七年级上学期期中数学试卷第26套真题
沪科版七年级上册数学期中考试试题含答案
沪科版七年级上册数学期中考试试卷一、单选题1.下列各数:0,12-,-(-1),|-12|,(-1)2,(-3)3,其中不是负数的有()A .1个B .2个C .3个D .4个2.下列各式中,计算正确的是()A .2x+3x =5x 2B .4a 2b ﹣5ba 2=﹣a 2bC .2a+2b =4abD .x 3﹣x 2=x3.全国每年浪费食物总量约50000000000千克,这个数据用科学记数法表示为()A .0.5×1011千克B .50×109千克C .5×109千克D .5×1010千克4.若(m+2)x 2|m|-3=5是一元一次方程,则m 的值为()A .2B .﹣2C .±2D .45.下列各式中,不相等的是()A .(﹣2)3和﹣23B .|﹣2|3和|﹣23|C .(﹣3)2和﹣32D .(﹣3)2和326.下列变形错误的是()A .如果x+7=26,那么x+5=24B .如果3x+2y =2x ﹣y ,那么3x+3y =2xC .如果2a =5b ,那么2ac =5bcD .如果3x =4y ,那么23x a =24y a7.已知当x =1时,代数式2ax 3+3bx+5=4,则当x =-1时,代数式4ax 3+6bx ﹣7的值是()A .﹣9B .﹣7C .﹣6D .﹣58.如图,数轴上、两点分别对应实数、,则下列结论正确的是()A .B.C .D.9.一列数a 1,a 2,a 3,……a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,……a n =111n a --,则a 1×a 2×a 3×……×a 2017的结果为()A .1B .﹣1C .﹣672D .﹣201710.如图是一个简单的数值运算程序,当输入n 的值为时4,则输出的结果为()A .16B .12C .132D .140二、填空题11.33x x -=-,则x 的取值范围是______.12.若-3x 2my 3与2x 4yn 是同类项,那么mn =___.13.数轴上表示的数是整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上任意画出一条长2019cm 的线段AB ,则线段AB 盖住的整点的个数是________.14.若a <0,ab <0,则|b ﹣a+1|﹣|a ﹣b ﹣5|的值为_____.15.对于任意非零实数a 、b ,定义运算“⊕”,使下列式子成立:1⊕2=﹣32,2⊕1=32,(﹣2)⊕5=2110,5⊕(﹣2)=﹣2110,…,则a ⊕b =_______.三、解答题16.计算(1)(﹣1)2017+|﹣22+4|+(1124-)×(﹣24);(2)()()()32239223⎡⎤⎛⎫-÷---÷-+- ⎪⎢⎥⎝⎭⎣⎦17.解方程(1)3535123x x --=-;(2)32(1)22234x x ⎡⎤---=⎢⎥⎣⎦18.定义:若a+b =2,则称a 与b 是关于1的平衡数.(1)3与________是关于1的平衡数,5﹣x 与________是关于1的平衡数.(用含x 的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1的平衡数,并说明理由.19.如图所示的10×5(行×列)的数阵,是由一些连续奇数组成的.(1)形如图框中的四个数,设第一行的第一个数为x,用含x的式子表示另外三个数;(2)若这样框中的四个数的和是200,求出这四个数;(3)是否存在这样的四个数,它们的和为296?为什么?20.粮库3天内进出库的吨数记录如下(“+”表示进库,“-”表示出库):+--+--26,32,15,34,38,20(1)经过3天,粮库里的粮食是增多了还是减少了?(2)经过3天,粮食管理员结算时发现粮库里还存480吨粮食,那么3天前粮库里的存量有多少吨?(3)如果进库出库的装卸费都是每吨5元,那么这3天要付出多少装卸费?21.若干个有规律的数,排列如下:试探究:(1)第2012个数在第几行?这个数是多少?(每行的数都是从左往右数)(2)写出第n 行第k 个数的代数式;(用含n ,k 的式子表示)(3)求第2012个数所在行的所有数之和S .22.观察下列等式111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.(1)猜想并写出:(2)直接写出下列各式的计算结果:①②(3)探究并计算:.23.如图所示,数轴上有A 、B 、C 、D 四个点,分别对应的数为a 、b 、c 、d ,且满足a =﹣2,b 是最小的自然数,(c ﹣12)2与|d ﹣18|互为相反数.(1)b =;c =;d =.(2)若A 、B 两点以2个单位长度/秒的速度向右匀速运动,同时C 、D 两点以1个单位长度/秒的速度向左匀速运动,并设运动时间为t 秒,问t 为多少时,A 、C 两点相遇?(3)在(2)的条件下,A 、B 、C 、D 四点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使得B 与D 的距离是C 与D 的距离的3倍?若存在,求时间t ;若不存在,请说明理由.24.图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.参考答案1.D【解析】【分析】将各数化为最简形式,即可得出结论.【详解】解:∵1122=--,()11--=,1122-=,()211-=,()3327-=-,∴其中不是负数的有0,-(-1),|-12|,(-1)2,共4个.故选:D【点睛】本题考查了有理数的分类,乘方运算,绝对值的化简,熟练掌握有理数的分类,乘方运算法则,绝对值的性质是解题的关键.2.B【解析】【分析】所含字母相同,相同字母的指数也相同的单项式是同类项,单个的数与单个的字母也是同类项,合并同类项的法则:把同类项的系数相加减,字母与字母的指数不变,根据同类项的概念和合并同类项法则逐个判断即可.【详解】解:A.结果是5x,故本选项不符合题意;B.结果是﹣a2b,故本选项符合题意;C.2a和2b不能合并,故本选项不符合题意;D.x3和﹣x2不能合并,故本选项不符合题意;故选:B.【点睛】本题考查了同类项的含义和合并同类项法则,能熟记同类项的概念和合并同类项法则是解此题的关键.3.D【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.【详解】解:50000000000一共11位,从而50000000000=5×1010.故选:D.4.A【解析】【分析】根据一元一次方程的定义列出方程,解方程即可.【详解】解:由题意得,2|m|﹣3=1,m+2≠0,解得,m =2,故选:A .【点睛】本题考查了一元一次方程的概念,只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程,ax+b =0(其中x 是未知数,a 、b 是已知数,并且a≠0)叫一元一次方程的标准形式.5.C【解析】【分析】分别计算(﹣2)3=﹣23=﹣8;|﹣2|3=|﹣23|=8;(﹣3)2=9,﹣32=﹣9;(﹣3)2=32=9,即可求解.【详解】解:(﹣2)3=﹣23=﹣8;|﹣2|3=|﹣23|=8;(﹣3)2=9,﹣32=﹣9;(﹣3)2=32=9;故选:C .【点睛】此题主要考查有理数的运算,解题的关键是熟知乘方的定义及运算法则.6.D【解析】【分析】分别利用等式的性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式,判断得出答案.【详解】解:A 、如果726x +=,那么524x +=,正确,不符合题意;B 、如果322x y x y +=-,那么332x y x +=,正确,不符合题意;C 、如果25a b =,那么25ac bc =,正确,不符合题意;D 、如果34x y =,那么2234x y a a =,(0)a ≠,故此选项错误,符合题意.故选:D .【点睛】此题主要考查了等式的性质,解题的关键是正确把握等式的基本性质.7.D【解析】【分析】首先根据当x =1时,代数式2ax 3+3bx+5=4,可得2a+3b+5=4,据此求出2a+3b 的值是多少;然后把x =-1代入代数式4ax 3+6bx ﹣7,化简,再把2a+3b 的值代入,求出算式的值是多少即可.【详解】解:∵当x =1时,代数式2ax 3+3bx+5=4,∴2a+3b+5=4,∴2a+3b =4﹣5=﹣1;当x =-1时,4ax 3+6bx ﹣7=﹣4a ﹣6b ﹣7=﹣2(2a+3b )﹣7=﹣2×(﹣1)﹣7=2﹣7=-5∴当x =-1时,代数式4ax 3+6bx ﹣7的值是-5.故选:D .【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以整体代入、计算.8.C【解析】【详解】试题分析:根据数轴可得:a >0,b <0,且a b ,则a+b <0,ab <0,b =-b .考点:数轴9.B【解析】【分析】根据表达式求出前几个数后发现:每三个数为一个循环组.用2017除以3,根据商和余数的情况确定值.【详解】解:因为a 1=﹣1,a 2=111a -=12,a 3=211a -=2,a 4=311a -=-1,a 5=411a -=12,a 6=511a -=2,⋯2017÷3=672⋯⋯1所以,a 1×a 2×a 3×……×a 2017=()()672111-⨯-=-故选B【点睛】含有乘方运算的数列规律题,根据题意找出规律是解题的关键.10.C【解析】【分析】根据题意当n =4时,代入代数式n 2﹣n 中,计算出结果与28比较,当结果大于28时输出结果,当结果小于28时,则返回n 的值为第一次计算结果,再次计算即可得出答案.【详解】解:n =4时,n 2﹣n =42﹣4=12,因为12<28,所以再次进行运算程序,n =12,n 2﹣n =122﹣12=132,因为132>28,所以当输入n =4时,输出值为132.故选:C .【点睛】本题主要考查了代数式求值及有理数混合运算,根据题意进行合理运算是解决本题的关键.11.3x ≤【解析】【分析】根据绝对值的意义,绝对值表示距离,所以30x -≥,即可求解;【详解】根据绝对值的意义得,30x -≥,3x ∴≤;故答案为3x ≤;【点睛】本题考查绝对值的意义;理解绝对值的意义是解题的关键.12.8【解析】【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同,求得m ,n 的值,再计算即可.【详解】解:由题意得:2m =4,n =3,解得m =2,n =3,∴mn =23=8,故答案为:8.【点睛】本题主要考查同类项,解决此类问题的关键在于明确同类项的“两相同”.13.2019个或2020个【解析】【分析】分线段AB 的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度1+,不重合时盖住的整点是线段的长度,由此可以得到答案.【详解】①当长度为2019cm 的线段AB 的两个端点A 与B 均为整点时,线段AB 盖住的整点有20191=2020+个;②若A 点不是整点,则B 点也不是整点,即当长度为2019cm 的线段AB 的两个端点A 与B 均不为整点时,线段AB 盖住的整点有2019个.综上所述,线段AB 盖住的整点的个数是2019个或2020个.【点睛】本题的关键是分线段AB 的端点是否为整点来分析考虑.14.-4【解析】【分析】根据a <0,ab <0,可得b >0,b ﹣a+1>0,a ﹣b ﹣5<0,再根据正数的绝对值是正数,负数的绝对值等于他的相反数,可去掉绝对值符号,根据合并同类项,可得答案.【详解】解:∵a <0,ab <0,∴b >0,b ﹣a+1>0,a ﹣b ﹣5<0,∴|b ﹣a+1|﹣|a ﹣b ﹣5|=b ﹣a+1﹣[﹣(a ﹣b ﹣5)]=b ﹣a+1﹣(﹣a+b+5)=b ﹣a+1+a ﹣b ﹣5=-4故答案为:-4.【点睛】本题考查了整式的加减,根据绝对值的特点化简去掉绝对值符号是解题关键,再合并同类项.15.22-a b ab【解析】【分析】根据已知数字等式得出变化规律,即可得出答案.【详解】解:∵2231212212-⊕=-=⨯,2232121221-⊕==⨯,()()()222521251025---⊕==-⨯,()()()225221521052--⊕-=-=⨯-,∴22a b a b ab-⊕=故答案为:22-a b ab.【点睛】此题主要考查了与实数运算相关的规律,根据已知得出数字中的变与不变是解题关键.16.(1)-7(2)4【解析】【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)要正确掌握运算顺序求出答案.(1)解:(﹣1)2017+|﹣22+4|+(1124-)×(﹣24)=﹣1+0﹣12+6=﹣7;(2)()()()32239223⎡⎤⎛⎫-÷---÷-+- ⎪⎢⎥⎝⎭⎣⎦=﹣1﹣(3﹣8)=4.【点睛】本题考查的是有理数的运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.17.(1)x =﹣15(2)x =﹣8【解析】【分析】(1)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解;(2)根据:去括号、移项、合并同类项、化系数为1,求出方程的解即可.(1)3535123x x --=-去分母得,3(3x ﹣5)=6﹣2(3﹣5x )去括号得,9x ﹣15=6﹣6+10x移项得,9x ﹣10x =15合并得,﹣x =15系数化为1,得:x =﹣15.(2)32(1)22234x x ⎡⎤---=⎢⎥⎣⎦去括号得:14x ﹣1﹣3﹣x =2,移项,合并同类项得:﹣34x =6,系数化为1得:x =﹣8.【点睛】本题考查了解一元一次方程,去分母时,方程两端同乘各分母的最小公倍数,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号是解题的关键.18.(1)﹣1,x ﹣3;(2)a 与b 不是关于1的平衡数,理由见解析【解析】【分析】(1)根据新定义中若a+b =2,则称a 与b 是关于1的平衡数求解即可;(2)根据a b +的结果是否等于2判断即可;【详解】(1)设3的关于1的平衡数为a ,则3+a =2,解得a =﹣1,∴3与﹣1是关于1的平衡数,设5﹣x 的关于1的平衡数为b ,则5﹣x+b =2,解得b =2﹣(5﹣x )=x ﹣3,∴5﹣x 与x ﹣3是关于1的平衡数,故答案为:﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数,理由如下:∵a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],∴a+b=2x2﹣3(x2+x)+4+2x﹣[3x﹣(4x+x2)﹣2]=2x2﹣3x2﹣3x+4+2x﹣3x+4x+x2+2=6≠2,∴a与b不是关于1的平衡数.【点睛】本题主要考查了新定义运算,列代数式,整式加减,准确分析计算是解题的关键.19.(1)x+2,x+8,x+10(2)45,47,53,55(3)不存在,理由见解析【解析】【分析】(1)设第一行的第一个数为x,根据图形表示出另三个数即可;(2)设第一行的第一个数为x,根据框中的四个数的和是200列出方程,求出x的值,再分别代入计算即可;(3)设第一行的第一个数为x,根据它们的和为246列出方程,求出x的值,再计算即可.(1)解:设第一行第一个数为x,则其余3个数依次为x+2,x+8,x+10;(2)解:根据题意得:x+x+2+x+8+x+10=200,解得:x=45.则这四个数依次为45,47,53,55.答:这四个数依次为45,47,53,55;(3)解:不存在.理由如下:由题意得x+x+2+x+8+x+10=296∴4x+20=296,解得:x=69.∵当x=69时,这个数在第六行最后一个数的位置,不符合题意故不存在这样的四个数,它们的和为296.【点睛】此题考查了一元一次方程的应用;解答本题的关键是设出四个数的表示形式,利用方程思想进行解题,注意养成善于观察和思考的习惯.20.(1)经过3天,粮库里的粮食是减少了;(2)525吨;(3)825元【解析】【分析】(1)求出3天的所记录数据的和即可判断;(2)用剩余的粮食加上减少的粮食即可解决问题;(3)求出数据的绝对值的和,再乘5即可;【详解】解:(1)∵26-32-15+34-38-20=-45<0,∴经过3天,粮库里的粮食减少了;(2)∵480+45=525吨,∴3天前粮库里的存量有525吨;(3)∵(26+32+15+34+38+20)×5=825元,∴这3天要付出825元装卸费.【点睛】本题考查正负数的意义,有理数混合运算的实际应用,解题的关键是理解题意,属于中考基础题.21.(1)第63行,这个数为358;(2)(﹣1)n +13k ﹣1;(3)63312-.【解析】【分析】每一行的数的个数和行数都是相同的,奇数行的数字都是3n ﹣1,偶数行的数字都是(﹣3)n ﹣1,统一为(﹣1)n +13n ﹣1;(1)设第2012个数在第n 行,则1+2+3+…+n =(1)2n n +,估算得出答案即可;(2)有以上分析直接写出即可;(3)写出第2012个数所在行的所有数,进一步求和即可.(1)解:∵每一行的数的个数和行数都是相同的,奇数行的数字都是3n ﹣1,偶数行的数字都是(﹣3)n ﹣1,设行数为n ,数字个数为k ,k =1+2+3+…+n =(1)2n n +,当n=62时,62+2⨯(621)=1953;当n=63时,63+2⨯(631)=2016;∴62+2⨯(621)=1953<2012<63+2⨯(631)=2016,所以第2012个数在第63行,从左往右数第2012﹣1953=59个,这个数为358;(2)解:由以上分析可直接写出为(﹣1)n +13k ﹣1;(3)解:∵S =1+3+32+ (362)∴3S =3+32+…+362+363②由②﹣①得2S =363﹣1∴S =1+3+32+…+362=63312-.【点睛】此题考查数字的变化规律,找出数字之间的联系,得出规律,解决问题.22.(1)111n n -+(2)①20122013②1n n +(3)5032014【解析】【详解】试题分析:根据已知条件得出一般性的规律,然后根据一般性的规律进行填空.试题解析:(1)原式=111n n -+(2)原式=11111122334-+-+-+……+1120122013-=1-12013=20122013原式=11111122334-+-+-+……+111n n -+=1-11n +=1nn +(3)原式=111111111(224466*********-+-+-+⋯⋯+-=12×(1122014-)=5032014考点:规律题23.(1)0;12;18(2)143(3)存在,t 的值为12【解析】【分析】(1)由绝对值、最小的自然数、偶次方的非负性,即可得出b 、c 、d 的值;(2)当运动时间为t 秒时,点A 对应的数为22t -,点C 对应的数为12t -,由A 、C 两点重合可得出关于t 的一元一次方程,解之即可得出结论;(3)假设存在,当运动时间为t 秒时,点B 对应的数为2t ,点C 对应的数为12t -,点D 对应的数为18t -,由B 与D 的距离是C 与D 的距离的3倍可得出关于t 的一元一次方程,解之即可得出结论.(1)解:(1)b 为最小的自然数,2(12)|18|0c d -+-=,0b ∴=,12c =,18d =.故答案为:0;12;18.(2)解:当运动时间为t 秒时,点A 对应的数为22t -,点C 对应的数为12t -,根据题意得:2212t t -=-,解得:143t =.答:t 为143时,A 、C 两点相遇.(3)解:假设存在,当运动时间为t 秒时,点B 对应的数为2t ,点C 对应的数为12t -,点D 对应的数为18t -,点B 在点D 的右侧,且B 与D 的距离是C 与D 的距离的3倍,2(18)3[(18)(12)]t t t t ∴--=---,解得:12t =.答:存在时间t ,使得B 与D 的距离是C 与D 的距离的3倍,此时t 的值为12.【点睛】本题考查了一元一次方程的应用、数轴、绝对值以及偶次方的非负性、相反数,解题的关键是:(1)根据绝对值、偶次方的非负性求出b 、c 、d 的值;(2)由A 、C 点重合列出关于t 的一元一次方程;(3)由B 与D 的距离是C 与D 的距离的3倍列出关于t 的一元一次方程.24.(1)34cm;(2)每相邻两节套管间重叠的长度为1cm.【解析】【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【详解】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.。
北师大版七年级数学上册期中试卷及答案
