2016年中考数学(大题)专项训练07(含解析)

合集下载

专题07 特殊平行四边形综合的压轴真题训练(解析版)--2023 年中考数学压轴真题汇编

专题07  特殊平行四边形综合的压轴真题训练(解析版)--2023 年中考数学压轴真题汇编

挑战2023年中考数学选择、填空压轴真题汇编专题07特殊平行四边形综合的压轴真题训练一.平行四边形的性质1.(2022•日照)如图,在平面直角坐标系中,平行四边形OABC的顶点O在坐标原点,点E是对角线AC上一动点(不包含端点),过点E作EF∥BC,交AB于F,点P在线段EF上.若OA=4,OC=2,∠AOC=45°,EP=3PF,P点的横坐标为m,则m的取值范围是()A.4<m<3+B.3﹣<m<4C.2﹣<m<3D.4<m<4+【答案】A【解答】解:可得C(,),A(4,0),B(4+,),∴直线AB的解析式为:y=x﹣4,∴x=y+4,直线AC的解析式为:y=﹣,∴x=4+y﹣2y,∴点F的横坐标为:y+4,点E的横坐标为:4+y﹣2y,∴EF=(y+4)﹣(4+y﹣2y)=2,∵EP=3PF,∴PF=EF=y,∴点P的横坐标为:y+4﹣y,∵0<y<,∴4<y+4﹣y<3+,故答案为:A.2.(2022•无锡)如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD 上,∠EBA=60°,则的值是()A.B.C.D.【答案】D【解答】解:如图,过点B作BH⊥AD于H,设∠ADB=x,∵四边形ABCD是平行四边形,∴BC∥AD,∠ADC=∠ABC=105°,∴∠CBD=∠ADB=x,∵AD=BD,∴∠DBA=∠DAB=,∴x+=105°,∴x=30°,∴∠ADB=30°,∠DAB=75°,∵BH⊥AD,∴BD=2BH,DH=BH,∵∠EBA=60°,∠DAB=75°,∴∠AEB=45°,∴EH=BH,∴DE=BH﹣BH=(﹣1)BH,∵AB===(﹣)BH=CD,∴=,故选:D.二.矩形的性质3.(2022•泰安)如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC 上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为()A.B.C.﹣D.﹣2【答案】D【解答】解:如图,取AD的中点O,连接OB,OM.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴∠BAP+∠DAM=90°,∵∠ADM=∠BAP,∴∠AMD=90°,∵AO=OD=2,∴OM=AD=2,∴点M在以O为圆心,2为半径的⊙O上,∵OB===,∴BM≥OB﹣OM=﹣2,∴BM的最小值为﹣2.故选:D.4.(2022•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是;(2)若代数式a2﹣2ab﹣b2的值为零,则的值是.【答案】a﹣b;3+2.【解答】解:(1)由图可知:PQ=a﹣b,故答案为:a﹣b;(2)∵a2﹣2ab﹣b2=0,∴a2﹣b2=2ab,(a﹣b)2=2b2,∴a=b+b(负值舍),∵四个矩形的面积都是5.AE=a,DE=b,∴EP=,EN=,则======3+2.故答案为:3+2.5.(2022•宿迁)如图,在矩形ABCD 中,AB =6,BC =8,点M 、N 分别是边AD 、BC 的中点,某一时刻,动点E 从点M 出发,沿MA 方向以每秒2个单位长度的速度向点A 匀速运动;同时,动点F 从点N 出发,沿NC 方向以每秒1个单位长度的速度向点C 匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF ,过点B 作EF 的垂线,垂足为H .在这一运动过程中,点H 所经过的路径长是.【答案】π【解答】解:如图1中,连接MN 交EF 于点P ,连接BP .∵四边形ABCD 是矩形,AM =MD ,BN =CN ,∴四边形ABNM 是矩形,∴MN =AB =6,∵EM ∥NF ,∴△EPM ∽△FPN ,∴===2,∴PN=2,PM=4,∵BN=4,∴BP===2,∵BH⊥EF,∴∠BHP=90°,∴点H在BP为直径的⊙O上运动,当点E与A重合时,如图2中,连接OH,ON.点H的运动轨迹是.此时AM=4,NF=2,∴BF=AB=6,∵∠ABF=90°,BH⊥AF,∴BH平分∠ABF,∴∠HBN=45°,∴∠HON=2∠HBN=90°,∴点H的运动轨迹的长==π.故答案为:π.6.(2022•西宁)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是.【答案】5或4【解答】解:如图所示,①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当P1E=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴P1B=,∴底边AP1=;综上所述:等腰三角形AEP1的底边长为5或4;故答案为:5或4.三.正方形的性质和判定7.(2022•泸州)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为()A.B.C.D.1【答案】B【解答】解:作FH⊥BG交于点H,作FK⊥BC于点K,∵BF平分∠CBG,∠KBH=90°,∴四边形BHFK是正方形,∵DE⊥EF,∠EHF=90°,∴∠DEA+∠FEH=90°,∠EFH+∠FEH=90°,∴∠DEA=∠EFH,∵∠A=∠EHF=90°,∴△DAE∽△EHF,∴,∵正方形ABCD的边长为3,BE=2AE,∴AE=1,BE=2,设FH=a,则BH=a,∴,解得a=1;∵FK⊥CB,DC⊥CB,∴△DCN∽△FKN,∴,∵BC=3,BK=1,∴CK=2,设CN=b,则NK=2﹣b,∴,解得b=,即CN=,∵∠A=∠EBM,∠AED=∠BME,∴△ADE∽△BEM,∴,∴,解得BM=,∴MN=BC﹣CN﹣BM=3﹣﹣=,故选:B.8.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.B.2C.2D.4【答案】C【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=AB=2,∴d1+d2+d3最小=AC=2,故选:C.9.(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.【答案】5+【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.10.(2022•安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F 作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2,则MN=.【答案】45°【解答】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,∴∠AEB+∠GEF=90°,∵∠AEB+∠ABE=90°,∴∠GEF=∠ABE,在△ABE和△GEF中,,∴△ABE≌△GEF(AAS),∴EG=AB=AD,GF=AE,即DG+DE=AE+DE,∴DG=AE,∴DG=GF,即△DGF是等腰直角三角形,∴∠FDG=45°,故答案为:45°;(2)∵DE=1,DF=2,由(1)知,△DGF是等腰直角三角形,∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,延长GF交BC延长线于点H,∴CD∥GH,∴△EDM∽△EGF,∴,即,∴MD=,同理△BNC∽△BFH,∴,即,∴,∴NC=,∴MN=CD﹣MD﹣NC=3﹣﹣=,故答案为:.11.(2022•达州)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=P A+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是.【答案】①②④⑤【解答】解:如图,∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCP=45°,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,故①正确,∵∠PBQ=∠QCF=45°,∠PQB=∠FQC,∴△PQB∽△FQC,∴=,∠BPQ=∠CFQ,∴=,∵∠PQF=∠BQC,∴△PQF∽△BQC,∴∠QPF=∠QBC,∵∠QBC+∠CFQ=90°,∴∠BPF=∠BPQ+∠QPF=90°,∴∠PBF=∠PFB=45°,∴PB=PF,∴△BPF是等腰直角三角形,故④正确,∵∠EPF=∠EDF=90°,∴E,D,F,P四点共圆,∴∠PEF=∠PDF,∵PB=PD=PF,∴∠PDF=∠PFD,∵∠AEB+∠DEP=180°,∠DEP+∠DFP=180°,∴∠AEB=∠DFP,∴∠AEB=∠BEH,∵BH⊥EF,∴∠BAE=∠BHE=90°,∵BE=BE,∴△BEA≌△BEH(AAS),∴AB=BH=BC,∵∠BHF=∠BCF=90°,BF=BF,∴Rt△BFH≌Rt△BFC(HL),∴∠BFC=∠BFH,∵∠CBF+∠BFC=90°,∴2∠CBF+2∠CFB=180°,∵∠EFD+∠CFH=∠EFD+2∠CFB=180°,∴∠EFD=2∠CBF,故②正确,将△ABP绕点B顺时针旋转90°得到△BCT,连接QT,∴∠ABP=∠CBT,∴∠PBT=∠ABC=90°,∴∠PBQ=∠TBQ=45°,∵BQ=BQ,BP=BT,∴△BQP≌△BQT(SAS),∴PQ=QT,∵QT<CQ+CT=CQ+AP,∴PQ<AP+CQ,故③错误,连接BD,DH,∵BD=2,BH=AB=2,∴DH≥BD﹣BH=2﹣2,∴DH的最小值为2﹣2,故⑤正确,故答案为:①②④⑤.12.(2022•南通)如图,点O是正方形ABCD的中心,AB=3.Rt△BEF中,∠BEF=90°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG=,则△OEM的周长为.【答案】3+3【解答】解:如图,连接BD,过点F作FH⊥CD于点H.∵四边形ABCD是正方形,∴AB=AD=3,∠A=∠ADC=90°,∵tan∠ABG==,∴AG=,DG=2,∴BG===2,∵∠BAG=∠DEG=90°,∠AGB=∠DGE,∴△BAG∽△DEG,∴==,∠ABG=∠EDG,∴==,∴DE=,EG=,∴BE=BG+EG=2+=,∵∠ADH=∠FHD=90°,∴AD∥FH,∴∠EDG=∠DFH,∴∠ABG=∠DFH,∵BG=DF=2,∠A=∠FHD=90°,∴△BAG≌△FHD(AAS),∴AB=FH,∵AB=BC,∴FH=BC,∵∠C=∠FHM=90°,∴FH∥CB,∴==1,∴FM=BM,∵EF=DE+DF=+2=,∴BF==4,∵∠BEF=90°,BM=MF,∴EM=BF=2,∵BO=OD,BM=MF,∴OM=DF=,∵OE=BD=×6=3,∴△OEM的周长=3++2=3+3,解法二:辅助线相同.证明△BAG≌△FHD,推出AB=HF=3,再证明△FHM≌△BCM,推出CM=HM=,求出BD,DF,BF,利用直角三角形斜边中线的性质,三角形中位线定理,可得结论.故答案为:3+3.13.(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC 时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE 是正方形.其中正确结论有(填上所有正确结论的序号).【答案】①②③④【解答】解:①∵△ABE、△CBF是等边三角形,∴BE=AB,BF=CB,∠EBA=∠FBC=60°;∴∠EBF=∠ABC=60°﹣∠ABF;∴△EFB≌△ACB(SAS);∴EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD是平行四边形,∴平行四边形ADFE是矩形,故结论②正确;③由①知AB=AE,AC=AD,四边形AEFD是平行四边形,∴当AB=AC时,AE=AD,∴平行四边形AEFD是菱形,故结论③正确;④综合②③的结论知:当AB=AC,且∠BAC=150°时,四边形AEFD既是菱形,又是矩形,∴四边形AEFD是正方形,故结论④正确.故答案为:①②③④.四.菱形的性质14.(2022•丽水)如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分∠EAD交CD于点F,FG∥AD交AE于点G.若cos B=,则FG的长是()A.3B.C.D.【答案】B【解答】解:方法一,如图,过点A作AH⊥BE于点H,过点F作FQ⊥AD于点Q,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∴AH===,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,∵AF平分∠EAD,∴∠DAF=∠FAG,∵FG∥AD,∴∠DAF=∠AFG,∴∠F AG=∠AFG,∴GA=GF,设GA=GF=x,∵AE=CD=4,FG∥AD,∴DF=AG=x,cos D=cos B==,∴DQ=x,∴FQ===x,=S梯形CEGF+S梯形GFDA,∵S梯形CEAD∴×(2+4)×=(2+x)×(﹣x)+(x+4)×x,解得x=,则FG的长是.或者:∵AE=CD=4,FG∥AD,∴四边形AGFD的等腰梯形,∴GA=FD=GF,则x+x+x=4,解得x=,则FG的长是.方法二:如图,作AH垂直BC于H,延长AE和DC交于点M,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,所以AE=AB=EM=CM=4,设GF=x,则AG=x,GE=4﹣x,由GF∥BC,∴△MGF∽△MEC,∴=,解得x=.故选:B.15.(2022•甘肃)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y与x的函数图象如图2所示,则AB的长为()A.B.2C.3D.4【答案】B【解答】解:在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3,∴△ABD的面积=a2=3,解得:a1=2,a2=﹣2(舍去),故选:B.。

天津市2016年中考数学试题含答案分解

天津市2016年中考数学试题含答案分解

2016年天津市初中毕业生学业考试试卷数学、选择题(本大题共12小题,每小题3分,共3636分,在每小题给出的 四个选项中,只有一个是符合题目要求的)(1)计算(-2)-5的结果等于(3)下列图形中,可以看作是中心对称图 形的是(A) ( B ) (C )(4) 2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木(A )-7(2)sin60的值等于(B )-3(C ) 3(D) 7XIAl2 26120 000株,将6120 000用科学记数法表示应为(A) -a < 0 < -b(A) 0.612 X 107(B) 6.12 X 06 (D ) 612 X 1044个相同的正方体组成的立体图形,它的主视第(5)题图(B)(C )(D)(6)估计6的值在(A ) 2和3之间(B)3和4之间 (C ) 4和5之间(D) 5和6之间x , 1(7)计算丄的结果为x x(B ) x(C)(D)(8)方程x 2,2x-12=0的两个根为(A) X 1= -2,X 2=6(B )X 1= -6,X 2=2 (C) x 1= -3,x 2=4 (D) x 1=-4, X 2=3(9) 实数a ,b 在数轴上的对应点的位置如图所示, 把-a ,-b ,0按照从小到大的顺序排列,正确的是a 0 b第(9)题图(C ) 61.2 X 105(B)0 < -a < -b(C)-b < 0 < -a(D)0 < -b < -a(10) 如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B, AB ' 与DC相交于点E,则下列结论一定正确的是第(10)题图(B)ZACD= ZB 'CD(C)AD=AE ( D) AE=CE3 (11) 若点A (-5, y i), B (-3, y2), C (2 , y)在反比例函数y 二—错误!x未找到引用源。

湖南省娄底市2016年中考数学试题(附解析)

湖南省娄底市2016年中考数学试题(附解析)

