.(1)求一次函数与反比例函数的表达式;(2)请直接写出不等式的解集.15.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“嗐转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:请根据表中的信息解决下列问题:(1)求出y与x之间的函数解析式;(2)若某人蒙上眼睛走出的大圆圈的半径为35米,则其两腿迈出的步长之差是多少厘米?(k>0).16.如图,设反比例函数的解析式为y=3kx(1)若反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若反比例函数的图象与过点M (﹣2,0)的直线l :y =kx+b 的图象交于A 、B 两点,如图,当△ABO 的面积为12时,求直线l 的解析式.17.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第10分钟起每分钟每毫升血液中含药量增加0.3微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1) ; (2)分别求出当和时,y 与x 之间的函数关系式; (3)如果每毫升血液中含药量不低于12微克时是有效的,求一次服药后的有效时间是多少分钟?18.如图,一次函数 y ax b =+ 的图象与反比例函数 k y x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 全等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.参考答案1.B2.C3.C4.A5.D6.C7.A8.B9.k=-610.>11.(-m,-n).12.−413.1014.(1)解:点在反比例函数的图象上反比例函数解析式为;OA=OB,点在轴负半轴上点.把点、代入中得解得:一次函数的解析式为;(2) 15.(1)解:设y 与x 之间的函数解析式为y =k x 将(2,7)代入得7=k 2∴k =14∴y 与x 之间的函数解析式为y =14x . (2)解:当y =35时,即14x =35,解得x =0.4∴某人蒙上眼睛走出的大圆圈的半径为35米,其两腿迈出的步长之差是0.4厘米.16.(1)解:∵反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2 把y =2代入y =2x 求得x =1∴反比例函数与正比例函数y =2x 的图象交点的坐标为(1,2)把(1,2)代入y =3k x (k >0),得到3k =2 ∴k =23;(2)解:把M (﹣2,0)代入y =kx+b ,可得b =2k∴y =kx+2k解{y =3k x y =kx +2k 得{x =−3y =−k 或{x =1y =3k∴B (﹣3,﹣k ),A (1,3k )∵△ABO 的面积为12∴12•2•3k+12•2•k =12解得k =3∴直线l 的解析式为y =3x+6.17.(1)27(2)解:当时,设y 与x 之间的函数关系式为∵经过点 ∴解得:,∴解析式为;当时,y 与x 之间的函数关系式为∵经过点∴解得:∴函数的解析式为; (3)解:令解得:令,解得:∴分钟 ∴服药后能持续175分钟.18.(1)∵点C (1,2)在反比例函数 图象上 ∴k=2∴反比例函数解析式为 2y x= ∵点B (2,m )在反比例函数 图象上 ∴m= 22=1. (2)如图,过点C 作⊥OA 于E ,过点D 作DF ⊥OA 于 Fk y x =2y x =∵C (1,2),D (2,1)∴CE=2,DF=1∵C 、D 在一次函数 的图象上∴221a b a b +=⎧⎨+=⎩解得: 13a b =-⎧⎨=⎩∴一次函数解析式为y=-x+3当y=0时,x=3∴A 点坐标为(3,0)∴OA=3∴DOC S =S △AOC -S △AOD = 1122OA CE OA DF ⋅-⋅ = 11323122⨯⨯-⨯⨯ =1.5.(3)设点P 坐标为(n , 2n )∵C (2,1),D (1,2)∴OC=OD∵△POC 和△POD 全等∴PC=PD ∴222222(1)(2)(2)(1)n n n n -+-=-+-解得: 2n =∴P (, )或P ( 2 , ) ∴双曲线上存在一点P ,使得△POC 和△POD 全等,P ( , )或P ( , ). y ax b =+222-2222。
反比例函数题型 专项练习
反比例函数题型专项练习专题一、反比例函数的图像1.反比例函数的定义域为x≠0,因此选项A中的x≥1是错误的。
应该改为x>0.2.由于y=kx+1与y=(k≠0)的图象大致是两条直线,因此它们交于点A(2,1)的横坐标应该在x>0的范围内。
因此选项B、C、D中的x<或x≤2都是错误的。
应该改为x>2.答案:A。
3.当ab>0时,函数y=ax+b与函数y=的图象大致是两条直线,其中一条斜率为a,另一条斜率为(1/a)。
因此选项D 中的图象是错误的。
应该改为y=。
答案:C。
4.方程x+1=0的解为x=−1,不在1<x<2的范围内,因此选项A、B、C都是错误的。
应该改为选项D,k=6.答案:D。
5.正比例函数y=kx的图象是一条直线,反比例函数y=的图象是一条双曲线。
因此选项A是错误的。
应该改为选项B、C、D。
答案:B、C、D。
6.函数y=的图象是一条双曲线,当y=a时,对应的x有两个不相等的值,即x=±(1/a)。
因此选项A、B、D都是错误的。
应该改为选项C。
答案:C。
7.函数y=k1x﹣1的图象是一条双曲线,函数y=的图象是一条直线。
因此选项A是错误的。
应该改为选项B、C、D。
答案:B、C、D。
8.函数y=的图象是一条双曲线,函数y=kx﹣k(k≠0)的图象是一条直线。
因此选项A、C、D都是错误的。
应该改为选项B。
答案:B。
9.函数y=ax+b的图象是一条直线,函数y=的图象是一条双曲线。
因此选项B、C、D都是错误的。
应该改为选项A。
答案:A。
10.函数y=的图象在第一、二象限,因为x>0,y>0.因此选项B是错误的。