北师大版七年级数学上册期中试卷及答案Revised on July 13, 2021 at 16:25 pm北师大版七年级上数学期中考试试题全卷满分:100分.考试时间:90分钟 ..一.填空题每空1分;共30分 1.有理数-4;500;0;-2.67;543中;整数是___________;负整数是______;正分数是_______. 2. -61的相反数是___________;倒数是____________;绝对值是_________. 3.观察右图;用“>”或“<”填空.1a ____b 2c ____0 3-a ___3c 4c a +___04.平方为0.81的数是______;立方得64-的数是______..5.在()36-中;底数是______;指数是______;322y x -的系数是______..6.长方体是由______个面围成;圆柱是由______个面围成;圆锥是由_______个面围成.7.八棱柱有______个顶点;______条棱;________个面. 8.表面能展成如图所示的平面图形的几何体是:9.一辆货车从家乐福出发;向东走了4千米到达小彬家;继续走了2.5千米到达小钰家;又向西走了12.5千米到达小明家;最后回到家乐福.1小明家距小彬家___________千米;2货车一共行驶了______________千米.10.电表的计数器上先后两次读数之差;就是这段时间内的用电量;某家庭6月1日0时电表显示的读数是121度;6月7日24时电表显示的读数是163度.从电表显示的读数中;估计这个家庭六月份的总用电量是. 11.如图是2003年11月份的日历;请.12.一辆公共汽车有56个座位;空车出发;第一站上2位乘客;第二站上4位乘客;第三站上6位乘客;依次下去;第n 站上_________位乘客;_______站以后车上坐满乘客. 二.选择题:每小题2分;共20分.每小题只有一个正确的选项符合题意1.长方体的截面中;边数最多的多边形是 A .四边形 B.五边形 C.六边形 D.七边形2.下面平面图形经过折叠不能围成正方体的是 A. B. C. D.3.下面各正多面体的每个面是同一种图形的是 ① 正四面体 ② 正六面体 ③ 正八面体 ④ 正十二面体 ⑤ 正二十面体A. ①②③B. ①③④C. ①③⑤D. ①④⑤4.一个数的相反数比它的本身小;则这个数是 A. 正数 B. 负数 C.正数和零 D.负数和零5.若a 是有理数;则下列各式一定成立的有1. 22a a =-)(2.22)(a a -=-3.33a a =-)( 4. 33||a a =- A. 1个 B. 2个 C. 3个 D.4个 6.下面各种说法中正确的是A. 被减数一定大于差B.两数的和一定大于每一个加数C.积一定比每一个因数大D. 两数相等;它们的绝对值一定相等 7.百位数字是a;十位数字是b;个位数字是c;这个三位数是 A .abc B. a+b+c C.100a+10b+c; D. 100c+10b+a8.下列计算中;正确的是 A.224=-a a B.2243a a a =+ C. 2222a a a -=-- D.a a a =-229.已知大家以相同的效率做某件工作;a 人做b 天可以完工;若增加c 人;则提前完工的天数为 A.b c a ab -+ B. b c a b -+ C. c a ab b +- D.ca bb +- 10.若,,00<<ab a 则|9||3|---+-b a a b 的值为A.6B. -6C. 12D.1222++-b a三. 解答题要写出解答步骤.共50分1.计算共28分.其中1 2 3 4小题各3分;5 6 7 8题各4分. 1.-12+15-|-7-8|2.-3×-9--5 (3).121433265÷-+-)( 4.1÷-3 ×-31(5)232326922113)()()(-÷-⨯--- 6 }31]404324{[22)()()(-÷⋅-+-÷⨯-(7))()(22222y xy x y xy x +--++ 83]3227[9222-----)(a a a a a 2.5分先化简;2213322222----+b a b a ab b a )()(再求值;其中22=-=b a , 3.4分图中是由几个小立方块搭成的几何体的俯视图;小正方形中的数字表示在该位置的小立方块的个数;请画出这个几何体的主视图和左视图.4. 4分某人用400元购买了8套儿童服装;如果以每套儿童服装55元的价格为标准;超出的记作正数;不足的记作负数;记录如下: +2 ; -3 ;+2; +1; -2; -1; 0; -2 单位:元 (1)当他卖完这八套儿童服装后是盈利还是亏损 (2)盈利或亏损了多少钱5.4分小强买了张50元的乘车IC 卡;如果他乘车的次数用m 表示;则记录他每次乘车后的余额n 元如下表:次数 m 余额 n 元 1 50-0.8 2 50-1.6 3 50-2.4 450-3.2… … (1)写出乘车的次数m 表示余额n 的关系式.(2)利用上述关系式计算小强乘了13次车还剩下多少元(3)小强最多能乘几次车6.5分用长度相等的小棒按下面方式搭图形(1)图1;图2;图3的小棒根数分别是多少根(2)一、 填空题1.-4;500;0 ; -4;435 2. 61; -6; 61; 3. < < > <4.±0.9 -4 5. -6 3 32- 6. 6 3 2 7. 16 24 108.五棱柱 圆柱 圆锥 9. 10 25 10. 180 11.a+d=b+c 12. 2n 7 二、 选择题1——5 CBCAA 6——10 DCCCB 三、 解答题1.1-12 2 32 3 -11 491 5415- 6-18.873xy 83442--a a 2.-713.4.1盈利 237元 5.1n =50-0.8m 239.6元 362次6.图112根 图222根 图3 42根主视图左视图1 23七年级第一学期期中考试数学试题一、填空题:每题3分;共30分1. 321-的倒数是 ;321-的相反数是 ;321-的绝对值是 ..2. 若n y x 32与y x m 5-是同类项;则m= ; n= ..3. 根据规律填上合适的数:1 -9;-6;-3; ; 3 ;2 1;8;27;64; ;216..4. 代数式c b a 3231-的系数是 ;代数式1-2x 是 、 这二项的和..5. 现有3;4;-6;10四个数;用混合运算使其结果为24;_____________=24.. 6.猜谜语:“横看是圆;侧看是圆;远看是圆;近看是圆;高看是圆;低看是 圆;上看;下看;左看;右看都是圆..”谜底是 ..不是圆7. 对正有理数a ;b ;定义运算★如下:a ★b ba ab+=;则3★4= .. 8.下图A 是一组立方块;请在括号中填出B 、C 图各是什么视图:9.在我校举行的运动会上;小勇和小刚都进入了一百米决赛;小勇用了x 秒;小刚用了y 秒;小勇获得了一百米决赛的冠军..小刚比小勇多用了 秒..10.你喜欢吃拉面吗 拉面馆的师傅;用一根很粗的面条;把两头捏合在一起拉伸;再捏合;再拉伸;反复几次;就把这根很粗的面条拉成了许多细的面条;如下面草图所示..这样捏合到第 次后可拉出128根细面条.. 第一次捏合 第二次捏合 第三次捏合二、选择题..每题2分;共24分每题只有一个正确答案;请你把它的序号填在括号中..1.下面图形是棱柱的是 2.图中不是正方体展开图的是 3.下列式子中;正确的是A .∣-5∣ =5B .-∣-5∣ = 5C .∣-0.5∣ =21- D .-∣- 21∣ =21 4.下列各对数中;数值相等的是 A .23和32B. -22和-22C .2和|-2| D.322和3225.下列各对式子是同类项的是A . 4x 2y 与4y 2x B.2abc 与2ab C.a3- 与-3a D.-x 3y 2与21y 2x3 6.当a=21-时;代数式1-3a 2的值是 A . 21- B.431 C.41 D.412-7.某天上午6:00柳江河水位为80.4米;到上午11:30分水位上涨了5.3米;到下午6:00水位下跌了0.9米..到下午6:00水位为 米.. A76 B84.8 C85.8 D86.6 8.2-的相反数是A .21-B .2-C .21D .29.下面几何体的截面图可能是圆的是 A. 正方体 B. 圆锥 C. 长方体 D. 棱柱 10. 如图;把一条绳子折成3折;用剪刀从中剪断;得到 条绳子 A.3 B.4 C.5 D.611.据xx 晚报;最近一段时间;英国不少地区出现“鼠丁兴旺”;1998年英国老鼠约4800万只;目前老鼠总数约增加了25%;比英国人口还多200万;问日前英国人口总数约是:A .6200万 B.1000万 C.1400万 D.5800万 12.观察下列算式:,, , , , , , , 2562128264232216282422287654321======== 根据上述算式中的规律;你认为202的末位数字是 . A. 2 B. 4 C. 6 D. 8三、计算题..1—5每题5分;6题6分;共31分1 -36 ×41-32 21÷-5×-51327÷-22+-4--1 4-2142×75)3(091)1(2002-⨯⨯÷-6先化简;再求值a+a-6b+a+6b+ b;其中a=32;b=-1四、解答下列各题..1.6分柳州市家庭电话月租费为18元;市内通话费平均每次为0.2元..若芸芸家上个月共打出市内电话a 次;那么上个月芸芸家应付费多少 若你家上个月共打出市内电话70次;那么你家应付费多少2.6分我校有三个年级;其中初三年级有2x+3y 名学生;初二年级有4x+2y 名学生;初一年级有x+4y 名学生..请你算一算;我校共有多少名学生 3.作图题..8分如图;这是一个由小正方体搭成的几何体的俯视图;小正方形中的数字表示在该位置的小正方体的个数..请你画出该几何体的主视图和左视图每图4分4.8分“十.一”黄金周期间;某风景区在7天假期中每天旅游的人数变化如下七天内游客人数最多的一天有 万人;游客人数最少的一天是第天..5.7分如下图;将一张正方形纸片;剪成四个大小形状一样的小正方形;然后将其中的一个小正方形再按同样的方法剪成四个小正方形;再将其中的一个小正方形剪成四个小正方形;如此循环进行下去; 1填表:2如果剪n 次;共剪出多少个小正方形 3如果剪了100次;共剪出多少个小正方形4观察图形;你还能得出什么规律2004—2005学年第一学期初一期中考试数学试题答案一、 填空题1、53-;321;321 2、m=3;n=1 3、10 21254、31-;1;-2x 5、3×4-6+10 6、球7、7128、B :主视图 C :俯视图 9、y-x 10、7二、 选择题1、A 2、B 3、A 4、C 5、D 6、C 7、B 8、B 9、B 10、B 11、D 12、C 三、 计算题 115 2251 327 4346- 5063a+b ;1 四、 解答题1、18+0.2a 元; 32元.2、7x+9y3、主视图俯视图4、1 2 第七天5、1 2 3n+1 (3) 301(4)边长的规律;面积的规律等都可以.竹林中学2005—2006学年度第一学期中测试数学试题初一一、选择题每题2分;共20分:1、在–1;–2;1;2四个数中;最大的一个数是 ..A –1B –2C 1D 22、有理数31的相反数是 ..A 31B 31- C 3 D –3 3、计算|2|-的值是 ..A –2B 21- C 21D 24、有理数–3的倒数是 ..A –3B 31- C 3 D 315、计算20032004(1)(1)-+-的值为 .. A 2- B 2 C 0 D 16、下列计算中;不正确的是 ..A 2)4()6(=-+-B 5)4(9-=---C 1349=+-D 1349-=-- 7、方程 3x -5 = 7+2 x 移项后得 ..A 3x -2 x = 7-5 B3x +2 x = 7-5 C3x +2 x = 7+5 D3x -2 x = 7+5 8、方程 x -a = 7 的解是x =2;则a = ..A 1B -1C 5D -5 9、如果a a =||;那么a 是 ..A0 B0和1 C 正数 D 非负数10、如果两个有理数的积是正数;和也是正数;那么这两个有理数 .. A 同号;且均为负数 B 异号;且正数的绝对值比负数的绝对值大 C 同号;且均为正数 D 异号;且负数的绝对值比正数的绝对值大 二、填空题每空1分;共20分:11、如果向银行存入人民币20元记作+20元;那么从银行取出人民币32.2元记作______元..12、在有理数中;最小的正整数是 ;最大的负整数是 .. 13、35的底数是 ;指数是 ..14、三个连续的自然数;中间的一个为x ;则第一个为 ;第三个为 ..15、代数式32156x xy y -+中共有 项;16xy -的系数是 .. 16、在代数式2245362x x x +-+-中;24x 和 是同类项;2-和 也是同类项..17、去括号:=-+)(b a ;=+-)(b a ..18、若y x n 21与m y x 3是同类项;则=m ;=n .. 19、在所有的有理数中;绝对值最小的是 ..20、在数轴上;与原点的距离等于10的数有 个;它们是 ..21、按所列数的规律填上适当的数:3;2;5;4;7;6;9; ..22、请结合生活实际说明代数式2x 所代表的意义 ..三、解答题:共60分;要求步骤完整23、计算1—2题;每题2分;3—6题;每题4分;共20分:1(7)(10)-++ 2(8)(1)---33419--+ 4377()604126+-⨯ 5()2223-+- 6227(28)75-⨯--÷+ 24、化简与求值每题5分;共10分:1把代数式222(29)3(54)a b a b ++--化简合并同类项..2先化简合并同类项;后求值x x x x 45222++-;其中3-=x ..25、解下列方程1、2题;每题2分;3—6题;每题4分;共20分:1129x -= 2316x -=316239x -= 46958x x +=+58124(57)x x +=-+ 6131(21)134x x x ---=- 26、列方程解应用题每题5分;共10分:1在我们常用的日历中;如果用正方形圈出某月日历上的4个数的和是108;那么这4天分别是几号2把底面直径为2cm;高为10cm 的细长圆柱形钢质零件;锻压成直径为4cm 的矮胖圆柱形零件;求这个零件的高是多少期中测试数学试题答 案一、1、D2、B3、D4、B5、C6、A7、D8、D9、D10、C二、11、-32.2; 12、1;-1; 13、5、3; 14、1x -;1x +; 15、3;16-; 16、23x -;517、,a b a b ---; 18、1,3m n ==; 19、0; 20、2;10、-10; 21、8;22、略..三、23、 377(4)()604126377606060241264535701101+-⨯'=⨯+⨯-⨯'=+-'= 或377(4)()6041269714()60212121216016101+-⨯'=+-⨯'=⨯'=24、25、26、1解:设最小的数为x;则其余3个数是x+1;x+7;x+8;根据题意得……1分178108x x x x ++++++= (2)分23x =…………………………………………1分答或则;……:———23号、24号、30号、31号..………1分2解:设这个零件的高是x cm ; 根据题意得………………………1分2102x ππ= (2)分2.5x cm = (1)分答:这个零件的高是2.5cm..……………………………1分。
人教版初中数学七年级上期中考试--数学 (26)(含答案)
七年级期中学业水平测试数学试题(卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。
测试时间90分钟,满分120分第Ⅰ卷(选择题)30分一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.21-的倒数是 A 、21-B 、21 C 、﹣2 D 、22.在数轴上表示﹣5的点离开原点的距离等于 A 、5B 、﹣5C 、±5D 、103.组成多项式322--x x 的单项式是下列哪组A 、2x 2,x ,3B 、2x 2,﹣x ,﹣3C .2x 2,x ,﹣3D 、2x 2,﹣x ,34.已知2015x n y 与2016x 3y m 是同类项,则(m ﹣n )2的值为 A 、8B 、﹣8C 、16D 、45.下列各对数中互为相反数的是A 、32与﹣23B 、﹣23与(﹣2)3C 、﹣32与(﹣3)2D 、(﹣3×2)2与23×(﹣3)6.在式子:ab 53-,522y x ,2y x +,bc a 2-,1,322+-x x ,a 3,11+x中,单项式个数为 A 、2B 、3C 、4D 、57.在数轴上表示﹣2的点与表示3的点之间的距离是 A 、5B 、﹣5C 、1D 、﹣18.已知a 、b 两数在数轴上对应的点如图所示,下列结论正确的是A .ab <0B 、b ﹣a >0C 、a >bD 、a +b >09.已知代数式x +2y 的值是3,则代数式2x +4y +1的值是 A 、1B 、4C 、7D 、910.如图是一数值转换机的示意图,若输入的x 值为32,则输出的结果为A 、50B 、80C 、110D 、130第Ⅱ卷(非选择题)90分二、填空题(共5个小题,每小题3分,共15分)11.水位上升30cm 记作+30cm ,则﹣20cm 表示水位下降 。
12.比较大小:76-65-(用“>或=或<”填空)。
13.用科学记数法表示3290000= 。
鲁教版初中七年级数学上册期中检测卷(,含答案)
鲁教版初中七年级数学上册期中检测卷(,含答案)期中综合测评一、选择题(本大题共10小题,每小题3分,共30分)1.2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,危难时刻,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案,其中是轴对称图形的是()A B C D2.已知a,b,c分别为Rt△ABC中∠A,∠B,∠C的对边,∠A=90°,则下列说法正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.无法确定3.图1是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及其夹角B.已知三边C.已知两角及其夹边D.已知两边及一边对角图1 图24.一个三角形的两边长分别为2和5,且第三边长为整数,这样的三角形的周长最大值是()A.11 B.12 C.13 D.145.如图2,AB=DB,∠1=∠2,添加以下条件仍不能判断△ABC≌△DBE的是()A.BC=BE B.∠A=∠D C.∠ACB=∠DEB D.AC=DE6.如图3,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面积依次为2,4,3,则正方形D的面积为()A.8 B.9 C.27 D.45图3 图47.如图4,等腰三角形ABC中,AB=AC,∠BAC=70°,D是BC中点,DE⊥AB于点E,延长DE至F,使EF=DE,则∠F的度数是()A.30°B.35°C.55°D.60°8.图5是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色,使所形成的图形为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个图5 图6 图79.图6是台阶的示意图,已知每个台阶的宽度都是2.5 dm,每个台阶的高度都是1.6 dm,连接AB,则AB等于()A.17 dm B.15 dm C.8 dm D.25 dm10.如图7,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE,ED,DC,OA,有如下结论:①∠EA D=90°;②∠BOE=60°;③OA平分∠BOC.其中正确的结论有()A.0个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题4分,共24分)11.如图8,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是.图8 图912.如图9,小明为了测出塑料瓶直壁厚度,由于不便测出塑料瓶的内径,小明动手制作一个简单的工具(AC=BD,O为AC,BD的中点)解决了测塑料瓶的内径问题,测得塑料瓶的外径为a,图10中的DC长为b,塑料瓶直壁厚度x=(用含a,b的代数式表示).13.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图10,设勾a =6,弦c=10,则小正方形ABCD的面积是.图10 图1114.如图11,在△ABC中,∠CDE=64°,∠A=28°,DE垂直平分BC,则∠ABD=_____.15.如图12,在四边形ABCD中,AB=3,BC=13,CD=12,AD=4,且∠A=90°,则四边形ABCD的面积是.图12 图1316.如图13,在△ABC中,∠A=α,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2019BC与∠A2019CD的平分线相交于点A2020,得∠A2020,则∠A2020=.三、解答题(本大题共7小题,共66分)17.(6分)如图14,已知∠1与线段a,用直尺和圆规按下列步骤作△AMN(保留作图痕迹,不写作法):(1)作∠A=∠1;(2)在∠A的两边分别作AM=AN=a;(3)连接MN.图14 图1518.(8分)如图15,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m (水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD的长度.19.(8分)如图16,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F 是BE的中点,连接CF并延长交AD 于点G.(1)试说明:CG平分∠BCD;(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.图16 图1720.(8分)如图17,直线l l,l2交于点O,点P关于l l,l2的对称点分别为P1,P2.(1)若l l,l2相交所成的锐角∠AOB=60°,求∠P1OP2的度数;(2)若OP=3,P1P2=5,求△P1OP2的周长.21.