一元线性回归分析

合集下载

一元线性回归分析

一元线性回归分析

C=α+βy + µ
其中, µ是随机误差项。 是随机误差项。 其中, 是随机误差项 根据该方程, 的值, 根据该方程,每给定一个收入 y 的值,消 并不是唯一确定的, 费C并不是唯一确定的,而是有许多值, 并不是唯一确定的 而是有许多值, 他们的概率分布与µ的概率分布相同 的概率分布相同。 他们的概率分布与 的概率分布相同。 线性回归模型的特征: 线性回归模型的特征: 有随机误差项! 有随机误差项!
21


一、严格地说,只有通过了线性关系的检验,才 严格地说,只有通过了线性关系的检验, 能进行回归参数显著性的检验。 能进行回归参数显著性的检验。 有些教科书在介绍回归参数的检验时没有考虑线 性关系的检验,这是不正确的。 性关系的检验,这是不正确的。因为当变量之间 的关系没有通过线性检验时, 的关系没有通过线性检验时,进行回归参数显著 性的检验是没有意义的。 性的检验是没有意义的。 在一元线性回归分析中, 二、在一元线性回归分析中,即只有一个解释变 量时,这两种检验是统一的。 量时,这两种检验是统一的。但在多元回归分析 这两种检验的意义是不同的。 中,这两种检验的意义是不同的。 为了说明该问题, 为了说明该问题,我们在本章中依然把两种检验 分开论述。 分开论述。
13
为了达到上述目的, 为了达到上述目的,我们直观上会采 用以下准则: 用以下准则: 选择这样的SRF,使得: 选择这样的 ,使得:
残差和∑ ε i = ∑ ( yi − yi )尽可能小! ˆ
但这个直观上的准则是否是一个很好 的准则呢?我们通过以下图示说明: 的准则呢?我们通过以下图示说明:
14
12
ˆx i + ε i yi = α + β ˆ ˆ 即:y i = y i + ε i ˆ ∴ ε i = yi − yi

一元线性回归

一元线性回归

12.9 一元线性回归以前我们所研究的函数关系是完全确定的,但在实际问题中,常常会遇到两个变量之间具有密切关系却又不能用一个确定的数学式子表达,这种非确定性的关系称为相关关系。

通过大量的试验和观察,用统计的方法找到试验结果的统计规律,这种方法称为回归分析。

一元回归分析是研究两个变量之间的相关关系的方法。

如果两个变量之间的关系是线性的,这就是一元线性回归问题。

一元线性回归问题主要分以下三个方面:(1)通过对大量试验数据的分析、处理,得到两个变量之间的经验公式即一元线性回归方程。

(2)对经验公式的可信程度进行检验,判断经验公式是否可信。

(3)利用已建立的经验公式,进行预测和控制。

12.9.1 一元线性回归方程 1.散点图与回归直线在一元线性回归分析里,主要是考察随机变量y 与普通变量x 之间的关系。

通过试验,可得到x 、y 的若干对实测数据,将这些数据在坐标系中描绘出来,所得到的图叫做散点图。

例1 在硝酸钠(NaNO 3)的溶解度试验中,测得在不同温度x (℃)下,溶解于100解 将每对观察值(x i ,y i )在直角坐标系中描出,得散点图如图12.11所示。

