螺杆式水蒸气压缩机在极限工况下齿间间隙的计算方法

合集下载

螺杆压缩机工艺计算公式

螺杆压缩机工艺计算公式

螺杆压缩机工艺计算公式螺杆压缩机是一种常用的空气压缩设备,它通过螺杆的旋转来实现对气体的压缩。

在工业生产中,螺杆压缩机被广泛应用于空气压缩、气体输送、制冷等领域。

在使用螺杆压缩机进行工艺计算时,需要根据实际情况进行计算,以确保设备的正常运行和高效工作。

本文将介绍螺杆压缩机工艺计算的公式和方法,希望能对相关人员有所帮助。

一、螺杆压缩机的基本原理。

螺杆压缩机是一种以螺杆为工作元件的压缩机,其工作原理是通过两个相互啮合的螺杆来实现对气体的压缩。

其中一个螺杆称为主动螺杆,另一个螺杆称为从动螺杆。

当主动螺杆转动时,从动螺杆也随之转动,从而实现对气体的压缩。

螺杆压缩机具有结构简单、运转平稳、噪音低、效率高等优点,因此在工业生产中得到了广泛应用。

二、螺杆压缩机的工艺计算公式。

在使用螺杆压缩机进行工艺计算时,需要根据实际情况进行计算,以确保设备的正常运行和高效工作。

下面将介绍螺杆压缩机的工艺计算公式及其应用。

1. 压缩比的计算。

压缩比是指螺杆压缩机出口气体的压力与入口气体的压力之比。

在实际应用中,压缩比通常用来衡量螺杆压缩机的工作性能。

压缩比的计算公式如下:压缩比 = 出口气体的压力 / 入口气体的压力。

2. 压缩功的计算。

压缩功是指螺杆压缩机在单位时间内对气体所做的功。

在实际应用中,压缩功通常用来评价螺杆压缩机的能耗情况。

压缩功的计算公式如下:压缩功 = (出口气体的压力×出口气体的流量入口气体的压力×入口气体的流量) / 压缩机的等效效率。

3. 驱动功的计算。

驱动功是指螺杆压缩机在单位时间内所消耗的功。

在实际应用中,驱动功通常用来评价螺杆压缩机的能耗情况。

驱动功的计算公式如下:驱动功 = 入口气体的流量×入口气体的压力 / 压缩机的等效效率。

4. 排气温度的计算。

排气温度是指螺杆压缩机出口气体的温度。

在实际应用中,排气温度通常用来评价螺杆压缩机的工作情况。

排气温度的计算公式如下:排气温度 = 入口气体的温度 + (入口气体的温度×压缩比^((γ-1)/γ) 入口气体的温度) / 压缩比^((γ-1)/γ)。

齿轮各参数计算公式知识讲解

齿轮各参数计算公式知识讲解

齿轮各参数计算公式13-1什么是分度圆?标准齿轮的分度圆在什么位置上? 13-2 一渐开线,其基圆半径r b = 40 mm ,试求此渐开线压力角 =20。

处的半径r 和曲率半径p的大小。

13-3有一个标准渐开线直齿圆柱齿轮,测量其齿顶圆直径 da = 106.40 mm ,齿数z=25,问是哪一种齿制的齿轮,基本参数是多少?13-4两个标准直齿圆柱齿轮,已测得齿数 z i = 22、z 2 = 98,小齿轮齿顶圆直径d ai = 240 mm ,大 齿轮全齿高h = 22.5 mm ,试判断这两个齿轮能否正确啮合传动 ?名称 代号 计算公式 模数 m m=p/n =d/z=da/(z+2)(d 为分度圆直径齿距 P p= n m=t d/z 齿数 z z=d/m=n d/p 分度圆直径 d d=mz=da-2m齿顶圆直径 da da=m(z+2)=d+2m=p(z+2)/ n 齿根圆直径 df df=d-2.5m=m(z-2.5)=da-2h=da-4.5m齿顶咼 ha ha=m=p/n 齿根高 hf hf=1.25m齿高 h h=2.25m 齿厚 s s=p/2= n m/2中心距 a a=(z1+z2)m/2=(d1+d2)/2跨测齿数 k k=z/9+0.5公法线长度ww=m[2.9521(k-0.5)+0.014z]模数齿轮计算公式 ,z 为齿数)13-5有一对正常齿制渐开线标准直齿圆柱齿轮,它们的齿数为z i = 19、Z2 = 81,模数m= 5 mm,压力角=20°若将其安装成a' = 250 mm的齿轮传动,问能否实现无侧隙啮合?为什么?此时的顶隙(径向间隙)C是多少?13-6已知C6150车床主轴箱内一对外啮合标准直齿圆柱齿轮,其齿数Z1 = 21、Z2 = 66,模数m =3.5 mm,压力角 =20°正常齿。

试确定这对齿轮的传动比、分度圆直径、齿顶圆直径、全齿高、中心距、分度圆齿厚和分度圆齿槽宽。

机械原理齿轮计算的相关公式

机械原理齿轮计算的相关公式

机械原理齿轮计算的相关公式齿轮计算公式节圆柱上的螺旋角:L d /tan 00?=πβ 基圆柱上的螺旋角:n g αββcos sin sin 0?= 齿厚中心车角:Z θ/90?= 销子直径:m 728.1dp ?=中心距离增加系数:)1cos /(cos )2/)((y b 021-?+=ααZ Z标准正齿轮的计算(小齿轮①,大齿轮②)1.齿轮齿标准 2.工齿齿形直齿 3.模数 m4.压力角c αα=05.齿数 21,Z Z6.有效齿深 m 2h e ?= 7.全齿深 c m h +=28.齿顶隙 m 35.0,m 25.0,m 2.0c =9.基础节圆直径 m d 0?=Z10.外径 m )2(d k ?+=Z11.齿底直径 c 2m )2(d r ?-?-=Z12.基础圆直径0g cos m d αZ ??=13.周节m t 0?=π14.法线节距0e cos m t απ??= 15.圆弧齿厚2/m S 0?=π16.弦齿厚)2sin(m S 1j Z πZ =17.齿轮油标尺齿高 m m h j +Z-??Z =)2cos1()2/(π18.跨齿数 5.0)180/(0m=Z αZ19.跨齿厚 ])5.0([cos 0o m inva m m S Z ?-?Z ??=πα 20.销子直径 m 728.1d ?=21.圆柱测量尺寸d m d m +?Z =)cos /cos (0φα (偶数齿)d )]90(cos)cos /cos m [(d 0m +?=ZφαZ (奇数齿)其中, 00)2cos (1απαφinv m dinv +-Z22.齿隙 f ?移位正齿轮计算公式(小齿轮①,大齿轮②)1.齿轮齿形转位 2.工具齿形直齿3.模数 m4.压力角c αα=05.齿数 Z6.有效齿深 m 2h e ?=7.全齿深 c m )]x x (y 2[h 21+??-+= 或 c m 2h +?=8.齿隙 c9.转位系数 x10.中心距离m y x ?+=αα11.基准节圆直径m d 0?=Z12.啮合压力角021210b inv )x x (tan 2inv αZZ αα+++?=13.啮合节圆直径)(x 2d 211b Z Z Z α+??=14.外径 m )x y (2m )2(d 21k ?-?+?+=Z 15.齿顶圆直径h 2d d 1k r ?-=16.基圆直径0cos t g m d α??Z =17.周节m t 0?=π18.法线节距00cos m t απ??= 19.圆弧齿厚010tan m x 22mS απ=20.弦齿厚)tan x 2x 2sin(m S 1111j Z απZ ??+=21.齿轮游标尺齿高2d d )]tan x 22cos(1[2mh 110k 1111j -++-??=Z αZ πZ22.跨齿数 5.0180x 1b m 1+?=αZ23.跨齿厚 01m sin m x 2)(S 1α+=标准齿轮的齿厚24.梢子直径m 728.1d 1?=25.圆柱测量尺寸110cos cos 1d m d m +??Z =φα (偶数齿)111)90cos(cos cos 1d m d m +Z Z =φα (奇数齿)11011i1tan x 2)inv 2(cos m d inv Z ααZ παZ Φ??+-?-??=26.标准螺旋齿的计算公式(齿直角方式)(小齿轮①,大齿轮②) 1. 齿轮齿形标准 2. 齿形基准断面齿直角 3. 工具齿形螺旋齿4. 模数 n c m m =5. 压力角n 0c ααα==6. 齿数 1Z7. 螺旋角方向0β(左或右)8. 有效齿深 n e m 2h ?= 9.全齿深c m 2h n +?=10. 正面压力角n1s cos m tan βZ α?=11. 中心距离n21cos 2m )(βZ Z α??+=12. 基准节圆直径n10cos m d βZ ?=13. 外径 n 01k m 2d d ?+= 14. 齿底圆直径)c m (2d d n 01r ++=15. 基圆直径gnn 1g cos cos m d 1βαZ ??=16. 基圆上的螺旋角n 0g cos sin sin αββ?=17. 导程1001cot d L 1βπ??=18. 周节(齿直角)n n 0m t ?=π19. 法线节距(齿直角)n n en cos m t απ??= 20. 圆弧齿厚(齿直角) 2m S nn 0?=π21. 相当正齿轮齿数101cos βZ Z =22. 弦齿厚 )2sin(m S 1v n 1v j 1ZπZ=23. 齿轮游标尺齿深n 1v n1v 1j m )2cos1(2m h +?-??=ZπZ24. 跨齿数 5.01801v n m 1+?=ZαZ25. 跨齿厚]inv )5.0m ([cos m S s 11n n m 1αZ Z πα?+-=26. 梢子直径)2(cos 1111n v n v n inv inv m d απφα-Z ?+Z ?=其中,)(2tan 11Rad inv n v n απαφ-Z ?+=27. 圆柱测量尺寸110cos cos 1d m d m +??Z =φα (偶数齿)111)90cos(cos cos 1d m d m +Z Z =φα (奇数齿)110111tan 2)2(cos Z ??+-Z ?-??Z =ααπαφx inv m d inv i28. 齿隙 f移位螺旋齿的计算公式(齿直角方式)(小齿轮①,大齿轮②)1. 齿轮齿形移位 2. 齿形基准断面齿直角 3. 工具齿形螺旋齿4. 模数(齿直角) n c m m =5. 压力角(齿直角) 0a a a c n -=6. 齿数 1Z7. 螺旋方向0β8. 有效齿深 n e m h 2= 9. 全齿深 c m h n +=2 10. 移位系数 1n x11. 中心距离n x ym a a +=12. 正面模数 0cos βn s m m =13. 正面压力角cos tanβans m =14. 相当正齿轮齿数311β?s z z v =15. 齿直角啮齿压力角 anv v n n ann a invz z x x b inv +++=2121tan216. 基准节圆直径011cos βn o m z d =17. 外径n n n n k m x m m z d 101122cos ++=β18. 啮齿节圆直径)(22111z z z a d x b +=19. 基圆直径gnn g a m z d βcos cos 11?=20. 基础圆柱上的螺旋角 n og a cos sin sin ββ=21. 圆弧齿厚n n n on m a x s ??+=)tan 22 (1π22. 弦齿厚)tan 22sin(11111v on v n v j z a x z m z s+=π23. 齿轮游标尺齿高2)}tan 22cos(1{21111111o k v on v nv d d z a x z m z hj -++-?=π24. 跨齿数 5.018011+=v n m z ab z25. 跨齿厚111sin 2n n n m a m x s ??+=)(标准螺旋齿轮的齿厚销子直径近似值=1d26圆柱测量尺寸/1111cos cos da m z d ss m +?=φ(偶数齿)/1111190coscos cos d z a m z d ss m +?=φ111111tan 2)2(cos z a x inva z a m z d in nn s nn ?+--='πφ注:齿隙 f=m 1.25以下 0.025-0.075 m 1.25-2.5 0.05-0.10 ))*25.2((tan 2)2( cos 22111111m r rL z a x inva z a m z d in nn s nn ---?+--='πφ。