(10分)如图18,在△ADC中,DB是高,点E是DB上一点,AB=DB,EB=CB,M,N分别是AE,CD上的点,且AM=DN.(1)试说明:△ABE ≌△DBC ;(2)探索BM 和BN 的关系,并说明你的结论.图18 图1922.(12分)如图19,在△ABC 中,∠ACB =90°,AB =10cm ,BC =6cm ,若点P 从点A 出发以每秒1cm 的速度沿折线A -C -B -A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;(2)若点P 恰好在∠BAC 的角平分线上(但不与A 点重合),求t 的值.23.(14分)在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图20,当AE ⊥BC 时,写出图中所有与∠B 相等的角和所有与∠C 相等的角,并说明理由;(2)若∠C -∠B =50°,∠BAD =x°(0<x≤45).①求∠B的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,求x 的值;若不存在,请说明理由.图20期中综合测评参考答案:一、1.A 2.C 3.C 4.C 5.D 6.B 7.C 8.C 9.A 10.B二、11.300° 12.2a b - 13.4 14.100° 15.36 16.20202α 三、17.解:如图1所示,△AMN 即为所求.图118.解:在Rt △ACB 中,AC 2+BC 2=AB 2.设秋千的绳索长为xm ,则AC =(x -3)m ,故x 2=62+(x -3)2,解得x =7.5,所以绳索AD 的长为7.5m .19.解:(1)因为BE 平分∠ABC ,所以∠ABF =∠CBF =21∠ABC .因为AB ∥CD ,所以∠ABF =∠E ,所以∠CBF =∠E ,所以BC =CE ,所以△BCE 是等腰三角形.因为F 为BE 的中点,所以CG 平分∠BCD .(2)因为AB ∥CD ,所以∠ABC+∠BCD =180°.因为∠ABC =52°,所以∠BCD =128°.因为CG 平分∠BCD ,所以∠GCD =2 1∠BCD =64°.因为∠ADE =110°,所以∠CDG =70°,所以∠CGD =180°-∠GCD -∠GCD=46°.20.解:(1)因为P 关于l 1,l 2的对称点分别为P 1,P 2,所以∠P 1OA =∠AOP ,∠P 2OB =∠POB ,所以∠P 1OP 2=2(∠AOP+∠POB )=2∠AOB =2×60°=120°.(2)因为P 关于l 1,l 2的对称点分别为P 1,P 2,所以OP 1=OP =OP 2=3.因为P 1P 2=5,所以△P 1OP 2的周长=OP 1+OP 2+P 1P 2=3+3+5=11.21.解:(1)因为DB 是高,所以∠ABE =∠DBC =90°.在△ABE 和△DBC 中,因为AB =DB ,∠ABE =∠DBC ,BE =BC ,所以△ABE ≌△DBC .(2)BM =BN ,MB ⊥BN .理由如下:因为△ABE ≌△DBC ,所以∠BAM =∠BDN .在△ABM 和△DBN 中,因为AB =DB ,∠BAM =∠BDN ,AM=DN ,所以△ABM ≌△DBN ,所以BM =BN ,∠ABM =∠DBN ,所以∠DBN+∠DBM =∠ABM+∠DBM =∠ABD =90°,所以MB ⊥BN .22.解:(1)在△ABC 中,∠ACB =90°,AB =10cm ,BC =6cm ,则由勾股定理,得AC 2=AB 2-BC 2=102-62=64,所以AC =8cm .设存在点P ,使得PA =PB ,此时PA =PB =t ,PC =8-t ,在Rt △PCB 中,PC 2+CB 2=PB 2,即(8-t )2+62=t 2,解得t =425,所以当t =425时,PA =PB .(2)当点P 在∠BAC 的平分线上时,如图2所示,过点P 作PE ⊥AB 于点E ,此时BP =14-t ,PE =PC =t -8,BE =10-8=2.在Rt △BEP 中,PE 2+BE 2=BP 2,即(t -8)2+22=(14-t )2,解得t =332,所以当t =332时,点P 在△ABC 的角平分线上.图223.解:(1)与∠B相等的角有∠E,∠CAF;与∠C相等的角有∠CDE,∠BAF.理由如下:因为∠BAC=90°,AE⊥BC,所以∠CAF+∠BAF=90°,∠B+∠BAF=90°,所以∠CAF=∠B.由翻折可知∠B=∠E,所以∠B=∠CAF=∠E,同理∠CAF+∠BAF=90°,∠C+∠CAF=90°,所以∠C =∠BAF.因为∠CAF=∠E,所以AC∥DE,所以∠C=∠CDE,所以∠C=∠CDE=∠BAF.(2)①因为∠C-∠B=50°,∠C+∠B=90°,所以∠C=70°,∠B=20°.②因为∠BAD=x°,则∠ADF=(20+x)°,所以∠ADB=∠ADE=(160-x)°,所以∠FDE=∠ADE-∠ADF=(140-2x)°.因为∠B=∠E=20°,所以∠DFE=180°-∠E-∠FDE=(2x+20)°,分情况求解如下:当∠EDF=∠DFE时,140-2x=2x+20,解得x=30.当∠DFE=∠E=20°时,2x+20=20,解得x=0.因为0<x≤45,所以不合题意,舍去;当∠EDF=∠E=20°,140-2x=20,解得x=60.因为0<x≤45,所以不合题意,舍去.综上可知,存在这样的x的值,使得△DEF中有两个角相等,且x =30.。
七年级(上)期中数学试卷26
七年级(上)期中数学试卷A 卷一、选择题(30分) 1、-2的相反数是( ) A.2 B.12 C. 1-2D.-2 2、第十五届西博会新疆代表团签约175亿元合作项目,175亿元用科学记数法表示为( )元A 、1.75810⨯ B 、1.75910⨯ C.1.751010⨯ D.1.751110⨯3、若a 是有理数,则下列各式一定成立的有 ( )(1).22a a =-)( (2).22)(a a -=- (3). 33a a =-)( (4). 33||a a =- A. 1个 B. 2个 C. 3个 D.4个 4、用一个平面去截一个几何体,如果截面形状是长方形(或正方形),那么该几何体不可能是( )A 、圆柱B 、直棱柱C 、圆锥D 、正方体 5、数轴上到点-4的距离等于5的点表示的数是( ) A 、5或-5 B 、1 C 、-9 D 、1或-9 6、下列各图不是正方体表面展开图的是( )A .B .C .D .7、.下面各种说法中正确的是 ( )A. 被减数一定大于差B.两数的和一定大于每一个加数C.积一定比每一个因数大D. 两数相等,它们的绝对值一定相等 8、已知|a|=5,|b|=3,且a+b <0,则a ﹣b 的值为( ) A .﹣8 B .+2C .﹣8或﹣2D .﹣2或+89、下面是小玲同学做的合并同类项的题,正确的是( )A 、236a b ab +=B 、0ab ba -=C 、22541a a -= D 、0t t --=10、如图,正方形ABCD 的边长为3cm,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A 、92cm B 、9π2cm C 、218cm π D 、218cm二、填空题(15分)11、比较大小:-3______2; 8-9______9-8; -π______-3.1412、多项式2244-225xy x +-是______次______项式;13、如图是一个正方体盒子的展开图,在其中三个正方形A 、B 、C 内分别填上适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,填入正方形A 、B 、C 内的三个数中最小的是______面。
2022-2023学年七年级上学期期中考试 (数学)(含答案)110022
2022-2023学年七年级上学期期中考试 (数学)试卷考试总分:125 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 把算式: 写成省略括号的形式,结果正确的是( )A.B.C.D.2. 在,,,,,,中,负有理数有 A.个B.个C.个D.个3. 方程的解为( )A.B.C.D.4. 在一个的方格中填写个数,使得每行、每列、每条对角线上的三个数之和相等,得到的的方格称为一个三阶幻方.如图,方格中填写了一些数和字母,若它能构成一个三阶幻方,则的值为( )A.B.C.D.5. 在如图所示的数轴上,点是线段的中点,,两点对应的实数分别为和,则点所对应的实数是( )(−3)−(+2)−(−7)+(−12)−3+2+7−12−3−2−7+12−3−2+7−12−3−2−7−12−|−2||−(−2)|−(+2)−(−)12+(−2)−π0()2345=12x 2x+3x =−1x =0x =35x =13×393×3x+y 12141618B AC A B −13–√CA.B.C.D.6. 下列说法中正确的个数是( )①是单项式;②单项式的系数是,次数是;③多项式的常数项是;④多项式的次数是.A.个B.个C.个D.个7. 下列变形中,正确的是( )A.若=,则=B.若,则=C.若=,则=D.若=,则8. 我校初一所有学生参加年“元旦联欢晚会”中,设座位有排,每排坐人,则有人无座位;每排坐人,则有空个座位.则下列方程正确的是( )A.B.C.D.9. 计算 的结果为 ( )A.B.C.D.10. 观察如图所示的程序,若输出的结果为,则输入的值为( )1+3–√2+3–√2−13–√2+13–√1−ab 2−12+x−1x 21+2xy+x 2y 221234ac bc a b=a c b ca b a b a +3b −3a b =a b b c2020x 308312630x+8=31x−2630x−8=31x+2630x+8=31x+2630x−8=31x−26⋅5(x−1)(x+2)(x+1)(x+2)(x−1)25−1x 25−5x 25+10x+5x 2+2x+1x 23xA.B.C.或D.或二、填空题(本题共计 6 小题,每题 5 分,共计30分)11. 年端午小长假的第一天,永州市共接待旅客约人次,请将用科学记数法表示为________.12. 若,则________.13. 对有理数、,规定运算如下:=,则=________.14. 用四舍五入法对取近似数,精确到,得到的结果是________.15. 若代数式与的值互为相反数,则的值为________.16. 已知,则代数式的值为________.三、解答题(本题共计 9 小题,每题 5 分,共计45分)17.计算:).18. 用适当方法解方程(1)(2)对于任意四个有理数,,,,可以组成两个有理数对与.我们规定:.若有理数对,则的值是多少?19. 有一道题:先化简,再求值:,其中.”小芳同学做题时把“”错抄成“”,但她的计算结果却是正确的,你能说明这是什么原因吗?20. 改革开放年来我国铁路发生了巨大的变化,现在的铁路运营里程比年铁路运营里程多了公里,其中高铁更是迅猛发展,其运营里程约占现在铁路运营里程的,只差公里就达到了年铁路运营里程的一半,问年铁路运营里程是多少公里.21. 连云港高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,某日从地出发到收工时,当天的行驶记录如下:(单位:)1−2−12122017275000275000|2a−b+1|+(a+b+5=0)2(b−a=)2012a b a※b a+b−ab−2.5※27.89630.014x−13x−6xx−2y+3=0−2x+4y+201812÷(−3)×(−−(−2)315−(6+4x)−(4+2x−3)+(−5+6x+9)x2x2x2x2x=2017x=201720164019787500020%600 19781978A km,,,,,,,,,.养护小组最后到达的地方在出发点处的哪个方向?距出发点处多远?养护过程中,最远处离出发点处有多远?若汽车耗油为,则这次养护共耗油多少升?22. 阅读理解:观察下列各式:, , ,,根据观察计算: .(为正整数)为了求的值,可令,则 ,因此,所以,仿照以上推理过程,计算的值.23. 解方程:.24. 计算:. 25. 解决问题:一辆货车从超市出发,向东走了千米到达小彬家,继续走了千米到达小颖家,然后向西走了千米到达小明家,最后回到超市.以超市为原点,以向东的方向为正方向,用个单位长度表示千米,在数轴上表示出小明家,小彬家,小颖家的位置.小明家距小彬家多远?货车每千米耗油升,这次共耗油多少升?+17−9+8−15−3+11−6−8+5+16(1)A A (2)A (3)0.5L/km (1)=(1−)11×31213=(−)13×5121315=(−)15×7121517…+++⋯+11×313×515×71(2n−1)(2n+1)n (2)1+2+++⋯+222322008S =1+2+++⋯+2223220082S =2++++⋯+222324220992S −S =−1220091+2+++⋯+=−1222322008220091+3+++⋯+323332009=x+1x+1243−+(−)−(−)−(−)235716573 2.510(1)11(2)(3)0.2参考答案与试题解析2022-2023学年七年级上学期期中考试 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】C【考点】有理数的加减混合运算【解析】此题暂无解析【解答】解:原式.故选.2.【答案】B【考点】有理数的概念【解析】化简:,,,,,是负无理数.【解答】解:化简得,,,,,,是负无理数.故负有理数有:,,一共有个,故选.3.【答案】D【考点】方程的解【解析】=−3−2+7−12C −|−2|=−2|−(−2)|=2−(+2)=−2−(−)=1212+(−2)=−2−π−|−2|=−2|−(−2)|=2−(+2)=−2−(−)=1212+(−2)=−2−π−|−2|−(+2)+(−2)3B此题暂无解析【解答】解:方程可化为,,解得,故选.4.【答案】B【考点】有理数的加法【解析】根据三阶幻方的特点,三阶幻方的中心数,可得三阶幻方的和,根据三阶幻方的和,可得、的值,根据有理数的减法,可得答案.【解答】解:三阶幻方的和是,则,,即,.故选.5.【答案】D【考点】在数轴上表示实数数轴【解析】根据线段中点的性质,可得答案.【解答】解:,设点对应的实数为,则,所以.即点对应的实数是.故选.6.【答案】B【考点】多项式单项式x+3=2×2x 3x =3x =1D a b 3y x−2=3y −2+8+y =3yy =3,x =11x+y =3+11=14B BC =AB =+13–√C x +1=x−3–√3–√x =2+13–√C 2+13–√D【解析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式的系数是,次数是,错误;③多项式的常数项是,错误;④多项式的次数是,正确;故选:.7.【答案】B【考点】等式的性质【解析】根据等式的性质,可以判断各个选项中的式子是否正确,从而可以解答本题.【解答】若,则=,故选项正确(1)若=,则=,故选项错误(2)若=,则,故选项错误(3)故选:.8.【答案】A【考点】由实际问题抽象出一元一次方程【解析】设座位有排,根据全班人数不变为等量关系,列出方程即可.【解答】解:设座位有排,根据题意,得.故选.9.【答案】B【考点】整式的加减【解析】【解答】−ab 2−122+x−1x 2−1+2xy+x 2y 22B =a c b c a b B a b a +3b +3C a b ≠a b b c D B x x 30x+8=31x−26A ⋅5(x+1=5(x+1)=5(x−1)(x+1)=5(−1)=5−5x−1解:原式.故选.10.【答案】C【考点】解一元一次方程绝对值【解析】根据示意图可知,分两种情况分别代入求值即可.【解答】解:根据题意可得:当时,运算程序是,解得:;当时,运算程序是,解得:,不合题意,只取.综上,或.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )11.【答案】【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是非负数;当原数的绝对值时,是负数.【解答】将用科学记数法表示为,12.【答案】【考点】非负数的性质:绝对值非负数的性质:偶次方【解析】本题考查非负性及列代数式求值.=⋅5(x+1=5(x+1)=5(x−1)(x+1)=5(−1)=5−5x−1x+1)2x 2x 2B x >02x−1=3x =2x <0|x|+2=3x =±1x =1x =−1x =2x =−1C 2.75×105a ×10n 1≤|a |<10n n a n ≥1n <1n 275000 2.75×1051【解答】解:∵,两式相加得,解得,把代入得,,,故答案为:.13.【答案】【考点】有理数的混合运算【解析】根据=,可以求得所求式子的值,本题得以解决.【解答】∵=,∴===,14.【答案】【考点】近似数和有效数字【解析】根据近似数精确到哪一位,应当看末位数字实际在哪一位,找出位上的数字,再通过四舍五入即可得出答案.【解答】解:取近似数,精确到,得到的结果是;故答案为:.15.【答案】【考点】相反数解一元一次方程【解析】根据互为相反数的两数之和为可列出方程,解出即可.【解答】|2a −b +1|+(a +b +5=0)2∴2a −b +1=0,a +b +5=0,3a +6=0a =−2a =−2a +b +5=0b =−3∴(b −a =(−1=1)2012)201214.5a※b a +b −ab a※b a +b −ab −2.5※2−2.5+2−(−2.5)×2−2.5+2+54.57.900.017.89630.017.907.901解:由题意可得方程:,解得,故答案为:.16.【答案】【考点】列代数式求值【解析】此题暂无解析【解答】解:由,得到,则原式.故答案为:.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )17.【答案】原式=)==.【考点】有理数的混合运算【解析】先计算除法和乘方,再进一步计算即可.【解答】原式=)==.18.【答案】(1);(2)【考点】解一元一次方程【解析】(1)先去分母,然后去括号,移项,合并同类项,系数化为即可求解;(2)根据题意,将直接代入求值即可;【解答】(4x−1)+(3x−6)=0x =112024x−2y+3=0x−2y =−3=−2(x−2y)+2018=6+2018=20242024−4×(−−(−8)3+811−4×(−−(−8)3+811−51;1(a,b)×(c,d)=bc −ad (−3,2x−1)加(1,x+1)x−12x+1(1)去分母得:去括号得:移项得:解得:(2)19.【答案】解:原式,结果不含字母,原式的值与的取值无关,则小芳同学做题时把“”错抄成了“”,但她的计算结果却是正确的.【考点】整式的加减——化简求值【解析】原式去括号合并得到最简结果,即可作出判断.【解答】解:原式,结果不含字母,原式的值与的取值无关,则小芳同学做题时把“”错抄成了“”,但她的计算结果却是正确的.20.【答案】解:设现在铁路运营里程为公里,则有,解得,经检验,符合题意,(公里),答:年铁路运营里程是公里.【考点】一元一次方程的应用——其他问题【解析】通过理解题意可知本题的等量关系,即“公共图书馆和博物馆共约有个”和“年公共图书馆的数量比年公共图书馆数量的倍还多个,博物馆的数量是年博物馆数量的倍,两馆个”,根据这两个等量关系,可列出方程组,再求解.【解答】解:设现在铁路运营里程为公里,则有,解得,经检验,符合题意,(公里),答:年铁路运营里程是公里.21.【答案】解:(千米),=x−142x+163(x−1)=2(2x+1)3x−3=4x+23x−4x =2+3x =−5(a,b)×(c,d)=bc −ad (−3,2x−1)加(1,x+1)=2x−1+3(x+1)=2x−1+3x+3=7x =1=15−6−4x−4−2x+3−5+6x+9=12x 2x 2x 2x 2x x x =2017x =2016=15−6−4x−4−2x+3−5+6x+9=12x 2x 2x 2x 2x x x =2017x =2016x x−75000=(0.2x+600)×2x =127000x =127000127000−75000=5200019785200019781550200819782350197854650x x−75000=(0.2x+600)×2x =127000x =127000127000−75000=52000197852000(1)17+(−9)+8+(−15)+(−3)+11+(−6)+(−8)+5+16=16答:养护小组最后到达的地方在出发点的北方,距出发点千米.第一次千米,第二次(千米),第三次(千米),第四次(千米),第五次(千米),第六次(千米),第七次(千米),第八次(千米),第九次(千米),第十次(千米),答:最远处距出发点处有千米.(升),答:这次养护共耗油升.【考点】有理数的加减混合运算正数和负数的识别【解析】根据有理数的加法,可得答案;根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;根据单位耗油量乘以路程,可得答案.【解答】解:(千米),答:养护小组最后到达的地方在出发点的北方,距出发点千米.第一次千米,第二次(千米),第三次(千米),第四次(千米),第五次(千米),第六次(千米),第七次(千米),第八次(千米),第九次(千米),第十次(千米),答:最远处距出发点处有千米.(升),答:这次养护共耗油升.22.