从图12.11可看出,这些点虽不在一条直线上,但都在一条直线附近。

于是,很自然会想到用一条直线来近似地表示x 与y 之间的关系,这条直线的方程就叫做y 对x 的一元线性回归方程。

设这条直线的方程为yˆ=a+bx 其中a 、b 叫做回归系数(y ˆ表示直线上y 的值与实际值y i 不同)。

图12.11下面是怎样确定a 和b ,使直线总的看来最靠近这几个点。

2.最小二乘法与回归方程在一次试验中,取得n 对数据(x i ,y i ),其中y i 是随机变量y 对应于x i 的观察值。

我们所要求的直线应该是使所有︱y i -yˆ︱之和最小的一条直线,其中i y ˆ=a+bx i 。

由于绝对值在处理上比较麻烦,所以用平方和来代替,即要求a 、b 的值使Q=21)ˆ(i ni iyy-∑=最小。

回归分析

回归分析
它应满足式(3.2.1),即
,
,
y1 0 1 x11 2 x12 p x1 p 1 y x x x 2 0 1 21 2 22 p 2p 2 y n 0 1 x n1 2 x n 2 p x np n
(1)建立非线性回归模型1/y=a+b/x; (2)预测钢包使用x0=17次后增大的容积y0; (3)计算回归模型参数的95%的置信区间。
初始值要先计算,先选择已知数据中的两点( 2,6.42)和(16,10.76)代入设定方程,得到方程组
2 6.42 6.42(2a b) 2 2a b 16 10.76(16a b) 16 10.76 16a b
ˆ 2.7991 y x 23.5493
解释:职工工资总额每增加1亿元,社会商品零售总额将增加 2.80亿。
2、一元多项式回归模型
(1) 多项式回归的基本命令 在一元回归模型中,如果变量y与x的关系是n次多项式,即
y an x an1x
n
n1
... a1x a0
试求:① 给出y与t的回归模型; ② 在同一坐标系内做出原始数据与拟合结果的散点图 ③ 预测t=16时残留的细菌数;
ex006
三、多元线性回归模型 (略)
多元线性回归模型及其表示
对于总体
( X 1 , X 2 ,, X p ;Y ) 的n组观测值
( xi1 , xi 2 ,, xip ; yi )(i 1,2,, n; n p)
例为了分析X射线的杀菌作用,用200千伏的X射线来照射细 菌,每次照射6分钟用平板计数法估计尚存活的细菌数,照 射次数记为t,照射后的细菌数y如表3.3所示。