一、选择题(本大题共10小题,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣【答案】A.【解析】试题分析:只有符号不同的两个数互为相反数,由此可得2016的相反数是﹣2016,故答案选A.考点:相反数.2.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q【答案】D.【解析】试题分析:观察数轴可知,点Q到原点的距离最远,所以点Q的绝对值最大.故答案选D.考点:数轴;绝对值.3.下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y2【答案】C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.4.下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等【答案】D.答案选D.考点:命题.5.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.【答案】B.【解析】试题分析:选项A,圆锥的主视图是三角形,俯视图是带圆心的圆,本选项错误;选项B,圆柱的主视图是矩形、俯视图是矩形,本选项正确;选项C,球的主视图、俯视图都是圆,本选项错误;选项D,三棱柱的主视图为矩形和俯视图为三角形,本选项错误.故答案选B.考点:几何体的三视图.6.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°【答案】C.【解析】试题分析:根据圆周角定理可得∠B=∠D=40°,∠ACB=90°,所以∠CAB=90°﹣40°=50°.故答案选C.考点:圆周角定理.7.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差【答案】B.【解析】试题分析:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,知道中位数即可.故答案选B.考点:中位数.8.函数y=的自变量x的取值范围是()A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>2【答案】A.【解析】试题分析:由被开方数大于等于0,分母不等于0可得x≥0且x﹣2≠0,即x≥0且x≠2.故答案选A.考点:函数自变量的取值范围.9.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()A.C n H2n+2B.C n H2n C.C n H2n﹣2D.C n H n+3【答案】A.考点:数字规律探究题.10.如图,已知在Rt △ABC 中,∠ABC=90°,点D 沿BC 自B 向C 运动(点D 与点B 、C 不重合),作BE ⊥AD 于E ,CF ⊥AD 于F ,则BE+CF 的值( )A .不变B .增大C .减小D .先变大再变小 【答案】C .考点:锐角三角函数的增减性.二、填空题(本大题共8小题,每小题3分,共24分) 11.已知反比例函数y=xk的图象经过点A (1,﹣2),则k= . 【答案】﹣2. 【解析】试题分析:已知反比例函数y=xk的图象经过点A (1,﹣2),所以k=1×(-2)=-2. 考点:反比例函数图象上点的坐标特征.12.已知某水库容量约为112000立方米,将112000用科学记数法表示为 . 【答案】1.12×105. 【解析】试题分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数且为这个数的整数位数减1,,由于112000亿有6位,所以可以确定n=6﹣1=5.即112000=1.12×105.考点:科学记数法.13.如图,四边形ABCD 为⊙O 的内接四边形,已知∠C=∠D ,则AB 与CD 的位置关系是 .【答案】AB ∥CD . 【解析】试题分析:已知四边形ABCD 为⊙O 的内接四边形,由圆内接四边形的对角互补的性质可得∠A+∠C=180°又因∠C=∠D ,可得∠A+∠D=180°,所以AB ∥CD . 考点:圆内接四边形的对角互补的性质;平行线的判定.14.如图,已知∠A=∠D ,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是 .(只需写一个条件,不添加辅助线和字母)【答案】∠B=∠DEF (答案不唯一,符合要求即可) 【解析】试题分析:已知∠A=∠D ,当∠B=∠DEF 时,△ABC ∽△DEF ,因为AB ∥DE 时,∠B=∠DEF ,添加AB ∥DE 时,使△ABC ∽△DEF . 考点:相似三角形的判定.15.将直线y=2x+1向下平移3个单位长度后所得直线的解析式是 . 【答案】y=2x ﹣2.考点:一次函数图象与几何变换.16.从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是 .【答案】54.试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为54. 考点:概率公式.17.如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB=7,BC=6,则△BCD 的周长为 .【答案】13.考点:翻折变换(折叠问题).18.当a 、b 满足条件a >b >0时,+=1表示焦点在x 轴上的椭圆.若+=1表示焦点在x 轴上的椭圆,则m 的取值范围是 . 【答案】3<m <8. 【解析】试题分析:由题意得,m+2>0,2m-6>0,m+2>2m-6,解得3<m <8,所以m 的取值范围是3<m <8, 考点:阅读理解题.三、解答题(本大题共2小题,每小题6分,满分12分)19.计算:(π﹣)0+|2﹣1|+()﹣1﹣2sin45°.【答案】2. 【解析】试题分析:根据零指数幂、绝对值的性质、负整数指数幂、特殊角的三角函数值依次计算后试题解析:原式==1+2﹣1+2﹣2=2. 考点:实数的运算.20.先化简,再求值:(1﹣)•,其中x 是从1,2,3中选取的一个合适的数.【答案】原式=3-x x,当x=2时,原式=2-.考点:分式的化简求值.四、解答题(本大题共2小题,每小题8分,满分16分)21.在2016CCTV 英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表: 根据所给信息,解答下列问题:(1)在表中的频数分布表中,m= ,n= .(2)请补全图中的频数分布直方图.(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参数,请估计约有多少人进入决赛?【答案】(1)80,0.20;(2)详见解析;(3)1200.【解析】试题分析:(1)用抽查的总人数乘以成绩在70≤x<80段的人数所占的百分比即可求得m;用成绩在80≤x<90段的频数除以总人数即可求得n;(2)根据(1)求出的m的值,直接补全频数分布直方图即可;(3)用娄底市共有的人数乘以80分以上(包括80分)所占的百分比,即可得出答案.答:估计约有1200人进入决赛.考点:频数(率)分布表;频数(率)分布直方图;用样本估计总体.22.芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)【答案】立柱BH的长约为16.3米.【解析】试题分析:设DH=x米,由三角函数得出CH=3x,即可得BH=BC+CH=2+3x,再求得AH=3BH=23+3x,由AH=AD+DH得出方程23+3x=20+x,,解方程求出x,即可得出结果.解得:x=10﹣3,∴BH=2+3(10﹣3)=103﹣1≈16.3(米).答:立柱BH的长约为16.3米.考点:解直角三角形的应用.五、解答题(本大题共2小题,每小题9分,满分18分)23.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【答案】(1)乙骑自行车的速度为300米/分钟;(2)当甲到达学校时,乙同学离学校还有600米. 【解析】试题分析:(1)设乙骑自行车的速度为x 米/分钟,则甲步行速度是21x 米/分钟,公交车的速度是2x 米/分钟,根据“甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟”列方程解方程即可;(2)用(1)的结果乘以2即可.试题解析:解:(1)设乙骑自行车的速度为x 米/分钟,则甲步行速度是21x 米/分钟,公交车的速度是2x 米/分钟,根据题意得230002600300021600-=-+x x x, 解得:x=300,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟; (2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米. 考点:分式方程的应用.24.如图,将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1B 1C 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1、BC 1分别交于点E 、F . (1)求证:△BCF ≌△BA 1D .(2)当∠C=α度时,判定四边形A 1BCE 的形状并说明理由.【答案】(1)详见解析;(2)四边形A1BCE是菱形,理由详见解析.∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,在△BCF与△BA1D中,,∴△BCF≌△BA1D;(2)解:四边形A1BCE是菱形,∴A1B=BC,∴四边形A1BCE是菱形.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质.六、解答题(本大题共2小题,每小题10分,满分20分)25.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.【答案】(1)详见解析;(2)(i)CE=65;(ii)详见解析.【解析】试题分析:(1)因为∠ACB=∠DCO=90°,所以∠ACD=∠OCB,又因为点O是Rt△ACB 中斜边AB的中点,所以OC=OB,所以∠OCB=∠B,利用等量代换可知∠ACD=∠B;(2)(i )因为BC 2=AB •BE ,所以△ABC ∽△CBE ,所以∠ACB=∠CEB=90°,因为tan ∠ACD=tan∠B ,利用勾股定理即可求出CE 的值;(ii )过点A 作AF ⊥CD∴∠ACD=∠B ,(2)(i )∵BC 2=AB •BE , ∴ECBE AB BC , ∵∠B=∠B ,∴△ABC ∽△CBE ,∴∠ACB=∠CEB=90°,∵∠ACD=∠B ,∴tan ∠ACD=tan ∠B=43, 设BE=4x ,CE=3x ,由勾股定理可知:BE 2+CE 2=BC 2,∴(4x )2+(3x )2=100, ∴解得x=25,∴CE=65;∴直线CD与⊙A相切.考点:圆的综合题.26.如图,抛物线y=ax2+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0).(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.【答案】(1)y=x 2﹣5x ﹣6;(2)存在,P (2,﹣12);(3)Q 点一共有5个,(25,﹣25).【解析】试题分析:(1)抛物线经过点A (﹣1,0),B (5,﹣6),C (6,0),可利用两点式法设抛物线的解析式为y=a (x+1)(x ﹣6),代入B (5,﹣6)即可求得函数的解析式;(2)作辅助线,将四边形PACB 分成三个图形,两个三角形和一个梯形,设P (m ,m 2﹣5m ﹣6),四边形PACB 的面积为S ,用字母m 表示出四边形PACB、 a=1,∴y=(x+1)(x ﹣6)=x 2﹣5x ﹣6;(2)存在,如图1,分别过P 、B 向x 轴作垂线PM 和BN ,垂足分别为M 、N ,设P (m ,m 2﹣5m ﹣6),四边形PACB 的面积为S ,则PM=﹣m 2+5m+6,AM=m+1,MN=5﹣m ,CN=6﹣5=1,BN=5,∴S=S △AMP +S 梯形PMNB +S △BNC =21(﹣m 2+5m+6)(m+1)+21(6﹣m 2+5m+6)(5﹣m )+21×1×6 =﹣3m 2+12m+36=﹣3(m ﹣2)2+48,当m=2时,S 有最大值为48,这时m 2﹣5m ﹣6=22﹣5×2﹣6=﹣12,∴Q 3(25,﹣25).考点:二次函数综合题.。

2016年辽宁省锦州市中考数学试卷(含解析版)

2016年辽宁省锦州市中考数学试卷(含解析版)

2016年辽宁省锦州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分) 1.|﹣6|的相反数是( )A .6B .﹣6C .16D .16-2.下列运算中,正确的是( )A .a 3(﹣3a )2=6a 5B .331a a a a÷⋅= C .(﹣2a ﹣1)2=4a 2+4a+1 D .2a 2+3a 3=5a 53.一个正方体的每个面上都有一个汉字,其平面展开图如图所示,那么在该正方体中与“价”字相对的字是( )A .记B .心C .间D .观4.某商场试销售某品牌男款运动鞋,一个月内销售情况如下表: 型号(cm ) 38 39 40 41 42 43 44 数量(件)571215232514商场经理要想了解哪种型号需求量最大,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .方差C .中位数D .众数5.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是( )A .14B .34C .12D .386.如图,在△ABC 中,∠C=90°,分别以点A 、B 为圆心,大于12AB 长为半径作弧,两弧分别交于M 、N 两点,过M 、N 两点的直线交AC 于点E ,若AC=6,BC=3,则CE 的长为( )A .94B .112C D .327.在同一直角坐标系中,一次函数y=ax ﹣a 与反比例函数()0ay a x=≠的图象可能是( )A .B .C .D .8.二次函数y=ax 2+bx+c (a 、b 、c 为常数,且a≠0)的x 与y 的部分对应值如下表:有下列结论: ①a>0; ②4a﹣2b+1>0;③x=﹣3是关于x 的一元二次方程ax 2+(b ﹣1)x+c=0的一个根;④当﹣3≤x≤n 时,ax 2+(b ﹣1)x+c≥0.其中正确结论的个数为( ) A .4B .3C .2D .1二、填空题(本大题共8小题,每小题3分,共24分) 9.分解因式:ax 4﹣ay 4= .10.上海中信大厦是中国第一、世界第二高的摩天大楼,它塔冠上的风力发电机每年可以产生1189000千瓦时的绿色电力,1189000这个数用科学记数法可表示为 .11.如图,直线AB 经过原点O ,与双曲线()0ky k x=≠交于A 、B 两点,AC⊥y 轴于点C ,且△ABC 的面积是8,则k 的值是 .12.关于x的方程3kx2+12x+2=0有实数根,则k的取值范围是.13.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球.请你估计这个口袋中红球的数量为个.14.如图,在△ABC中,点D为AC上一点,且12CDAD=,过点D作DE∥BC交AB于点E,连接CE,过点D作DF∥CE交AB于点F.若AB=15,则EF= .15.若关于x的方程2222x mx x++=--的解为正数,则m的取值范围是.16.小明将量角器在桌面上进行连续翻转,如图为第1次、第2次翻转,若量角器的半径为1,则第2016次翻转后圆心O所走过的路径长为.三、解答题(本大题共10小题,共80分)17.(6分)先化简,再求值:21111x x x ⎛⎫÷+ ⎪--⎝⎭,其中()03x π=--.18.(6分)如图,在平面直角坐标系中,△OAB 的顶点坐标分别为O (0,0),A (1,2),B (3,1)(每个方格的边长均为1个单位长度). (1)将△OAB 向右平移1个单位后得到△O 1A 1B 1,请画出△O 1A 1B 1;(2)请以O 为位似中心画出△O 1A 1B 1的位似图形,使它与△O 1A 1B 1的相似比为2:1;(3)点P (a ,b )为△OAB 内一点,请直接写出位似变换后的对应点P′的坐标为 .19.(7分)为了了解九年级学生参加体育活动的情况,某校对九年级部分学生进行问卷调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A 、1.5小时以上B 、1﹣1.5小时C 、0.5﹣1小时D 、0.5小时以下 (这里的1﹣1.5表示大于或等于1同时小于1.5,本题类似的记号均表示这一含义)根据调查结果绘制了两幅不完整的统计图:请你根据以上信息,解答下列问题:(1)本次调查采用的调查方式是;共调查了学生名;(2)请补全条形统计图和扇形统计图;(3)若该校有1500名九年级学生,估计该校九年级有多少名学生平均每天参加体育活动的时间至少1小时.20.(7分)九年一班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,小强拿出一个箱子说:“这个不透明的箱子里装有红、白球各1个和若干个黄球,它们除了颜色外其余都相同,谁能同时摸出两个黄球谁就获得一等奖”.已知任意摸出一个球是黄球的概率为12.(1)请直接写出箱子里有黄球个;(2)请用列表或树状图求获得一等奖的概率.21.(8分)如图,在▱ABCD中,∠BAD和∠DCB的平分线AE、CF分别交BC、AD于点E、F,点M、N分别为AE、CF的中点,连接FM、EN,试判断FM和EN的数量关系和位置关系,并加以证明.22.(8分)“五•一”期间,小亮与家人到某旅游风景区登山,他们沿着坡度为5:12的山坡AB向上走了1300米,到达缆车站B处,乘坐缆车到达山顶C处,已知点A、B、C、D在同一平面内,从山脚A处看山顶C处的仰角为30°,缆车行驶路线BC与水平面的夹角为60°,求山高CD.(结果精确到1米,≈)1.414(注:坡度是指坡面的铅直高度与水平宽度的比)23.(8分)如图,已知△ABC,∠ACB=90°,AC<BC,点D为AB的中点,过点D 作BC的垂线,垂足为点F,过点A、C、D作⊙O交BC于点E,连接CD、DE.(1)求证:DF为⊙O的切线;(2)若AC=3,BC=9,求DE的长.。

2016年江西省中考数学试卷(解析版)

2016年江西省中考数学试卷(解析版)

