数学理卷·2016届浙江省嘉兴一中、杭州高级中学、宁波效实中学等五校高三上学期第一次联考(2015.12)
2016年浙江省高考数学理科试题及答案
绝密★启用前2016年普通高等学校招生全国统一考试(浙江卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1. 答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I卷(共40分)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合P=错误!未找到引用源。
,Q=错误!未找到引用源。
,则P错误!未找到引用源。
=A.[2,3]B.(-2,3]C.[1,2)D.错误!未找到引用源。
2.已知互相垂直的平面错误!未找到引用源。
交于直线l,若直线m,n满足错误!未找到引用源。
,则A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域错误!未找到引用源。
中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=A.错误!未找到引用源。
B.4C.错误!未找到引用源。
D.64.命题“错误!未找到引用源。
使得错误!未找到引用源。
”的否定形式是A.错误!未找到引用源。
使得错误!未找到引用源。
B.错误!未找到引用源。
使得错误!未找到引用源。
C.错误!未找到引用源。
使得错误!未找到引用源。
2016届浙江省嘉兴一中、杭州高级中学、宁波效实中学等五校高三第一次联考文数试题 解析版
一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U R =, {|21}x A y y ==+, {|ln 0}B x x =<,则()U C A B = ( ) A .∅ B .1{|1}2x x <≤ C .{|1}x x < D .{|01}x x <<【答案】D. 【解析】试题分析:由题意得,{|1}A x x =>,{|01}B x x =<<,∴(){|01}U C A B x x =<< ,故选D .考点:集合的运算.2.设0x >,则“1a =”是“2ax x+≥恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A.考点:1.充分必要条件;2.恒成立问题. 3.已知函数()2sin(2)6f x x π=+,把函数)(x f 的图象沿x 轴向左平移6π个单位,得到函数)(x g 的图象,关于函数()g x ,下列说法正确的是( ) A.在[,]42ππ上是增函数 B. 其图象关于直线4x π=-对称 C.函数()g x 是奇函数 D. 当[0,]3x π∈时,函数()g x 的值域是[1,2]-【答案】D.考点:1.三角函数的图象变换;2.sin()y A x ωϕ=+的图象和性质.4.已知a ,b 为平面向量,若a b + 与a 的夹角为3π,a b + 与b 的夹角为4π,则||||a b =( )A.3B.3C.3D.4【答案】B. 【解析】试题分析:如下图所示,在ABC ∆中,BC a = ,CA b = ,则B A a b =+ ,∴3ABC π∠=,4BAC π∠=,在ABC ∆中,由正弦定理可知sin||4||sin 3a b ππ== ,故选B .考点:1.平面向量的线性运算;2.正弦定理.5.设a ,b 是两条不同的直线,α,β是两个不同的平面,则下面四个命题中错误..的是( ). A.若a b ⊥,a α⊥,b α⊄,则//b α B.若a b ⊥,a α⊥,b β⊥,则αβ⊥ C.若a β⊥,αβ⊥,则//a α或a α⊂ D.若//a α,αβ⊥,则a β⊥【答案】D. 【解析】试题分析:A :记a ,b 确定的平面为γ,c αγ= ,在平面γ内,∵a c ⊥,a b ⊥,∴//b c ,从而根据线面平行的判定可知A 正确;B :等价于两个平面的法向量垂直,根据面面垂直的判定可知B 正确;C :根据面面垂直的性质可知C 正确;D :a β⊥或a β⊂,故D 错误,故选D .考点:1.线面平行的判定;2.线面垂直面面垂直的判定与性质.6.在ABC ∆中,3AB =,4AC =,5BC =,若I 为ABC ∆的内心,则CI CB ⋅的值为( ) A. 6B. 10C. 12D.15【答案】D.考点:1.三角形内心的性质;2.平面向量数量积.【思路点睛】向量数量积的两种运算方法:1.当已知向量的模和夹角时,可利用定义法求解,即||||cos ,a b a b a b ⋅=<>;2.当已知向量的坐标时,可利用坐标法求解,即若11(,)a x y = ,22(,)b x y = ,则1212a b x x y y ⋅=+ ,平面向量数量积的几何意义是等于a 的长度||a与b 在a的方向上的投影 ||cos ,b a b <>的乘积,运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解.7. 已知等差数列{}n a 的等差0d ≠,且1a ,3a ,13a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则2163n n S a ++的最小值为( )A. 4B. 3C. 2D.92【答案】A.考点:1.等差数列的通项公式及其前n 项和;2.等比数列的性质;3.基本不等式求最值. 【思路点睛】解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法、穿根法等.总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.8.定义域为R 的偶函数()f x 满足对x R ∀∈,有(2)()(1)f x f x f +=-,且当[2,3]x ∈时,2()21218f x x x =-+-,若函数()log (||1)a y f x x =-+至少有6个零点,则a 的取值范围是( ) A.(0,2 B.(0,3 C.(0,5 D .(0,)6【答案】B. 【解析】试题分析:令1x =-,(2)()(1)(1)(1)(1)(1)(1)0f x f x f f f f f f +=-⇒=--⇒=-=,∴()(2)()f x f x f x =+=-,∴()f x 图象关于直线1x =对称,故将()f x 的图象画出, 由图可知,要使()log (||1)a y f x x =-+,即函数()y f x =与log (||1)a y x =+至少要有6个交点,则有01a <<,且点(2,2)-在函数log (||1)a y x =+的下方,即2log 3230a a a ->-⇒<⇒<<,故选B .考点:1.函数与方程;2.数形结合的思想.【方法点睛】运用函数图象结合数形结合思想求解问题的类型:1.对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想;2.一些函数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解.二、填空题(本大题共7个小题,第9-12题每小题6分,第13-15题每小题4分,共36分.把答案填在题中的横线上.)9.已知{}n a 为等差数列,若1598a a a π++=,则{}n a 前9项的和9S = ,37cos()a a +的值为 .【答案】24π,12-.考点:1.等差数列的性质;2.任意角的三角函数. 10.已知1cos()43πθ+=-,θ为锐角,则sin 2θ= ,sin(2)3πθ+= .【答案】79.【解析】考点:三角恒等变形.11.所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S ABC -中,M 是SC 的中点,且AM SB ⊥,底面边长AB =正三棱锥S ABC -的体积为 ,其外接球的表面积为 . 【答案】43,12π. 【解析】试题分析:取AC 中点D ,则SD AC ⊥,BD AC ⊥,又∵SD BD D ⊥=,∴AC ⊥平面SBD ,∵SB ⊂平面SBD ,∴AC SB ⊥,又∵AM SB ⊥,AM AC A = ,∴SB ⊥平面SAC ,∴SA SB ⊥,SC SB ⊥,根据对称性可知SA SC ⊥,从而可知SA ,SB ,SC 两两垂直,如下图所示,将其补为立方体,其棱长为2,∴114222323S ABC C ASB V V --==⨯⨯⨯⨯=,其外接球即为立方体的外接球,半径22r ==4312S ππ=⨯=.考点:三棱锥的外接球.12.己知0a >,0b >,且1a b +=,则2211(1)(1)a b --的最小值为_______,21a ab+的最小值为 . 【答案】9,2.考点:基本不等式求最值.13.已知不等式组210210x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩表示的平面区域为D ,若函数|1|y x m =-+的图像上存在区域D 上的点,则实数m 的取值范围是________.【答案】[2,1]-. 【解析】试题分析:如下图所示,画出不等式组所表示的平面区域,考虑极端情况,函数图象经过点(2,1)-,此时2m =-,函数图象经过点(1,1),此时1m =,∴实数m 的取值范围是[2,1]-.考点:线性规划的运用.14.已知函数222,1()11, 1x x x f x x x⎧-+≤⎪=⎨->⎪⎩,若对任意x R ∈,()|||1|0f x x k x ----≤恒成立,则实数k 的取值范围是 . 【答案】1(,][1,)2-∞+∞.考点:1.分段函数的最值;2.恒成立问题;3.数形结合的数学思想.【思路点睛】函数与不等式相结合的综合题通常表现为函数性质的综合运用,比如应用函数的单调性,降次,化简,分析函数型不等式所表示的几何意义,根据其图象特点数形结合等,分析求解带参数不等式的分类讨论能力也是一项基本要求.15.如图,矩形ABCD 中,2AB AD =, E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是(填写所有的正确选项) (1)||BM 是定值(2)点M 在某个球面上运动(3)存在某个位置,使1DE AC ⊥ (4)存在某个位置,使//MB 平面1A DE【答案】(1)(2)(4).∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故(2)正确;∵1A C 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,∴存在某个位置,使1DE AC ⊥错误,故(3)错误.考点:立体几何中的动态问题.【思路点睛】折叠、展开问题一定要关注“变量”和“不变量”在证明和计算中的应用:折叠时位于棱同侧的位置关系和数量关系不变,位于棱两侧的位置关系与数量关系变,折前折后的图形结合起来使用.三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.已知命题p :1x ,2x 是方程210x mx --=的两个实根,且不等式21243||a a x x +-≤-对任意m R ∈恒成立;命题q :不等式220x x a ++<有解,若命题p q ∨为真,p q ∧为假,求实数a 的取值范围. 【答案】(,5){1}-∞- .考点:1.命题的真假;2.一元二次不等式.17.(本题满分15分)已知函数21()2cos ()22f x x x x R =--∈ (1)当5[,]1212x ππ∈-时,求函数()f x 的值域;(2)设ABC ∆的内角A ,B ,C 的对应边分别为a ,b ,c ,且c =()0f C =,若向量(1,sin )m A =与向量(2,sin )n B = 共线,求a ,b 的值.【答案】(1)[1-;(2)1a =,2b =.考点:1.三角恒等变形;2.sin()y A x ωϕ=+的图象和性质;3.平面向量共线坐标表示;4..正余弦定理解三角形.18.(本小题满分15分)如图,在多面体ABCDEF 中,正方形ADEF 与梯形ABCD 所在平面互相垂直,//AB CD ,AD CD ⊥,1AB AD ==,2CD =,M ,N 分别为EC 和BD 的中点.(1)求证:BC ⊥平面BDE(2)求直线MN 与平面BMC 所成的角的正弦值.. 【答案】(1)详见解析;(2)3考点:1.线面垂直,面面垂直的判定与性质;2.空间向量求线面角.20.(本小题满分15分)已知数列{}n a 为等比数列,其前n 项和为n S ,已知14716a a +=-,且对于任意的*n N ∈,有n S ,2n S +,1n S +成等差数列.(1)求数列{}n a 的通项公式.(2)已知n b n =(*n N ∈),记312123||||||||n n nb b b b T a a a a =+++⋅⋅⋅+,若2(1)(1)n n m T n -≤--对于2n ≥恒成立,求实数m 的范围.【答案】(1)1()2n n a =-;(2)17m ≥.考点:1.等比数列的通项公式及其运算;2.错位相减法求数列的和;3.数列的单调性.【思路点睛】解决数列综合题常见策略有:1.关注数列的通项公式,构造相应的函数,考察该函数的相关性质(单调性、值域、有界性、切线)加以放缩;2.重视问题设问的层层递进,最后一小问常常用到之前的中间结论;3.数学归纳法.20.(本小题满分15分)已知函数()|2|f x x x a =-,2()()1x a g x a R x -=∈-. (1)若0a <,解不等式()f x a ≥;(3)若1a >,且对任意[3,5]t ∈,方程()()f x g t =在[3,5]x ∈总存在两不相等的实数根,求a 的取值范围.【答案】(1) 80a -≤<:)+∞,8a <-:)+∞ ;(2)97[,9)13. 【解析】试题分析:(1)根据a 的取值情况进行分类讨论,将()f x 表达式中的绝对值号去掉,再利用二次函数的单调性讨论即可求解;(2)利用二次函数的单调性首先课确定a 的大致范围,再利根据条件方程()()f x g t =在[3,5]x ∈总存在两不相等的实数根,建立关于a 的不等式组,从而求解.()f x 在[3,]2a 单调递减,在[,5]2a 单调递增,∴必须[(3),(5)][(),min{(3),(5)}]2a g g f f f ⊆,即(3)()2(5)(3)(5)(5)a g f g f g f ⎧>⎪⎪≤⎨⎪≤⎪⎩⇒97913a ≤<;若1220a <<:()f x 在[3,]4a 单调递增,在[,5]4a 单调递减, [(3),(5)][(),max{(3),(5)}]4a g g f f f ⊆,即(5)()4(3)(3)(5)(5)a g f g f g f ⎧<⎪⎪≥⎨⎪≥⎪⎩⇒a ∈∅;综上实数a 的取值范围是97[,9) 13.考点:1.二次函数的综合题;2.分类讨论的数学思想.【方法点睛】解决二次函数综合题常见的解题策略有:1.尽可能画图,画图时要关注已知确定的东西,如零点,截距,对称轴,开口方向,判别式等;2.两个变元或以上,学会变换角度抓主元;3.数形结合,务必要保持数形刻画的等价性,不能丢失信息;3.掌握二次函数,二次不等式,二次方程的内在联系,熟练等价转化和准确表述;4.恒成立问题可转化为最值问题.。
数学理卷·2016届浙江省嘉兴市高三上学期期末考试(2016.01)WORD版
2015-2016学年度第一学期嘉兴市高三期末教学质量检测(数学理科) (2016年1月)本试卷分第Ⅰ卷和第Ⅱ卷两部分.考试时间120分钟.试卷总分为150分.请考生按规定用笔将所有试题的答案涂、写在答题纸上. 参考公式:球的表面积公式 柱体的体积公式 S =4πR 2 V =Sh 球的体积公式 其中S 表示柱体的底面积,h 表示柱体的高V =34πR 3台体的体积公式其中R 表示球的半径 V =31h (S 1+21S S +S 2) 锥体的体积公式其中S 1, S 2分别表示台体的上、下底面积,V =31Sh h 表示台体的高 其中S 表示锥体的底面积,h 表示 如果事件A ,B 互斥,那么 锥体的高 P (A +B )=P (A )+P (B )第I 卷(选择题部分,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集=U R ,集合}1)21(|{≤=x x A ,}086|{2≤+-=x x x B ,则图中阴影部分所表示的集合为 A .}0|{≤x x B .}42|{≤≤x x C .{}420|≥≤<x x x 或 D .}420|{><≤x x x 或 2.设βα,是两个不同的平面,m 是直线,且α⊂m ,则 “β⊥m ”是“βα⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.为了得到函数)12sin(+=x y 的图象,只需把函数x y 2sin =A .向左平移1个单位长度B .向右平移1个单位长度C .向左平移21个单位长度 D .向右平移21个单位长度 4.某几何体的三视图如图所示,则该几何体的体积是 A .34π B .35π C .322π+D .324π+ 侧视图俯视图正视图(第1题图)5.设{}n a 是等比数列,下列结论中正确的是 A .若021>+a a ,则032>+a a B .若031<+a a ,则021<+a a C .若210a a <<,则3122a a a +< D .若01<a ,则0))((3212>--a a a a6.已知圆心在原点,半径为R 的圆与ABC ∆的边有公共点,其中)4,2(),8,6(),0,4(C B A ,则R 的取值范围是 A .]10,558[B .]10,4[C .]10,52[D .]10,556[ 7.设函数⎩⎨⎧≥<+=1,31,12)(x x x x f x ,则满足)(3))((m f m f f =的实数m 的取值范围是A .⎭⎬⎫⎩⎨⎧--∞21]0,(Y B .]1,0[ C .⎭⎬⎫⎩⎨⎧-∞+21),0[Y D .),1[∞+ 8.设)4(,,,21≥n A A A n Λ为集合{}n S ,,2,1Λ=的n 个不同子集,为了表示这些子集,作n 行n 列的数阵,规定第i 行第j 列的数为:⎪⎩⎪⎨⎧∈∉=j jij A i A i a ,1,0.则下列说法中,错误的是A .数阵中第一列的数全是0当且仅当φ=1AB .数阵中第n 列的数全是1当且仅当S A n =C .数阵中第j 行的数字和表明集合j A 含有几个元素D .数阵中所有的2n 个数字之和不超过12+-n n非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9.双曲线C :1422=-y x 的离心率是 ▲ ,焦距是 ▲ .10.已知ABC ∆1,3,1===,则=⋅ ▲ ,又设D 是BC 边中线AM 上一动点,则=⋅BC BD ▲ .nnn n n na a a a a a a a a ,,,,,,,,,212222111211ΛΛΛΛΛΛΛΛΛ11.设不等式组⎪⎩⎪⎨⎧≥≤+≤-140x y x y x 表示的平面区域为M ,点),(y x P 是平面区域内的动点,则y x z -=2的最大值是 ▲ ,若直线l :)2(+=x k y 上存在区域M 内的点,则k 的取值范围是 ▲ . 12.已知函数)2sin(sin 3sin )(2x x x x f ωπωω+⋅+=,)0(>ω的最小正周期是π,则=ω____▲__ _,)(x f 在]2,4[ππ上的最小值是 ▲ .13.长方体1111D C B A ABCD -中,1,21==AA AB ,若二面角A BD A --1的大小为6π,则1BD 与面BD A 1所成角的正弦值为 ▲ . 14.已知实数y x ,满足0>>y x 且1=+y x ,则yx y x -++132的最小值是 ▲ . 15.在平面直角坐标系中,定义点),(11y x P 与),(22y x Q 之间的“直角距离”为2121),(y y x x Q P d -+-=.某市有3个特色小镇,在直角坐标系中的坐标分别为)8,3(),9,6(),3,2(---C B A ,现该市打算建造一个物流中心,如果该中心到3个特色小镇的直角距离相等,则物流中心对应的坐标为 ▲ .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分)ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且B A C B A sin sin 3)sin sin (sin 2222=-+.(Ⅰ)求2sin 2BA +的值; (Ⅱ)若2=c ,求ABC ∆面积的最大值.17.(本题满分15分)边长为2的正方形ABCD 所在的平面与CDE ∆所在的平面交于CD ,且⊥AE 平面CDE ,1=AE .(Ⅰ)求证:平面⊥ABCD 平面ADE ;(Ⅱ)设点F 是棱BC 上一点,若二面角F DE A --的余弦值为1010,试确定点F 在BC 上的位置.ABCDEF18.(本题满分15分)已知等比数列{}n a 中31=a ,其前n 项和n S 满足231-⋅=+n n a p S (p 为非零实数). (Ⅰ)求p 值及数列{}n a 的通项公式;(Ⅱ)设{}n b 是公差为3的等差数列,11=b .现将数列{}n a 中的ΛΛn b b b a a a ,,,21抽去,余下项按原有顺序组成一新数列{}n c ,试求数列{}n c 的前n 项和n T .19.(本题满分15分)已知中心在原点O ,焦点在x 轴上的椭圆的一个顶点为)1,0(B ,B 到焦点的距离为2. (Ⅰ)求椭圆的标准方程;(Ⅱ)设Q P ,是椭圆上异于点B 的任意两点,且BQ BP ⊥,线段PQ 的中垂线l 与x 轴的交点为)0,(0x ,求0x 的取值范围.(第19题图)20.(本题满分15分)已知函数c bx x x f ++-=2)(2,设函数)()(x f x g =在区间]1,1[-上的最大值为M . (Ⅰ)若2=b ,求M 的值;(Ⅱ)若k M ≥对任意的c b ,恒成立,试求k 的最大值.嘉兴市2015—2016学年第一学期期末检测高三理科数学 参考答案一.选择题(本大题有8小题,每小题5分,共40分)1~4 DACB ;5~8 CACC ;8.解析:数阵中第一列的数全是0,当且仅当111,,2,1A n A A ∉∉∉Λ,∴A 正确;数阵中第n列的数全是1当且仅当n n n A n A A ∈∈∈,,2,1Λ,∴B 正确;当n A A A ,,,21Λ中一个为S 本身,其余1-n 个子集为S 互不相同的1-n 元子集时,数阵中所有的2n 个数字之和最大,且为1)1(22+-=-+n n n n ,∴D 正确;数阵中第j 行的数字和表明元素j 属于几个子集,∴C 错误.二.填空题(本大题有7小题,共36分,请将答案写在答题卷上)9.25, 52; 10.23-, 23;11.2, ]1,31[;12.1, 1 ; 13.3451; 14.2223+; 15.)0,5(-.15.解析:设物流中心为),(y x D 由条件:⎪⎩⎪⎨⎧+++=-++-++=-+-)2(8396)1(9632ΛΛy x y x y x y x ,易知:98,2<<-<y x ,∴由(2)得:8396+++=-++y x y x ,∴41)3()6(1362=++-+≤++-+=x x x x y ,∴2≤y ,∴由(1)得:y x y x -++=-+-9632, ∴546-=⇒--=+x x x ,∴0)136(21=++-+=x x y ∴)0,5(-D .三、解答题:(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤) 16.解:(Ⅰ)由正弦定理得:ab c b a 3)(2222=-+,....................(2分) ∴由余弦定理得:432cos 222=-+=ab c b a C ,.................(4 分) ∴872cos 12cos 2sin 22=+==+C C B A .......................(7分) (Ⅱ)若2=c ,则由(Ⅰ)知:ab ab ab ab b a =-≥-+=343)(2822,..