数据分析知识:数据分析中的一元线性回归模型

数据分析知识:数据分析中的一元线性回归模型

数据分析知识:数据分析中的一元线性回归模型一元线性回归模型是一种建立变量之间关系的常见方法,其中一个变量(自变量)被用来预测另一个变量(因变量)。

这种模型可以提供有关两个变量关系的数量量化和可视化信息。

在数据分析中,一元线性回归模型被广泛应用于数据建模、预测、探索因果关系等领域。

一元线性回归模型的基本形式为y = a + bx,其中y是因变量,x 是自变量,a是截距,b是斜率。

这个方程表示了自变量对因变量的影响。

斜率b表示每增加一个单位自变量,因变量y会增加多少,截距a 则是因变量在自变量为零时的取值。

通过收集x和y之间的数据并运行线性回归模型,可以得到最佳拟合线的斜率和截距,从而得到x和y 之间的关系。

线性回归模型的优点在于它非常直观和易于理解,并且可以为数据提供定量的关系描述。

此外,线性回归模型还可以用于预测未来的数据趋势,以及评估不同变量对数据的影响。

例如,一元线性回归模型可以用于预测销售额随着广告投资增加的变化情况,或者研究气温和销售量之间的关系。

该模型基于许多假设,如自变量和因变量之间存在线性关系,数据无误差,误差服从正态分布等。

这些假设条件可能并不总是适用于与数据分析相关的所有情况,因此有时需要使用其他模型,如非线性回归或多元回归模型。

应用一元线性回归模型主要有以下几个步骤:(1)确定自变量和因变量。

根据研究或问题确定需要分析的两个变量。

(2)数据收集。

为了开展一元线性回归模型,必须收集有关自变量和因变量的数据。

实际应用中,数据可以从不同来源获得,如调查、实验或社交媒体。

(3)数据清理和准备。

在应用模型之前,必须对数据进行清理和准备以满足模型假设的条件。

如果数据存在缺失值或异常值,则需要进行处理。

此外,数据需要进一步进行标准化和缩放。

(4)应用模型。

使用适当的统计软件分析数据并应用线性回归模型。

每个软件都有所不同,但通常包括输入自变量和因变量、选择线性回归模型、运行分析和结果呈现等步骤。

一元线性回归分析

一元线性回归分析
一元线性回归模型是回归分析中最简单的模型之一。它假设因变量与自变量 之间存在线性关系,并通过最小化残差的平方和来确定模型的参数。
模型评估指标
模型评估指标用于衡量回归模型的拟合优度和预测精度。常用的指标包括均 方误差、决定系数和标准化残差等,可以帮助我们评估模型的有效性和适用 性。
参数估计方法
参数估计是确定回归模型中各个参数的取值的过程。常用的参数估计方法包括最小二乘法、最大似然估 计法和贝叶斯估计法等,可以帮助我们找到最优的参数估计结果。
一元线性回归分析
回归分析是一种用于建立变量之间关系的统计方法。本演示将介绍一元线性 回归模型的构建、参数估计、模型假设检验以及模型预测和应用。
回归分析的概述
回归分析是一种通过建立变量之间的关系来描述和预测现象的统计方法。它 可以帮助我们理解变量之间的因果关系,并从中推断出未知的检验
模型假设检验用于验证回归模型的假设是否成立。常见的假设检验包括检验回归系数的显著性、整体模 型的显著性以及模型的线性关系等,可以帮助我们判断模型是否可靠。
回归诊断和残差分析
回归诊断和残差分析通过检查模型的残差来评估模型的拟合优度和假设的满 足程度。常用的诊断方法包括残差图、QQ图和离群值分析等,可以帮助我们 发现模型的不足和改进方向。
模型预测和应用
回归模型可以用于预测未知观测值,并帮助我们做出决策和制定策略。它在经济学、社会科学、医学等 领域具有广泛的应用,可以为决策者提供有力的数据支持。

一元线性回归分析

一元线性回归分析


(n

2)
S2 ˆ0
2 ˆ0
:
2(n 2)
S 2 ˆ1

S2
n
(Xt X )2
t 1

(n

2)
S2 ˆ1
2 ˆ1
:
2(n 2)
所以根据t分布的定义,有
ˆ0 0 ~ t(n 2), ˆ1 1 ~ t(n 2)
Sˆ0
Sˆ1
进而得出了0的置信水平为1-区间估计为
et Yt Yˆt称为残差,与总体的误差项ut对应,n为样 本的容量。
样本回归函数与总体回归函数区别
1、总体回归线是未知的,只有一条。样本回归线是根据样本数 据拟合的,每抽取一组样本,便可以拟合一条样本回归线。
2、总体回归函数中的β0和β1是未知的参数,表现为常数。而样
本回归函数中的 ˆ0和是ˆ1 随机变量,其具体数值随所抽取
S 44.0632
Sef S
1 1 n
( X f X )2
n
45.543
( Xt X )2
t 1
所求置信区间为:(188.6565 97.6806)
回归分析的SPSS实现
“Analyze->Regression->Linear”

0
n

2 t1 Xt (Yt ˆ0 ˆ1 Xt ) 0


nˆ0

n
ˆ1
t 1
Xt
n
Yt
t 1
n
n
n


ˆ0
t 1
Xt
ˆ1
t 1
X
2 t

第15讲 一元线性回归分析

第15讲 一元线性回归分析

n
i 1
2
2 2 ˆ ˆ 2b yi y xi x b xi x i 1 i 1
i 1
n
i 1
n
ˆS /S ˆ b ˆ2 S S bS ˆ . b S yy 2bS xy xx xy xx yy xy
例2 求例1中误差方差的无偏估计。
采用最小二乘法估计参数a和b,并不需要事先知道Y与x之间 一定具有相关关系,即使是平面图上一堆完全杂乱无章的散 点,也可以用公式求出回归方程。因此μ(x)是否为x的线性函 数,一要根据专业知识和实践来判断,二要根据实际观察得 到的数据用假设检验方法来判断。
即要检验假设 H0 : b 0, H1 : b 0, 若原假设被拒绝,说明回归效果是显著的,否则, 若接受原假设,说明Y与x不是线性关系,回归方程 无意义。回归效果不显著的原因可能有以下几种:
将每对观察值( xi , yi )在直角坐标系中描出它相应的点 (称为散点图),可以粗略看出 ( x)的形式。
基本思想
(x, Y)
回归分析 回归方程
采集样本信息 ( xi, yi )
散点图
回归方程参数估计、显著性检验
对现实进行预测与控制
一元回归分析:只有一个自变量的回归分析 多元回归分析:多于一个自变量的回归分析

x1 x2 x3
xi
xn
整理得 na ( xi )b yi ,
( xi )a ( xi )b xi yi .——正规方程组
2 i 1 i 1 i 1
n
i 1
n
i 1
n
na ( xi )b yi ,
i 1 i 1
n
n