2016年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.(3分)(2016•江西)下列四个数中,最大的一个数是()A.2 B.C.0 D.﹣2【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣2<0<<2,故四个数中,最大的一个数是2.故选:A.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)(2016•江西)将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先解出不等式3x﹣2<1的解集,即可解答本题.【解答】解:3x﹣2<1移项,得3x<3,系数化为1,得x<1,故选D.【点评】本题考查解一元一次不等式\在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式的方法.3.(3分)(2016•江西)下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n2【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的运算,选出正确答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选B.【点评】本题考查了合并同类项、积的乘方、单项式乘单项式、完全平方公式,掌握运算法则是解答本题的关键.4.(3分)(2016•江西)有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图的定义即可得到结果.【解答】解:其主视图是C,故选C.【点评】此题考查了三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.5.(3分)(2016•江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2B.1C.﹣2D.﹣1【考点】根与系数的关系.【分析】根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.【解答】解:∵α、β是一元二次方程x2+2x﹣1=0的两个根,∴αβ=,故选D.【点评】本题考查根与系数的关系,解题的关键是明确两根之积等于常数项与二次项系数的比值.6.(3分)(2016•江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③【考点】相似三角形的判定与性质;三角形中位线定理.【分析】利用相似三角形的判定和性质分别求出各多边形竖直部分线段长度之和与水平部分线段长度之和,再比较即可.【解答】解:假设每个小正方形的边长为1,①:m=1+2+1=4,n=2+4=6,则m≠n;②在△ACN中,BM∥CN,∴=,∴BM=,在△AGF中,DM∥NE∥FG,∴=,=,得DM=,NE=,∴m=2+=2.5,n=+1++=2.5,∴m=n;③由②得:BE=,CF=,∴m=2+2++1+=6,n=4+2=6,∴m=n,则这三个多边形中满足m=n的是②和③;故选C.【点评】本题考查了相似多边形的判定和性质,对于有中点的三角形可以利用三角形中位线定理得出;本题线段比较多要依次相加,做到不重不漏.二、填空题(本大题共6小题,每小题3分,满分18分)7.(3分)(2016•江西)计算:﹣3+2=﹣1.【考点】有理数的加法.【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【解答】解:﹣3+2=﹣1.故答案为:﹣1.【点评】此题考查了有理数的加法.注意在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.8.(3分)(2016•江西)分解因式:ax2﹣ay2=a(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.9.(3分)(2016•江西)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为17°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠B'AC'=33°,∠BAB'=50°,从而得到∠B′AC的度数.【解答】解:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B'AC'=33°,∠BAB'=50°,∴∠B′AC的度数=50°﹣33°=17°.故答案为:17°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.(3分)(2016•江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB 于点E,交CB的延长线于点F,则∠BEF的度数为50°.【考点】平行四边形的性质.【分析】由“平行四边形的对边相互平行”、“两直线平行,同位角相等”以及“直角三角形的两个锐角互余”的性质进行解答.【解答】解:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.【点评】本题考查了平行四边形的性质.利用平行四边形的对边相互平行推知DC∥AB是解题的关键.11.(3分)(2016•江西)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=4.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义.【分析】由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=k1,S△OBP=k2,根据△OAB的面积为2结合三角形之间的关系即可得出结论.【解答】解:∵反比例函数y1=(x>0)及y2=(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=k1,S△OBP=k2.∴S△OAB=S△OAP﹣S△OBP=(k1﹣k2)=2,解得:k1﹣k2=4.故答案为:4.【点评】本题考查了反比例函数与一次函数的交点问题已经反比例函数系数k的几何意义,解题的关键是得出S△OAB=(k1﹣k2).本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义用系数k来表示出三角形的面积是关键.12.(3分)(2016•江西)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是5\sqrt{2}或4\sqrt{5}或5.【考点】矩形的性质;等腰三角形的性质;勾股定理.【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.【解答】解:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边AP===4;③当PA=PE时,底边AE=5;综上所述:等腰三角形AEP的对边长为5或4或5;故答案为:5或4或5.【点评】本题考查了矩形的性质、等腰三角形的判定、勾股定理;熟练掌握矩形的性质和等腰三角形的判定,进行分类讨论是解决问题的关键.三、解答题(本大题共5小题,每小题3分,满分27分)13.(3分)(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.【考点】翻折变换(折叠问题);解二元一次方程组.【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【解答】解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;(2)∵将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.∴∠AED=∠CED=90°,∴∠AED=∠ACB=90°,∴DE∥BC.【点评】本题考查的是图形的翻折变换,涉及到平行线的判定,熟知折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.14.(6分)(2016•江西)先化简,再求值:(+)÷,其中x=6.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x=6代入进行计算即可.【解答】解:原式=÷=÷=•=,当x=6时,原式==﹣.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.15.(6分)(2016•江西)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.【考点】两条直线相交或平行问题;待定系数法求一次函数解析式;勾股定理的应用.【分析】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为4,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.【解答】解:(1)∵点A(2,0),AB=∴BO===3∴点B的坐标为(0,3);(2)∵△ABC的面积为4∴×BC×AO=4∴×BC×2=4,即BC=4∵BO=3∴CO=4﹣3=1∴C(0,﹣1)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y=x﹣1【点评】本题主要考查了两条直线的交点问题,解题的关键是掌握勾股定理以及待定系数法.注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,反之也成立.16.(6分)(2016•江西)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【考点】条形统计图;用样本估计总体.【分析】(1)用甲、乙两班学生家长共100人减去其余各项目人数可得乙组关心“情感品质”的家长人数,补全图形即可;(2)用样本中关心孩子“情感品质”方面的家长数占被调查人数的比例乘以总人数3600可得答案;(3)无确切答案,结合自身情况或条形统计图,言之有理即可.【解答】解:(1)乙组关心“情感品质”的家长有:100﹣(18+20+23+17+5+7+4)=6(人),补全条形统计图如图:(2)×3600=360(人).答:估计约有360位家长最关心孩子“情感品质”方面的成长;(3)无确切答案,结合自身情况或条形统计图,言之有理即可,如:从条形统计图中,家长对“情感品质”关心不够,可适当关注与指导.【点评】本题主要考查条形统计图,条形统计图能清楚地表示出每个项目的数据,熟知各项目数据个数之和等于总数,也考查了用样本估计总体.17.(6分)(2016•江西)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.【考点】作图—应用与设计作图.【分析】(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.【点评】本题考查作图﹣应用设计、正方形、长方形、等腰直角三角形的性质,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.四、(本大题共4小题,每小题8根,共32分)18.(8分)(2016•江西)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.【考点】切线的性质;垂径定理.【分析】(1)连接OC,根据切线的性质和PE⊥OE以及∠OAC=∠OCA得∠APE=∠DPC,然后结合对顶角的性质可证得结论;(2)由∠CAB=30°易得△OBC为等边三角形,可得∠AOC=120°,由F是的中点,易得△AOF与△COF均为等边三角形,可得AF=AO=OC=CF,易得以A,O,C,F为顶点的四边形是菱形.【解答】(1)证明:连接OC,∵∠OAC=∠ACO,PE⊥OE,OC⊥CD,∴∠APE=∠PCD,∵∠APE=∠DPC,∴∠DPC=∠PCD,∴DC=DP;(2)解:以A,O,C,F为顶点的四边形是菱形;∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,连接OF,AF,∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形OACF为菱形.【点评】本题主要考查了切线的性质、圆周角定理和等边三角形的判定等,作出恰当的辅助线利用切线的性质是解答此题的关键.19.(8分)(2016•江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系直接求值;(2)根据数量关系找出关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出不等式(方程或方程组)是关键.20.(8分)(2016•江西)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为\frac{1}{2};(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【考点】列表法与树状图法.【分析】(1)由现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,甲摸牌数字是4与5则获胜,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后根据树状图列出甲、乙的“最终点数”,继而求得答案.【解答】解:(1)∵现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,∴甲摸牌数字是4与5则获胜,∴甲获胜的概率为:=;故答案为:;(2)画树状图得:则共有12种等可能的结果;列表得:∴乙获胜的概率为:.【点评】此题考查了列表法或树状图法求概率.注意根据题意列出甲、乙的“最终点数”的表格是难点.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)(2016•江西)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)【考点】解直角三角形的应用.【分析】(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.【解答】解:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件.五、(本大题共10分)22.(10分)(2016•江西)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为15°,24°;(4)图n中,“叠弦三角形”是等边三角形(填“是”或“不是”)(5)图n中,“叠弦角”的度数为60°﹣\frac{180°}{n}(用含n的式子表示)【考点】几何变换综合题.【分析】(1)先由旋转的性质,再判断出△APD≌△AOD',最后用旋转角计算即可;(2)先判断出Rt△AEM≌Rt△ABN,在判断出Rt△APM≌Rt△AON 即可;(3)先判断出△AD′O≌△ABO,再利用正方形,正五边形的性质和旋转的性质,计算即可;(4)先判断出△APF≌△AE′F′,再用旋转角为60°,从而得出△PAO是等边三角形;(5)用(3)的方法求出正n边形的,“叠弦角”的度数.【解答】解:(1)如图1,∵四ABCD是正方形,由旋转知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°,∴∠DAP=∠D'AO,∴△APD≌△AOD'(ASA)∴AP=AO,∵∠OAP=60°,∴△AOP是等边三角形,(2)如图2,作AM⊥DE于M,作AN⊥CB于N.∵五ABCDE是正五边形,由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°∴∠EAP=∠E'AO∴△APE≌△AOE'(ASA)∴∠OAE'=∠PAE.在Rt△AEM和Rt△ABN中,∠AEM=∠ABN=72°,AA AE=AB ∴Rt△AEM≌Rt△ABN (AAS),∴∠EAM=∠BAN,AM=AN.在Rt△APM和Rt△AON中,AP=AO,AM=AN∴Rt△APM≌Rt△AON (HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB∴∠OAE'=∠OAB (等量代换).(3)由(1)有,△APD≌△AOD',∴∠DAP=∠D′AO,在△AD′O和△ABO中,,∴△AD′O≌△ABO,∴∠D′AO=∠BAO,由旋转得,∠DAD′=60°,∵∠DAB=90°,∴∠D′AB=∠DAB﹣∠DAD′=30°,∴∠D′AD=∠D′AB=15°,同理可得,∠E′AO=24°,故答案为:15°,24°.(4)如图3,∵六边形ABCDEF和六边形A′B′C′E′F′是正六边形,∴∠F=F′=120°,由旋转得,AF=AF′,EF=E′F′,∴△APF≌△AE′F′,∴∠PAF=∠E′AF′,由旋转得,∠FAF′=60°,AP=AO∴∠PAO=∠FAO=60°,∴△PAO是等边三角形.故答案为:是(5)同(3)的方法得,∠OAB=[(n﹣2)×180°÷n﹣60°]÷2=60°﹣故答案:60°﹣.【点评】此题是几何变形综合题,主要考查了正多边形的性质旋转的性质,全等三角形的判定,等边三角形的判定,解本题的关键是判定三角形全等.六、(本大题共12分)23.(12分)(2016•江西)设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点B n (()n﹣1,0)(n为正整数)作x轴的垂线,交抛物线于点A n,连接A n B n+1,得Rt△A n B n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt△A n B n B n+1中,探究下列问题:①当n为何值时,Rt△A n B n B n+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△A k B k B k+1与Rt△A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)直接把点A1的坐标代入y=ax2求出a的值;(2)由题意可知:A1B1是点A1的纵坐标:则A1B1=2×12=2;A2B2是点A2的纵坐标:则A2B2=2×()2=;…则A n B n=2x2=2×[()n﹣1]2=;B1B2=1﹣=,B2B3=﹣==,…,B n B n+1=;(3)因为Rt△A k B k B k+1与Rt△A m B m B m+1是直角三角形,所以分两种情况讨论:根据(2)的结论代入所得的对应边的比列式,计算求出k与m的关系,并与1≤k<m≤n(k,m均为正整数)相结合,得出两种符合条件的值,分别代入两相似直角三角形计算相似比.【解答】解:(1)∵点A1(1,2)在抛物线的解析式为y=ax2上,∴a=2;(2)A n B n=2x2=2×[()n﹣1]2=,B n B n+1=;(3)由Rt△A n B n B n+1是等腰直角三角形得A n B n=B n B n+1,则:=,2n﹣3=n,n=3,∴当n=3时,Rt△A n B n B n+1是等腰直角三角形,②依题意得,∠A k B k B k+1=∠A m B m B m+1=90°,有两种情况:i)当Rt△A k B k B k+1∽Rt△A m B m B m+1时,=,=,=,所以,k=m(舍去),ii)当Rt△A k B k B k+1∽Rt△B m+1B m A m时,=,=,=,∴k+m=6,∵1≤k<m≤n(k,m均为正整数),∴取或;当时,Rt△A1B1B2∽Rt△B6B5A5,相似比为:==64,当时,Rt△A2B2B3∽Rt△B5B4A4,相似比为:==8,所以:存在Rt△A k B k B k+1与Rt△A m B m B m+1相似,其相似比为64:1或8:1.【点评】本题考查了二次函数的综合问题,这是一个函数类的规律题,把坐标、二次函数和线段有机地结合在一起,以求线段的长为突破口,以相似三角形的对应边的比为等量关系,代入计算解决问题,综合性较强,因为本题小字标较多,容易出错.2016年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.(3分)(2016•江西)下列四个数中,最大的一个数是()A.2B.C.0D.﹣22.(3分)(2016•江西)将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.3.(3分)(2016•江西)下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n24.(3分)(2016•江西)有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B.C.D.5.(3分)(2016•江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2B.1C.﹣2D.﹣16.(3分)(2016•江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③二、填空题(本大题共6小题,每小题3分,满分18分)7.(3分)(2016•江西)计算:﹣3+2=.8.(3分)(2016•江西)分解因式:ax2﹣ay2=.9.(3分)(2016•江西)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.10.(3分)(2016•江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB 于点E,交CB的延长线于点F,则∠BEF的度数为.11.(3分)(2016•江西)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=.12.(3分)(2016•江西)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.三、解答题(本大题共5小题,每小题3分,满分27分)13.(3分)(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.14.(6分)(2016•江西)先化简,再求值:(+)÷,其中x=6.15.(6分)(2016•江西)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.16.(6分)(2016•江西)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?17.(6分)(2016•江西)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.四、(本大题共4小题,每小题8根,共32分)18.(8分)(2016•江西)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.19.(8分)(2016•江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.20.(8分)(2016•江西)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;。

2016年辽宁省沈阳市中考数学试卷(含答案解析)

2016年辽宁省沈阳市中考数学试卷(含答案解析)

2016年辽宁省沈阳市中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的。

每小题2分,共20分)1.(2分)下列各数是无理数的是()A.0 B.﹣1 C.D.2.(2分)如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B.C.D.3.(2分)在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105 C.5.4×106D.5.4×1074.(2分)如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3 B.﹣3 C.D.﹣5.(2分)“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件 D.不确定事件6.(2分)下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6 C.(x2y)3=x6y3 D.(x﹣y)(y﹣x)=x2﹣y2 7.(2分)已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2 B.众数是8 C.中位数是6 D.中位数是78.(2分)一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6 B.x1=﹣2,x2=6 C.x1=﹣2,x2=﹣6 D.x1=2,x2=69.(2分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4 C.8D.410.(2分)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4二、填空题(每小题3分,共18分)11.(3分)分解因式:2x2﹣4x+2= .12.(3分)若一个多边形的内角和是540°,则这个多边形是边形.13.(3分)化简:(1﹣)•(m+1)= .14.(3分)三个连续整数中,n是最大的一个,这三个数的和为.15.(3分)在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t (h)之间的函数关系如图表示,当甲车出发h时,两车相距350km.16.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.三、解答题17.(6分)计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+.18.(8分)为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.19.(8分)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.20.(8分)我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表(1)m= ,n= ,p= ;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.21.(8分)如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).22.(10分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B 两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A 种型号健身器材至少要购买多少套?23.(10分)如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD1,CE1,设点E1的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.24.(12分)在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.25.(12分)如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.2016年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的。

中考数学(第03期)大题狂做系列 专题08(含解析)-人教版初中九年级全册数学试题

中考数学(第03期)大题狂做系列 专题08(含解析)-人教版初中九年级全册数学试题

2016年中考数学大题狂做系列 专题08数学部分说明:根据15年中考试题的数量,一共分为3期,大题狂做每期为10套。

由8道解答题组成,时间为50分钟。

1.(某某某某第16题,8分)(本小题满分8分,每题4分)(1)化简:nn n n n 1)12(2-÷++; (2)关于x 的一元二次方程 0322=-+m x x 有两个不相等的实数根,求m 的取值X 围【答案】11n n ;m >-98 【解析】考点:分式的化简、一元二次方程根的判别式.2. (某某日照,第18题,9分)(9分)为进一步推广“阳光体育”大课间活动,某中学对已开设的A 实心球,B 立定跳远,C 跑步,D 跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.【答案】(1)60(人),40%,(2).【解析】试题解析:解:(1)根据题意得:15÷10%=150(名).本项调查中喜欢“跑步”的学生人数是;150﹣15﹣45﹣30=60(人),所占百分比是:×100%=40%,画图如下:(2)用A表示男生,B表示女生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是=.法与树状图法;2.扇形统计图;3.条形统计图.3.(某某某某,第22题,9分)(本题满分9分)如图1,滨海广场装有可利用风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯。

该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC 垂直于灯杆OF ,路灯顶端E 距离地面6米,DE=1.8米,60oCDE ∠=,且根据我市的地理位置设定太阳能板AB 的倾斜角为43o ,AB=1.5米,CD=1米。

2016年四川省成都市中考数学试卷(含解析)

2016年四川省成都市中考数学试卷(含解析)

2016年四川省成都市中考数学试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题:本大题共10小题,每小题3分,共30分1.在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×1044.计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y25.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°6.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)7.分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁7 8 8 7s2 1 1.2 1 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁9.二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1D.抛物线与x轴有两个交点10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π二、填空题:本大题共4个小题,每小题4分,共16分11.已知|a+2|=0,则a=.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1y2(填“>”或“<”).14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.三、解答题:本大题共6小题,共54分15.(12分)(1)计算:(﹣2)3+﹣2sin30°+(2016﹣π)0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.16.(6分)化简:(x﹣)÷.17.(8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A 到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)18.(8分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.20.(10分)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.B卷(共50分)一、填空题:每小题4分,共20分21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.22.已知是方程组的解,则代数式(a+b)(a﹣b)的值为.23.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.24.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.25.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.二、解答题:共3个小题,共30分26.(8分)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?27.(10分)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.【解答】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.2.【解答】解:从上面看易得横着的“”字,故选:C.3.【解答】解:181万=181 0000=1.81×106,故选:B.4.【解答】解:(﹣x3y)2=x6y2.故选:D.5.【解答】解:∵l1∥l2,∴∠1=∠3,∵∠1=56°,∴∠3=56°,∵∠2+∠3=180°,∴∠2=124°,故选:C.6.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.7.【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选:B.8.【解答】解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选:C.9.【解答】解:A、a=2,则抛物线y=2x2﹣3的开口向上,所以A选项错误;B、当x=2时,y=2×4﹣3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2﹣3=0,此方程有两个不相等的实数解,所以D选项正确.故选:D.10.【解答】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=2∠A=100°,∵AB=4,∴BO=2,∴的长为:=π.故选:B.二、填空题:本大题共4个小题,每小题4分,共16分11.【解答】解:由绝对值的意义得:a+2=0,解得:a=﹣2;故答案为:﹣2.12.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°,故答案为:120°.13.【解答】解:在反比例函数y=中k=2>0,∴该函数在x<0内单调递减.∵x1<x2<0,∴y1>y2.故答案为:>.14.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.三、解答题:本大题共6小题,共54分15.【解答】解:(1)(﹣2)3+﹣2sin30°+(2016﹣π)0=﹣8+4﹣1+1=﹣4;(2)∵3x2+2x﹣m=0没有实数解,∴b2﹣4ac=4﹣4×3(﹣m)<0,解得:m<﹣,故实数m的取值范围是:m<﹣.16.【解答】解:原式=•=•=x+1.17.【解答】解:由题意得AC=20米,AB=1.5米,∵∠DBE=32°,∴DE=BEtan32°≈20×0.62=12.4米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆CD的高度约13.9米.18.【解答】解:(1)画树状图为:共有12种等可能的结果数;(2)抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率==.19.【解答】解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∵OA∥BC,∴S△ABC=S△OBC=×BO×x C=×3×4=6.20.【解答】解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC﹣CD=5﹣3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD•AE,∴42=2AE,∴AE=8,在Rt△DBE中tanE====;(3)过点F作FM⊥AE于点M,∵AB:BC=4:3,∴设AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE﹣AD=6x,∵AF平分∠BAC,∴=,∴==,∵tanE=,∴cosE=,sinE=,∴=,∴BE=,∴EF=BE=,∴sinE==,∴MF=,∵tanE=,∴ME=2MF=,∴AM=AE﹣ME=,∵AF2=AM2+MF2,∴4=+,∴x=,∴⊙C的半径为:3x=.另解:由上述知tan∠FAM==,∵BC=DC=CE,=,∴AD:DM:ME=2:3:3,∵tan∠E==,设FM=a,则AM=3a,ME=2a,∴AE=5a,∴DC=AE=a,由勾股定理可知:AF=a,∵AF=2,∴a=,∴DC=四、填空题:每小题4分,共20分21.【解答】解:根据题意得:9000×(1﹣30%﹣15%﹣×100%)=9000×30%=2700(人).答:可以估计其中对慈善法“非常清楚”的居民约有2700人.故答案为:2700.22.【解答】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,则原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣823.【解答】解:作直径AE,连接CE,∴∠ACE=90°,∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠AHB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==,故答案为:.24.【解答】解:由题意得:AB=b﹣a=2设AM=x,则BM=2﹣xx2=2(2﹣x)x=﹣1±x1=﹣1+,x2=﹣1﹣(舍)则AM=BN=﹣1∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4 故答案为:2﹣4.25.【解答】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN是等腰直角三角形,当PM最小时,对角线MN最小,即AE取最小值,∴当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,∵平行四边形ABCD的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,故答案为:.五、解答题:共3个小题,共30分26.【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,∵a=﹣5<0,∴w的最大值是60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.27.【解答】解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHF+∠AHF=∠AHC+∠AHF,∴∠EHA=∠FHC,,∴△EHA∽△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②方法1、如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴EF=BD,由(1)知,BD=AC,∴EF=AC∴==2.即:EF=2HG.方法2、如图③,取EF的中点K,连接GK,HK,由旋转知,∠EHF=90°,∴EK=HK=EF,由旋转知,∠CGE=∠AGC=90°,∴EK=GK=EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.28.【解答】解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,根据中点坐标公式的M(,),∴点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).。