【答案】解:原式.设,则,所以,所以,故.【考点】规律型:数字的变化类【解析】利用数字的关系,即可得出答案.16(2)1717+(−9)=88+8=1616+(−15)=11+(−3)=−2−2+11=99+(−6)=33+(−8)=−5−5+5=00+16=16A 17(3)(17+|−9|+8+|−15|+|−3|+11+|−6|+|−8|+5+16)×0.5=98×0.5=4949(1)(2)(3)(1)17+(−9)+8+(−15)+(−3)+11+(−6)+(−8)+5+16=1616(2)1717+(−9)=88+8=1616+(−15)=11+(−3)=−2−2+11=99+(−6)=33+(−8)=−5−5+5=00+16=16A 17(3)(17+|−9|+8+|−15|+|−3|+11+|−6|+|−8|+5+16)×0.5=98×0.5=4949(1)=(1−)+(−)+(−)+⋯1213121315121517+(−)1212n−112n+1=(1−+−+−+⋯121313151517+−)12n−112n+1=(1−)1212n+1=(−)122n+12n+112n+1=n 2n+1(2)S =1+3+++⋯+3233320093S =3++++⋯+323334320103S −S =−132010S =−13201021+3+++⋯+=323332009−1320102(1)利用规律式,即可得出答案.【解答】解:原式.设,则,所以,所以,故.23.【答案】解:去分母得:,移项合并得:,解得:.【考点】解一元一次方程【解析】(2)方程去分母,去括号,移项合并,把系数化为,即可求出解.【解答】解:去分母得:,移项合并得:,解得:.24.【答案】原式=【考点】有理数的加减混合运算【解析】将减法转化为加法,再依据加法的交换律和结合律计算可得.【解答】原式(2)(1)=(1−)+(−)+(−)+⋯1213121315121517+(−)1212n−112n+1=(1−+−+−+⋯121313151517+−)12n−112n+1=(1−)1212n+1=(−)122n+12n+112n+1=n 2n+1(2)S =1+3+++⋯+3233320093S =3++++⋯+323334320103S −S =−132010S =−13201021+3+++⋯+=323332009−13201023x+3=8x+6−5x =3x =−35x 13x+3=8x+6−5x =3x =−35=−−++23571657(−+)+(−+)46165757=−12=−−++23571657−+)+(−+)4155=25.【答案】解:如图所示:根据数轴可知:小明家距小彬家是个单位长度,因而是千米.耗油量是:(升).答:这趟路货车共耗油升.【考点】有理数的混合运算数轴【解析】(1)根据题目的叙述个单位长度表示千米,即可表示出;(2)根据(1)得到的数轴,得到表示小明家与小彬家的两点之间的距离,利用个单位长度表示千米,即可得到实际距离;(4)路程是千米,乘以即可求得耗油量.【解答】解:如图所示:根据数轴可知:小明家距小彬家是个单位长度,因而是千米.耗油量是:(升).答:这趟路货车共耗油升.(−+)+(−+)46165757=−12(1)(2)7.57.5(3)(3+2.5+10+4.5)×0.2=441111200.5(1)(2)7.57.5(3)(3+2.5+10+4.5)×0.2=44。
最新北师大版七年级上学期数学期中试卷(含参考答案)
最新北师大版七年级上学期数学期中试卷(含参考答案)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分36分)1、﹣5的相反数是()A.﹣5B.5C.D.﹣2、如果向北走5米记作+5米,那么﹣7米表示()A.向东走7米B.向南走7米C.向西走7米D.向北走7米3、袋大米的质量标识为“10±0.15千克”,则下列大米中质量合格的是()A.9.80千克B.10.16千克C.9.90千克D.10.21千克4、如图,这个几何体是由哪个图形绕虚线旋转一周形成的()A.B.C.D.5、下列平面图形不能够围成正方体的是()A.B.C.D.6、下列计算正确的是()A.2x+3y=5xy B.﹣2ba2+a2b=﹣a2bC.2a2+2a3=2a5D.4a2﹣3a2=17、数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4B.﹣4C.±8D.±48、一个两位数,十位数字是a,十位数字比个位数字小2,这个两位数是()A.a(a+2)B.10a(a+2)C.10a+(a+2)D.10a+(a﹣2)9、已知x﹣2y=2,则代数式3x﹣6y+2014的值是()A.2016B.2018C.2020D.202110、关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含二次项,则k=()A.4B.C.3D.11、已知:有理数a、b、c,满足abc<0,则的值为()A.±1B.1或﹣3C.1或﹣2D.不能确定12、高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[﹣1]=﹣3;②[x]+[﹣x]=0;③若[x﹣1]=1,则x的取值范围是2≤x<3;④当﹣1⩽x<1时,[x+1]+[﹣x+1]的值为0,1,2.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(每小题3分,满分18分)13、比较大小:(填>,=,<).14、如果3x2y m与﹣2x n﹣1y3是同类项,那么m+n=.15、若等式|x﹣2|+(y+1)2=0成立,那么y x的值为.16、一个多项式加上x2﹣2y2等于3x2+y2,则这个多项式是;17、下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,第n个图案需要根火柴棒.18、如图,5个棱长为1cm的正方体摆在桌子上,为了美观,将这个几何体的所有露出部分(不包含底面)都喷涂油漆,若喷涂1cm2需要油漆0.2克,则喷涂这个几何体需要克油漆.最新北师大版七年级上学期数学期中试卷(答卷)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号123456789101112答案二、填空题13、_______ 14、______15、_______ 16、______17、_______ 18、______三、解答题(19、20题每题6分,21、22每题8分,23、24每题9分,25、26每题10分,共计72分,解答题要有必要的文字说明)19、计算:(1)﹣9+5﹣(﹣12)+(﹣3);(2);20、如图是小强用七块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图.21、化简与计算:(1)化简:3(2a2﹣4b)﹣2(a2﹣4b);(2)先化简再求值:2(a2b+ab2)﹣2(a2b﹣1)+2ab2﹣2,其中a=﹣2,b=2.22、已知A=3x2+bx+2y﹣xy,B=ax2﹣3x﹣y+xy.(1)若A+B的值与x无关,求a b.(2)若|a﹣2|+(b+1)2=0且x+y=,xy=﹣2时,求2A﹣3B的值.23、某县教育局倡导全民阅读行动,婷婷同学坚持阅读,她每天以阅读30分钟为标准,超过的时间记作正数,不足的时间记作负数.如表是她一周阅读情况的记录(单位:分钟):星期一二三四五六日+9+10﹣10+13﹣20+8与标准的差(分钟)(1)星期五婷婷读了分钟;(2)她读得最多的一天比最少的一天多了分钟;(3)求她这周平均每天读书的时间.24、有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)|b﹣1|+|a﹣1|=;(3)化简|a+b|+|a﹣c|﹣|b|+|b﹣c|.25、某服装厂生产一种西装和领带,西装每套定价600元,领带每条定价80元,厂方在开展“双11”促销活动期间,可以同时向客户提供两种优惠方案,方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款,现某客户要到该服装厂购买西装20套,领带x条(x超过20).(1)若该客户按方案①购买,需付款元(用含x化简后的式子表示);若该客户按方案②购买,需付款元(用含x化简后的式子表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,请给出一种更为省钱的购买方案,并计算出所需的钱数.26、结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣2和﹣6的两点之间的距离是.③数轴上表示﹣4和3的两点之间的距离是.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.参考答案1-12:BBCABB DCACBA13、<14、6 15、1 16、2x2+3y2 17、(7n+1 18、3.219、(1)原式=﹣42(2)原式=120、解:如图所示:21、(1)原式=4a2﹣4b (2)原式=﹣3222、解:(1)、﹣27(2)、1623、解:(1)、28;(2)、23;(3)、她这周平均每天读书的时间为34分钟.24、解:(1)b<0,a+b=0,a﹣c>0,b﹣c<0;(2)|b﹣1|+|a﹣1|=a﹣b;(3)|a+b|+|a﹣c|﹣|b|+|b﹣c|=a.25、解:(1)答案为:(10400+80x);(10800+72x);(2)按方案①购买较为合算;(3)更为省钱的购买方案为:先按方案①购买20套西装,则领带赠送20条,再按方案②购买剩余的10条领带,共需花费12720元.26、解:(1)探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7,(3)①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或﹣4,故答案为:3,4,7,10或﹣4;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|=a+4+3﹣a=7;=5+0+2=7,③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小理由是:a=1时,正好是3与﹣4两点间的距离.。
人教部编版七年级数学上册期中考试题 (26)
2017-2018学年山东省菏泽市定陶区七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.比﹣1小2的数是()A.﹣3 B.﹣1 C.1 D.32.下列四个图中的线段(或直线、射线)能相交的是()A.(1) B.(2) C.(3) D.(4)3.在下列各数﹣(+2),﹣32,(﹣)4,﹣,﹣(﹣1)2009,﹣|﹣3|中,负数的个数是()A.2 B.3 C.4 D.54.M是线段AB上的一点,其中不能判定点M是线段AB中点的是()A.AM+BM=AB B.AM=BM C.AB=2BM D.AM=AB5.若点B在直线AC上,且AB=9,BC=4,则AC两点间的距离是()A.5 B.13 C.9 D.5或136.中俄签署了供气购销合同,从2018年开始供气,每年的天然气供应量为380亿立方米,380亿立方米用科学记数法表示为()A.3.8×1010m3B.38×109m3 C.380×108m3D.3.8×1011m37.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>08.下列说法正确的是()A.近似数5.0×103精确到十分位B.近似数2.01亿精确到百万位C.近似数0.730精确到百分位D.近似数0.30精确到十分位9.一种细胞每过30分钟一个便分裂成2个,则经过5小时这种细胞由一个能分裂成()A.22个B.25个C.10个D.210个10.若|x+2|+|y﹣3|=0,则x﹣y的值为()A.5 B.﹣5 C.1或﹣1 D.以上都不对二、填空题(本大题共6小题,每小题3分,共18分)11.中国武术中有“枪扎一条线,棍扫一大片”这样的说法,这句话给我们以的形象.12.的倒数是,相反数是,绝对值是.13.为了了解七年级二班学生的营养状况,随机抽取了8位学生的血样进行血色素检测,此来估计这个班学生的血色素的平均水平,测得结果如下(单位:g):13.8,12.5,10.6,11.0,14.7,12.4,13.6,12.2.在这个问题中,采取了调查方式,样本容量是.14.已知线段AB的长度为16厘米,C是线段AB的中点,E、F分别是AC、CB的中点,则E、F两点间的距离为.15.已知线段AB=12cm,点M是它的一个三等分点,则AM= cm.16.数轴上点M表示有理数﹣3,将点M向右平移2个单位长度到达点N,点E到点N的距离为4,则点E表示的有理数为.三、解答题(本大题共9小题,共72分)17.(8分)把下列各数填在相应的表示集合的大括号里:﹣,12,﹣(﹣96),﹣|﹣3|,﹣4.5,0,|﹣2.5|,(1)整数集合{ }(2)负数集合{ }(3)正分数集合{ }(4)有理数集合{ }.18.(8分)画出数轴,把下列各数0,(﹣2)2,﹣|﹣4|,﹣1.5,﹣12在数轴上表示出来,并用“<”号把这些数连接起来.19.(6分)如图,平面上有A,B,C,D四个点,根据下列语句画图.①画直线AB,作射线AD,画线段CD;②连接BC,并将其反向延长至E,使CE=2BC;③找到一点F,使点F到A,B,C,D使点的距离之和最短.20.(12分)计算(1)﹣2+2÷(﹣)×2(2)﹣22×5﹣(﹣2)3÷4(3)25×﹣(﹣25)×+25×(﹣)(4)﹣12008+(1﹣0.5)××[2﹣(﹣3)2].21.(8分)如图,线段AB=8cm,C是线段AB上一点,AC=3.2cm,M是AB的中点,N是AC的中点.(1)求线段CM的长;(2)求线段MN的长.22.(8分)在数轴上,如果点A,B分别表示﹣5,3,点C是与点B距离为5的点.(1)写出所有满足条件的点C所表示的数;(2)点P是线段AB的中点,求PC的长.23.(6分)已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,若CD=6,求:线段MC 的长.24.(8分)某条工作流水线上有四个工作台A、B、C、D,以B工作台为起点,以B工作台的右边为正,已知B台在A台的右边50米处,在C台的右边﹣30米处,在D台的右边﹣90米处.如果有一个工人先从C台向左走了60米,然后又向右走40米.求:(1)这个工人现在的位置距B台有多少米?是在B台的左边还是右边?(2)这个工人的位置离A台有多少米?(3)这个工人的位置离C台有多远?在C台右边多少米处?(4)这个工人的位置离D台有多远?25.(8分)近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响 B.影响不大 C.有影响,建议做无声运动 D.影响很大,建议取缔 E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:m= ,A区域所对应的扇形圆心角为度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?2017-2018学年山东省菏泽市定陶区七年级(上)期中数学试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.A;2.A;3.D;4.A;5.D;6.A;7.C;8.B;9.D;10.B;二、填空题(本大题共6小题,每小题3分,共18分)11.点动成线、线动成面;12.;;;13.抽样;8;14.8cm;15.4或8;16.﹣5或3;三、解答题(本大题共9小题,共72分)17.18.19.20.21.22.23.24.25.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________; (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________; (3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
最新北师大版七年级上学期数学期中考试试卷(附答案答卷)
最新北师大版七年级上学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、8的相反数是()A.B.C.﹣8D.82、中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果盈利70元记作+70元,那么亏本50元记作()A.﹣50元B.﹣70元C.+50元D.+70元3、某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃B.﹣5℃C.﹣3℃D.﹣9℃4、开州区大约有1680000人口,1680000用科学记数法表示,正确的是()A.168×104B.16.8×105C.1.68×104D.1.68×1065、下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a36、下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.7、下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|8、下列说法正确的是()A.﹣15ab的系数是15 B.的系数是C.4a2b2的次数是4D.a4﹣2a3b2+b2的次数是49、当x=1时,整式ax3+bx﹣1的值等于10,那么当x=﹣1时,整式ax3+bx﹣1的值为()A.﹣10B.10C.﹣12D.1210、用火柴按如图的方式搭六边形组成新的图形,图①搭1个六边形的图形需要6根火柴;图②搭2个六边形的图形需要11根火柴;图③搭3个六边形的图形需要16根火柴;…;按此规律,搭369个六边形的图形需要的火柴数是()A.2214B.2213C.1848D.1846二、填空题(每小题3分,满分18分)11、如果单项式3x m y与﹣5x3y n﹣1是同类项,那么m n的值是.12、比较大小:(填“>”或“<”)13、在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这种生活现象可以反映的数学原理是.14、在数轴上点P表示的数是﹣2,将点P沿数轴移动4个单位长度后所得的点A表示的数是.15、已知a,b互为相反数,c,d互为倒数,|m﹣3|+|2n﹣4|=0,x的绝对值为2,则的值为.16、已知a、b、c为实数,且abc>0,则+=.最新北师大新版七年级上学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:32÷(﹣1)2+5×(﹣2)+|﹣4|.18、先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=2,y=﹣3.19、如图是一个正方体的平面展开图,若将其按虚线折叠成正方体后,相对面上的两个数字之和均为6,求2x﹣y+z的值.20、如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部):;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.21、有理数a<0,b>0,c>0,且|b|<|a|<|c|.(1)在数轴上将a,b,c三个数填在相应的括号中;(2)化简:|2a﹣b|+|c﹣b|﹣2|a﹣c|.22、已知A=x3+ax,B=2bx3﹣4x﹣1.(1)若多项式2A﹣B的值与x的取值无关,求a,b的值;(2)当x=2时,多项式2A﹣B的值为21,求当x=﹣2时,多项式2A﹣B 的值.23、某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米收费1.3元;超过5千米,每千米收费2.4元.(不足1千米的按1千米计算)(1)若某人乘坐了2千米的路程,则他应支付的费用为,乘坐了4千米的路程,则他应支付的费用为,乘坐了8千米的路程,则他应支付的费用为;(2)若某人乘坐了x(x>5的整数)千米的路程,则他应支付的费用为多少?(3)若某人乘坐了14.2千米的路程,请聪明的你为他算一算需准备多少车费?24、先阅读并填空,再解答问题:我们知道,,,那么:(1)用含有n的式子表示你发现的规律:;(2)计算:;(请写出解题过程)(3)计算:.(请写出解题过程)25、已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+3|+|b﹣2|=0,A、B之间的距离记为|AB|=|a﹣b|或|b﹣a|,请回答问题:(1)直接写出a,b,|AB|的值,a=,b=,|AB|=.(2)设点P在数轴上对应的数为x,若|x﹣3|=5,则x=.(3)如图,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣1,动点P表示的数为x.①若点P在点M、N之间,则|x+1|+|x﹣4|=;②若|x+1|+|x﹣4|=10,则x=;③若点P表示的数是﹣5,现在有一蚂蚁从点P出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M、点N的距离之和是8?最新北师大版七年级上学期数学期中考试参考答案11、9 12、> 13、点动成线 14、﹣6或2 15、21或﹣19 16、4或0三、解答题17、318、﹣2119、020、解:(1)答案为:26cm2;(2)根据三视图的画法,画出相应的图形如下:21、解:(a<0<b<c,如图,(2)﹣c.22、解:(1)a=﹣2,b=1 (2)﹣19.23、解:(1)10元,11.3元,19.8元;(2)(2.4x+0.6)元;(3)需准备36.6元车费.24、解:(1)(2);(3).25、解:(1)﹣3,2,5.(2)8或﹣2.(3)①、答案为:5;②、答案为:﹣3.5或6.5;③经过2.5秒或10.5秒时,蚂蚁所在的点到点M、点N的距离之和是8.。