螺杆压缩机—螺杆压缩机的基本参数

螺杆压缩机—螺杆压缩机的基本参数

Ma 确定最佳圆周速度的数值
u 80 ~ 120m / s
Ma 0.15 ~ 0.35m / s
u 30 ~ 50m / s
Ma 0.05 ~ 0.12m / s
3. 圆周速度的影响因素
圆周速度的大小与机器的压力差、压力比、排气量等因素有关。在压力差和压力 比较大时,泄漏的影响较大,最佳圆周速度的数值也相应大一些。
因此,在圆周速度达到最佳数值以后,减小间隙是进一步提高螺杆压缩机经济性 的有效措施,但间隙过小,往往会发生转子咬住的现象。
2. 间隙的确定 (1)在确定间隙时应综合考虑下列因素
① 转子和机体受气体加热引起的热膨胀。 ② 转子受到气体压差作用引起的弯曲变形。 ③ 轴承、同步齿轮等零部件正常工作所必需的间隙。 ④ 转子、机体、轴承、同步齿轮等零部件,由于加工 及安装所产生的误差。
表 4-3 长螺杆和短螺杆参数比较(长螺杆各参数均为 100%时)
相对长度
吸入孔口面积 吸入气流速度 排出孔口面积 排出气流速度
1.5
100%
100%
100%
100%
0.75
200%
50%
220%
45%
减小相对长度 ,螺杆变得粗短,使转子具有良好的刚度,增加了运转的可靠性,并有利于
螺杆式压缩机向高压方向发展。同时,使在一个轴上串联两段螺杆成为可能,组成两级压缩 机。
应用(适用于转子材料为钢或球墨铸铁,机体材料为铸铁)
中小直径的压缩机 大直径的压缩机
吸入端
排出端
0.08~0.20
0.20~0.50
0.06~0.15
0.15~0.40
0.15~0.25
0.25~0.44
0.8~1.2

螺杆压缩机功率计算公式

螺杆压缩机功率计算公式

螺杆压缩机功率计算公式螺杆压缩机是一种常用的工业设备,广泛应用于空气压缩、制冷、液压和化工等领域。

在设计和运行螺杆压缩机时,计算其功率是非常重要的一项任务。

本文将介绍螺杆压缩机功率的计算公式及其相关内容。

一、螺杆压缩机的功率计算公式螺杆压缩机的功率计算公式为:P = (Q × P1) / (η × 3.6)其中,P为螺杆压缩机的功率,单位为千瓦(kW);Q为螺杆压缩机的排气量流量,单位为立方米/分钟(m³/min);P1为螺杆压缩机的进气绝对压力,单位为巴(ba);η为螺杆压缩机的总压缩效率,无单位;3.6为单位换算系数,将立方米/分钟转换为立方米/小时。

二、螺杆压缩机功率计算公式的解释1. 流量(Q):螺杆压缩机的流量指的是单位时间内通过螺杆压缩机的气体体积。

它是衡量螺杆压缩机工作能力的重要参数。

通常情况下,流量越大,螺杆压缩机的功率需求也就越大。

2. 进气绝对压力(P1):螺杆压缩机的进气绝对压力是指螺杆压缩机在工作状态下的进气压力。

它影响着螺杆压缩机的工作效率和功率需求。

进气压力越高,螺杆压缩机的功率需求也会相应增加。

3. 总压缩效率(η):螺杆压缩机的总压缩效率是指螺杆压缩机在实际工作中所能达到的压缩效率。

它受到螺杆压缩机结构、工作条件以及维护保养等因素的影响。

总压缩效率越高,螺杆压缩机的功率需求也就越低。

4. 单位换算系数(3.6):由于功率单位是千瓦(kW),而流量单位通常为立方米/分钟(m³/min),所以需要将流量的单位进行换算,使其与功率单位保持一致。

在这里,将流量单位从立方米/分钟转换为立方米/小时,需要乘以3.6。

三、螺杆压缩机功率计算公式的应用螺杆压缩机功率计算公式的应用非常广泛。

在设计螺杆压缩机系统时,可以根据所需的流量、进气压力和总压缩效率,通过计算公式得出所需的功率。

这样可以选择适当的螺杆压缩机型号,并合理配置其电机功率。

在实际运行中,螺杆压缩机的功率计算也非常重要。

齿轮侧隙计算公式

齿轮侧隙计算公式

齿轮侧隙计算公式齿轮是机械传动中常用的一种元件,它通过齿间啮合的方式来传递动力和扭矩。

齿轮的侧隙是指两个相邻齿面之间的距离,它对齿轮传动的精度和可靠性有着非常重要的影响。

因此,在进行齿轮设计和制造时,需要准确计算齿轮的侧隙。

齿轮侧隙的计算可以通过以下公式来实现:S=Kt(bm+bf+ΔF)其中,S表示齿轮侧隙,Kt表示齿轮侧隙系数,bm表示模数,bf表示齿宽系数,ΔF表示两轮啮合产生的变形力。

首先,我们需要确定齿轮侧隙系数Kt。

对于各种齿轮传动方式(平行轴齿轮、斜齿轮、锥齿轮等),都有相应的侧隙系数值。

在平行轴齿轮啮合时,Kt一般为0.05~0.15;在斜齿轮啮合时,Kt一般为0.07~0.20;在锥齿轮啮合时,Kt一般为0.10~0.20。

接下来,通过计算齿宽系数bf,可以确定齿轮侧隙计算中的第二个参数。

bf分为全齿宽系数和有效齿宽系数两种,通常取全齿宽系数。

bf的计算方法是bf=b/(z*cosα),其中b表示齿宽,z表示齿数,α表示齿轮齿面斜角。

最后,我们需要考虑啮合变形力的影响。

在齿轮啮合过程中,由于齿轮齿面形状、变形等因素,会在齿面产生一定的变形力。

啮合变形力ΔF的计算可以采用有限元法、试验法等方法,在具体的设计中需要根据实际情况进行确定。

通过以上公式和参数计算,我们可以得到准确的齿轮侧隙值。

齿轮侧隙对于齿轮的传动精度和可靠性有着非常重要的作用,因此在齿轮设计和制造过程中,必须非常注重齿轮侧隙的准确计算。

同时,在实际生产中也需要进行严格的监测和测量,保证齿轮的稳定性和可靠性。

蒸汽透平压缩机间隙测量方法及调整简述

蒸汽透平压缩机间隙测量方法及调整简述

蒸汽透平压缩机间隙测量方法及调整简述摘要:本文以日本三菱生产的透平压缩机检修作为背景,介绍检修过程中部分间隙值的确认,通过照片图像等方式进行解说,努力规范各单位的检修流程及测量方法,便于机组更加有利于长周期运行。

文/刘强1 前言蒸汽透平压缩机检修过程中,除去拆检等方法以外,间隙检查测量是保证检修能否按照工厂化要求组装的重要依据,是保证机组运行后振动、温度、泄漏量等满足设计要求的前提。

对此,本文特罗列相关方法以便参考讨论。

2 迷宫密封的间隙测量2.1 测量原因及原理由于构成迷宫密封的机械零件均接触工作介质,零件必然会发生热膨胀变形,密封须适应轴与壳体的热变形。

密封间隙减小,密封齿数增多,其密封效果就会越好,然而,密封间隙减小,易造成动静相磨,而密封齿数增多,一方面导致轴向尺寸增加,同时随着密封齿数的增加,其密封效果逐级下降。

根据轴的直径,并考虑热膨胀效应和轴的漂移效应,迷宫密封的径向间隙一般取0.2+0.6d/1000(mm),d为轴的直径。

齿间距通常为5~9mm,齿尖厚度通常小于0.5mm。

2.2测量方法(1)拆下壳体上盖,然后拆下带有迷宫式密封的压盖外壳。

(2)拆下调速器和排放侧底座盖,然后拆下轴承压盖上半部及上轴承。

(3)根据转子提升程序,吊装透平转子。

(注意安装专用吊装导向杆,防止吊装时转子转动,刮伤静叶片、喷嘴等部件)(4)拆卸迷宫密封,并拆除弹簧片,在迷宫式密封之间的适当圆周位置插入铜板或胶条,将迷宫密封梳垫起,然后将其组装到静叶片或隔板上。