2016年天津市中考数学试卷(word版,含答案)

2016年天津市中考数学试卷(word版,含答案)

2016年天津市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.7A.2.sin60°的值等于()A.B.C.D.C.3.下列图形中,可以看作是中心对称图形的是()A.B.C. D.B.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106 C.61.2×105 D.612×104B.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.A.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间C.7.计算﹣的结果为()A.1 B.x C.D.A.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3D.9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣aC.10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CED.11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3D.12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3B.二、填空题:本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于8a3.14.计算(+)(﹣)的结果等于2.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是﹣1(写出一个即可).17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤4;(Ⅱ)解不等式②,得x≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为2≤x≤4.解:(I)解不等式①,得x≤4.故答案为:x≤4;(II)解不等式②,得x≥2.故答案为:x≥2.(III)把不等式①和②的解集在数轴上表示为:;(IV)原不等式组的解集为:.故答案为:2≤x≤4.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P 的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.解:(Ⅰ)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.解:过点C作CD⊥AB垂足为D,在Rt△ACD中,tanA=tan45°==1,CD=AD,sinA=sin45°==,AC=CD.在Rt△BCD中,tanB=tan37°=≈0.75,BD=;sinB=sin37°=≈0.60,CB=.∵AD+BD=AB=63,∴CD+=63,解得CD≈27,AC=CD≈1.414×27=38.178≈38.2,CB=≈=45.0,答:AC的长约为38.2cm,CB的长约等于45.0m.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135 31545x租用的乙种货车最多运送机器的数量/台150 30﹣30x+240表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元12002800 400x租用乙种货车的费用/元1400280 ﹣280x+2240(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.解:(Ⅰ)由题意可得,在表一中,当甲车7辆时,运送的机器数量为:45×7=315(台),则乙车8﹣7=1辆,运送的机器数量为:30×1=30(台),当甲车x辆时,运送的机器数量为:45×x=45x(台),则乙车(8﹣x)辆,运送的机器数量为:30×(8﹣x)=﹣30x+240(台),在表二中,当租用甲货车3辆时,租用甲种货车的费用为:400×3=1200(元),则租用乙种货车8﹣3=5辆,租用乙种货车的费用为:280×5=1400(元),当租用甲货车x辆时,租用甲种货车的费用为:400×x=400x(元),则租用乙种货车(8﹣x)辆,租用乙种货车的费用为:280×(8﹣x)=﹣280x+2240(元),故答案为:表一:315,45x,30,﹣30x+240;表二:1200,400x,1400,﹣280x+2240;(Ⅱ)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)解:(1)如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+=,∴O′点的坐标为(,);(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=O′D=,∴DH=O′H﹣O′D=﹣=,∴P′点的坐标为(,).25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.解:(Ⅰ)∵y=x2﹣2x+1=(x﹣1)2∴顶点P(1,0),∵当x=0时,y=1,∴Q(0,1),(Ⅱ)①设抛物线C′的解析式为y=x2﹣2x+m,∴Q′(0,m)其中m>1,∴OQ′=m,∵F(1,),过F作FH⊥OQ′,如图:∴FH=1,Q′H=m﹣,在Rt△FQ′H中,FQ′2=(m﹣)2+1=m2﹣m+,∵FQ′=OQ′,∴m2﹣m+=m2,∴m=,∴抛物线C′的解析式为y=x2﹣2x+,②设点A(x0,y0),则y0=x02﹣2x0+,过点A作x轴的垂线,与直线Q′F相交于点N,则可设N(x0,n),∴AN=y0﹣n,其中y0>n,连接FP,∵F(1,),P(1,0),∴FP⊥x轴,∴FP∥AN,∴∠ANF=∠PFN,连接PK,则直线Q′F是线段PK的垂直平分线,∴FP=FK,有∠PFN=∠AFN,∴∠ANF=∠AFN,则AF=AN,根据勾股定理,得,AF2=(x0﹣1)2+(y0﹣)2,∴(x0﹣1)2+(y0﹣)2=(x﹣2x0+)+y﹣y0=y,∴AF=y0,∴y0=y0﹣n,∴n=0,∴N(x0,0),设直线Q′F的解析式为y=kx+b,则,解得,∴y=﹣x+,由点N在直线Q′F上,得,0=﹣x0+,∴x0=,将x0=代入y0=x﹣2x0+,∴y0=,∴A(,)第11页(共11页)。

2016年江苏省淮安市中考数学试卷(含解析)

2016年江苏省淮安市中考数学试卷(含解析)

2016年江苏省淮安市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2016•淮安)下列四个数中最大的数是()A.﹣2 B.﹣1 C.0 D.12.(3分)(2016•淮安)下列图形是中心对称图形的是()A.B.C.D.3.(3分)(2016•淮安)月球的直径约为3476000米,将3476000用科学记数法表示应为()A.0.3476×102B.34.76×104C.3.476×106D.3.476×1084.(3分)(2016•淮安)在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是()A.5 B.6 C.4 D.25.(3分)(2016•淮安)下列运算正确的是()A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a46.(3分)(2016•淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间7.(3分)(2016•淮安)已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1 B.2 C.5 D.78.(3分)(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2016•淮安)若分式在实数范围内有意义,则x的取值范围是.10.(3分)(2015•广东)分解因式:m2﹣4=.11.(3分)(2016•淮安)点A(3,﹣2)关于x轴对称的点的坐标是.12.(3分)(2016•淮安)计算:3a﹣(2a﹣b)=.13.(3分)(2016•淮安)一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是.14.(3分)(2016•淮安)若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k=.15.(3分)(2016•淮安)若点A(﹣2,3)、B(m,﹣6)都在反比例函数y=(k≠0)的图象上,则m的值是.16.(3分)(2016•淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.17.(3分)(2016•淮安)若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是°.18.(3分)(2016•淮安)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF 翻折,点C落在点P处,则点P到边AB距离的最小值是.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)(2016•淮安)(1)计算:(+1)0+|﹣2|﹣3﹣1(2)解不等式组:.20.(8分)(2016•淮安)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的 1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?21.(8分)(2016•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.22.(8分)(2016•淮安)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B 转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.23.(8分)(2016•淮安)为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.24.(8分)(2016•淮安)小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.25.(10分)(2016•淮安)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.26.(10分)(2016•淮安)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.27.(12分)(2016•淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF 的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.28.(14分)(2016•淮安)问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED 处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD=.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是.2016年江苏省淮安市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2016•淮安)下列四个数中最大的数是()A.﹣2 B.﹣1 C.0 D.1【解答】解:∵﹣2<﹣1<0<1,∴最大的数是1.故选D.2.(3分)(2016•淮安)下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.3.(3分)(2016•淮安)月球的直径约为3476000米,将3476000用科学记数法表示应为()A.0.3476×102B.34.76×104C.3.476×106D.3.476×108【解答】解:将3476000用科学记数法表示应为3.476×106.故选:C.4.(3分)(2016•淮安)在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是()A.5 B.6 C.4 D.2【解答】解:∵进球5个的有2个球队,∴这组数据的众数是5.故选A.5.(3分)(2016•淮安)下列运算正确的是()A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a4【解答】解:A、a2•a3=a2+3=a5,故本选项错误;B、(ab)2=a2b2,故本选项正确;C、(a2)3=a2×3=a6,故本选项错误;D、a2+a2=2a2,故本选项错误.故选B.6.(3分)(2016•淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【解答】解:∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选:C.7.(3分)(2016•淮安)已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1 B.2 C.5 D.7【解答】解:∵a﹣b=2,∴2a﹣2b﹣3=2(a﹣b)﹣3=2×2﹣3=1.故选:A.8.(3分)(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2016•淮安)若分式在实数范围内有意义,则x的取值范围是x≠5.【解答】解:依题意得:x﹣5≠0,解得x≠5.故答案是:x≠5.10.(3分)(2015•广东)分解因式:m2﹣4=(m+2)(m﹣2).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).11.(3分)(2016•淮安)点A(3,﹣2)关于x轴对称的点的坐标是(3,2).【解答】解:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).12.(3分)(2016•淮安)计算:3a﹣(2a﹣b)=a+b.【解答】解:3a﹣(2a﹣b)=3a﹣2a+b=a+b,故答案为:a+b.13.(3分)(2016•淮安)一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是.【解答】解:∵一个不透明的袋子中装有3个黄球和4个蓝球,∴从袋子中随机摸出一个球,摸出的球是黄球的概率是:.故答案为:.14.(3分)(2016•淮安)若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k=9.【解答】解:∵一元二次方程x2+6x+k=0有两个相等的实数根,∴△=62﹣4×1×k=0,解得:k=9,故答案为:9.15.(3分)(2016•淮安)若点A(﹣2,3)、B(m,﹣6)都在反比例函数y=(k≠0)的图象上,则m的值是1.【解答】解:∵点A(﹣2,3)在反比例函数y=(k≠0)的图象上,∴k=﹣2×3=﹣6.∵点B(m,﹣6)在反比例函数y=(k≠0)的图象上,∴k=﹣6=﹣6m,解得:m=1.故答案为:1.16.(3分)(2016•淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10.【解答】解:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=10,答:它的周长是10,故答案为:1017.(3分)(2016•淮安)若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是120°.【解答】解:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则=4π,解得:n=120.故答案为120.18.(3分)(2016•淮安)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF 翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)(2016•淮安)(1)计算:(+1)0+|﹣2|﹣3﹣1(2)解不等式组:.【解答】解:(1)(+1)0+|﹣2|﹣3﹣1=1+2﹣=2;(2),不等式①的解集为:x<4,不等式②的解集为:x>2.故不等式组的解集为:2<x<4.20.(8分)(2016•淮安)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?【解答】解:设原计划每小时检修管道x米.由题意,得﹣=2.解得x=50.经检验,x=50是原方程的解.且符合题意.答:原计划每小时检修管道50米.21.(8分)(2016•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).22.(8分)(2016•淮安)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B 转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个数字的积为奇数的4种情况,∴两个数字的积为奇数的概率为:=.23.(8分)(2016•淮安)为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是60;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.【解答】解:(1)本次调查的样本容量是15÷25%=60;(2)选择C的人数为:60﹣15﹣10﹣12=23(人),补全条形图如图:(3)×3600=1380(人).答:估计该校最想去湿地公园的学生人数约由1380人.故答案为:60.24.(8分)(2016•淮安)小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.【解答】解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.25.(10分)(2016•淮安)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.【解答】解:(1)MN是⊙O切线.理由:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S阴=S扇形O AC﹣S△O AC=﹣=﹣4.26.(10分)(2016•淮安)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克30元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.【解答】解:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克=30元.故答案为30.(2)由题意y1=18x+50,y2=,(3)函数y1的图象如图所示,由解得,所以点F坐标(5,150),由解得,所以点E坐标(30,600).由图象可知甲采摘园所需总费用较少时5≤x≤30.27.(12分)(2016•淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF 的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.【解答】解:(1)把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得,所以抛物线的解析式为y=﹣x2+x+8;当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,所以C点坐标为(8,0);(2)①连结OF,如图,设F(t,﹣t2+t+8),∵S四边形OC FD=S△C DF+S△OC D=S△OD F+S△OC F,∴S△C DF=S△OD F+S△OC F﹣S△OC D=•4•t+•8•(﹣t2+t+8)﹣•4•8=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),∵E(t﹣8,﹣t2+t+12)在抛物线上,∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7,当t=7时,S△C D F=﹣(7﹣3)2+25=9,∴此时S=2S△C DF=18.28.(14分)(2016•淮安)问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED 处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD=3.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是PQ=AC 或PQ=AC.【解答】解:(1)由题意知:AC+BC=CD,∴3+2=CD,∴CD=3,;(2)连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵,∴AD=BD,将△BCD绕点D,逆时针旋转90°到△AED处,如图③,∴∠EAD=∠DBC,∵∠DBC+∠DAC=180°,∴∠EAD+∠DAC=180°,∴E、A、C三点共线,∵AB=13,BC=12,∴由勾股定理可求得:AC=5,∵BC=AE,∴CE=AE+AC=17,∵∠EDA=∠CDB,∴∠EDA+∠ADC=∠CDB+∠ADC,即∠EDC=∠ADB=90°,∵CD=ED,∴△EDC是等腰直角三角形,∴CE=CD,∴CD=;(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,连接D1A,D1B,D1C,如图④由(2)的证明过程可知:AC+BC=D1C,∴D1C=,又∵D1D是⊙O的直径,∴∠DCD1=90°,∵AC=m,BC=n,∴由勾股定理可求得:AB2=m2+n2,∴D1D2=AB2=m2+n2,∵D1C2+CD2=D1D2,∴CD=m2+n2﹣=,∵m<n,∴CD=;(3)当点E在直线AC的左侧时,如图⑤,连接CQ,PC,∵AC=BC,∠ACB=90°,点P是AB的中点,∴AP=CP,∠APC=90°,又∵CA=CE,点Q是AE的中点,∴∠CQA=90°,设AC=a,∵AE=AC,∴AE=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(2)的证明过程可知:AQ+CQ=PQ,∴PQ=a+a,∴PQ=AC;当点E在直线AC的右侧时,如图⑥,连接CQ、CP,同理可知:∠AQC=∠APC=90°,设AC=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(3)的结论可知:PQ=(CQ﹣AQ),∴PQ=AC.综上所述,线段PQ与AC的数量关系是PQ=AC或PQ=AC.参与本试卷答题和审题的老师有:星期八;sd2011;HLing;sjzx;gbl210;nhx600;lbz;zgm666;三界无我;曹先生;1987483819;张其铎;弯弯的小河;HJJ;****************;zcx;gsls;神龙杉(排名不分先后)菁优网2016年7月3日。

垂径定理-中考数学专项训练(含解析)

垂径定理-中考数学专项训练(含解析)