(9分) 又47sin =C ,...........................................(11分) ∴747821sin 21=⨯⨯≤=∆C ab S ABC , 即ABC ∆面积的最大值为7..............................(14分)17.解:(Ⅰ)∵⊥AE 平面CDE ,∴CD AE ⊥,...........................................(2 分) 又∵CD AD ⊥,A AD AE =I ,∴⊥CD 面ADE ,.......................................(4分) 又⊂CD 面ABCD ,∴平面⊥ABCD 平面ADE ...............................(6分)(Ⅱ)∵DE CD ⊥,∴如图,建立空间直角坐标系xyz D -则:)0,0,3(),0,2,0(),0,0,0(E C D , ∴)0,2,0(==,∴)1,2,3(B ,..............(8分) 设)1,0,3(λλ==,]1,0[∈λ 则:),2,3(λλF ...........(10设平面FDE 的法向量为),,(z y x n =,则⎪⎩⎪⎨⎧==⋅=++=⋅03023x DE n z y x DF n λλ,∴取)2,,0(-=λn ,.......(12分) 又平面ADE 的法向量为)0,1,0(=m ,∴10104,cos 2=+=><λλn m ,∴32=λ,.........(14分) 故当点F 满足CB CF 32=时,二面角F DE A --的余弦值为1010...(15分)18.解:(Ⅰ)∵231-⋅=+n n a p S ,323211=-==∴pa a S ,∴p a 292=,又∵231-⋅=+n n a p S ,∴)2(,231≥-⋅=-n a p S n n ,相减得:)2(11≥+=+n pp a a n n ,∵{}n a 是等比数列,.........(3分)∴p p p 231=+,∴21=p ,312==∴a a q 又31=a ,∴n n a 3=,..................................(6分) 所以n n a p 3,21==.....................................(7分) (Ⅱ)23)1(1-=-+=n d n b b n ,...............................(8分)抽去的项为ΛΛ,,,,,23741-k a a a a数列{}n c 为ΛΛ,,,,,,,,313986532k k a a a a a a a a - ,.............(10分) (1) 当m n 2=时,)()()(3136532m m n a a a a a a T ++++++=-LΘ133133133433---⋅=+=+k k k k k a a ,23332334+++⋅=+k k k a a (),3,2,1Λ=k{}k k a a 313+∴-是以36为首项,27为公比的等比数列,∴)127(1318271)271(3622-=--=nnn T .........................(12分) (2)当12-=m n 时,)()()(133386532--+++++++=m m n a a a a a a a T L , 331333133331033-----⋅=+=+k k k k k a a Θ,k k k k k a a 323323331033⋅=+=+++, {}233++∴k k a a 是以270为首项,27为公比的等比数列,13182713135271)271(27092121-⋅=--+=∴--n n n T .................(15分)19.解:(Ⅰ)由条件:2,1==a b ,∴椭圆的标准方程为:1422=+y x ...(4分) (Ⅱ)①当直线PQ 斜率0=k 时,线段PQ 的中垂线l 在x 轴上的截距为0; ②设PQ :)0(,≠+=k m kx y ,则:0448)41(4422222=-+++⇒⎩⎨⎧=++=m kmx x k y x mkx y ,...........(6分) 设),(),,(2211y x Q y x P ,则⎪⎪⎩⎪⎪⎨⎧+-=+-=+22212214144418k m x x k km x x ,∵BQ BP ⊥, ∴0)1)(1(2121=--+=⋅y y x x BQ BP ,....................(8分) ∴ 0)1())(1()1(221212=-++-++m x x m k x x k 0)1(418)1(4144)1(22222=-++⋅--+-⋅+m k kmm k k m k∴03252=--m m 53-=⇒m 或1=m (舍去),............(10分)∴PQ 为:53-=kx y , ∴)41(5122221k k x x x M +=+=,)41(532k y M+-=, ∴线段PQ 的中垂线l 为:))41(512(1)41(5322k kx k k y +--=++, ∴在x 轴上截距)41(5920k k x +=,.........................(12分)∴209459)41(5920=⨯≤+=kk k k x , ∴2092090≤≤-x 且00≠x , 综合①②得:线段PQ 的中垂线l 在x 轴上的截距的取值范围是]209,209[-. .............................(15分)20.解:(Ⅰ)当2=b 时,c bx x x f ++-=2)(2在区间]1,1[-上是增函数, 则{})1(),1(max g g M -=,.............................(2分)又c g c g +=+-=-3)1(,5)1(,∴⎪⎩⎪⎨⎧>+≤+-=1,31,5c c c c M ...............................(5分)(Ⅱ)c b b x x f x g ++--==22)()()(,(1)当1>b 时,)(x f 在区间]1,1[-上是单调函数,则{})1(),1(max g g M -=, 而c b g c b g ++-=+--=-21)1(,21)1(,∴442121)1()1(2>≥++-++--=+-≥b c b c b g g M , ∴2>M ........................................(8分)(2)当1≤b 时,)(x g 的对称轴b x =在区间]1,1[-内,则{})(),1(),1(max b g g g M -=,又c b b g +=2)(, ①当01≤≤-b 时,有)()1()1(b f f f ≤-≤,则{}21)1(21)1()(21))1()((21)(),1(max 2≥-=-≥+≥=b f b f g b g b g g M , ..................(11分)②当10≤<b 时,有)()1()1(b f f f ≤≤-,则{}21)1(21)1()(21))1()((21)(),1(max 2≥+=--≥-+≥-=b f b f g b g b g g M 综上可知,对任意的c b ,都有21≥M .................(14分) 而当21,0==c b 时,21)(2+-=x x g 在区间]1,1[-上的最大值21=M ,故k M ≥对任意的c b ,恒成立的k 的最大值为21..........(15分)。
浙江省嘉兴市第一中学2016届高三上学期期中考试理数试题 含解析
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知函数x x f y +=)(是偶函数,且1)2(=f ,则=-)2(f ( ▲) A .2 B . 3 C . 4 D . 5【答案】D考点:函数的奇偶性。
2。
已知:11,:(2)(6)0p m x m q x x -<<+--<,且q 是p 的必要不充分条件,则m 的取值范围是( ▲ ) A .35m << B. 35m ≤≤ C .53m m ><或 D. 53m m ≥≤或【答案】B 【解析】试题分析::11,:26;p m x m q x -<<+<<因为q 是p 的必要不充分条件,所以由p 能得到q ,而由q 得不到p ;53,6121≤≤∴⎩⎨⎧≤+≥-∴m m m ;所以m 的取值范围为.故选B .考点:1.充分必要条件的判断;2.二次不等式.【方法点睛】充分不必要条件、必要不充分条件、既不充分也不必要条件的判断的一般方法: ①充分不必要条件:如果p q ⇒,且p q ⇐/,则说p 是q 的充分不必要条件; ②必要不充分条件:如果p q ⇒/,且p q ⇐,则说p 是q 的必要不充分条件; ③既不充分也不必要条件:如果p q ⇒/,且p q ⇐/,则说p 是q 的既不充分也不必要条件。
3. 已知m 为一条直线,βα,为两个不同的平面,则下列说法正确的是( ▲ )A 。
若ββαα//,//,//m m 则 B.若,m αβα⊥⊥,则m β⊥ C.若ββαα⊥⊥m m 则,,// D 。
若ββαα⊥⊥m m 则,//, 【答案】D考点:空间中直线与直线之间的位置关系. 4。
函数())cos 3(sin sin 21x x x x f +-=的图象向左平移3π个单位得函数()x g 的图象,则函数()x g 的解析式是 ( ▲ )A . ()⎪⎭⎫⎝⎛-=22sin 2πx x g B .()x x g 2cos 2=C .()⎪⎭⎫ ⎝⎛+=322cos 2πx x g D .()()2sin 2g x x π=+【答案】A 【解析】 试题分析:化简函数)62sin(2)26sin(22sin 32cos 2sin 3sin 21)(2ππ--=-=-=--=x x x x x x x f 的图象向左平移3π个单位得函数()x g 的图象,则)22sin(2)]22(sin[2)22sin(2]6)3(2sin[2)3()(πππππππ-=++-=+-=-+-=+=x x x x x f x g ,故选A .考点:1.三角恒等变形公式;2.三角函数图象变换. 5。
2016年浙江嘉兴高三一模数学(理)试题及答案
嘉兴市2016年高三教学测试(一)嘉兴一模理科数学 试题卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.答题前,请在答题卷的密封线内填写学校、班级、学号、姓名;2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:棱柱的体积公式 Sh V =,其中S 表示棱柱的底面积,h 表示棱柱的高. 棱锥的体积公式Sh V 31=, 其中S 表示棱锥的底面积,h 表示棱锥的高. 棱台的体积公式)(312211S S S S h V ++=, 其中21,S S 分别表示棱台的上、下底面积,h 表示棱台的高. 球的表面积公式 24R S π=,其中R 表示球的半径. 球的体积公式334R V π=,其中R 表示球的半径.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 函数x x x f 2cos 32sin )(+=的最小正周期为A .4πB .2πC .πD .π22. 设函数⎩⎨⎧≤>-=0204)(2x xx x x f ,则)]1([f f 的值为 A .6- B .0 C .4 D .53.设变量y x ,满足约束条件:⎪⎩⎪⎨⎧≤--≥+-≥-+0320103y x y x y x ,则目标函数432++=y x z 的最小值为A .10B .11C .12D .274.若α是第二象限角,34)3tan(=+απ,则=+)3cos(απA .53-B .53C .54 D .53± 5.已知4)(33++=x b ax x f ),(R b a ∈,1)]2[lg(log 3=f ,则)]3[lg(log 2f 的值为 A .1- B .3C .7D .86.如图,B 、D 是以AC 为直径的圆上的两点,其中1+=t AB ,2+=t AD ,则→→⋅BD AC =A .1B .2C .tD .t 27.已知双曲线)0,(12222>=-b a by ax ,若焦点F 关于渐近线x a b y =的对称点在另一条渐近线x aby -=上,则双曲线的离心率为 A .2 B .2C .3D .38.已知三棱锥ABCD 中,CD AB ⊥,且AB 与平面BCD 成60°角.当ACDBCDS S ∆∆的值取到最大值时,二面角B CD A --的大小为A .30°B .45°C .60°D .90°AC(第6题)第Ⅱ卷二、填空题(本大题共7小题,共36分)9.设全集R U =,集合}31|{≤<=x x A ,}2|{≥=x x B ,则=B A ▲ , =B A ▲ ,( A ∨)B R = ▲ .10.已知命题p :“若22b a =,则b a =”,则命题p 的否命题为 ▲ ,该否命题是一个 ▲ 命题.(填“真”,“假”)11.如图是一个几何体的三视图,正视图是边长为2的正三角形,俯视图是等腰直角三角形,该几何体的表面积为 ▲ ,体积为 ▲ .12.若函数)(x f 是幂函数,则=)1(f ▲ ,若满足)2(8)4(f f =,则=)31(f ▲ .13.空间四点D C B A 、、、满足1||=AB ,2||=CD ,F E 、分别是BC AD 、的中点,若AB与CD 所在直线的所成角为60°,则=||EF ▲ . 14.已知21F F 、分别是椭圆)0(1:2222>>=+b a by ax C 的左右焦点,A 是其上顶点,且21F AF ∆是等腰直角三角形,延长2AF 与椭圆C 交于另一点B ,若B AF 1∆的面积为6,则椭圆C 的方程为 ▲ .15.已知等差数列}{n a 满足09<a ,且||98a a >,数列}{n b 满足)(*21N n a a a b n n n n ∈=++,}{n b 的前n 项和为n S ,当n S 取得最大值时,n 的值为 ▲ .三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤) 16.(本题满分14分)第11题在ABC ∆中,角C B A 、、分别是边c b a 、、的对角,且b a 23=, (Ⅰ)若060=B ,求C sin 的值; (Ⅱ)若a c b 31=-,求C cos 的值.17.(本题满分15分)如图,平行四边形⊥ABCD 平面CDE ,4===DE DC AD ,060=∠ADC ,DE AD ⊥(Ⅰ)求证:⊥DE 平面ABCD ;(Ⅱ)求二面角D AE C --的余弦值的大小.18.(本题满分15分)已知函数1)(2++=ax x x f ,(Ⅰ)设)()32()(x f x x g -=,若)(x g y =与x 轴恰有两个不同的交点,试求a 的取值集合; (Ⅱ)求函数|)(|x f y =在]1,0[上的最大值.19.(本题满分15分)过离心率为22的椭圆)0(1:2222>>=+b a by a x C 的右焦点)0,1(F 作直线l 与椭圆C 交于不同的两点B A 、,设||||FB FA λ=,)0,2(T . (Ⅰ)求椭圆C 的方程;(Ⅱ)若21≤≤λ,求ABT ∆中AB 边上中线长的取值范围.A BCDE(第17题)20.(本题满分15分)数列}{n a 各项均为正数,211=a ,且对任意的*N n ∈,有)0(21>+=+c ca a a n n n . (Ⅰ)求321111a ca c ca c ++++的值;(Ⅱ)若20161=c ,是否存在*N n ∈,使得1>n a ,若存在,试求出n 的最小值,若不存在,请说明理由.2015年高三教学测试(一)理科数学 参考答案一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.C ;2.A ;3.B ;4.A ;5.C;6.A;7.B;8.A.二、填空题(本大题共7小题,共36分)9. ]3,2[,),1(+∞,)2,1(; 10.若22b a ≠,则b a ≠,真; 11. 734++,332; 12.1,271; 13. 23或27; 14.192922=+y x ; 15. 6.三、解答题(本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤) 16.(本题满分14分)在ABC ∆中,角C B A 、、分别是边c b a 、、的对角,且b a 23=, (Ⅰ)若060=B ,求C sin 的值; (Ⅱ)若a c b 31=-,求C cos 的值.解:(Ⅰ)∵b a 23=,∴B A sin 2sin 3=又∵︒=60B ,代入得︒=60sin 2sin 3A ,解得33sin =A . ∵3:2:=b a ,∴B A <,即36c o s=A ∴6233s i n c o s c o s s i n )s i n (s i n+=+=+=B A B A B A C . …7分(Ⅱ)设t a 2=,t b 3=,则t a b c 3731=-= 则2717)3()2(2)37()3()2(2cos 222222=⨯⨯-+=-+=t t t t t ab c b a C . …7分17.(本题满分15分)如图,平行四边形⊥ABCD 平面CDE ,4===DE DC AD ,060=∠ADC ,DE AD ⊥ (Ⅰ)求证:⊥DE 平面ABCD ;(Ⅱ)求二面角D AE C --的余弦值的大小. 证明:(Ⅰ)过A 作AH ⊥DC 交DC 于H . ∵平行四边形⊥ABCD 平面CDE ∴AH ⊥平面CDE 又∵⊂DE 平面CDE ∴AH ⊥DE ①由已知,AD ⊥DE ② A AD AH = ③由①②③得,DE ⊥平面ABCD ; …7分解:(Ⅱ)过C 作CM ⊥AD 交AD 于M ,过C 作CN ⊥AE 交AE 于N ,连接MN .由(Ⅰ)得DE ⊥平面ABCD , 又∵⊂DE 平面ADE , ∴平面ADE ⊥平面ABCD . ∴CM ⊥AE ,又∵CN 垂直AE ,且C CN CM = .∴AE ⊥平面CMN ,得角CNM 就是所求二面角的一个平面角. 又∵32=CM ,2=MN ,A BCDEHA BCDEMN∴所求二面角的余弦值为77. …8分18.(本题满分15分)已知函数1)(2++=ax x x f ,(Ⅰ)设)()32()(x f x x g -=,若)(x g y =与x 轴恰有两个不同的交点,试求a 的取值集合; (Ⅱ)求函数|)(|x f y =在]1,0[上的最大值. 解:(Ⅰ)(1)若0)(=x f 恰有一解,且解不为23, 即042=-a ,解得2±=a(2)若0)(=x f 有两个不同的解,且其中一个解为23, 代入得012349=++a ,613-=a 综上所述,a 的取值集合为}2,2,613{--. …7分(Ⅱ)(1)若02≤-a,即0≥a ,则a f y +==2)1(max (2)若120<-<a,即02<<-a ,此时042<-=∆a ⎩⎨⎧-<-≥+=+==1112}2,1max{)}1(),0(max{max a a a a f f y(3)若12≥-a,即2-≤a ,此时02)1(≤+=a f ⎩⎨⎧-<---≥=--=-=3231}2,1max{)}1(),0(max{max a a a a f f y ,综上所述,⎪⎩⎪⎨⎧-<---<≤--≥+=3213112maxa a a a a y …8分19.(本题满分15分)过离心率为22的椭圆)0(1:2222>>=+b a by a x C 的右焦点)0,1(F 作直线l 与椭圆C 交于不同的两点B A 、,设||||FB FA λ=,)0,2(T .(Ⅰ)求椭圆C 的方程;(Ⅱ)若21≤≤λ,求ABT ∆中AB 边上中线长的取值范围. 解:(Ⅰ)∵22=e ,1=c ,∴1,2==c a 即椭圆C 的方程为:1222=+y x . …7分(Ⅱ)(1)当直线的斜率为0时,显然不成立. (2)设直线1:+=m y x l ,设),(11y x A ,),(22y x B 联立01222=-+y x 得012)2(22=-++m y y m 得22221+-=+m m y y ,21221+-=m y y ,由||||FB FA λ=,得21y y λ-=∵12211y y y y +=-+-λλ,∴24)(212221221+-=+=+-+-m m y y y y λλ ∴722≤m 又∵AB 边上的中线长为221221)()4(21||21y y x x TB TA ++-+=+→→2224)2(494+++=m m m427)2(2222++-+=m m ]16213,1[∈ …8分20.(本题满分15分)数列}{n a 各项均为正数,211=a ,且对任意的*N n ∈,有)0(21>+=+c ca a a n n n . (Ⅰ)求321111a ca c ca c ++++的值;(Ⅱ)若20161=c ,是否存在*N n ∈,使得1>n a ,若存在,试求出n 的最小值,若不存在,请说明理由. 证明:(Ⅰ)∵2111nn n ca a a +=+∴n n n ca c a a +-=+1111,即nn n ca ca a +=-+1111 121111ca c a a +=- 232111ca c a a +=- …… n n n ca c a a +=-+1111 ∴n n ca c ca c ca c a a ++++++=-+111112111 ∴121111111++++++++=n n a ca c ca c ca c a 得211111321==++++a a ca c ca c(说明:依次求出32,a a 也得满分) (Ⅱ)∵n n n n a a a a >+=+2120161,∴}{n a 单调递增. 得20162121a a a <<<= 由201621n n n aa a +=+⇒20161111+=-+n n n a a a ⇒201612016120161122016212017++++++=-a a a a∵)2016,,2,1(0 =>i a i ∴201620161122017⨯<-a 解得:12017<a此时,1201721<<<<a a a 又∵201612016120161122017212018++++++=-a a a a∴12016201611122018=⨯+>-a解得:12018>a即数列}{n a 满足: <<<<<<<201920182017211a a a a a . 综上所述,存在1>n a ,且n 的最小值为2018. …8分。
数学理卷·2016届浙江省嘉兴市高三教学测试(一)(2016.03)