南京市玄武区2023-2024学年七年级上学期期中数学试题(含答案)
2023-2024玄武区七上数学期中真题卷七年级数学作业单注意事项:1.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.-2023的相反数是( ) A .12023 B .2023 C .12023- D .-2023 2.第19届亚运会在杭州举办,组委会招募志愿者约152万.将152万用科学记数法表示为( )A .415210⨯ B .515.210⨯ C .61.5210⨯ D .70.15210⨯ 3.在4,1.010010001,0,,0.1222,20%, 2.62662666272π-⋅⋅⋅-⋅⋅⋅(每两个2之间依次多一个6)中,无理数共有( )A .1个B .2个C .3个D .4个4.在跳远测试中,小明的成绩为2.1米,记作+0.5米.若小亮的成绩记作-0.2米,则小亮的成绩为( )A .1.4米B .1.6米C .1.8米D .1.9米 5.下列等式正确的是( )A .-(2x +1)=-2x +1B .-(-2x -1)=-2x +1C .-(3x -2)=-3x +2D .-(-2x -3)=2x -36.某工厂计划生产n 个零件,原计划每天生产a 个零件,实际每天比原计划多生产b 个零件,则实际生产所用的天数比原计划少( )A .n n a b ⎛⎫-⎪⎝⎭天 B .n n b a ⎛⎫- ⎪⎝⎭天 C .n n a b a ⎛⎫- ⎪+⎝⎭天 D .nn a a b ⎛⎫- ⎪+⎝⎭天 7.如图,数轴上,点A 、B 表示的数分别是a 、b ,下列结论:①-a >-b ;①11a b<;①a 2>b 2;①a 3<b 3,正确的个数有( )A .1个B .2个C .3个D .4个8.如图,已知圆环内直径为a 厘米,外直径为b 厘米,将9个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为( )A .(8a +b )厘米B .(8b +a )厘米C .(9a -b )厘米D .(9b -a )厘米二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.-2的倒数是______.10.单项式253mx y -的系数是_______,次数是______.11.湖边有一段堤岸高出湖面4米,湖底有一沉船在湖面下10米处.若湖边堤岸的高度记为0米,用正数表示高于堤岸的高度,那么沉船的深度可记作______米. 12.比较大小:43-______76-. 13.若322mx y-与43nx y 是同类项,则m +n =______.14.在-3,4,-7,5这四个数中,任意两个数之积的最大值为______. 15.如图是一个“数值转换机”,若输入的是2,则输出的结果是______.(第15题)16.若()()2232x y x y +-+的值为3,则2184x y -+的值为______.17.如图,在直角三角形ABC 中,∠ACB 是直角,,AC a BC b ==,以直角边AC 为直径画半圆,12S S -=______.(用含有a 、b 的代数式表示且结果保留π)(第17题)18.将9个代数式填入九宫格的方格中,使得九宫格的每一横行、每一竖列以及两条对角线上的3个代数式的和都相等.已知九宫格中的部分代数式如图所示,则M N -=______.(用含有x 的代数式表示)(第18题)三、解答题(本大题共9小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算(每题4分,共16分)(1)2017(7)(16)---+-; (2)235(5)32÷⨯÷-; (3)211251010⎛⎫⎛⎫--+÷- ⎪ ⎪⎝⎭⎝⎭; (4)2202314211(12)33--÷-⨯-.20.化简(每题4分,共8分)(1)22234x y x y --++; (2)()()22322ab a aab -+-.21.(5分)先化简,再求值:()()222223222x xy yxxy y +--+-,其中1,2x y =-=-.22.(5分)甲、乙两家水果店某一周的销售金额以每天1000元为准,超过的金额记作正数,不足的金额记作负数,记录情况如下表所示.其中乙水果店周三的销售金额被墨水涂污.(1)求甲水果店该周的销售总金额;(2)若甲、乙两家水果店该周的销售总金额相等,求乙水果店周三的销售金额.23.(6分)定义新运算“⊙”:对于有理数a ,b (b ≠0),都有1ab a b=-+. 例如:1523233=-+=-. (1)计算:122=______,11202320232023=______; (2)化简:()21n bab b bb +⋅⋅⋅=个______(n 是正整数).24.(5分)如图,某体育公园有一块长为90米,宽为70米的长方形运动场地.场地中间有两块运动区域,分别记作①号和②号区域.阴影部分为人行通道,两条横向通道和三条纵向通道的宽度均相等.已知①号区域的形状是正方形,边长为a 米,②号区域的形状是长方形.(第24题)(1)当60a =时,人行通道的宽度为______米; (2)求②号区域的周长(用含a 的代数式表示).25.(4分)数轴上,点A 、B 表示的数分别是a 、b ,请用刻度尺或圆规完成下列画图.(保留画图痕迹,写出必要的文字说明)(1)如图①,在数轴上画出点P ,且点P 表示的数是(a+b); (2)如图②,点C 表示的数是(a+b),在数轴上画出原点O .26.(7分)某网约车的车费由里程费、时长费、远途费三部分构成,车费计价规则如下表:(1)若行车里程为30千米,时长为40分钟,需付车费______元;(2)若行车里程为m 千米,时长为n 分钟,求应付的车费;(用含m 、n 的代数式表示) (3)乘坐该网约车去某地,导航显示两条路线.路线1:行车里程为x(5<x <10)千米,时长为y(y >10)分钟; 路线2:行车里程比路线1多5千米,时长比路线1少10分钟. 请问选择哪一条路线所付车费较少?并说明理由.27.(8分)“距离”再探究. 【概念理解】(1)数轴上,点A 、B 表示的数分别是-1、2,则A 、B 两点之间的距离可以表示为______. A .2-1 B .|2+(-1)| C .|2-1| D .|2-(-1)| 【数学思考】(2)数轴上,点C 、D 、E 表示的数分别是2、4、10.P 是数轴上的动点,设点P 表示的数是x .(Ⅰ)点P 到C 、D 两点的距离之和的最小值为______; (Ⅱ)填写表格,并回答问题:当x=______时,|x-2|+|x-4|+|x-10|取最小值.【实际应用】a+B A ba AB C B A C AB C D l(3)如图,在一条笔直的道路l 上分别有A 、B 、C 、D 四个停车场.为满足充电需要,在道路l 上修建一个充电站P .已知A 、B 、C 、D 四个停车场分别有(2m+9)辆,(m+1)辆,(m+3)辆,6辆电动车需要充电,其中m 为正整数.请问充电站P 建在道路l 上何处时,四个停车场中的所有电动车到充电站P 的距离之和最小?并简要说明理由.(在停车场内移动的距离忽略不计)七年级数学作业单答案一、选择题(本大题共8小题,每小题2分,共16分)1.B 2.C 3.B 4.A 5.C 6.D 7.D 8.A二、填空题(本大题共10小题,每小题2分,共20分)9.12-10.5,33π-11.-14 12.< 13.5 14.21 15.-5 16.-11 17.282a ab π-18.224x x -+ 三、解答题(本大题共9小题,共64分)19.解:(1)原式2017716=-+-1016=-6=- (2)原式3315225⎛⎫=⨯⨯⨯- ⎪⎝⎭1335522⎛⎫=⨯-⨯⨯ ⎪⎝⎭94=- (3)原式()21210510⎛⎫=--+⨯- ⎪⎝⎭()()()211021010510=-⨯--⨯-+⨯-4201=+-23=(4)原式()444133=--÷⨯-43434=-+⨯3=- 20.解:(1)原式22324x x y y =-+-+222x y =+.(2)原式223324ab a a ab =-+-223234a a ab ab =-++-2a ab =-- 21.解:原式222223244x xy y x xy y =+---+222222434x x xy xy y y =-+--+222x xy y =--+当1,2x y =-=-时,原式()()22(1)212(2)=---⨯-⨯-+-144=--+1=-22.解:(1)()()826032605214791050++-+-++=1000710508050⨯+=答:甲水果店该周的销售总金额为8050元(2)()10503050209955140060-------=-()100060940+-= 答:乙水果店周三的销售金额为940元. 23.解:(1)0,2023;(2)1a b-+ 24.解:(1)5;(2)因为①号区域是正方形且通道宽度都相等,矩形运动场宽70米, 所以通道的宽度可以表示为()1702a -米: 因为矩形运动场的长为90米, 所以②号区域宽为()11903701522a a a -⨯--=- 因为②号区域长为a 米,宽为1152a ⎛⎫-⎪⎝⎭米, 所以②号区域得周长为12153302a a a ⎛⎫+-=- ⎪⎝⎭, 答:②号区域得周长为()330a -米.25.(1)以B 为圆心,点A 到原点的距离为半径画弧,交数轴于点P ,点P 即为所求. (2)以B 为圆心,AC 长为半径画弧,交数轴于点O ,点O 即为所求. 26.解:(1)76;(2)当010m ≤≤时,应付车费为1.60.5m n +(元)当10m >时,应付车费为()1.60.50.41020.54m n m m n ++-=+-(元) (3)路线1的费用为1.60.5x y +(元);路线2的费用为()()250.510420.51x y x y ++--=++(元);()()20.51 1.60.50.41x y x y x ++-+=+,因为510x <<,所以0.410x +>, 故()()20.51 1.60.5x y x y ++>+, 因此,路线1的费用较少. 27.(1)D ;(2)2;9;8;4 ()充电站P 建在B 停车场.方法一:以A 为原点,建立如图所示的数轴.设点B C D 、、所表示的数分别为b c 、、d ,点P 表示的数为x .A B C D 、、、四个停车场中的所有电动车到点P 的距离之和可以表示为()()()29136m x m x b m x c x d+++-++-+-.因为()()()29136419m m m m ++++++=+,又419m +是奇数,且41912102m m ++=+,所以当x b =时最小. 方法二:如图,因为1m m <+,所以当x b =时最小.。
人教版七年级数学上册期中测试卷 (26)
人教版七年级数学上册试题2017-2018学年湖北省黄石市七年级(上)期中数学试卷一、选择题(每题3分,共计30分)1.﹣2的相反数是()A.﹣B.﹣2 C.D.22.在有理数(﹣1)2、、﹣|﹣2|、(﹣2)3中负数有()个.A.4 B.3 C.2 D.13.下列说法中正确的是()A.0既不是整数也不是分数B.整数和分数统称有理数C.一个数的绝对值一定是正数 D.绝对值等于本身的数是0和14.在数轴上把数2对应的点移动3个单位后所得的对应点表示的数是()A.5 B.﹣1 C.5或﹣1 D.不确定5.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为()A.0.35×108B.3.5×107C.3.5×106D.35×1056.下列各组的两项是同类项的是()A.3m2n2与3m3n2B.2xy与yx C.53与a3D.3x2y2与4x2z27.下列计算正确的是()A.2a+b=2ab B.﹣5a2+3a2=﹣2C.3x2y﹣3xy2=0 D.8.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣4 B.﹣1 C.0 D.49.下列说法正确的是()A.单项式22x3y4的次数9 B.x+不是多项式C.x3﹣2x2y2+3y2是三次三项式 D.单项式的系数是10.下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第10个图形中白色正方形的个数为()A.20 B.30 C.32 D.34二、填空题(本大题共6小题,每小题3分,共18分)11.﹣5的倒数是.12.把3.1415取近似数(精确到0.01)为.13.已知代数式x+2y的值是3,则代数式2x+4y+1的值是.14.如果y|m|﹣3﹣(m+5)y+16是关于y的二次三项式,则m的值是.15.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是.16.为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+ (3101)因此3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52017的值是.三、解答题(共8小题,共72分)17.(8分)计算:(1)15﹣(﹣6)+(﹣11)﹣10(2)(﹣+)×(﹣18)18.(8分)计算:(1)2.5+(﹣2)÷×(﹣)﹣3.5(2)﹣14÷[﹣22+(﹣)2×(﹣3)3].19.(8分)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=,b=﹣.20.(8分)一个正两位数的个位数字是a,十位数字比个位数字大2.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被22整除.21.(8分)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分长四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的大正方形的边长为;阴影部分的正方形的边长为;(2)请用两种方式表示图②中阴影部分的面积.22.(10分)根据等式和不等式的性质,可以得到:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.这是利用“作差法”比较两个数或两个代数式值的大小.(1)试比较代数式5m2﹣4m+2与4m2﹣4m﹣7的值之间的大小关系;解:(5m2﹣4m+2)﹣(4m2﹣4m﹣7)=5m2﹣4m+2﹣4m2+4m+7=m2+9,因为m2≥0所以m2+9>0所以5m2﹣4m+24m2﹣4m﹣7.(用“>”或“<”填空)(2)已知A=5m2﹣4(m﹣),B=7(m2﹣m)+3,请你运用前面介绍的方法比较代数式A与B的大小.23.(10分)小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.24.(12分)已知多项式x3﹣3xy2﹣4的常数是a,次数是b.(1)则a=,b=;并将这两数在数轴上所对应的点A、B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离之和为11,求点C在数轴上所对应的数;(3)在数轴上是否存在点P,使P到A、B、C的距离和等于12?若存在,求点P对应的数;若不存在,请说明理由.(4)在数轴上是否存在点P,使P到A、B、C的距离和最小?若存在,求该最小值,并求此时P点对应的数;若不存在,请说明理由.2017-2018学年湖北省黄石市七年级(上)期中数学试卷参考答案一、选择题(每题3分,共计30分)1.D;2.C;3.B;4.C;5.C;6.B;7.D;8.B;9.B;10.C;二、填空题(本大题共6小题,每小题3分,共18分)11.;12.3.14;13.7;14.5;15.a+c;16.;三、解答题(共8小题,共72分)17.18.19.20.21.22.23.24.习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。
七年级(上)期中考试数学试卷(含答案)
七年级(上)期中考试数学试卷(全卷满分100,考试时间90分钟)一、选择题(每小题3分,共36分)1.升降机运行时,如果上升36米记作“+36米”,那么当它下降19米时,记作()米.A.+19 B.-19 C.+36 D.-362.(-2)3的相反数是()A.-8 B.8 C.-6 D.63.下列式子符合书写要求的是()A.xy3 B.213x C.25xy2D.3xy÷24.计算-(-2)+|-2|,其结果为()A.-4 B.4 C.0 D.-25.计算13×(-3)÷(-13)×3的结果是()A.1 B.9 C.-3 D.-66.下列运算正确的是()A.4a+5b=9ab B.-3xy-3xy=0C.3a+4a=7a2D.4x2y-3yx2=x2y7.数据21020000用科学记数法可表示为()A.2.102×107B.2.102×106C.0.2102×108D.21.02×106 8.下列说法正确的是()A.单项式225x y-的系数是-2,次数是3 B.单项式x的系数是0,次数是0C.6xy2+3xy-4x是二次三项式D.单项式-324xy的次数是2,系数是-29.实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1-a>1 10.按规律排列的一列数:1,-2,4,-8,16…中,第7与第8个数分别为()A .64,-128B .-64,128C .-128,256D .128,-25611.若a -b =-1,则(a -b )3-3a +3b 的值是( )A .3B .2C .1D .-112.某件商品按原售价降低a 元后,又降20%,现售价为b 元,那么该商品的原价为( )A .元B .元C .(5b +a )元D .(5a +b )元二、填空题(每小题3分,共12分)1.−3的倒数是_______.2.在数轴上到原点的距离等于5的点表示的数为_______.3.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则式子2cd -3a b m ++m 2的值为_______.4.若“△”是新规定的某种运算符号,设a △b =3a -4b ,则(x -y )△(x +y )运算后的结果为_______.三、解答题(共52分)1.(12分)计算题:(1)11+(-23)-(+9)-(-12);(2)(56-13-25)×30; (3)-12-112×[9-(-3)3]; (4)(-2)4÷(23)2-12×(-13)+|-22-4|.2.(5分)先化简,再求值:13xy -2(xy -13y 2)+(-43xy +13y 2),其中x =3,y =-2.3.(5分)画出数轴,在数轴上表示下列各数,并用“>”把它们连接起来.-4,(-512),(-2)2,|-3|,312.4.(5分)已知47x2m-1y 8与-2x5y-3n-1是同类项,求mn+3m-7n的值.5.(8分)已知:A-2B=2a2-3ab,且B=3a2-2ab+5;(1)求A等于多少?(2)若|a-2|+(b+3)2=0,求A的值.6.(9分)某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若小明家1月份用水17吨,问小明家1月份应交水费多少元?(2)若小明家2月份交水费35元,问小明家2月份用水多少吨?(3)若小明家3月份用水x吨,问小明家3月份应交水费多少元?(用x的代数式表示)7.(12分)观察下列等式,请回答下列问题:第1个等式:a1==1-;第2个等式:a2==-;第3个等式:a3==-;第4个等式:a4==-;…(1)按以上规律列出第5个等式:a5=____________;(2)求a1+a2+a3+a4+…+a50的值;(3)已知:b1=113⨯,b2=135⨯,b3=157⨯,…,求b1+b2+b3+…+b100的值.参考答案一、选择题(每小题3分,共36分)1.B2.B3.C4.B5.B6.D7.A 8.D 9.D 10.A 11.B 12.B二、填空题(每小题3分,共12分)1.2.±53.64.-x-7y三、解答题(共52分)1.解:(1)原式=-9;(2)原式=3;(3)原式=-4;(4)原式=48.2.解:原式=-3xy+y2,当x=3,y=-2时,原式=22.3.解:(-2)2>312>|-3|>-4>(-512);画数轴略.4.解:由同类项定义得:m=3,n=-3,把m=3,n=-3代入mn+3m-7n得:mn+3m-7n=6.5.解:(1)A=8a2-7ab+10;(2)a=2,b=-3,∴A=84.6.解:(1)10×2+(17-10)×2.5=37.5(元),答:应交水费37.5元;(2)设小明家2月份用水x吨,由题意得10×2+2.5×(x-10)=35,解得x=16,答:小明家2月份用水16吨;(3)①当0≤x≤10时,应交水费为2x(元),②当x>10时,应交水费为:20+2.5(x-10)=(2.5x-5)(元).7.解:(1)由题意得:第5个等式为:a5==,故答案为:=;(2)a1+a2+a3+a4+…+a50=+…+1 5051=++…+150-151=1-1 51=50 51.(3)b1+b2+b3+b4+…+b100=12(11-13)+12(13-15)…+12(1199-1201)=12(11-13+13-15+…+1199-1201)=12(11-1201)=100 201.。