垂径定理一、单选题A.82.如图,圆弧形桥拱的跨度A.2米B.43.如图,一个圆柱形的玻璃水杯,将其水平放置,截面是个圆,是弧AB的中点,2CD=cm,杯内水面宽A.6cm4.如图,CD是圆O长为()A.33A .45︒6.如图,O 的半径是A .27.如图是一段圆弧 AB 点.若63,AB CD =A .6πB .4π8.如图,在O 中,半径23r =,AB 过点C 作CD OC ⊥交O 于点D ,则A .4B的直径,11.如图,AB是O==,则CD5,3AB BC的弦,半径12.如图,AB是O中,直径13.如图,在O一点,连AE,过点C作14.如图,在圆O中,弦的直径15.如图.O为.的外接圆,16.如图,⊙O是ABC∠的度数为于点D,连接BD,则D三、解答题17.如图,AB为半圆O点D,若4,==AB AC(1)DE的长.(2)阴影部分的面积.18.如图,AB 为O 的直径,CD 为弦,CD AB ⊥于点E ,连接DO 并延长交O 于点F ,连接AF 交CD 于点G ,CG AG =,连接AC .(1)求证:AC DF ∥;(2)若12AB =,求AC 和GD 的长.19.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C D 、两点,若16cm 6cm AB CD ==,.(1)求AC 的长;(2)若大圆半径为10cm ,求小圆的半径.∠;(1)连接AD,求OAD(2)点F在 BC上,CDF∠=参考答案:∵OA OB =,C 为弦AB 中点,∴OC AB ⊥,4AC =,∴OE 平分 AB ,∵D 为 AB 的中点,∴点,D E 重合,∴,,O C D 三点共线,设圆的半径为r ,则:2OC OD CD r =-=-,由勾股定理,得:222OA AC OC =+,∴()22242r r =+-,解得:=5r ;故选B .4.C【分析】本题考查了勾股定理的应用,垂径定理,熟练掌握和运用垂径定理是解决本题的关键.连接OC ,首先根据题意可求得63OC OE ==,,根据勾股定理即可求得CE 的长,再根据垂径定理即可求得CD 的长.【详解】解:如图,连接OC ,∵123AB BE ==,,∴63OB OC OE ===,,∵AB CD ⊥,∵50BOC ∠=︒,OC ∴OCB OBC ∠=∠=∵OC AB ⊥,∴AD BD =,故选:B.7.B【分析】本题考查的是垂径定理,勾股定理及弧长的计算公式,先根据垂径定理求出=长,由题意得OD OAOE AB ⊥ ,132AE BE AB ∴===,22OE OA AE ∴=-=在Rt COE △中,∵AB 是O 的直径,∴152OD OB AB ===∵,6CD AB CD ⊥=,∴13,2DE CD DEO ==∠∴22OE OD DE =-=∵5AB =,∴25OE =,∵DE 切O 于点E ,∴OE DE ⊥,∴90OED ∠=︒,∵1OA =,120AOB ∠=︒,∴30A B ==︒∠∠,AC BC =∴1122OC OA ==,AC =∵直径CD 长为4,∴1422OD =⨯=,∵1OG =,∴1DG OD OG =-=,∴AB 垂直平分OD ,OH 经过圆心O ,12AH BH AB ∴===∴2AO AH OH =+故答案为:5.在Rt AOD 中,12OD OA ==,,1cos 2AOD \Ð=,60AOD ∴=︒∠,OE AC ⊥ ,由垂径定理知,点E是CD的中点,也是AB是 的直径,CD⊥AB∴垂直平分CD,M是OA的中点,∴1122OM OA OD==,OA CD于点M,⊥∴点M是CD的中点,∴垂直平分CD,ABNC ND∴=,Q,∠=︒45CDFNCD NDC∴∠=∠=︒,45∴∠=︒,90CND。

2024年中考数学复习几何专项练习:动点运动路径之瓜豆原理(含答案解析)

2024年中考数学复习几何专项练习:动点运动路径之瓜豆原理(含答案解析)