嘉兴市2016年高三教学测试(一)理科数学 试题卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.答题前,请在答题卷的密封线内填写学校、班级、学号、姓名;2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:棱柱的体积公式Sh V =,其中S 表示棱柱的底面积,h 表示棱柱的高. 棱锥的体积公式Sh V 31=, 其中S 表示棱锥的底面积,h 表示棱锥的高. 棱台的体积公式)(312211S S S S h V ++=, 其中21,S S 分别表示棱台的上、下底面积,h 表示棱台的高. 球的表面积公式 24R S π=,其中R 表示球的半径. 球的体积公式334R V π=, 其中R 表示球的半径.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 函数x x x f 2cos 32sin )(+=的最小正周期为 A .4π B .2πC .πD .π2 2. 设函数⎩⎨⎧≤>-=0204)(2x xx x x f ,则)]1([f f 的值为 A .6- B .0 C .4 D .53.设变量y x ,满足约束条件:⎪⎩⎪⎨⎧≤--≥+-≥-+0320103y x y x y x ,则目标函数432++=y x z 的最小值为A .10B .11C .12D .274.若α是第二象限角,34)3tan(=+απ,则=+)3cos(απA .53-B .53C .54 D .53± 5.已知4)(33++=x b ax x f ),(R b a ∈,1)]2[lg(log 3=f ,则)]3[lg(log 2f 的值为 A .1- B .3C .7D .86.如图,B 、D 是以AC 为直径的圆上的两点,其中1+=t AB ,2+=t AD ,则→→⋅BD AC =A .1B .2C .tD .t 27.已知双曲线)0,(12222>=-b a by ax ,若焦点F 关于渐近线x a b y =的对称点在另一条渐近线x aby -=上,则双曲线的离心率为 A .2 B .2C .3D .3AC(第6题)8.已知三棱锥ABCD 中,CD AB ⊥,且AB 与平面BCD 成60°角.当ACDBCDS S ∆∆的值取到最大值时,二面角B CD A --的大小为A .30°B .45°C .60°D .90°第Ⅱ卷二、填空题(本大题共7小题,共36分)9.设全集R U =,集合}31|{≤<=x x A ,}2|{≥=x x B ,则=B A I ▲ ,=B A Y ▲ ,(I A ∨)B R = ▲ .10.已知命题p :“若22b a =,则b a =”,则命题p 的否命题为 ▲ ,该否命题是一个 ▲ 命题.(填“真”,“假”)11.如图是一个几何体的三视图,正视图是边长为2的正三角形,俯视图是等腰直角三角形,该几何体的表面积为 ▲ ,体积为 ▲ .12.若函数)(x f 是幂函数,则=)1(f ▲ ,若满足)2(8)4(f f =,则=)31(f ▲ .13.空间四点D C B A 、、、满足1||=AB ,2||=CD ,F E 、分别是BC AD 、的中点,若AB 与CD 所在直线的所成角为60°,则=||EF ▲ . 14.已知21F F 、分别是椭圆)0(1:2222>>=+b a by ax C 的左右焦点,A 是其上顶点,且21F AF ∆是等腰直角三角形,延长2AF 与椭圆C 交于另一点B ,若B AF 1∆的面积为6,则椭圆C 的方程为 ▲ .15.已知等差数列}{n a 满足09<a ,且||98a a >,数列}{n b 满足)(*21N n a a a b n n n n ∈=++,第11题}{n b 的前n 项和为n S ,当n S 取得最大值时,n 的值为 ▲ .三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤) 16.(本题满分14分)在ABC ∆中,角C B A 、、分别是边c b a 、、的对角,且b a 23=, (Ⅰ)若060=B ,求C sin 的值; (Ⅱ)若a c b 31=-,求C cos 的值.17.(本题满分15分)如图,平行四边形⊥ABCD 平面CDE ,4===DE DC AD ,060=∠ADC ,DE AD ⊥(Ⅰ)求证:⊥DE 平面ABCD ;(Ⅱ)求二面角D AE C --的余弦值的大小.18.(本题满分15分)已知函数1)(2++=ax x x f ,(Ⅰ)设)()32()(x f x x g -=,若)(x g y =与x 轴恰有两个不同的交点,试求a 的取值集合; (Ⅱ)求函数|)(|x f y =在]1,0[上的最大值.19.(本题满分15分)过离心率为22的椭圆)0(1:2222>>=+b a by a x C 的右焦点)0,1(F 作直线l 与椭圆C 交A BCDE(第17题)于不同的两点B A 、,设||||FB FA λ=,)0,2(T . (Ⅰ)求椭圆C 的方程;(Ⅱ)若21≤≤λ,求ABT ∆中AB 边上中线长的取值范围.20.(本题满分15分)数列}{n a 各项均为正数,211=a ,且对任意的*N n ∈,有)0(21>+=+c ca a a n n n . (Ⅰ)求321111a ca c ca c ++++的值; (Ⅱ)若20161=c ,是否存在*N n ∈,使得1>n a ,若存在,试求出n 的最小值,若不存在,请说明理由.2015年高三教学测试(一)理科数学 参考答案一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.C ;2.A ;3.B ;4.A ;5.C;6.A;7.B;8.A.二、填空题(本大题共7小题,共36分)9. ]3,2[,),1(+∞,)2,1(; 10.若22b a ≠,则b a ≠,真; 11. 734++,332; 12.1,271; 13. 23或27; 14.192922=+y x ;15. 6.三、解答题(本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤) 16.(本题满分14分)在ABC ∆中,角C B A 、、分别是边c b a 、、的对角,且b a 23=, (Ⅰ)若060=B ,求C sin 的值; (Ⅱ)若a c b 31=-,求C cos 的值. 解:(Ⅰ)∵b a 23=,∴B A sin 2sin 3=又∵︒=60B ,代入得︒=60sin 2sin 3A ,解得33sin =A . ∵3:2:=b a ,∴B A <,即36cos =A ∴6233sin cos cos sin )sin(sin +=+=+=B A B A B A C . …7分(Ⅱ)设t a 2=,t b 3=,则t a b c 3731=-= 则2717)3()2(2)37()3()2(2cos 222222=⨯⨯-+=-+=t t t t t ab c b a C . …7分17.(本题满分15分)如图,平行四边形⊥ABCD 平面CDE ,4===DE DC AD ,060=∠ADC ,DE AD ⊥ (Ⅰ)求证:⊥DE 平面ABCD ;A B(Ⅱ)求二面角D AE C --的余弦值的大小. 证明:(Ⅰ)过A 作AH ⊥DC 交DC 于H . ∵平行四边形⊥ABCD 平面CDE ∴AH ⊥平面CDE 又∵⊂DE 平面CDE ∴AH ⊥DE ①由已知,AD ⊥DE ② A AD AH =I ③由①②③得,DE ⊥平面ABCD ; …7分解:(Ⅱ)过C 作CM ⊥AD 交AD 于M ,过C 作CN ⊥AE 交AE 于N , 连接MN .由(Ⅰ)得DE ⊥平面ABCD , 又∵⊂DE 平面ADE , ∴平面ADE ⊥平面ABCD . ∴CM ⊥AE ,又∵CN 垂直AE ,且C CN CM =I .∴AE ⊥平面CMN ,得角CNM 就是所求二面角的一个平面角. 又∵32=CM ,2=MN ,∴所求二面角的余弦值为77. …8分18.(本题满分15分)已知函数1)(2++=ax x x f ,(Ⅰ)设)()32()(x f x x g -=,若)(x g y =与x 轴恰有两个不同的交点,试求a 的取值集合; (Ⅱ)求函数|)(|x f y =在]1,0[上的最大值. 解:(Ⅰ)(1)若0)(=x f 恰有一解,且解不为23, 即042=-a ,解得2±=a(2)若0)(=x f 有两个不同的解,且其中一个解为23, 代入得012349=++a ,613-=a HA BCDEMN综上所述,a 的取值集合为}2,2,613{--. …7分(Ⅱ)(1)若02≤-a,即0≥a ,则a f y +==2)1(max (2)若120<-<a,即02<<-a ,此时042<-=∆a ⎩⎨⎧-<-≥+=+==1112}2,1max{)}1(),0(max{max a a a a f f y(3)若12≥-a,即2-≤a ,此时02)1(≤+=a f ⎩⎨⎧-<---≥=--=-=3231}2,1max{)}1(),0(max{max a a a a f f y ,综上所述,⎪⎩⎪⎨⎧-<---<≤--≥+=3213112maxa a a a a y …8分19.(本题满分15分)过离心率为22的椭圆)0(1:2222>>=+b a by a x C 的右焦点)0,1(F 作直线l 与椭圆C 交于不同的两点B A 、,设||||FB FA λ=,)0,2(T .(Ⅰ)求椭圆C 的方程;(Ⅱ)若21≤≤λ,求ABT ∆中AB 边上中线长的取值范围. 解:(Ⅰ)∵22=e ,1=c ,∴1,2==c a 即椭圆C 的方程为:1222=+y x . …7分(Ⅱ)(1)当直线的斜率为0时,显然不成立. (2)设直线1:+=my x l ,设),(11y x A ,),(22y x B 联立01222=-+y x 得012)2(22=-++my y m 得22221+-=+m m y y ,21221+-=m y y ,由||||FB FA λ=,得21y y λ-=∵12211y y y y +=-+-λλ,∴24)(212221221+-=+=+-+-m m y y y y λλ ∴722≤m 又∵AB 边上的中线长为221221)()4(21||21y y x x TB TA ++-+=+→→2224)2(494+++=m m m427)2(2222++-+=m m ]16213,1[∈ …8分20.(本题满分15分)数列}{n a 各项均为正数,211=a ,且对任意的*N n ∈,有)0(21>+=+c ca a a n n n . (Ⅰ)求321111a ca c ca c ++++的值; (Ⅱ)若20161=c ,是否存在*N n ∈,使得1>n a ,若存在,试求出n 的最小值,若不存在,请说明理由. 证明:(Ⅰ)∵2111nn n ca a a +=+∴n n n ca c a a +-=+1111,即nn n ca ca a +=-+1111 121111ca ca a +=- 232111ca ca a +=- …… n n n ca c a a +=-+1111 ∴n n ca c ca c ca c a a ++++++=-+111112111Λ ∴121111111++++++++=n n a ca c ca c ca c a Λ得211111321==++++a a ca c ca c(说明:依次求出32,a a 也得满分) (Ⅱ)∵n n n n a a a a >+=+2120161,∴}{n a 单调递增. 得20162121a a a <<<=Λ 由201621n n n aa a +=+⇒20161111+=-+n n n a a a ⇒201612016120161122016212017++++++=-a a a a Λ ∵)2016,,2,1(0Λ=>i a i ∴201620161122017⨯<-a 解得:12017<a此时,1201721<<<<a a a Λ 又∵201612016120161122017212018++++++=-a a a a Λ ∴12016201611122018=⨯+>-a解得:12018>a即数列}{n a 满足:ΛΛ<<<<<<<201920182017211a a a a a . 综上所述,存在1>n a ,且n 的最小值为2018. …8分。
2016届浙江省高考数学试卷(理科) 解析版
2016年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2016•浙江)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(﹣2,3] C.[1,2)D.(﹣∞,﹣2]∪[1,+∞)2.(5分)(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n ⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n3.(5分)(2016•浙江)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=()A.2 B.4 C.3D.64.(5分)(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x25.(5分)(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关 B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.(5分)(2016•浙江)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列7.(5分)(2016•浙江)已知椭圆C1:+y2=1(m>1)与双曲线C2:﹣y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1 8.(5分)(2016•浙江)已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(4分)(2016•浙江)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是______.10.(6分)(2016•浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=______,b=______.11.(6分)(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是______cm3.12.(6分)(2016•浙江)已知a>b>1,若log a b+log b a=,a b=b a,则a=______,b=______.13.(6分)(2016•浙江)设数列{a n}的前n项和为S n,若S2=4,a n+1=2S n+1,n∈N*,则a1=______,S5=______.14.(4分)(2016•浙江)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是______.15.(4分)(2016•浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是______.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.16.(14分)(2016•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B(Ⅱ)若△ABC的面积S=,求角A的大小.17.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.18.(15分)(2016•浙江)已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=(Ⅰ)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围(Ⅱ)(i)求F(x)的最小值m(a)(ii)求F(x)在[0,6]上的最大值M(a)19.(15分)(2016•浙江)如图,设椭圆C:+y2=1(a>1)(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20.(15分)(2016•浙江)设数列满足|a n﹣|≤1,n∈N*.(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.2016年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2016•浙江)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(﹣2,3] C.[1,2)D.(﹣∞,﹣2]∪[1,+∞)【分析】运用二次不等式的解法,求得集合Q,求得Q的补集,再由两集合的并集运算,即可得到所求.【解答】解:Q={x∈R|x2≥4}={x∈R|x≥2或x≤﹣2},即有∁R Q={x∈R|﹣2<x<2},则P∪(∁R Q)=(﹣2,3].故选:B.【点评】本题考查集合的运算,主要是并集和补集的运算,考查不等式的解法,属于基础题.2.(5分)(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n ⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【分析】由已知条件推导出l⊂β,再由n⊥β,推导出n⊥l.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m与β相交,l⊂β,∵n⊥β,∴n⊥l.故选:C.【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.3.(5分)(2016•浙江)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=()A.2 B.4 C.3D.6【分析】作出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x+y﹣2=0上的投影构成线段R′Q′,即SAB,而R′Q′=RQ,由得,即Q(﹣1,1),由得,即R(2,﹣2),则|AB|=|QR|===3,故选:C【点评】本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用投影的定义以及数形结合是解决本题的关键.4.(5分)(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是:∃x∈R,∀n∈N*,使得n<x2.故选:D.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.5.(5分)(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关 B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【分析】根据三角函数的图象和性质即可判断.【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴c是图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B【点评】本题考查了三额角函数的最小正周期,关键掌握三角函数的图象和性质,属于中档题.6.(5分)(2016•浙江)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列【分析】设锐角的顶点为O,再设|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,判断C,D不正确,设△A n B n B n+1的底边B n B n+1上的高为h n,运用三角形相似知识,h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,进而得到数列{S n}为等差数列.【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n+2﹣S n+1=S n+1﹣S n,则数列{S n}为等差数列.故选:A.【点评】本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.7.(5分)(2016•浙江)已知椭圆C1:+y2=1(m>1)与双曲线C2:﹣y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1 【分析】根据椭圆和双曲线有相同的焦点,得到c2=m2﹣1=n2+1,即m2﹣n2=2,进行判断,能得m>n,求出两个离心率,先平方进行化简进行判断即可.【解答】解:∵椭圆C1:+y2=1(m>1)与双曲线C2:﹣y2=1(n>0)的焦点重合,∴满足c2=m2﹣1=n2+1,即m2﹣n2=2>0,∴m2>n2,则m>n,排除C,D则c2=m2﹣1<m2,c2=n2+1>n2,则c<m.c>n,e1=,e2=,则e1•e2=•=,则(e1•e2)2=()2•()2====1+=1+=1+>1,∴e1e2>1,故选:A.【点评】本题主要考查圆锥曲线离心率的大小关系的判断,根据条件结合双曲线和椭圆离心率以及不等式的性质进行转化是解决本题的关键.考查学生的转化能力.8.(5分)(2016•浙江)已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100【分析】本题可根据选项特点对a,b,c设定特定值,采用排除法解答.【解答】解:A.设a=b=10,c=﹣110,则|a2+b+c|+|a+b2+c|=0≤1,a2+b2+c2>100;B.设a=10,b=﹣100,c=0,则|a2+b+c|+|a2+b﹣c|=0≤1,a2+b2+c2>100;C.设a=100,b=﹣100,c=0,则|a+b+c2|+|a+b﹣c2|=0≤1,a2+b2+c2>100;故选:D.【点评】本题主要考查命题的真假判断,由于正面证明比较复杂,故利用特殊值法进行排除是解决本题的关键.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(4分)(2016•浙江)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是9.【分析】根据抛物线的性质得出M到准线x=﹣1的距离为10,故到y轴的距离为9.【解答】解:抛物线的准线为x=﹣1,∵点M到焦点的距离为10,∴点M到准线x=﹣1的距离为10,∴点M到y轴的距离为9.故答案为:9.【点评】本题考查了抛物线的性质,属于基础题.10.(6分)(2016•浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b= 1.【分析】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)+1=sin(2x+)+1,∴A=,b=1,故答案为:;1.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.11.(6分)(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是72cm2,体积是32cm3.【分析】由三视图可得,原几何体为由四个棱长为2cm的小正方体所构成的,代入体积公式和面积公式计算即可.【解答】解:由三视图可得,原几何体为由四个棱长为2cm的小正方体所构成的,则其表面积为22×(24﹣6)=72cm2,其体积为4×23=32,故答案为:72,32【点评】本题考查了由三视图求几何体的体积和表面积,解题的关键是判断几何体的形状及相关数据所对应的几何量,考查空间想象能力.12.(6分)(2016•浙江)已知a>b>1,若log a b+log b a=,a b=b a,则a=4,b=2.【分析】设t=log b a并由条件求出t的范围,代入log a b+log b a=化简后求出t的值,得到a与b的关系式代入a b=b a化简后列出方程,求出a、b的值.【解答】解:设t=log b a,由a>b>1知t>1,代入log a b+log b a=得,即2t2﹣5t+2=0,解得t=2或t=(舍去),所以log b a=2,即a=b2,因为a b=b a,所以b2b=b a,则a=2b=b2,解得b=2,a=4,故答案为:4;2.【点评】本题考查对数的运算性质,以及换元法在解方程中的应用,属于基础题.13.(6分)(2016•浙江)设数列{a n}的前n项和为S n,若S2=4,a n+1=2S n+1,n∈N*,则a1= 1,S5=121.【分析】运用n=1时,a1=S1,代入条件,结合S2=4,解方程可得首项;再由n>1时,a n+1=S n+1﹣S n,结合条件,计算即可得到所求和.【解答】解:由n=1时,a1=S1,可得a2=2S1+1=2a1+1,又S2=4,即a1+a2=4,即有3a1+1=4,解得a1=1;由a n+1=S n+1﹣S n,可得S n+1=3S n+1,由S2=4,可得S3=3×4+1=13,S4=3×13+1=40,S5=3×40+1=121.故答案为:1,121.【点评】本题考查数列的通项和前n项和的关系:n=1时,a1=S1,n>1时,a n=S n﹣S n﹣1,考查运算能力,属于中档题.14.(4分)(2016•浙江)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.