一元线性回归分析

一元线性回归分析

一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。

本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。

1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。

通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。

1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。

2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。

2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。

- 独立性假设:每个观测值之间相互独立。

- 正态性假设:误差项ε服从正态分布。

- 同方差性假设:每个自变量取值下的误差项具有相同的方差。

3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。

3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。

根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。

3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。

通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。

3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。

常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。

4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。

第三节 一元线性回

第三节 一元线性回
• (1)提出假设: H 0 : β1 = 0; H1 : β1 ≠ 0 • (2)确定显著性水平 α 。 • 根据自由度和给定的显著性水平,查t分布表的理 论临界值 tα / 2 (n − 2) 。 • (3)计算回归系数的t值。 • (4)决策。 • t ˆ > tα / 2 (n − 2) 则拒绝 H 0 ,接受 H1,
1
1、回归系数的显著性检验
• 估计量 S 2 来代替。 ˆ • 但样本为小样本时,回归系数估计量 β1 的标准 化变换值服从t分布,即:
σ 2 是未知的,要用其无偏 一般来说,总体方差
tβˆ =
1
ˆ β1 − β1 Sβˆ
1
~ t (n − 2)
• 式中n为样本容量,n-2为自由度。 •
回归系数显著性检验步骤:
(二)一元线性回归分析的特点 二 一元线性回归分析的特点
• 1、在两个变量之间,必须根据研究目的具体确定哪个 是自变量,哪个是因变量。相关分析不必确定两个变量中 哪个是自变量,哪个是因变量。 2、计算相关系数时,要求相关的两个变量都是随机的; 但是,在回归分析中因变量是随机的,而自变量不是随机 的变量。 3、在没有明显的因果关系的两个变量与y之间,可以 3 y 求得两个回归方程。 4、回归方程的主要作用在于:给出自变量的数值来估 计因变量的可能值。一个回归方程只能做出一种推算,推 算的结果表明变量之间的具体的变动关系。 5、直线回归方程中,自变量的系数称回归系数。回归 系数的符号为正,表示正相关;为负则表示负相关。
ˆ β1 =
n∑ xi yi − ∑ xi ∑ yi n∑ x − (∑ xi )
2 i 2
ˆ ˆ β 0 = yi − β1 xi
(一)参数 β 0 , β 1 的最小二乘估计

一元线性回归分析

一元线性回归分析

9--36
判定系数与回归估计标准差的计算
根据前述计算公式计算判定系数与回归估计标准差 ,需先根据样本回归方程计算出 X 的各观测值 xi 对 应的回归估计值 yi ,计算过程比较繁琐。
借助于 EXCEL 的“回归”分析工具可轻松得到其数 值。显示在 EXCEL 的回归输出结果的第一部分
判定系数( R Square )
也称为可解释的平方和。
3. 残差平方和( SSE 、 Q )
反映除 x 以外的其他因素对 y 取值的影 响,
9--29
可决系数(判定系数 r2 或
R2 )
1. 可决系数 = 回归平方和占总离差平方和的
比例
r2
SSR SST
ቤተ መጻሕፍቲ ባይዱ
回归平方和 总离差平方和
1
残差平方和 总离差平方和
综合度量回归方程对样本观测值拟合优度, 衡量变量之间的相关程度。
称为古典线性回归模型。
9--12
2. 样本回归方程( SRF )
实际中只能通过样本信息去估计总体回归方程的参 数。


线
性回归的
yˆi ˆ

本ˆx回i


a

的形
bxi


ˆ a, ˆ b 是样本回归方程的截距和斜率
yˆ ; i 是与 xi 相对应的 Y 的条件均值的估计 ; 9--13
样本回归方程与总体回归方程之关系
i 1
n2
�n ( yi yˆi ) 2
i 1
n2
9--34
回归估计标准差的作用
1. 反映实际观察值在回归直线周围的分散状 况;反映因变量各实际值与其回归估计值之

一元线性回归分析和有效应用

一元线性回归分析和有效应用

TECHNICS ·APPLICATION技术·应用文 李会芳一元线性回归分析和有效应用一、一元线性回归分析基本原理一元线性回归的数学模型为y=β0+β1x+ε。

其中,变量x对因变量y的影响可以用(β0+β1x)表示出来,β0和β1是待定参数,ε则表示其他不确定因素对y造成的影响,通常来说ε是无法确定的,一般将ε假设为方差为σ2,期望是0的正态分布。

回归分析在实际中的应用其实就是一个求解未知数的过程。

它通过给出的一系列样本数值对待定参数β0和β1进行精确估计,并将估计值用β0'和β1'来表示。

在计算时采用最小二乘法对估计值进行计算:计算所给出样本值的平均值,再将相关数据带入上述公式,就可以利用最小二乘法计算出β0'和β1'的值,最后将得出的数值带入一元线性回归的数学模型即可。