2024年中考数学复习几何专项练习:动点运动路径之瓜豆原理(含答案解析)一、填空题1.如图,等边三角形ABC 中,AB =4,高线AHD 是线段AH 上一动点,以BD 为边向下作等边三角形BDE ,当点D 从点A 运动到点H 的过程中,点E 所经过的路径为线段CM ,则线段CM 的长为,当点D 运动到点H ,此时线段BE 的长为.【答案】2【分析】由“SAS ”可得△ABD ≌△CBE ,推出AD =EC ,可得结论,再由勾股定理求解2,BH =当,D H 重合时,2,BE BH ==从而可得答案.【详解】解:如图,连接EC .∵△ABC ,△BDE 都是等边三角形,∴BA =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,在△ABD 和△CBE 中,BA BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBE (SAS ),∴AD =EC ,∵点D 从点A 运动到点H ,∴点E的运动路径的长为CM AH ==,当,D H 重合,而BDE △(即BHE )为等边三角形,,BE BH \=4,,AB AH AH BC ==^Q2,BH ==2,BE ∴=故答案为:.【点睛】本题考查等边三角形的性质,全等三角形的判定和性质,动点的轨迹等知识,解题的关键是正确寻找全等三角形解决问题.2.如图,正方形ABCD 的边长为4,E 为BC 上一点,且1BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边EFG∆,连接CG ,则CG 的最小值为.【答案】52【分析】由题意分析可知,点F 为主动点,G 为从动点,所以以点E 为旋转中心构造全等关系,得到点G 的运动轨迹,之后通过垂线段最短构造直角三角形获得CG 最小值.【详解】由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动将EFB ∆绕点E 旋转60︒,使EF 与EG 重合,得到EFB EHG ∆≅∆,从而可知EBH ∆为等边三角形,点G 在垂直于HE 的直线HN 上,作CM HN ⊥,则CM 即为CG 的最小值,作EP CM ⊥,可知四边形HEPM 为矩形,则1351222CM MP CP HE EC =+=+=+=.故答案为52.【点睛】本题考查了线段极值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G 的运动轨迹,是本题的关键.3.如图,等边ABC 中,8AB =,O 是BC 上一点,且14BO BC =,点M 为AB 边上一动点,连接OM ,将线段OM 绕点O 按逆时针方向旋转60︒至ON ,连接BN CN 、,则BCN △周长的最小值为.【答案】8+8【分析】过点N 作ND BC ⊥于点D ,过点O 作OH BM ⊥于点H ,则90OHM ODN ∠=∠=︒,证明HOM DNO ≌,可得DN OH =,从而得到点N 的运动轨迹是直线,且该直线与直线BC 平行,在BC 的左侧,与BCC 关于该直线的对称点E ,连接BE 交该直线于N ,即当点B ,N ,E 三点共线时,BCN △的周长最小,连接CE 交该直线于G ,则22CE CG DN ===CE BC ⊥,求出BE ,即可求解.【详解】解:如图,过点N 作ND BC ⊥于点D ,过点O 作OH BM ⊥于点H ,则90OHM ODN ∠=∠=︒,∵ABC 为等边三角形,∴60ABC ∠=︒,8BC AB ==,∴120BMO BOM ∠+∠=︒,根据题意得:60MON ∠=︒,OM ON =,∴120NOD BOM ∠+∠=︒,∴NOD BMO ∠=∠,∴HOM DNO ≌,∴DN OH =,∵14BO BC =,∴2BO =,∵60ABC ∠=︒,∴30BOH ∠=︒,∴112BH OB ==,∴DN OH ==∴点N 的运动轨迹是直线,且该直线与直线BC 平行,在BC 的左侧,与BC作点C 关于该直线的对称点E ,连接BE 交该直线于N ,即当点B ,N ,E 三点共线时,BCN △的周长最小,连接CE 交该直线于G ,则22CE CG DN ===,CE BC ⊥,∴BE =∴△ACN 的周长的最小值为8+故答案为:8+.【点睛】本题考查旋转变换,全等三角形的判定和性质,轴对称,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.4.如图,正方形ABCD 的边长为P 是CD 边上的一动点,连接AP ,将AP 绕点A 顺时针方旋转60︒后得到AQ ,连接CQ ,则点P 在整个运动过程中,线段CQ 所扫过的图形面积为.【答案】3-【分析】根据题意画出点P 在CD 上移动的过程,线段CQ 所扫过的面积就是COQ 的面积,根据正方形的性质,等边三角形的性质以及全等三角形的判定和性质,得出线段CQ 所扫过的图形面积()12ACQ AOQ S S S =- ,再根据等边三角形,等腰直角三角形面积的计算方法进行计算即可.【详解】解:如图,当点P 在点D 时,相应的点Q 落在点O ,当点P 移动到点C 时,相应的点Q 在点Q ,CQ 扫过的面积就是COQ 的面积,由题意可知,AOD △、ACQ 都是等边三角形,AO DO AD ∴===AQ CQ AC ====,四边形ABCD 是正方形,AOD △是等边三角形,906030ODC ∴∠=︒-︒=︒,45ACD ∠=︒,OD CD = ,18030752DOC DCO ︒-︒∴∠=∠==︒,754530ACO ∴∠=︒-︒=︒,45607530QCO QCD DCO ∠=∠-∠=︒+︒-︒=︒,ACO QCO ∴∠=∠,AC QC = ,CO CO =,AOC ∴ ≌()SAS QOC ,AO QO ∴=,604515CQO CAO ∠=∠=︒-︒=︒,()3601801530290AOQ ∴∠=︒-︒-︒-︒⨯=︒,即AOQ △是等腰直角三角形,∴线段CQ 所扫过的图形面积()12ACQ AOQ S S S =- 111222⎛=⨯⨯⨯ ⎝3=,故答案为:3.【点睛】本题考查正方形、等边三角形,等腰直角三角形以及全等三角形的判定和性质,掌握正方形、等边三角形,等腰直角三角形以及全等三角形的判定和性质是正确解答的前提.5.如图,点D 是等边ABC 边AB 上的一动点(不与端点重合),点D 绕点C 引顺时针方向旋转60 得点E ,所得的CDE 边DE 与BC 交于点F ,则CF DE的最小值为.【分析】由旋转的性质得CDE 为等边三角形,由CEF CAD ∽△△得到CF CE CD AC =,即CF CD DE AC =,从而得到当CD 最小时,比值最小,再由“垂线段最短”得到当CD AB ⊥时,CD 值最小,作出对应图形,利用“ACD 是含30︒角的直角三角形”求出CD AC,从而得解.【详解】解:由旋转的性质得:CD CE =,60DCE ∠=︒,CDE ∴ 为等边三角形,DE CD CE ∴==,60A DEC ∠=∠=︒60ACD DCB ∠+∠=︒60DCB ECF ∠+∠=︒ACD ECF∴∠=∠∵60A DEC ∠=∠= ,ACD ECF∠=∠CEF CAD∴ ∽CF CE CD AC ∴=,即CF CD DE AC=AC 为定值,∴当CD 最小时,比值最小.根据“垂线段最短”可知:当CD AB ⊥时,CD 值最小,过点C 作CD AB ⊥于D ,并补全图形如下:ABC 是等边三角形,CD AB ⊥,60ACB ∠=︒∴1302ACD ACB ∠=∠=︒设AC 2a =,则12AD AC a ==∴CD ==,∴此时CF CD DE AC ==即CF DE 的最小值为2.故答案为:2.【点睛】此题考查图形的旋转变化与性质,等边三角形的判定和性质,相似三角形的判定与性质,含30︒角的直角三角形的性质,垂线段最短,理解“垂线段最短”和利用相似三角形的性质将CF DE转化为CD AC 是解题的关键.6.如图,在ACB △中,60ACB ∠=︒,75BAC ∠=︒,12AC =,点D 是边BC 上的一动点,连接AD ,将线段AD 绕点A 按逆时针方向旋转75︒得到线段AE ,连接CE ,则线段CE 长度的最小值是.【答案】/-【分析】过点A 作AF BC ⊥于点F ,在AB 上取点N ,使12AN AC ==,连接DN ,过点N 作点NM BD ⊥于点M ,证明()SAS NAD DAE ≌,求出CE DN =,得出当DN 最小时,CE 最小,根据垂线段最短,得出当点D 与点M 重合时,DN 最小,则CE 最小,求出最小结果即可.【详解】解:过点A 作AF BC ⊥于点F ,在AB 上取点N ,使12AN AC ==,连接DN ,过点N 作点NM BD ⊥于点M ,如图所示:根据旋转可知,AD AE =,75DAE ∠=︒,∵75BAC DAE ==︒∠∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,即NAD CAE =∠∠,∵AN AC =,AD AE =,∴()SAS NAD CAE ≌,∴CE DN =,∴当DN 最小时,CE 最小,∵垂线段最短,∴当点D 与点M 重合时,DN 最小,则CE 最小,∵90AFC ∠=︒,60BCA ∠=︒,∴906030CAF ∠=︒-︒=︒,∴162CF AC ==,∴AF ==,∵45BAF BAC CAF =-=︒∠∠∠,90AFB ∠=︒,∴904545B ∠=︒-︒=︒,∴B BAF ∠=∠,∴BF AF ==∴AB ==∴12BN AB AN =-=-,∵90BMN ∠=︒,45B ∠=︒,∴904545BNM =︒-︒=︒∠,∴B BNM =∠∠,∴BM NM =,∵222BN NM BM =+,∴()22212NM =-,解得:NM =-,∴CE 的最小值为-.故答案为:【点睛】本题主要考查了全等三角形的判定和性质,勾股定理,等腰三角形的判断和性质,直角三角形的性质,垂线段最短,解题的关键是作出辅助线,构造全等三角形,证明CE DN =.7.如图,点A 的坐标为3⎫⎪⎪⎝⎭,点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60︒得到线段AC .若点C 的坐标为(,4)k ,则k 的值为.【分析】连接BC ,过A 点作AF x ⊥轴于F ,C 作CD x ⊥轴于点D ,CE AF ⊥于点E ,则四边形DCEF 是矩形,根据将线段AB 绕点A 按逆时针方向旋转60︒得到线段AC ,可得ABC 是等边三角形,AB AC BC ==,由点A 的坐标为,(,4)C k ,有AC ==,而BD ==FB ==OF BF BD OD k ++==,可得k =,解方程可得答案.【详解】解:连接BC ,过A 点作AF x ⊥轴于F ,C 作CD x ⊥轴于点D ,CE AF ⊥于点E ,则四边形DCEF 是矩形,如图:∵将线段AB 绕点A 按逆时针方向旋转60︒得到线段AC ,∴AB AC =,60BAC ∠=︒,∴ABC 是等边三角形,∴AB AC BC ==,∵点A 的坐标为,(,4)C k ,,∴3CE k FD =-=,4CD =,3AF =,∴1AE EF AF CD AF =-=-=,∴AC BC AB ====,在Rt BCD 中,BD =,在Rt AFB 中,FB =∵OF BF BD OD k ++==,∴3k =,设k x =x =,化简变形得:42346490x x -=-,解得21x =-(舍去)或2493x =,∴3x =或3x =-(不符合题意,舍去),∴k ,∴k =,.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含k 的代数式表示相关线段的长度.8.如图,在边长为6的等边ABC 中,直线AD BC ⊥,E 是AD 上的一个动点连接EC ,将线段EC 绕点C 逆时针方向旋转60︒得到FC ,连接DF ,则点E 运动过程中,DF 的最小值是.【答案】32【分析】取线段AC 的中点G ,连接EG ,根据等边三角形的性质可得出CD CG =以及FCD ECG Ð=Ð,由旋转的性质可得出EC FC =,由此即可利用全等三角形的判定定理SAS 证出FCD ≌ECG ,进而即可得出DF GE =,再根据点G 为AC 的中点,即可得出EG 的最小值,此题得解.【详解】解:取线段AC 的中点G ,连接EG ,如图所示.ABC 为等边三角形,6AC BC ==,且AD 为ABC 的对称轴,132CD CG AB ∴===,60ACD ∠=︒,60ECF =︒∠ ,FCD ECG \Ð=Ð.FCD ∴ ≌()ECG SAS ,DF GE ∴=.当EG BC ∥时,EG 最小,点G 为AC 的中点,∴此时1133222EG DF CD ===⨯=.故答案为:32.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF GE =.9.如图,在ABC ∆中,90ACB ︒∠=,点D 在BC 边上,5BC =,2CD =,点E 是边AC 所在直线上的一动点,连接DE ,将DE 绕点D 顺时针方向旋转60︒得到DF ,连接BF ,则BF 的最小值为.【答案】72【分析】当E 与点C 重合时,点F 与等边三角形CDG 的点G 重合,当点F 开始运动时,△ECD ≌△FGD ,故点F 在线段GF 上运动,根据垂线段最短原理,当BF ⊥GF 时,BF 有最小值,根据直角三角形的性质计算即可.【详解】当E与点C重合时,点F与等边三角形CDG的点G重合,∵DE绕点D顺时针方向旋转60 得到DF,∴△DEF是等边三角形,∴∠GDC=∠FDE=60°,ED=FD,∴∠GDC-∠GDE=∠FDE-∠GDE,∴∠EDC=∠FDG,∵△DEF是等边三角形,∴CD=GD,∴△ECD≌△FGD,∴EC=GF,∠ECD=∠FGD=90°,∴点F在线段GF上运动,根据垂线段最短原理,当BF⊥GF时,BF有最小值,如图,当旋转到BF∥DG 时,BF⊥GF,垂足为F,过点D作DH⊥BF,垂足为H,∵∠FGD=90°,∴四边形FGDH是矩形,∴∠GDH=90°,GD=FH=2,∵∠GDC=60°,∴∠BDH=30°,∵BD=BC-CD=5-2=3,∴BH=1232 BD=,∴BF=FH+BH=2+32=72,故答案为:7 2.【点睛】本题考查了等边三角形的判定和性质,矩形的判定和性质,垂线段最短,直角三角形的性质,熟练掌握等边三角形的判定,灵活运用直角的判定和直角三角形的性质是解题的关键.10.如图,正方形ABCD的边长为4,E为BC上一点,且1BE=,F为AB边上的一个动点,连接EF,将EF 烧点E顺时什旋转60°得到EG,连接CG,则CG的最小值为.【答案】5 2【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G 的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【详解】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB绕点E旋转60°,使EF与EG重合,得到△EBH为等边三角形,△EBF≌△EHG,∴∠EHG=∠ABC=90°,HE=BE=1,∠BEH=60°,∴点G在垂直于HE的直线HN上.作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,∴∠CEP=180°-60°-90°=30°,∴CP=12CE=12×(4-1)=32,则CM=MP+CP=35122 HE PC+=+=,即CG的最小值为5 2.故答案为5 2.【点睛】本题考查了旋转的性质,线段最值问题,全等三角形的性质,正方形的性质,矩形的判定与性质,含30°角的直角三角形的性质,以及垂线段最短等知识,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是极值问题中比较典型的类型.11.如图,△ABC是边长为4的等边三角形,点D是AB上异于A,B的一动点,将△ACD绕点C逆时针旋转60°得△BCE,则旋转过程中△BDE周长的最小值【答案】.【分析】由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD ,由垂线段最短得到当CD ⊥AB 时,△BDE 的周长最小,于是得到结论.【详解】∵将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,∴∠DCE=60°,DC=EC ,∴△CDE 是等边三角形,由旋转的性质得,BE=AD ,∴C △DBE =BE+DB+DE=AB+DE=4+DE ,∵△CDE 是等边三角形,∴DE=CD ,∴C △DBE =CD+4,由垂线段最短可知,当CD ⊥AB 时,△BDE 的周长最小,此时,∴△BDE 的最小周长,故答案为.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,熟练掌握旋转的性质是解题的关键.12.如图,在ABC 中,8AC BC ==,60BCA ∠= ,直线AD BC ⊥,E 是AD 上的一个动点,连接EC ,将线段EC 绕点C 按逆时针方向旋转60 得到FC ,连接DF ,则点E 运动过程中,DF 的最小值是.【答案】2【分析】根据题意取线段AC 的中点G ,连接EG ,根据等边三角形的性质以及角的计算即可得出CD=CG 以及∠FCD=∠ECG ,由旋转的性质可得出EC=FC ,由此即可利用全等三角形的判定定理SAS 证出△FCD ≌△ECG ,进而即可得出DF=GE ,再根据点G 为AC 的中点,即可得出EG 的最小值.【详解】取线段AC 的中点G ,连接EG,如图所示.8AC BC == ,60BCA ∠= ,ABC ∴为等边三角形,且AD 为ABC 的对称轴,142CD CG AB ∴===,60ACD ∠= ,60ECF ∠= ,FCD ECG ∴∠=∠.在FCD 和ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩,FCD ∴ ≌()ECG SAS ,DF GE ∴=.当//EG BC 时,EG 最小,点G 为AC 的中点,∴此时11224EG DF CD BC ====.故答案为2.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出.DF GE =本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.13.如图,等边△AOB 的边长为4,点P 从点O 出发,沿OA 以每秒1个单位的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,点C 随点P 的运动而运动,连接CP 、CA .在点P 从O 向A 运动的过程中,当△PCA 为直角三角形时t 的值为.【答案】2或83【详解】如图(1)过点P 作PD ⊥OB 于点D ,过C 作CE ⊥OA 于E ,∴∠PDO=∠PEC=90°,∵∠O=60°,∴∠OPD=30°,∴OD=12t ,∴BD=4-12t ,,∵线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,∴∠BPC=60°,BP=2PC ,∵∠OPD=30°,∴∠BPD+∠CPE=90°,∴∠DBP=∠CPE ,∴△PCE ∽△BPD ,∴CE PE PC PD BD PB==,11242PE t ==-,∴,PE=2-14t ,OE=2+34t ,如图(2)当∠PCA=90度时,作CF ⊥PA ,∴△PCF ∽△ACF ,∴△PCF ∽△ACF ,∴PF CF CF AF =,∴CF 2=PF•AF ,∵PF=2-14t ,AF=4-OF=2-34t ,,)2=(2-14t )(=2-34t ),∴t=2,这时P 是OA 的中点;如图(3)当∠CAP=90°时,此时OA=OE ,∴2+34t=4,∴t=83,故答案为2或83.【点睛】本题考查了相似三角形的判定与性质,勾股定理的运用,等边三角形的性质,直角三角形的性质,旋转的性质等,正确地添加辅助线,求出OE 的长是解题的关键.二、解答题14.在平面直角坐标系中,A (a ,0)、B (b ,0),且a ,b 满足26930a a b -+++=,C 、D 两点分别是y 轴正半轴、x 轴负半轴上的两个动点;(1)如图1,若C (0,4),求△ABC 的面积;(2)如图1,若C (0,4),BC =5,BD=AE ,且∠CBA=∠CDE ,求D 点的坐标;(3)如图2,若∠CBA =60°,以CD 为边,在CD 的右侧作等边△CDE ,连接OE ,当OE 最短时,求A ,E 两点之间的距离.【答案】(1)△ABC 的面积为12;(2)D 点的坐标为(-2,0);(3)A ,E 两点之间的距离为32【分析】(1)利用完全平方式和绝对值的性质求出a ,b ,然后确定A 、B 两点坐标,从而利用三角形面积公式求解即可;(2)根据题意判断出CBD DAE △≌△,从而得到CB AD =,然后利用勾股定理求出CB ,及可求出结论;(3)首先根据“双等边”模型推出DCB ECA ≌,得到120DBC EAC ∠=∠=︒,进一步推出AE BC ∥,从而确定随着D 点的运动,点E 在过点A 且平行于BC 的直线PQ 上运动,再根据点到直线的最短距离为垂线段的长度,确定OE 最短时,各点的位置关系,最后根据含30°角的直角三角形的性质求解即可.【详解】解:(1)∵26930a a b -+++=,∴()2330a b -++=,由非负性可知,3030a b -=⎧⎨+=⎩,解得:33a b =⎧⎨=-⎩,∴()3,0A ,()3,0B -,()336AB =--=,∵()0,4C ,∴4OC =,∴11641222ABC S AB OC ==⨯⨯= ;(2)由(1)知()3,0A ,()3,0B -,∴OA OB =,∵OC AB ⊥,∴90AOC BOC ∠=∠=︒,在AOC 和BOC 中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴()AOC BOC SAS △≌△,∴CBO CAO ∠=∠,∵CDA CDE ADE BCD CBA ∠=∠+∠=∠+∠,CBA CDE ∠=∠,∴ADE BCD ∠=∠,在BCD △和ADE V 中,BCD ADE CBD DAE BD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BCD ADE AAS ≌,∴CB AD =,∵()3,0B -,()0,4C ,∴3OB =,4OC =,∴5BC ==,∴5AD BC ==,∵()3,0A ,∴()2,0D -;(3)由(2)可知CB =CA ,∵∠CBA =60°,∴△ABC 为等边三角形,∠BCA =60°,∠DBC =120°,∵△CDE 为等边三角形,∴CD =CE ,∠DCE =60°,∵∠DCE =∠DCB +∠BCE ,∠BCA =∠BCE +∠ECA ,∴∠DCB =∠ECA ,在△DCB 和△ECA 中,CD CE DCB ECA CB CA =⎧⎪∠=∠⎨⎪=⎩∴()DCB ECA SAS ≌,∴120DBC EAC ∠=∠=︒,∵12060180EAC ACB ∠+∠=︒+︒=︒,∴AE BC ∥,即:随着D 点的运动,点E 在过点A 且平行于BC 的直线PQ 上运动,∵要使得OE 最短,∴如图所示,当OE ⊥PQ 时,满足OE 最短,此时∠OEA =90°,∵120DBC EAC ∠=∠=︒,60CAB ∠=︒,∴60OAE EAC CAB ∠=∠-∠=︒,30AOE ∠=︒,∵()3,0A ,∴3OA =,∴1322AE OA ==,∴当OE 最短时,A ,E 两点之间的距离为32.【点睛】本题考查坐标与图形,全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质等,理解平面直角坐标系中点坐标的特征,掌握等腰或等边三角形的性质,熟练使用全等三角形的判定与性质是解题关键.15.在▱ABCD中,∠ABC=60°,AB=4,BC=6.点E'在BC边上且BE'=4,将B E'绕点B逆时针旋转a°得到BE(0°<a<180°).(1)如图1,当∠EBA=90°时,求S△BCE;(2)如图2,在旋转过程中,连接CE,取CE中点F,作射线BF交直线AD于点G.①求线段BF的取值范围;②当∠EBF=120°时,求证:BC﹣DG=2BF;(3)如图3.当∠EBA=90°时,点S为线段BE上一动点,过点E作EM⊥射线AS于点M,N为AM中点,直接写出BN的最大值与最小值.=6;【答案】(1)S△BCE(2)①1<BF<5;②证明见解答;(3)BNBN的最大值为【分析】(1)如图1,过点E 作EF ⊥BC 交CB 的延长线于点F ,根据题意求得∠EBF =180°-∠EBA -∠ABC =180°-90°-60°=30°,再根据特殊直角三角形的性质进而求得BC 上的高EF =2,代入面积公式算出结果;(2)①如图,在线段FG 上截取FK =BF ,连接EK 、CK ,可证得四边形BCKE 是平行四边形,得出:BE =CK =BE '=4,BC =6,再运用三角形三边关系即可求得答案;②可证△EKB ≌△BGA (AAS ),得出BK =AG ,由AG =AD -DG ,即可推出结论;(3)连接AE ,取AE 的中点P ,PA 的中点Q ,连接BP 、NP 、NQ 、BQ ,可证△ABE 是等腰直角三角形,得出:AE AB P 是AE 的中点,可得:BP ⊥AE ,且BP =AP =EP ,利用勾股定理得BQ,当B 、Q 、N 三点共线时,BN 的最小值=BQ -NQ,当点S 与点E 重合时,EM =0,PN =0,此时,BN 的最大值=BP 【详解】(1)解:如图1,过点E 作EH ⊥BC 交CB 的延长线于点H ,∴∠EHC =90°,∵∠ABC =60°,∠EBA =90°,∴∠EBH =180°-∠EBA -∠ABC =180°-90°-60°=30°,∵点E '在BC 边上且BE '=4,将B E '绕点B 逆时针旋转α°得到BE ,∴BE =B E '=4,∴EH =12BE =12×4=2,又∵BC =6,∴S △BCE =12BC •EH =12×6×2=6;(2)解:①如图,在线段FG 上截取FK =BF ,连接EK 、CK ,∵EF=FC,BF=FK,∴四边形BCKE是平行四边形,∴BE=CK=BE'=4,BC=6,在△BCK中,BC-CK<BK<BC+CK,∴6-4<BK<6+4,即2<2BF<10,∴1<BF<5;②证明:∵四边形ABCD是平行四边形,且∠ABC=60°,AB=4,∴∠A=180°-∠ABC=180°-60°=120°,AD∥BC,AD=BC,BE=AB,∵∠EBF=120°,即∠EBK=120°,∴∠EBK=∠A,∵EK∥BC,∴EK∥AD,∴∠EKB=∠BGA,在△EKB和△BGA中,EKB BGAEBK ABE AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EKB≌△BGA(AAS),∴BK=AG,由①知:BK=2BF,又∵AG=AD-DG,∴2BF =BC -DG ;(3)解:连接AE ,取AE 的中点P ,PA 的中点Q ,连接BP 、NP 、NQ 、BQ ,∵∠ABE =90°,AB =BE =4,∴△ABE 是等腰直角三角形,∴AE ,∵点P 是AE 的中点,∴BP ⊥AE ,且BP =AP =EP ,∵N 是AM 的中点,P 是AE 的中点,∴PN 是△AEM 的中位线,∴PN ∥EM ,∴∠ANP =∠AME =90°,∵点Q 是AP 的中点,∴QN =PQ =12AP在Rt △BPQ 中,BQ =当B 、Q 、N 三点共线时,BN 的最小值=BQ -NQ 当点S 与点E 重合时,EM =0,PN =0,此时,BN 的最大值=BP 【点睛】本题是几何变换综合题,主要考查了旋转的性质,平行四边形的性质,等腰直角三角形的性质,全等三角形的判定与性质,三角形中位线定理及勾股定理等知识,解题的关键是灵活运用所学知识解决问题.16.如图,线段AB =10cm ,C 是线段AB 上的一个动点(不与A 、B 重合),在AB 上方分别以AC 、BC 为边作正△ACD 和正△BCE ,连接AE ,交CD 于M ,连接BD ,交CE 于N ,AE 、BD 交于H ,连接CH .(1)求sin ∠AHC ;(2)连接DE ,设AD =x ,DE =y ,求y 与x 之间的函数关系式;(3)把正△BCE 绕C 顺时针旋转一个小于60°的角,在旋转过程中H 到△DCE 的三个顶点距离和最小,即HC +HD +HE 的值最小,HC +HD +HE 的值总等于线段BD 的长.若AC =,旋转过程中某一时刻2AH =3DH ,此刻△ADH 内有一点P ,求PA +PD +PH 的最小值.【答案】(1)2;(2)y0<x <10);【分析】(1)过点C 作CT ⊥AE 于点T ,CR ⊥BD 于点R ,先证△ACE ≌△DCB 得∠CAM =∠HDM ,由直角三角函数可得sin sin =CT CA CAM CD HDM CR ∠=∠= ,从而得CH 平分∠AHB ,进而求得∠AHC =∠BHC =60°即可求解;(2)如图2中,如图,过点D 作DP ⊥CE 于点P ,先由三角函数求得CP =12CD =12x ,DP =2x ,又由AB =10cm ,得CE =CB =(10﹣x )cm ,进而得PE =|10﹣x ﹣12x |=|10﹣32x |,最后由勾股定理即可求得y 与x 之间的函数关系式;(3)如图3中,以AD 为边向外作等边△ADW ,连接WH ,由题意WH 是PA +PD +PH .过点D 作DS ⊥AH 于H ,过点W 作WG ⊥AD 于点G ,过点H 作HK ⊥AD 于K ,过点W 作WQ ⊥HK 于点Q .假设AH =3k ,DH =2k ,由勾股定理得AH =6,DH =4,DSHKDKWQ =KGGW =KWHQWH 的长即PA +PD +PH 的最小值.【详解】(1)解:过点C 作CT ⊥AE 于点T ,CR ⊥BD 于点R.∵△ADC ,△ECB 都是等边三角形,∴CA =CD ,CE =CB ,∠ACD =∠ECB =60°,∴∠ACE =∠DCB ,在△ACE 和△DCB 中,CA CD ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠CAM =∠HDM ,∵CT ⊥AE ,CR ⊥BD ,∴sin sin =CT CA CAM CD HDM CR ∠=∠= ,∴CH 平分∠AHB ,∵∠AMC =∠DMH ,∴∠AHM =∠ACM =60°,∴∠AHC =∠BHC =60°,∴sin ∠AHC =2;(2)解:如图2中,如图,过点D 作DP ⊥CE 于点P .∵AC =CD =x (cm ),∠DCE =60°,∴CP =12CD =12x ,DP ,∵AB =10cm ,∴BC =AB ﹣AC =(10﹣x )cm ,∴CE =CB =(10﹣x )cm ,∴PE =|10﹣x ﹣12x |=|10﹣32x |,∴y =DE (0<x <10);(3)解:如图3中,以AD 为边向外作等边△ADW ,连接WH ,由题意WH 是PA +PD +PH .过点D 作DS ⊥AH 于H ,过点W 作WG ⊥AD 于点G ,过点H 作HK ⊥AD 于K ,过点W 作WQ ⊥HK 于点Q .∵2AH =3DH ,∴可以假设AH =3k ,DH =2k ,∵∠DHS =60°,DS ⊥AH ,∴SH =12DH =k ,DS ,AM =2k ,∵AD 2=AS 2+DS 2,∴()2=(2k )2+)2,∴k =2(负根已经舍弃),∴AH =6,DH =4,DS∵12•AH •DS =12•AD •HK ,∴HK =7,DK 7,∵AG =DG WQKG 是矩形,∴WQ =KG GW =KW∴HQ =KH +KQ =7,∴WH =∴PA +PD +PH 的最小值为【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,解直角三角形等知识,添加常用辅助线,构造直角三角形解决问题是解本题的关键.17.在学习了图形的旋转知识后,某数学兴趣小组对教材中有关图形旋转的问题进行了进一步探究.(1)问题梳理,问题呈现:如图1,点D 在等边ABC 的边BC 上,过点C 画AB 的平行线l ,在l 上取CE BD =,连接AE ,则在图1中会产生一对旋转图形.请结合问题中的条件,证明:ABD ACE ≌△△;(2)初步尝试:如图2,在ABC 中,AB AC =,点D 在BC 边上,且BD DC <,将ABD △沿某条直线翻折,使得AB 与AC 重合,点D 与BC 边上点F 重合,再将ACF △沿AC 所在直线翻折,得到ACE △,则在图2中会产生一对旋转图形.若30BAC ∠=︒,6AD =,连接DE ,求ADE V 的面积;(3)深入探究:如图3,在ABC 中,60ACB ∠=︒,75BAC ∠=︒,6AC =,点D 是边BC 上的任意一点,连接AD ,将线段AD 绕点A 按逆时针方向旋转75°,得到线段AE ,连接CE ,求线段CE 长度的最小值.【答案】(1)见解析;(2)9;(3)【分析】(1)根据△ABC 是等边三角形,可得AB =AC ,∠BAC =∠B =60°,进而利用SAS 可证明△ABD ≌△ACE .(2)如图2,过点E 作EH ⊥AD 于H ,由翻折可得△ACE ≌△ABD ≌△ACF ,可得AE =AD =6,EH =3,再运用S △ADE =12×AD ×EH ,即可求得答案.(3)如图3中,在AB 上截取AN =AC ,连接DN ,作NH ⊥BC 于H ,作AM ⊥BC 于M .利用SAS 证明△EAC ≌△DAN ,推出当DN 的值最小时,EC 的值最小,求出HN 的值即可解决问题.【详解】(1)如图1,∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠B =60°,∵CE ∥AB ,∴∠ACE =∠BAC =60°,∴∠B =∠ACE ,在△ABD 和△ACE 中,AB AC B ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );(2)如图2,过点E 作EH ⊥AD 于H,∵由翻折可得:△ACF ≌△ABD ,△ACE ≌△ACF ,∴△ACE ≌△ABD ≌△ACF ,∴AE =AD =6,∠CAE =∠BAD ,∴∠DAE =∠BAC =30°,∵EH ⊥AD ,∴EH =12AE =3,∴S △ADE =12×AD ×EH =12×6×3=9;(3)如图3中,在AB 上截取AN =AC ,连接DN ,作NH ⊥BC 于H ,作AM ⊥BC 于M.∵∠CAB =∠DAE ,∴∠EAC =∠DAN ,∵AE =AD ,AC =AN ,∴△EAC ≌△DAN (SAS ),∴CE =DN ,∴当DN 的值最小时,EC 的值最小,在Rt △ACM 中,∵∠ACM =60°,AC =6,∴30CAM ∠=︒,∴132CM AC ==,∴AM∵∠MAB =∠BAC −∠CAM =75°−30°=45°,∴AMB 为等腰直角三角形,∴AB=,∴NB =AB −AN =−6,在Rt △NHB 中,∵∠B =45°,∴NBH △为等腰直角三角形,∴NH根据垂线段最短可知,当点D 与H 重合时,DN 的值最小,∴CE 的最小值为.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.18.(一)发现探究在△ABC中AB=AC,点P在平面内,连接AP并将线段AP绕点A顺时针方向旋转与∠BAC相等的角度,得到线段AQ,连接BQ;【发现】如图1如果点P是BC边上任意一点,则线段BQ和线段PC的数量关系是;【探究】如图2,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);(二)拓展应用【应用】如图3,在△DEF中,DE=6,∠EDF=60°,∠DEF=90°,P是线段EF上的任意一点连接DP,将线段DP绕点D顺时针方向旋转60°,得到线段DQ,连接EQ请求出线段EQ长度的最小值.【答案】【发现】BQ=PC;【探究】BQ=PC仍然成立,证明见解析;【应用】线段EQ长度的最小值为3.【分析】[发现]先判断出∠BAQ=∠CAP,进而用SAS判断出△BAQ≌△CAP,即可得出结论;[探究]结论BQ=PC仍然成立,理由同【发现】的方法;[应用]在DF上取一点H,使DH=DE,连接PH,过点H作HM⊥EF于M,构造出△DEQ≌△DHP,得出EQ=HP,当HP⊥EF(点P和点M重合)时,EQ最小,求HM即可.【详解】[发现]由旋转知,AQ=AP,∵∠PAQ=∠BAC,∴∠PAQ﹣∠BAP=∠BAC﹣∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP,故答案为:BQ=PC;【探究】结论:BQ=PC仍然成立,理由:由旋转知,AQ=AP,∵∠PAQ=∠BAC,∴∠PAQ﹣∠BAP=∠BAC﹣∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP,【应用】如图3,在DF上取一点H,使DH=DE,连接PH,过点H作HM⊥EF于M,由旋转知,DQ=DP,∠PDQ=60°,∵∠EDF=60°,∴∠PDQ=∠EDF,∴∠EDQ=∠HDP,∴△DEQ≌△DHP(SAS),∴EQ=HP,求EQ最小,就是求HP最小,当HP⊥EF(点P和点M重合)时,HP最小,最小值为HM,∵∠EDF=60°,∠DEF=90°,∴∠F=30°,∵DE=6,∴DF=2DE=12,∵DH=DE=6,∴FH=6,∵∠F=30°,∴HM=3.线段EQ长度的最小值为3..【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,含30°角的直角三角形的性质,恰当的作辅助线,把所求线段转化为与动点P有关的线段,根据垂线段最短确定线段位置是解本题的关键.。