应该改为选项A、C、D。
答案:A、C、D。
11.当k<0时,函数y1=kx﹣k的图象是一条双曲线,因此选项A、B、D都是错误的。
应该改为选项C。
答案:C。
12.图中反比例函数与一次函数的图象相交于A、B两点,使反比例函数的值小于一次函数的值的x的取值范围为x<﹣1,或1<x<2.因此选项B、C、D都是错误的。
反比例函数单元测试卷含答案
反比例函数单元测试卷含答案一、选择题1. 反比例函数的一般形式是:A. y = kxB. y = ax + bC. y = k/xD. y = mx + c答案: C2. 当x为0时,反比例函数的值为:A. 0B. 1C. 无定义D. 任意值答案: C3. 若反比例函数的k值为正数,x趋近于无穷大,y会趋近于:A. 正无穷大B. 负无穷大C. 0D. 不存在极限答案: B4. 反比例函数的图像是一条:A. 直线B. 抛物线C. 余弦曲线D. 双曲线答案: D5. 若反比例函数的x值为正数,y值为负数,那么k值是:A. 正数B. 负数C. 零D. 无法确定答案: B二、计算题1. 已知反比例函数y = 5/x,当x = 2时,求y的值。
答案: 2.52. 已知反比例函数y = 3/x,当y = 6时,求x的值。
答案: 0.5三、简答题1. 什么是反比例函数?答案: 反比例函数是一种函数关系,当自变量x的值增大时,因变量y的值会减小,并且二者之间呈现出一种倒数关系。
它的一般形式为y = k/x,其中k为常数。
2. 反比例函数的图像有什么特点?答案: 反比例函数的图像是一条双曲线。
当x趋近于无穷大或无穷小时,函数的值趋近于零。
两支曲线的对称轴为y轴,并在y 轴上有一个渐近线。
3. 如何确定反比例函数的常数k的值?答案: 可以通过已知点的坐标进行求解。
将已知的x和y的值代入反比例函数的一般形式中,解方程得到k的值。
以上就是反比例函数单元测试卷的答案。
希望能对你的学习有所帮助!。
反比例函数常考题型
1.在直角三角形ABC中,∠C=90°,若AC=3,BC=4,则AB的长度为?A.5(答案)B.6C.7D.82.一个直角三角形的两条直角边分别为6和8,那么这个三角形的斜边长为?A.10(答案)B.12C.14D.163.已知直角三角形的一条直角边长为5,斜边长为13,则另一条直角边的平方是?A.144(答案)B.156C.169D.1964.在直角三角形中,如果斜边的平方等于两直角边的平方和,那么这个三角形一定是?A.锐角三角形B.直角三角形(答案)C.钝角三角形D.等边三角形5.一个直角三角形的斜边长为10,一条直角边长为6,那么另一条直角边的长度为?A.8(答案)B.9C.11D.126.勾股定理只适用于?A.等腰三角形B.等边三角形C.直角三角形(答案)D.所有三角形7.在直角三角形中,如果一条直角边长为a,斜边长为c,那么另一条直角边的平方等于?A.c2 - a2(答案)B.c2 + a2C.2c2D.2a28.已知直角三角形的两条边长分别为5和12,其中一条是斜边,那么另一条直角边的长度是?A.13(斜边为12时)B.根号119(答案,斜边为12时的另一条直角边)C.根号144(斜边为5时,但此情况不成立)D.无法确定9.勾股定理的表达式是?A.a2 + b2 = c2(答案)B.a2 - b2 = c2C. a + b = cD.a2 * b2 = c210.在直角三角形中,如果斜边长为c,两直角边分别为a和b,且a=6,c=10,那么b的长度是?A.4B.8(答案)C.16D.36。
中考数学《反比例函数》专项练习题(附带答案)
中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。
(完整版)反比例函数练习题及答案
反比例函数综合一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4 D.3第1题第2题第3题第5题2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.123.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是()A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为()A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>1第7题第9题第11题第12题8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长=3.则k的值为()线交x轴于点C,若S△AOCA.2 B.1.5 C.4 D.610.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣412.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)第13题第14题第15题第16题14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是()A.B.C.D.15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<219.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5 B.6 C.4D.5第19题第20题第21题第23题20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD 都是等边三角形,则点C的坐标是()A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.第24题第25题第30题第31题25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c 的大小关系是.