正多边形与圆、弧长和扇形

合集下载

圆的弧长及面积计算

圆的弧长及面积计算
弧形面积的计算通常可以通过扇形面积公式来实现。在半径为r的圆中,若圆心角为n°,则所对应的扇形面积S可以通过公式S=nπr²/360来计算。此外,如果已知弧长l,那么扇形面积S也可以表示为S=1/2lr。这些公式提供了计算弧形面积的基础,其中π代表圆周率,r代表半径,n代表圆心角的角度数,l代表弧长。通过这些公式,我们可以根据已知条件灵活选择适合的计算方法,从而求出弧形面积。需情况进行必要的单位换算。扇形面积公式的应用不仅限于纯数学计算,还广泛应用于工程、物理、经济等多个领域,是解决实际问题的有力工具。

正多边形和圆及正多边形的有关计算

正多边形和圆及正多边形的有关计算

中考数学辅导之—正多边形和圆及正多边形的有关计算正多边形和圆是初中几何课本中的最后一单元,它包括正多边形的定义、正多边形的判定、性质,正多边形的有关计算,圆周长及弧长公式,圆、扇形、弓形的面积。

今天我们一起学习正多边形的定义、判定、性质及有关计算.一、基础知识及其说明:1.正多边形的定义:各边相等、各角也相等的多边形叫做正多边形.此定义中的条件各边相等,各角也相等 “缺一不可”.如:菱形各边相等,因四个角不等,所以菱形不一定是正多边形.矩形的四个角相等,但因四条边不一定相等,故矩形不一定是正四边形,只有正方形是正四边形.2.正多边形的判定,正多边形的定义当然是正多边形的判定方法之一,但如同全等三角形的判定一样,用定义来证明两个三角形全等显然不可取,因此需用判定定理来证.判定定理:把圆几等分()①依次连结各分点所得的多边形是这个圆的内接正边形②经过各分点做圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正边形.也就是说,若要证明一个多边形是圆内接正多边形,只要证明这个多边形的顶点是圆的等分点即可, 如:要证明一个圆内接边形ABCDEF ……是圆内接正边形,就要证A 、B 、C 、D 、E 、F ……各点是圆的n 等分点,就是要证AB=BC=CD=DE=EF=…….同样,要证明一个圆外切边形是圆外切正边形,只要证明各切点是圆的等分点即可例1:证明:各边相等的圆内接多边形是正多边形.已知:在⊙O 中,多边形ABCDE ……是⊙O 的内接n 边形 且AB=BC=CD=DE=…….求证:n 边形ABCDE ……是正n 边形证明: AB=BC=CD=DE=…… ∴ AB=BC=CD=DE ……∴OEB=AEC= BED=COE=……∴ =∠=∠=∠=∠D C B A又∵AB=BC=CD=DE=……∴n 边形ABCDE ……是正n 边形.例2:证明:各角相等的圆外切n 边形是正n 边形.已知:多边形……是圆外切n 边形,切点分别是A,B,C,D,E ……,=…….求证:n 边形……是正n 边形.证明:连结OB,OC,OD ……,在四边形COD 和四边形BOC 中∵切⊙O 于B,C,D∴∴ 0''180=∠+∠=∠+∠COD C BOC B而……∴∴BC=CD(在同圆中,相等的圆 B O心角所对的弧相等).同理BC=CD=DE=FE=……'B D∴A,B,C,D,E,F……是圆的n等分点 C∴多边形ABCDEF……是圆外切n正多边形3.正多边都是轴对称图形,若n是奇数,正n边形是轴对称图形,n是偶数,正n边形既是轴对称图形又是中心图形.4.正多边形的性质:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.5.正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆半径叫正多边形的半径.内切圆的半径叫正多边形的边心距.正多边形的每一边所对的圆心角叫中心角,中心角的度数是.如图:OA,OB是半径,O是中心,OH⊥AB于H,OH是边心距,是中心角6.正多边形的有关计算,一般是围绕正边形的半径R,边长,边心距,周长及面积来进行,但关健是之间的计算,因为正边形的边心距把正边形的一边与该边所对应的两条半径所围成的等腰三角形分成两个全等的直角三角形,所以在Rt△AOH中,斜边是R,直角边分别是和,锐角,利用直角三角形的有关知识(勾股定理,锐角三角函数等)来解直角三角形即可.例:已知正六边形ABCDEF的半径是R,求正六边形的边长S6.解:作半径OA、OB,过O做OH⊥AB,则∠AOH==30°∵∴∴∴∵∴S6=同学们在进行正多边形的计算时,应很好的理解、掌握如何用解直角三角形的方法进行计算,但也可以推出公式,然后利用公式变形进行计算.则这是已知半径R,求的公式,若记住公式则正多边形的计算就简单了很多,如已知半径R,求解:再如:已知正三角形的边长为,可以先由,求出半径,再将求得的R代入;若已知边心距求边长,则先用,求出R,再代入求边长公式即可求出,此法好处是不用画图,只需将上面两个公式反复变形即可.7.如何求同圆的圆内接正边形与圆外切正边形的边长比,半径比,边心距比.如:求同圆的圆内接正边形和圆外切正边形的边长比.设⊙O的半径的为R则圆内接正边形的边长是而在Rt△OBC中,OB=R,则,即外切正边形的边长是,∴=实际上,=,OB是的邻边,OC是Rt△BOC的斜边,,希望同学们记住此结论.如圆内接正四边形的边心距与圆外切正四边形的边心距之比是,圆内接正六边形与圆外切正六边形的边长之比是,而圆内接正三角形与圆外切正三角形的面积之比是.(注意:①此结论必须是同圆的边数相同的圆内接正边形与圆外切正边形的相似比是.②若求圆外切正边形与圆内接正边形的相似比则是).二、练习题:1.判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2.填空题:①一个外角等于它的一个内角的正多边形是正____边形.②正八边形的中心角的度数为____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm,面积是____cm.④面积等于cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3.选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D.:1④正六边形的两条平行边间距离是1,则边长是( )A. B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1::C.1::3D.1:2:三、练习答案:1.判断题①×②×③√④√⑤√2.填空题①四②45°,135°,45°③④12⑤1:2 1:4 ⑥8 ⑦⑧:1 ⑨1:3.选择题①D ②A ③C ④C ⑤B ⑥A。

九年级数学第三章《圆》教材分析

九年级数学第三章《圆》教材分析

九年级数学第三章《圆》的教材分析一、教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,•圆和圆的位置关系.(3)正多边形和圆.(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.二、教学目标1.知识与技能(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.(4)熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.•了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.(3)在探索圆周角和圆心角之间的关系的过程中,•让学生形成分类讨论的数学思想和归纳的数学思想.(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,•使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、•圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.三、教学重点1.平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6.直线L 和⊙O 相交⇔d<r ;直线L 和圆相切⇔d=r ;直线L 和⊙O 相离⇔d>r 及其运用.7.圆的切线垂直于过切点的半径及其运用.8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系:d 与r 1和r 2之间的关系:外离⇔d>r 1+r 2;外切⇔d=r 1+r 2;相交⇔│r 2-r 1│<d<r 1+r 2;内切⇔d=│r 1-r 2│;内含⇔d<│r 2-r 1│.11.正多边形和圆中的半径R 、边心距r 、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12.n °的圆心角所对的弧长为L=180n R π,n °的圆心角的扇形面积是S 扇形=2360n R π及其运用这两个公式进行计算. 13.圆锥的侧面积和全面积的计算.四、教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2.弧、弦、圆心有的之间互推的有关定理的探索与推导,•并运用它解决一些实际问题.3.有关圆周角的定理的探索及推导及其它的运用.4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用.6.直线和圆的位置关系的判定及其应用.7.切线的判定定理与性质定理的运用.8.切线长定理的探索与运用.9.圆和圆的位置关系的判定及其运用.10.正多边形和圆中的半径R 、边心距r 、中心角θ的关系的应用.11.n 的圆心角所对的弧长L=180n R π及S 扇形=2360n R π的公式的应用. 12.圆锥侧面展开图的理解。

正多边形与圆及弧长与扇形面积的计算【知识点清单】中考数学一轮复习精讲+热考题型(全国通用)

正多边形与圆及弧长与扇形面积的计算【知识点清单】中考数学一轮复习精讲+热考题型(全国通用)

B A O 专题27 正多边形与圆及弧长与扇形面积计算【知识要点】正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形。

正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。

正多边形的半径:正多边形外接圆的半径叫做正多边形的半径。

正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

【解题思路】1.正边形半径、边心距和12边长构成直角三角形。

2.已知其中两个值,第三个值可以借助勾股定理求解。

正多边形的对称性:1)正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。

2)一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形.对称中心就是这个正多边的中心。

【小结】正n 变形的内角为(n−2)×180°n ,外角为3600n ,中心角为3600n 内角和为( n-2 )×180°。

【扩展】正多边形常见边心距与边长的比值第一种 正三角形 在⊙O 中△ABC 是正三角形,在Rt △BOD 中,OD:BD:OB=1: √3 : 2 (图一) 变式 正三角形内切圆与外切圆半径比为1:2 (图二)第二种 正方形 在⊙O 中四边形是正方形,在Rt △OAE 中,OE:AE:OE=1:1: √2 (图三) 变式 正方形内切圆与外切圆半径比为1: √2 (图四)第三种 正六变形 在⊙O 中六边形是正六边形,在Rt △OAB ,AB:OB:OA=1: √3 : 2 (图五)图一 图二 图三 图四 图五 设的半径为R ,圆心角所对弧长为l ,弧长公式:l=nπR180(弧长的长度和圆心角大小和半径的取值有关)扇形面积公式:圆锥的侧面积公式:122S l r rlππ==(其中l是圆锥的母线长,r是圆锥的底面半径)母线的概念:连接圆锥顶点和底面圆周任意一点的线段。

正多边形和圆、弧长和扇形

正多边形和圆、弧长和扇形

正多边形的有关概念
(1)一个正多边形的外接圆的圆心叫做这个正多边 形的中心. (2)正多边形外接圆的半径叫做正多边形的半径. (3)正多边形每一边所对的圆心角叫做正多边形 的中心角. (4)正多边形的中心到正多边形的一边的距离叫 做正多边形的边心距.
正多边形的有关计算
(1)正n边形每一个内角的度数是 (2)正n边形每个中心角的度数是 (3)正n边形每个外角的度数是
圆锥的侧面积和全面积
l
连接圆锥顶点和底面圆上任意一点的线段叫做 圆锥 Nhomakorabea母线l .
圆锥的侧面积 全面积
.
正多边形的性质
只有一 个 无数个 1.正多边形都_________外接圆,圆有_____ 内接正多边形.
2n 2.正n边形的半径和边心距把正n边形分成___ 个全等的直角三角形.
轴对称 3.正多边形都是______图形,对称轴的条数与它的 相同 中心 边数_____,每条对称轴都通过正n边形的_____; 中心对称 当边数是偶数时,它也是_________图形,它的中 对称中心 心就是_________.
弧长公式
n
半径为R的圆中360°的圆心角所对的弧长(圆 的周长)公式: n°的圆心角所对的圆的弧长公式: (弧是圆的一部分)
扇形定义:
由组成圆心角的两条半径和圆心角所对 的弧所围成的图形叫做扇形.
扇形面积公式:
n
半径为R的圆中360°的圆心角所对的 扇形面积(圆面积)公式: n°的圆心角所对的扇形面积公式:
正多边形和圆、弧长和扇形面积
什么样的图形是正多边形?
各边相等,各角也相等的多边形是 正多边形.
正多边形的外接圆和 圆的内接正多边形的关系
怎样做圆的内接正多变形?