【分析】由题意,△ABD≌△PBD,可以理解为△PBD是由△ABD绕着BD旋转得到的,对于每段固定的AD,底面积BCD为定值,要使得体积最大,△PBD必定垂直于平面ABC,此时高最大,体积也最大.【解答】解:如图,M是AC的中点.①当AD=t<AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AE,DM=﹣t,由△ADE∽△BDM,可得,∴h=,V==,t∈(0,)②当AD=t>AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AH,DM=t﹣,由等面积,可得,∴,∴h=,∴V==,t∈(,2)综上所述,V=,t∈(0,2)令m=∈[1,2),则V=,∴m=1时,V max=.故答案为:.【点评】本题考查体积最大值的计算,考查学生转化问题的能力,考查分类讨论的数学思想,对思维能力和解题技巧有一定要求,难度大.15.(4分)(2016•浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.【分析】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】解:由绝对值不等式得≥|•|+|•|≥|•+•|=|(+)•|,于是对任意的单位向量,均有|(+)•|≤,∵|(+)|2=||2+||2+2•=5+2•,∴|(+)|=,因此|(+)•|的最大值≤,则•≤,下面证明:•可以取得,(1)若|•|+|•|=|•+•|,则显然满足条件.(2)若|•|+|•|=|•﹣•|,此时|﹣|2=||2+||2﹣2•=5﹣1=4,此时|﹣|=2于是|•|+|•|=|•﹣•|x≤2,符号题意,综上•的最大值是,故答案为:.【点评】本题主要考查平面向量数量积的应用,根据绝对值不等式的性质以及向量三角形不等式的关系是解决本题的关键.综合性较强,有一定的难度.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.16.(14分)(2016•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B(Ⅱ)若△ABC的面积S=,求角A的大小.【分析】(Ⅰ)利用正弦定理,结合和角的正弦公式,即可证明A=2B(Ⅱ)若△ABC的面积S=,则bcsinA=,结合正弦定理、二倍角公式,即可求角A的大小.【解答】(Ⅰ)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=2=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.【点评】本题考查了正弦定理,解三角形,考查三角形面积的计算,考查二倍角公式的运用,属于中档题.17.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.【分析】(I)先证明BF⊥AC,再证明BF⊥CK,进而得到BF⊥平面ACFD.(II)方法一:先找二面角B﹣AD﹣F的平面角,再在Rt△BQF中计算,即可得出;方法二:通过建立空间直角坐标系,分别计算平面ACK与平面ABK的法向量,进而可得二面角B﹣AD﹣F的平面角的余弦值.【解答】(I)证明:延长AD,BE,CF相交于点K,如图所示,∵平面BCFE⊥平面ABC,∠ACB=90°,∴AC⊥平面BCK,∴BF⊥AC.又EF∥BC,BE=EF=FC=1,BC=2,∴△BCK为等边三角形,且F为CK的中点,则BF⊥CK,∴BF⊥平面ACFD.(II)方法一:过点F作FQ⊥AK,连接BQ,∵BF⊥平面ACFD.∴BF⊥AK,则AK⊥平面BQF,∴BQ⊥AK.∴∠BQF是二面角B﹣AD﹣F的平面角.在Rt△ACK中,AC=3,CK=2,可得FQ=.在Rt△BQF中,BF=,FQ=.可得:cos∠BQF=.∴二面角B﹣AD﹣F的平面角的余弦值为.方法二:如图,延长AD,BE,CF相交于点K,则△BCK为等边三角形,取BC的中点,则KO⊥BC,又平面BCFE⊥平面ABC,∴KO⊥平面BAC,以点O为原点,分别以OB,OK的方向为x,z的正方向,建立空间直角坐标系O﹣xyz.可得:B(1,0,0),C(﹣1,0,0),K(0,0,),A(﹣1,﹣3,0),,.=(0,3,0),=,(2,3,0).设平面ACK的法向量为=(x1,y1,z1),平面ABK的法向量为=(x2,y2,z2),由,可得,取=.由,可得,取=.∴==.∴二面角B﹣AD﹣F的余弦值为.【点评】本题考查了空间位置关系、法向量的应用、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题.18.(15分)(2016•浙江)已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=(Ⅰ)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围(Ⅱ)(i)求F(x)的最小值m(a)(ii)求F(x)在[0,6]上的最大值M(a)【分析】(Ⅰ)由a≥3,讨论x≤1时,x>1,去掉绝对值,化简x2﹣2ax+4a﹣2﹣2|x﹣1|,判断符号,即可得到F(x)=x2﹣2ax+4a﹣2成立的x的取值范围;(Ⅱ)(i)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,求得f(x)和g(x)的最小值,再由新定义,可得F(x)的最小值;(ii)分别对当0≤x≤2时,当2<x≤6时,讨论F(x)的最大值,即可得到F(x)在[0,6]上的最大值M(a).【解答】解:(Ⅰ)由a≥3,故x≤1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2+2(a﹣1)(2﹣x)>0;当x>1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2﹣(2+2a)x+4a=(x﹣2)(x﹣2a),则等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围是[2,2a];(Ⅱ)(i)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,则f(x)min=f(1)=0,g(x)min=g(a)=﹣a2+4a﹣2.由﹣a2+4a﹣2=0,解得a=2+(负的舍去),由F(x)的定义可得m(a)=min{f(1),g(a)},即m(a)=;(ii)当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2);当2<x≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34﹣8a}=max{F(2),F(6)}.则M(a)=.【点评】本题考查新定义的理解和运用,考查分类讨论的思想方法,以及二次函数的最值的求法,不等式的性质,考查化简整理的运算能力,属于中档题.19.(15分)(2016•浙江)如图,设椭圆C:+y2=1(a>1)(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.【分析】(Ⅰ)联立直线y=kx+1与椭圆方程,利用弦长公式求解即可.(Ⅱ)写出圆的方程,假设圆A与椭圆由4个公共点,再利用对称性有解已知条件可得任意一A(0,1)为圆心的圆与椭圆至多有3个公共点,a的取值范围,进而可得椭圆的离心率的取值范围.【解答】解:(Ⅰ)由题意可得:,可得:(1+a2k2)x2+2ka2x=0,得x1=0或x2=,直线y=kx+1被椭圆截得到的弦长为:=.(Ⅱ)假设圆A与椭圆由4个公共点,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|,记直线AP,AQ的斜率分别为:k1,k2;且k1,k2>0,k1≠k2,由(1)可知|AP|=,|AQ|=,故:=,所以,(k12﹣k22)[1+k12+k22+a2(2﹣a2)k12k22]=0,由k1≠k2,k1,k2>0,可得:1+k12+k22+a2(2﹣a2)k12k22=0,因此a2(a2﹣2)①,因为①式关于k1,k2;的方程有解的充要条件是:1+a2(a2﹣2)>1,所以a>.因此,任意点A(0,1)为圆心的圆与椭圆至多有三个公共点的充要条件为:1<a<,e==得,所求离心率的取值范围是:.【点评】本题考查直线与椭圆的位置关系的综合应用,椭圆与圆的位置关系的综合应用,考查分析问题解决问题的能力,考查转化思想以及计算能力.20.(15分)(2016•浙江)设数列满足|a n﹣|≤1,n∈N*.(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.【分析】(I)使用三角不等式得出|a n|﹣|a n+1|≤1,变形得﹣≤,使用累加法可求得<1,即结论成立;(II)利用(I)的结论得出﹣<,进而得出|a n|<2+()m•2n,利用m的任意性可证|a n|≤2.【解答】解:(I)∵|a n﹣|≤1,∴|a n|﹣|a n+1|≤1,∴﹣≤,n∈N*,∴=(﹣)+(﹣)+…+(﹣)≤+++…+==1﹣<1.∴|a n|≥2n﹣1(|a1|﹣2)(n∈N*).(II)任取n∈N*,由(I)知,对于任意m>n,﹣=(﹣)+(﹣)+…+(﹣)≤++…+=<.∴|a n|<(+)•2n≤[+•()m]•2n=2+()m•2n.①由m的任意性可知|a n|≤2.否则,存在n0∈N*,使得|a|>2,取正整数m0>log且m0>n0,则2•()<2•()=|a|﹣2,与①式矛盾.综上,对于任意n∈N*,都有|a n|≤2.【点评】本题考查了不等式的应用与证明,等比数列的求和公式,放缩法证明不等式,难度较大.。
浙江省嘉兴市2016届高三教学测试(二)数学理试题 含答案
2016年高三教学测试(二)理科数学 试题卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.答题前,请在答题卷的密封线内填写学校、班级、学号、姓名;2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:棱柱的体积公式ShV =,其中S 表示棱柱的底面积,h 表示棱柱的高. 棱锥的体积公式Sh V 31=,其中S 表示棱锥的底面积,h 表示棱锥的高. 棱台的体积公式)(312211S S S S h V ++=,其中21,S S 分别表示棱台的上、下底面积,h 表示棱台的高.球的表面积公式24R S π=,其中R 表示球的半径. 球的体积公式334R V π=,其中R 表示球的半径.第Ⅰ卷(共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U ={1,2,3,4,5},A ={1,2,3},B = {2,5},则A ∩(UB )=A .{2}B .{2,3}C .{3}D .{1,3} 2.设l 、m 是两条不同的直线,α是一个平面,则下列命题正确的是A .若l ⊥m ,α⊂m ,则l ⊥αB .若l ⊥α,l ∥m ,则m ⊥αC .若l ∥α,α⊂m ,则l ∥mD .若l ∥α,m ∥α,则l ∥m3.“42ππθ+=k ∈k (Z )”是“1tan =θ”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 4.函数xa x x f +=||)((其中R ∈a )的图象不可能...是5.已知{}na 是等差数列,公差为2,{}nb 是等比数列,公比为2.若{}nb 的前n 项和为nb a ,则11b a+等于A .1B .2C .3D .46.如图,小于︒90的二面角βα--l 中,l O ∈,α∈B A ,,且AOB ∠为钝角,''OB A ∠是AOB∠在β内的射影,则下列结论错误..的是 A .''OB A ∠为钝角 B .AOB OB A ∠>∠''C .π<∠+∠'AOA AOBAOB'A 'B αlβ(第6题)xyOA xyOxyOC xyOD .π>∠+∠+∠''AOA BOA OB B 为A ,左右焦点7.如图,双曲线)0,(12222>=-b a b y a x 的右顶点分别为21,F F ,点P 是双曲线右支上一点,1PF 交左支的中点,若于点Q ,交渐近线x a by =于点R .M 是PQ 12PF RF ⊥,且1PF AM ⊥,则双曲线的离心率是A .2B .3C .2D .58.已知y x <<0,2522<+<y x,则下列不.正确的是A .)25sin(sin 2y x-< B .)2sin(sin 2y x->C .yxsin )2sin(2<- D .)1cos(sin 2-<y x第Ⅱ卷(共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知[)πϕ,0∈,函数)cos(2cos )(ϕ++=x x x f 是偶函数,则ϕ= ▲ ,)(x f 的最小值为 ▲ . 10.已知函数⎪⎩⎪⎨⎧≤+>=)0()0(log )(22x x x x x x f ,则))21((f f = ▲ ,方程2)(=x f 的解为▲ .11.某几何体的三视图如图所示(单位:cm ),则该几何体的体积为 ▲cm 3,表面积为▲ cm 2.(第11题)俯视图(第7题)12.已知R ,∈y x 且满足不等式组⎪⎩⎪⎨⎧≤---≤-+≥010521k y kx y x x ,当1=k 时,不等式组所表示的平面区域的面积为 ▲ ,若目标函数y x z +=3的最大值为7,则k 的值为 ▲ .13.已知0>a ,]2,0[,sin )1(cos )(∈-+=x x x x a x f ππ,则)(x f 所有的零点之和为▲ .14.设⎩⎨⎧<≥=)()(},max{b a bb a ab a ,已知∈y x ,R ,6=+n m ,则|}2||,4max{|22n x y m y xF +-+-=的最小值为 ▲ .15.如图,设正△BCD 的外接圆O 的半径为)3321(<<R R ,点A 在BD 下方的圆弧上, 则ACAD AB ⋅||||(三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.(本题满分14分)在△ABC 中,设边c b a ,,所对的角为C B A ,,,且C B A ,,都不是直角,22cos cos )8(b a B ac A bc -=+-.(Ⅰ)若5=+c b ,求c b ,的值; (Ⅱ)若5=a ,求△ABC 面积的最大值.C(第15题)D17.(本题满分15分)如图,长方体1111D C B A ABCD -中,2=AB ,11==CCBC ,点P 是CD 上的一点,PD PC λ=.(Ⅰ)若⊥C A 1平面1PBC ,求λ的值;(Ⅱ)设11=λ,32=λ所对应的点P 为1P ,2P ,二面角211P BC P--的大小为θ,求θcos 的值.18.(本题满分15分)已知∈m R ,函数mx m xx f ++-+-=2)23()(2.(Ⅰ)若210≤<m ,求|)(|x f 在]1,1[-上的最大值)(m g ;(Ⅱ)对任意的]1,0(∈m ,若)(x f 在],0[m 上的最大值为)(m h ,求)(m h 的最大值.ABCD P1A 1B 1C 1D (第17题)19.(本题满分15分)已知椭圆1416:221=+y x C ,直线m kx y l+=:1(0>m )与圆1)1(:222=+-y x C相切且与椭圆1C 交于B A ,两点.求m 的值;(Ⅰ)若线段AB 中点的横坐标为34(Ⅱ)过原点O 作1l 的平行线2l 交椭圆于DC ,两点,设||||CD AB λ=,求λ的最小值.20.(本题满分15分)已知点列)2,(nn nx xP 与)0,(nna A 满足nn x x>+1,11++⊥n n n n P A PP =,其中∈n N *,11=x.(Ⅰ)求1+n x 与nx 的关系式; (Ⅱ)求证:221232224nx x x nn ≤+++<+ 。
2016届浙江省嘉兴市第一中学高三上学期能力测试理数试题 解析版
第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线1y =+的倾斜角是( )A. π6B. π3C. 2π3D. 5π6【答案】C考点:直线的倾斜角.2.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于( )A .310cm B .320cm C .330cm D .340cm 【答案】B 【解析】试题分析:由三视图知,该几何体是由一个直三棱柱截去一个三棱锥所得,所以该几何体的体积为31113454520232cm ⨯⨯⨯-⨯⨯⨯=,故选B .【方法点睛】根据三视图求简单几何体的表面积和体积是一种常见考题,解决这类问题,首先要熟记各类简单几何体的表面积和体积的计算公式,其次要掌握平面几何面积计算的方法.常用公式有:棱柱的体积为V Sh =;棱锥的体积为13V Sh =. 考点:1、空间几何体的三视图;2、棱柱与棱锥的体积.3.已知,a b 为异面直线.对空间中任意一点P ,存在过点P 的直线( ) A. 与,a b 都相交 B. 与,a b 都垂直 C. 与a 平行,与b 垂直 D. 与,a b 都平行【答案】B考点:空间直线与直线的位置关系.4.为得到函数π2sin(2)4y x =+的图象,只需将函数2cos 2y x =的图象( )A. 向左平移π4单位B. 向右平移π4单位C. 向左平移π8单位D. 向右平移π8单位 【答案】D 【解析】试题分析:因为π2sin(2)2cos[(2)]2cos(2)2cos[2()]42448y x x x x ππππ=+=-+=-=-,所以要得到函数π2sin(2)4y x =+的图象,只需将函数2cos 2y x =的图象向右平移π8单位,故选D .考点:三角函数图象的平移变换.【方法点睛】利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少.先周期变换(伸缩变换)再平移变换:先将sin y x =的图象上各点的横坐标变为原来的1ω倍(0ω>),再沿x 轴向左(0ϕ>)或向右平移||ϕω个单位可得到sin()y A x ωϕ=+的图象.5.已知(),(),()f x g x h x 为R 上的函数,其中函数()f x 为奇函数,函数()g x 为偶函数,则( )A. 函数(())h g x 为偶函数B. 函数(())h f x 为奇函数C. 函数(())g h x 为偶函数D. 函数(())f h x 为奇函数 【答案】A考点:函数的奇偶性.6.命题“0x ∃∈R ,010x +<或2000x x ->”的否定形式是( ) A. 0x ∃∈R ,010x +≥或2000x x -≤ B. x ∀∈R ,10x +≥或20x x -≤ C. 0x ∃∈R ,010x +≥且2000x x -≤D. x ∀∈R ,10x +≥且20x x -≤【答案】D 【解析】试题分析:由特称命题的否定为全称命题知,命题的否定为“x ∀∈R ,10x +≥且20x x -≤”,故选D .考点:特称命题的否定.7.如图,A F ,分别是双曲线2222C 1 (0)x y a b a b -=:,>的左顶点、右焦点,过F 的直线l 与C的一条渐近线垂直且与另一条渐近线和y 轴分别交于P Q ,两点.若AP AQ ⊥,则C 的离心率是( )A ..【答案】D考点:1、双曲线的几何性质;2、直线与双曲线的位置关系;3、直线与直线的位置关系. 8.已知函数()()2()ka x f x a -=∈R ,且(1)(3)f f >,(2)(3)f f >( )A. 若1k =,则12a a -<-B. 若1k =,则12a a ->-C. 若2k =,则12a a -<-D. 若2k =,则12a a ->-【答案】D 【解析】试题分析:因为函数2xy =在定义域内为单调递增函数,所以若1k =,则由题意,得13a a ->-,23a a ->-,对于任意a 均成立,则有12a a -<-或12a a ->-;若2k =,则由题意,得|1||3|a a ->-,|2||3|a a ->-,联立解得52a >,所以12a a ->-,故选D .考点:函数的单调性.第Ⅱ卷(共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,将答案填在答题纸上)9.若集合{}2|60A x x x =--≤,{}|1B x x =>,则A B = _______,()A B =R ð_______. 【答案】{|2}x x ≥-,{|3}x x >考点:1、一元二次不等式的解法;2、集合的交、并、补运算. 10.已知单位向量12,e e 满足1212⋅=e e .若1212(54)()()k k -⊥+∈R e e e e ,则k =_______, 12k +=e e _______.【答案】2【解析】试题分析:由题意,得22121212121(54)()54(54)54(54)02e e e ke e ke k e e k k -+=-+-=-+-= ,解得2k =;所以2222121212121|||2|4414472e ke e e e e e e +=+=++=++⨯= ,所以12||e ke +=考点:1、平面向量垂直的充要条件;2、向量的模.【技巧点睛】平面向量中对模的处理主要是利用公式22||a a a a ==进行转化,即实现平面向量的运算与代数运算的转化,本题已知两个向量,a b 的模与夹角求由两个向量,a b构成的向量线性关系ma nb + 的模,就是主要是利用公式22||a a a a ==进行转化.11.已知等比数列{}n a 的公比0q >,前n 项和为n S .若3542,,3a a a 成等差数列,24664a a a =,则q = _______,n S =_______.【答案】2,1(21)2n-考点:1、等差数列与等比数列的性质;2、等比数列的通项公式;3、等比数列的性质前n 项和.12.设2z x y =-+,实数,x y 满足2,1,2.x x y x y k ≤⎧⎪-≥-⎨⎪+≥⎩若z 的最大值是0,则实数k =_______,z 的最小值是_______. 【答案】4,4- 【解析】试题分析:作出实数,x y 表示的平面区域如图所示,由图知当目标函数2z x y =-+经过点12(,)33k k A -+时取得最大值,即122033k k -+-⨯+=,解得4k =;当目标函数2z x y =-+经过点(2,4)B k -时取得最小值,所以min 2204z =-⨯+=-.考点:简单的线性规划问题.【技巧点睛】平面区域的确定方法是“直线定界、特殊点定域”,二元一次不等式组所表示的平面区域是各个不等式所表示的半平面的交集.线性目标函数z ax by =+中的z 不是直线ax by z +=在y 轴上的截距,把目标函数化a z y x b b =-+可知zb是直线ax by z +=在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.13.若实数,a b 满足436a b ==,则12a b+=_______. 【答案】2考点:1、指数与对数的运算;2、换底公式.14.设0(1)A ,,1(0)B ,,直线l y ax :=,圆22()1C x a y :-+=.若圆C 既与线段AB 又与直线l 有公共点,则实数a 的取值范围是________.【答案】[1 【解析】试题分析:因为圆C 与直线l 21≤,解得a ≤圆C 与线段AB 有公共点结合图形知当圆心C 在x 轴负半轴时与线段AB 相切11a =⇒=,此时a 取最小值;当圆心C 在x 轴正半轴时过A 点,此时a 取最大值2,即此时a 的取值范围是[1,综上a 的取值范围是[1. 考点:直线与圆的位置关系.15.已知函数2()f x ax bx c =++,,,a b c ∈R ,且0a ≠.记(,,)M a b c 为()f x 在[]0,1上的最大值,则2(,,)a b c M a b c ++的最大值是_______. 【答案】2考点:1、绝对值不等式的性质;2、函数的最值.三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本题满分14分)在ABC ∆中,内角A B C ,,所对的边分别是a b c ,,.