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=.ABDC31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.参考答案一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于(B)A.B.2C.4 D.3设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于(B)A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB=3∴△POA的面积是6由反比例函数比例系数k的性质,S△POB3.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为(D)A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是(C)A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有(C)A.4个B.3个C.2个D.1个第5题第7题第9题6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为(B)A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为(D)A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>18.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为(B)A.2 B.1.5 C.4 D.6解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是(C)A.﹣12 B.﹣8 C.﹣6 D.﹣4第11题第12题解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,12.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是(C)A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为(A)A.(2,4)B.(3,6)C.(4,2)D.(,)解:函数y=的图象与函数y=x的图象相交于A,B两点,解方程组,可得,,∴B(4,2),A(﹣4,﹣2),∴OB=AO=2,又∵∠ACB=90°,∴OC=AB=2,设C(a,),则OC==2,解得a=2,或a=4(舍去),∴C(2,4),14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是(D)A.B.C.D.解:如图,过B作BD⊥OA于D,则∠ADB=∠AOE=90°,由直线y=x﹣3,可得A(4,0),E(0,﹣3),∴AO=4,OE=3,AE=5,设点C的坐标为(4,),则AC=AB=,由△AOE∽△ADB,可得==,即==,∴AD=,BD=,∴B(4+,),∵双曲线y=(k≠0)经过点B,∴(4+)×k=k,解得k=,15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为(D)A.B.﹣C.D.﹣解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是(C)A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(A)A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是(A)A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<2解:如图1,过D作DF⊥OA于F,∵点A(0,4),B (1,4),∴AB⊥y轴,AB=1,OA=4,∵CD=DE,∴AF=OF=2,∵点B在双曲线y=(k>0)上,∴k=1×4=4,∴反比例函数的解析式为:y=,∵过点C的直线交双曲线于点D,∴D点的纵坐标为2,把y=2代入y=得,x=2,∴D(2,2),当O与E重合时,如图2,∵DF=2,∴AC=4,∵OA=4,∴CE=4,当CE⊥x轴时,CE=OA=4,∴4≤CE<4,19.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(D)A.5 B.6 C.4D.5第19题第20题第21题解:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),由点A(2,3)和点B(0,2),可得直线AB 的解析式为y=x+2,解方程组,可得或,∴M(﹣6,﹣1),∴CM==5,20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(C)A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是(C)A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大解:A、,∵把①代入②得:x+1=,解得:x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,代入①得:y1=﹣1,y2=2,∴B(﹣2,﹣1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当﹣2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=×1×2=1,S△BOD=×|﹣2|×|﹣1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是(A)A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等边三角形,则点C的坐标是(A)A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)第23题第24题解:如图,作AE⊥OB于E,CF⊥BD于F,∵△OAB,△BCD均为正三角形,A在反比例函数y=,∴A的横坐标是1,纵坐标是,∴OE=EB=1,OA=2OE=2,AE=,设BF=m,则C(2+m,m),代入y=,得:m2+2m﹣1=0,解得:m=﹣1±,∵m>0,∴m=﹣1+,∴点C的坐标为:(1+,).