利用圆的数学知识解决问题

利用圆的数学知识解决问题

利用圆的数学知识解决问题利用圆的数学知识可以解决许多与圆相关的问题,包括几何问题、三角学问题和应用问题等。

以下是一些常见的圆相关问题的解决方法示例:1.圆的周长和面积计算:圆的周长可以通过直径或半径来计算,使用周长公式C = 2πr 或C = πd,其中 r 为半径,d 为直径。

圆的面积可以使用面积公式A = πr² 计算。

2.弧长和扇形面积计算:如果知道圆的半径和弧度,则可以计算出弧长和相应的扇形面积。

弧长公式为S = rθ,其中 r 为半径,θ 为弧度。

扇形面积公式为A = 0.5r²θ,其中 r 为半径,θ 为弧度。

3.利用圆的相似性解决几何问题:当两个或多个圆几何相似时,可以利用相似三角形的属性来解决问题。

例如,通过比较相似几何形状的半径、弦长、弧长等,可以求解未知量。

4.角与弧的关系和计算:圆上的弦与其所对应的圆心角有一定的关系。

通过圆心角的角度计算,可以得到弦的长度、弧长和扇形面积等信息。

5.圆的内切和外接问题:圆内接于一个正多边形,可以通过正多边形的边长计算圆的半径。

圆外接于一个正多边形,可以通过正多边形的边长计算圆的直径。

6.圆与直线的交点和切线问题:根据圆的性质,可以计算圆与直线的交点数量和位置。

对于切线问题,可以利用切线与半径的垂直性和割线定理来求解。

7.圆与三角函数的关系:圆的单位圆定义是一个半径为1的圆,与三角函数的正弦、余弦和正切等有紧密的关联。

通过单位圆的角度,可以计算三角函数的值。

这些是一些利用圆的数学知识解决问题的示例,但并不限于此。

圆在数学中广泛应用,而解决特定问题可能需要应用多个圆相关概念和定理。

因此,理解圆的性质和运用适当的数学工具,结合实际问题,可以更好地解决与圆相关的数学问题。

2019-2020学年人教版九年级上学期同步讲练专题24-4:弧长和扇形面积

2019-2020学年人教版九年级上学期同步讲练专题24-4:弧长和扇形面积

专题24.4弧长和扇形面积(讲练)一、知识点1.正多边形与圆2.弧长和扇形面积的计算扇形的弧长l =180n r π;扇形的面积S =2360n r π=12lr3.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长. (2)计算公式:圆锥S 侧==πrl ,S=πr (l+r )注:易与勾股定理联系,先求母线长,再求面积二、标准例题:例1:如图,在矩形ABCD 中有对角线AC 与BD 相等,已知AB=4,BC=3,则有AB 2+BC 2=AC 2,矩形在直线MN 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转至图②位置……依次类推,则:(1)AC=__________.(2)这样连续旋转2019次后,顶点B 在整个旋转过程中所经过的路程之和是________.【答案】5 3028π【解析】(1)∵AB 2+BC 2=AC 2, AB=4,BC=3, ∴AC 2= 42+32=25, ∴AC=5;(2)转动一次B 的路线长是:0,转动第二次的路线长是:90331802π⨯=π,转动第三次的路线长是:90551802π⨯=π,转动第四次的路线长是:904180π⨯=2π,以此类推,每四次循环, 2019÷4=504余3,顶点B转动四次经过的路线长为:0+32π+52π+ 2π=6π,连续旋转2019次经过的路线长为:6π×504+0+32π+52π=3028π.故答案为:(1)5;(2)3028π.总结:本题考查弧长的计算、矩形的性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.例2:如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A2π-B2π+C.πD.2π【答案】A【解析】连接OD,过点O作OH⊥AC,垂足为H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=BC=2,tan∠A=3BCAB==,∴∠A=30°,∴OH=12AH=AO•cos∠32=,∠BOC=2∠A=60°,∴AD=2AH=3,∴S阴影=S△ABC-S△AOD-S扇形BOD=2601123222360π⨯⨯-⨯⨯-=42π-,故选A.总结:本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.例3:如图,点C 为扇形OAB 的半径OB 上一点,将OAC ∆沿AC 折叠,点O 恰好落在»AB 上的点D 处,且¼¼:1:3BD AD ''=(¼BD'表示»BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【答案】D【解析】解:连接OD 交AC 于M .由折叠的知识可得:12OM OA =,90OMA ∠=︒, 30OAM ∴∠=︒, 60AOM ∴∠=︒,Q 且¼¼:1:3BD AD ''=,80AOB ∴∠=︒设圆锥的底面半径为r ,母线长为l ,802180lr ππ=, :2:9r l ∴=.故选:D.总结:本题考查的是扇形,熟练掌握圆锥的弧长公式和圆的周长公式是解题的关键.三、练习1.1.如图,已知在⊙O中,AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是()A.8233π-B.16233π-C.8433π-D.16433π-【答案】D【解析】解:∵AC是直径,AC⊥BD于F,∴BF=DF,¶·BC DC=,∴∠BAC=∠DAC,在RT△ABF中,2223BF AB AF=-=∴BD=2BF=43,连接OB、OD、BC,∵AC是直径,∴∠ABC=90°,∴BF2=AF•FC,即(2=6FC,∴FC=2,∴直径AC=AF+FC=6+2=8, ∴⊙O 的半径为4,∵AF=6,∴cosAF BAF AB ∠===∴∠BAF=30°, ∴∠BAD=60°, ∴∠BOD=120°, ∵OC=4,FC=2, ∴OF=2,∴=BOD S S S ∆-阴影扇形21204116236023ππ⨯=-⨯=-故选择:D.2.圆锥的底面半径是5cm ,侧面展开图的圆心角是180°,圆锥的高是( )A .B .10cmC .6cmD .5cm【答案】A【解析】设圆锥的母线长为R , 根据题意得2π•5180180Rπ=, 解得R =10.即圆锥的母线长为10cm ,=.3.如图,在△ABC 中,∠ACB =90°,分别以AC ,BC ,AB 为直径作半圆,记三个半圆的弧长分别为m ,n ,l ,则下列各式成立的是( )A .m +n <lB .m +n =lC .m 2+n 2>l 2D .m 2+n 2=l 2【解析】解:由勾股定理得,AC2+BC2=AB2,m=12×π×AC,n=12×π×BC,1=12×π×AB,∴m2=14×π2×AC2,n2=14×π2×BC2,12=14×π2×AB2,∴m2+n2=14×π2×(AC2+BC2)=14×π2×AB2=12,故选:D.4.一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A.2πB.4πC.12πD.24π【答案】C【解析】S=2120612360ππ⨯⨯=,故选C.5.如图,在△ABC中,AB=6,将△ABC绕点A通时针旋转40°后得到△ADE,点B经过的路径为»BD,则图中阴影部分的面积是()A.23πB.43πC.4πD.条件不足,无法计算【答案】C【解析】解:由旋转的性质可知,S△ADE=S△ABC,则阴影部分的面积=S△ADE+S扇形DAB﹣S△ABC=S扇形DAB=2 40π6 360⨯=4π,6.如图,在正方形ABCD 中,边长AB =1,将正方形ABCD 绕点A 按逆时针方向旋转180°至正方形AB 1C 1D 1,则线段CD 扫过的面积为( )A .4πB .2π C .πD .2π【答案】B 【解析】解:∵将正方形ABCD 绕点A 按逆时针方向旋转180°至正方形AB 1C 1D 1,∴CC 1∴线段CD 扫过的面积=12×2•π-12×π=12π, 故选:B .7.已知的扇形的圆心角为45︒,半径长为12,则该扇形的弧长为 A .12π B .3πC .2πD .34π【答案】B 【解析】 根据弧长公式:l=4512180πg g =3π,8.一个圆锥形的圣诞帽高为 10cm ,母线长为 15cm ,则圣诞帽的表面积为( )A . cm 2B . cm 2C . cm 2D .π cm 2【答案】A【解析】解:高为10cm ,母线长为15cm ,由勾股定理得,底面半径cm ,底面周长,侧面面积=122. 故选:A .9.如图,扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么P 和Q 的大小关系是( )A .P >QB .P <QC .P =QD .无法确定【答案】C【解析】设OA =a ,扇形OAB 的面积=22903604a a ππ⨯=, 以OA ,OB 为直径在扇形内作的半圆的面积=221a a ()228ππ⨯⨯=P =扇形OAB 的面积﹣(以OA 为直径的半圆的面积+以OB 为直径的半圆的面积)+Q =2248a a ππ-×2+Q=Q 故选C .10.如图,圆锥的底面半径r =6,高h =8,则圆锥的侧面积是( )A .15πB .30πC .45πD .60π【答案】D【解析】解:圆锥的母线10l ===, ∴圆锥的侧面积10660ππ=⋅⋅=, 故选:D .11.如图,四边形ABCD 为矩形,以A 为圆心,AD 为半径的弧交AB 的延长线于点E ,连接BD ,若AD=2AB=4,则图中阴影部分的面积为______.【答案】434 【解析】解:BC 交弧DE 于F ,连接AF ,如图,AF=AD=4, ∵AD=2AB=4 ∴AB=2,在Rt △ABF 中,∵sin ∠AFB=24=12, ∴∠AFB=30°,∴∠BAF=60°,∠DAF=30°,∴图中阴影部分的面积=S扇形ADF+S△ABF-S△ABD=2304360π⋅⋅+1212×2×4=434.12.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_____cm2.(结果保留π)【答案】1 4π【解析】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO≅△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=12,∴S扇形B′OB=2120π1360⨯=13π,S扇形C′OC=1120π4360⨯=π12,∵阴影部分面积=S扇形B′OB+S△B′C′O﹣S△BCO﹣S扇形C′OC∴阴影部分面积=S扇形B′OB+S△B′C′O﹣S△BCO﹣S扇形C′OC=S扇形B′OB﹣S扇形C′OC=13π﹣π12=14π;故答案为:14π.13.如图,在扇形OAB中,半径OA与OB的夹角为120︒,点A与点B的距离为OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【答案】43【解析】解:连接AB ,过O 作OM AB ⊥于M ,∵120AOB ∠=︒,OA OB =,∴30BAO ∠=︒,AM =∴2OA =, ∵24022180r ππ⨯=, ∴43r = 故答案是:43 14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=o ,则该圆锥的母线长l 为___cm .【答案】6.【解析】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为:6.15.已知圆锥的底面半径是1_____度.【答案】90【解析】解:设圆锥的母线为a ,根据勾股定理得,a 4= ,设圆锥的侧面展开图的圆心角度数为n ︒ , 根据题意得n 421180ππ⨯⨯= ,解得90n = , 即圆锥的侧面展开图的圆心角度数为90︒.故答案为:90.16.如图,Rt ABC △中,90A ∠=︒,CD 平分ACB ∠交AB 于点D ,O 是BC 上一点,经过C 、D 两点的O e 分别交AC 、BC 于点E 、F ,AD =60ADC ∠=︒,则劣弧»CD的长为_______________【答案】43π 【解析】连接DF ,OD ,∵CF 是⊙O 的直径,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD 平分∠ACB 交AB 于点D ,∴∠DCF=30°,∵OC=OD ,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt △CAD 中,在Rt △FCD 中,CF=cos CD DCF∠=4, ∴⊙O 的半径=2, ∴劣弧»CD的长=1202180π⨯=43π, 故答案为:43π. 17.将圆心角为216︒,半径为5cm 的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为_______cm .【答案】4【解析】解:设圆锥的底面圆的半径为r , 根据题意得21652180r ππ⨯=,解得3r =,所以圆锥的高()4cm ==.故答案为4.18.如图所示,当半径为30cm 的转动轮转过120°角时,传送带上的物体A 平移的距离为多少厘米?(保留π)【答案】20πcm 【解析】12038001π⨯ =20πcm . 故答案为:20πcm .19.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别为A (﹣3,4),B (﹣5,2),C (﹣2,1).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)画出将△ABC 绕原点O 逆时针方向旋转90°得到的△A 2B 2C 2;(3)求(2)中点C 运动的路径长.【答案】(1)见解析;(2)见解析;(3【解析】(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)如图所示:=点C 运动的路径长为:14π⨯⨯=20.如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S 1+S 2=5,且AC+BC =6,求AB 的长.【答案】4AB =.【解析】Rt ABC ∆,∵222AC BC AB +=, ∴222444AC BC AB πππ⋅+⋅=⋅, 即:AC BC AB S S S +=半圆半圆半圆,根据等式性质,两边都减去两个弓形面积,则12ABC S S S ∆+=,∵125S S +=, ∴152ABC S AC BC ∆=⋅=, ∴10AC BC ⋅=.∵6AC BC +=,∴()2222AC BC AC BC AC BC +-⋅=+2621016=-⨯=,即216AB =,∴4AB =.21.如图,AB 为O e 的直径,且AB =C 是¶AB 上的一动点(不与A ,B 重合),过点B 作O e 的切线交AC 的延长线于点D ,点E 是BD 的中点,连接EC .(1)求证:EC 是O e 的切线;(2)当30D ︒∠=时,求阴影部分面积.【答案】(1)证明见解析;(2)阴影部分面积为4π.【解析】(1)如图,连接BC ,OC ,OE ,Q AB 为O e 的直径,ACB 90∠︒∴=,在Rt ΔBDC 中,BE ED =Q ,DE EC BE ∴==,OC OB =Q ,OE OE =,()ΔOCE ΔOBE SSS ∴≅,OCE OBE ∠∠∴=,Q BD 是O e 的切线,ABD 90∠︒∴=,OCE ABD 90∠∠︒∴==,Q OC 为半径,∴EC 是O e 的切线;(2)OA OB =Q ,BE DE =,AD OE ∴P ,D OEB ∠∠∴=,D 30∠︒=Q ,OEB 30∠︒∴=,EOB 60∠︒=,BOC 120∠︒∴=,AB =QOB ∴=BE 6∴==.∴四边形OBEC的面积为ΔOBE 12S 262=⨯⨯⨯=, ∴阴影部分面积为(2OBEC BOC 120πS S 4π360⋅⨯-==四边形扇形.22.如图,等边三角形ABC 的边长为2,以A 为圆心,1为半径作圆分别交AB ,AC 边于D ,E ,再以点C 为圆心,CD 长为半径作圆交BC 边于F ,连接E ,F ,那么图中阴影部分的面积为________.【答案】31224π+- . 【解析】过A 作AM BC ⊥于M ,EN BC ⊥于N ,Q 等边三角形ABC 的边长为2,60BAC B ACB ∠=∠=∠=︒,222AM BC ∴===, 1AO AE ==Q ,,AD BD AE CE ∴==,12EN AM ∴==∴图中阴影部分的面积()ABC CEF BCD ADE DCF S S S S S ∆∆∆----扇形扇形=122=⨯601360π⨯•12-⨯11303222360π⨯⎛⎫-⨯⨯ ⎪⎝⎭•3124π=,故答案为:3124π.。