2023-2024学年冀教新版七年级上册数学期中复习试卷(含解析)
2023-2024学年冀教新版七年级上册数学期中复习试卷一.选择题(共16小题,满分48分,每小题3分)1.如果a的绝对值是1,那么a2015等于( )A.1B.2015C.2015或﹣2015D.﹣1或12.如果一个角的补角是110°,则这个角的余角的度数是( )A.30°B.20°C.70°D.110°3.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点确定一条直线”来解释的现象有( )A.1个B.2个C.3个D.4个4.如图,从A地到B地有三条路线,由上至下依次记为路线a、b、c,则从A地到B地的最短路线是c,其中蕴含的数学道理是( )A.两点确定一条直线B.两点之间,线段最短C.经过一点有无数条直线D.直线比曲线短5.如果向东走3m记为+3m,则向西走5m可记为( )A.+3m B.+5m C.﹣3m D.﹣5m6.在下列数﹣(﹣3),(﹣2)2,0,﹣32,﹣(﹣3)3,﹣|﹣|中,负数的个数是( )A.1个B.2个C.3个D.4个7.若∠1=40.4°,∠2=40°4′,则∠1与∠2( )A.∠1<∠2B.∠1>∠2C.∠1=∠2D.无法确定8.把足够大的一张厚度为0.1mm的纸连续折6次,则对折后的整叠纸总厚度为( )mm.A.0.64B.6.4C.1.28D.12.89.如图,在△ABC中,∠A=30°,将△ABC绕着B点逆时针旋转40°,到△BDE的位置,则∠a的度数是( )A.40°B.30°C.20°D.10°10.下列变形,运用加法运算律错误的是( )A.(﹣8)+(﹣9)=(﹣9)+(﹣8)B.4+(﹣6)+3=(﹣6)+4+3C.[5+(﹣2)]+4=[5+(﹣4)]+2D.+(﹣1)+(+)=(+)+(﹣1)11.现规定一种新的运算:a△b=ab﹣a+b,则2△(﹣3)=( )A.11B.﹣11C.6D.﹣612.下列说法错误的是( )A.直线AB和直线BA是同一条直线B.若线段AB=5,AC=3,则BC不可能是1C.画一条5厘米长的线段D.若线段AM=2,BM=2,则M为线段AB的中点13.在时刻9:30,墙上挂钟的时针与分针之间的夹角是( )A.115°B.105°C.100°D.90°14.现定义一种新运算:a※b=b2﹣ab,如:1※2=22﹣1×2=2,则(﹣1※2)※3等于( )A.﹣9B.﹣6C.6D.915.若a,b互为相反数,则下列选项中,互为相反数的一组是( )A.a2与b2B.a3与﹣b3C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)16.如图,点O在直线AB上,OC平分∠BOD,若∠COD=20°,则∠AOD的度数是( )A.140°B.130°C.120°D.110°二.填空题(共4小题,满分12分,每小题3分)17.小于2013且大于﹣2012的所有整数的和是 .18.大雁迁徙时常排成人字形,这个人字形的一边与其飞行方向夹角是54°45',从空气动力学角度看,这个角度对于大雁队伍飞行最佳,所受阻力最小.则54°45'的补角是 度.19.已知(m+2)2+|n﹣3|=0,则5m+n= .20.如图,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM =∠AOC,∠BON=∠BOD,当OC边与OB边重合时,∠COD从图中的位置绕点O顺时针旋转n°(0<n<126),则n°= 时,∠MON=2∠BOC.三.解答题(共6小题,满分60分)21.计算:①(﹣3)+(﹣4)﹣(+11)﹣(﹣9);.22.如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.若∠B=21°,∠ACB=26°,求出旋转的度数,并指出旋转中心.23.小亮同学家冰箱开始启动时内部温度是10℃,如果每小时冰箱内部的温度升高﹣5℃,那么4小时后冰箱内部的温度是多少?24.学习千万条,思考第一条.请你用本学期所学知识探究以下问题:Ⅰ.已知点O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,并在∠MON内部作射线OC.(1)如图1,三角板的一边ON与射线OB重合,且∠AOC=150°,若以点O为观察中心,射线OM表示正北方向,求射线OC表示的方向;(2)如图2,将三角板放置到如图位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度数.Ⅱ.已知点A、O、B不在同一条直线上,∠AOB=α,∠BOC=β,OM平分∠AOB,ON 平分∠BOC,用含α,β的式子表示∠MON的大小.25.如图,数轴上每相邻两点的相距一个单位长度,点A、B、C、D是这些点中的四个,且对应的位置如图所示,它们对应的数分别是a,b,c,d.(1)当ab=﹣1,则d= .(2)若|d﹣2a|=7,求点C对应的数.(3)若abcd<0,a+b>0,化简|a﹣b|﹣|b+c﹣5|﹣|c﹣5|﹣|d﹣a|+|8﹣d|.26.已知:如图,点A、B、C、D四点共线,AC=2BC,BC=3,D为AB中点.求:(1)图中共有 条线段;(2)求CD的长.参考答案与试题解析一.选择题(共16小题,满分48分,每小题3分)1.解:∵|a|=1,∴a=±1,∴(±1)2015=±1,故选:D.2.解:设这个角为x,由题意得x+110°=180°,解得x=70°,则这个角的余角的度数是90°﹣70°=20°.故选:B.3.解:①用两个钉子就可以把木条固定在墙上,②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线根据“两点确定一条直线”,共2个,故选:B.4.解:从A地到B地的最短路线是c,其中蕴含的数学道理是两点之间线段最短,故选:B.5.解:如果向东走3m记为+3m,则向西走5m可记为﹣5m.故选:D.6.解:﹣(﹣3)=3,(﹣2)2=4,﹣32=﹣9,﹣(﹣3)3=27,.∴负数有﹣32、,共2个.故选:B.7.解:∵∠1=40.4°=40°24′,∠2=40°4′,∴∠1>∠2.故选:B.8.解:对折后的整叠纸总厚度为:0.1×26=6.4(mm).故选:B.9.解:如图,设AC,BD相交于O,∵将△ABC绕着点B逆时针旋转40°,到△BDE的位置,∴∠DBA=40°,∠D=∠A=30°,∵∠AOB+∠A+∠ABD=∠COD+∠D+∠α=180°,而∠AOB=∠COD,∴∠α=∠ABD=40°.故选:A.10.解:A、(﹣8)+(﹣9)=(﹣9)+(﹣8),故A不符合题意;B、4+(﹣6)+3=(﹣6)+4+3,故B不符合题意;C、[5+(﹣2)]+4=(5+4)+(﹣2),故C符合题意;D、+(﹣1)+(+)=(+)+(﹣1),故D不符合题意;故选:C.11.解:根据题中的新定义得:原式=﹣6﹣2﹣3=﹣11,故选:B.12.解:A.直线AB和直线BA是同一条直线,说法正确,不合题意;B.若线段AB=5,AC=3,则BC最短为2,不可能是1,说法正确,不合题意;C.画一条5厘米长的线段,说法正确,不合题意;D.若线段AM=2,BM=2,则M不一定是线段AB的中点,故原说法错误,符合题意.故选:D.13.解:∵9点30分,时针指向9和10的中间,分针指向6,中间相差3大格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴9点30分分针与时针的夹角是30°×3.5=105°,故选:B.14.解:根据题中的新定义得:﹣1※2=22﹣(﹣1)×2=4+2=6,则6※3=32﹣6×3=9﹣18=﹣9.故选:A.15.解:∵a,b互为相反数,∴a+b=0,a=﹣b,A、a2=(﹣b)2=b2,即只有当a=b=0时,a2与b2互为相反数,故此选项不符合题意;B、a3=(﹣b)3=﹣b3,即只有当a=b=0时,a2与b2互为相反数,故此选项不符合题意;C、a2n=(﹣b)2n=b2n(n为正整数),即只有当a=b=0时,a2与b2互为相反数,故此选项不符合题意;D、a2n+1与=(﹣b)2n+1=﹣b2n+1,与b2n+1(n为正整数)互为相反数,故此选项符合题意;故选:D.16.解:∵OC平分∠BOD,∴∠BOD=2∠COD=40°.∴∠AOD=180°﹣∠BOD=180°﹣40°=140°.故选:A.二.填空题(共4小题,满分12分,每小题3分)17.解:小于2013而大于﹣2012的所有整数有:﹣2011,﹣2010,﹣2009,...,﹣1,0,1, (2012)和为﹣2011﹣2010﹣2009﹣…﹣1+0+1+…+2012=(﹣2011+2011)+(﹣2010+2010)+…+(﹣1+1)+2012=2012.故答案为:2012.18.解:180°﹣54°45'=179°60'﹣54°45'=125°15'=125.25°.故答案为:125.2519.解:∵(m+2)2+|n﹣3|=0,∴m+2=0,n﹣3=0,∴m=﹣2,n=3,则5m+n=5×(﹣2)+3=﹣7.故答案为:﹣7.20.解:①0°<n<54°时,∠BOC=n°,∠MON=2n°,∠MON=(126°+n°)+54°﹣(54°+n°)=100°,∴n=51.②当54°<n<126°时,∠AOC=360°﹣(126°+n°)=234°﹣n°,∠BOD=54°+n°,∴∠MON=360°﹣∠AOM﹣∠AOB﹣∠BON=360°﹣(234°﹣n°)﹣126°﹣(54°+n°)=138°∴n=69.综上所述,n的值为51或69.故答案为:51°或69°.三.解答题(共6小题,满分60分)21.解:①(﹣3)+(﹣4)﹣(+11)﹣(﹣9)=(﹣3)+(﹣4)+(﹣11)+9=﹣9;=﹣1﹣5+2×=﹣1﹣5+=﹣5.22.解:∵∠B=21°,∠ACB=26°,∴∠BAC=180°﹣∠B﹣∠ACB=180°﹣21°﹣26°=133°,即∠BAD=133°,∴旋转的度数为133°,由图可知旋转中心为点A.23.解:∵冰箱开始启动时内部温度为10℃,如果每小时冰箱内部的温度升高﹣5℃,那么4小时后冰箱内部的温度为10﹣4×5=﹣10(℃).答:4小时后冰箱内部的温度是﹣10℃.24.解:Ⅰ(1)∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,∴射线OC表示的方向为北偏东60°;(2)∵∠BON=2∠NOC,OC平分∠MOB,∴∠MOC=∠BOC=3∠NOC,∵∠MOC+∠NOC=∠MON=90°,∴3∠NOC+∠NOC=90°,∴4∠NOC=90°,∴∠BON=2∠NOC=45°,∴∠AOM=180°﹣∠MON﹣∠BON=180°﹣90°﹣45°=45°;Ⅱ.如图1:∵∠AOB=α,∠BOC=β,OM平分∠AOB,ON平分∠BOC,∴∠AOM=∠BOM=∠AOB=α,∠CON=∠BON=∠COB=β,∴∠MON=∠BOM+∠CON=,如图2,∠MON=∠BOM﹣∠BON=;如图3,∠MON=∠BON﹣∠BOM=,∴∠MON为或或.25.解:(1)因为每相邻两点的相距一个单位长度,所以a,b为整数又ab=﹣1,所以a=﹣1,b=1,所以d=8故答案为:8;(2)因为|d﹣2a|=7所以d﹣2a=±7;由图知:d﹣a=9;ⅰ.当d﹣2a=7 时,9﹣a=7,则a=2,所以C对应的点就为7;ⅱ.当d﹣2a=﹣7 时,9﹣a=﹣7,则a=16,所以C对应的点就为21.(3)因为abcd<0,a<b<c<d,所以a,b,c为负数,d为正数;或者a为负数,b,c,d为正数.又因为a+b>0,所以a为负数,b,c,d为正数;由题与图可得:﹣1<a<0,1<b<2,4<c<5,8<d<9;因为a﹣b<0,b+c>0,c﹣5<0,d﹣a>0,8﹣d<0所以|a﹣b|﹣|b+c﹣5|﹣|c﹣5|﹣|d﹣a|+|8﹣d|=b﹣a﹣(b+c﹣5)+(c﹣5)﹣(d﹣a)﹣(8﹣d)=b﹣a﹣b﹣c+5+c﹣5﹣d+a﹣8+d=﹣8.26.解:(1)n(n﹣1)=×4×3=6,故答案为6;(2)∵AC=2BC,BC=3,∴AC=6,∴AB=6+3=9,∵D为AB中点,∴DB=AB=,∴DC=﹣3=.。
七年级数学上学期期中试题 26
输入xy =│x │-2y=x +3 输出y2021-2021学年七年级数学上学期期中试题亲爱的同学,你好!今天是展示你数学才能的时候了,只要你仔细审题、认真答题,把平常的程度发挥出来,你就会有出色的表现,放松一点,相信自己的实力!一、填空题〔本大题一一共12小题,每一小题2分,一共24分.〕1.假设某次数学考试HY 成绩定为80分,规定高于HY 记为正,小高同学的成绩记作:+11分,那么她的实际得分为 ▲ 分. 2.3-的相反数是 ▲ .3. 太阳的半径约为696000千米,这个数据用科学记数法表示为 ▲ 千米. 4.比拟大小:54-▲ 32. 5.数轴上的点A 到原点的间隔 是3,那么点A 表示的数是 ▲ .6.单项式34xy -的次数为 ▲ .7.假设m 、n 满足|m -2|+(n +3)2=0,那么n +m = ▲ . 8.223x x -=,那么2242x x --的值是 ▲ .9.假设代数式-2a 3b m与3a n -1b 3是同类项,那么m +n = ▲ .10.假设关于a ,b 的多项式2〔a 2+ab -5b 2〕-〔a 2-mab +2b 2〕中不含有ab 项,那么m = ▲ . 11.根据如下图的计算程序,假设输出的值y =-1,那么输入的值x = ▲ .12.将一根绳子对折1次后从中间剪一刀,绳子变成3段,将一根绳子对折2次后,从中间剪一刀,绳子变成5段,以此类推,将一根绳子对折n 次后,从中间剪一刀,绳子变成–11Oan 的代数式表示〕.二、选择题〔本大题一一共6小题,每一小题3分,一共18分. 在每一小题给出的四个选项里面,只有一项符合题目要求.〕 13.-4的倒数是 【 ▲ 】 A .-4B .4C .14D .14—14.以下计算正确的选项是【 ▲ 】A .326=B .2416-=C .880--=D .594-+=15.以下各组中的两个项不属于...同类项的是【 ▲ 】A .23x y 和22x y - B .2a 和23 C .1-和411D .xy -和2yx16.实数a 在数轴上对应的点如下图,那么,,1a a --,1的大小关系【 ▲ 】A .1-a a -<<<1B .1a a -<-<<1C .1a a <-<-<1D .1a a <-<-<117.假设多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,那么m 等于【 ▲ 】 A .2B .2-C .4D .4-18.当t =1时,多项式xt 3-yt +1的值是2,那么当t =-1时,多项式xt 3-yt -2的值是【 ▲ 】A .0B .-3C .-4D .-5三、解答题〔一共78分,解答需写出必要的文字说明或者演算步骤.〕 19.计算〔每一小题4分,此题满分是16分.〕〔1〕24(16)(25)32--+-- 〔2〕1111112361224⎛⎫-+-÷ ⎪⎝⎭〔3〕-13+|2-3|-2×(-1)2021〔4〕171621140.2523⎡⎤--⨯⨯-⎣⎦()(-).20.化简:〔每一小题4分,此题满分是8分〕〔1〕x 2+7y -5x 2-3y +1 〔2〕4(m -n )-3(2m +3n )+2(m -2n )21.〔8分〕先化简再求值:5(3a 2b -ab 2)-4(-ab 2+3a 2b ),其中a =-1,b =3.22.〔6分〕 x 2=4,|y |=3, 且 x <y ,求 2x -y 的值.23.〔8分〕A 21x ax =-+,B 2361bx x =+-, 〔1〕计算3A B -〔2〕假设3A B -的值与x 的取值无关,求a -b 的值.24.〔8分〕有理数a 、b 、c 在数轴上的位置如图:〔1〕判断正负,用“>〞或者“<〞填空:b -c ▲ 0,b -a ▲ 0,c -a ▲ 0. 〔2〕化简:|b -c |+|b -a |-|c -a |.25.〔8分〕某超开业,为了吸引顾客,实行优惠,方案如下表购物数量小于200元 满200,不超过500元超过500元 优惠方式不予优惠标价9折优惠500元〔包括500元〕给予9折优惠,超过500元局部给予8折优惠①〔1〕小张付款198元,求购置了标价为多少元的商品?〔2〕小张购物x元〔x>500〕,求小张付款多少元?〔用含x的代数式表示〕〔3〕小张两次购置,第一次购置了标价为260元的商品,第二次购置了标价540元的商品,假如他把两次购置的商品合并为一次,请你计算,他可以节多少元钱?26.〔8分〕如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a、b、c,其中a、b是直角边.正方形的边长分别是〔1〕将4个完全一样的直角三角形和2个小正方形构成一个大正方形〔如图②〕.用两种不同的方法列代数式表示图②中的大正方形面积:方法一:▲;方法二:▲;〔2〕观察图②,试写出222(),,2,a b a ab b+这四个代数式之间的关系式;〔3〕利用〔...2.〕的结论....计算:2220.2140.429.799.79+⨯+的值.27.〔8分〕【阅读理解】点A、B、C为数轴上三点,假如点C在A、B之间且到A的间隔是点C到B的间隔3倍,那么我们就称点C是{ A,B }的奇点.例如,如图1,点A表示的数为3-,点B表示的数为1.表示0的点C到点A的间隔是3,到点B 的间隔 是1,那么点C 是{ A ,B }的奇点;又如,表示2-的点D 到点A 的间隔 是1,到点B 的间隔 是3,那么点D 就不是{A ,B }的奇点,但点D 是{B ,A }的奇点.图1图2图3【知识运用】如图2,M 、N 为数轴上两点,点M 所表示的数为3-,点N 所表示的数为5. 〔1〕数 ▲ 所表示的点是{ M ,N }的奇点;数 ▲ 所表示的点是{N ,M }的奇点; 〔2〕如图3,A 、B 为数轴上两点,点A 所表示的数为50-,点B 所表示的数为30.现有一动点P 从点B 出发向左运动,到达点A 停顿.P 点运动到数轴上的什么位置时,P 、A 和B 中恰有一个点为其余两点的奇点?NM76543-3-2-1210PB A 30-50七年级数学期中试卷参考答案一、填空题〔本大题一一共12小题,每一小题2分,一共24分.〕1. 错误!未找到引用源。
2013-2014学年七年级数学上学期期中试题 (新人教版 第26套)
2013-2014学年度第一学期期中考试七年级数学试题(考试时间:100分钟 总分:100分)亲爱的同学们:七年级上学期已过去一半,现在是展示你实力的时候,请仔细审题,细心答题,相信你一定会有出色的表现! 一、选择题:(每题3分,共30分)1、2的相反数是( ) A . B .-2 C .12-D .不能确定 2、-2的倒数是( )A .2B .12 C .-2 D .12-3、用代数式表示“3m 与4的差”为( )A .3m -4B .4-3mC .3(m -4)D .3(4-m)4、下列计算正确的是( )A .325a b ab +=B .532y y -=C .277a a a +=D .y x y x y x 22223=-5、已知代数式x+2y 的值是3,则代数式2x+4y+1的值是( )A .1B .4C .7 D. 9 6、若a 与b 互为相反数,则下列式子成立的是( )A .a -b =0B .a +b =1C .a +b =0D .ab =0 7、单项式-3xy25的系数和次数分别是( )A . – 15,2B .-35,2C . 35,3D .-35,38、钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为( )A .44×105B .0.44×105C . 4.4×106D . 4.4×1059、下列一组数:-6,2.7,213-,2π,0.66666…,3.1415926,0.080080008…( 相邻两个8之间依次增加一个0 ),其中无理数个数有( ) A .0个 B . 1个 C . 2个 D . 3个 10、如图在数轴上表示5个城市的国际标准时间(单位:时),那么北京时间2013年8月8日20时应是( )A .伦敦时间2013年8月8日11时B .巴黎时间2013年8月8日13时C .纽约时间2013年8月8日5时D .汉城时间2013年8月8日19时 21北京 汉城 巴黎 伦敦 纽约二、填空题:(每空2分,共24分)11、如果-6元表示支出6元,那么收入10元可表示为________元. 12、比-3小2的数是 . 13、比较下列各数的大小:(1)-2 0 (2)-12 -6 (3)4 -3 14、若单项式n y x 232与32y x m -是同类项,则n m -= . 15、我市某一天的最高气温是8℃,最低气温是-2℃,那么这一天的最高气温比最低气温高℃16、-2013的绝对值是 .17、如果2|1|(2)0x y ++-=,则yx = . 18、去括号: ()a b c --= .19、规定a ﹡b=a +b -1,则(-4)﹡6的值为 . 20、在如图所示的计算程序中,若最后输出的结果是25,则开始输入的数值是.三、解答题:(本题共6大题,共46分) 21、计算题(每小题5分,共15分): (1)(+18)+(-6)(2)361276521⨯⎪⎭⎫⎝⎛-+(3)()1426131212⨯-+÷⎪⎭⎫ ⎝⎛-22、 化简(每小题5分,共10分): (1)9a+7a -6a(2)()()2222233b aba ---23、解下列方程(每小题5分,共10分):⑴4x -15=9 ⑵12143352--=-x x24、先化简再求值(本题5分):)2(5)23(42222b a ab ab b a +---,其中a =2,b =-3.25、 (本题4分)如图是某年6月份的日历.二(1)细心观察:小张一家外出旅游5天,这5天的日期之和是20.小张旅游的第一天是 ____________号.(2)如果用一个长方形方框任意框出3⨯3,从左下角到右上角的“对角线”上的3个数字的和是54,在这9_____________号.(3)在这个月的日历中,用题(2135”的9个数?如果能,请求出这9个日期中,最小的日期是几号;如果不能,请说明理由. 26、(本题2分)数学游戏:游戏一、有一种数字游戏,操作步骤如下:第一步,任意写一个自然数(以下简称为原数,原数中至少有一个偶数数字);第二步,再写一个新三位数,它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数是原数的位数; 以下每一步都对上一步得到的数,按照第二步的规则进行操作,直到这个数不再变化为止.请求出这个数.游戏二、任意写出一个数字不全相同的四位数,用这个数的各个数位上的数字连同它的符号分别组成最大的数和最小的数,计算所组成的最大数与最小数的差。