二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.解:延长AM,交直线y=x于点D,设M(x,x+)则△AOD是等腰直角三角形,即∠ADO=45°,∴OA=AD=x+,AM=x,∴MD=AD﹣AM=,∵MB⊥l,∴MB=BD,∴△BDM是等腰直角三角形,∴MB2+BD2=MD2,∴MB=MD,∴MB=×=,∴MA•MB=x•=.25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.解:由题意知:平移后的直线解析式为:y=(x+m);设A(x,y),易知:B(﹣m,0),则有:OB2﹣OA2+AB2=m2﹣(x2+y2)+[(m+x)2+y2],联立y=(x+m),整理得:原式=﹣2x2﹣2mx;由于直线y=(x+m)与交于点A,联立两个函数解析式得:(x+m)=﹣,即x2+mx+2=0,得﹣x2﹣mx=2;故所求代数式=﹣2x2﹣2mx=4.故答案为:4.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=1.【解答】解:根据题意m2﹣6m+4=﹣1,解得m=1或5,又m﹣3<0,m<3,所以m=1.故答案为:1.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为y=﹣或y=.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=kx(k≠0)的图象,∴k=xy,=12,∵S△PAO∴|xy|=12,∴|xy|=24,∴xy=±24,∴k=±24,∴y=﹣或y=.故答案为:y=﹣或y=.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c的大小关系是a>b>c.【解答】解:∵k<0,∴此函数的图象在二、四象限,∵﹣2<0,﹣3<0,1>0,∴A、B两点在第二象限,C点在第三象限,∴a>0,b>0,c<0,∵﹣2>﹣3,∴a>b>0,∴a>b>c.故答案为a>b>c.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是2,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.【解答】解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=16.ABDC【解答】解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=6.【解答】解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为,点A的纵坐标为a,所以,AB=a﹣,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+()2,∵OB2﹣AB2=12,∴a2+()2﹣(a﹣)2=12,整理得,2k=12,解得k=6.故答案为:6.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为2.【解答】解:根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于S△ADB +S△BDC,∵A(1,1),B(1,0),C(﹣1,﹣1),D(﹣1,0)∴S△ADB=(DO+OB)×AB=×2×1=1,S△BDC=(DO+OB)×DC=×2×1=1,∴四边形ABCD的面积=2.故答案为:2.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,∴S△AOE =S△BOF=;(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.【解答】解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,∴M点的坐标为(2,2),把M(2,2)代入反比例函数y=(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),∴N点坐标为(4,1),∵4×1=4,∴点N在函数y=的图象上;(2)4≤m≤8.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.【解答】解:(1)联立两函数解析式得:,解得:或,即A(﹣2,4),B(4,﹣2);(2)根据图象得:当x<﹣2或0<x<4时,一次函数值大于反比例函数值.(3)令y=﹣x+2中x=0,得到y=2,即D(0,2),∴OD=2,∴S△AOB =S△AOC+S△BOC=×2×2+×2×4=6.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点,将A与B坐标代入反比例解析式得:m=1,n=﹣1,∴A(1,3)、B(﹣3,﹣1),代入一次函数解析式得:,解得:k=1,b=2,∴一次函数的解析式为y=x+2,∵直线y=x+2与x轴、y轴的交点坐标为(﹣2,0)、(0,2),∴S△AOB=×2×(1+3)=4;(2)∵A(1,3),B(﹣3,﹣1),观察图象可知,当x<﹣3或0<x<1时,一次函数的图象在反比例函数图象的下方,∴不等式的解集是x<﹣3或0<x<1.