人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)

人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)

第17讲 正多边形和圆、弧长和扇形面积 第一部分 知识梳理 知识点一:圆与内正多边形的计算1、正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;2、正四边形 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =3、正六边形 同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA = 知识点二、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n R l π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱侧面展开图:3、圆锥侧面展开图第二部分 考点精讲精练考点1、正多边形和圆的求解例1、六边形的边长为10cm ,那么它的边心距等于( )A .10cmB .5cmC .cm D .cm 例2、已知正多边形的边心距与边长的比为21,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形例3、如图,在⊙O 内,AB 是内接正六边形的一边,AC 是内接正十边形的一边,BC 是内接正n 边形的一边,那么n= .例4、圆的内接正六边形边长为a,这个圆的周长为.例5、如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,求图中阴影部分的总面积S.举一反三:1、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形2、已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.1:1:B.1::2 C.1::1 D.:2:43、某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为 cm.4、如图,正六边形与正十二边形内接于同一圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.5、如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.考点2、弧长的计算例1、一条弧所对的圆心角是90°,半径是R,则这条弧长是()A.B.C.D.例2、一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°例3、已知:如图,四边形ABCD内接于⊙O,若∠BOD=120°,OB=1,则∠BAD= 度,∠BCD= 度,弧BCD的长= .例4、如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=cm,将△ABC绕点B旋转至△A′BC′的位置,且使点A、B、C′三点在一条直线上,则点A经过的最短路线的长度是.例5、如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)举一反三:1、弧长为6π的弧所对的圆心角为60°,则弧所在的圆的半径为()A.6 B.6C.12D.182、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20cm C.10πcm D.5πcm3、一段铁路弯道成圆弧形,圆弧的半径是2km.一列火车以每小时28km的速度经过10秒通过弯道.那么弯道所对的圆心角的度数为度.(π取3.14,结果精确到0.1度).4、已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于.5、如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).考点3、扇形面积的计算例1、已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,那么阴影部分的面积是()A.B.2π C.D.3π例2、一个商标图案如图中阴影部分,在长方形ABCD中,AB=8cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.(4π+8)cm2 B.(4π+16)cm2C.(3π+8)cm2 D.(3π+16)cm2例3、如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积.例4、如图,有一直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,则剩下部分的(阴影部分)的面积是.例5、如图,已知P为正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置.(1)请说出旋转中心及旋转角度;(2)若连接PQ,试判断△PBQ的形状;(3)若∠BPA=135°,试说明点A,P,Q三点在同一直线上;(4)若∠BPA=135°,AP=3,PB=,求正方形的对角线长;(5)在(4)的条件下,求线段AP在旋转过程中所扫过的面积.举一反三:1、若一个扇形的面积是相应圆的41,则它的圆心角为( ) A .150° B .120° C .90° D .60°2、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( )A .π+1B .2πC .4D .63、如图,O 为圆心,半径OA=OB=r ,∠AOB=90°,点M 在OB 上,OM=2MB ,用r 的式子表示阴影部分的面积是 .4、如图,直角△ABC 的直角顶点为C ,且AC=5,BC=12,AB=13,将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,在旋转过程中,直角△ABC 扫过的面积是 .(结果中可保留π)5、如图,四边形ABCD 是长方形,AB=a ,BC=b (a >b ),以A 为圆心AD 长为半径的圆与CD 交于D ,与AB 交于E ,若∠CAB=30°,请你用a 、b 表示图中阴影部分的面积.考点4、圆锥侧面积计算例1、如果圆锥的高为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .16πcm 2B .20πcm 2C .28πcm 2D .36πcm 2例2、新疆哈萨克族是一个游牧民族,喜爱居住毡房,毡房的顶部是圆锥形,如图所示,为防雨需要在毡房顶部铺上防雨布.已知圆锥的底面直径是5.7m ,母线长是3.2m ,铺满毡房顶部至少需要防雨布(精确到1m 2)( )A .58 m 2B .29 m 2C .26 m 2D .28 m 2例3、扇形的圆心角为150°,半径为4cm ,用它做一个圆锥,那么这个圆锥的表面积为 cm 2.例4、在十年文革期间的“高帽子”.这种“高帽子”是用如图①所示的扇形硬纸板,做成如图②所示的无底圆锥体.已知接缝的重叠部分的圆心角为30°.(1)求重叠部分的面积.(结果保留π)(2)计算这顶“高帽子”有多高?(结果保留根号)例5、已知:一个圆锥的侧面展开图是半径为20cm,圆心角为120°的扇形,求这圆锥的底面圆的半径和高.举一反三:1、若圆锥的侧面积为12πcm2,它的底面半径为3cm,则此圆锥的母线长为()A.4πcm B.4 cm C.2πcm D.2 cm2、圆锥的轴截面是一个等腰三角形,它的面积是10cm2,底边上的高线是5cm,则圆锥的侧面展开图的弧长等于()A.87πcm B.47πcm C.8 cm D.4 cm3、如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的高为。

苏教版数学中考复习:正多边形与圆、弧长与扇形的面积、圆锥的侧面积与全面积课件

苏教版数学中考复习:正多边形与圆、弧长与扇形的面积、圆锥的侧面积与全面积课件

C B
例8、已知:在RtΔABC,
∠C=90°, AB=13 cm, BC=5 cm
求以AB为轴旋转一周所得到的几何体的全面积。 解:过C点作 CD AB ,垂足为 D点
AC BC 5 12 60 所以 CD AB 13 13
A
60 120 底面周长为 2 13 13
6.将一个正五边形绕它的中心旋转,至少要旋转 72 _______度,才能与原来的图形位置重合. 7.两个正三角形的内切圆的半径分别为12和18, 2﹕3 4﹕9 则它们的周长之比为______,面积之比为____。
知识回顾
一、圆的周长公式
C=2πr
S= π r2 二、圆的面积公式
n nr 三、弧长的计算公式 l 2r 360 180
4 . 3
4 2、已知扇形面积为 3 ,圆心角为120°,则
2 这个扇形的半径R=____.
4 3、已知半径为2cm的扇形,其弧长为 3 , 4 3 则这个扇形的面积,S =______

4. (2006,武汉)如图,⊙A、⊙B、⊙C、⊙D相互 外离,它们的半径都是1,顺次连接四个圆心得到 四边形ABCD,则图形中四个扇形(空白部分)的面 积之和是___________.
小结:此类问题可直接运 用公式,但是扇形中的弧 长与母线、半径之间的关 系一定要清晰,不能混淆.
.9cm
例6:如图所示的扇形中,半径R=10,圆心 角θ=144°用这个扇形围成一个圆锥的侧面.
(1)求这个圆锥的底面半径r;
(2)求这个圆锥的高.
A
C O
r
B
nR 分析:此题把公式 180 2r进行灵活运用,n、 R、r中知道两个就能求出另外一个。

正多边形与圆的有关的证明和计算知识讲解及典型例题解析

正多边形与圆的有关的证明和计算知识讲解及典型例题解析

正多边形与圆的有关的证明和计算知识讲解及典型例题解析【考纲要求】1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31+.解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=1313122++=+.【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.32::【变式3】一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q分别表示阴影部分的面积,那么P 和Q 的大小关系是( ).A .P =QB .P >QC .P <QD .无法确定(2)如图(b),△ABC 为等腰直角三角形,AC =3,以BC 为直径的半圆与斜边AB 交于点D ,则图中阴影部分的面积是________.(3)如图(c),△AOB 中,OA =3cm ,OB =1cm ,将△AOB 绕点O 逆时针旋转90°到△A ′OB ′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC 面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=,∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D.3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∴∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA ,∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】 解:连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===g g 阴影扇形OCD .4.如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠E AB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.»AB)对应5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C ,连接AC ,过点O 作AC 的垂线交AC 于点D ,交⊙O 于点E .已知AB ﹦8,∠P=30°.(1)求线段PC 的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠A OC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048=3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。

2022届中考数学一轮复习知识点串讲专题32 正多边形与圆及弧长和扇形面积【含答案】

2022届中考数学一轮复习知识点串讲专题32 正多边形与圆及弧长和扇形面积【含答案】

2022届中考数学一轮复习知识点串讲专题32 正多边形与圆及弧长和扇形面积【知识要点】知识点一正多边形和圆正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形.正多边形的相关概念:➢正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.➢正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.➢正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.➢正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.半径、边心距,边长之间的关系:画圆内接正多边形方法(仅保留作图痕迹):1)量角器(作法操作复杂,但作图较准确)2)量角器+圆规(作法操作简单,但作图受取值影响误差较大)3)圆规+直尺(适合做特殊正多边形,例如正四边形、正八边形、正十二边形…..)知识点二求弧长与扇形面积设⊙ria MO的半径为R,圆心角所对弧长为l,弧长公式:l=nπR(弧长的长度和圆心角大小和半径的取值有关)180扇形面积公式:母线的概念:连接圆锥顶点和底面圆周任意一点的线段。