已知cos cos a B b A =,边BC 上的中线长为4. (Ⅰ) 若π6A =,求c ; (Ⅱ) 求ABC ∆面积的最大值.【答案】(Ⅰ) c =(Ⅱ)323.【解析】试题分析:(Ⅰ)先由正弦定理与两角和与差的正弦求得角B ,从而求得c 与a 的关系,再用余弦定理求得c 的值;(Ⅱ)先用余弦定理求得a ,再用三角形面积公式结合基本不等式即可求得ABC ∆面积的最大值.试题解析:(Ⅰ) 由cos cos a B b A =及正弦定理得sin cos sin cos A B B A =, .........1分【方法点睛】在三角形中考查三角函数变换时应注意:(1)作为三角形问题,必然要用到三角形的同角和定理,正、余弦定理及有关三角形的性质,及时进行边角转化;(2)由于毕竟是三角形变换,只是角的范围受到限制,因此常见的三角变换方法和原则都适用,注意“统一角、统一函数、统一结构”.考点:1、两角和与差的正弦;2、正弦和余弦定理;3、三角面积公式;4、基本不等式. 17.(本题满分15分) 在四棱锥P A B C D -中,PA ⊥平面A B C D ,AD BC ,24BC AD ==,AB CD =ABP(Ⅰ) 证明:BD ⊥平面PAC ;(Ⅱ) 若二面角A PC D --的大小为60︒,求AP的值. 【答案】(Ⅰ)见解析;(Ⅱ)【解析】试题分析:(Ⅰ) 设O 为AC 与BD 的交点,作DE BC ⊥于点E ,用等腰梯形可证得AC BD⊥,从而问题得证;(Ⅱ)方法一:作⊥,再由PA⊥平面ABCD得PA BD∠是二面OH PC⊥于点H,连接DH,结合(Ⅰ)得PC⊥平面DOH,从而得到DHO--的平面角,再通过角直角三角形求得AP的值;方法二:以O为原点,角A PC D,所在直线为x yOB OC,轴,建立空间直角坐标系,求得各点的坐标,找出平面PDC与PAC平面的法向量,再根据向量的数量积公式及平面角的余弦值求得AP的值.方法二:【方法点睛】立体几何解答题的一般模式是首先证明线面关系,然后是与空间角有关的问题,而在求空间角时往往使用空间向量方法能使问题简单化.空间向量方法就是求直线的方向向量、平面的法向量,按照空间角的计算公式进行计算,也就是把几何问题完全代数化,其关键是正确建立空间直角坐标系.考点:1、空间直线与平面垂直的性质与判定;2、二面角;3、空间向量的应用.18.(本题满分15分)已知函数22()x ax bf xx a--=+[)(0,)x∈+∞,其中0a>,b∈R.记(,)M a b为()f x的最小值.(Ⅰ) 求()f x 的单调递增区间;(Ⅱ) 求a 的取值范围,使得存在b ,满足(,)1M a b =-.【答案】(Ⅰ) 当22a b ≤时,()f x 的单调递增区间为[)0,+∞;当22a b >时,()f x 的单调递增区间为),a -+∞;(Ⅱ) (0,3+.考点:1、函数的单调性与最值;2、分段函数;3、不等式性质.19.(本题满分15分)已知,A B 为椭圆22C :12x y +=上两个不同的点,O 为坐标原点.设直线,,OA OB AB 的斜率分别为12,,k k k .(Ⅰ) 当12k =时,求OA ;(Ⅱ) 当12121k k kk -=+时,求k 的取值范围.【答案】(Ⅰ);(Ⅱ)1⎡-⎢⎣.将11y kx b =+,22y kx b =+代入得221212(21)(1)()0k k x x b k x x b --+-++=,②将①代入②得22242b k k =-++. .........12分联立0∆>与20b ≥得224410,2420,k k k k ⎧-->⎪⎨-++≥⎪⎩ .........13分解得k 的取值范围为1⎡-⎢⎣ ..........15分 考点:1、椭圆的几何性质;2、、直线与椭圆的位置关系;3、直线的方程.【方法点睛】对于直线与圆锥曲线的位置关系问题,往往与一元二次方程组结合,通过根与系数的关系、二次函数的图象与性质,以及平面向量等知识来加以分析与求解.涉及直线方程的问题,一定要分析直线斜率的存在性问题,否则易遗漏其中直线的斜率不存在的情况而导致错误.20.(本题满分15分)已知数列{}n a 满足11a =,11(*)21n n a n a +=∈+N .(Ⅰ) 证明:数列12n a ⎧⎫-⎨⎬⎩⎭为单调递减数列; (Ⅱ) 记n S 为数列{}1n n a a +-的前n 项和,证明:5(*)3n S n <∈N . 【答案】(Ⅰ)见解析;(Ⅱ) 见解析.考点:1、数列的单调性;2、递推数列;3、不等式的性质与证明.。
浙江省嘉兴一中、杭州高级中学、宁波效实中学等2016届高三物
2015学年浙江省第一次五校联考物理试题卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分100分时间100分钟第I 卷一、选择题(本题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.对于质点的运动,下列说法中正确的是( ) A .质点某时间内的速度大小不变,则加速度必为零 B .质点速度变化率越大,则加速度越大C .质点某时刻的加速度不为零,则该时刻的速度也不为零D .质点运动的加速度越大,它的速度变化越大2.质量为m 的物体在竖直向下的恒力F 作用下减速上升了H ,不计空气阻力,在这个过程中,下列说法中正确的是( ) A .物体的重力做功mgH B .物体的动能减少了FHC .物体的机械能增加了mgHD .物体重力势能的增加量小于动能的减少量3.如图所示,水平天花板下用长度相同的绝缘细线悬挂起来的两个相同的带电小球A 、B ,左边放一个带正电的固定球+Q 时,两悬线都保持竖直方向,小球A 与固定球+Q 的距离等于小球A 与小球B 的距离。
下列说法中正确的是( ) A .A 球带正电,B 球带负电,并且A 球带电荷量较大 B .A 球带负电,B 球带正电,并且A 球带电荷量较小 C .A 球带负电,B 球带正电,并且A 球带电荷量较大 D .A 球带正电,B 球带负电,并且A 球带电荷量较小4.平行板电容器的两极板MN接在一恒压电源上,N板接地。
板间有a 、b 、c 三点,如图,若将上板M向下移动少许至图中虚线位置,则( ) A .b 点场强减小 B .b 、c 两点间电势差减小C .c 点电势升高D .a 点电势降低N5.欧姆在探索通过导体的电流、电压、电阻的关系时因无电源和电流表,他利用金属在冷水和热水中产生电动势代替电源,用小磁针的偏转检测电流。
具体做法是:在地磁场作用下处于水平静止的小磁针上方,平行于小磁针水平放置一直导线,当该导线中通有电流时,小磁针会发生偏转;当通过该导线电流为I 时,小磁针偏转了30°;当他发现小磁针偏转了45°,则通过该直导线的电流为(直导线在某点产生的磁感应强度与通过直导线的电流成正比) ( )A .IB .2IC ID .无法确定6.一质量为m 的物体在水平恒定拉力F 的作用下沿水平面运动,在t 0时刻撤去F ,其中v —t 图象如图所示。
2016年高考理科数学浙江卷及答案解析
数学试卷 第1页(共18页)数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1. 答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别书写在试卷和答题纸规定的位置上.2. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上书写作答,在本试卷上作答,一律无效.选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{13}P x x =∈R ≤≤,2{4}Q x x =∈R ≥,则()P Q =R ð( )A . []2,3B . (]2,3-C . [)1,2D . (][),21,-∞-+∞2.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m α∥,n β⊥,则 ( ) A . m l ∥ B . m n ∥ C . n l ⊥D . m n ⊥2.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域20,0,340,x x y x y -⎧⎪+⎨⎪-+⎩≤≥≥中的点在直线20x y +-=上的投影构成的线段记为AB ,则||AB =( )A .B . 4C .D . 6 4.命题“*x n ∀∈∃∈R N ,,使得2n x >”的定义形式是( )A . *x n ∀∈∃∈R N ,,使得2n x <B . *x n ∀∈∀∈R N ,,使得2n x <C . *x n ∃∈∃∈R N ,,使得2n x <D . *x n ∃∈∀∈R N ,,使得2n x <5.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A . 与b 有关,且与c 有关B . 与b 有关,但与c 无关C . 与b 无关,且与c 无关D . 与b 无关,但与c 有关6.如图,点列{},{}n n A B 分别在某锐角的两边上,且112||||n n n n A A A A +++=,2n n A A +≠,*n ∈N ,112||||n n n n B B B B +++=,2n n B B +≠,*n ∈N (P Q ≠表示点P 与Q 不重合),若||n n n d A B =,n S 为1n n n A B B +△的面积,则( )A . {}n S 是等差数列B . 2{}nS 是等差数列 C . {}n d 是等差数列 D . 2{}nd 是等差数列 7. 已知椭圆()212211x m C y m +=>:与双曲线()2222–10n x C y n=>:的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则 ( )A . 121m n e e >>且B . 121m n e e ><且C . 121m n e e <>且D . 121m n e e <<且 8. 已知实数a ,b ,c .( )A . 若22|||1|a b c a b c +++++≤,则222100a b c ++< B . 若22|||1|–a b c a b c ++++≤,则222100a b c ++< C . 若22|||–1|a b c a b c ++++≤,则222100a b c ++< D . 若22|||–1|a b c a b c ++++≤,则222100a b c ++<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9. 若抛物线24y x =上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 10. 已知()()2sin 2cos i 20s n x x A x b A ωϕ+=++>,则A =______,b =________. 11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.12. 已知1a b >>.若log lo 52g a b b a +=,b a a b =,则a = ,b = . 13. 设数列{}n a 的前n 项和为n S 若21421n n S a S n +==+∈*N ,,,则1a = ,5S = .14. 如图,在ABC △中,2120AB BC ABC ==∠=︒,.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA PB BA ==,,则四面体PBCD 的体积的最大值是 .15. 已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是 .-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2cos b c a B +=. (Ⅰ)证明:2A B =; (Ⅱ)若ABC △的面积2=4aS ,求角A 的大小.17.(本小题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,BE =1EF FC ==,2BC =,3AC =.(Ⅰ)求证:BF ⊥平面ACFD ;(Ⅱ)求二面角B AD F --的平面角的余弦值.18.(本小题满分15分) 已知3a ≥,函数2{||min 2}1242F x x x ax a =--+-(),,其中,min{}.,p p q q p q p q ⎨⎩=⎧≤,>,(Ⅰ)求使得等式2242F x x ax a =-+-()成立的x 的取值范围; (Ⅱ)(i )求()F x 的最小值()m a ;(ii )求()F x 在区间[0,6]上的最大值()M a .19.(本小题满分15分)如图,设椭圆22211x y a a+=(>).(Ⅰ)求直线1y kx =+被椭圆截得的线段长(用a ,k 表示);(Ⅱ)若任意以点0,1A ()为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.20.(本小题满分15分)设数列{}n a 满足1||12n n a a +-≤,n ∈*Ν. (Ⅰ)证明:112(||2)n n a a --≥,n ∈*Ν;(Ⅱ)若3||2nn a ≤(),n ∈*Ν,证明:||2n a ≤,n ∈*Ν.数学试卷 第7页(共18页)数学试卷 第8页(共18页)数学试卷 第9页(共18页)2016年普通高等学校招生全国统一考试(浙江卷)理科数学答案解析选择题部分一、选择题 1.【答案】B【解析】2{|}{Q x x 4x |x 2x 2}=∈≥=∈≥≤R R 或﹣,即有R {|Q x 2}x 2-=∈<<R ð, 则R P(Q)23](,=-ð【提示】运用二次不等式的解法,求得集合Q ,求得Q 的补集,再由两集合的并集运算,即可得到所求 【考点】并集及其运算 2.【答案】C【解析】∵互相垂直的平面α,β交于直线l ,直线m ,n 满足m α∥,∴m β∥,m ⊆β或m ⊥β,l ⊆β,∵n ⊥β,∴n l ⊥.故选:C .【提示】由已知条件推导出l ⊆β,再由n ⊥β,推导出n l ⊥ 【考点】直线与平面垂直的判定【提示】做出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可 【考点】简单线性规划的应用. 4.【答案】D【解析】因为全称命题的否定是特称命题,所以,命题“x ∀∈R ,n ∃∈*N ,使得2n x ≥”的否定形式是:x ∃∈R ,n ∀∈*N ,使得2n x <.故选:D .【提示】直接利用全称命题的否定是特称命题写出结果即可 【考点】命题的否定. 5.【答案】B【解析】∵设函数2f (x)sin x bsinx c =++,∴c 是图像的纵坐标增加了c ,横坐标不变,故周期与c 无关,当b 0=时,211f (x)sin x bsinx c cos2x c 22=++=-++的最小正周期为2πT π2==, 当b 0≠时,11f x cos2x bsinx c 22=-+++(), ∵y cos2x =的最小正周期为π,y bsinx =的最小正周期为2π, ∴f (x)的最小正周期为2π,故f (x)的最小正周期与b 有关,故选:B. 【提示】根据三角函数的图像和性质即可判断 【考点】三角函数的周期性及其求法. 6.【答案】A【解析】设锐角的顶点为O ,1|OA |a =,1|OB |b =,n n 1n 1n 2A A A |||A b |+++==,n n 1n 1n 2B B B |||B d |+++==,n d h ,可得即为n 2n 1n 1n S S S S +++-=-,则数列n {S }为等差数列.故选:A .【提示】设锐角的顶点为O ,1|OA |a =,1|OB |b =,n n 1n 1n 2A A A |||A b |+++==,n n 1n 1n 2B B B |||B d |+++==,由于a ,b 不确定,判断C ,D 不正确,设n n n 1A B B +△的底边n n 1B B +上的高为n h ,运用三角形相似知识,n n 2n 1h h 2h +++=,由n n 1S d h 2=,可得n n 2n 1S S 2S +++=,进而得到数列n {S }为等差数列 【考点】数列与函数的综合. 212c c c e m n mn==, 221222c c e m n m (m 1)(n )-⎛⎫=⎛⎫= ⎪⎝⎭ ⎪⎝⎭数学试卷 第10页(共18页) 数学试卷 第11页(共18页)数学试卷 第12页(共18页)∴12e e 1>,故选:A .【提示】根据椭圆和双曲线有相同的焦点,得到222c m 1n 1-==+,即22m n 2-=,进行判断,能得m n >,求出两个离心率,先平方进行化简进行判断即可 【考点】椭圆的简单性质,双曲线的简单性质. 8.【答案】D 【解析】A .设a b 10==,c 110=-,则22a b c ||a c 1||b 0+++++=≤,222a b c 100++>;B .设a 10=,b 100=-,c 0=,则22a b c ||a b c 0|1|++++-=≤,222a b c 100++>;C .设a 100=,b 100=-,c 0=,则22a b c a b c 0|||1|+++-=≤+,222a b c 100++>;故选:D .【提示】本题可根据选项特点对a ,b ,c 设定特定值,采用排除法解答 【考点】命题的真假判断与应用.非选择题部分二、填空题 9.【答案】9【解析】解:抛物线的准线x 1=-,∵点M 到焦点的距离为10,∴点M 到准线x 1=-的距离为10,∴点M 到y 轴的距离为9,故答案为:9【提示】根据抛物线的性质得出M 到准线x 1=-的距离为10,故到y 轴的距离为9 【考点】抛物线的简单性质. 【提示】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案 【考点】两角和与差的正弦函数. 11.【答案】7232【解析】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,则其表面积为222(246)72cm ⨯-=,其体积为34232⨯=,故答案为:72,32【提示】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,代入体积公式和面积公式计算即可. 【考点】由三视图求面积、体积 12.【答案】4 【提示】设b t log a =并由条件求出t 的范围,代入a b log b log a 2+=化简后求出t 的值,得到a 与b 的关系式代入b a a b =化简后列出方程,求出a 、b 的值. 【考点】对数的运算性质. 13.【答案】1 121【解析】由n 1=时,11a S =,可得211a 2S 12a 1=+=+,又2S 4=,即12a a 4+=,即有13a 14+=,解得1a 1=;由n 1n 1n a S S ++-=,可得n 1n S 3S 1+=+,由2S 4=,可得3S 34113=⨯+=,4S 313140=⨯+=,5S 3401121=⨯+= 故答案为:1,121.【提示】运用n 1=时,11a S =,代入条件,结合2S 4=,解方程可得首项;再由n 1>时,n 1n 1n a S S ++-=,结合条件,计算即可得到所求和.【考点】数列的概念及简单表示法. 14.【答案】1【解析】如图,M 是AC 的中点.①当AD t AM 3=<=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AE ,h t22211t 13(3t)(23t)1326(3t)1(3t)---=-+-+②当AD t AM 3=>=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AH ,11AD BM BD AH 22=,∴11t 1(t 22=22211t 13(3t)V (23t)1326(3t)1(3t)--=-=-+-+213(36(3t)---[)11,2+∈214m 6m-,∴数学试卷 第13页(共18页)数学试卷 第14页(共18页) 数学试卷 第15页(共18页)【提示】由题意,ABD PBD △≌△,可以理解为PBD △是由△ABD 绕着BD 旋转得到的,对于每段固定的AD ,底面积BCD 为定值,要使得体积最大,PBD △必定垂直于平面ABC ,此时高最大,体积也最大. 【考点】棱柱、棱锥、棱台的体积.15.【答案】12【解析】∵(a b)e a e b e a e b e 6+=+≤+≤,∴(a b)e a b 6+=+≤,平方得:22a b 2a b 6++≤,即22122a b 6++≤,则1a b 2≤,故a b 的最大值是12,故答案为:12.【提示】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论 【考点】平面向量数量积的运算. 三、解答题【考点】余弦定理,正弦定理.【提示】(Ⅰ)先证明BF AC ⊥,再证明BF CK ⊥,进而得到BF ⊥平面ACFD . (Ⅱ)先找二面角B AD F --的平面角,再在Rt BQF △中计算,即可得出; 【考点】二面角的平面角及求法,空间中直线与直线之间的位置关系. 18.【答案】解:(Ⅰ)由于a 3≥,故当x 1≤时,数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)19.【答案】解:(Ⅰ)设直线y kx 1=+被椭圆截得的线段为AP ,由222y kx 1x y 1a=+⎧⎪⎨+=⎪⎩,得2222(1a k )x 2a kx 0++=,221k +.轴左侧的椭圆上 【考点】椭圆的简单性质;圆与圆锥曲线的综合.m mn n nn 1m 113322222224-⎡⎤⎫⎛⎫⎛⎫≤+=+⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎭⎣⎦.,均有mn n 3a 224⎛⎫<+ ⎪⎝⎭.由m 的任意性得n a 2≤①否则,数0m >03n 042n 33244⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭综上,对于任意n ∈*Ν,均有n a (Ⅱ)利用(Ⅰ)的结论得出n m n m n 1a a 1222--<,进而得出n n 3a 224⎛⎫<+ ⎪⎝⎭,利用m 的任意性可证n a 2≤ 【考点】数列与不等式的综合。
数学文卷·2016届浙江省嘉兴一中、杭州高级中学、宁波效实中学等五校高三上学期第一次联考(2015.12)