(5)沿轴向在底部壳体的每一个迷宫环上布置铅丝,最后放置转子。

(6)沿轴向在转子上放置铅丝后,组装上半部壳体。

按照说明书紧固临时紧固螺栓。

(7)再次拆卸顶部壳体,拆除转子上的铅丝。

用刀刃千分尺测量铅丝的厚度。

(8)用塞尺测在水平中分面平面上的压盖迷宫式密封与转子之间的间隙。

(9)根据转子吊装程序吊装透平转子,用刀刃千分尺测量转子下面的铅丝厚度。

(10)测得的每一个方向上的径向间隙必须与表中的容许值作比较。

螺杆压缩机各种间隙调整方法

螺杆压缩机各种间隙调整方法

螺杆压缩机各种间隙如何调整螺杆压缩机各种间隙调整方法如下:1、拆下轴封压盖,取出机械密封,复查原始密封压缩量,取出动环。

2、为拆卸方便,将机组立起,枕木要安放牢固、平稳。

取出排气端盖定位销、拆除螺栓,顶丝稍微顶起后,天吊配合用手拉葫芦平稳吊起。

3、将机组平放在枕木上,深度尺测量排气端轴头到压盖端面相对位置,也可打表确认。

4、撬开定位轴承防转垫片,松开背帽,取出阴阳转子轴承及内外调整垫片,一定做好标记分类摆放。

5、轻轻敲击排气端转子轴头,使阴阳转子全部串至吸气端,再次测量轴头到端面相对位置,并观察百分表数值,二者比较确定转子的半串量。

即:转子排气端面与排气端座的轴向间隙,标准为0.08~0.1 0mm。

螺杆压缩机,也称螺旋式压缩机,包括螺杆空气压缩机和螺杆工艺压缩机(氯乙烯压缩机等),螺杆机为容积式双螺杆喷油压缩机,一般为箱式撬装结构。

螺杆压缩机分为单螺杆压缩机及双螺杆压缩机引,直到1934年瑞典皇家理工学院A.Lysholm才奠定了螺杆式压缩机S RM技术,并开始在工业上应用,取得了迅速的发展。

螺杆压缩机的转子间隙怎么调工程机械调整步骤:只参照螺杆制冷机组对轴向间隙调整进行说明:拆卸复查:1.拆下轴封压盖,取出机械密封,复查原始密封压缩量,取出动环。

2.为拆卸方便,将机组立起,枕木要安放牢固、平稳。

取出排气端盖定位销、拆除螺栓,顶丝稍微顶起后,天吊配合用手拉葫芦平稳吊起。

3.将机组平放在枕木上,深度尺测量排气端轴头到压盖端面相对位置,也可打表确认。

4.撬开定位轴承防转垫片,松开背帽,取出阴阳转子轴承及内外调整垫片,一定做好标记分类摆放。

5.轻轻敲击排气端转子轴头,使阴阳转子全部串至吸气端,再次测量轴头到端面相对位置,并观察百分表数值,二者比较确定转子的半串量。

即:转子排气端面与排气端座的轴向间隙,标准为0.08~0. 10mm。

4.2.1.13同时来回串动阴阳转子,记录总串量。

回装:转子排气端面与排气端座间隙调整及止推轴承外圈紧力的测量1.转子排气端面与排气端座间隙调整是需在确认阴阳转子总串之后进行。

螺杆压缩机的间隙测定原理

螺杆压缩机的间隙测定原理

螺杆压缩机的间隙测定原理
螺杆压缩机的间隙测定原理是通过测量螺杆压缩机的压缩腔中螺杆和腔体之间
的间隙来确定间隙尺寸,从而判断螺杆压缩机的工作状态和性能。

具体原理如下:
1. 螺杆压缩机的压缩腔中,螺杆和腔体形成一个密封间隙,当气体被压缩时,气体被挤压到间隙中,由于此间隙非常小,可以忽略气体的径向流动,因此气体的流动可以看作是轴向流动。