圆锥体表面积公式:(l为母线)备注:圆锥的表面积=扇形面积=底面圆面积【考查题型】考查题型一求多边形中心角典例1.(2020·福建模拟)将下列四个正多边形同时绕中心开始旋转,且旋转角相等,则最先与原图形重合的是()A.B.C.D.【答案】D【提示】由于正多边形是旋转中心对称图形,分别求出各个正多边形的中心角底数,比较大小即可得到结论.【详解】正方形中心角的度数=360=904︒︒;正五边形中心角的度数=360=725︒︒;正六边形中心角的度数=360=606︒︒;正八边形中心角的度数=360=458︒︒;∵457290︒︒︒︒<60<<, ∴最先与原图形重合的是正八边形. 故选:D.变式1-1.(2020·富顺县一模)正六边形的边长为4,则它的面积为( ) A .3B .3C .60D .123【答案】B【提示】根据题意画出图形,由正六边形的特点求出∠AOB 的度数及OG 的长,再由△OAB 的面积即可求解.【详解】解:如图,过正六边形中心O 作OG ⊥AB 于G ∵此多边形为正六边形, ∴∠AOB =3606︒=60°; ∵OA =OB ,∠AOB =60°,OG ⊥AB ∴△OAB 是等边三角形,1302AOG AOB ∠=∠=︒ ∴OA =AB =4, ∴OG =OA 33 ∴S △OAB =12×AB ×OG =12×4×33 ∴S 六边形=6S △OAB =6×33 故选:B .变式1-2.(2020·天津和平区模拟)如图,ABCDEF 是中心为原点O ,顶点A ,D 在x 轴上,半径为4的正六边形,则顶点F 的坐标为( )A .(2,23B .()2,2-C .(2,23-D .(3-【答案】C【提示】连接OF ,设EF 交y 轴于G ,那么∠GOF=30°;在Rt∠GOF 中,根据30°角的性质求出GF ,根据勾股定理求出OG 即可. 【详解】 解:连接OF ,在Rt∠OFG 中,∠GOF=13603026⨯=,OF=4. ∠GF=2,3 ∴F (-2,3. 故选C .变式1-3.(2020·河北唐山市二模)如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,若连接BM ,则MBC ∠的度数是( )A.12︒B.15︒C.30D.48︒【答案】A【提示】连接BM,OA,OC,分别求出正五边形ABCDE和正三角形AMN的中心角,求出∠BOM,从而得到∠MOC,再根据圆周角定理得出∠MBC.【详解】解:连接BM,OA,OC,∵五边形ABCDE是正五边形,∴∠AOB=∠BOC=3605︒=72°,∵△AMN是正三角形,∴∠AOM=3603︒=120°,∴∠BOM=∠AOM-∠AOB=48°,∴∠MOC=∠BOC-∠BOM=72°-48°=24°,∴∠MBC=12∠MOC=12°,故选A.考查题型二已知正多边形中心角求边数典例2.(2020·江苏南通市模拟)若一个圆内接正多边形的中心角是36°,则这个多边形是()A.正五边形B.正八边形C.正十边形D.正十八边形【答案】C【提示】一个正多边形的中心角都相等,且所有中心角的和是360︒,用360︒除以中心角的度数,就得到中心角的个数,即多边形的边数.【详解】由题意可得:边数为36036=10︒÷︒.则这个多边形是正十边形.故选:C.变式2-1.(2020·福建模拟)一个半径为3的圆内接正n边形的中心角所对的弧等于3π4,则n的值为()A.6B.8C.10D.12【答案】B【提示】先利用弧长公式求出中心角的度数,由此即可得出答案.【详解】设圆内接正n边形的中心角的度数为x︒由弧长公式得:33 1804 xππ⋅=解得45x=即圆内接正n边形的中心角的度数为45︒则360845n︒==︒故选:B.考查题型三正多边形与圆典例3.(2020·四川中考真题)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a【答案】A【提示】分别画出符合题意的图形,利用直角三角形,BOH利用三角函数求解边心距,再比较大小即可.【详解】解:设圆的半径为R ,如图,,,,OB R OH a OH BC ==⊥ 由ABC 为圆O 内接正三角形,60,BOH ∴∠=︒则正三角形的边心距为a =R ×cos60°=12R . 如图,四边形ABCD 为圆O 的内接正方形,,,,OB R OH b OH BC ==⊥ 45,BOH ∴∠=︒四边形的边心距为b =R ×cos45°=22R , 如图,六边形ABCDEF 为圆O 的正内接六边形,,,,OB R OH c OH BC ==⊥30,BOH ∴∠=︒正六边形的边心距为c =R ×cos30°=32R . ∵12R 22<R 32<R , ∴a <b <c , 故选:A .变式3-1.(2020·湖北随州市·中考真题)设边长为a 的等边三角形的高、内切圆的半径、外接圆的半径分别为h 、r 、R ,则下列结论不正确...的是( )A .h R r =+B .2R r =C .34r =D .3R =【答案】C 【提示】将图形标记各点,即可从图中看出长度关系证明A 正确,再由构造的直角三角形和30°特殊角证明B 正确,利用勾股定理求出r 和R,即可判断C 、D . 【详解】如图所示,标上各点∠AO 为R∠OB 为r ∠AB 为h, 从图象可以得出AB=AO+OB∠即h R r =+∠A 正确∠∵三角形为等边三角形∠ ∴∠CAO=30°∠根据垂径定理可知∠ACO=90°∠ ∴AO=2OC∠即R=2r ∠B 正确∠在Rt △ACO 中,利用勾股定理可得∠AO 2=AC 2+OC 2∠即22212R a r ⎛⎫=+ ⎪⎝⎭∠ 由B 中关系可得∠()222122r a r ⎛⎫=+ ⎪⎝⎭,解得3=r ∠则3R =∠所以C 错误,D 正确; 故选:C .变式3-2.(2020·山东德州市·中考真题)如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为( )A .34πB .1234πC .2438πD .34π【答案】A【提示】正六边形的面积加上六个小半圆的面积,再减去中间大圆的面积即可得到结果. 【详解】解:正六边形的面积为:142362432⨯⨯=六个小半圆的面积为:22312ππ⋅⨯=,中间大圆的面积为:2416ππ⋅=, 所以阴影部分的面积为:24312162434πππ+-=, 故选:A .考查题型四 利用弧长公式求弧长、圆心角、半径典例4.(2020·辽宁沈阳市·中考真题)如图,在矩形ABCD 中,3AB =2BC =,以点A 为圆心,AD 长为半径画弧交边BC 于点E ,连接AE ,则DE⏜的长为( )A .43π B .πC .23π D .3π 【答案】C 【提示】先根据矩形的性质可得2,90AD BC BAD B ==∠=∠=︒,再根据圆的性质可得2AE AD ==,然后利用余弦三角函数可得30BAE ∠=︒,从而可得60DAE ∠=︒,最后利用弧长公式即可得. 【详解】四边形ABCD 是矩形,3AB =2BC =2,90AD BC BAD B ∴==∠=∠=︒由圆的性质得:2AE AD == 在Rt ABE △中,3cos AB BAE AE ∠==30BAE =∴∠︒60DAE BAD BAE ∴∠=∠-∠=︒则DE ⏜的长为60221803ππ⨯⨯=故选:C .变式4-1.(2020·内蒙古)如图,AB 是O 的直径,CD 是弦,点,C D 在直径AB 的两侧.若::2:7:11AOC AOD DOB ∠∠∠=,4CD =,则CD⏜的长为( )A .2πB .4πC 2πD 2π【答案】D【提示】 根据::2:7:11AOC AOD DOB ∠∠∠=求出COD ∠的度数,根据4CD =得到半径,运用弧长公式计算即可.【详解】∠:7:11∠∠=AOD DOB ,+180∠∠=︒AOD DOB , ∠71807018AOD ∠=︒⨯=︒, 又∠:2:7∠∠=AOC AOD ,∠20AOC ∠=︒ ,∠90COD ∠=︒,又∠4CD =, ∠16222OD == ∴CD ⏜=90222180180n ODπππ⨯⨯⨯⨯==. 故答案选D .变式4-2.(2020·江苏苏州市·九年级二模)一个扇形的圆心角为120︒,扇形的弧长等于4,π则该扇形的面积等于( )A .2πB .4πC .12πD .24π【答案】C【提示】根据弧长公式180n r l π=,代入求出r 的值,即可得到结论. 【详解】解:由题意得,4π=120180r π, 解得:r =6,∴S =1642π⨯⨯=12π. 故选:C.变式4-3.(2020·黑龙江哈尔滨市模拟)若扇形的圆心角是150︒,且面积是2240cm π,则此扇形的弧长是( )A .10cm πB .20cm πC .30cm πD .40cm π【答案】B 【提示】 先根据S 扇形=2360n R π求出该扇形的半径R ,然后再根据S 扇形=12lR 即可求得弧长l . 【详解】解:由S 扇形=2360n R π,n=150°,可得240π=2150360R π,解得R=24; 又由S 扇形=12lR 可得240π=1242l ⨯,解得l =20π. 故答案为B .变式4-4.(2020·辽宁盘锦市一模)一个扇形的弧长是π,半径是2,则此扇形的圆心角的度数是( ) A .80°B .90°C .100°D .120° 【答案】B【提示】 直接由弧长公式180n r l π=,结合题意可得出扇形圆心角的度数. 【详解】解:∵弧长是π,半径是2, ∴2180n ππ=, 解得:90n =︒变式4-5.(2020·扬州二模)如图,将等边△ABC 的边AC 逐渐变成以B 为圆心、BA 为半径的AC⏜,长度不变,AB 、BC 的长度也不变,则∠ABC 的度数大小由60°变为( )A .(60π)° B .(90π)° C .(120π)° D .(180π)°【答案】D【提示】设∠ABC 的度数为n ,根据弧长的计算公式把已知条件代入计算即可.【详解】解:设∠ABC 的度数大小由60变为n ,则AC=180n AB π,由AC=AB , 解得n=180π故选D .变式4-5.(2020·广西中考真题)如图,已知AB 的半径为5,所对的弦AB 长为8,点P 是AB⏜的中点,将AB⏜绕点A 逆时针旋转90°后得到AB ′⏜,则在该旋转过程中,点P 的运动路径长是( )A 5πB 5C .5πD .2π【答案】B【提示】根据已知AB⏜的半径为5,所对的弦AB 长为8,点P 是AB ⏜的中点,利用垂径定理可得AC =4,PO ⊥AB ,再根据勾股定理可得AP 的长,利用弧长公式即可求出点P 的运动路径长.如图,设AB⏜的圆心为O,连接OP交AB于C,连接OA,AP, AB′, AP′,∵圆O半径为5,所对的弦AB长为8,点P是AB⏜的中点,根据垂径定理,得AC=12AB=4,PO⊥AB,OC22OA AC-=3,∴PC=OP﹣OC=5﹣3=2,∴AP22AC PC+5∵将AB⏜绕点A逆时针旋转90°后得到AB′⏜,∴∠PAP′=∠BAB′=90°,∴L PP′=905180π⨯5.则在该旋转过程中,点P5π.故选:B.考查题型五扇形面积的相关计算典例5.(2020·江苏南通市·中考真题)如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm2【提示】先判断这个几何体为圆锥,同时得到圆锥的母线长为8,底面圆的直径为6,然后利用扇形的面积公式计算这个圆锥的侧面积.【详解】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6, 所以这个几何体的侧面积=12×π×6×8=24π(cm 2). 故选:B .变式5-1.(2020·江苏泰州市·中考真题)如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D 、E .若CDE ∠为36︒,则图中阴影部分的面积为( )A .10πB .9πC .8πD .6π【答案】A【提示】 本题可通过做辅助线,利用矩形性质对角线相等且平分以及等面积性,利用扇形ABC 面积减去扇形AOC 面积求解本题.【详解】连接OC 交DE 为F 点,如下图所示:由已知得:四边形DCEO 为矩形.∵∠CDE=36°,且FD=FO ,∴∠FOD=∠FDO=54°,△DCE 面积等于△DCO 面积.2290105410==10360360AOB AOC S S S πππ••••--=阴影扇形扇形. 故选:A .变式5-2.(2020·湖北咸宁市·中考真题)如图,在⊙O 中,2OA =,45C ∠=︒,则图中阴影部分的面积为( )A .22πB .2πC .22π- D .2π-【答案】D【提示】根据圆周角定理得出∠AOB=90°,再利用S 阴影=S 扇形OAB -S △OAB 算出结果.【详解】解:∵∠C=45°,∴∠AOB=90°,∵OA=OB=2,∴S 阴影=S 扇形OAB -S △OAB =29021223602π⋅⋅-⨯⨯=2π-, 故选D.变式5-3.(2020·山东日照市·中考真题)如图,AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E ,若CD =3AE =9,则阴影部分的面积为( )A .6π932B .12π﹣3C .3π934D .3【答案】A【提示】根据垂径定理得出CE=DE=12CD =3,再利用勾股定理求得半径,根据锐角三角函数关系得出∠EOD=60°,进而结合扇形面积求出答案.【详解】解:∵AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E ,∴CE =DE =12CD =3 设⊙O 的半径为r ,在直角△OED 中,OD 2=OE 2+DE 2,即222(9)(33)r r =-+,解得,r =6,∴OE =3,∴cos ∠BOD =3162OE OD ==, ∴∠EOD =60°, ∴13666BOD S ππ=⨯=扇形,19333322RT OED S =⨯⨯=, 根据圆的对称性可得: ∴9=632S π阴影 故选:A .变式5-4.(2020·西藏中考真题)如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E .若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A .433πB .4233π-C .833πD .8233π-【答案】D【提示】 根据垂径定理得到AE⏜=CE ⏜,AD =CD ,解直角三角形得到OD =12OA =2,AD =32OA =3,根据扇形和三角形的面积公式即可得到结论.【详解】解:∵OD ⊥AC ,∴∠ADO =90°,AE⏜=CE ⏜,AD =CD , ∵∠CAB =30°,OA =4,∴OD =12OA =2,AD =32=3 ∴图中阴影部分的面积=S 扇形AOE ﹣S △ADO =2604360π⋅⨯﹣1232⨯=83π﹣3 故选:D .变式5-5.(2020·宁夏中考真题)如图,等腰直角三角形ABC 中,90,2C AC ∠=︒=C 为圆心画弧与斜边AB 相切于点D ,交AC 于点E ,交BC 于点F ,则图中阴影部分的面积是( )A .14π-B .14π-C .24π- D .14π+ 【答案】A【提示】连接CD ,并求出CD 的值,再分别计算出扇形ECF 的面积和等腰三角形ACB 的面积,用三角形的面积减去扇形的面积即可得到阴影部分的面积.【详解】连接CD ,如图,∵AB 是圆C 的切线,∴CD ⊥AB ,∵△ABC 是等腰直角三角形,∴CD=12AB , ∵90,2C AC ∠=︒=AC=BC ,∴AB=2,∴CD=1, 21901=22123604ABC ECFS S S ππ∆⨯∴-==-阴影扇形 故选:A . 考查题型六 圆锥侧面积的相关计算典例6.(2020·湖南中考真题)一个圆锥的底面半径r =10,高h =20,则这个圆锥的侧面积是( ) A .3πB .3C .5D .5 【答案】C【提示】先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.【详解】 221020+5, 这个圆锥的侧面积=1255. 故选:C .变式6-1.(2020·山东东营市·中考真题)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2D.1【答案】D【提示】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•r•3=3π,然后解方程即可.【详解】解:根据题意得12•2π•r•3=3π,解得r=1.故选:D.变式6-2.(2020·青海中考真题)如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是()A.3.6B.1.8 C.3D.6【答案】A【提示】先计算阴影部分的圆心角度数,再计算阴影部分的弧长,再利用弧长计算圆锥底面的半径.【详解】由图知:阴影部分的圆心角的度数为:360°-252°=108°阴影部分的弧长为:1081236= 1805ππ⋅设阴影部分构成的圆锥的底面半径为r:则3625rππ=,即183.65r==故选:A.变式6-3.(2020·山东聊城市·中考真题)如图,有一块半径为1m,圆心角为90︒的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为().A .1m 4B .3m 4C .154D 3 【答案】C【提示】首先利用扇形的弧长公式求得圆锥的底面周长,求得底面半径的长,然后利用勾股定理求得圆锥的高.【详解】解:设圆锥的底面周长是l ,则l=9011801802n r πππ⨯⨯==m , 则圆锥的底面半径是:()1224ππ÷=m , 22115144⎛⎫-= ⎪⎝⎭. 故选:C .变式6-4.(2020·山东德州市·九年级三模)圆锥的母线长为9cm ,底面圆的直径为10cm ,那么这个圆锥的侧面展开图的圆心角度数是( )A .150°B .200°C .180°D .240°【答案】B【提示】 因为展开图的扇形的弧长等于圆锥底面周长,根据弧长公式列方程即可.【详解】 解:•910180n ππ=, 解得n=200°.故选B .变式6-5.(2020·湖北恩施土家族苗族自治州·九年级一模)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( )A .60°B .90°C .120°D .180° 【答案】C【详解】解:设母线长为R ,底面半径为r ,可得底面周长=2πr ,底面面积=πr 2,侧面面积=12lr=πrR , 根据圆锥侧面积恰好等于底面积的3倍可得3πr 2=πrR ,即R=3r.根据圆锥的侧面展开图的弧长等于圆锥的底面周长,设圆心角为n ,有2180n R r ππ=, 即32180n r r ππ⋅=. 可得圆锥侧面展开图所对应的扇形圆心角度数n=120°.故选C .。