2015学年浙江省第一次五校联考数学(文科)试题卷本试题卷分选择题和非选择题两部分.全卷共4页, 选择题部分1至2页, 非选择题部分3至4页.满分150分, 考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.参考公式:柱体的体积公式V=Sh 其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式 V=13Sh 其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式1()123V h S S =++ 其中S 1,S 2分别表示台体的上,下底面积球的表面积公式S =4πR 2 其中R 表示球的半径,h 表示台体的高 球的体积公式V=43πR 3 其中R 表示球的半径第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,{|21}x A y y ==+,{|ln 0}B x x =<,则()U C A B = ( )A .∅B .1{|1}2x x <≤ C .{|1}x x < D .{}01x x <<2.设0x >,则“1a =”是“2ax x+≥恒成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3. 已知函数()2sin(2)6f x x π=+,把函数)(x f 的图象沿x 轴向左平移6π个单位,得到函数)(x g 的图象.关于函数)(x g ,下列说法正确的是( ) A. 在]2,4[ππ上是增函数 B. 其图象关于直线4π-=x 对称 C. 函数)(x g 是奇函数 D. 当[0,]3x π∈时,函数)(x g 的值域是[1,2]-4.已知,a b 为平面向量,若a b + 与a 的夹角为3π,a b + 与b 的夹角为4π,则a b=( )5.设a b 、是两条不同的直线,αβ、是两个不同的平面,则下面四个命题中错误..的是( ) (A )若,,a b a b αα⊥⊥⊄ ,则b //α (B )若,,a b a b αβ⊥⊥⊥ ,则αβ⊥ (C )若,a βαβ⊥⊥ ,则a //α或 a α⊆ (D )若 a //,ααβ⊥ ,则a β⊥6. 在ABC ∆中,3AB =,4AC =,5BC =,若I 为ABC ∆的内心,则·CI CB的值为( )A. 6B. 10C. 12D.157.已知等差数列{}n a 的公差0≠d ,且1331,,a a a 成等比数列,若11=a ,n S 为数列{}n a 的前n 项和,则3162++n n a S 的最小值为( )A .4B .3C .2D .928. 定义域为R 的偶函数)(x f 满足对x R ∀∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f ,若函数)1|(|log )(+-=x x f y a 至少有6个零点,则a 的取值范围是( ) A .)22,0( )33,0( B . C . )55,0( D .)66,0(第Ⅱ卷 非选择题部分(共110分)二、填空题: (本大题共7小题, 前4小题每题6分, 后3小题每题4分,共36分). 9. 已知{}n a 为等差数列,若π8951=++a a a ,则{}n a 前9项的和9S = ▲ ,)cos(73a a +的值为 ▲ .10. 已知1cos(),43πθ+=- θ为锐角,则sin 2θ= ▲ ,sin(2)3πθ+= ▲ 11. 所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S ABC -中,M 是SC 的中点,且AM SB ⊥,底面边长AB =则正三棱锥S ABC -的体积为▲ ,其外接球的表面积为 ▲ 12. 己知0,0,a b >>且,1=+b a 则⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-111122b a 的最小值为___▲____. 21a ab+的最小值为 ▲ ,13. 已知不等式组210,2,10x y x x y -+⎧⎪⎨⎪+-⎩≥≤≥表示的平面区域为D ,若函数1y x m =-+的图像上存在区域D 上的点,则实数m 的取值范围是 ▲14.已知函数222,1()11,1x x x f x x x⎧-+≤⎪=⎨->⎪⎩,若对任意,x R ∈()10f x x k x ----≤恒成立,则实数k 的取值范围是 ▲15.如图,矩形ABCD 中,AB=2AD,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE.若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下面四个选项中正确的是 ▲ (填写所有的正确选项) (1)|BM |是定值(2)点M 在某个球面上运动(3)存在某个位置,使DE ⊥A 1 C(4)存在某个位置,使MB//平面A 1DE三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分) 已知命题212:,10p x x x mx --=是方程的两个实根,且不等式21243||a a x x +-≤-对任意m R ∈恒成立;命题q: 不等式220x x a ++<有解,若命题p q ∨为真,p q ∧为假,求a 的取值范围.17.(本题满分15分)已知函数21()2cos ,()2f x x x x R =--∈ (1)当5[,]1212x ππ∈-时,求函数()f x 的值域.(2)设ABC ∆的内角,,A B C 的对应边分别为,,a b c ,且)0c ==,若向量(1,sin )m A =与向量(2,sin )n B =共线,求,a b 的值。
2016年高考理科数学浙江卷(含答案解析)
绝密★启用前2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1. 答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别书写在试卷和答题纸规定的位置上.2. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上书写作答,在本试卷上作答,一律无效.选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{13}P x x =∈R ≤≤,2{4}Q x x =∈R ≥,则()P Q =R( )A . []2,3B . (]2,3-C . [)1,2D . (][),21,-∞-+∞2.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m α∥,n β⊥,则 ( ) A . m l ∥ B . m n ∥ C . n l ⊥D . m n ⊥2.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域20,0,340,x x y x y -⎧⎪+⎨⎪-+⎩≤≥≥中的点在直线20x y +-=上的投影构成的线段记为AB ,则||AB =( )A . 22B . 4C . 32D . 6 4.命题“*x n ∀∈∃∈R N ,,使得2n x >”的定义形式是( )A . *x n ∀∈∃∈R N ,,使得2n x <B . *x n ∀∈∀∈R N ,,使得2n x <C . *x n ∃∈∃∈R N ,,使得2n x <D . *x n ∃∈∀∈R N ,,使得2n x <5.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A . 与b 有关,且与c 有关B . 与b 有关,但与c 无关C . 与b 无关,且与c 无关D . 与b 无关,但与c 有关6.如图,点列{},{}n n A B 分别在某锐角的两边上,且112||||n n n n A A A A +++=,2n n A A +≠,*n ∈N ,112||||n n n n B B B B +++=,2n n B B +≠,*n ∈N (P Q ≠表示点P 与Q 不重合),若||n n n d A B =,n S 为1n n n A B B +△的面积,则( )A . {}n S 是等差数列B . 2{}nS 是等差数列 C . {}n d 是等差数列 D . 2{}nd 是等差数列 7. 已知椭圆()212211x m C y m +=>:与双曲线()2222–10n x C y n=>:的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则( )A . 121m n e e >>且B . 121m n e e ><且C . 121m n e e <>且D . 121m n e e <<且 8. 已知实数a ,b ,c .( )A . 若22|||1|a b c a b c +++++≤,则222100a b c ++<B . 若22|||1|–a b c a b c ++++≤,则222100a b c ++<C . 若22|||–1|a b c a b c ++++≤,则222100a b c ++<D . 若22|||–1|a b c a b c ++++≤,则222100a b c ++<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9. 若抛物线24y x =上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 10. 已知()()2sin 2cos i 20s n x x A x b A ωϕ+=++>,则A =______,b =________. 11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.12. 已知1a b >>.若log lo 52g a b b a +=,b a a b =,则a = ,b = . 13. 设数列{}n a 的前n 项和为n S 若21421n n S a S n +==+∈*N ,,,则1a = ,5S = .14. 如图,在ABC △中,2120AB BC ABC ==∠=︒,.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA PB BA ==,,则四面体PBCD 的体积的最大值是 .15. 已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是 .-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2cos b c a B +=. (Ⅰ)证明:2A B =; (Ⅱ)若ABC △的面积2=4aS ,求角A 的大小.17.(本小题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,BE =1EF FC ==,2BC =,3AC =.(Ⅰ)求证:BF ⊥平面ACFD ;(Ⅱ)求二面角B AD F --的平面角的余弦值.18.(本小题满分15分) 已知3a ≥,函数2{||min 2}1242F x x x ax a =--+-(),,其中,min{}.,p p q q p q p q ⎨⎩=⎧≤,>, (Ⅰ)求使得等式2242F x x ax a =-+-()成立的x 的取值范围; (Ⅱ)(i )求()F x 的最小值()m a ; (ii )求()F x 在区间[0,6]上的最大值()M a .19.(本小题满分15分)如图,设椭圆22211x y a a+=(>).(Ⅰ)求直线1y kx =+被椭圆截得的线段长(用a ,k 表示);(Ⅱ)若任意以点0,1A ()为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.20.(本小题满分15分)设数列{}n a 满足1||12n n a a +-≤,n ∈*Ν. (Ⅰ)证明:112(||2)n n a a --≥,n ∈*Ν;(Ⅱ)若3||2nn a ≤(),n ∈*Ν,证明:||2n a ≤,n ∈*Ν.2016年普通高等学校招生全国统一考试(浙江卷)理科数学答案解析选择题部分一、选择题 1.【答案】B【解析】2{|}{Q x x 4x |x 2x 2}=∈≥=∈≥≤R R 或﹣,即有R{|Q x 2}x 2-=∈<<R ,则R P(Q)23](,=-【提示】运用二次不等式的解法,求得集合Q ,求得Q 的补集,再由两集合的并集运算,即可得到所求 【考点】并集及其运算 2.【答案】C【解析】∵互相垂直的平面α,β交于直线l ,直线m ,n 满足m α∥,∴m β∥,m ⊆β或m ⊥β,l ⊆β,∵n ⊥β,∴n l ⊥.故选:C . 【提示】由已知条件推导出l ⊆β,再由n ⊥β,推导出n l ⊥ 【考点】直线与平面垂直的判定 3.【答案】C【解析】做出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x y 20+-=上的投影构成线段R Q '',即SAB ,而R Q RQ ''=,由x 3y 44x y 0-+=⎧⎨+=⎩得x 1y 1=-⎧⎨=⎩,即Q(1,1)-,由x 2x y 0=⎧⎨+=⎩得x 2y 2=⎧⎨=-⎩,即R(2,2)﹣,则AB QR ==故选:C【提示】做出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可 【考点】简单线性规划的应用. 4.【答案】D【解析】因为全称命题的否定是特称命题,所以,命题“x ∀∈R ,n ∃∈*N ,使得2n x ≥”的否定形式是:x ∃∈R ,n ∀∈*N ,使得2n x <.故选:D .【提示】直接利用全称命题的否定是特称命题写出结果即可 【考点】命题的否定. 5.【答案】B【解析】∵设函数2f (x)sin x bsinx c =++,∴c 是图像的纵坐标增加了c ,横坐标不变,故周期与c 无关,当b 0=时,211f (x)sin x bsinx c cos2x c 22=++=-++的最小正周期为2πT π2==,当b 0≠时,11f x cos2x bsinx c 22=-+++(), ∵y cos2x =的最小正周期为π,y bsinx =的最小正周期为2π, ∴f (x)的最小正周期为2π,故f (x)的最小正周期与b 有关,故选:B. 【提示】根据三角函数的图像和性质即可判断 【考点】三角函数的周期性及其求法. 6.【答案】A【解析】设锐角的顶点为O ,1|OA |a =,1|OB |b =,n n 1n 1n 2A A A |||A b |+++==,n n 1n 1n 2B B B |||B d |+++==,由于a ,b 不确定,则n {d }不一定是等差数列,2n {d }不一定是等差数列,设n n n 1A B B +△的底边n n 1B B +上的高为n h ,由三角形的相似可得n n n 1n 1h OA a (n 1)bh OA a nb+++-==+,n 2n 2n 1n 1h OA a (n 1)bh OA a nb++++++==+, 两式相加可得n n 2n 1h h 2a 2b2h a nb ++++==+,即有n n 2h h 2++=,由n n 1S d h 2=,可得n n 2n 1S S 2S +++=,即为n 2n 1n 1n S S S S +++-=-,则数列n {S }为等差数列.故选:A .【提示】设锐角的顶点为O ,1|OA |a =,1|OB |b =,n n 1n 1n 2A A A |||A b |+++==,n n 1n 1n 2B B B |||B d |+++==,由于a ,b 不确定,判断C ,D 不正确,设n n n 1A B B +△的底边n n 1B B +上的高为n h ,运用三角形相似知识,n n 2n 1h h 2h +++=,由n n 1S d h 2=,可得n n 2n 1S S 2S +++=,进而得到数列n {S }为等差数列 【考点】数列与函数的综合. 7.【答案】A【解析】∵椭圆2212C y 1,(x 1m ):m +=>与双曲线2222C y 1,(x )m0:n =->的焦点重合,∴满足222c m 1n 1-==+,即22m n 20-=>,∴22m n >,则m n >,排除C ,D 则222c m 1m -=<,222c n 1n =+>,则c m <、c n >,1c e m =,2ce n=, 则212c c c e e m n mn==, 则221222222222222222222c c (e e m n m n (m 1)(n 1)m n (m n )1m m n m n n 111m n )11-+----⎛⎫==⎛⎫= ⎪⎝⎭=+=+> ⎪⎝⎭∴12e e 1>,故选:A .【提示】根据椭圆和双曲线有相同的焦点,得到222c m 1n 1-==+,即22m n 2-=,进行判断,能得m n>,求出两个离心率,先平方进行化简进行判断即可 【考点】椭圆的简单性质,双曲线的简单性质. 8.【答案】D【解析】A .设a b 10==,c 110=-,则22a b c ||a c 1||b 0+++++=≤,222a b c 100++>;B .设a 10=,b 100=-,c 0=,则22a b c ||a b c 0|1|++++-=≤,222a b c 100++>;C .设a 100=,b 100=-,c 0=,则22a b c a b c 0|||1|+++-=≤+,222a b c 100++>;故选:D .【提示】本题可根据选项特点对a ,b ,c 设定特定值,采用排除法解答 【考点】命题的真假判断与应用.非选择题部分二、填空题 9.【答案】9【解析】解:抛物线的准线x 1=-,∵点M 到焦点的距离为10,∴点M 到准线x 1=-的距离为10,∴点M 到y 轴的距离为9,故答案为:9【提示】根据抛物线的性质得出M 到准线x 1=-的距离为10,故到y 轴的距离为9 【考点】抛物线的简单性质. 10.【解析】∵22cos x sin2x 1cos2x sin2x +=++1122⎫=+++⎪⎪⎭π2x 14⎛⎫=++ ⎪⎝⎭,∴A =b 1=【提示】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案 【考点】两角和与差的正弦函数. 11.【答案】72 32【解析】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,则其表面积为222(246)72cm ⨯-=,其体积为34232⨯=,故答案为:72,32【提示】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,代入体积公式和面积公式计算即可. 【考点】由三视图求面积、体积 12.【答案】4 2【解析】解:设b t log a =,由a b 1>>知t 1>,代入a b 5log b log a 2+=得15t t 2+=,即22t 5t 20-+=,解得t 2=或1t 2=(舍去),所以b log a 2=,即2a b =,因为b a a b =,所以2b a b b =,则2a 2b b ==,解得b 2=,a 4=, 故答案为:4;2.【提示】设b t log a =并由条件求出t 的范围,代入a b 5log b log a 2+=化简后求出t 的值,得到a 与b 的关系式代入b a a b =化简后列出方程,求出a 、b 的值. 【考点】对数的运算性质. 13.【答案】1 121【解析】由n 1=时,11a S =,可得211a 2S 12a 1=+=+,又2S 4=,即12a a 4+=, 即有13a 14+=,解得1a 1=;由n 1n 1n a S S ++-=,可得n 1n S 3S 1+=+,由2S 4=,可得3S 34113=⨯+=,4S 313140=⨯+=,5S 3401121=⨯+= 故答案为:1,121.【提示】运用n 1=时,11a S =,代入条件,结合2S 4=,解方程可得首项;再由n 1>时,n 1n 1n a S S ++-=,结合条件,计算即可得到所求和.【考点】数列的概念及简单表示法. 14.【答案】12【解析】如图,M 是AC 的中点.①当AD t AM3=<=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AE ,DM t =,由ADE BDM △∽△,可得h 1, ∴h =,22211t 13(3t)V (23t)1326(3t)1(3t)--=-=-+-+,t ∈ ②当AD t AM 3=>=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AH ,DM t =,由等面积,可得11AD BM BD AH 22=,∴11t 1(t 22= ∴h =,∴22211t 13(3t)V (23t)1326(3t)1(3t)--=-=-+-+,t ∈综上所述,213(3V 6(3t)--=-,t ∈令[)m 1,2则214m V 6m-=,∴m 1=时,max 1V 2=. 故答案为:12【提示】由题意,ABD PBD △≌△,可以理解为PBD △是由△ABD 绕着BD 旋转得到的,对于每段固定的AD ,底面积BCD 为定值,要使得体积最大,PBD △必定垂直于平面ABC ,此时高最大,体积也最大. 【考点】棱柱、棱锥、棱台的体积.15.【答案】12【解析】∵(a b)e a e b e a e b e 6+=+≤+≤,∴(a b)e a b 6+=+≤,平方得:22a b 2a b 6++≤,即22122a b 6++≤,则1a b 2≤,故a b 的最大值是12,故答案为:12.【提示】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论 【考点】平面向量数量积的运算. 三、解答题16.【答案】(Ⅰ)由正弦定理得sinB sinC 2sinAcosB +=2sinAcosB sinB sin(A B)sinB sinAcosB cosAsinB =++=++,于是sinB sin(A B)=-又A,B (0,π)∈, 故0A B π<-<,所以B π(A B)=--或B A B =-, 因此A π=(舍去)或A 2B =, 所以,A 2B =(Ⅱ)由2a S 4=得21a absinC 24=,故有1sinBsinC sin2B sinBcosB 2==, 因sinB 0≠,得sinC cosB =.又B,C (0,π)∈,所以C B 2π=±.当πB C 2+=时,πA 2=;当πC B 2-=时,πA 4=.综上,πA 2=或πA 4=.【提示】(Ⅰ)利用正弦定理,结合和角的正弦公式,即可证明A 2B =(Ⅱ)若ABC △的面积2a S 4=,则21a absinC 24=,结合正弦定理、二倍角公式,即可求角A 的大小.【考点】余弦定理,正弦定理.17.【答案】解:(Ⅰ)延长AD ,BE ,CF 相交于一点K ,如图所示. 因为平面BCFE ABC ⊥平面,且AC BC ⊥, 所以,AC ⊥平面BCK , 因此,BF AC ⊥.又因为EFBC ∥,BE EF FC 1===,BC 2=, 所以BCK △为等边三角形,且F为CK 的中点, 则BF CK ⊥,所以BF ⊥平面ACFD .(Ⅱ)过点F 作FQ AK ⊥,连结BQ . 因为BF ⊥平面ACK ,所以BF AK ⊥,则AK ⊥平面BQF , 所以BQ AK ⊥.所以BQF ∠是二面角B AD F --的平面角. 在Rt ACK △中,AC 3=,CK 2=,得FQ 在Rt BQF △中,FQ =BF =,得cos BQF ∠=所以,二面角B AD F --的平面角的余弦值为4.【提示】(Ⅰ)先证明BF AC ⊥,再证明BF CK ⊥,进而得到BF ⊥平面ACFD . (Ⅱ)先找二面角B AD F --的平面角,再在Rt BQF △中计算,即可得出; 【考点】二面角的平面角及求法,空间中直线与直线之间的位置关系. 18.【答案】解:(Ⅰ)由于a 3≥,故当x 1≤时,22(x 2ax 4a 2)2x 1x 2(a 1)(2x)0-+---=+-->,当x 1>时,2(x 2ax 4a 2)2x 1(x 2)(x 2a)-+---=--.所以,使得等式2F(x)x2ax 4a 2=-+-成立的x 的取值范围为[2,2a].(Ⅱ)(ⅰ)设函数f (x)2x 1=-,2g(x)x 2ax 4a 2=-+-,则min f (x)f (x)0==,2min g(x)g(a)a 4a 2==-+-,所以,由F(x)的定义知{}m(a)min f (1),g(a)=,即20,3a 2m(a)a 4a 2,a 2⎧≤≤+⎪=⎨-+->+⎪⎩ (ⅱ)当0x 2≤≤时,{}F(x)f (x)max f (0),f (2)2F(2)≤≤==,当2x 6≤≤时,F(x)g(x)max{g(2),g(6)}max{2,348a}max{F(2),F(6)}≤≤=-=.所以,348a,3a 4M(a)2,a 4-≤<⎧=⎨≥⎩. 【提示】(Ⅰ)由a 3≥,讨论x 1≤时,x 1>,去掉绝对值,化简2x 2ax 4a 22x 1-+---,判断符号,即可得到2F(x)x 2ax 4a 2=-+-成立的x 的取值范围;(Ⅱ)(ⅰ)设f (x)2x 1=-,2g(x)x 2ax 4a 2=-+-,求得f (x)和g(x)的最小值,再由新定义,可得F(x)的最小值;(ⅱ)分别对当0x 2≤≤时,当2x 6<≤时,讨论F(x)的最大值,即可得到F(x)在[0,6]上的最大值M【考点】函数最值的应用,函数的最值及其几何意义.19.