2. 在压缩腔中放置一个测量装置,可以测量间隙的长度,例如使用钢丝或传感器。

3. 当压缩机运行时,随着螺杆的旋转,测量装置会感受到间隙中气体的压力变化。

根据气体的状态方程,可以将间隙中气体的压力变化与温度、压力等参数关联起来。

4. 通过测量间隙中气体的压力变化,可以反推出间隙的长度。

根据测量结果,可以判断螺杆压缩机的工作状态和性能,例如间隙是否太小导致气体被过度压缩,或者间隙是否太大导致气体流动不畅。

5. 根据测量结果,可以调整螺杆压缩机的工作参数,以优化其性能。

例如,通过调整螺杆的旋转速度或机械结构,可以改变间隙的大小,从而改变螺杆压缩机的输出压力和容积效率。

总之,通过测量螺杆压缩机压缩腔中螺杆和腔体间隙的长度变化,可以了解螺杆压缩机的工作状态和性能,并进行调整和优化。

基于双螺杆压缩机转子齿形离散点计算齿面法向间隙之数值方法

基于双螺杆压缩机转子齿形离散点计算齿面法向间隙之数值方法

A numerical method for the evaluation of the meshing clearancefor twin screw rotors with discrete tooth pro file pointsYu-Ren Wu ⁎,Jen-Wei ChiDepartment of Mechanical Engineering,National Pingtung University of Science and Technology,Pingtung County 91201,Taiwan,ROCa r t i c l e i n f o ab s t r ac tArticle history:Received 18December 2012Received in revised form 13July 2013Accepted 15July 2013Available online xxxx The performance of twin-screw compressors is primarily affected by the clearance between thepair of meshing rotors.This study proposes a numerical method for meshing clearance evaluation(MCE)for screw rotors,using two normal rack curves that are generated by the discrete male andfemale rotor profile points.The calculated results are then compared,using the HOLROYD ProfileManagement System (HPMS)software,in order to verify the correctness.Additionally,clearanceband variation with the rotation angle is considered in the compressor performance simulation,toassess the influences on the compressor efficiency.©2013Elsevier Ltd.All rights reserved.Keywords:Twin-screw compressorMeshing clearanceMCEHPMS1.IntroductionTwin-screw compressors are the core component of cooling and air conditioning systems.Additionally,because of their high reliability,ease of operation and maintenance,balanced power transmission,their high degree of adaptability and their ability to transport multiple mixtures,twin-screw compressors are widely used in medical instruments,food processing machines and large buildings.The meshing of a pair of conjugated male and female rotors inside the compressor housing allows suction,compression and discharge in the screw channel and the space inside the housing wall.Therefore,the design quality and machining precision of the screw rotor are the key factors affecting the overall compressor performance.With constant improvements in design,manufacturing and analysis,the required precision for the tooth surfaces for twin-screw compressor rotors continues to increase.Clearances that cause high-pressure fluids to leak into the low pressure chambers are also controlled more precisely.Increases in temperature,resulting from the high-pressure fluid within twin-screw compressor housing,cause thermal expansion at the discharge end.The high pressure in the discharge end also leads to compressional deformation of the rotor tooth.These two factors result in potential interference and abrasion between the tooth surfaces,during meshing.The numerous rotor profile design conditions,machining imperfections and stress deformations and thermal expansions that occur when rotors work result in the existence of various leakage paths.Several important clearances lead to fluid leaks,including (1)clearances in the inter-tooth contact band,(2)clearances between the rotor suction/discharge ends and the housing end plugs,(3)clearances between the rotor tooth tip and the housing wall and (4)the blow hole formed between the tips of the teeth of the male and female rotors and the cavity wall.In a twin-screw compressor,sufficient clearance along the contact line must be guaranteed,to ensure safe operation of the compressor.Additionally,the clearance must not be large enough to cause excessive leakage.In his book,Xing [1]describes methods for calculating inter-tooth clearances,including the assembly center distance adjustment Mechanism and Machine Theory 70(2013)62–73⁎Tel.:+88687703202x7012;fax:+88687740142.E-mail address:yuren@.tw (Y.-R.Wu).0094-114X/$–see front matter ©2013Elsevier Ltd.All rights reserved.Contents lists available at SciVerse ScienceDirectMechanism and Machine Theoryj ou r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /m e c h mtmethod,the machining correction method,the theoretical profile correction method and the mixed method.Litvin and Feng [2]studied the effect of variations in the rotor axis and rotational angle on the clearance deviation.Seshaiah et al.[3]constructed theoretical models of oil-injected screw compressors and examined the leakage paths of screw compressors in the modeling computations.Their modeling results indicated that larger clearances between rotors result in a reduction in volumetric efficiency.Traditional clearance measurement methods require significant time and manpower and specific methods or machines.Furthermore,because of the limitations of analysis software,the actual clearance cannot be exactly calculated.Therefore,Xiao et al.[4]studied the clearance for screw surface meshing under conjugate conditions.These studies demonstrate that theoretically calculated rotor tooth clearances create unpredictable stress deformations in actual operation.Machining error during rotor manufacture further affects the clearance distribution in the original design.Xiong [5]found that clearance designed along the contact line differs significantly from the actual clearance distribution,during operation,so an optimization method that provides more precise values when computing contact line clearances was proposed.Huang et al.[6]used the rotor contact line information from CAD meshing simulations to calculate the clearance distribution along the contact line of two rotors,using the multiple cross-section iteration method.The primary goal of their study was to develop a method for meshing simulation and clearance calculation that considers actual assembly conditions.Although,in 1998,Stosic [7]developed a computational mathematical model for twin-screw compressor rotor inter-tooth clearance that incorporates assembly errors.However,the detail clearance calculation principle and clearance band along a 3D contact line were not presented in his reference,thus in this paper,this fundamental idea will be extensively studied and applied in more detail.The established numerical method is simpler and more instinctive than the previous studies using the complex 3D screw rotor surfaces.Previously,tooth profiles were reciprocally generated for male and female rotors.However,gear theory states that a pair of conjugate meshing gears can be generated from the same rack cutter.Stosic et al.[8]explained that rotor formation could be regarded as helical gears with nonintersecting axes.A method for generating N-type male and female rotor tooth profiles from rack curves was also proposed.Wu and Fong [9]proposed an improved normal-rack generation method for the development of twin-screw rotor tooth profiles in the explicit form.This method improved the ease of manufacture and exchange and the adjustable flexibility of rotor profiles.An optimization model for the design of rotor tooth profiles using explicit-defined rack was also proposed (Wu and Fong[10]).Cavatorta and Tomei [11]applied for a patent for a system that protects the male and female rotor tooth profiles generated from racks.Xavier et al.[12]proposed a design methodology for the generation of twin-screw compressor rotors from racks,stating that the tooth profiles generated through optimization,using this method,could effectively improve compressor efficiency.With reference to these studies,it is proposed that since a gear tooth profile with backlash can be cut by a relieved rack,the gear clearance should be estimated between the two racks that are used to cut separate gears.Therefore,for this study,the discrete points of rotor tooth profiles,measured from 3D CMM,are used to conduct the meshing clearance evaluation which is extensively discussed based on Stosic's idea [7].The point data of the measured rotor tooth profiles are employed to generate rack curves for both the male and female rotors,using the inverse normal-rack generation method.The normal clearance between the two racks is calculated after positioning.More,a novel idea is proposed by distributing the calculated unequal clearance onto the 3D contact line,to calculate the clearance band area and the perimeter.This replaces the equal meshing clearance assumption used for previous compressor flow calculations,in order to approximate the unequal meshing clearance distribution more realistically.Subsequently,the amount of leakage through the clearance band and the effect of unequal clearance distribution on the compressor efficiency can also be calculated morepractically.63Y.-R.Wu,J.-W.Chi /Mechanism and Machine Theory 70(2013)62–732.Inverse normal rack generation methodBecause this study uses the 3D CMM measurement point data for rotor profiles used as the input for clearance calculations,curve fitting must be performed before the normal-rack and mesh clearance calculations.This study uses piecewise cubic splines with relaxed end conditions to fit the discrete lobe profile points on the male rotor and the discrete groove profile points on the female rotors [13,14].After curve fitting,the general equation,r (u ),for the various fitted curve sections of the rotor tooth profile can be expressed as:r u ðÞ¼x u ðÞ;y u ðÞ½ ¼X3k ¼0c k ;x u k ;X 3k ¼0c k ;y u k ;0≤u ≤u s "#ð1Þwhere u is the profile parameter for each segment of the fitted curves (rotor tooth profile direction parameter),u s is the upper limit of the profile parameters for the equations of each fitted segment,the chord length between adjacent points,c k ,x and c k ,y are the coefficients of the fitting curve equations,x (u )and y (u ),respectively,and k is the order of the fitting equation (k =0–3).Therefore,in the above equation,if m instances of data exist for the rotor tooth profile discrete point data,(m −1)fitting equations also exist.The gear enveloping theory states that two gears generated by the same rack cutter conjugate each other (Litvin [15]).In turn,the same rack cutter can be derived by any one of two conjugated gears.Here,the fitted rotor profile equations are used to determine the normal rack equations inversely.However,because the rotor tooth profiles have a geometric correction for mesh clearance,the normal racks generated from the male and female rotors may be somewhat different.The relative motion coordinate systems for male and female rotors and the transverse rack are shown in Fig.1,where S 1and S 2represent the rotation coordinate systems of the male rotor and the female rotor,with the rotation angles ϕ1and ϕ2,respectively,S t represents the translational coordinate system of the transverse rack with a translation s i (i =1for the male rotor and i =2for the female rotor)and S f and S g represent the fixed coordinate systems.For the coordinate systems,S 1and S 2,the fitted tooth profile equations,r 1and r 2,the normal vectors,N 1and N 2,and the unit normal vectors,n 1and n 2,for the male and female rotors can be represented as follows:r i u i ðÞ¼x i u i ðÞ;y i u i ðÞ;1½ ;i ¼1;2ð2ÞN i u i ðÞ¼k Â∂r i ∂u i ;n i u ðÞ¼N i u i ðÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiN i u i ðÞÁN i u i ðÞp ;i ¼1;2ð3Þwhere u 1and u 2are the profile parameters of the male and female rotors,respectively,and k =[0,0,1]is the unit vector of the z-axis.Using the motional relationships between the rack and the rotors,the locus equations,r t ,1and r t ,2,and the unit normal vectors,n t ,1and n t ,2for the male and female rotors can be determined in the coordinate system S t ,as follows:r T t ;i u i ;ϕi ðÞ¼M t ;i ϕi ðÞÁr T i u i ðÞ;i ¼1;2ð4Þn T t ;i u i ;ϕi ðÞ¼M t ;i ϕi ðÞÁn T i u i ðÞ;i ¼1;2ð5ÞwhereM t ;1¼10r p 101−s 10012435Ácos πþϕ1ðÞsin πþϕ1ðÞ0−sin πþϕ1ðÞcos πþϕ1ðÞ00012435;M t ;2¼10−r p 201−s 20012435Ácos ϕ2−sin ϕ20sin ϕ2cos ϕ200012435:In these equations,the superscript,T ,indicates that the transpose matrix,M t ,i ,is the coordinate transformation matrix from S i to S t (i =1,2),r p 1and r p 2are the pitch radii for the male and female rotors and s 1=r p 1ϕ1and s 2=r p 2ϕ2are the rack 64Y.-R.Wu,J.-W.Chi /Mechanism and Machine Theory 70(2013)62–73In order to determine the relationship equation between the profile parameter,u ,and the rotational angle,ϕ,the enveloping condition is that the common normal vector at the contact point is perpendicular to the relative velocity direction between two conjugate curves,as shown below:f i u i ;ϕi ðÞ¼n t ;i Á∂ϕi r t ;i ¼0;i ¼1;2:ð6ÞSubstituting the value of u from each fitted curve segment of the male and female rotors into Eq.(6)yields the corresponding value,ϕ,for the rotational angle.Substituting each solved set {u ,ϕ}back into Eqs.(4)and (5),the corresponding transverse rack point coordinates and unit normal vectors at each point for the male and female rotors can be obtained.As shown in Fig.2,the normal rack equation can be derived by projecting the transverse rack (t –t section)onto the normal tooth cross-section (n –n section),as shown in the following equations:r n ;i ¼x t ;i ;y t ;i cos β;1h i ;i ¼1;2ð7ÞN n ;i u i ðÞ¼∂r n ;i i Âk ;n n ;i u i ðÞ¼N n ;i u i ðÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiN n ;i u i ðÞÁN n ;i u i ðÞq ;i ¼1;2ð8Þwhere βis the pitch helix angle of the rotor,r n ,1and r n ,2are the normal rack equations and n n ,1and n n ,2are the unit normal vector equations of the normal racks for the male and female rotors,respectively.3.Meshing clearance calculation methodputation point interval search and normal clearance solutionFig.3shows one of two normal racks,one of which is generated from the male rotor,which is selected as the “compared rack ”,and another from the female rotor,which is selected as the “datum rack ”.The normal clearance can be computed between each point on the datum rack and the compared rack.In order to reduce the computation time,the point interval in the compared rackthrough which the unit normal vector of each point on the datum rack passes is determined first,where r n 2(j )is the position vectorof a certain point,j ,on the datum (j =1~m 2:m 2is the number of points on the datum rack),r n 1(i )and r n 2(i +1)are the positions ofa certain point,i ,on the compared rack and its next point,i +1(i =1~m 1,m 1is the number of points on the compared rack),and n n 2(i )is the unit normal vector of the point,r n 2(i ).When the following condition is satisfied,the unit vector n n 2(j )passes though the point interval [i ,i +1]on the male rotor normal rack:j ðÞ j ðÞFig.2.Normal rack profiles for male and female rotors.65Y.-R.Wu,J.-W.Chi /Mechanism and Machine Theory 70(2013)62–73Subsequently,each point on the datum rack can be substituted into Eq.(10),to obtain the normal clearance,δ(j ),between eachpoint on the datum rack,r n 2(j ),and the normal-vector-passing point r n 1(j )(u )on the compared rack.r j ðÞn 2þδj ðÞn j ðÞn 2−r j ðÞn 1u ðÞ¼0ð10ÞFinally,drawing all solved normal clearances,δ(j ),in the normal direction of each point along the datum rack sequentially provides the datum rack clearance graph,as shown in Fig.4(f).3.2.Clearance distribution along the 3D contact lineWhen the clearance value for each point along the datum rack has been determined,the datum rack point data after interpolation are fitted with piecewise cubic splines,using the equation r n (u ),u =0~u s and then projected back to the transverse section to yield the transverse rack equation r t (u )and calculate its unit normal vector,n t (u ).r t u ðÞ¼x n u ðÞ;y n u ðÞ=cos β;1½ ð11ÞFig.3.Schematic plot for the point interval search and clearance calculation.66Y.