多边形和圆的初步认识公式

多边形和圆的初步认识公式

多边形和圆的初步认识公式
以下是关于多边形和圆的初步认识公式:
正n边形的公式:
1. 一个内角 = (n-2) × 180° ÷ n。

2. 内角和度数 = (n-2) × 180度。

3. 中心角= 360 ÷ n。

4. 外角= 360 ÷ n。

5. 对角线数量 = n(n-3) ÷ 2。

圆的公式:
1. 圆的面积:S = πr^2 或S = πd^2/4。

2. 圆的直径:d = 2r。

3. 圆的周长:C = 2πr 或C = πd。

4. 扇形面积:S = nπr^2/360 = Lr/2(L为扇形的弧长)。

5. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

6. 一条弧所对的圆周角等于它所对的圆心角的一半。

直径所对的圆周角是直角。

90度的圆周角所对的弦是直径。

7. 圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。

(2)经过切点垂直于切线的直线必经过圆心。

(3)圆的切线垂直于经过切点的半径。

8. 切线的长定理:从圆外一点到圆的两条切线的长相等。

希望对您有所帮助!。

(中考考点梳理)与圆有关的计算-中考数学一遍过

(中考考点梳理)与圆有关的计算-中考数学一遍过

考点19 与圆有关的计算一、正多边形的有关概念正多边形中心:正多边形的外接圆的圆心叫做这个正多边形的中心.正多边形半径:正多边形外接圆的半径叫做正多边形半径.正多边形中心角:正多边形每一边所对的圆心角叫做正多边形中心角.正多边形边心距:正多边形中心到正多边形的一边的距离叫做正多边形的边心距.二、与圆有关的计算公式1.弧长和扇形面积的计算扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为2πr,圆锥的侧面积为S圆锥侧=12ππ2l r rl⋅=.圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.考向一正多边形与圆任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.典例1 如图,已知⊙O的周长等于8π cm,则圆内接正六边形ABCDEF的边心距OM的长为A.2 cm B.cmC.4 cm D.cm【答案】B【点睛】本题考查了正多边形和圆、正六边形的性质、等腰三角形的判定与性质;熟练掌握正六边形的性质是解决问题的关键.1.若一个正多边形的一个外角为60°,则它的内切圆半径与外接圆半径之比是__________.2.如图,正方形ABCD的外接圆为⊙O,点P在劣弧CD上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.考向二弧长和扇形面积1.弧长公式:π180n Rl=;2.扇形面积公式:2π360n RS=扇形或12S lR=扇形.典例2 时钟的分针长5 cm ,经过15分钟,它的针尖转过的弧长是 A .254π cm B .152π cm C .52π cm D .512π cm 【答案】C【解析】∵分针经过60分钟,转过360°,∴经过15分钟转过360°×1560=90°,则分针的针尖转过的弧长是l C .学科=网 典例3 小明用如图所示的扇形纸片折叠成一个圆锥的侧面,已知圆锥的母线长为5 cm ,扇形的弧长是6πcm ,那么这个圆锥的高是A .4 cmB .6 cmC .8 cmD .3 cm【答案】A【解析】设圆锥的底面半径是r ,则2πr =6π,解得:r =3cm ). 【点睛】本题主要考查圆锥侧面展开图的计算.用到的知识点:圆锥的侧面展开图是一个扇形,扇形的弧长等于圆锥底面的周长,扇形的半径是圆锥的母线长.3.已知扇形的圆心角为60°,半径长为12,则扇形的面积为 A .34π B .2π C .3π D .24π4.如图1,圆锥底面圆半径为1,母线长为4,图2为其侧面展开图.(1)求阴影部分面积(π可作为最后结果);(2)母线SC 是一条蜜糖线,一只蚂蚁从A 沿着圆锥表面最少需要爬多远才能吃到蜜糖?1,则该圆的内接正六边形的边心距是A.2B.1C D2.如图,正方形ABCD内接于⊙O,AB,则 AB的长是A.πB.32πC.2πD.12π3.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是A.90° B.120° C.150° D.180°4.已知半径为5的⊙O是△ABC的外接圆.若∠ABC=25°,则劣弧 AC的长为A.25π36B.125π36C.25π18D.5π365.如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是A .2π6aB .26π(a C 2D .23π(a 6.如图,在ABC △中,90ACB ∠=︒,30A ∠=︒,4AB =,以点B 为圆心,BC 长为半径画弧,交AB于点D ,则 CD的长为A .1π6B .1π3C .2π3D 7.如图,AB 是圆锥的母线,BC 为底面半径,已知BC =6 cm ,圆锥的侧面积为15π cm 2,则sin ∠ABC的值为A .34B .35C .45D .538.如图,在正方形ABCD 中,AB =12,点E 为BC 的中点,以CD 为直径作半圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是A .18+36πB .24+18πC .18+18πD .12+18π9.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为A .2πm 2B 2mC .2πmD .22πm10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O 的内接正十边形的一边, DE的度数为__________.11cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是__________cm . 12.用一块圆心角为216︒的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是__________cm .13.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.14.如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为__________(结果保留根号和π).15.如图1,作∠BPC 平分线的反向延长线PA ,现要分别以∠APB ,∠APC ,∠BPC 为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC 为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而902=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是__________;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是__________.16.如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧AEB上一点,且∠AEB=60°,求扇形OAB的面积(计算结果保留π).17.已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留π);(2)求证:CD是⊙O的切线.学-科网18.已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.(1)求证:DF是⊙O的切线;(2)若等边△ABC的边长为8,求由 DE、DF、EF围成的阴影部分面积.19.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.20.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.21.如图,AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,E 为⊙O 上一点,过点E 作直线DC 分别交AM ,BN 于点D ,C ,且CB =CE . (1)求证:DA =DE ;(2)若AB =6,CD1.(2018·益阳)如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是A .4π16-B .8π16-C .16π32-D .32π16-2.(2018·山西)如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为A .4π-4B .4π-8C .8π-4D .8π-83.(2018·抚顺)如图,AB 是⊙O 的直径,CD 是弦,∠BCD =30°,OA =2,则阴影部分的面积是A .π3B .2π3C .πD .2π4.(2018·十堰)如图,扇形OAB 中,∠AOB =100°,OA =12,C 是OB 的中点,CD ⊥OB 交 AB 于点D ,以OC 为半径的 CE交OA 于点E ,则图中阴影部分的面积是A .B .C .D .5.(2018·盘锦)如图,一段公路的转弯处是一段圆弧 AB ,则 AB 的展直长度为A .3π mB .6π mC .9π mD .12π m6.(2018·广安)如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为A .23π- B .13πC .43π- D .43π7.(2018·钦州)如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为A .π+B .π-C .2πD .2π-8.(2018·成都)如图,在ABCD 中,60B ∠=︒,C 的半径为3,则图中阴影部分的面积是A .πB .2πC .3πD .6π9.(2018·湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣: ①将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点; ②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG . 问:OG 的长是多少? 大臣给出的正确答案应是A r B.()rC.()r D r10.(2018·温州)已知扇形的弧长为2π,圆心角为60°,则它的半径为__________.11.(2018·呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为__________.△是半径为2的圆内接正三角形,则图中阴影部分的面积是__________ 12.(2018·绥化)如图,ABC(结果用含π的式子表示).13.(2018·贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是__________度.学科网14.(2018·玉林)如图,正六边形ABCDEF的边长是O1,O2分别是△ABF,△CDE的内心,则O1O2=__________.15.(2018·烟台)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1∶r2=__________.16.(2018·株洲)如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM =__________.17.(2018·宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,则S =__________.(结果保留根号)18.(2018·凉山州)将ABC △绕点B 逆时针旋转到A'BC'△使A 、B 、C'在同一直线上,若90BCA ∠=︒,30BAC ∠=︒,4cm AB =,则图中阴影部分面积为__________2cm .19.(2018·重庆A 卷)如图,在矩形ABCD 中,3AB =,2AD =,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是__________(结果保留π).20.(2018·泰州)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE ,DF =3,求图中阴影部分的面积.21.(2018·扬州)如图,在ABC ∆中,AB AC =,AO BC ⊥于点O ,OE AB ⊥于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F . (1)求证:AC 是O 的切线;(2)若点F 是AO 的中点,3OE =,求图中阴影部分的面积;(3)在(2)的条件下,点P 是BC 边上的动点,当PE PF +取最小值时,直接写出BP 的长.1∶2.【解析】∵一个正多边形的一个外角为60°,∴360°÷60°=6, ∴这个正多边形是正六边形,设这个正六边形的半径是r ,则外接圆的半径是r ,,2.2.【点睛】垂径定理:垂直于弦的直径平分弦并且平分弦所对的两条弧.3.【答案】D【解析】扇形的面积为D.4.【答案】(1)S阴=4π–8;(2)一只蚂蚁从A沿着圆锥表面最少需要爬个单位长度才能吃到蜜糖.【解析】(1)如图2中,作SE⊥AF交弧AF于C,设图2中的扇形的圆心角为n°·1,∴n=90°,∵SA=SF,∴△SFA是等腰直角三角形,∴S△SAF=12×4×4=8,又S扇形SAFS阴=S扇形SAF–S△SAF=4π–8.(2)在图2中,∵SC是一条蜜糖线,AE⊥SC,AF=,AE∴一只蚂蚁从A沿着圆锥表面最少需要爬个单位长度才能吃到蜜糖.1.【答案】B,故选B . 2.【答案】A【解析】如图,连接OA 、OB ,∵正方形ABCD 内接于⊙O , ∴AB =BC =DC =AD ,∴ AB BCCD DA ===, ∴∠AOB =14×360°=90°,在Rt △AOB 中,由勾股定理得:2AO 2=()2, 解得:AO =2, ∴ AB 的长为90π2180⨯=π,故选A . 3.【答案】D【解析】∵圆锥的主视图与左视图都是边长为4的等边三角形, ∴圆锥的母线长为4,底面圆的直径为4, 则圆锥的侧面展开图扇形的半径为4, 设圆锥的侧面展开图扇形的圆心角是n , 根据题意,得:·π·4180n =4π, 解得:n =180°,故选D . 4.【答案】C【解析】如图,连接AO ,CO ,∵∠ABC =25°,∴∠AOC =50°,∴劣弧 AC 的长=50π525π=18018⨯,故选C . 5.【答案】B【解析】∵正六边形的边长为a , ∴⊙O 的半径为a , ∴⊙O 的面积为π×a 2=πa 2,∵空白正六边形为六个边长为a 的正三角形,∴每个三角形面积为12×a ×a a 2,∴正六边形面积为a 2a 2,∴阴影面积为(πa 2a 2)×16=(π6)a 2,故选B .6.