(3)∵S△AOB=4,∴S△PAB =2S△AOB=8,设P1(p,0),即OP1=|p+2|,S△ABP1=S△AP1C+S△P1BC=|p+2|×3+|p+2|×1=8,解得:p=﹣6或p=2,则P1(﹣6,0)、P2(2,0),同理可得P3(0,6)、P4(0,﹣2).37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.【解答】解:(1)∵直线y=kx+b(k≠0)与x轴交于点A,∴OA=,又∵OA=OB,∴OB=,过点B作BM⊥x轴于点M,∵△OAB的面积为,即OA•BM=,∴BM=2,在Rt△OBM中可求OM=1.5,∴B(﹣1.5,2),再根据待定系数法可得:,解得:k=﹣,b=,∴直线AB的解析式为:y=﹣x+;再将点B代入函数y=得:m=﹣3,∴双曲线的解析式为:y=﹣;(2)∵OA=OB,∴∠ABO=∠BAM,在Rt△ABM中,BM=2,∴MO=,AM=+=4,∴tan∠ABO=tan∠BAM==.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?【解答】解:(1)∵一次函数y=2x﹣1的图象经过(a,b),(a+k,b+k+2)两点,代入得:,解得:k=2,代入反比例函数的解析式得:y==,∴反比例函数的解析式是y=.(2)解方程组得:,,∴两函数的交点坐标是(﹣,﹣2),(1,1),∵交点A在第一象限,∴A(1,1).(3)在x轴上存在点P,使△AOP为等腰三角形,理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(,0),(﹣,0);②以A为圆心,以OA为半径作圆,交x轴于点E,此时OA=AE,∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);③作OA的垂直平分线交x轴于F,此时AF=OF,∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);∴存在4个点P,使△AOP是等腰三角形.39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.【解答】解:(1)把C(1,5)代入直线y=﹣kx+b(k>0)得:﹣k+b=5,则b=5+k;把(a,0)代入直线y=﹣kx+b(k>0)得:﹣ak+b=0,把b=5+k代入﹣ak+b=0,得:﹣ak+5+k=0,解得:a=;(2)把x=9代入y=得:y=,则D的坐标是(9,),设直线AC的解析式是y=﹣kx+b,把C、D两点代入,得,解得:,则AC的解析式是:y=﹣x+.令y=0,解得:x=10.则OA=10,则△COA的面积=×10×5=25.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.【解答】解:(1)把N(﹣1,﹣4)代入y=得:k=4,∴y=,把M(2,m)代入得:m=2,∴M(2,2),把N(﹣1,﹣4),M(2,2)代入y=ax+b得:,解得:a=2,b=﹣2,∴y=2x﹣2,答:反比例函数的解析式是y=,一次函数的解析式是y=2x﹣2.(2)设MN交x轴于C,y=2x﹣2,当y=0时,x=1,∴C(1,0),OC=1,∴△MON的面积是S=S△MOC +S△NOC=×1×2+×1×|﹣4|=3,答:三角形MON的面积是3.(3)当OM=OQ时,Q的坐标是(2,0);当OM=MQ时,Q的坐标是(4,0);当OQ=QM时,Q的坐标是(2,0);答:在x轴的正半轴上存在点Q,使△MOQ是等腰三角形,所有符合条件的点Q的坐标是(2,0)或(4,0)或(2,0).第31页(共31页)。
(完整word版)反比例函数测试题(含答案)
反比例函数测试题(含答案)(时间90分钟满分100分)班级学号姓名得分一、选择题(每小题3分,共24分)1.如果x、y之间的关系是10(0)ax y a-+=≠,那么y是x的( )A.正比例函数B.反比例函数C.一次函数D.二次函数2.函数y=-错误!的图象与x轴的交点的个数是()A.零个B.一个C.两个D.不能确定3.反比例函数y=-错误!的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.已知关于x的函数y=k(x+1)和y=-kx(k≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y=xk的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa )是气体体积V(m3 )的反比例函数,其图象如图所示.当气球内的气压大于120 kPa时,气球发将爆炸.为了安全起见,气球的体积应()A.不小于54m3B.小于54m3 C.不小于45m3 D.小于45m37.如果点P为反比例函数xy4=的图象上一点,PQ⊥x轴,垂足为Q,那么△1.660O V (m3)P (kPa)(1.6,60)第6题POQ 的面积为 ( )A .2B . 4C .6D . 8 8.已知:反比例函数xmy 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时,y 1<y 2,则m 的取值范围( ) A .m <0 B .m >0 C .m <21D .m >21二、填空题(每小题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____。
10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________。
(完整版)反比例函数专题训练(含答案)-,推荐文档
4
参考答案
动脑动手
1.k1=3,k2=2,所求函数为 y 3 2x 2 . x
2. y 12 (3≤x≤5). x
3. y 20 (x 1,2,3,4,5) . x
4.(1)求 A,B 两点坐标问题转化为解方程组
y 8 , x y x 2.
(2)S△AOB=S△AOC+S△BOC,因 A,B 两点坐标已求出,面积可求.
即 12 12 3 . a2 a
强是 200Pa,翻过来放,对桌面的压强是多少?