-R.Wu,J.-W.Chi /Mechanism and Machine Theory 70(2013)62–73N t u ðÞ¼k Â∂r t ∂u ;n t u ðÞ¼N t u ðÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiN t u ðÞÁN t u ðÞp ð12ÞIf the normal rack of the female rotor is considered to be the datum rack,then according to the coordinate systems shown in Fig.1,the female rotor tooth profile equation r 2and its corresponding meshing rotation angle ϕ2for the transverse rack in S 2can be obtained using the coordinate transformation matrix M 2t and the enveloping condition f 2(u ,ϕ2)=0,using the following equations:r 2u ;ϕ2ðÞ¼M 2t ϕ2ðÞÁr T t u ðÞð13Þn 2u ;ϕ2ðÞ¼M 2t ϕ2ðÞÁn T t u ðÞð14Þf 2u ;ϕ2ðÞ¼n T 2Á∂ϕ2r T 2¼0ð15ÞwhereM 2t ϕ2ðÞ¼cos ϕ2sin ϕ20−sin ϕ2cos ϕ200012435:10r p 201s i 0012435:Fig.5.Overall flowchart for thestudy.67Y.-R.Wu,J.-W.Chi /Mechanism and Machine Theory 70(2013)62–73The contact line equation r f with the fixed coordinate system S f is obtained by substituting the coordinates of the female rotor tooth profile (x 2,y 2)and the meshing rotation angle,ϕ2,solved from Eqs.(13)to (15),intor f ¼x f ;y f ;z f h i ¼x 2cos ϕ2þy 2sin ϕ2;−x 2sin ϕ2þy 2cos ϕ2;p 2ϕ2½ ð16Þwhere p 2=r p 2cot βis the female rotor helix parameter.When the profile parameter u at each point is substituted into Eq.(16),the corresponding contact line point coordinate r f (j )can be obtained.By multiplying the normal vector on each point of the contact line n n 2(j )with the normal clearance value,δ(j ),theequation of the clearance distribution curve on the 3D contact line is obtained as:x j ðÞc ;y j ðÞc ;z j ðÞc h i ¼x j ðÞf þn j ðÞn 2;x δj ðÞ;y j ðÞf þn j ðÞn 2;y δj ðÞ;p 2ϕ2h i ;j ¼1e m 2ð17Þand the meshing clearance distribution graph is as shown in Fig.4(g).Table 1Geometrical parameters of N4rotors.Items (units)Male rotor Female rotor Tooth number56Assembly center distance (mm)82.0Pitch helix angle (degree)46.0Screw length of rotor (mm)162.079Inner radius/outer radius (mm)35.66/57.9924.01/46.3468Y.-R.Wu,J.-W.Chi /Mechanism and Machine Theory 70(2013)62–734.Overview of the meshing clearance calculation procedureThe sampled rotors are generally measured on the 3D CMM to determine the profile,lead and pitch errors,in order to inspect the machining accuracy.The discrete point data for a pair of male and female rotor groove profiles can be represented in the rectangular coordinate form.The correct estimation of the gap between a pair of meshing rotors is an important subject,because it has a significant effect on the volumetric efficiency when the rotors operate within a compressor.Therefore,this paper determines the meshing clearance using a set of discrete point data for male and female groove profiles.The main procedure is illustrated in Fig.5.Firstly,as shown in Fig.4(a),the rotor profile point data and the required geometric parameters are imported into the developed program.The discrete profile points are then recombined,as shown in Fig.4(b),relocated,as shown in Fig.4(c),and filtered,as shown in Fig.4(d),during the preprocessing stage.The inverse normal rack generation method described in Section 2is then used to determine the normal rack curves for the male and female rotors,as shown in Fig.4(e).As with the relative motion between the rack and the rotor,the rack moves vertically,which can be seen as the mating rotor rotates relative to the primary rotor,and the rack moves horizontally,as can be seen as the mating rotor translates along the center distance direction.An initial contact point and an assembly center distance must be specified,to allow the two normal racks to be repositioned.Subsequently,the normal clearance can be calculated using the two normal rack curves,as Fig.4(f)shows.As shown in Fig.4(g),when the normal clearances for each point on the normal rack curve are obtained,the processed normal rack can be used to determine the 3D contact point coordinates.The clearances are distributed onto the contact points to draw theTable 2Comparisons of different types of clearance designs,using MCE and HPMS.MCEHPMS Error (%)N4rotor (Type A)Max.normal clearance (mm)0.16900.16860.24Area of clearance band (mm 2)13.515713.52500.07N4rotor (Type B)Max.normal clearance (mm)0.08780.09598.45Area of clearance band (mm 2)10.20709.83503.7869Y.-R.Wu,J.-W.Chi /Mechanism and Machine Theory 70(2013)62–733D spatial meshing clearance distribution graph.The clearance distributions can also be added onto the male and female rotor profiles,as shown in Fig.4(h).Finally,the leakage flow through the meshing clearance,which varies with the rotor's rotational angle,can be evaluated using a twin-screw compressor performance analysis program (Hsieh et al.[16]).In the leakage flow calculation,the wetted perimeter,P w ,and the flow area,A f ,are two parameters that affect the flow resistance,flow rate and overall volumetric efficiency of the compressor (Munson et al.[17]).The wetted perimeter is the perimeter of the cross sectional area that is “wet ”;it is associated with the hydraulic radius,R H =A f /P w .Generally,as the hydraulic diameter increases,the flow velocity and frictional losses typically increase,resulting in a decrease in leakage flow.As shown in Fig.6,the single tooth clearance area and the perimeter at each rotational angle can be calculated by translating the clearance band and summing the area and perimeter of the clearance band sections that are within the rotor's suction and discharge ends.The variation in meshing clearance with the rotational angle may provide a more practical measure of leakage through the clearance band and the volumetric efficiency of compressor.Most notably,the meshing clearance method proposed in this paper assumes that the clearance distribution for each cross-section on the entire screw rotor groove is uniform,while in the theoretical compressor performance calculation the direction of the fluid flow is assumed to be perpendicular to the clearance area,in order to simplify the model.5.Numerical examplesIn order to validate the meshing clearance evaluation (MCE)method established in this study,the N4rotor tooth profile offered by a well-known compressor manufacturer is used in Section 5.1to calculate the meshing clearance for the N4rotor tooth profile,using two types of clearance designs.The results are compared with the analyzed clearance values obtained usingtheFig.9.Variation in the clearance geometry for the three different clearance settings.Table 3Operating conditions for the determination of compressor performance.Items (units)Values Operating rotation speed (rpm)3550.0Built-in volume ratio4.8Oil flow (kg/min)22.0Oil temperature before injection (°C)70.0Evaporating/condensing temperature (°C)5.0/38.070Y.-R.Wu,J.-W.Chi /Mechanism and Machine Theory 70(2013)62–73well-known Holroyd Profile Management System (HPMS)software developed by Holroyd Precision Limited Company.The N4rotor tooth profile is also used in Section 5.2,and the variation in the meshing clearance geometry with the rotational angle of the male rotor was conducted to determine its difference to the results of the previous clearance calculation.In Section 5.3,the compressor volumetric efficiency and flow leakage are simulated by substituting the results of Section 5.2into a developed program.This is used to compare the effect of a compressor with average,equal,or unequal meshing clearance on the leakage flow and volumetric efficiency.Table 1shows the geometrical parameters of N4rotors.5.1.Examples of the meshing clearance calculation for two clearance designsThe N4rotor tooth profile with clearance design (Type A)is used to conduct the meshing clearance calculation.In this example,two rotors contact at the driving side and the normal rack generated from the female rotor is selected as the datum rack.As shown in Fig.7,the maximum clearance,calculated using the MCE program,is 0.169mm,with a single tooth clearance band area of 13.478mm 2.As shown in Table 2,the MCE has an error of 0.24%in the maximum clearance and an error of 0.07%in the single tooth clearance band area,compared with HPMS.However,the MCE and HPMS clearance distribution curves are generally identical (in the MCE results graph,the horizontal axis is the point sequence number and the vertical axis is the meshing clearance value;in the HPMS results graph,the horizontal axis is the percentage length of the contact line and the vertical axis is the meshing clearance value).A comparison of the results verifies the reliability and accuracy of the proposed method and the program developed in this paper.The N4rotor tooth profile with a different clearance design (Type B)is then used to calculate meshing clearance.As shown in Fig.8,the maximum clearance calculated using the MCE program is 0.0878mm,with a single tooth clearance band area of 10.207mm 2.The maximum clearance calculated using the HPMS software is 0.0959mm,with a single tooth clearance band area of 9.835mm 2.As shown in Table 2,the NCC result has an error of 8.45%in the maximum clearance and an error of 3.78%in the single tooth clearance band area,compared to HPMS.This demonstrates that the errors involved in clearance design B are larger than those in clearance design A.This is because there are irregular jumps in the HPMS meshing clearance curve,in the beginning and the end zones.However,a comparison of the normal clearance distribution between the two methods using line charts shows that the clearance distribution curves are generally the same.At the peak on the clearance distribution curve,the meshing clearance values all approach 0.087mm (#04in HPMS).5.2.Differences in the variation in meshing clearance for different clearance settingsIn this case,a N4rotor tooth profile with clearance design Type-A is used and three different meshing clearance settings,average,equal and unequal clearance settings,are used to compare the difference in the variation of the meshing clearance geometry with the rotational angle of the male rotor.The average clearance setting,δa =0.0858mm,is defined by dividing the sum of clearance values of contact points,δsum =34.5271mm by the contact point number,n c =347,the equal clearance setting,δe =0.0995mm,is defined by dividing the total clearance area,A c =13.5157mm 2by the length of contact line,L c =135.834mm and the unequal clearance setting is given by the method proposed in thispaper.Fig.10.Variation in leakage flow for the three different meshing clearances.Table 4A comparison of compressor performance for the different clearance settings.Clearance settingsLeakage through meshing clearance,q c (kg)Volumetric efficiency (%)Volumetric efficiency difference (%)Average clearance1.207e −490.878+0.29Equal clearance1.397e −490.314−0.2371Y.-R.Wu,J.-W.Chi /Mechanism and Machine Theory 70(2013)62–73Fig.9(a)–(c)shows the three graphs that illustrate the difference in the meshing clearance geometries generated using average,equal and unequal clearance settings,respectively.The average and the equal clearance values are uniformly distributed on the contact band 30times more broadly.Because of this large difference,the variation in the clearance area with the average clearance setting is lower than with the equal clearance setting,during the whole period of variation,as shown in Fig.9(d).In addition,the unequal clearance distribution produces a clearance area curve that is very different from the other two.The meshing clearance area is larger during the formation of the clearance band and smaller during the reduction of the clearance band.This setting may result in a lower leakage flow at the greater pressure experienced in the final stage of the compression process.Fig.9(e)shows a slight difference in the variation of the wetted perimeter of the clearance band,for the three different settings.The results of this case clearly show that the geometric variation in the unequal clearance band is very different to that for the other clearance settings,which results in a large difference in the volumetric efficiency of the compressor.5.3.The difference in compressor performance for different clearance settingsThe effect of the three different clearance settings used in Section 5.2on the compressor performance is determined.The performance simulations for R134a refrigerant compressor mode were performed under the same operating conditions,using a developed and verified program (Hsieh et al.[16]).Except for the rotor parameters shown in Table 1,the other operating parameters for the compressor are as detailed in Table ing this datum setting,the simulated calculations to evaluate the compressor flow and volumetric efficiency for the three different clearance settings are performed.Fig.10shows the variation in leakage flow with the rotational angle of the male rotor rotation angle for the three different clearance settings.A larger difference is obvious in the compression and discharge stages,where the pressure difference is higher.The leakage flow through the unequal meshing clearance is almost identical that for an equal meshing clearance,before the angle of 650°,and there is a 4.57%difference in the final discharge period.The variation in leakage for the average clearance is larger than that for the other two settings.The maximum leakage flow and volumetric efficiency for each of the three clearance settings are presented in Table 4.The volumetric efficiency of the compressor for the average and equal clearance settings is +0.29%and −0.23%that for the unequal clearance setting.The variation in the working pressure for the three clearance settings is presented in Fig.11.It is seen that there is a significant difference near the peak pressures,which causes a varying degree of power loss in the compressor.Although the leakages for different meshing clearances slightly affect the compressor performance,as shown in the results,in future,a more feasible simulation for the screw compressor performance calculation could be achieved by practically considering all of the leakage paths and their geometric shapes.There is a significant influence on the compressor performance simulation when all of the leakage path geometries are taken into account.6.ConclusionsThis paper proposes a numerical method for the evaluation of the meshing clearance between twin-screw rotors with discrete rotor profile points in detail.Depending on the relative motion and the conjugating condition between the normal rack and the screw rotor,the complex calculation of the clearance between 3D screw rotor surfaces is made simpler by calculating the distances between the planar normal racks.The numerical examples show the accuracy of the calculated results compared with HPMS software.More,a novel idea is proposed by distributing the calculated unequal clearance onto the 3D contact line,to calculate the clearance band area and the perimeter.This replaces the equal meshing clearance assumption used for previous compressor flow calculations,in order to approximate the effect of unequal clearance distribution on the compressor efficiency morerealistically.Fig.11.Variation in working pressure for the three rough different meshing clearances.72Y.-R.Wu,J.-W.Chi /Mechanism and Machine Theory 70(2013)62–73。