【答案】C【解析】∵90ACB ∠=︒,4AB =,30A ∠=︒,∴60B ∠=︒,2BC =,∴ CD的长为60π22π1803⨯=,故选C . 7.【答案】C【解析】设圆锥的母线长为R ,由题意得15π=π×3×R ,解得R =5, ∴圆锥的高为4,∴sin ∠ABC =45.故选C . 8.【答案】C【解析】作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE =CE =CH =FH =6,AE易得Rt △ABE ≌△EHF ,∴∠AEB =∠EFH ,而∠EFH +∠FEH =90°,∴∠AEB +∠FEH =90°,∴∠AEF =90°,∴图中阴影部分的面积=S 正方形ABCD +S 半圆-S △ABE -S △AEF =12×12+12·π·62-12×12×6-12· =18+18π.故选C . 9.【答案】A【解析】如图,连接AC .∵从一块直径为2 m 的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC =90°, ∴AC 为直径,即AC =2 m ,AB =BC .∵AB 2+BC 2=22,∴AB =BC m =1π2(m 2).故选A .11.【答案】【解析】设该圆锥的母线长是x cm x =.故答案为:. 12.【答案】50【解析】设这个扇形铁皮的半径为R cm ,圆锥的底面圆的半径为r cm , 根据题意得2πr =216π180R ⋅⋅,解得r =35R ,因为402+(35R )2=R 2,解得R =50. 所以这个扇形铁皮的半径为50 cm .故答案为:50. 13.【答案】72°【解析】∵五边形ABCDE 为正五边形,∴AB =BC =AE ,∠ABC =∠BAE =108°, ∴∠BAC =∠BCA =∠ABE =∠AEB =(180°−108°)÷2=36°, ∴∠AFE =∠BAC +∠ABE =72°,故答案为:72°.14-π3 【解析】正六边形的中心为点O ,如图,连接OD 、OE ,作OH ⊥DE 于H ,∴∠DOE =3606︒=60°,∴OD =OE =DE =1,∴OH∴正六边形ABCDEF 的面积=12,∠A =(62)1806-⨯︒=120°,∴扇形ABF 的面积=2120π13π603⨯=,∴图中阴影部分的面积-π3-π3. 15.【答案】14;21【解析】图2中的图案外轮廓周长是:8-2+2+8-2=14; 设∠BPC =2x ,∴以∠BPC 为内角的正多边形的边数为:360180180290x x =--,以∠APB 为内角的正多边形的边数为:360x,∴图案外轮廓周长是=18090x --2+360x -2+360x -2=18090x -+720x-6,根据题意可知:2x 的值只能为60°,90°,120°,144°, 当x 越小时,周长越大,∴当x =30时,周长最大,此时图案定为会标, 则则会标的外轮廓周长是=180720903030+--6=21,故答案为:14;21.16.【解析】(1)连接OB ,如图所示:∵BC切⊙O于点B,∴OB⊥BC,∵AD⊥BC,∴AD∥OB,∴∠DAB=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠DAB=∠OAB,∴AB平分∠OAD;(2)∵点E是优弧AEB上一点,且∠AEB=60°,∴∠AOB=2∠AEB=120°,∴扇形OAB的面积=2120π3360⨯=3π.17.【解析】(1)∵AB=4,∴OB=2,∵∠COB=60°,∴S扇形OBC=60π42π3603⨯=.(2)∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO,∴∠FAC=∠ACO,∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线.18.【解析】(1)如图,连接CD、OD,∵BC是⊙O的直径,∴∠CDB=90°,即CD⊥AB,又∵△ABC是等边三角形,∴AD=BD,∵BO=CO,∴DO是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线.19.【解析】(1)如图,连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°-90°-15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°-∠ABC∠C=30°,∴OM =12OA =12×3=32,AM OM , ∵OA =OE ,OM ⊥AC ,∴AE =2AM , ∴∠BAC =∠AEO =30°, ∴∠AOE =180°-30°-30°=120°,∴阴影部分的面积S =S 扇形AOE -S △AOE =2120π3133π36022⨯-⨯=-.(2)如图,连接OD ,∵AB =AC ,OB =OD ,∴∠ABC =∠C ,∠ABC =∠ODB , ∴∠ODB =∠C , ∴AC ∥OD , ∵DF ⊥AC , ∴DF ⊥OD , ∵OD 过点O , ∴DF 是⊙O 的切线. (3)如图,连接BE ,∵AB 为⊙O 的直径, ∴∠AEB =90°, ∴BE ⊥AC ,∵DF ⊥AC , ∴BE ∥DF , ∴∠FDC =∠EBC , ∵∠EBC =∠DAC , ∴∠FDC =∠DAC , ∵A 、B 、D 、E 四点共圆, ∴∠DEF =∠ABC , ∵∠ABC =∠C , ∴∠DEC =∠C , ∵DF ⊥AC , ∴∠EDF =∠FDC , ∴∠EDF =∠DAC .20.【解析】(1)直线DE 与⊙O 相切.理由如下:连接OE 、OD ,如图,∵AC 是⊙O 的切线, ∴AB ⊥AC , ∴∠OAC =90°,∵点E 是AC 的中点,O 点为AB 的中点, ∴OE ∥BC ,∴∠1=∠B ,∠2=∠3, ∵OB =OD , ∴∠B =∠3, ∴∠1=∠2,在△AOE 和△DOE 中,12OA OD OE OE =⎧⎪∠=∠⎨⎪=⎩,∴△AOE≌△DOE,∴∠ODE=∠OAE=90°,∴OA⊥AE,∴DE为⊙O的切线.(2)∵点E是AC的中点,∴AE=12AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2×12×2×2.4-2100π2104.8π3609⨯=-.21.【解析】(1)如图,连接OE、BE,∵OB=OE,∴∠OBE=∠OE B.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°.∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE.(2)如图,连接OC,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD,∵CF=,∴BC -AD∴BC在直角△OBC 中,tan ∠BOC =BCOB, ∴∠BOC =60°.在△OEC 与△OBC 中,OE OB OC OC CE CB =⎧⎪=⎨⎪=⎩,∴△OEC ≌△OBC (SSS ), ∴∠BOE =2∠BOC =120°,∴S 阴影部分=S 四边形BCEO -S 扇形OBE =2×12BC ·OB -2120π360OB ⋅⋅-3π.1.【答案】B【解析】如图,连接OA 、OB ,∵四边形ABCD 是正方形, ∴∠AOB =90°,∠OAB =45°, ∴OA =AB ·, 所以阴影部分的面积=S ⊙O -S 正方形ABCD =π×()2-4×4=8π-16.故选B . 2.【答案】A【解析】利用对称性可知:阴影部分的面积=扇形AEF 的面积-△ABD 的面积=290π413602⨯⨯-×4×2=4π-4,故选A . 3.【答案】B【解析】∵∠BCD =30°,∴∠BOD =60°, ∵AB 是⊙O 的直径,CD 是弦,OA =2,∴阴影部分的面积是:260π22π3603⨯⨯=,故选B . 4.【答案】C【解析】如图,连接OD ,AD ,∵点C 为OA 的中点,∴OC =12OA =12OD , ∵CD ⊥OA ,∴∠CDO =30°,∠DOC =60°,∴△ADO 为等边三角形,OD =OA =12,OC =CA =6,∴CD ,∴S 扇形AOD =260π12360⋅⋅=24π, ∴S阴影=S扇形AOB -S扇形COE -(S扇形AOD -S △COD)=22100π12100π61(24π63603602⋅⋅⋅⋅---⨯⨯,故选C . 5.【答案】B【解析】 AB 的展直长度为:108π10180⨯=6π(m ).故选B .6.【答案】C【解析】连接OB 和AC 交于点D ,如图,∵圆的半径为2,∴OB =OA =OC =2,又四边形OABC 是菱形,∴OB ⊥AC ,OD =12OB =1,在Rt △COD 中利用勾股定理可知:CD =,AC =2CD ,∵sin ∠COD =CD OC =∴∠COD =60°,∠AOC =2∠COD =120°,∴S 菱形ABCO =12B ×AC =12S 扇形AOC =2120π24π3603⨯⨯=,则图中阴影部分面积为S 菱形ABCO -S 扇形AOC =4π3-C .8.【答案】C【解析】∵在 ABCD 中,∠B =60°,⊙C 的半径为3,∴∠C =120°,∴图中阴影部分的面积是:2120π3360⨯⨯=3π,故选C . 9.【答案】D【解析】如图,连接CD ,AC ,DG ,AG .∵AD 是⊙O 直径,∴∠ACD =90°,在Rt △ACD 中,AD =2r ,∠DAC =30°,∴AC , ∵DG =AG =CA ,OD =OA ,∴OG ⊥AD ,∴∠GOA =90°,∴OG r ,故选D .10.【答案】6【解析】设扇形的半径为r ,根据题意得:60π2π180r=,解得:r =6,故答案为:6.111【解析】设⊙O 的半径为r ,⊙O 的内接正方形ABCD ,如图,过O 作OQ ⊥BC 于Q ,连接OB 、OC ,即OQ 为正方形ABCD 的边心距, ∵四边形BACD 是正方形,⊙O 是正方形ABCD 的外接圆, ∴O 为正方形ABCD 的中心,∴∠BOC =90°, ∵OQ ⊥BC ,OB =CO ,∴QC =BQ ,∠COQ =∠BOQ =45°,∴OQ =OC R . 设⊙O 的内接正△EFG ,如图,过O 作OH ⊥FG 于H ,连接OG ,即OH 为正△EFG 的边心距,∵正△EFG 是⊙O 的外接圆,∴∠OGF =12∠EGF =30°, ∴OH =OG ×sin30°=12R ,∴OQ ∶OH =R )∶(12R )∶1∶1.12.【答案】4π-【解析】如图,点O 既是它的外心也是其内心,∴2OB =,130∠=︒,∴112OD OB ==,BD =,∴3AD =,BC =,∴132ABC S =⨯=△2π24π=⨯=,所以阴影部分的面积4π=-,故答案为:4π-. 13.【答案】72【解析】如图,连接OA 、OB 、OC ,∠AOB =3605︒=72°, ∵∠AOB =∠BOC ,OA =OB ,OB =OC ,∴∠OAB =∠OBC ,在△AOM 和△BON 中,OA OB OAM OBN AM BN =⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BON ,∴∠BON =∠AOM ,∴∠MON =∠AOB =72°,故答案为:72. 14.【答案】【解析】如图,过A 作AM ⊥BF 于M ,连接O 1F 、O 1A 、O 1B ,∵六边形ABCDEF 是正六边形,∴∠A =(62)1806-⨯︒=120°,AF =AB ,∴∠AFB =∠ABF =12×(180°-120°)=30°, ∴△AFB 边BF 上的高AM =12AF =12×(FM =BM+6,∴BF设△AFB 的内切圆的半径为r , ∵S △AFB =111AO F AO B BFO S S S ++△△△,∴12×()×(+6)=12×()×r +12×()×r +12×(×r , 解得:r =32,即O 1M =r =32,∴O 1O 2=2×32.152【解析】如图,连接OA ,由已知,M 为AF 中点,则OM ⊥AF ,∵六边形ABCDEF 为正六边形,∴∠AOM =30°,设AM =a ,∴AB =AO =2a ,OM , ∵正六边形中心角为60°,∴∠MON =120°,∴扇形MON πa =,则r 1a , 同理:扇形DEF 的弧长为:120π24π1803a a ⋅⋅=,则r 2=23a ,r 1:r 222. 16.【答案】48°【解析】如图,连接OA ,∵五边形ABCDE 是正五边形,∴∠AOB =3605︒=72°,∵△AMN 是正三角形,∴∠AOM =3603︒=120°, ∴∠BOM =∠AOM -∠AOB =48°,故答案为:48°.17.【答案】【解析】依照题意画出图象,如图所示.∵六边形ABCDEF 为正六边形,∴△ABO 为等边三角形,∵⊙O 的半径为1,∴OM =1,∴BM =AM AB∴S =6S △ABO =6×12. 18.【答案】4π【解析】由旋转可得△ABC ≌△A ′BC ′.∵∠BCA =90°,∠BAC =30°,AB =4 cm ,∴BC =2 cm ,AC ,∠A ′BA =120°,∠CBC ′=120°,∴阴影部分面积=(S △A ′BC ′+S 扇形BAA ′)-S 扇形BCC ′-S △ABC =120π360×(42-22)=4π cm 2.故答案为:4π. 19.【答案】6π- 【解析】S 阴影=S 矩形ABCD -S 扇形ADE =2×3-290π2360⨯=6-π,故答案为:6-π. 20.【解析】(1)DE 与⊙O 相切,理由:如图,连接DO ,∵DO =BO ,∴∠ODB =∠OBD ,∵∠ABC 的平分线交⊙O 于点D ,∴∠EBD =∠DBO ,∴∠EBD =∠BDO ,∴DO ∥BE ,∵DE ⊥BC ,∴∠DEB =∠EDO =90°,∴DE 与⊙O 相切.(2)∵∠ABC 的平分线交⊙O 于点D ,DE ⊥BE ,DF ⊥AB ,∴DE =DF =3,∵BE ,∴BD =6, ∵sin ∠DBF =31=62, ∴∠DBA =30°,∴∠DOF =60°,∴sin60°=3DF DO DO ==,∴DO ,则FO132π2=. 21.【解析】(1)如图,过O 作AC 垂线OM ,垂足为M .∵AB AC =,AO BC ⊥,∴AO 平分BAC ∠,∵OE AB OM AC ⊥⊥,, ∴OE OM =,∵OE 为⊙O 的半径,∴OM 为⊙O 的半径,∴AC 是⊙O 的切线.(2)∵3OM OE OF ===,且F 是OA 的中点,∴6AO =,AE =,∴2AEO S AO AE =⋅÷=△, ∵OE AB ⊥,∴60EOF ∠=︒,即9π603π3602OEF S ⋅︒==︒扇形,∴3π2S =-阴影.学科=网 (3)作B 关于BC 的对称点G ,交BC 于H ,连接FG 交BC 于P ,此时PE PF +最小, 由(2)知60EOF ∠=︒,30EAO ∠=︒,∴60B ∠=︒,∵3EO =,∴3EG =,32EH =,BH =, ∵EG BC ⊥,FO BC ⊥,∴EHP △∽FOP △, ∴31322EH HP FO PO ==÷=,即2HP OP =,∵BO HP OP =+=,∴3HP =,即HP =,∴BP ==.。