2016年江苏省各市中考数学试卷汇总(13套)

2016年江苏省各市中考数学试卷汇总(13套)

文件清单:2016年中考真题精品解析数学(江苏宿迁卷)精编word版(原卷版)2016年江苏省苏州市中考数学试卷(解析版)江苏省南京市2016年中考数学试题(解析版)江苏省南通市2016年中考数学试题(word版,含解析)江苏省常州市2016年中考数学试题(图片版,含答案)江苏省徐州市2016年中考数学试题(word版,含解析)江苏省扬州市2016年中考数学试题(word版,含答案)江苏省无锡市2016年中考数学试题(word版,含解析)江苏省泰州市2016年中考数学试题(word版,含解析)江苏省连云港市2016年中考数学试卷(word版含解析)江苏省镇江市2016年中考数学试题(扫描版,含答案)淮安中考数学2016(含答案)2016年中考真题精品解析数学(江苏宿迁卷)精编word版一、选择题(共8小题)1.﹣2的绝对值是()A.﹣2B.C.D.22.下列四个几何体中,左视图为圆的几何体是()A.B.C.D.3.地球与月球的平均距离为384000km,将384000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1064.下列计算正确的是()A.B.C.D.5.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°6.一组数据5,4,2,5,6的中位数是()A.5B.4C.2D.67.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B.C.D.18.若二次函数的图象经过点(﹣1,0),则方程的解为()A.,B.,C.,D.,二、填空题(共8小题)9.因式分解:= .10.计算:= .11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是.12.若一元二次方程有两个不相等的实数根,则k的取值范围是.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 28480.960 0.947 0.950 0.952 0.948 0.951 0.949发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB 于点D,则BD的长为.15.如图,在平面直角坐标系中,一条直线与反比例函数(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.三、解答题(共10小题)17.计算:.18.解不等式组:.19.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E=CF.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:A C是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C 按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.26.如图,在平面直角坐标系xOy中,将二次函数的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.一、选择题(共8小题)1.﹣2的绝对值是()A.﹣2B.C.D.2【答案】D.【解析】试题分析:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选D.考点:绝对值.2.下列四个几何体中,左视图为圆的几何体是()A.B.C.D.【答案】A.考点:简单几何体的三视图.3.地球与月球的平均距离为384000km,将384000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C.【解析】试题分析:384000=3.84×105.故选C.考点:科学记数法—表示较大的数.4.下列计算正确的是()A.B.C.D.【答案】D.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.5.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°【答案】B.【解析】试题分析:如图,∠3=180°﹣∠1=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°.故选B.考点:平行线的性质.6.一组数据5,4,2,5,6的中位数是()A.5B.4C.2D.6【答案】A.【解析】试题分析:将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B.C.D.1【答案】B.考点:翻折变换(折叠问题).8.若二次函数的图象经过点(﹣1,0),则方程的解为()A.,B.,C.,D.,【答案】C.【解析】试题分析:∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.故选C.学科网考点:抛物线与x轴的交点.二、填空题(共8小题)9.因式分解:= .【答案】2(a+2)(a﹣2).【解析】试题分析:= =2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.10.计算:= .【答案】x.【解析】试题分析:===x.故答案为:x.考点:分式的加减法.11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是.【答案】1:2.考点:相似三角形的性质.12.若一元二次方程有两个不相等的实数根,则k的取值范围是.【答案】:k<1.【解析】试题分析:∵一元二次方程有两个不相等的实数根,∴△==4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.考点:根的判别式.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 28480.960 0.947 0.950 0.952 0.948 0.951 0.949发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).【答案】0.95.【解析】试题分析:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,故答案为:0.95.考点:利用频率估计概率.14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.【答案】.考点:垂径定理.15.如图,在平面直角坐标系中,一条直线与反比例函数(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.【答案】.考点:反比例函数系数k的几何意义.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.【答案】4.【解析】试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4,故答案为:4.考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.三、解答题(共10小题)17.计算:.【答案】.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.18.解不等式组:.【答案】1<x<2.【解析】试题分析:根据解不等式组的方法可以求得不等式组的解集,从而可以解答本题.试题解析:,由①得,x>1,由②得,x<2,由①②可得,原不等式组的解集是:1<x <2.考点:解一元一次不等式组;方程与不等式.19.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.【答案】(1)28,15;(2)108;(3)200.【解析】试题分析:(1)根据学校从三个年级随机抽取200名学生的体育成绩进行统计分析和扇形统计图可以求得七年级抽取的学生数,从而可以求得a的值,也可以求得九年级抽取的学生数,进而得到b的值;(2)根据扇形统计图可以求得八年级所对应的扇形圆心角的度数;绩不合格的有200人.考点:扇形统计图;用样本估计总体;统计与概率.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.【答案】(1)2;(2).【解析】试题分析:(1)由必然事件的定义可知:透明的袋子中装的都是黑球,从袋子中随机摸出一个球是黑球的案为:2;(2)设红球分别为H1、H2,黑球分别为B1、B2,列表得:第二球H1H2B1B2第一球H1(H1,H2)(H1,B1)(H1,B2)H2(H2,H1)(H2,B1)(H2,B2)B1(B1,H1)(B1,H2)(B1,B2)B2(B2,H1)(B2,H2)(B2,B1)总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种,所以两次摸到的球颜色相同的概率==.考点:列表法与树状图法;随机事件.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E=CF.【答案】证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)【答案】没有触礁的危险.【解析】试题分析:作PC⊥AB于C,如图,∠P AC=30°,∠PBC=45°,AB=8,设PC=x,先判断△PBC为等腰直角三角形得到BC=PC=x,再在Rt△P AC中利用正切的定义列方程,求出x的值,即得到AC的值,然后比较AC与10的大小即可判断海轮继续向正东方向航行,是否有触礁的危险.试题解析:没有触礁的危险.理由如下:考点:解直角三角形的应用-方向角问题;应用题.23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:A C是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.【答案】(1)证明见解析;(2)22.5°.【解析】试题分析:(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;(2)由圆周角定理得出∠BAD=90°,由角的关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.考点:切线的判定;圆周角定理;三角形的外接圆与外心.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.【答案】(1)y=;(2)30<m≤75.【解析】试题分析:(1)根据收费标准,分0<x≤30,30<x≤m,m<x≤100分别求出y与x的关系即可.考点:二次函数的应用;分段函数;最值问题;二次函数的最值.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C 按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【答案】(1)证明见解析;(2)①135°;②.【解析】试题分析:(1)欲证明GF∥AC,只要证明∠A=∠FGB即可解决问题.(2)①先证明A、D、M、C四点共圆,得到∠CMF=∠CAD=45°,即可解决问题.∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.学科网∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴的长==,∴当α从90°变化到180°时,点M运动的路径长为.考点:几何变换综合题.26.如图,在平面直角坐标系xOy中,将二次函数的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.【答案】(1);(2);(3)25.【解析】试题分析:(1)根据二次函数N的图象是由二次函数M翻折、平移得到所以a=﹣1,求出二次函数N的顶点坐标即可解决问题.(2)由=可知OP最大时,最大,求出OP的最大值即可解决问题.(3)画出函数图象即可解决问题.最大,∴OP的最大值=OC+PO=,∴最大值==.学科网(3)M与N所围成封闭图形如图所示:由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.考点:二次函数综合题;最值问题;压轴题;几何变换综合题.2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣53.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1= .12.当x= 时,分式的值为0.13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.不等式组的最大整数解是.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D ,CD=3,则图中阴影部分的面积为.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BD E沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.先化简,再求值:÷(1﹣),其中x=.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC =∠ABC,求反比例函数和一次函数的表达式.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得C D=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).2016年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×=1,∴的倒数是.故选A.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.3.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【考点】频数与频率.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°【考点】平行线的性质.【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【考点】众数;中位数.【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【考点】解直角三角形的应用-坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC 即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△A DC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以A C为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2。

2016年安徽省中考数学试卷附详细答案(原版+解析版)

2016年安徽省中考数学试卷附详细答案(原版+解析版)

2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•安徽)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.(4分)(2016•安徽)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.(4分)(2016•安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.(4分)(2016•安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.(4分)(2016•安徽)方程=3的解是()A.﹣B.C.﹣4 D.46.(4分)(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.(4分)(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有A.18户B.20户C.22户D.24户8.(4分)(2016•安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.4 B.4C.6 D.49.(4分)(2016•安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.(4分)(2016•安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016•安徽)不等式x﹣2≥1的解集是.12.(5分)(2016•安徽)因式分解:a3﹣a=.13.(5分)(2016•安徽)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.(5分)(2016•安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016•安徽)计算:(﹣2016)0++tan45°.16.(8分)(2016•安徽)解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2016•安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(8分)(2016•安徽)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016•安徽)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D 是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.(10分)(2016•安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.六、(本大题满分12分)21.(12分)(2016•安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.(12分)(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.(14分)(2016•安徽)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•安徽)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【考点】绝对值.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(4分)(2016•安徽)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.【点评】此题主要考查了同底数幂的除法运算法则,正确掌握相关法则是解题关键.3.(4分)(2016•安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2016•安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.【点评】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图.5.(4分)(2016•安徽)方程=3的解是()A.﹣B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.【点评】此题考查了分式方程的解,求出分式方程的解是解本题的关键.6.(4分)(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【考点】列代数式.【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.【点评】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.7.(4分)(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有A.18户B.20户C.22户D.24户【考点】扇形统计图.【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.【点评】本题主要考查了扇形统计图,解题的关键是能识图,理解各部分百分率同总数之间的关系.8.(4分)(2016•安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.【点评】此题考查了相似三角形的判断与性质,关键是根据AA证出△CBA∽△CAD,是一道基础题.9.(4分)(2016•安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.【考点】函数的图象.【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C 地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.【点评】本题考查函数图象、路程.速度、时间之间的关系,解题的关键是理解题意求出两人到达C地的时间,属于中考常考题型.10.(4分)(2016•安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.【考点】点与圆的位置关系;圆周角定理.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.【点评】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P 位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016•安徽)不等式x﹣2≥1的解集是x≥3.【考点】解一元一次不等式.【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥3【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.12.(5分)(2016•安徽)因式分解:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)【点评】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2016•安徽)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.【考点】切线的性质;弧长的计算.【分析】根据已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题.【解答】解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.【点评】本题考查切线的性质、弧长公式、直角三角形两锐角互余等知识,解题的关键是记住弧长公式,求出圆心角是关键,属于中考常考题型.14.(5分)(2016•安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【考点】相似形综合题.【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.【点评】本题考查了相似形综合题:熟练掌握折叠和矩形的性质、相似三角形的判定方法;会运用勾股定理计算线段的长.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016•安徽)计算:(﹣2016)0++tan45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2016)0++tan45°=1﹣2+1=0.【点评】此题主要考查了实数运算,正确利用相关性质化简各数是解题关键.16.(8分)(2016•安徽)解方程:x2﹣2x=4.【考点】解一元二次方程-配方法;零指数幂.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.【点评】在实数运算中要注意运算顺序,在解一元二次方程时要注意选择适宜的解题方法.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2016•安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【考点】作图-平移变换.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.【点评】本题考查平移变换、轴对称的性质,解题的关键是理解轴对称的意义,图形的平移实际是点在平移,属于基础题,中考常考题型.18.(8分)(2016•安徽)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=2n2+2n+1.【考点】规律型:图形的变化类.【分析】(1)根据1+3+5+7=16可得出16=42;设第n幅图中球的个数为a n,列出部分a n的值,根据数据的变化找出变化规律“a n﹣1=1+3+5+…+(2n﹣1)=n2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴a n﹣1=1+3+5+…+(2n﹣1)=n2.故答案为:42;n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,=a n﹣1+(2n+1)+a n﹣1,=n2+2n+1+n2,=2n2+2n+1.故答案为:2n+1;2n2+2n+1.【点评】本题考查了规律型中图形的变化类,解题的关键是根据图中小球数量的变化找出变化规律“a n﹣1=1+3+5+…+(2n﹣1)=n2”.本题属于中档题,难度不大,解决该题型题目时,罗列出部分图中球的数量,根据数值的变化找出变化规律是关键.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016•安徽)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D 是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.【考点】两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.【点评】此题主要考查了两点之间的距离以及等腰三角形的判定与性质以及锐角三角函数关系,得出EF的长是解题关键.20.(10分)(2016•安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【点评】本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.六、(本大题满分12分)21.(12分)(2016•安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【考点】列表法与树状图法;算术平方根.【分析】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或B的概率.七、(本大题满分12分)22.(12分)(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,S△OAD=OD•A D=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.【点评】此题考查了待定系数法求二次函数解析式,以及二次函数的最值,熟练掌握二次函数的性质是解本题的关键.八、(本大题满分14分)23.(14分)(2016•安徽)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.【考点】相似形综合题.【分析】(1)根据三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=∠PEQ=90°,根据四边形的内角和得到∠MON=135°,求得∠APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,DE∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO+∠EDO=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ 中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AR=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ ,∴=.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,等边三角形的判定和性质,线段垂直平分线的性质,熟练掌握等腰直角三角形的性质是解题的关键.第21页(共21页)。