【答案】解:(Ⅰ)设直线y kx 1=+被椭圆截得的线段为AP ,由222y kx 1x y 1a=+⎧⎪⎨+=⎪⎩,得2222(1a k )x 2a kx 0++=,故1x 0=,22222a k x 1a k =-+.因此2212222a k AP x 1k 1a k =-=++.(Ⅱ)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP AQ =.记直线AP ,AQ 的斜率分别为1k ,2k ,且1k ,2k 0>,12k k ≠.由(Ⅰ)知,1AP =2AQ =12=,所以22222222121212(k k )[1k k a (2a )k k ]0-+++-=.由于12k k ≠,1k ,2k 0>得22222212121k k a (2a )k k 0+++-=,因此22221211111a (a 2)k k ⎛⎫⎛⎫++=+- ⎪⎪⎝⎭⎝⎭①因为①式关于1k ,2k 的方程有解的充要条件是:221a (a 2)1+->,所以a >因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1a 2<≤,由c e a ==得,所求离心率的取值范围为0e 2<≤【提示】(Ⅰ)联立直线y kx 1=+与椭圆方程,利用弦长公式求解即可.(Ⅱ)写出圆的方程,假设圆A 与椭圆由4个公共点,再利用对称性有解已知条件可得任意A(0,1)为圆心的圆与椭圆至多有3个公共点,a 的取值范围,进而可得椭圆的离心率的取值范围.【考点】椭圆的简单性质;圆与圆锥曲线的综合. 20.【答案】解:(Ⅰ)由n 1n a a 12+-≤得n n 11a a 12+-≤,故n n 1n n 1n a a 1222++-≤,n ∈*Ν, 所以1n1223n 1n 1n 1223n 1n 12n 1a a a a a a a a 111122222222222---⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+-≤++⋅⋅⋅+< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因此n 1n 1a 2(a 2)-≥-.(Ⅱ)任取n ∈*Ν,由(Ⅰ)知,对于任意m n >,n m n n 1n 1n 2m 1m nmnn 1n 1n 2m 1m n n 1m 1n 1a a a a a a a a 1111222222222222+++-+++-+--⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+-≤++⋅⋅⋅+< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故m mm n n nn n 1m n 1m a 11133a 2222222224--⎡⎤⎛⎫⎛⎫⎛⎫<+≤+=+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦.从而对于任意m n >,均有mn n 3a 224⎛⎫<+ ⎪⎝⎭.由m 的任意性得n a 2≤①否则,存在0n ∈*Ν,有0n a 2>,取正整数00n 03n 4a 2m log 2->且00m n >,则n 003n 040a 2m log 2m n n 3322a 244-⎛⎫⎛⎫<=- ⎪ ⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n ∈*Ν,均有n a 2≤ 【提示】(Ⅰ)使用三角不等式得出n 1n a a 12+-≤,变形得n n 1n n 1na a 1222++-≤,使用累加法可求得n n 11a a 12+-≤,即结论成立; (Ⅱ)利用(Ⅰ)的结论得出n m n m n 1a a 1222--<,进而得出mn n 3a 224⎛⎫<+ ⎪⎝⎭,利用m 的任意性可证n a 2≤ 【考点】数列与不等式的综合。
浙江省嘉兴一中2016届高三上学期综合能力测试数学(理)试卷
2015年高三测试卷数 学(理科)姓名______________ 准考证号______________ 本试题卷分选择题和非选择题两部分。
全卷共4页, 选择题部分1至2页, 非选择题部分3至4页。
满分150分, 考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分 (共40分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式: 球的表面积公式24πS R =球的体积公式343πV R =其中R 表示球的半径 柱体的体积公式 V =Sh其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式 V =13Sh 其中S 表示锥体的底面积,h 表示锥体的高 台体的体积公式()1213V h S S =++其中S 1, S 2分别表示台体的上、下底面积, h 表示台体的高一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.直线1y =+的倾斜角是A.π6B. π3C. 2π3D.5π62.若某几何体的三视图(单位:cm)如图所示,则该几何体的 体积等于A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 33.已知,a b 为异面直线.对空间中任意一点P ,存在过点P 的 直线A. 与,a b 都相交B. 与,a b 都垂直C. 与a 平行,与b 垂直D. 与,a b 都平行4.为得到函数π2sin(2)4y x =+的图象,只需将函数2cos 2y x =的图象A. 向左平移π4单位B. 向右平移π4单位C. 向左平移π8单位D. 向右平移π8单位5.已知(),(),()f x g x h x 为R 上的函数,其中函数()f x 为奇函数,函数()g x 为偶函数,则A. 函数(())h g x 为偶函数B. 函数(())h f x 为奇函数C. 函数(())g h x 为偶函数D. 函数(())f h x 为奇函数6.命题“0x ∃∈R ,010x +<或2000x x ->”的否定形式是A. 0x ∃∈R ,010x +≥或2000x x -≤B. x ∀∈R ,10x +≥或20x x -≤C. 0x ∃∈R ,010x +≥且2000x x -≤D. x ∀∈R ,x 27.如图,A ,F 分别是双曲线2222C 1 (0)x ya b a b-=:,>的左顶点、右焦点,过F 的直线l 与C 的一条渐近线垂直且与另一条渐近线和y 轴分别交于P ,Q 两点.若AP ⊥AQ ,则C 的离心率是A B C D 8.已知函数()()2()ka x f x a -=∈R ,且(1)(3)f f >,(2)(3)f f >.A. 若1k =,则12a a -<-B. 若1k =,则12a a ->-C. 若2k =,则12a a -<-D. 若2k =,则12a a ->-非选择题部分 (共110分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上, 不能答在试题卷上。
浙江省嘉兴一中2016届高三上学期阶段性考试数学(理)试卷
嘉兴市第一中学高三年级阶段性练习卷数学(理科) 试题卷命题:李晓峰 审题: 吴旻玲满分[ 150]分 ,时间[120]分钟 2015年10月第I 卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{}|05A x x =∈≤≤N ,{}5,3,1=B C A ,则集合=B ( ▲ )A .{}4,2B .{}4,2,0C .{}3,1,0D .{}4,3,2 2.命题“2[1,2],0x xa ∀∈-≤”为真命题的一个充分不必要条件是( ▲ )A .4a ≥ B. 4a ≤ C.5a ≥ D. 5a ≤3.设,,l m n 表示三条不同的直线,,αβ表示两个不同的平面,则下列说法正确的是( ▲ )A .若l ∥m ,m α⊂,则l ∥α;B .若,,,l m l n m n α⊥⊥⊂,则l α⊥;C .若,,l m l m αβ⊂⊂⊥,则αβ⊥;D .若l ∥α,l ∥β,m αβ=,则l ∥m .4.若3cos 2sin αα-=3sin cos 3sin cos αααα-=+( ▲ )A .23-B .32-C .117D .35.将函数)32sin(π+=x y 的图象经怎样平移后所得的图象关于点)0,12(π-中心对称( ▲ )A .向左平移12πB .向右平移12πC .向左平移6π D .向右平移6π6.已知双曲线22221(0,0)x y a b a b-=>>与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,若5PF =,则双曲线的离心率为( ▲ )A .2B .3C .332 D . 57.在数列}{n a 中,若存在非零整数T ,使得m T m a a =+对于任意的正整数m 均成立,那么称数列}{n a 为周期数列,其中T 叫做数列}{n a 的周期. 若数列}{n x 满足俯视图),2(||11N n n x x x n n n ∈≥-=-+,如)0,(,121≠∈==a R a a x x ,当数列}{n x 的周期最小时,该数列的前2015项的和是( ▲ )A .671B .672C .1342D .1344 8.设偶函数)(x f y =和奇函数)(x g y =的图象如下图所示b a ,,若121<<t ,则b a +的值不.可能是( ▲ ) A .12 B .13 C .14 D .15第Ⅱ卷(非选择题 共110分) 二、填空题:(本大题共7小题, 前4题每空3分,后3题每空4分, 共36分.) 9.一个正四棱锥的所有棱长均为2,其俯视图如右图所示,则该正四棱锥的正视图的面积为 ▲ ,体积为 ▲ . 10.已知函数)10lg()(2x x f -=,则)(x f 的定义域为 ▲ , )(x f 最大值为 ▲ .11.若向量a 与b 满足2||=a ,2||=b ,a b a ⊥-)(.则向量a 与的夹角等于 ▲ ;=+||b a ▲ .12.记公差d 不为0的等差数列}{n a 的前n 项和为n S ,93=S ,853a a a ,,成等比数列,则公差d = ▲ ;数列}{n a 的前n 项和为n S = ▲ .13.设,x y 满足约束条件⎪⎩⎪⎨⎧≥≥≥-≤--,0,0,0,023y x y x y x 若目标函数)0,0(>>+=b a by ax z 的最大值为1,则14a b+的最小值为 ▲ . 14.在平面直角坐标系xOy 中,圆()22:15C x y -+=和y 轴的负半轴相交于A 点,点B 在圆C 上(不同于点A ),M 为AB 的中点,且OA OM =,则点M 的纵坐标为 ▲ . 15.设x 为实数,定义{x }为不小于x 的最小整数,例如{5.3}=6,{-5.3}=-5,则关于x 的方程{3x +4}=2x +23的全部实根之和为 ▲ .三、解答题:(本大题共5个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 16.(本题满分14分) 设ABC ∆的内角C B A ,,所对应的边分别为c b a ,,, 已知()sin sin sin a b a cA B A B+-=+-.(Ⅰ)求角B (Ⅱ)若36cos ,3==A b ,求ABC ∆的面积.17.(本题满分15分)ABC ∆中,4,45AB AC BAC ==∠=,以AC 的中线BD 为折痕,将ABD ∆沿BD 折起,如图所示,构成二面角A BD C --,在面BCD 内作CE CD ⊥,且CE = (I )求证:CE ∥平面ABD ;(II )如果二面角A BD C --的大小为90,求二面角B AC E --的余弦值.18.(本题满分15分)已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点和短轴的两个端点构成边长为2的正方形.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点)0,1(Q 的直线l 与椭圆C 相交于A ,B 两点.点(4,3)P ,记直线P A ,P B 的斜率分别为k k ,当21k k 最大时,求直线l 的方程.ABCDE19.(本题满分15分)设二次函数()()2,f x x bx c b c R =++∈,()01=f ,且13x ≤≤时,()0f x ≤恒成立,()f x 是区间[)+∞,2上的增函数.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若()()f m f n =,且2m n <<,n m u +=,求u 的取值范围. 20.(本题满分15分)已知横坐标为的点P 在曲线C : ()11y x x=>上,曲线C 在点P 处的切线1(y xt =--与直线y = 4x 交于点A , 与x 轴交于点B .设点A , B 的横坐标分别为,A B x x ,记()A B f t x x =.正数数列{n a }满足()1n n a f a -=*(,2)n N n ∈≥,1a a =.(Ⅰ)写出1,n n a a -之间的关系式;(Ⅱ)若数列{n a }为递减数列,求实数a 的取值范围; (Ⅲ)若2a =,34n n b a =-,设数列{n b }的前n 项和为n S ,求证:()*32n S n N <∈.嘉兴市第一中学高三年级阶段性练习卷 高三数学(理科) 参考答案及评分标准二、(本大题共7小题, 前4题每空3分,后3题每空4分, 共36分.)10. )10,10(- ; 1 , 12. 1 ; 213. 9 , 14. 5, 15. -6 .三、解答题 16.(Ⅰ)因为所以ba c a cb a --=+, 所以222a b ac c -=-,所以2221cos 222a c b ac Bac ac +-===, 又因为π<<B 0,所以3B π=。
浙江省嘉兴一中、杭州高级中学、宁波效实中学等五校2016届高三第一次联考理数试题(完整资料).doc
【最新整理,下载后即可编辑】一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知全集U R =, {|21}x A y y ==+, {|ln 0}B x x =<,则()U C A B =( )A .∅B .1{|1}2x x <≤ C .{|1}x x < D .{|01}x x <<【答案】D. 【解析】试题分析:由题意得,{|1}A x x =>,{|01}B x x =<<,∴(){|01}U C A B x x =<<,故选D .考点:集合的运算. 2.设0x >,则“1a =”是“2ax x+≥恒成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A.考点:1.充分必要条件;2.恒成立问题. 3.已知函数()2sin(2)6f x x π=+,把函数)(x f 的图象沿x 轴向左平移6π个单位,得到函数)(x g 的图象,关于函数()g x ,下列说法正确的是( ) A.在[,]42ππ上是增函数B. 其图象关于直线4x π=-对称C.函数()g x 是奇函数D. 当[0,]3x π∈时,函数()g x 的值域是[1,2]- 【答案】D. 【解析】试题分析:由题意得,()2sin[2()]2sin(2)2cos 2662g x x x x πππ=++=+=,A :[,]42x ππ∈时,2[,]2x ππ∈,是减函数,故A 错误;B :()2cos()042g ππ-=-=,故B 错误;C :()g x 是偶函数,故C 错误;D :[0,]3x π∈时,22[0,]3x π∈,值域为[1,2]-,故D 正确,故选D .考点:1.三角函数的图象变换;2.sin()y A x ωϕ=+的图象和性质. 4.已知a ,b 为平面向量,若a b +与a 的夹角为3π,a b +与b 的夹角为4π,则||||a b =( )A.3B.6C.5D.6【答案】B.考点:1.平面向量的线性运算;2.正弦定理.5.设a ,b 是两条不同的直线,α,β是两个不同的平面,则下面四个命题中错误..的是( ). A.若a b ⊥,a α⊥,b α⊄,则//b α B.若a b ⊥,a α⊥,b β⊥,则αβ⊥C.若a β⊥,αβ⊥,则//a α或a α⊂D.若//a α,αβ⊥,则a β⊥ 【答案】D.考点:1.线面平行的判定;2.线面垂直,面面垂直的判定与性质. 6.已知等差数列{}n a 的等差0d ≠,且1a ,3a ,13a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则2163n n S a ++的最小值为( )A. 4B. 3C. 32D.92【答案】A. 【解析】试题分析:由题意得,记等差数列{}n a 公差为d ,22111(2)(12)(12)1122a d a a d d d d +=+⇒+=+⇒=(0d =舍去),∴1(1)21n a a n d n =+-=-,21()2n n a a n S n +⋅==,22216216832131n n S n n a n n +++===+-++ 2(1)2(1)999122(1)24111n n n n n n n +-++=++-≥+⋅=+++,当且仅当9121n n n +=⇒=+时等号成立,即2163n n S a ++的最小值为4,故选A .考点:1.等差数列的通项公式及其前n 项和;2.等比数列的性质;3.基本不等式求最值.【思路点睛】解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法、穿根法等.总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.7.设数列{}n x 的各项都为正数且11x =,如图,ABC ∆所在平面上的点n P (*n N ∈)均满足n P AB ∆与n P AC ∆的面积比为3∶1,若11(21)3n n n n n x P C P A x P B +++=,则5x 的值为( )A .31B .33C .61D .63 【答案】A.考点:1.平面向量的线性运算;2.数列的通项公式.【思路点睛】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解. 8.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,5sin , 0244()1()1, 22x x x f x x π⎧≤≤⎪⎪=⎨⎪+>⎪⎩,若关于x 的方程2[()]()0f x af x b ++=(a ,b R ∈),有且仅有6个不同实数根,则实数a 的取值范围是( ) A .5(,1)2-- B .59(,)24-- C.599(,)(,1)244----D .9(,1)4-- 【答案】C. 【解析】试题分析:如下图所示,将()f x 的图象画在平面直角坐标系中,令()f x t =,分析题意可知关于t 的方程20t at b ++=的两根1514t <<,201t <≤或1514t <<,254t =,若1514t <<,201t <≤:由韦达定理可知129()(,1)4a t t =-+∈--;若1514t <<,254t =:由韦达定理可知1259()(,)24a t t =-+∈--,综上实数a 的取值范围是599(,)(,1)244----,故选C .考点:1.函数与方程;2.数形结合的思想.【方法点睛】运用函数图象结合数形结合思想求解问题的类型:1.对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想; 2.一些函数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解.二、填空题(本大题共7个小题,第9-12题每小题6分,第13-15题每小题4分,共36分.把答案填在题中的横线上.) 9.已知{}n a 为等差数列,若1598a a a π++=,则{}n a 前9项的和9S =,37cos()a a +的值为 .【答案】24π,12-.考点:1.等差数列的性质;2.任意角的三角函数. 10.已知1cos()43πθ+=-,θ为锐角,则sin 2θ= ,sin(2)3πθ+= .【答案】79,74618-.考点:三角恒等变形.11.所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S ABC -中,M 是SC 的中点,且AM SB ⊥,底面边长22AB =,则正三棱锥S ABC -的体积为 ,其外接球的表面积为 . 【答案】43,12π. 【解析】试题分析:取AC 中点D ,则SD AC ⊥,BD AC ⊥,又∵SD BD D ⊥=,∴AC ⊥平面SBD ,∵SB ⊂平面SBD ,∴AC SB ⊥,又∵AM SB ⊥,AMAC A =,∴SB ⊥平面SAC ,∴SA SB ⊥,SC SB ⊥,根据对称性可知SA SC ⊥,从而可知SA ,SB ,SC 两两垂直,如下图所示,将其补为立方体,其棱长为2,∴114222323S ABC C ASB V V --==⨯⨯⨯⨯=,其外接球即为立方体的外接球,半径3232r =⨯=,表面积4312S ππ=⨯=.考点:三棱锥的外接球.12.若三个非零且互不相等的实数a ,b ,c 满足112a b c+=,则称a ,b ,c 是调和的;若满足2a c b +=,则称a ,b ,c 是等差的,若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合{|||2014,}M x x x Z =≤∈,集合{,,}P a b c M =⊆,则(1)“好集”P 中的元素最大值为 ;(2)“好集”P 的个数为 . 【答案】2012,1006.考点:以集合为背景的创新题.13.设x ,y 满足约束条件:112210x y x x y ≥⎧⎪⎪≥⎨⎪+≤⎪⎩的可行域为M ,若存在正实数a ,使函数2sin()cos()2424x x y a ππ=++M中的点,则这时a 的取值范围是 .【答案】1[,)2cos1+∞.考点:1.三角函数的图象和性质;2.线性规划的运用.14.己知0a >,0b >,1c >,且1a b +=,则212(2)1a c abc +-⋅+-的最小值为 . 【答案】42+【解析】 试题分析:由题意得,222221()222222222a a a b a ab b a b a b ab ab ab b a b a +++++===++≥⋅=, 当且仅当221221a b a b a b a b ⎧⎧==⎪⎪⇒⎨⎨=⎪⎪⎩+=⎩21(2)11acab c c+-⋅+≥+=--1)41cc-++≥=+-,当且仅当1)112c cc-=⇒=+-4+考点:基本不等式求最值.【思路点睛】不等式的综合题需要观察具体题目条件的特点,通过联想相关的不等式,常见的解题策略有:①熟练掌握基本不等式,如当0a>,0b>时,2112a ba b+≤≤≤+;②理解最值达成的条件“一正二定三相等”;③构造齐次不等式,再使用基本不等式,常带来方便;④掌握柯西不等式.15.如图,直线l⊥平面α,垂足为O,正四面体(所有棱长都相等的三棱锥)ABCD的棱长为2,C在平面α内,B是直线l上的动点,当O 到AD的距离为最大时,正四面体在平面α上的射影面积为.αlODCBA【答案】1+考点:立体几何中的最值问题.【方法点睛】立体几何的综合应用问题中常涉及最值问题,处理时常用如下两种方法:1.结合条件与图形恰当分析取得最值的条件;2.直接建系后,表示出最值函数,转化为求最值问题;3.化立体为平面,利用平面几何知识求解.三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.已知命题p :1x ,2x 是方程210x mx --=的两个实根,且不等式21243||a a x x +-≤-对任意m R ∈恒成立;命题q :不等式2210ax x +->有解,若命题p q ∨为真,p q ∧为假,求实数a 的取值范围.【答案】[5,1](1,)--+∞.考点:1.命题的真假;2.一元二次不等式.17.