2010年中考数学二轮复习专题水平测试-正多边形与圆、弧长、扇形面积

2010年中考数学二轮复习专题水平测试-正多边形与圆、弧长、扇形面积

2010年中考数学二轮复习专题水平测试21 正多边形与圆、弧长、扇形面积一、选择题1.(2009年贵州黔东南州)设矩形ABCD 的长与宽的和为2,以AB 为轴心旋转一周得到一个几何体,则此几何体的侧面积有( )A.最小值4πB.最大值4πC.最大值2πD.最小值2π2. (2009年陕西省)若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是 A .1.5 B .2 C .3 D .6 3.(绵阳市)如图,△ABC 是直角边长为a 的等腰直角三角形,直角边AB 是半圆O 1的直径,半圆O 2过C 点且与半圆O 1相切,则图中阴影部分的面积是 A .2367a π- B .2365a π- C .2367a D .2365a4.2009仙桃)现有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72° 5.(2009年广州市)已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sinθ的值为( ) (A )125 (B )135 (C )1310 (D )13126.(2009年济宁市)一个几何体的三视图如右图所示,那么这个几何体的侧面积是A. 4πB.6πC. 8πD. 12π7.(2009年日照)将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 A.10cmB.30cmC.40cmD.300cm8.(2009年湖北十堰市)如图,已知RtΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( ). A .π5168 B .π24 C .π584 D .π129.(2009年台州市),⊙O 的内接多边形周长为3 ,⊙O 的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是( ) A. B. C .10 D10.(2009年天津市)边长为a 的正六边形的内切圆的半径为( )A .2aB .a C.2a D .12a11.(2009年济南)在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm O B =,高8cm O C =.则这个圆锥漏斗的侧面积是( )A .230cmB .230cm πC .260cm πD .2120cm 12.(2009年茂名市)如图,一把遮阳伞撑开时母线的长是2米,底面半径为1米,则做这把遮阳伞需用布料的面积是( ) A .4π平方米 B .2π平方米 C .π平方米 D .1π2平方米二、选择题13.(2009年江苏省)已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).14.(2009年黄冈市) 矩形ABCD 的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置1111A B C D 时(如图所示),则顶点A 所经过的路线长是_________.15.(2009年兰州)兰州市某中学的铅球场如图10所示,已知扇形AOB的面积是36米2,弧AB 的长度为9米,那么半径OA = 米.16.(2009年凉山州)将A B C △绕点B 逆时针旋转到A BC ''△使A B C '、、在同一直线上,若90B C A ∠=°,304cm BAC AB ∠==°,,则图中阴影部分面积为cm 2.17.(2009年常德市)一个圆锥的母线长为5cm ,底面圆半径为3 cm ,则这个圆锥的侧面积是 cm 2(结果保留π).B18.(2009泰安)如图,(1)是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图(2)所示,ABCD 是正方形,⊙O 是该正方形的内切圆,E 为切点,以B 为圆心,分别以BA.BE 为半径画扇形,得到如图所示的扇环形,图(1)中的圆与扇环的面积比为 。

数字中考总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)

数字中考总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)

中考总复习:正多边形与圆的有关的证明和计算—知识讲解(基础)【考纲要求】1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.(2015•镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31+.解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=1313122++=+.【高清课堂:正多边形与圆的有关证明与计算自主学习4】【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.32::【高清课堂:正多边形与圆的有关证明与计算自主学习2】【变式3】(2015•广西自主招生)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q分别表示阴影部分的面积,那么P 和Q 的大小关系是( ).A .P =QB .P >QC .P <QD .无法确定(2)如图(b),△ABC 为等腰直角三角形,AC =3,以BC 为直径的半圆与斜边AB 交于点D ,则图中阴影部分的面积是________.(3)如图(c),△AOB 中,OA =3cm ,OB =1cm ,将△AOB 绕点O 逆时针旋转90°到△A ′OB ′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC 面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=,∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D.3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∴∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA ,∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】 解:连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===g g 阴影扇形OCD .4.(2015秋•江都市期中)如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC 交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠EAB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.»AB)对应5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C ,连接AC ,过点O 作AC 的垂线交AC 于点D ,交⊙O 于点E .已知AB ﹦8,∠P=30°.(1)求线段PC 的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠AOC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048=3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。

正多边形和圆、弧长和扇形面积

正多边形和圆、弧长和扇形面积

学习笔记-正多边形和圆、弧长和扇形面积主要内容:正多边形和圆、弧长和扇形面积。

一、正多边形和圆
(1)正多边形定义
①各边相等,各角也相等的多边形是正多边形;
②各边相等的多边形不是正多边形,如菱形;各角相等的多边形不是正多边形,如矩形;
③各边相等的圆内接多边形是正多边形;但是各角相等的圆内接多边形不是正多边形;
(2)正多边形相关概念
①中心:正多边形外接圆的圆心;
②半径:正多边形外接圆的半径;
③中心角:正多边形每一边所对的圆心角;
④边心距:中心到正多边形一边的距离;
(3)正多边形相关计算
①解决正多边形有关计算时,通过作正n边形的半径和边心距,将正n边形分成2n个全等的直角三角形,再利用勾股定理,即可完成一些正多边形的计算;
②正n边形的每个内角:360°/n;正n边形的每个外角:360°/n;
(4)正多边形有关的作图
利用等分圆的方法画正多边形:
①通用方法:用量角器画中心角,然后再圆上依次截取等于该中心角所对弧的等弧(操作简单,但到最后一个等分点,误差较大)
②尺规作图:精准,但是仅适用某些特殊的正多边形,不是任意等分圆周都可行;
③画正三角形、正四边形、正六边形
二、弧长和扇形面积
(1)弧长公式和扇形面积公式
.l.R其中n:圆心角的度数,R:半径
l=nπR/180S=nπR2/360S=1
2
(2)不规则图形面积问题
(3)圆锥的侧面积和全面积
(4)最短路径问题。

9.中考数学专题07 正多边形和圆、弧长和扇形的面积专题详解(解析版)

9.中考数学专题07 正多边形和圆、弧长和扇形的面积专题详解(解析版)

正多边形和圆、弧长和扇形的面积真题测试一、单选题⌢上的任意一点,则∠APB的大小是1.(2020·柯桥模拟)如图,正六边形ABCDEF内接于⊙O,点P是CD()A. 15°B. 30°C. 45°D. 60°【答案】B【解析】:连接OA、OB、如图所示:∵∠AOB=360°=60°,6∴∠APC=1∠AOC=30°.2故答案为:B.2.(2020·新都模拟)如图,在圆内接四边形ABCD中,∠C=110°,则∠BOD的度数为()A. 140°B. 70°C. 80°D. 60°【答案】A【解析】∵四边形ABCD是圆内接四边形∴∠A+∠C=180°,∵∠C=110°,∴∠A=180°﹣∠C=70°,由圆周角定理得,∠BOD=2∠A=140°,故答案为:A.3.(2020·吉林模拟)如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=100°,则∠α=()A. 80°B. 100°C. 120°D. 160°【答案】D【解析】:优弧AB上任取一点D,连接AD,BD,.∵四边形ACBD内接与⊙O,∠C=100°,∴∠ADB=180°﹣∠C=180°﹣100°=80°,∴∠AOB=2∠ADB=2×80°=160°.故答案为:D.4.(2020·启东模拟)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A. 1B. 2C. 3D. 6【答案】B=4π,【解析】:扇形的弧长=120π×6180∴圆锥的底面半径为4π÷2π=2.故答案为:B.5.(2020九下·中卫月考)如图,一根5米长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只羊A(羊在草地上活动),那么羊在草地上的最大活动区域面积是()平方米.A. 1712πB. 176π C. 254π D. 7712π【答案】 D【解析】:如图所示:这只羊在草地上的最大活动区域为两个扇形,其中大扇形的半径为5米,圆心角为90°;小扇形的半径为5-4=1米,圆心角为180°-120°=60°羊在草地上的最大活动区域面积= 90π×52360+60π×12360 = 7712π (平方米) 故答案为:D.6.(2020·无锡模拟)已知扇形的半径为6cm ,圆心角为120°,则这个扇形的面积是( )A. 36πcm 2B. 12πcm 2C. 9πcm 2D. 6πcm 2【答案】 B【解析】:由题意得:n=120°,R=6,故可得扇形的面积S= nπr 2360 = 120π×62360 =12πcm 2 . 故答案为:B .7.(2020·南充模拟)如图A ,B ,C 是 ⊙O 上顺次3点,若 AC , AB , BC 分别是 ⊙O 内接正三角形、正方形、正n 边形的一边,则 n = ( )A. 9B. 10C. 12D. 15【答案】 C【解析】:如图:连接 OA , OB , OC .∵若AC,AB,BC分别是⊙O内接正三角形、正方形、正n边形的一边,则∠AOC=120°,∠AOB=90°.∴∠BOC=30°.∴360°=12,30°∴BC是⊙O内接正十二边形的一边.故答案为:C.8.(2020·开平模拟)如图,正五边形ABCDE绕点A旋转了α°,当α=36°时,则∠1=()A. 72°B. 108°C. 144°D. 120°【答案】C=108°,【解析】:如图,因为正五边形的每一个内角为540°5∴α=36°,.∴∠2=108°−36°=72°,由旋转的旋转得:对应角相等,∴∠1=540°−3×108°−72°=144°.故答案为:C.9.(2020·石家庄模拟)如图,以正五边形ABCDE的对角线BE为边,作正方形BEFG,使点A落在正方形BEFG内,则∠ABG的度数为()A. 18∘B. 36∘C. 54∘D. 72∘【答案】C【解析】:∵五边形ABCDE是正五边形,∴∠BAE=180°×(5−2)=108°,AB=AE,5(180°−∠A)=36°,∴∠ABE=∠BEA=12∵四边形BEFG是正方形,∴∠EBG=90°,∴∠ABG=∠EBG−∠ABE=90°−36°=54°.故答案为:C.10.(2020·台州模拟)如图,将边长为3的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为()S2A. S1>S2B. S1=S2C. S1<S2D. S1=π3【答案】A⌢=12,【解析】:由题意:EAC∴S2=1×12×3=18,∵S1=6× √34×32=27√32,∴S1>S2,故答案为:A.11.(2020·湖州模拟)如图,四边形ABCD内接于半径为3的⊙O,CD是直径,若∠ABC=110°,则扇形AOD的面积为()A. 74π B. π C. 72π D. 2π【答案】B【解析】:∵∠ABC=110°,∴优弧ADC所对的圆心角的度数为110°×2=220°,∵CD是直径,∴∠COD=180°,∵∠COD+∠AOD=220°,∴∠AOD=40°,∵⊙O的半径为3,∴扇形AOD的面积为40×π×32360=π.故答案为:B.12.(2020·金牛模拟)如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为32cm,BD的长为14cm,则DE⌢的长为()cm.A. 15πB. 12πC. 15πD. 36π【答案】C【解析】:∵AB=32cm,BD=14cm,AB,AC夹角为150°,∴AD=AB﹣BD=18cm,∴DE⌢的长为:150∘×π×18=15π(cm),180∘故答案为:C.13.(2020·河北模拟)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离不可能是()A. 0.5B. 0.6C. 0.7D. 0.8【答案】A【解析】如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2- √2小于等于1,故答案为:A.14.(2019九上·温州期中)如图,△ABC内接于⊙O,BC=6,AC=2,∠A-∠B=90°,则⊙O的面积为()A. 9.6πB. 10πC. 10.8πD. 12π【答案】B【解析】如下图所示,过点B作圆的直径BE交圆于点E,则∠ECB=90°,∴∠E+∠EBC=90°,∵圆的内接四边形对角互补,∴∠E+∠A=180°①,∵∠A−∠ABC=90°①,①-①可得:∠E+∠ABC=90°,∴∠ABC=∠EBC,∴AC⌢=CE⌢,∴CE=AC=2,在Rt△BCE中,由勾股定理得,BE=√BC2+CE2=√62+22=2√10,∴⊙O的半径为r=1BE=√10,2∴圆的面积= πr2=π⋅(√10)2=10π,故选B.15.(2019·上海模拟)正六边形的半径与边心距之比为()A. 1:√3B. √3:1C. √3:2D. 2:√3【答案】D【解析】∵正六边形的半径为R,∴边心距r=√3R,2∴R:r=1:√3=2:√3,2故答案为:D.16.(2020·宁波模拟)如图,⊙O 上有一个动点A 和一个定点B ,令线段AB 的中点是点P ,过点B 作⊙O的切线BQ ,且BQ=3,现测得 AB ⌢ 的长度是 4π3, AB ⌢ 的度数是120°,若线段PQ 的最大值是m ,最小值是n ,则mn 的值是( )A. 3 √10B. 2 √13C. 9D. 10【答案】 C【解析】:如图,连接OP ,OB ,O'点为OB 的中点,设⊙O 的半径为r ,根据题意得120·π·r180=43π , 解得r=2, ∵P 点为AB 的中点,∴OP ⊥AB ,∴∠OPB=90°,∴点P 在以OB 为直径的圆上,直线QO'交⊙O'于E. F ,如图,∵BQ 为切线,∴OB ⊥BQ ,在Rt △O'BQ 中,O'Q=√O ′B 2+BQ 2=√12+32=√10,∴QE=√10+1 , QF=√10−1,即m=√10+1 , n=√10−1,∴mn=(√10+1)(√10−1)=9.故答案为:C.17.(2019九上·无锡月考)如图,AB 是⊙o 直径,M ,N 是 AB⌢ 上两点,C 是 MN ⌢ 上任一点,∠ACB 角平分线交⊙o 于点D ,∠BAC 的平分线交CD 于点E ,当点C 从M 运动到N 时,C 、E 两点的运动路径长之比为( )A. √2B. π2C. 32D. √52【答案】A【解析】如图,连接EB,设OA=r∵AB是直径∴∠ACB=90°∵E是△ACB的内心,∴∠AEB=135°∵∠ACD=∠BCD∴AD⌢=DB⌢∴AD=DB=√2r∴∠ADB=90°∴点E在以D为圆心DA为半径的圆上,运动轨迹是GF⌢,点C的运动轨迹是MN⌢∵∠MON=2∠GDF,设∠GDF=α,则∠MON=2α,∴MN⌢GF⌢=2α·π·r180α·π·√2r180=√2故答案为:A18.(2019九上·浙江期中)如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E 为⊙O上一动点,CF⊥AE于点F。