28.设函数 y (m 2)m2 5m5 ,当 m 取何值时,它是反比例函数?它的图象位于哪些
象限内? (1)在每一个象限内,当 x 的值增大时,对应的 y 值是随着增大,还是随着减小? (2)画出函数图象.
(3)利用图象求当-3≤x≤ 1 时,函数值 y 的变化范围. 2
y=y1-y2,
∴
y
k1 x
k2 x2
.
x 1
把
y
5;
x
y
1, 1.
分别代入得
5 1
k1
k1 k
2,
k
2
,
解得
k1=3;k2=2.
∴y 与 x 的函数解析式为 y 3 2x 2 . x
26.解:将 V=5 时,ρ=1.98 代入 m 得 V
m=1.98×5=9.9.
∴ρ 与 V 的函数关系式为 ρ 9.9 . V
C. y x 1 2
D. y x 2 1 2
13.函数 y m 的图象过(2,-2),那么函数的图象在( ) x
A.第一、三象限
B.第一、四象限
C.第二、三象限
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数题型专项(一)专题一、反比例函数的图像1.如图,反比例函数的图象经过点A(2,1),若y≤1,则x的范围为()A.x≥1 B.x≥2 C.x<0或0<x≤1 D.x<0或x≥22.在同一直角坐标系中,函数y=kx+1与y﹦(k≠0)的图象大致是()A.B.C.D.3.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.4.若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.65.在同一平面直角坐标系中,画正比例函数y=kx和反比例函数y=(k<0)的图象,大致是()A.B.C.D.6.函数y=,当y=a时,对应的x有两个不相等的值,则a的取值范围()A.a≥1 B.a>0 C.0<a≤2 D.0<a<27.已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.8.函数y=与y=kx﹣k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.9.在同一坐标系中,表示函数y=ax+b和y=(a≠0,b≠0)图象正确的是()A.B.C. D.10.函数y=的图象在()A.第一,三象限 B.第一,二象限 C.第二,四象限 D.第三,四象限11.如果k<0,那么函数y1=kx﹣k,的图象可能是()A.B.C.D.12.如图,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是()A.x<﹣1 B.x>2 C.﹣1<x<0,或x>2 D.x<﹣1,或0<x<212题图 13题图13.如图,反比例函数y1=,y2=,y3=的图象的一部分如图所示,则k1,k2,k3的大小关系是()A.k1<k2<k3 B.k2<k3<k1 C.k3<k2<k1 D.k1<k3<k2类型二、反比例函数图象的对称性1.若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是()A.(2,3) B.(3,2) C.(﹣2,3)D.(﹣2,﹣3)2.如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()A.π B.2π C.4π D.条件不足,无法求2题图 3题图 4题图 5题图 6题图3.图中正比例函数和反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影部分面积的和是()A.π B.π C.4π D.条件不足,无法求4.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y= B.y= C.y= D.y=5.如图,直线y=kx(k>0)与双曲线y=交于A,B两点,若A,B两点的坐标分别为A(x1,y1),B(x2,y2),则x1y2+x2y1的值为()A.﹣8 B.4 C.﹣4 D.06.如图,过原点的一条直线与反比例函数y=(k≠0)的图象分别交于A,B两点.若A点的坐标为(a,b),则B点的坐标为()A.(a,b) B.(b,a) C.(﹣b,﹣a) D.(﹣a,﹣b)7.已知正比例函数y=kx的图象与反比例函数的图象的一个交点坐标是(1,3),则另一个交点的坐标是()A.(﹣1,﹣3)B.(﹣3,﹣1)C.(﹣1,﹣2) D.(﹣2,﹣3)类型三、反比例函数的性质8.反比例函数y=的图象如图所示,以下结论正确的是()①常数m<1;②y随x的增大而减小;③若A为x轴上一点,B为反比例函数上一点,则S△ABC=;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.A.①②③ B.①③④ C.①②③④ D.①④9.己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>610.已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>1011.关于函数有如下结论:①函数图象一定经过点(﹣2,﹣3);②函数图象在第一、三象限;③函数值y随x的增大而减小;④当x≤﹣6时,y的取值范围为y≥﹣1.其中正确的有()个.A.1 B.2 C.3 D.412.下列函数中,y随x增大而增大的是()①;②;③y=2x﹣1;④;⑤.A.①②③⑤ B.②③④ C.③④ D.③④⑤13.