二、一元线性回归分析的有效应用(一)一元线性回归分析在经济中的应用利用一元线性回归分析可以对生活中的一些经济关系进行分析,它是经济预测中常用的方法之一。

本文以财政收入和GDP之间的线性关系分析为例来对一元线性回归分析在实际中的应用情况进行探讨。

下面是某十年国家财政收入占国内生产总值的比重图:财政收入和国内经济生产总值之间有直接的关系。

下面以财政收入为自变量x,国内生产总值为因变量y,建立一元线性回归模型来对两者之间的关系进行具体的分析。

假设财政收入x和国内生产总值y的方程为:y=β+β1x1,将上表中的数据输入电脑中,利用SSPS软件进行线性回归分析得出下表。

由上表可以得出β1'=5.110,β0'=19044.809,拟合度为0.944,所以财政收入和国内生产总值的线性方程可以写为:y=19044.809+5.110x1从拟合度就可知线性显著,所以上述方程成立。

可以看出,财政收入和GDP之间成正比,这说明GDP能够迅速增长和财政收入的增加有很大的关系。

(二)一元线性回归分析在工程预测进度中的应用将一元线性回归分析应用于进度控制当中,可以有效地对工程进度进行预测,从而实现有效的事前控制。

线性回归分析

线性回归分析
系数(或判定系数),用r2表示,显然,0≤r2≤1。
r 2 SSR / SST 1 SSE / SST L2xy Lxx Lyy

两个变量之间线性相关的强弱可以用相关系数r(Correlation
coefficient)度量。
❖ 相关系数(样本中 x与y的线性关系强度)计算公式如下:
❖ 统计学检验,它是利用统计学中的抽样理论来检验样本 回归方程的可靠性,具体又可分为拟合程度评价和显著 性检验。
1、拟合程度的评价
❖ 拟合程度,是指样本观察值聚集在估计回归线周围的紧密 程度。
❖ 评价拟合程度最常用的方法是测定系数或判定系数。 ❖ 对于任何观察值y总有:( y y) ( yˆ y) ( y yˆ)
当根据样本研究二个自变量x1,x2与y的关系时,则有
估计二元回归方程: yˆ b0 b1x1 b2 x2
求估计回归方程中的参数,可运用标准方程如下:
L11b1+L12b2=L1y
L12b1+L22b2=L2y b0 y b1 x1 b2 x2
例6:根据表中数据拟合因变量的二元线性回归方程。
21040
x2
4 36 64 64 144 256 400 400 484 676
2528
练习3:以下是采集到的有关女子游泳运动员的身高(英寸)和体
重(磅)的数据: a、用身高作自变量,画出散点图 b、根据散点图表明两变量之间存在什么关系? c、试着画一条穿过这些数据的直线,来近似身高和体重之间的关 系
测定系数与相关系数之间的区别
第一,二者的应用场合不同。当我们只对测量两个变量之间线性关系的 强度感兴趣时,采用相关系数;当我们想要确定最小二乘直线模型同数据符 合的程度时,应用测定系数。

第二章 一元线性回归分析基础

第二章 一元线性回归分析基础

加,消费增加,但消费的增长低于收入的增长,即消
费对收入的弹性小于1。它的数学表述为
Y X
0
Y X
1,
Y X
Y X
其中Y为消费额,X为收入。
该线性方程描述了消费与收入之间的确定关系,即给定 一个收入值,可以根据方程得到一个唯一确定的消费值。 但实际上消费与收入间的关系不是准确实现的。
原因:入随机误差项,将变量之间的关系用一个线性 随机方程来描述,用随机数学的方法来估计方程中的 参数,这就是线性回归模型的特征,也就是线性计量 经济学模型的特征。
二、一元线性回归模型
单方程线性回归模型的一般形式为
Yi 1 2 X2i 3 X3i k Xki ui ,i 1,2, ,n 其中Y为被解释变量,X 2 ,X 3 , ,X n 为解释变量。
化。
如果误差项的方差不同,那么与其对应的观测值Yi的可 靠程度也不相同。这会使参数的检验和利用模型进行预 测复杂化。而满足同方差假设,将使检验和预测简化。
假设3 表示不同的误差项之间互相独立,同时,不同的 被解释变量在统计上也是互相独立的。即
Cov(Yi, Yj)= E(Yi-E(Yi)) (Yj-E(Yj))= E(uiuj)=0, i≠j 假假设设4,自通动常满X足i为,确即定性变量,即非随机变量,此时,该
也可以用显函数形式表示为 Y f ( X1,X 2 , ,X n )
其中最简单的形式为一元线性函数关系。
例如 当某种商品单价P固定不变,其销售收入y与销售 的商品数量x之间的关系为一元线性关系,即y = Px
如果用x,y构成的直角坐标图来表示,上式所表示的 函数关系为一条经过坐标原点的直线,所有可能的点 都在这条直线上。
Cov(ui, Xi)= E(ui-E(ui)) (Xi-E(Xi))=0,i=1,2, ……,n 假设5 随机误差项服从零均值,同方差的正态分布。即