双螺杆压缩机齿间间隙分布的计算

双螺杆压缩机齿间间隙分布的计算
的变换
X1 Y1 Z1 1 = x1 y1 z1 1 M11
cosφ1 sinφ1 0 0
M11 = - sinφ1 cosφ1 0 0
0
0 10
0
0 01
(1)
(2) 动坐标系 o2 x2 y2 z2 与静坐标系 O2 X2 Y2 Z2 的变换
X2 Y2 Z2 1 = x2 y2 z2 1 M22
Abstract : Based on producing principle of the inter2lobe clearance of twin2screw compressor , a mathematical algorithm is presented , where the normal distance between the two screw rotor surfaces along the contact line is considered as the inter2lobe clearance. Therefore the calculation of inter2lobe clearance is transformed to the calculation of clearance distri2 bution along the contact line. The results show that clearance jump exists along the contact line , and the total inter2lobe clearance distribution can be obtained with higher accuracy via the proposed algorithm. Keywords : screw compressor ; inter2lobe clearance ; contact line

微油螺杆式压缩机间隙测量与调整

微油螺杆式压缩机间隙测量与调整

《装备维修技术》2021 年第 10 期微油螺杆式压缩机间隙测量与调整佘俊杰(中海油能源发展装备技术有限公司机电中心,天津 300452)摘 要:了解微油螺杆式压缩机的结构、工作原理,分析微油螺杆压缩机的各尺寸,通过拆检、维修过程中测量的数据,确认其关 键间隙尺寸,通过尺寸链的分析计算,调节其它各部的运转间隙,从而提供微油螺杆式压缩机各部尺寸的测量和调整方案。

关键词:微油螺杆压缩机;测量;调整;尺寸链1 概述微油螺杆压缩机是海上平台生产的主要设备之一,其主要作 用是压缩空气并将压缩后的空气输送至储气罐,分为仪表用气和 公用气。

维修过程中涉及许多尺寸的测量和调整,这些尺寸调整 是否得当,直接影响压缩机的使用效率及使用寿命。

为此提供微 油螺杆式压缩机各部尺寸的测量和调整方案。

2 微油螺杆压缩机基本结构微油螺杆压缩机的机体中,平行地配置着一对相互啮合的螺 旋形转子。

通常把节圆外具有凸齿的转子,称为阳转子;把节圆 内具有凹齿的转子,称为阴转子。

一般阳转子与原动机连接,由 阳转子带动阴转子转动。

转子上的球轴承使转子实现轴向定位, 并承受压缩机中的轴向力。

转子上的圆柱滚子轴承使转子实现径 向定位,并承受压缩机中的径向力。

在压缩机机体的两端,分别 开设一定形状和大小的孔口。

一个供吸气用,称为吸气孔;另一 个供排气使用,称为排气孔。

3 微油螺杆压缩机工作原理微油螺杆压缩机的工作循环可分为吸气、压缩和排气三个过 程。

随着转子旋转,每对相互啮合的齿相继完成相同的工作循环。

微油螺杆压缩机通常不设同步齿轮,阳转子直接带动阴转子, 并且靠喷入的润滑油在转子间形成油膜,起到密封、润滑和冷却 的作用。

4 微油螺杆压缩机尺寸分析4.1 测量尺寸 微油螺杆压缩机由许多零部件组成(见图 1),零件的精度对 装配精度有直接影响,在装配前要仔细测量每一个与装配相关的 尺寸。