浙教版七(上)数学期中试卷26(含答案)
衢州市五校联谊期中质量检测七(上)数学试卷同学们好,这是你初中阶段第一次期中考试,请认真审题、仔细作答,祝你成功!温馨提示:本卷不得使用计算器!一、选择题(每小题3分,共30分) 1.34的相反数是 A.34B. - 34C.134 D. 134- 2.如图,数轴上在A 左边并且距离A 点3个单位长度的点表示的数是AA .-5B .-3C .3D .13.据科学家估计,地球的年龄大约是4600000000年,用科学计数法可表示为 A .84610⨯ 年 B .84.610⨯ 年 C .94.610⨯ 年 D .104.610⨯ 年 4.用代数式表示:“x 的5倍与y 的和的平方”可以表示为A. 2(5)x y +B. 25()x y +C. 25x y + D. 2(5)xy +5.下列各式中正确的是A .9=±9=± C.9=- D.9=9.已知2,4x y ==,且x >y ,则x -y 的值为A.6B.6或2C.6±或2±D.-2或-6二、填空题(每小题3分,共24分)11.计算:-2+1= .12.筐中有一些苹果要分给5个小朋友,发现当每人分m 个时筐中还剩下一个苹果,则筐中总共有苹果 个. 13.在加工零件的图纸上通常用0.020.05300φ+-(单位:mm )来表示轴的加工要求,这里300φ表示直径是300mm ,-0.05和+0.02是指直径在 mm 到300.02mm 之间的产品都属于合格产品.14.一个数的立方根等于它本身,则这个数是. 15.观察右图,每个小正方形的边长均为1,则图中阴影正方形的边长是 .17.,,2012中,有理数的个数有 个.18.将一张长方形的纸对折一次(如图),可以得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折n 次可以得到折痕.a b c = -1 2 3 a b+c , 那么 = _________. 16.如果衢州市五校联谊期中质量检测七年级数学学科答题卷一、选择题(共10小题,每小题3分,共30分.将正确选项填入如下表格)二、填空题(共8小题,每小题3分,共24分)11.12.13. 14.15.16. 17. 18.三、解答题(共8小题,共46分)温馨提示:请务必写出解答过程!19.计算题(每题2分,共10分)(1)-20-(-18)+(+7)(2)56 8(0.25)35⎛⎫⎛⎫⨯-⨯-⨯-⎪ ⎪⎝⎭⎝⎭解:原式= 解:原式=(3)422293⎛⎫-+⨯- ⎪⎝⎭(4)132438⎛⎫÷-⎪⎝⎭解:原式= 解:原式=(5)199(8)4⨯-解:原式=20.(本题5分)在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来.10,3,1,2--21.(本题6分)下列实数中,哪些是整数?哪些是分数?哪些是无理数?355,,0, 3.14159, 6.1717711134π--(每相邻两个“1”之间依次多一个“7” )中,整数有分数有无理数有22.(本题4分)某校体育器材室共有60个篮球.一天课外活动,有3个班级分别计划借篮球总数的12,13和14.这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?23.(本题4分)如图所示:(1)用代数式表示阴影部分的面积;(2)当a =10,b=4时,π取值为3.14,求阴影部分的面积.(结果保留三个有效数字)25.探究题(本题5分)(1)计算下列各式,完成填空:=6 ===(2)通过上面的计算,比较左右两边的等式,你发现了什么?请用字母表示你发现的规律是;请用这一规律计算:=26.(本题6分)上网费包括网络使用费(每月28元)和上网通信费(每小时2元),某网络公司对拨号上网用户实行优惠,具体优惠政策如下:上网0—30小时(不超过30),无优惠;30—60小时(不超过60),通信费优惠百分之三十;60—100小时(不超过100),通信费优惠百分之四十;100小时以上,通信费优惠百分之五十.(1)若小明家四月份上网29小时,则应缴上网费多少元?(2)若小明家七月份上网90小时,则应缴上网费多少元?(3)如果某月的上网时间为a 小时,试用含a的代数式分别表示出各时间段的上网费用.参考答案一、(共10个小题,每小题3分,共30分) BACACDDBBA 二、(共8个小题,每题3分,共24分) 11. -1 12.(5m +1) 13. 299.95 14. 1,-1,015 16. 4 17. 44 18. 21n - 三、解答题(共46分)19.计算题(每题2分,共10分)(1)5 (2) -4 (3) 209- (4)-576 (5)-794 20.(5分)略. 21.(6分)略. 22.(4分)11160(1)⨯---=-5(3分)答:不够借,还缺5个篮球.(1分)25.(5分) (1) 6 ,57, 57. (3分)(2)0,0)a b =≥≥(1分,字母范围没写不扣分);32.(1分) 26.(6分) (1)29×2+28=86元;(1分) (2)90×2×(1-40%)+28=136元;(1分)(3)当a 在0—30小时(不超过30)时,(28+2a )元;(1分)当a 在30—60小时(不超过60)时,(28+2a ×70%)元;(1分) 当a 在60—100小时(不超过100)时,(28+2a ×60%)元;(1分) 当a 在100小时以上时,(28+2a ×50%)元.(1分)。
人教版七年级上册数学《期中考试试卷》含答案
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、反复比较,慎重选择哟!(每小题3分,共30分)1.计算()33--的结果是( )A. 6B. 3C. 0D. -62.下列结论中错误的是( )A. 零整数B. 零不是正数C. 零是偶数D. 零不是自然数 3.若2=a ,则a 的值为( )A. 2B. -2C. ±2D. 不确定 4.如果一个数的平方等于它的倒数,那么这个数一定是( )A. 0B. 1C. ﹣1D. ±1 5.关于多项式26﹣3x 5+x 4+x 3+x 2+x 的说法正确的是( )A. 是六次六项式B. 是五次六项式C. 是六次五项式D. 是五次五项式6.在﹣(﹣1)4,23,﹣32,(﹣4)2这四个数中,最大的数与最小的数的和等于( )A. 7B. 15C. ﹣24D. ﹣17.一个两位数,个位数字为a ,十位数字比个位数字大1,则这个两位数可表示为( )A 11a -1B. 11a +1C. 11a +10D. 11a -108.不改变代数式a 2﹣(2a+b+c )的值,把它括号前的符号变为相反的符号,应为( )A. a 2+(﹣2a+b+c)B. a 2+(﹣2a ﹣b ﹣c) C a 2+(﹣2a)+b+cD. a 2﹣(﹣2a ﹣b ﹣c) 9.化简2a ﹣[3b ﹣5a ﹣(2a ﹣7b)]的结果是( )A. ﹣7a+10bB. 5a+4bC. ﹣a ﹣4bD. 9a ﹣10b 10.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是( )A. 25B. 27C. 55D. 120二、注意审题,细心填空呦!(每小题3分,共30分)11.-3的相反数是_______,-2018的倒数是_______.12.稀士元素具有独特的性质和广泛的应用,我国稀土资源的总储量约为1050000000吨,用科学记数法表示为_____.13.比较有理数大小:﹣3_____﹣2016(选用“>”、“<”或“=”号填空).14.规定a*b=5a+2b-1,则(﹣4)*6的值为_______.15.若|x|=3,y 的倒数为12,则x+y=_____. 16.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x 立方米(x >60),则该户应交煤气费_____元. 17.在数﹣1,2,﹣3,5,﹣6中,任取两个数相乘,其中最大积是_____.18.单项式﹣2223a b cπ是_____次单项式,系数为_____.19.已知代数式x 2+3x+5的值等于7,则代数式3x 2+9x+2的值_____.20.有一列式子,按一定规律排列成3a,﹣9a 2,27a 3,﹣81a 4,243a 5,…这列列式子中第n 个式子为_____.(n 为正整数)三、解答题(共55分)21.计算:(1)5×(﹣2)+(﹣8)÷(﹣2)(2)(﹣24)×(1231238--) (3)﹣14﹣(1﹣0×4)÷13×[(﹣2)2﹣6]. 22.已知|x|=3,(y+1)2=4,且xy <0,求x+y 的值.23.按要求求值(1)化简求值:(4a 2﹣2a ﹣6)﹣2(2a 2﹣2a ﹣5)其中a=﹣1.(2)若化简(2mx 2﹣x+3)﹣(3x 2﹣x ﹣4)的结果与x 的取值无关,求m 的值.24.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2,当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?25.一位同学做一道题:“已知两个多项式A 、B ,计算2A ﹣B”.他误将“2A ﹣B”看成“A ﹣2B”,求得的结果5x 2﹣2x+4.已知B=2x 2+3x ﹣7,求2A ﹣B 的正确答案.26.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?27.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本金和利润再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元.(1)若商场投资x元,分别用含x的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?答案与解析一、反复比较,慎重选择哟!(每小题3分,共30分)1.计算()33--的结果是( )A. 6B. 3C. 0D. -6【答案】A【解析】试题解析:根据有理数减法法则计算,减去一个数等于加上这个数的相反数得:3-(-3)=3+3=6. 故选A .2.下列结论中错误的是( )A. 零是整数B. 零不是正数C. 零是偶数D. 零不是自然数 【答案】B【解析】【分析】由于零是有理数,也是整数,还是自然数,由此可分别进行判断.【详解】 解:A .零是整数,所以A 选项的说法是正确的;B .零不是整数,所以B 选项说法是错误的;C .零是自然数,所以C 选项的说法是正确的;D .零是有理数,所以D 选项的说法是正确的.故选B .【点睛】本题考查了有理数:整数和分数统称为有理数.3.若2=a ,则a 的值为( )A. 2B. -2C. ±2D. 不确定 【答案】C【解析】试题解析:∵|2|=2,|-2|=2,∴若|a|=2,则a 的值为±2.故选C .4.如果一个数的平方等于它的倒数,那么这个数一定是( )A. 0B. 1C. ﹣1D. ±1【答案】B【解析】试题分析:因为1的平方和倒数都为1,所以一个数的平方等于它的倒数,则这个数一定是1,故答案选B.考点:倒数.5.关于多项式26﹣3x5+x4+x3+x2+x说法正确的是( )A. 是六次六项式B. 是五次六项式C. 是六次五项式D. 是五次五项式【答案】B【解析】【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【详解】多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选B.【点睛】本题考查多项式的次数,多项式中,次数最高的项的次数是这个多项式的次数,不含字母的项叫做常数项,26的次数是0,即该多项式的次数不是六次,而是五次.6.在﹣(﹣1)4,23,﹣32,(﹣4)2这四个数中,最大的数与最小的数的和等于( )A. 7B. 15C. ﹣24D. ﹣1【答案】A【解析】【分析】根据乘方的意义,可得答案.【详解】﹣(﹣1)4=﹣1,23=8,﹣32=﹣9,(﹣4)2=16,最大数是16=(-4)2,最小的数是﹣9=﹣32,最大的数与最小的数的和等于16+(﹣9)=7,故选A.【点睛】本题考查了有理数的加法,利用乘方的意义确定最大数最小数是解题关键7.一个两位数,个位数字为a,十位数字比个位数字大1,则这个两位数可表示为()A. 11a -1B. 11a +1C. 11a +10D. 11a -10【答案】C【解析】【分析】 由于十位数字比个位数字大1,则十位上的数位a+1,又个位数字为a ,则两位数即可表示出来.【详解】由于个位数字为a ,十位数字比个位数字大1,则十位数字为a+1,∴这个两位数可表示为10(a+1)+a=11a+10.故选C .【点睛】本题考查了代数式的列法,正确理解题意是解决这类题的关键.注意两位数的表示方法为:十位数×10+个位数.8.不改变代数式a 2﹣(2a+b+c )的值,把它括号前的符号变为相反的符号,应为( )A. a 2+(﹣2a+b+c)B. a 2+(﹣2a ﹣b ﹣c)C. a 2+(﹣2a)+b+cD. a 2﹣(﹣2a ﹣b ﹣c)【答案】B【解析】试题解析:原式2(2).a a b c =+---故选B.9.化简2a ﹣[3b ﹣5a ﹣(2a ﹣7b)]的结果是( )A ﹣7a+10bB. 5a+4bC. ﹣a ﹣4bD. 9a ﹣10b 【答案】D【解析】试题分析:原式=2a -(3b -5a -2a+7b)=2a -(10b -7a)=2a -10b+7a=9a -10b .考点:去括号的法则和合并同类项10.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是( )A. 25B. 27C. 55D. 120 【答案】C【解析】试题分析:观察发现,从第三个数开始,后一个数是前两个数的和,依次计算求解即可.解:1+1=2,1+2=3,2+3=5,3+5=8,5+8=13,8+13=21,13+21=34,21+34=55.所以第10个数十55.故选C .考点:规律型:数字的变化类.二、注意审题,细心填空呦!(每小题3分,共30分)11.-3的相反数是_______,-2018的倒数是_______.【答案】 (1). 3 (2). -12018 【解析】试题解析:根据相反数,倒数的概念得:-3的相反数是3;-2018的倒数等于-12018. 12.稀士元素具有独特的性质和广泛的应用,我国稀土资源的总储量约为1050000000吨,用科学记数法表示为_____.【答案】91.0510⨯【解析】【分析】绝对值大于1的正数可以科学计数法,a×10n ,即可得出答案. 【详解】n 由左边第一个不为0数字前面的0的个数决定,所以此处n=9,a=1.05,所以答案填写91.0510.⨯【点睛】本题考查了科学计数法的运用,熟悉掌握概念是解决本题的关键.13.比较有理数大小:﹣3_____﹣2016(选用“>”、“<”或“=”号填空).【答案】>【解析】【分析】先计算它们的绝对值,根据两个负数,绝对值大的反而小,即可得出结论.【详解】因为|﹣3|=3,|﹣2006|=2006,3<2006,所以﹣3>﹣2006.故答案为>.【点睛】本题考查了有理数大小的比较,一般有两种办法:一是借助于数轴,先把各数描在数轴上,利用右边的数总大于左边的数比较;二是利用法则,正数大于0;0大于负数,正数大于一切负数;两个负数,绝对值大的反而小.14.规定a*b=5a+2b-1,则(﹣4)*6的值为_______.【答案】-9【解析】【分析】根据a*b=5a+2b-1,可以求得题目中所求式子的值,本题得以解决.【详解】∵a*b=5a+2b-1,∴(-4)*6=5×(-4)+2×6-1=(-20)+12-1=-9,故答案为-9.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.若|x|=3,y的倒数为12,则x+y=_____.【答案】-1或5【解析】【分析】由绝对值等于3的数为3或﹣3,求出x的值,利用倒数的定义求出y的值,即可求出x+y的值.【详解】∵|x|=3,y的倒数为1 2 ,∴x=±3 y=2,当x=3时,x+y=3+2=5,当x=-3时,x+y=-3+2=-1故答案为﹣1或5.【点睛】此题考查了有理数的加法运算,熟练掌握加法法则是解本题的关键.16.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x立方米(x>60),则该户应交煤气费_____元.【答案】(1.2x﹣24)【解析】【分析】根据应交煤气费=前60立方米的付费+超过60立方米的付费列式即可.【详解】∵超出60立方米的煤气用量为:x﹣60,∴超出的费用是1.2(x﹣60)=1.2x﹣72元,∴应交煤气费是1.2x﹣72+60×0.8=1.2x﹣24.故答案为1.2x﹣24.【点睛】本题考查列代数式,找到所求的量的等量关系是解题关键.17.在数﹣1,2,﹣3,5,﹣6中,任取两个数相乘,其中最大的积是_____.【答案】18.【解析】试题分析:最大的积是:(﹣3)×(﹣6)=18,故答案为18.考点:1.有理数的乘法;2.有理数大小比较.18.单项式﹣2223a b cπ是_____次单项式,系数为_____.【答案】(1). 5(2).2 3π-【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:根据单项式定义得:单项式2223a b cπ-是5次单项式,系数为23π-.故答案为:5;23π-.19.已知代数式的x2+3x+5的值等于7,则代数式3x2+9x+2的值_____.【答案】8【解析】试题解析:∵x 2+3x+5=7,∴x 2+3x=2,∴3x 2+9x+2=3(x 2+3x)+2=3×2+2=8. 20.有一列式子,按一定规律排列成3a,﹣9a 2,27a 3,﹣81a 4,243a 5,…这列列式子中第n 个式子为_____.(n 为正整数)【答案】(﹣1)n+13n a n【解析】【分析】利用归纳法来得出规律解答即可.【详解】第一个式子为:(-1)2 3a,第二个式子为:(-1)2+132a 2,第三个式子为:(-1)3+133a 3,第四个式子为:(-1)4+134a 4,第五个式子为:(-1)5+135a 5,…∴第n 个式子为:(-1)n+13n a n ,故答案为(-1)n+13n a n .【点睛】本题考查了规律型数字的变化.利用归纳法来得出规律是解题关键.三、解答题(共55分)21.计算:(1)5×(﹣2)+(﹣8)÷(﹣2)(2)(﹣24)×(1231238--) (3)﹣14﹣(1﹣0×4)÷13×[(﹣2)2﹣6]. 【答案】(1)-6;(2)37;(3)5.【解析】【分析】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值【详解】(1)原式=﹣10+4=﹣6;(2)原式=﹣12+40+9=37;(3)原式=﹣1﹣3×(﹣2)=﹣1+6=5.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.【答案】0或-2【解析】分析:利用绝对值及平方根定义求出x与y的值,代入计算即可求出x+y的值.详解:根据题意得:x=±3,y+1=±2,即y=1或-3,∵xy<0,∴x=3,y=-3;x=-3,y=1,则x+y=0或-2.点睛:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.23.按要求求值(1)化简求值:(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5)其中a=﹣1.(2)若化简(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.【答案】(1)2;(2)1.5【解析】【分析】(1)原式去括号合并得到最简结果,把a的值代入计算即可求出值;(2)原式去括号合并后,由结果与x的取值无关,确定出m的值即可.【详解】(1)原式=4a2﹣2a﹣6﹣4a2+4a+10=2a+4,当a=﹣1时,原式=﹣2+4=2;(2)原式=2mx2﹣x+3﹣3x2+x+4=(2m﹣3)x2+7,由结果与x的取值无关,得到2m﹣3=0,解得:m=1.5.