第二节一元线性回归分析

第二节一元线性回归分析

第二节一元线性回归分析本节主要内容:回归是分析变量之间关系类型的方法,按照变量之间的关系,回归分析分为:线性回归分析和非线性回归分析。

本节研究的是线性回归,即如何通过统计模型反映两个变量之间的线性依存关系.回归分析的主要内容:1.从样本数据出发,确定变量之间的数学关系式;2.估计回归模型参数;3.对确定的关系式进行各种统计检验,并从影响某一特定变量的诸多变量中找出影响显著的变量。

一、一元线性回归模型:一元线性模型是指两个变量x、y之间的直线因果关系。

理论回归模型:理论回归模型中的参数是未知的,但是在观察中我们通常用样本观察值估计参数值,通常用分别表示的估计值,即称回归估计模型:回归估计模型:二、模型参数估计:用最小二乘法估计:【例3】实测某地四周岁至十一岁女孩的七个年龄组的平均身高(单位:厘米)如下表所示某地女孩身高的实测数据建立身高与年龄的线性回归方程。

根据上面公式求出b0=80。

84,b1=4。

68。

三.回归系数的含义(2)回归方程中的两个回归系数,其中b0为回归直线的启动值,在相关图上变现为x=0时,纵轴上的一个点,称为y截距;b1是回归直线的斜率,它是自变量(x)每变动一个单位量时,因变量(y)的平均变化量。

(3)回归系数b1的取值有正负号。

如果b1为正值,则表示两个变量为正相关关系,如果b1为负值,则表示两个变量为负相关关系。

[例题·判断题]回归系数b的符号与相关系数r的符号,可以相同也可以不同.( )答案:错误解析:回归系数b的符号与相关系数r的符号是相同的=a+bx,b<0,则x与y之间的相关系数( )[例题·判断题]在回归直线yca。

r=0 b.r=1 c。

0<r〈1 d.—1<r〈0答案:d解析:b〈0,则x与y之间的相关系数为负即—1〈r〈0[例题·单选题]回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )a。

线性相关还是非线性相关 b.正相关还是负相关c。

简单线性相关(一元线性回归分析)

简单线性相关(一元线性回归分析)

第十三讲简单线性相关(一元线性回归分析)对于两个或更多变量之间的关系,相关分析考虑的只是变量之间是否相关、相关的程度,而回归分析关心的问题是:变量之间的因果关系如何。

回归分析是处理一个或多个自变量与因变量间线性因果关系的统计方法。

如婚姻状况与子女生育数量,相关分析可以求出两者的相关强度以及是否具有统计学意义,但不对谁决定谁作出预设,即可以相互解释,回归分析则必须预先假定谁是因谁是果,谁明确谁为因与谁为果的前提下展开进一步的分析。

一、一元线性回归模型及其对变量的要求(一)一元线性回归模型1、一元线性回归模型示例两个变量之间的真实关系一般可以用以下方程来表示:Y=A+BX+方程中的 A 、B 是待定的常数,称为模型系数,是残差,是以X预测Y 产生的误差。

两个变量之间拟合的直线是:y a bxy 是y的拟合值或预测值,它是在X 条件下 Y 条件均值的估计a 、b 是回归直线的系数,是总体真实直线距,当自变量的值为0 时,因变量的值。

A、B 的估计值, a 即 constant 是截b 称为回归系数,指在其他所有的因素不变时,每一单位自变量的变化引起的因变量的变化。

可以对回归方程进行标准化,得到标准回归方程:y x为标准回归系数,表示其他变量不变时,自变量变化一个标准差单位( Z XjXj),因变量 Y 的标准差的平均变化。