选择量具时要根据装配精度选择适当精度的量具,以便测 得准确可靠的尺寸。

齿轮顶间隙计算公式

齿轮顶间隙计算公式

齿轮顶间隙计算公式齿轮是一种常用的机械元件,用于传递动力和扭矩。

在齿轮的设计和制造过程中,顶间隙是一个非常重要的参数。

顶间隙是指两个相邻齿轮的齿顶之间的距离,它对齿轮的传动性能和寿命有着重要影响。

本文将介绍齿轮顶间隙的计算公式以及其在实际应用中的意义。

在计算齿轮顶间隙之前,我们需要了解一些基本概念。

齿轮的模数是指齿轮齿数与其分度圆直径之比,通常用符号m表示。

齿轮的齿顶高度是指齿轮齿顶到分度圆的距离,用符号h表示。

齿轮的顶间隙是指两个相邻齿轮的齿顶之间的距离,用符号c表示。

根据齿轮的几何关系,可以得到齿轮顶间隙的计算公式如下:c = 0.25 * (m1 + m2)其中,m1和m2分别表示相邻两个齿轮的模数。

这个公式是根据齿轮的齿顶高度和模数之间的关系推导出来的。

通过这个公式,我们可以根据齿轮的模数来计算顶间隙的大小。

齿轮顶间隙的大小对齿轮传动的性能和寿命有着重要影响。

如果顶间隙过大,会导致齿轮传动时产生过多的间隙和滑动,影响传动效率和精度,加速齿轮的磨损和损坏。

而如果顶间隙过小,会导致齿轮传动时产生过大的接触应力和热量,容易引起齿面磨损和断齿。

因此,在齿轮设计和制造过程中,合理确定顶间隙的大小是非常重要的。

一般来说,齿轮顶间隙的大小应根据具体的传动要求和工作条件来确定。

通常情况下,顶间隙的大小应该在一定的范围内,既不能过大也不能过小。

在实际应用中,确定齿轮顶间隙的大小需要考虑多个因素。

首先,需要确定齿轮传动的工作条件,包括传动比、输入功率、输出转速等。

其次,需要根据齿轮的材料和制造工艺来确定齿轮的强度和硬度。

最后,根据齿轮传动的可靠性要求和寿命要求,确定合适的顶间隙大小。

齿轮顶间隙是齿轮传动中的一个重要参数,对齿轮传动的性能和寿命有着重要影响。

通过合理计算和确定齿轮顶间隙的大小,可以提高齿轮的传动效率和精度,延长齿轮的使用寿命。

在齿轮的设计和制造过程中,工程师们需要综合考虑多个因素,确定合适的顶间隙大小,以满足具体的传动要求和工作条件。

螺杆式制冷压缩机操作规程

螺杆式制冷压缩机操作规程

螺杆式制冷压缩机操作规程一、工作技术条件工冷极限:机组保护值:机组指定用油二、严禁事项:1、杜绝用螺杆机压缩空气;各式系统压力试验应用独立空气压缩机进行。

2、杜绝用螺杆机进行抽真空;排出设备式系统空气应其之真空装量进行。

三、初次启动前准备㈠、压缩机检修后、系统检修后或机组电控系统检修后必须按照初次启动规程操作,初次启动操作必须有机房技术负责人组织实行。

1、检查自动保护继电器调定值与否符合规定。

2、检查各开关装置与否正常。

3、检查油位与否符合规定。

4、检查系统中所有阀门状态,吸气截止阀、加油阀、减压阀应关闭,其他油、气循环管道上旳阀门都应处在全开状态。

尤其应注意压缩机排气口与油分、蒸发冷之间管路所有阀门都必须启动,油路系统必须畅通。

5、检查蒸发冷补水管路与否畅通,试验补水与否能正常工作。

6、合上电控柜电源控制开关,观测电压与否正常,检查控制灯指示与否对旳。

7、将螺杆机电控箱控制选择开关扳至常控状态,点启动油泵、螺杆机,查看电机转向与否对旳。

㈡、初次启动:1、向蒸发冷电控箱送电,并将补水开关扳至自动位置,启动蒸发冷循环泵、风机,观测工作与否正常。

2、启动油泵,油路循环数分钟后严禁油泵运行,再用手盘动压缩机联轴器应轻易转动,否则应检查原因予以排除。

3、检查各阀门状态与否符合规定。

4、启动油泵,调整油压,使之到达0.5—0.6MPa,分别按增、减载按钮检查能量显示与否对应变化。

5、按减载按钮使滑阀退至零位,启动压缩机,缓慢启动吸气截止阀。

6、观测并再次调整油压,使之到达运转技术条件规定。

7、启动氨泵向管道供液,并分次增载,注意观测吸气、排气、压力、油温、油压、油位及机组与否有异常声音,若正常可增载至满负荷。

8、新螺杆机初次运转时间不应过长,运转30分钟左右后,按停车程序停车。

四、正常开车1、启动蒸发冷,运行并观测工作与否正常。

2、检查排气截止阀、油过滤器前后阀、表阀、机组内部压力应≤0.04MPa,二次进气机组应检查二次进气器路阀门与否已启动,经济器各阀门与否在工作状态。

齿轮侧隙计算方法

齿轮侧隙计算方法

一、补偿热变形法向侧隙jn1 um-0.052箱体(铝合金)线膨胀系数(α2) 1/℃0.003齿轮线膨胀系数(α1)1/℃0.004箱体温差(Δt2)℃100.005齿轮温差(Δt1)℃100.006法向压力角(αn) 20.007中心距 a mm63.00二、保证齿轮间润滑油膜形成的侧隙jn20.02模数 m 2.00齿数 z32.00发动机转速 n rpm8500.00角速度 ω /s890.12分度圆直径 d mm64.00圆周速度 ν m/s28.48三、 安装、加工补偿系数 k算法1齿轮副安装引起的侧隙减少量 um0.01738925算法2齿轮副安装引起的侧隙减少量 um0.01738867 fpb10.0075fpb20.0075Fβ0.0095fx0.0095fy0.00475四、理论最小侧隙 jnmin考虑润滑、温差、安装-0.01考虑润滑、安装0.04考虑齿厚、中心距、安装等0.02考虑齿厚、温差、中心距、安装等-0.027404五、理论齿厚极限偏差的确定保证最小侧隙量的齿厚实际上偏差 Ess'-0.0308132中心距极限偏差 fa0.03nss-4.1084272对应齿厚公差代号F保证最小侧隙量的齿厚实际下偏差 Esi'-0.0681763齿轮侧隙公差 Ts 0.03736308齿圈径向跳动公差 Fr 0.036切齿进刀公差 br 0.01nsi -9.0901717对应齿厚公差代号J六、理论公法线极限偏差的确定公法线上偏差 Ews -0.0378201公法线下上偏差 Ewi -0.0551996七、实际齿厚偏差由公法线公差反推齿厚偏差公法线上偏差 Ews0-0.011公法线下偏差 Ewi0-0.041齿厚上偏差 Ess0-0.0022718齿厚下偏差 Esi0-0.0341972八、实际齿轮侧隙 jn0实际预期实际中心距偏差 fa00.03-0.03冷态侧隙 上偏差jns0-10.043748470.084791 下偏差jni0-1-0.01625150.024791热态侧隙 上偏差jns0-20.090.132195 下偏差jni0-20.030.072195九、考虑轴承游隙的实际齿侧隙0组游隙上偏差0组游隙下偏差0组游隙齿轮冷态侧隙上偏差0.045548470.0865910组游隙齿轮冷态侧隙下偏差-0.01595150.0250913组游隙上偏差3组游隙下偏差3组游隙齿轮冷态侧隙上偏差0.046248470.0872913组游隙齿轮冷态侧隙下偏差-0.01515150.0258910.00180.00030.00250.0011。

齿轮侧隙计算方法

齿轮侧隙计算方法

齿轮侧隙计算方法
齿轮侧隙是指齿轮啮合时齿面之间的间隙。

侧隙对于齿轮传动的运行非常重要,正确的侧隙设计可以确保齿轮的正常工作和寿命。

下面介绍几种常见的齿轮侧隙计算方法。

1.按标准齿形公式计算:
2.经验公式:
对于切削齿轮或精密齿轮,可以使用经验公式来估计齿侧间隙。

经验公式的计算依赖于齿轮的模数、齿数、压力角等参数,这些参数一般需要事先根据设计需求确定。

经验公式通常通过实际经验和试验数据得出,可以根据具体情况作适当调整。

3.正反弧线计算法:
正反弧线计算法是确定齿侧间隙的一种常用方法。

该方法将齿轮齿面分为正面弧线和背面弧线两部分,通过计算正反弧线间的距离来确定齿侧间隙。

正反弧线计算法的优点是计算相对简便,适用于各种不同类型的齿轮。

4.有限元分析方法:
有限元分析方法是一种基于计算机模拟的方法,通过建立齿轮的三维模型,应用有限元分析软件对齿轮的应力和位移进行数值计算,从而得到齿侧间隙。

这种方法适用于复杂形状的齿轮和特殊工况下的齿轮,可以提供更加精确和准确的结果。

需要注意的是,齿轮侧隙的计算方法并非固定不变的,具体的计算方法会受到齿轮的类型、制造工艺、传动需求等多种因素的影响。

因此,在
实际应用中,需要根据具体情况选择合适的计算方法,并结合实际验收和调试来确定最终的齿侧间隙。

总之,齿轮侧隙是齿轮传动系统中一个重要的参数,合理的齿侧间隙设计可以提高齿轮传动的效率、耐久性和运行稳定性。

通过选择适当的计算方法和合理的参数,可以确保齿轮传动的正常工作并延长寿命。

齿合间隙标准值计算公式

齿合间隙标准值计算公式

齿合间隙标准值计算公式引言。

齿轮是一种常见的机械传动装置,其工作原理是通过齿轮的齿与齿之间的齿合来传递动力和运动。

在齿轮的设计和制造过程中,齿合间隙是一个非常重要的参数,它直接影响着齿轮的传动性能和工作稳定性。

因此,准确计算齿合间隙的标准值对于保证齿轮传动的正常运行至关重要。

齿合间隙的定义。

齿合间隙是指两个齿轮齿面之间的空隙,它是为了保证齿轮在工作时能够正常运动而设置的。

齿合间隙的大小直接影响着齿轮的传动效率和噪音水平,因此在齿轮的设计和制造中需要严格控制齿合间隙的数值。

齿合间隙标准值计算公式。

齿合间隙的标准值可以通过以下公式来计算:C = (0.25 (m1 + m2)) + a。

其中,C为齿合间隙的标准值,m1和m2分别为两个齿轮的模数,a为齿合间隙的修正值。

在实际应用中,修正值a的计算需要考虑多种因素,如齿轮的制造精度、工作环境的温度和湿度等。

一般来说,修正值a可以通过经验公式或者实验测量来确定。

齿合间隙的影响因素。

齿合间隙的大小受到多种因素的影响,主要包括以下几点:1. 齿轮的模数,模数越大,齿合间隙的标准值也会相应增加。

2. 齿轮的制造精度,制造精度越高,齿合间隙的标准值可以相应减小。

3. 工作环境的温度和湿度,温度和湿度的变化会对齿轮的尺寸和形状产生一定影响,从而影响齿合间隙的大小。

齿合间隙的调整方法。

在实际应用中,如果齿合间隙的实际值与标准值存在偏差,可以通过以下方法进行调整:1. 调整齿轮的制造精度,通过提高齿轮的加工精度来减小齿合间隙的大小。

2. 调整齿轮的模数,可以通过改变齿轮的模数来调整齿合间隙的大小。

3. 调整齿合间隙的修正值,根据实际情况对齿合间隙的修正值进行调整。

结论。

齿合间隙是齿轮传动中一个非常重要的参数,它直接影响着齿轮的传动效率和工作稳定性。

通过合理计算和调整齿合间隙的标准值,可以保证齿轮传动装置的正常运行,提高其传动效率和使用寿命。

因此,在齿轮的设计和制造过程中,需要严格控制齿合间隙的大小,确保其符合标准值的要求。

最全齿轮参数计算公式

最全齿轮参数计算公式

最全齿轮参数计算公式1. 内齿模数齿轮2. 直齿模数齿轮3. 斜齿模数齿轮4. 伞齿模数齿轮5. 变位模数齿轮6. 直齿径节齿轮7. 斜齿径节齿轮8. 齿条节圆柱上的螺旋角:基圆柱上的螺旋角:齿厚中心车角:销子直径:中心距离增加系数:标准正齿轮的计算(小齿轮①,大齿轮②)1、齿轮齿标准2、工齿齿形直齿3、模数 m4、压力角5、齿数6、有效齿深7、全齿深8、齿顶隙9、基础节圆直径10、外径11、齿底直径12、基础圆直径13、周节14、法线节距15、圆弧齿厚16、弦齿厚17、齿轮油标尺齿高18、跨齿数19、跨齿厚20、销子直径21、圆柱测量尺寸(偶数齿)(奇数齿)其中,22、齿隙标准螺旋齿的计算公式(齿直角方式)(小齿轮①,大齿轮②)1、齿轮齿形标准2、齿形基准断面齿直角3、工具齿形螺旋齿4、模数5、压力角6、齿数7、螺旋角方向(左或右)8、有效齿深9、全齿深10、正面压力角11、中心距离12、基准节圆直径13、外径14、齿底圆直径15、基圆直径16、基圆上的螺旋角17、导程18、周节(齿直角)19、法线节距(齿直角)20、圆弧齿厚(齿直角)21、相当正齿轮齿数22、弦齿厚23、齿轮游标尺齿深24、跨齿数25、跨齿厚26、梢子直径其中,27、圆柱测量尺寸(偶数齿)(奇数齿)28、齿隙移位正齿轮计算公式(小齿轮①,大齿轮②)1、齿轮齿形转位2、工具齿形直齿3、模数4、压力角5、齿数6、有效齿深7、全齿深或8、齿隙9、转位系数10、中心距离11、基准节圆直径12、啮合压力角13、啮合节圆直径14、外径15、齿顶圆直径16、基圆直径17、周节18、法线节距20、弦齿厚21、齿轮游标尺齿高22、跨齿数23、跨齿厚24、梢子直径25、圆柱测量尺寸(偶数齿)(奇数齿)移位螺旋齿的计算公式(齿直角方式)(小齿轮①,大齿轮②)1、齿轮齿形移位2、齿形基准断面齿直角3、工具齿形螺旋齿4、模数(齿直角)5、压力角(齿直角)6、齿数7、螺旋方向8、有效齿深9、全齿深10、移位系数11、中心距离12、正面模数13、正面压力角14、相当正齿轮齿数15、齿直角啮齿压力角16、基准节圆直径17、外径18、啮齿节圆直径19、基圆直径20、基础圆柱上的螺旋角21、圆弧齿厚23、齿轮游标尺齿高24、跨齿数25、跨齿厚26、销子直径27、圆柱测量尺寸(偶数齿)注:齿隙 f=m 1.25以下 0.025-0.075m 1.25-2.5 0.05-0.10蜗轮、蜗杆的计算公式:1、传动比=蜗轮齿数÷蜗杆头数2、中心距=(蜗轮节径+蜗杆节径)÷23、蜗轮吼径=(齿数+2)×模数4、蜗轮节径=模数×齿数5、蜗杆节径=蜗杆外径-2×模数6、蜗杆导程=π×模数×头数7、螺旋角(导程角)tgB=(模数×头数)÷蜗杆节径-End-免责声明:本文系网络转载,版权归原作者所有。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第19卷第2期2 0 1 9年2月REFRIGERATION AND AIR-CONDITIONING 80-83收稿日期:2018-11-27作者简介:缪会军,本科,高级工程师,主要研究方向为压缩机技术。