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2,当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?【答案】盈利37元.【解析】试题分析:所得的正负数相加,再加上预计销售的总价,减去总进价,结果为正数说明盈利了,结果是负数说明亏损了.解:由题意,得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),所以他卖完这8套儿童服装后是盈利,盈利37元.点睛:本题主要考查有理数的混合运算的实际应用,利用正数跟负数的性质来解决实际生活问题是比较常见的题型,我们应区分现实生活中正数与负数的意义,根据实际情况来解决问题.25.一位同学做一道题:“已知两个多项式A、B,计算2A﹣B”.他误将“2A﹣B”看成“A﹣2B”,求得的结果5x2﹣2x+4.已知B=2x2+3x﹣7,求2A﹣B的正确答案.【答案】4x2+5x﹣13.【解析】【分析】先根据题意求出A,再将A与B代入2A﹣B中,去括号合并即可得答案.【详解】∵A﹣2(﹣2x2+3x﹣7)=5x2﹣2x+4,∴A=x2+4x﹣10,∴2A﹣B=2(x2+4x﹣10)﹣(﹣2x2+3x﹣7)=2x2+8x﹣20+2x2﹣3x+7=4x2+5x﹣13.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.26.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?【答案】(1)18,22;(2)4n+2;(3)25【解析】【分析】(1)找规律可以将上字看做有四个端点每次每个端点增加一个,还有两个点在里面不发生变化,据此可得第四、五个上字所需棋子数;(2)根据(1)中规律即可得;(3)结合(2)中结论可列方程,解方程即可得.【详解】(1)∵第一个“上”字需用棋子4×1+2=6枚;第二个“上”字需用棋子4×2+2=10枚;第三个“上”字需用棋子4×3+2=14枚;∴第四个“上”字需用棋子4×4+2=18枚,第五个“上”字需用棋子4×5+2=22枚,故答案为18,22;(2)由(1)中规律可知,第n个“上”字需用棋子4n+2枚,故答案为4n+2;(3)根据题意,得:4n+2=102,解得:n=25,答:第25个上字共有102枚棋子.【点睛】此题考查了图形的变化类,关键是从图中特殊的例子推理得出一般的规律,本题的规律是四个端点每次每个端点增加一个,还有两个点在里面不发生变化.27.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本金和利润再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元.(1)若商场投资x元,分别用含x的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?【答案】(1)0.265x;0.3x-700;(2)月末出售所获得的利润较多,此时获利11300元.【解析】试题分析:(1)根据题意可以用代数式表示出月初月末两种销售方式获得的利润;(2)将x=40000分别代入(1)中的代数式,然后比较,即可解答本题.试题解析:(1)由题意可得,该商月初出售时的利润为:15%x+x(1+15%)×10%=0.265x(元),该商月末出售时的利润为:30%x-700=(0.3x-700)(元);(2)当x=40000时,该商月初出售时的利润为:0.265×40000=10600(元),该商月末出售时的利润为:0.3×40000-700=11300(元),∵11300>10600,∴选择月末出售这种方式,即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.。
新北师大版七年级上册数学期中考试练习试卷含答案解析(26)
一、选择题1.已知(x2+y2+1)2−4=0,那么x2+y2+2019的值为( )A.2020B.2016C.2020或2016D.不能确定2.已知整数a1,a2,a3,a4,⋯满足下列条件:a1=0,a2=−∣∣a1+1∣∣,a3=−∣∣a2+2∣∣,a4=−∣a3+3∣,⋯⋯,以此类推,则a2018的值为( )A.−1007B.−1008C.−1009D.−20183.利用如图1的二维码可以进行身份识别,某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生,那么表示7班学生的识别图案是( )A.B.C.D.4.一只小球落在数轴上的某点P0处,第一次从P0处向右跳1个单位到P1处,第二次从P1向左跳2个单位到P2处,第三次从P2向右跳3个单位到P3处,第四次从P3向左跳4个单位到P4处⋯,若小球按以上规律跳了(2n+3)次时,它落在数轴上的点P2n+3处所表示的数恰好是n−3,则这只小球的初始位置点P0所表示的数是( )A.−4B.−5C.n+6D.n+35.如图,长方形ABCD的面积为S cm2,对角线交于点O.以AB,AO为邻边作平行四边形AOC1B,连接AC1,交BD于O1,以AB,AO1为邻边作平行四边形AO1C2B,⋯⋯,依此类推,则平行四边形AO n C n+1B的面积为( )A . (12)n−1S cm 2B . (12)nS cm 2 C . (12)n+1S cm 2D . (13)nS cm 26. 当 x =−12 时,代数式 −2x +10 的值是 ( ) A . −11B . 11C . −9D . 97. 如图是正方体的展开图,如果 a 在后面,b 在下面,c 在左面,则 f 在 ( )A .前面B .上面C .右面D .不确定8. 如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第 10 个这样的图案需要黑色棋子的个数为 ( )A . 148B . 152C . 174D . 2029. 已知非负数 a ,b ,c 满足条件 a +b =7,c −a =5,设 S =a +b +c 的最大值为 m ,最小值为 n ,则 m −n 的值 ( ) A . 5 B . 6 C . 7 D . 810. 下列计算正确的是 ( )A.5a+2a=7a2B.3a−a=3C.2a3+3a2=5a5D.−a2b+2a2b=a2b二、填空题11.新定义运算:a∗b=a−2b,则(3∗2)∗2=.12.如图,有一个长方体的长为15,宽为10,高为20,点B与点C的距离为10,现有一只蚂蚁沿着长方体的表面从A点爬到B点,则需要爬行的最短距离是.13.已知x−2y−1=0,则5−x+2y的值是.14.一张长方形桌子可坐6人,按下图方式将桌子拼在一起2张桌子拼在一起可坐人,n张桌子拼在一起可坐人.15.计算:(910−115)×30=.16.已知x=3是ax3+bx−2018=0的解,那么当x=−3时,ax3+bx+6=.17.观察下列各式:a1=23,a2=35,a3=107,a4=159,a5=2611,⋯,根据其中的规律可得a n=(用含n的式子表示).三、解答题18.计算:(1) −7−3+8.(2) 23÷(−16)+12×(13−52).19.检查5袋水泥的质量,把超过标准质量的千克数记为正数,不足标准质量的千克数记为负数,检查结果如表所示(单位:千克):水泥编号12345与标准质量的差+10−5+8−7−3(1) 最接近标准质量的是几号水泥?(2) 质量最多的水泥比质量最少的水泥多多少千克?20.点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位长度,再向右移动2个单位长度;从第一次移动后的位置开始,第二次先向左移动3个单位长度,再向右移动4个单位长度;从第二次移动后的位置开始,第三次先向左移动5个单位长度,再向右移动6个单位长度;⋯依此规律,解答下列各题:(1) 第一次移动后这个点在数轴上表示的数为;(2) 第二次移动后这个点在数轴上表示的数为;(3) 第五次移动后这个点在数轴上表示的数为;(4) 第n次移动后这个点在数轴上表示的数为;(5) 如果第m次移动后这个点在数轴上表示的数为56,求m的值.21.已知∣2−xy∣+(1−y)2=0.(1) 求y2021+(−y)2021的值;(2) 求1xy +1(x+1)(y+1)+1(x+2)(y+2)+⋯+1(x+2021)(y+2021)的值.22.观察下面三行数:2,−4,8,−16,32,−64,⋯;①0,−6,6,−18,30,−66,⋯;②−1;2,−4,8,−16,32,⋯.③回答下列问题:(1) 第①行第n个数是;(2) 第②③行的数与第①行相同位置的数分别有什么关系?(3) 取每行数的第9个数,计算这三个数的和.23.若a,b互为相反数,c,d互为倒数,m的绝对值是1,求(a+b)cd−2012m的值24.把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在长为m cm,宽为n cm的大长方形上面(如图2),大长方形中未被卡片覆盖的部分用阴影表示,请你求出图2中两块阴影部分的周长的和是多少?(写出详细解题过程,结果用含m,n的代数式表示)25.把下面算式中的前两个数放在前面带有“−”的括号内,后两个数放在前面带有“+”的括号内.5 3−1−12+3.答案一、选择题1. 【答案】A【解析】因为(x2+y2+1)2−4=0,所以(x2+y2+1)2=4,因为x2+y2≥0,所以x2+y2+1=2,所以x2+y2=1,所以x2+y2+2019=1+2019=2020.【知识点】整式的加减运算、简单的代数式求值2. 【答案】C【解析】a1=0,a2=−∣∣a1+1∣∣=−∣0+1∣=−1,a3=−∣∣a2+2∣∣=−∣−1+2∣=−1,a4=−∣a3+3∣=−∣−1+3∣=−2,a5=−∣∣a4+4∣∣=−∣−2+4∣=−2,a6=−∣a5+5∣=−∣−2+5∣=−3,a7=−∣a6+6∣=−∣−3+6∣=−3,⋯以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,=−1009.即a2n=−n,则a2018=−20182【知识点】用代数式表示规律3. 【答案】B【解析】依题意,得:8a+4b+2c+d=7,∵a,b,c,d均为1或0,∴a=0,b=c=d=1.【知识点】用代数式表示规律4. 【答案】B【解析】设点P0所表示的数是a,则点P1所表示的数是a+1,点P2所表示的数是a+1−2=a−1,点P3所表示的数是a−1+3=a+2,点P4所表示的数是a+2−4=a−2,∵点P(2n+3)所表示的数是n−3,∴a +2n+3+12=n −3,解得 a =−5.故选:B .【知识点】用代数式表示规律5. 【答案】C【解析】 ∵O 为长方形 ABCD 的对角线的交点, ∴ 平行四边形 AOC 1B 的边 AB 上的高等于 BC 的一半, ∴ 平行四边形 AOC 1B 的面积 =12S cm 2, ∵ 平行四边形 AOC 1B 的对角线交于点 O 1,∴ 平行四边形 AO 1C 2B 的边 AB 上的高等于平行四边形 AOC 1B 的边 AB 上的高的一半. ∴ 平行四边形 AO 1C 2B 的面积 =12×12S =(12)2S cm 2 ⋯⋯依此类推,平行四边形 AO n C n+1B 的面积为 (12)n+1S cm 2.故选C .【知识点】用代数式表示规律6. 【答案】B【解析】当 x =−12 时,原式=−2×(−12)+10=1+10=11. 【知识点】简单的代数式求值7. 【答案】C【解析】本题考查正方体的展开图,a 的对面是 e ,b 的对面是 d ,c 的对面是 f .因为 c 在左面,所以 f 在右面.【知识点】正方体相对两个面上的文字8. 【答案】C【知识点】用代数式表示规律9. 【答案】C【解析】 ∵a ,b ,c 为非负数; ∴S =a +b +c ≥0; 又 ∵c −a =5; ∴c =a +5; ∴c ≥5; ∵a +b =7;∴S =a +b +c =7+c ; 又 ∵c ≥5;∴c=5时S最小,即S最小=12,即n=12;∵a+b=7;∴a≤7;∴S=a+b+c=7+c=7+a+5=12+a;∴a=7时S最大,即S最大=19,即m=19;∴m−n=19−12=7.【知识点】简单的代数式求值10. 【答案】D【知识点】合并同类项二、填空题11. 【答案】−5【解析】(3∗2)∗2=(3−2×2)∗2 =(−1)∗2=−1−2×2=−5.【知识点】有理数的乘法12. 【答案】20√2【解析】如图1,BC=10,CD=10,AD=20,∴BD=BC+CD=20,∴AB=√BO2+AD2=√202+202=20√2.如图2,BC=10,CD=20,AD=10,∴BD=CD+BD=30,∴AB=√AD2+BD2=√102+302=10√10.如图3,AD=20,DC=10,BC=10,∵AC=AD+DC=20+10=30,∴AB=√AC2+BC2=√302+102=10√10,∵20√2<10√10.∴需要爬行的最短距离是20√2.【知识点】直棱柱的展开图13. 【答案】4【解析】∵x−2y−1=0,∴ 5−x+2y=5−(x−2y−1)−1=5−0−1= 4.【知识点】简单的代数式求值14. 【答案】8;(2n+4)【解析】由图可知,1张长方形桌子可坐6人,6=2×1+4,2张桌子拼在一起可坐8人,8=2×2+4,3张桌子拼在一起可坐10人,10=2×3+4,⋯依此类推,每多一张桌子可多坐2人,所以n张桌子拼在一起可坐(2n+4)人.故答案为:8;(2n+4).【知识点】用代数式表示规律15. 【答案】25【解析】(910−115)×30=910×30−115×30=27−2=25.【知识点】有理数的乘法16. 【答案】−2012【解析】∵x=3是ax3+bx−2018=0的解,∴33⋅a+3b−2018=0,∴27a+3b=2018,当x=−3时,a×(−33)+b×(−3)+6=−27a−3b+6=−(27a+3b)+6=−2018+6=−2012.【知识点】方程的解、简单的代数式求值17. 【答案】n2+(−1)n+12n+1【解析】由分析可得a n=n2+(−1)n+12n+1.【知识点】用代数式表示规律三、解答题18. 【答案】(1) 原式=−10+8=−2.(2) 原式=−23×6+4−30=−30.【知识点】有理数加减混合运算、有理数加减乘除混合运算19. 【答案】(1) ∣+10∣=10,∣−5∣=5,∣+8∣=8,∣−7∣=7,∣−3∣=3,因为3<5<7<8<10,所以5号水泥的质量最接近标准质量.(2) 因为质量最多的水泥比标准质量多10千克,而质量最少的水泥比标准质量少7千克,所以质量最多的水泥比质量最少的水泥多10+7=17(千克).【知识点】有理数加法的应用、正数和负数的意义20. 【答案】(1) 3(2) 4(3) 7(4) n+2(5) m=54【知识点】数轴的概念、用代数式表示规律21. 【答案】(1) 因为∣2−xy∣+(1−y)2=0,而∣2−xy∣≥0,(1−y)2≥0,所以{2−xy=0, ⋯⋯①1−y=0. ⋯⋯②由②得y=1.把y=1代入①得2−x=0,故x=2.y2021+(−y)2021=12021+(−1)2021=1+(−1)=0.(2)1xy+1(x+1)(y+1)+1(x+2)(y+2)+⋯+1(x+2021)(y+2021)=11×2+12×3+13×4+⋯+12022×2023=(1−12)+(12−13)+(13−14)+⋯+(12022−12023)=1−12+12−13+13−14+⋯+12022−12023=1+(−12+12)+(−13+13)+(−14+14)+⋯+(−12022+12022)−12023 =1−12023=20222023.【知识点】有理数的乘方、有理数加减乘除混合运算22. 【答案】(1) −(−2)n(2) 第②行的数等于第①行相同位置的数减去2;第③行的数等于第①行相同位置的数除以−2.(3) 由(1),(2)可知,第①行的第9个数是−(−2)9;第②行的第9个数是−(−2)9−2,第③行的第9个数是−(−2)9÷(−2),所以所求的三个数的和为−(−2)9+[−(−2)9−2]+ [−(−2)9÷(−2)]=512+510−256=766.【知识点】有理数的加减乘除乘方混合运算23. 【答案】2012或−2012【解析】由题意得,a+b=0,cd=1,m=±1当m=1时,(a+b)cd−2012m=0−2012=−2012,当m=−1时,(a+b)cd−2012m=0+2012=2012,答:代数式(a+b)cd−2012m的值为2012或−2012.【知识点】倒数24. 【答案】设小长方形卡片的长为a cm,宽为b cm,∴L上面的阴影=2(n−a+m−a),L下面的阴影=2(m−2b+n−2b),∴L总的阴影=L上面的阴影+L下面的阴影=2(n−a+m−a)+2(m−2b+n−2b) =4m+4n−4(a+2b),又∵a+2b=m,∴4m+4n−4(a+2b)=4n.故图2中两块阴影部分的周长的和是4n cm.【知识点】简单列代数式25. 【答案】原式=−(−53+1)+(−12+3).【知识点】有理数加减混合运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上学期期中数学试卷
一、选择题
1. 下列各组数中,互为相反数的是()
A . 2和﹣2
B . ﹣2和
C . ﹣2和﹣
D . 和2
2. 下列各数中,比﹣1小的数是()
A . 0
B . 1
C . ﹣100
D . 2
3. 计算(﹣1)100×5的结果是()
A . ﹣5
B . ﹣500
C . 5
D . 500
4. 在0,﹣12.8,15,﹣,中,正数的个数是()
A . 1
B . 2
C . 3
D . 4
5. 下列各式正确的是()
A . 符号相反的数互为相反数
B . 一个数的绝对值越大,表示它的点在数轴上越靠右
C . 当a≠1时,|a|总是大于1
D . 一个数的绝对值越大,表示它的点在数轴上离原点越远
6. 下列各对数中,相等的一对数是()
A . ﹣23与﹣32
B . (﹣2)3与﹣23
C . (﹣3)2与﹣32
D . ﹣(﹣2)与﹣|﹣2|
7. 若x的相反数是3,|y|=5,则x+y的值为()
A . ﹣8
B . 2
C . 8或﹣2
D . ﹣8或2
8. 如果2xny2与﹣xym是同类项,那么m、n的值分别为()
A . m=2,n=0
B . m=2,n=1
C . m=﹣2,n=﹣1
D . m=﹣2,n=1
9. 若|m﹣3|+(n+2)2=0,则m+2n的值为()
A . ﹣4
B . ﹣1
C . 0
D . 4
10. 已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()
A . m>0
B . n<0
C . mn<0
D . m﹣n>0
11. 下列各式中与多项式2x﹣(﹣3y﹣4z)相等的是()
A . 2x+(﹣3y+4z)
B . 2x+(3y﹣4z)
C . 2x+(﹣3y﹣4z)
D . 2x+(3y+4z)
12. 已知a、b为有理数,下列式子:①|ab|>ab② <0③| |=﹣④a3+b3=0,其中一定能够表示a、b异号的有()
A . 4个
B . 3个
C . 2个
D . 1个
二、填空题
13. 如果80m表示向东走80m,那么﹣60m表示________.
14. 比较大小:﹣________﹣(填“>”或“<”)
15. 用四舍五入法求0.12874精确到千分位的近似数为________.
16. 长方形的长为a cm,宽为b cm,若长增加了2cm,面积比原来增加了________cm2 .
17. 已知x是整数,并且﹣3<x<2,则x可能取的所有数值的和是________.
18. 填在下面各正方形中的四个数之间都有一定的规律,按此规律得出b=________.
三、解答题
19. 在数轴上表示数:﹣2,+1.5,﹣,0,,﹣3,按
从小到大的顺序用“<”连接起来.
20. 如果一个三角形的周长为3a+b,其中第一条边长a+b,第二条边长比第一条边长小1,求第三边的边长是多少?
21. 计算:
(1)8+(﹣10)+(﹣2)﹣(﹣5)
(2)(﹣12)×(﹣﹣+ );
(3)﹣22﹣5× +|﹣3|﹣25×0.
22. 先化简,再求值:
(1)(﹣x2+5﹣4x)+(5x﹣4+2x2),其中x=﹣2;
(2)3x3﹣[x3+(6x2﹣7x)]﹣2(x3﹣3x2﹣4x),其中x=﹣1.
23. 如图,是一所小区前的一块长方形空地,在空地中规划建设一个长方形和半圆的建筑物,其余部分进行绿化,用式子表示这块空地的绿化面积.
24. 一种商品每件成本a元,原来按成本增加25%定出价格,现在由于库存积压减价,按原价的90%出售,现售价多少元?每件还能盈利多少元?
25. 有10筐白菜,以每筐30千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,2,﹣3,﹣4,﹣2,1,3.回答下列问题:
(1)这10筐白菜中最接近标准重量的白菜重多少千克?
(2)这10筐白菜一共重多少千克?
26. 下面的图形是由边长为1的正方形按照某种规律排列而组成的.
(1)观察图形,填写下表:
图形个数(n)
①
②
③
正方形的个数
9
________
________
图形的周长
16
________
________
(2)推测第n个图形中,正方形的个数为________,周长为________(都用含n 的代数式表示).
(3)写出第2016个图形的周长.。