S j由于标准化消除了原来自变量不同的测量单位,标准回归系数之间是可以比较的,绝对值的大小代表了对因变量作用的大小,反映自变量对Y 的重要性。

(二)对变量的要求:回归分析的假定条件回归分析对变量的要求是:自变量可以是随机变量,也可以是非随机变量。

自变量 X 值的测量可以认为是没有误差的,或者说误差可以忽略不计。

回归分析对于因变量有较多的要求,这些要求与其它的因素一起,构成了回归分析的基本条件:独立、线性、正态、等方差。

(三)数据要求模型中要求一个因变量,一个或多个自变量(一元时为 1 个自变量)。

一元线性回归分析

一元线性回归分析

• 因此,给定收入X的值Xi,可得消费支出Y的条件 均值(conditional mean)或条件期望(conditional expectation):
E(Y | X X i )
该例中:E(Y | X=800)=650
2020/4/28
朱晋
13
• 从散点图发现:随着收入的增加,消费“平均
地说”也在增加,且Y的条件均值均落在一根正 斜率的直线上。这条直线称为总体回归线。
均值,即当解释变量取某个确定值时,与之统计相 关的被解释变量所有可能出现的对应值的平均值。
2020/4/28
朱晋
9
回归分析构成计量经济学的方法论基 础,其主要内容包括:
(1)根据样本观察值对计量经济模型参数进行 估计,求得回归方程;
(2)对回归方程、参数估计值进行检验; (3)利用回归方程进行分析、评价及预测。
随机变量间的关系。 • 统计依赖或相关关系:研究的是非确定现象随 机变量间的关系。
2020/4/28
朱晋
4
△对变量间统计依赖关系的考察主要是通过相关分析 (correlation analysis)或回归分析(regression analysis) 来完成的:
统计依赖关系
正相关 线性相关 不相关 相关系数:
yi 0 1xi ui
• 利用样本观察值找出参数0和 1的估计值,
得到样本回归模型:
yˆi ˆ0 ˆ1xi
• 检验估计值的性质,并利用样本回归模
型分析被解释变量的总体平均规律。
2020/4/28
朱晋
8
• 由于变量间关系的随机性,回归分析关心的是根据 解释变量的已知或给定值,考察被解释变量的总体
负相关 1 XY 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 相关与回归分析
• 8. 1 相关分析 • 8. 2 一元线性回归分析
8. 1 相关分析
• 8.1. 1 相关分析的概念
• 加拿大的一位科学家 ( Dr Peter Yu) 猜测: 严重暴力罪犯是 否在生理结构上就与正常人有区别? 之后, 他研究了监狱内几十名 严重暴力罪犯的血样, 发现其中一种叫作 MAO 的物质只相当于 正常人的 1 / 3, 而且暴力犯罪越严重, MAO 含量越低。 西班 牙的一位科学家对斗牛士进行了相似的实验, 也得到相似的结果。 Dr Peter Yu 同样也对一些胆子很小、 “ 不惜一切, 避免任 何风险” 的人进行了相似的实验, 发现 MAO 含量偏高。 于是, 他着手研制一种能够降低某些胆小的人血液中的 MAO 含量的药, 以使他们能与普通人同样生活。 这是一种现象: 暴力倾向强的人, 同时血液中 MAO 的含量也低; 相反, 胆子小的人, MAO 含量高。 人们会很自然地猜测———MAO 是否决定了一个人的暴力倾向?
上一页 下一页 返回
8. 1 相关分析
• 然而, 现实世界中还有许多情况是现象之间存在着客观联系, 但在 数量上表现为不确定的相互关系。 例如, 一般地, 一个人的身高越 高, 他的体重也应该越重, 但我们会发现有些身高为 1 60 米的 人较身高为 1 70 米的人体重重; 又如, 单位生产成本的高低与利 润的多少的关系; 广告费支出与产品销售量之间的关系等。 类似的情 况很多, 其基本特点是: 当一种现象发生数量上的变化时, 另一现 象也会相应地发生变化, 但其变化是不确定的。 众多现象所形成的 复杂性和认识的局限性, 或者实验误差、 测量误差等偶然因素, 使 得当一个变量发生变化时, 另一个变量与之对应的数值变化会有多 种可能, 或分布于平均值周围, 或在一定区间内随机波动。 统计学 中, 把这种现象之间在数量上非确定性的对应关系叫作 “ 相关关系” 或 “ 统计关系” 。 因此, 我们把相关看作现象或变量之间的数量 关联, 从而有(1) 完全确定的关联———函数关系。