(本题满分15分) 已知函数231()2cos ()2f x x x x R =--∈ (1)当5[,]1212x ππ∈-时,求函数()f x 的值域;(2)设ABC ∆的内角A ,B ,C 的对应边分别为a ,b ,c ,且3c =()0f C =,若向量(1,sin )m A =与向量(2,sin )n B =共线,求a ,b 的值.【答案】(1)3[1--;(2)1a =,2b =.考点:1.三角恒等变形;2.sin()y A x ωϕ=+的图象和性质;3.平面向量共线坐标表示;4..正余弦定理解三角形.18.(本小题满分15分)在四棱锥P ABCD -中,AD ⊥平面PDC ,PD DC ⊥,底面ABCD 是梯形,//AB DC ,1AB AD PD ===,2CD =.(1)求证:平面PBC ⊥平面PBD ;(2)设Q 为棱PC 上一点,PQ PC λ=,试确定λ的值使得二面角Q BD P --为60.【答案】(1)详见解析;(2)36λ=-.∴60QNM ︒∠=,∵PQ PC λ=,∴PQ PC λ=,∵//QM BC ,∴PQ QM PM PC BC PB λ===,∴QM BC λ=,由(1)知2BC =∴2QM λ=,又∵1PD =,∵//MN PD ,∴MN BM PD PB =, ∴11BM PB PM PM MN PB PB PB λ-===-=-,∵tan QMMNQ MN ∠=,∴231λλ=⇒-36λ=-; 法二:以D 为原点,DA ,DC ,DP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图)考点:1.线面垂直,面面垂直的判定与性质;2.二面角的求解;3.空间向量求二面角.19.(本小题满分15分)已知函数()|2|f x x x a =-,2()()1x a g x a R x -=∈-. (1)求函数()f x 的单调增区间;(2)若0a <,解不等式()f x a ≥;(3)若012a <<,且对任意[3,5]t ∈,方程()()f x g t =在[3,5]x ∈总存在两不相等的实数根,求a 的取值范围.【答案】(1)0a <:()f x 的单调增区间为(,)2a -∞,(,)4a +∞;0a >:()f x 的单调增区间为(,)4a -∞,(,)2a +∞;0a =:()f x 的单调增区间为R ;(2)80a -≤<:)+∞,8a <-:2[)a a ++∞+;(3)97[,9)13.考点:1.二次函数综合题;2.分类讨论的数学思想.【方法点睛】解决二次函数综合题常见的解题策略有:1.尽可能画图,画图时要关注已知确定的东西,如零点,截距,对称轴,开口方向,判别式等;2.两个变元或以上,学会变换角度抓主元;3.数形结合,务必要保持数形刻画的等价性,不能丢失信息;3.掌握二次函数,二次不等式,二次方程的内在联系,熟练等价转化和准确表述;4.恒成立问题可转化为最值问题.20.(本小题满分15分) 已知数列*1111()23n a n N n=+++⋅⋅⋅+∈ (1)若1a >,对于任意2n ≥,不等式2(1)7(log log 1)12n n a a a a x x +->-+恒成立,求x 的取值范围(2)求证:2*32172()()423n n a a a a a n N n +>+++⋅⋅⋅+∈(*n N ∈)【答案】(1)(1,)+∞;(2)详见解析.【解析】试题分析:(1)根据题意可说明数列2{}n n a a -单调递增,从而要使不等式恒成立,只需42(1)7(log log 1)12a a a a x x +->-+成立即可,再利用换底公式即可求解;(2)利用已知条件首先可得到数列{}n a 的一个递推公式11n n a a n-=+,两边平方后可得累加后可将问题等价转化为证明2221117(1)234n +++⋅⋅⋅+<成立即可,再对不等式左边进行放缩即可的证.考点:1.数列的单调性;2.换底公式;3.数列与不等式综合题.【思路点睛】解决数列综合题常见策略有:1.关注数列的通项公式,构造相应的函数,考察该函数的相关性质(单调性、值域、有界性、切线)加以放缩;2.重视问题设问的层层递进,最后一小问常常用到之前的中间结论;3.数学归纳法.。
浙江省嘉兴市第一中学2016届高三上学期期中考试数学(理)试卷Word版含答案
嘉兴市第一中学2015学年第一学期期中考试高三数学(理科) 试题卷满分[150]分 时间[120]分钟 2015年11月一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数x x f y +=)(是偶函数,且1)2(=f ,则=-)2(f ( ▲)A .2B . 3C . 4D . 52.已知:11,:(2)(6)0p m x m q x x -<<+--<,且q 是p 的必要不充分条件,则m 的取值范围是( ▲ )A .35m << B. 35m ≤≤ C .53m m ><或 D. 53m m ≥≤或3.已知m 为一条直线,βα,为两个不同的平面,则下列说法正确的是( ▲ )A.若ββαα//,//,//m m 则B.若,m αβα⊥⊥,则m β⊥C.若ββαα⊥⊥m m 则,,// D. 若ββαα⊥⊥m m 则,//, 4.函数())cos 3(sin sin 21x x x x f +-=的图象向左平移3π个单位得函数()x g 的图象,则函数()x g 的解析式是 ( ▲ )A . ()⎪⎭⎫ ⎝⎛-=22sin 2πx x g B .()x x g 2cos 2= C .()⎪⎭⎫ ⎝⎛+=322cos 2πx x g D .()()2sin 2g x x π=+ 5.若x ,y 满足⎩⎪⎨⎪⎧ x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( ▲ )A .-2B .12-C .12D .2 6.在ABC ∆所在平面上有三点M N P 、、,满足MA MB MC AB ++=,NA NB NC BC ++=,PA PB PC CA ++=,则MNP ∆的面积与ABC ∆的面积比为( ▲ )A.12 B. 13 C. 14 D. 157.设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为e ,过2F 的直线与双曲线的右支交于B A ,两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( ▲ )A.221+B. 224-C.225-D.223+8.设{}(),(()())min (),()(),(()())f x f xg x f x g x g x f x g x ≤⎧=⎨>⎩.若2()f x x px q =++的图象经过两点 (,0),(,0)αβ,且存在整数n ,使得1n n αβ<<<+成立,则 ( ▲ ) A .{}1min (),(1)4f n f n +>B .{}1min (),(1)4f n f n +<C .{}1min (),(1)4f n f n +=D .{}1min (),(1)4f n f n +≥ 二、填空题:本大题共7小题,9-12题:每小题6分,13-15题:每小题4分,共36分. 9.已知全集为R ,集合{}{}221,680x A x B x x x =≥=-+≤,则A B = ▲ . R A C B = ▲ . ()R C A B = ▲ .10.已知等差数列{}n a ,n S 是数列{}n a 的前n 项和,且满足46310,39a S S ==+,则数列{}n a 的首项1a =____▲___ ,通项n a =___ ▲___.11.某空间几何体的三视图如图所示(单位:cm),则该几何体的体积V = ▲ cm 3,表面积S = ▲ cm 2.12.已知函数()()61477x a x x f x a x -⎧-+≤=⎨>⎩;(1)当21=a 时, ()x f 的值域为 ▲ , (2)若()x f 是(,)-∞+∞上的减函数,则实数a 的取值范围是 ▲ .13.已知平面向量,()αβαβ≠满足||α=且α与βα-150︒的夹角为,则|(1)|m m αβ+-的取值范围是 _▲ . 14.已知实数x 、y 、z 满足0x y z ++=,2221x y z ++=,则x 的最大值为 ▲ .15.三棱柱111ABC A B C -的底是边长为1的正三角形,高11AA =,在AB 上取一点P ,设11PAC ∆与面111A B C 所成的二面角为α,11PB C ∆与面111A B C 所成的二面角为β,则tan()αβ+的最小值是 ▲ .三、解答题(共5小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本题满分15分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,且1)cos(32cos ++=C B A .(Ⅰ)求角A 的大小;(Ⅱ)若81cos cos -=C B ,且ABC ∆的面积为32,求a .17.(本题满分15分)如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,三角形ACD 是正三角形,且AD=DE=2AB ,F 是CD 的中点. (Ⅰ)求证:平面CBE ⊥平面CDE ;(Ⅱ)求二面角C —BE —F 的余弦值.18. (本题满分15分)平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点的直线0x y +-=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求椭圆M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.19. (本题满分15分)已知函数2()1,()|1|f x x g x a x =-=-.(Ⅰ)若当x ∈R 时,不等式()()f x g x ≥恒成立,求实数a 的取值范围;(Ⅱ)求函数()|()|()h x f x g x =+在区间[2,2]-上的最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015学年浙江省第一次五校联考数学(理科)试题卷本试题卷分选择题和非选择题两部分.全卷共4页,满分150分, 考试时间120分钟. 请考生按规定用笔将所有试题的答案涂、写在答题纸上.参考公式:柱体的体积公式V =Sh 其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式 V =13Sh 其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式1()123V h S S =++ 其中S 1,S 2分别表示台体的上,下底面积球的表面积公式S =4πR 2 其中R 表示球的半径,h 表示台体的高 球的体积公式V =43πR 3 其中R 表示球的半径第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =, {|21}xA y y ==+, {|ln 0}B x x =<,则()UC A B = ( )A .∅B .1{|1}2x x <≤ C .{|1}x x < D .{}01x x <<2.设0x >,则“1a =”是“2ax x+≥恒成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.已知函数()2sin(2)6f x x π=+,把函数)(x f 的图象沿x 轴向左平移6π个单位,得到函数)(x g 的图象.关于函数)(x g ,下列说法正确的是( ) A. 在]2,4[ππ上是增函数 B. 其图象关于直线4π-=x 对称 C. 函数)(x g 是奇函数 D. 当[0,]3x π∈时,函数)(x g 的值域是[1,2]-4.已知,a b 为平面向量,若a b + 与a 的夹角为3π,a b + 与b 的夹角为4π,则a b=( )5.设a b 、是两条不同的直线,αβ、是两个不同的平面,则下面四个命题中错误..的是( ). A. 若,,a b a b αα⊥⊥⊄ ,则b //α B. 若,,a b a b αβ⊥⊥⊥ ,则αβ⊥C. 若,a βαβ⊥⊥ ,则a //α或 a α⊆D. 若 a //,ααβ⊥ ,则a β⊥ 6.已知等差数列{}n a 的等差0≠d ,且1331,,a a a 成等比数列,若11=a ,n S 为数列{}n a 的前n 项和,则3162++n n a S 的最小值为( )A .4B .3 C.2 D .927. 设数列{}n x 的各项都为正数且11x =.如图,△ABC 所在平面上的点n P (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3∶1,若11(21)3n n n n n x P C P A x P B +++=,则x 5的值为( )A .31B .33C .61D .638. 已知函数()y f x =是定义域为R 的偶函数. 当0x ≥时,5sin, 0x 2 44()1() 1 , x 22x x f x π⎧≤≤⎪⎪=⎨⎪+>⎪⎩, 若关于x 的方程2[()]()0f x af x b ++=(,a b R ∈),有且仅有6个不同实数根,则实数a 的取值范围是( ) A .5(,1)2--B .59(,)24--C.599(,)(,1)244---- D .9(-1)4-,第Ⅱ卷 非选择题部分(共110分)二、填空题: (本大题共7小题, 前4小题每题6分, 后3小题每题4分,共36分). 9. 已知{}n a 为等差数列,若π8951=++a a a ,则{}n a 前9项的和9S = ▲ ,)cos(73a a +的值为 ▲ .10. 已知1cos(),43πθ+=- θ为锐角,则sin 2θ= ▲ ,sin(2)3πθ+= ▲ 11.所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S ABC -中,M 是SC 的中点,且AM SB ⊥,底面边长AB =则正三棱锥S ABC -的体积为▲ ,其外接球的表面积为 ▲AP n第7题图12. 若三个非零且互不相等的实数a ,b ,c 满足112abc+=,则称a ,b ,c 是调和的;若满足2a c b +=,则称a ,b ,c 是等差的.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合{}2014,M x x x Z =∈≤,集合{},,P a b c M =⊆,则(1)“好集” P 中的元素最大值为 ▲ [(2)“好集” P 的个数为 ▲ .13. 设,x y 满足约束条件可行域为M .若存在正实数a ,使函数的图象经过区域M 中的点,则这时a 的取值范围是 ▲14. 己知0,0,1a b c >>>且,1=+b a则21(2)1a c abc +-⋅+-的最小值为 ▲15.如图,直线l ⊥平面α,垂足为O ,正四面体(所有棱长都相等的三棱锥)ABCD 的棱长为2,C 在平面α内,B 是直线l 上的动点,当O 到AD 的距离为最大时,正四面体在平面α上的射影面积为 ▲三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.已知命题212:,10p x x x mx --=是方程的两个实根,且不等式21243||a a x x +-≤-对任意m R ∈恒成立;命题q: 不等式+->2210ax x 有解,若命题p q ∨为真,p q ∧为假,求实数a 的取值范围. 17.(本题满分15分)已知函数21()2cos ,()2f x x x x R =--∈ (1)当5[,]1212x ππ∈-时,求函数()f x 的值域.(2)设ABC ∆的内角,,A B C 的对应边分别为,,a b c ,且)0c ==,若向量(1,sin )m A =. αl ODCB A与向量(2,sin )n B共线,求,a b 的值18.(本小题满分15分)在四棱锥P ABCD -中, AD ⊥平面PDC , PD DC ⊥,底面ABCD 是梯形, AB ∥DC ,1,2AB AD PD CD ====(1)求证:平面PBC ⊥平面PBD ;(2)设Q 为棱PC 上一点,PQ PC λ=,试确定λ的值使得二面角Q BD P --为60º.19.(本小题满分15分)已知函数2()2,()1x af x x x ag x x -=-=-(a R ∈)(1)求函数()f x 的单调增区间. (2)若0,a <解不等式()f x a ≥(3)若012a <<,且对任意[3,5]t ∈,方程()()f x g t =在[3,5]x ∈总存在两不相等的实数根,求a 的取值范围.20.(本小题满分15分) 已知数列()*111123n a n N n=++++∈ (1)若1a >,对于任意2n ≥,不等式2(1)7(log log 1)12n n a a a a x x +->-+恒成立, 求x 的取值范围(2)求证: 232172423n n a a a a a n ⎛⎫+>++++ ⎪⎝⎭ (*n N ∈)2015学年浙江省第一次五校联考数学(理科)答案说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容制订相应的评分细则.二、对计算题,当考生的题答在某一步出现错误时,如果后续部分的解答未改变该题的内容与难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分. 一、选择题:本题考查基本知识和基本运算.每小题5分,满分40分.二、填空题: 本题考查基本知识和基本运算.每小题4分,满分36分.9. 24π 12- 10. 79 , 718- 11. 4312π 12. 2012 , 1006 ,13. 1[,)2c o s 1+∞15. 1+三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16. 答案:P :51a -≤≤…………5分 Q:1a >- …………10分 P,Q 一真一假511a a ∴-≤≤->或 …………14分17. 解:(1) 1cos 21()222x f x x +=--12cos 212x x =-- sin(2)16x π=--。
……………3分∵51212x ππ-≤≤,∴22363x πππ-≤-≤,∴sin(2)16x π≤-≤,从而01)62sin(231≤--≤--πx 。
则)(x f 的最小值是231--,最大值是0。
……………7分 (2)()sin(2)106f C C π=--=,则1)62sin(=-πC , ∵0C π<<,∴112666C πππ-<-<,∴262C ππ-=,解得3C π=.……………10分∵向量)sin ,1(A m =与向量)sin ,2(B n =共线,∴sin 2sin B A =, 由正弦定理得,2b a = ① 由余弦定理得,3cos2222πab b a c -+=,即322=-+ab b a ②由①②解得2,1==b a .……………15分18. (1)证明:∵AD ⊥平面PDC ,,PD PCD DC PDC ⊂⊂平面平面∴,AD PD AD DC ⊥⊥在梯形ABCD 中,过点作B 作BH CD H ⊥于, 在BCH ∆中,1,45.BH CH BCH ==∴∠=︒ 又在DAB ∆中,1,45.AD AB ADB ==∴∠=︒4590BDC DBC BC BD ∴∠=︒∴∠=︒∴⊥,.……3分,,PD AD PD DC AD DC D ⊥⊥= .,.AD ABCD DC ABCD ⊂⊂平面平面,,,PD ABCD BC ABCD PD BC ∴⊥⊂∴⊥ 平面平面 ,,BD PD D BD PBD PD PBD =⊂⊂ 平面平面. ,BC PBD ∴⊥平面 ,B C P B C P B C P B D ⊂∴⊥ 平面平面平面………………7分(2)法一:过点Q 作QM ∥BC 交PB 于点M ,过点M 作MN 垂直于BD 于点N ,连QN . …8分 由(1)可知BC ⊥平面PDB ,∴QM ⊥平面PDB ,∴QM BD ⊥, QM MN M =∴BD ⊥平面MNQ ,∴ BD QN ⊥,QNM ∴∠是二面角Q BD P --的平面角,60QNM ∴∠=︒ …………………10分λ= λ=∴PCPQQM ‖BC , λ===∴PBPMBC QM PC PQ BC QM λ=∴, 由(1)知BC =2,λ2=∴QM ,又 1PD =MN ∥PD PB BM PD MN =∴λ-=-=-==∴11PBPMPB PM PB PB BM MN ……12分MN QM MNQ =∠tan 312=-∴λλ, 63-=∴λ. …………………………………15分(2)法二:以D 为原点,,,DA DC DP 所在直线为,,x y z 轴建立空间直角坐标系 (如图)则()()()()0,0,10,2,01,0,01,1,0P C A B ,,,.令()000,,Q x y z ,则000,10,2,1PQ x y z PC =-=-(,),()000,,10,2,1PQ PC x y z λλ=∴-=-(,)()∴0,2,1Q λλ=-(). …………………………………………………………………9分 BC ⊥平面PBD , ∴1,1,0n =-()是平面PBD 的法向量. ………………………10分设平面QBD 的法向量为m x y z =(,,). 则00n DB n DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,即 02(1)0x y y z λλ+=⎧⎨+-=⎩ 即 21x y z y λλ=-⎧⎪⎨=⎪-⎩. 令1y =,得21,1,1m λλ⎛⎫=- ⎪-⎝⎭………………………………………………………12分二面角Q BD P --为60︒,∴()1cos ,2m n m n m n⋅===解得3λ= Q 在棱PC 上, 0λλ<<1, ∴=. ………………………15分 19. 解答:(1)若0a <,()f x 的单调增区间为(,)2a-∞和(,)4a +∞………………………2分 若0a >,()f x 的单调增区间为(,)4a -∞和(,)2a +∞………………………4分 若0a =,()f x 的单调增区间为R ………………………5分(2) 0,a <∴()f x 在(,]2a -∞单调递增,在[,]24a a 单调递减,在[,)4a +∞单调递增,若2()48a a f =-a ≥即80a -≤<时,令(2)x a x a -=解得:1x =∴不等式的解为:x ≥…………7分 若2()48a a f =-a <即8a <-时,令(2)x x a a -=解得:1,24a x =x x ≤≤≥综上: 80a -≤<不等式的解为:x≥8a <-x x ≤≤≥9分 (3) ()2f x x x a =-=222224822482a a a x a a a x -<-≥⎧⎪⎨⎪⎩(x-)+ (x-) 012,a <<∴()f x 在(,]4a -∞单调递增,在[,]42a a单调递减在[,)2a +∞单调递增,∴352a<<即610a <<∴2()1x ag x x -=-=1111a x x --++-在[3,5]x ∈单调递增, ∴925()[,]24a ag x --∈ ………………………11分()f x 在[3,]2a 单调递减在[,5]2a单调递增∴必须[(3),(5)][(),min{(3),(5)}]2ag g f f f ⊆即∴(3)()2(5)(3),(5)(5)a g f g f g f >≤≤⎧⎨⎩⇒97913a ≤<………………………15分20.解:(1)易知2111122n n a a n n n-=+++++ =f(n) .......... .2分 f(n+1)-f(n)= 1112122n n n +++-+++ 111122n n n +++++=11121221n n n +-+++ =112122n n -++>0 ∴f(n)单调递增,………………………………………4分即27(2)12n n a a f -≥=,(1)77(log log 1)1212a a x x +>-+故(1)log log a a x x +<。