圆内接正多边形、弧长及扇形的面积

圆内接正多边形、弧长及扇形的面积

—多边形是正多边形
A
B
C
D
A
B
C



1
2
3
A
B
C
D
E
4


5
证明:∵AB=BC=CD=DE=EA ∴AB=BC=CD=DE=EA ∵BCE=CDA=3AB ∴∠1=∠2 同理∠2=∠3=∠4=∠5 又∵顶点A、B、C、D、E都在⊙O上, ∴五边形ABCDE是⊙O的内接正五边形.
菱形是正多边形吗?矩形呢?正方形呢?
02
为什么?
正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过n边形的中心.
边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心.
二、圆内接正多边形
弦相等(多边形的边相等) 弧相等— 圆周角相等(多边形的角相等)
若字母 S 表示面积,n表示圆心角度数,r 表示圆半径,则计算扇形面积的公式为:
S扇形= S圆
360
n
360
n
= πr2
五、弧长与扇形的面积
S扇形= S圆
360
n
360
n
= πr2
l弧= C圆
360
n
= πr
180
n
当圆心角确定时,弧长与圆的 有关
四、扇形的面积公式
由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形.
半径
半径
O
B
A
圆心角

O
B
A
扇形
下列各图中,哪些图形是扇形?为什么?
(当圆半径一定时)扇形面积的大小到底和哪些因素有关呢?
圆心角是 的扇形面积是多少?

正多边形和圆及弧长和扇形面积思维导图

正多边形和圆及弧长和扇形面积思维导图
正多边形和圆
(1)正多边形与圆的关系 把一个圆分成n(n边形是这个圆的内接正多边形,这个圆叫做这个正多边形 的外接圆. (2)正多边形的有关概念
①中心:正多边形的外接圆的圆心叫做正多边形的中心.
②正多边形的半径:外接圆的半径叫做正多边形的半径.
③中心角:正多边形每一边所对的圆心角叫做正多边形的中心 角.

积为S,则
S扇形=nπR2/360
扇形面积的计算
或S扇形=lR/2(其中l为扇形的弧长) (4)求阴影面积常用的方法:
弧长和扇形面积
① 接用公式法; ②和差法;
③ 补法.
(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形 的面积.
圆锥的计算
(1)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母 线.连接顶点与底面圆心的线段叫圆锥的高. (2)圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面 的周长,扇形的半径等于圆锥的母线长. (3)圆锥的侧面积:S侧=1/2•2πr•l=πrl.
③题设未标明精确度的,可以将弧长用π表示.
④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不 一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才 有等弧的概念,才是三者的统一.
(1)圆面积公式:S=πr2
(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的
图形叫做扇形.
(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面
④边心距:中心到正多边形的一边的距离叫做正多边形的边心 距.
弧长的计算
(1)圆周长公式:C=2πR (2)弧长公式:l=nπR/180
(弧长为l,圆心角度数为n,圆的半径为R)
①在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都 不要带单位.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.4《正多边形与圆、弧长和扇形》检测 编号16 学习目标:1.熟练掌握正多边形与圆、弧长和扇形的有关计算。

2,会画二次函数的图象,并会归纳二次函数的性质。

一、选择题:
1.下列叙述正确的是 ( )
A .各边相等的多边形是正多边形.
B .各角相等的多边形是正多边形.
C .各边相等,各角也相等的多边形是正多边形.
D .轴对称图形是正多边形.
2.如图,水平地面上有一面积为30πcm 2的扇形AOB ,
半径6OA cm ,且OA 与地面垂直在没有滑动的情况
下,将扇形向右滚动至OB 与地面垂直为止,则O 点
移动的距离为( )
A .20cm
B .24cm
C .10πcm
D .30πcm
3.如左图所示,将长为20cm ,宽为2cm 的长方形白纸条,折成右图所示的图形并在其一面着色,则着色部分的面积为
A .
234cm B .236cm C .238cm D .2
40cm 4.下列命题中的真命题是 ( )
A .正三角形的内切圆半径和外接圆半径之比为2∶1;
B .正六边形的边长等于其外接圆的半径;
C .圆外切正方形的边长等于其边心距的2倍;
D .各边相等的圆外切多边形是正方形.
5.某校计划在校园内修建一座周长为12米的花坛,同学们设计出正三角形、正方形和圆共三种图案,其中使花坛面积最大的图案是 ( )
A .正三角形
B .正方形
C .圆
D .不能确定
6.如果圆柱底面直径为6cm ,母线长为10cm ,那么圆柱的侧面积为 ( )
A .30.
B .60.
C .90.
D .120 .
7.在Rt △ABC 中,已知AB=6,AC=8,∠A=90°.如果把Rt △ABC 绕直线AC 旋转一周得到一个圆锥,其全面积为S 1;把Rt △ABC 绕直线AB 旋转一周得到另一个圆锥,其全面积为S 2.那么S 1:S 2等于 ( )
A .2:3.
B .3:4.
C .4:9.
D .5:12.
8.如图,要想把边长12的等边三角形纸板剪去三个全等的小等边三角形,得到正六边形,则这个正六边形的边长是( )
A O B
C
图23-49A.6 B.4 C.8 D.9
9.在Rt△ABC 中,已知AB=6,AC=8,∠A=90°.如果把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其全面积为S1;把Rt △ABC 绕直线AB 旋转一周得到另一个圆锥,其全面积为S 2.那么S 1:S 2等于( )
A .2:3
B .3:4
C .4:9
D .5:12
10.如下图中每个阴影部分是以多边形各顶点为圆心,1为半径的扇形,并且所有多边形的
每条边长都大于2,则第n 个多边形中,所有扇形面积之和是 (结果保留π).
……
第1个 第2个 第3个
二、填空题:
11.如图,在圆内接正五边形ABCD 中,对角线AC 、BD 相交与点P ,则APB 的
度数是 。

F E D C
B A
(第11题) (第12题) (第14题)
12.编织一个底面周长为a ,高为b 的圆柱形花柱架,需用沿圆柱表面绕织一周的竹条若干
根,如图中的A 1C 1B 1、A 2C 2B 2,…,则每一根这样的竹条的长度最少是_________.
13.若圆锥的底面直线为6cm ,母线长为5cm ,则它的侧面积为____cm 。

(结果保留π)
14.如图,一块长为8的正方形木板ABCD,在水平桌面上绕点A 按逆时针方向旋转到ADEF 的位置,则顶点C 从开始到结束所经过的路径长为_____.
15.如图如果圆锥的底面圆的半径是8,母线长是15,那么这个圆锥侧
面展开图的扇形的圆心角的度数是 .
24.4《正多边形与圆、弧长和扇形》检测 编号17
主备人:齐登军 审核人:宋成伟 崔春近
学习目标:1.熟练掌握正多边形与圆、弧长和扇形的有关计算。

2,会画二次函数的图象,并会归纳二次函数的性质。

三、解答题:
16.如图,AB是O的内接正六边形的一边,AD是O的内接正十边形的一边,当点D在AB 上时,求证:BD是O的内接正十五边形的一边.
17.圆锥形的烟囱帽的底面直径是60cm,母线长为40cm。

(1)求这个烟囱帽的下料面积(指侧面面积)以及侧面展开图的圆心角的度数;
(2)画出它的展开图。

\
18.一个小孩荡秋千,如图所示,秋千的链子的长为OA=2.5m,当秋千向两边摆动时,摆角∠BOD恰好为60°,并且两边摆动角度相同。

求:
(1)秋千摆至最高位置时与其摆至最低位置时的高度之差。

(2)秋千从B点摆动到D点所走过的路程(结果精确到0.01m)
19.如图,表示广场中心的圆形花坛的平面图,准备在圆形花坛内种植六种不同颜色的花,为了美观,要使同色花卉集中在一起,并且各花卉的种植面积相等,请
你帮助设计一种种植方案作在圆上(保留痕迹,不写作法).
20.如图,已知一底面半径为r,母线长为3r的圆锥,在地面圆周上有一蚂蚁位于A点,它从A点出发沿圆锥面爬行一周后又回到原出发点,请你给它指出一条爬行最短的路径,并求出最短路径的长.
y
21如图,ABC △内接于⊙O ,点D 在半径OB 的延长线上,30BCD A ∠=∠=°.
(1)试判断直线CD 与⊙O 的位置关系,并说明理由;
(2)若⊙O 的半径长为1,求由弧BC 、线段CD 和BD 所围成的阴影部分面积(结果保留
π和根号).
22.如图,把直角三角形ABC 的斜边AB 放在直线l 上,按顺时针方向转动
两次,使它转到A B C ''''''的位置,
设1,BC AC ==则顶点A 运动到A '的位置时:
(1).点A 经过的路线有多长?(2).点A
经过的路线与直线l 所围成的面积是多少?
23.已知二次函数24y x x =+,
(1) 用配方法把该函数化为2()y a x h k =-+
(其中a 、h 、k 都是常数且a≠0)形式,并画
出这个函数的图像,根据图象指出函数的对称
轴和顶点坐标.
(2) 求函数的图象与x 轴的交点坐标.
24.(大连)如图,直线m x y +=和抛物线 c bx x y ++=2都经过点A(1,0),B(3,2).
⑴ 求m 的值和抛物线的解析式;
⑵ 求不等式m x c bx x +>++2的解集.(直接写出答案)。

相关文档
最新文档