螺杆式水蒸气压缩机在极限工况下齿间间隙的计算方法缪会军1) 张超1) 白单英1) 段亚岐2) 剧成成1)1)(冰轮环境技术股份有限公司) 2)(上海海事大学)摘 要 齿间间隙是影响螺杆式压缩机性能的主要因素之一,本文在对螺杆式压缩机的设计理论全面分析后,结合实际研究经验,提出一种齿间间隙设计计算的新方法。

该方法首先确定转子的计算温度,然后根据几何相似原理,计算等比例膨胀后的齿间间隙,再根据齿间间隙与中心距的几何关系,计算在实际工作中心距下的齿间间隙。

按照该方法设计的螺杆式水蒸气压缩机样机试验结果良好,初步证明该方法的适用性。

关键词 螺杆式压缩机;齿间间隙;高温工况;计算方法Calculation method of mesh clearance of screw steamcompressor under extreme conditionMiao Huijun1) Zhang Chao1) Bai Danying1) Duan Yaqi 2) Ju Chengcheng1)1)(Moon Environment Technology Co.,Ltd.) 2)(Shanghai Maritime University)ABSTRACT Mesh clearance is one of the main factors which affect the performance ofscrew compressor.On the basis of comprehensive analysis on the design theory of screwcompressor and the experience of practical research,a new method to calculate the meshclearance of screw compressor is proposed.General idea of the method is as follows:first-ly,confirm the calculated temperature of the rotor;secondly,calculate the mesh clearanceafter equal proportion expansion by geometric similarity principle;lastly,calculate meshclearance under actual working condition according to the geometrical relationship be-tween mesh clearance and centerline spacing.The prototype of screw steam compressordesigned by this method is working well,which proves the applicability of this methodpreliminarily.KEY WORDS screw compressor;mesh clearance;high-temperature condition;calculationmethod 螺杆式压缩机因具有结构简单、易损件少、适用多相混输、高效低噪等特点,在制冷空调、生产工艺等领域得到了越来越广泛的应用[1-2]。

近年来,伴随余热利用等节能环保技术的发展[3],螺杆式压缩机已延伸至水蒸气增压输送领域。

例如,在工业生产领域,采用机械蒸汽压缩(mechanicalvapor compression,MVC)是一种有效的节能方法。

根据热泵原理,利用机械压缩机压缩低温蒸汽,使其温度和压力提高后,取代原锅炉蒸汽作为热源蒸汽回到系统,此方法可满足生产工艺中的提纯、浓缩、热回收等要求[4-7]。

在碱液回收、污水处理、乳制品加工[8-11]等领域也有广泛的应用。

目前,与之相关的研究报道也越来越多,但主要集中在效率、工作过程模拟、喷水等方面[11-18],压缩机设计方面的相关研究报道还比较少。

与常规螺杆式制冷压缩机相比,水蒸气螺杆 第2期缪会军等:螺杆式水蒸气压缩机在极限工况下齿间间隙的计算方法·81 · 式压缩机工作温度急剧提高,热膨胀变形急剧增大,因此转子间隙的设计就显得尤为重要,这不仅影响压缩机性能,还严重影响设备的可靠性。

螺杆式压缩机转子间隙可分为齿间间隙、齿顶间隙、排气端面间隙和吸气端面间隙4部分,它们与压缩过程泄漏损失、机械损失及设备可靠性密切相关。

在普通应用领域,喷油螺杆式压缩机工作温度一般比较低,工作间隙与冷态间隙差别不大,通过缩小间隙能够取得良好的效果。

然而,用于水蒸气压缩,由于工作温度远超出了常规螺杆式制冷压缩机工作范围,且工作过程一般为无油压缩,原来的间隙设置方法难以满足设计的要求。

由于端面间隙是平面与平面间隙,齿顶间隙是转子齿顶圆柱面与气缸孔圆柱面间隙,其计算分析属于一维线性问题,比较简单。

而齿间间隙(又称“啮合间隙”)是空间三维曲面间隙问题,该如何分析计算,才能满足工程需要,相关的研究报道还很少。

因此,笔者所在公司在研发螺杆式水蒸气压缩机的过程中,全面分析了影响螺杆式压缩机齿间间隙的关键因素,综合实际条件加以简化,形成了一种完整的计算方法,简单易行,试验验证也取得了良好的效果。

1 齿间间隙设计计算1.1 齿间间隙齿间间隙是指阴阳转子间沿着接触线的间隙。

该接触线为空间复杂曲线,相应决定了齿间间隙的复杂性。

某型号螺杆式压缩机转子间接触线径向和轴向投影几何形状如图1所示。

该间隙两侧压差大,通过此通道的泄漏占据了泄漏损失的绝大部分。

但是,为了保证阴阳转子啮合运动平稳连续,不出现咬死,必须要预留一定的齿间间隙。

齿间间隙通常采用非等距法[19]进行设计,即在驱动区域预留较小的间隙,在非驱动区域预留较大的间隙。

为了实现转子间的纯滚动,减少磨损,通常将节圆及附近的啮合点设为驱动区域,其他啮合点设作非驱动区域,即在转子实际工作过程中保持间隙的区域。

如图2所示,齿间间隙A,B,C,D和E各不相同。

齿间间隙的设计要考虑多方面的因素,可以分为应力变形、热变形和其他3部分。

对于螺杆式水蒸气压缩机,由于其具有工作压力低、温度高的特点,应力变形相对小,故笔者仅考虑热膨胀对齿图1 转子间接触线几何形状图2 非等距法设计的齿间间隙示意图间间隙的影响。

1.2 热膨胀影响分析及计算方法热膨胀的影响可从两方面考虑:一是转子本体材料热变形,二是阴阳转子中心距的增大或减小。

1.2.1 转子本体材料热变形分析计算转子本体一般采用各向同性的材料,若假定材料组织均匀一致、温升一致,则在转子上任意取两点,其初始距离为L,膨胀后距离为L′,则其热变形量为 ·82 ·第19卷 ΔL=L′-L=Lζ(tc-t0)(1)式中:ζ为材料热膨胀系数;tc为计算温度(℃);t0为初始温度(℃)。

根据式(1),初始温度t0为常数,一般按20℃计算,则计算转子热变形量的关键是如何确定其计算温度。

在一个完整的吸气—压缩—排气过程中,前半段为吸气过程,后半段为压缩和排气过程。

极限工况按照+127℃/+185℃(吸气温度/排气温度)考虑,为了分析压缩过程,绝热效率按0.6计算,可在T-φ图上表示这一过程,见图3。

由此可见,压缩过程温升主要发生在后半段的一少部分。

因此,转子平均温度应接近于吸气温度,另外考虑转子材料为金属,导热性能良好,导热截面大,故转子轴向温差较小,一般在4~7℃之间,径向温差则更小,可以忽略不计。

图3 齿间容积变化及压缩介质温度变化曲线综上分析,保守计算,在极限工况下,转子本体的最高计算温度可按吸、排气温度的算术平均值计算。

tc=(ts+td)/2(2)式中:ts为极限工况下吸气温度(℃);td为极限工况下排气温度(℃)。

1.2.2 转子中心距对齿间间隙影响分析计算转子中心距为阴阳转子轴线间的距离。

若其他条件不变,转子中心距M平行增大或平行减小,则图2中齿间间隙A等参数相应增大或减小,根据螺旋几何原理,其变化量可按下式计算:ΔCt=ΔM×cosα(3)ΔCn=ΔCt×cosβ(4)式中:ΔCt为端面间隙变化量(mm);ΔCn为齿面间隙(法向间隙)变化量(mm);ΔM为中心距变化量(mm);α为啮合点端面投影与节点的连线与中心线夹角(°);β为啮合点所在阳转子或阴转子齿面位置的螺旋角(°)。

需要说明的是,螺杆式水蒸气压缩机需要同步齿轮定位驱动,故须考虑转子中心距变化对同步齿轮啮合间隙的影响,以及由此而引起的转子齿侧间隙的变化。

对于有驱动关系的转子或同步齿轮,应分别校核驱动侧接触和制动侧接触2种情况下的齿间间隙。

在分析转子中心距减小对齿间间隙的影响时,按照式(3)和式(4)计算的转子接触部位齿间间隙会出现负值,为此应根据几何关系调整转子间的相对转角,使得接触部位齿间间隙为零,再校核非接触侧各点间隙是否满足要求。

1.3 齿间间隙计算过程基于上述分析,齿间间隙计算过程如下:1)确定转子的计算温度(tc)。

2)在计算温度下,阴阳转子各点温升按相同考虑,材料各向同性,均匀一致,则膨胀前后转子上任意两点间距离变化比例(i)相同,i=L′/L=1+ζ(tc-t0)(5)3)假定转子中心距按照与转子相同的比例变化,即满足下式:Mt=iM0(6)式中:M0为初始转子中心距(mm);Mt为计算温度下等比例变化后的转子中心距(mm)。

根据几何关系,阴阳转子空间的相对位置变化比例保持不变,即在两转子上分别任取两点,其距离亦等比例变化,故齿间间隙按同样的比例变化,δt=iδ0(7)式中:δ0为初始齿间间隙(mm);δt为计算温度下等比例变化后的齿间间隙(mm)。

4)确定在极限工况下实际转子中心距Mt′,然后可得其相对等比例膨胀转子中心距变化,ΔM=Mt′-Mt=Mt′-iM0(8)若ΔM为负值,表示相对等比例膨胀转子中心距,实际转子中心距减小;否则,表示相对等比例膨胀转子中心距,实际转子中心距增大。

保守考虑,Mt′可按初始转子中心距计算,则计算所得齿间间隙相对实际偏小,可使得设计偏于安全。

5)根据式(8)及式(3)和式(4),可计算得到实际转子中心距Mt′下的齿间间隙。

2 案例根据上述方法,笔者设计了一款螺杆式水蒸 第2期缪会军等:螺杆式水蒸气压缩机在极限工况下齿间间隙的计算方法·83 · 气压缩机,其基本参数如表1所示。

相关文档
最新文档