下一页 返回
8. 1 相关分析
• 诸如此类的情况, 都存在这样的过程: 人们发现某种现象的变化经常 会引起另一现象的变化, 这可以被视为不太明确的规律; 人们为了验 证、 利用这些规律, 会进一步实验, 筛选出最主要的变量, 再进行 理论论证, 直至形成一种比较稳定的、 可控的操作模式。 这个过程 用统计术语来表述就是: 通过大量观察, 发现某两个变量之间的相关 关系, 再对这两个变量的一系列观测值进行有效的统计技术处理 ( 下面将要介绍的回归分析方法是主要的手段) ,形成具有一定概率 的统计规律。 如何验证或解释统计规律则是统计方法以外的事业, 前述三个事例都属于生物学、 生理学领域。 经济现象中的 “ 恩格尔 定律” 也有类似的情形。
上一页 下一页 返回
8. 1 相关分析
• 8. 1. 2 相关分析的分类
• 感知某种事物的存在, 人们很自然地就要去理解、 解释这种事物。 现象间存在着相关关系, 这些 “ 关系” 成为认识的对象, 我们不 禁要问: 这些关系是怎样的? 从科学方法的角度看, 对研究对象进行 适当的分类是必要的。
• 现象间的相关关系可以按照不同的标准进行分类。 • (1) 按相关的程度划分为完全相关、 不完全相关和不相关。 完全
相关是指一个变量的变动必然会引起另一个变量的确定性变动的相关 关系, 如圆的面积与其半径的相关关系。 完全相关即函数关系。 不 相关是指一个变量的变动完全不受另一个变量数量变动的影响, 彼 此间相互独立。 不完全相关是指一个变量发生有规律的变动, 能引 起另一变量对应的规律性变动, 但变动关系不确定。
上一页 下一页 返回
8. 1 相关分析
• “ 事物间是普遍联系的” , 一种现象的变化总是依赖或影响着其他 现象的变化, 运用统计方法的目的之一就是从数量上测度事物之间 的 “ 联系及其程度” 。 事物之间存在依存关系, 从统计学的视角 看, 可以把事物间的关系视为变两个变量之间, 则两者间关系的紧密 程度即统计学要探索和度量的对象。
上一页 下一页 返回
8. 1 相关分析
• 从以上的分析可以看出, 探讨现象之间的相关关系是发现事物内在 相关性的一种捷径,有时甚至能够指明研究方向的重要信息, 而且 许多现象也证实了这种机制。 例如, 天花是一种毁坏性很强的传染 病, 但有人发现, 牧场里挤牛奶的姑娘几乎从来不染天花, 经过多 次的“ 试错” 活动, 牛痘诞生了, 天花不再肆虐, 以至于现在, 天花病毒在某些范围内成为濒临灭绝的需要保护的生物物种; 再如, 风湿性关节炎是一种顽疾, 但人们发现, 养蜂人几乎不患关节炎, 与产生牛痘的艰难过程相似, 治疗关节炎的 “ 蜂毒” 出现了。
上一页 下一页 返回
8. 1 相关分析
• (2) 按相关的变化方向是否相同可以分为正相关和负相关。 当一个 变量的数量变动与另一个变量的数量变动方向一致时, 称为正相关。 如政府财政收入增加, 则下拨给各预算单位的财政拨款也会随之增 加。 当一个变量的数量变动与另一个变量的数量变动方向相反时, 称为负相关。 如劳动生产率提高, 则单位产品所消耗的时间会减少。
• 例如, 一瓶纯净水价格为 2 元钱, 我们每多买一瓶, 就需要多 花费 2 元钱, 将购买数量(瓶) 记为 x, 支付总额记为 y, 则 y = 2x。 这种关系说明, 一个变量的变化完全能够决定另一个变量 的变化。 其他的类似情况很多, 其基本特点是: 当自变量取某一个 值时, 因变量有确定的值与之对应, 这就是 “ 函数关系” 。 因此, 函数关系是指事物之间客观存在的, 并且在数量关系上是严格的确 定性的关联。
• (3) 按相关关系中所涉及变量的多少可以分为单相关和复相关。 单 相关又称简相关,是指两个变量之间的相关关系, 即只有一个自变 量和一个因变量之间的相关, 如投入与产出之间的关系。 复相关又 称多元相关, 是指三个或三个以上变量之间的相关关系, 如商品销 售额与居民人均可支配收入、 商品价格之间的相关关系。
相关文档
最新文档