已知函数,有下列结论:①两函数图象交点的坐标为(4,4);②当x>4时,y2>y1;③当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的个数是()A.0个B.1个 C.2个 D.3个14.已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值.15.我们已经知道函数y=与y=﹣的两个图象之间的联系与区别,那你知道函数y=的图象与上述两个函数图象之间又有怎样的关系吗?(1)试用描点法画出图象加以探究;(2)如果利用y=与y=或y=﹣的图象之间的关系,可怎样画y=﹣的图象?类型四、反比例函数K 的几何意义1.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A、B两点,则四边形MAOB的面积为()A.6 B.8 C.10 D.121题图 2题图 3题图 4题图2.如图Rt△ABC在平面坐标系中,顶点A在x轴上,∠ACB=90°,CB∥x轴,双曲线y=经过C点及AB的三等点D(BD=2AD),S△BCD=6,则k的值为()A.3 B.6 C.﹣3 D.﹣63.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.134.如图,直线x=t(t>0)与反比例函数y=(x>0)、y=(x>0)的图象分别交于B、C两点,A为y轴上任意一点,△ABC的面积为3,则k的值为()A.2 B.3 C.4 D.55.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A.一直不变 B.先增大后减小 C.先减小后增大 D.先增大后不变6.(2015秋•长清区期末)反比例函数的图象上有两点M,N,那么图中阴影部分面积最大的是()A.B.C.D.7.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是()A.10 B.5 C. D.8.如图,点A、B在反比例函数y=的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB 交x轴于点C,若OM=MN=NC,且△AOC的面积为9,则k的值为()A.9 B.3 C.6 D.8题图 9题图 10题图 11题图9.如图,已知反比例函数y=(k<0)的图象经过Rt△OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣4,2),则△AOC的面积为()A.4 B.2.5 C.3 D.210.如图,过反比例函数y=(x>0)图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()A.S1>S2 B.S1<S2 C.S1=S2 D.S1、S2的大小关系不能确定11.如图是一个反比例函数(x>0)的图象,点A(2,4)在图象上,AC⊥x轴于C,当点A运动到图象上的点B(4,2)处,BD⊥x轴于D,△AOC与△BOD重叠部分的面积为()A.1 B.2 C. D.12.如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y=(k≠0)的图象上,则点E的坐标为()A. B.()C.()D.()13.如图,在的图象上有A、B、C三点,边OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积为S1、S2、S3,则有()A.S1>S2>S3B.S1<S2<S3C.S1=S2=S3D.S1>S3>S2课后作业1.(1999•哈尔滨)下列各图中,能表示函数y=k(1﹣x)和y=(k≠0)在同一平面直角坐标系中的图象大致是()A.B. C. D.2.如图:三个函数,,,由此观察k1,k2,k3的大小关系是.3.函数y1=x (x≥0),如图所示,请你根据图象写出3个不同的结论:①;②;③.4.请你写出一个反比例函数的解析式使它的图象在第一、三象限.5.对于函数y=,当x>2时,y的取值范围是<y<.6.已知函数y=与y=k2x图象的交点是(﹣2,5),则它们的另一交点是.7.如图,直线y=﹣2x与双曲线的一个交点坐标为(﹣2,4),则它们的另一个交点坐标为.7题图 9题图 10题图 14题图8.已知函数y=2x与的图象的一个交点坐标是(1,2),则它们的图象的另一个交点的坐标是.9.已知,如图,正比例函数与反比例函数的图象相交于A、B两点,A点坐标为(2,1),分别以A、B为圆心的圆与x轴相切,则图中两个阴影部分面积的和为.10.如图,有反比例函数y=,y=﹣的图象和一个以原点为圆心,2为半径的圆,则S阴影= .11.若k<,则双曲线的图象经过第象限.12.函数①y=、②y=﹣、③y=(x>0)、④y=(x<0)、⑤y=﹣x+1中,y随x的增大而减小的有.13.已知反比例函数的图象在第二、四象限,其解析式为.14.如图,l1是反比例函数y=在第一象限内的图象,且过点(2,1),l2与l1关于y轴对称,那么图象l2的函数表达式为(x<0).三.解答题(共4小题)15.若函数y=(2m﹣9)x|m|﹣7是反比例函数,且它的图象分别位于第一象限和第三象限内,求m的值.16.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,求k的值。
17.如图,反比例函数y=(x>0)的图象经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).(1)确定k的值;(2)求△OAB的面积.。