2016年广东省深圳市中考数学试卷(附答案解析).docx

2016年广东省深圳市中考数学试卷(附答案解析).docx

2016 年省市中考数学试卷一、单项选择题:本大题共 12 小题,每小题1.(3 分)下列四个数中,最小的正数是(3 分,共)36 分A.﹣ 1 B .0C.1D.22.(3 分)把下列图标折成一个正方体的盒子,折好后与“中”相对的字是()A.祝B.你C.顺D.利3.(3 分)下列运算正确的是()A.8a﹣a=8 B.(﹣ a)4=a4C.a3? a2=a6D.(a﹣b)2=a2﹣b2 4.(3 分)下列图形中,是轴对称图形的是()A.B.C. D.5.(3 分)据统计,从2005 年到2015 年中国累积节能1570000000 吨标准煤,1570000000这个数用科学记数法表示为()A.0.157 ×1010 B .1.57 ×108C. 1.57 × 109D.15.7 × 1086.(3 分)如图,已知a∥b,直角三角板的直角顶点在直线 b 上,若∠ 1=60°,则下列结论错误的是()A.∠ 2=60°B.∠ 3=60°C.∠ 4=120°D.∠ 5=40°7.(3 分)数学老师将全班分成7 个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第 3 个小组被抽到的概率是()A. B. C. D.8.(3 分)下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及其一角相等的两个三角形全等C.16 的平方根是 4D.一组数据 2, 0, 1, 6, 6 的中位数和众数分别是 2 和 69.(3 分)施工队要铺设一段全长2000 米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50 米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x 米,则根据题意所列方程正确的是()A.﹣ =2B.﹣ =2C.﹣ =2D.﹣ =210.(3 分)给出一种运算:对于函数y=x n,规定 y′=nx n﹣1.例如:若函数 y=x4,则有 y′=4x3.已知函数 y=x3,则方程 y′=12 的解是()A.x1=4,x2=﹣4B. x1 =2,x2=﹣2C.x1=x2 =0 D.x1=2, x2=﹣ 211.( 3 分)如图,在扇形AOB中∠ AOB=90°,正方形 CDEF的顶点 C是的中点,点D 在 OB上,点 E 在 OB的延长线上,当正方形 CDEF的边长为 2 时,则阴影部分的面积为()A.2π﹣ 4 B.4π﹣ 8 C.2π﹣ 8D.4π﹣ 412.( 3 分)如图, CB=CA,∠ ACB=90°,点 D 在边 BC上(与 B、C 不重合),四边形 ADEF为正方形,过点 F 作 FG⊥CA,交 CA的延长线于点 G,连接 FB,交DE 于点 Q,给出以下结论:2① AC=FG;② S△FAB:S 四边形CBFG=1:2;③∠ ABC=∠ ABF;④ AD=FQ? AC,其中正确的结论的个数是()A.1B.2C.3D.412 分二、填空题:本大题共 4 小题,每小题 3 分,共22313.( 3 分)分解因式: a b+2ab+b =.14.(3 分)已知一组数据x1,x2,x3,x4的平均数是 5,则数据 x1+3,x2+3,x3 +3,x4+3 的平均数是.15.( 3 分)如图,在 ? ABCD中, AB=3,BC=5,以点 B 的圆心,以任意长为半径作弧,分别交 BA、BC于点 P、 Q,再分别以 P、Q为圆心,以大于 PQ的长为半径作弧,两弧在∠ ABC交于点 M,连接 BM并延长交 AD于点 E,则 DE的长为.16.( 3 分)如图,四边形 ABCO是平行四边形, OA=2,AB=6,点 C 在 x 轴的负半轴上,将 ? ABCO绕点 A 逆时针旋转得到 ? ADEF,AD经过点 O,点 F 恰好落在 x轴的正半轴上,若点 D 在反比例函数 y=( x< 0)的图象上,则 k 的值为.三、解答题:本大题共 7 小题,其中 17 题 5 分, 18 题 6 分, 19 题 7 分, 20 题 8 分,共 52 分17.( 5 分)计算: | ﹣2| ﹣2cos60° +()﹣1﹣(π﹣)0.18.( 6 分)解不等式组:.19.( 7 分)市政府计划投资 1.4 万亿元实施东进战略.为了解市民对东进战略的关注情况.某校数学兴趣小组随机采访部分市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注M0.1B.一般关注1000.5C.不关注30ND.不知道500.25( 1)根据上述统计图可得此次采访的人数为人,m=,n=;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在 15000 名市民中,高度关注东进战略的市民约有人.20.( 8 分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从行至 B 处需 8 秒,在地面 C 处同一方向上分别测得 A 处的仰角为A 处水平飞75°,B 处的仰角为 30°.已知无人飞机的飞行速度为 4 米 / 秒,求这架无人飞机的飞行高度.(结果保留根号)21.( 8 分)荔枝是的特色水果,小明的妈妈先购买了 2 千克桂味和 3 千克糯米糍,共花费 90 元;后又购买了 1 千克桂味和 2 千克糯米糍,共花费55 元.(每次两种荔枝的售价都不变)( 1)求桂味和糯米糍的售价分别是每千克多少元;( 2)如果还需购买两种荔枝共12 千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.22.(9 分)如图,已知⊙ O的半径为 2,AB为直径, CD为弦. AB与 CD交于点 M,将沿 CD翻折后,点 A 与圆心 O重合,延长 OA至 P,使 AP=OA,连接 PC(1)求 CD的长;(2)求证: PC是⊙ O的切线;(3)点 G为的中点,在 PC延长线上有一动点 Q,连接 QG交 AB于点 E.交于点F(F 与 B、C不重合).问 GE? GF是否为定值?如果是,求出该定值;如果不是,请说明理由.23.( 9 分)如图,抛物线y=ax2+2x﹣ 3 与 x 轴交于 A、B 两点,且 B(1,0)(1)求抛物线的解析式和点 A 的坐标;(2)如图 1,点 P 是直线 y=x 上的动点,当直线 y=x 平分∠ APB时,求点 P 的坐标;(3)如图 2,已知直线 y=x﹣分别与 x 轴、 y 轴交于 C、 F 两点,点 Q是直线 CF下方的抛物线上的一个动点,过点 Q作 y 轴的平行线,交直线 CF于点 D,点 E 在线段 CD的延长线上,连接 QE.问:以 QD为腰的等腰△ QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.2016 年省市中考数学试卷参考答案与试题解析一、单项选择题:本大题共12 小题,每小题 3 分,共 36 分1.(3 分)下列四个数中,最小的正数是()A.﹣ 1 B .0C.1D.2【分析】先找到正数,再比较正数的大小即可得出答案.【解答】解:正数有 1,2,∵1< 2,∴最小的正数是1.故选: C.【点评】本题实质考查有理数大小的比较,较为简单,学生在做此题时,应看清题意和选项.2.(3 分)把下列图标折成一个正方体的盒子,折好后与“中”相对的字是()A.祝B.你C.顺D.利【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“祝”与面“利”相对,面“你”与面“考”相对,面“中”与面“顺”相对.故选 C.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.(3 分)下列运算正确的是()44326222A.8a﹣a=8 B.(﹣ a)=a C.a? a=a D.(a﹣b)=a ﹣b【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则分别化简求出答案.【解答】解: A、8a﹣ a=7a,故此选项错误;B、(﹣ a)4=a4,正确;325C、a ? a =a ,故此选项错误;D、(a﹣b)2=a2﹣2ab+b2,故此选项错误;故选: B.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算等知识,正确掌握相关运算法则是解题关键.4.(3 分)下列图形中,是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形的概念求解.【解答】解: A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选 B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3 分)据统计,从2005 年到 2015 年中国累积节能1570000000 吨标准煤,1570000000这个数用科学记数法表示为()A.0.157 ×1010 B .1.57 ×108C. 1.57 × 109D.15.7 × 108【分析】科学记数法的表示形式为a× 10n的形式,其中1≤|a|< 10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值大于 10 时, n 是正数;当原数的绝对值小于 1时, n 是负数.【解答】解: 1570000000这个数用科学记数法表示为 1.57 ×109,故选: C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中 1≤|a| <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.6.(3 分)如图,已知 a∥b,直角三角板的直角顶点在直线 b 上,若∠ 1=60°,则下列结论错误的是()A.∠ 2=60°B.∠ 3=60°C.∠ 4=120°D.∠ 5=40°【分析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出∠ 2,∠ 3,∠ 4,∠ 5 的度数,然后选出错误的选项.【解答】解:∵ a∥b,∠ 1=60°,∴∠ 3=∠1=60°,∠ 2=∠1=60°,∠4=180°﹣∠ 3=180°﹣ 60°=120°,∵三角板为直角三角板,∴∠ 5=90°﹣∠ 3=90°﹣ 60°=30°.故选 D.【点评】本题考查了平行线的性质,解答本题的关键上掌握平行线的性质:两直线平行,同位角相等.7.(3 分)数学老师将全班分成一个小组进行展示活动,则第7 个小组开展小组合作学习,采用随机抽签确定3 个小组被抽到的概率是()A.B.C. D.【分析】根据概率是所求情况数与总情况数之比,可得答案.【解答】解:第 3 个小组被抽到的概率是,故选: A.【点评】本题考查了概率的知识.用到的知识点为:概率 =所求情况数与总情况数之比.8.(3 分)下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及其一角相等的两个三角形全等C.16 的平方根是 4D.一组数据 2, 0, 1, 6, 6 的中位数和众数分别是 2 和 6【分析】根据平行四边形的判定定理、三角形全等的判定定理、平方根的概念、中位数和众数的概念进行判断即可.【解答】解:A.一组对边平行,另一组对边相等的四边形不一定是平行四边形,故错误;B.两边及其一角相等的两个三角形不一定全等,故错误;C.16 的平方根是± 4,故错误,D.一组数据 2, 0, 1, 6, 6 的中位数和众数分别是 2 和 6,故正确,故选: D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.(3 分)施工队要铺设一段全长 2000 米的管道,因在中考期间需停工两天,实际每天施工需比原计划多 50 米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x 米,则根据题意所列方程正确的是()A.﹣ =2B.﹣ =2C.﹣ =2D.﹣ =2【分析】设原计划每天铺设 x 米,则实际施工时每天铺设( x+50)米,根据:原计划所用时间﹣实际所用时间 =2,列出方程即可.【解答】解:设原计划每天施工x 米,则实际每天施工( x+50)米,根据题意,可列方程:﹣=2,故选: A.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.10.(3 分)给出一种运算:对于函数y=x n,规定 y′=nx n﹣1.例如:若函数 y=x4,则有 y′=4x3.已知函数 y=x3,则方程 y′=12 的解是()A.x1=4,x2=﹣4B. x1 =2,x2=﹣2C.x1=x2 =0 D.x1=2, x2=﹣ 2【分析】首先根据新定义求出函数y=x3中的 n,再与方程 y′=12 组成方程组得出: 3x2=12,用直接开平方法解方程即可.【解答】解:由函数 y=x3得 n=3,则 y′=3x2,∴3x2=12,x2=4,x=±2,x1=2,x2=﹣2,故选 B.【点评】本题考查了利用直接开平方法解一元二次方程,同时还以新定义的形式考查了学生的阅读理解能力;注意:①二次项系数要化为1,②根据平方根的意义开平方时,是两个解,且是互为相反数,不要丢解.11.( 3 分)如图,在扇形AOB中∠ AOB=90°,正方形 CDEF的顶点 C是的中点,点D 在 OB上,点 E 在 OB的延长线上,当正方形 CDEF的边长为 2 时,则阴影部分的面积为()A.2π﹣ 4 B.4π﹣ 8 C.2π﹣ 8D.4π﹣ 4【分析】连结 OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形 BOC的面积﹣三角形ODC的面积,依此列式计算即可求解.【解答】解:∵在扇形 AOB中∠ AOB=90°,正方形 CDEF的顶点 C 是的中点,∴∠ COD=45°,∴OC==4,∴阴影部分的面积 =扇形 BOC的面积﹣三角形 ODC的面积=×π× 42﹣×( 2)2=2π﹣ 4.故选: A.【点评】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.12.( 3 分)如图, CB=CA,∠ ACB=90°,点 D 在边 BC上(与 B、C 不重合),四边形 ADEF为正方形,过点 F 作 FG⊥CA,交 CA的延长线于点 G,连接 FB,交DE 于点 Q,给出以下结论:2① AC=FG;② S△FAB:S 四边形CBFG=1:2;③∠ ABC=∠ ABF;④ AD=FQ? AC,其中正确的结论的个数是()A.1B.2C.3D.4【分析】由正方形的性质得出∠ FAD=90°,AD=AF=EF,证出∠ CAD=∠AFG,由AAS 证明△ FGA≌△ ACD,得出 AC=FG,①正确;证明四边形 CBFG是矩形,得出 S△FAB=FB? FG=S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ ACD∽△ FEQ,得出对应边成比例,得出2D? FE=AD=FQ? AC,④正确.【解答】解:∵四边形 ADEF为正方形,∴∠ FAD=90°, AD=AF=EF,∴∠ CAD+∠FAG=90°,∵ FG⊥CA,∴∠ GAF+∠AFG=90°,∴∠ CAD=∠AFG,在△ FGA和△ ACD中,,∴△ FGA≌△ ACD(AAS),∴ AC=FG,①正确;∵ BC=AC,∴ FG=BC,∵∠ ACB=90°, FG⊥CA,∴ FG∥BC,∴四边形 CBFG是矩形,∴∠ CBF=90°, S△FAB=FB? FG=S四边形CBFG,②正确;∵CA=CB,∠ C=∠CBF=90°,∴∠ ABC=∠ABF=45°,③正确;∵∠ FQE=∠DQB=∠ADC,∠ E=∠C=90°,∴△ ACD∽△ FEQ,∴AC:AD=FE:FQ,2∴ AD? FE=AD=FQ? AC,④正确;故选: D.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.二、填空题:本大题共 4 小题,每小题 3 分,共 12 分2232【分析】先提取公因式,再利用公式法把原式进行因式分解即可.2故答案为: b(a+b)2.【点评】本题考查的是提公因式法与公式法的综合运用,熟记完全平方公式是解答此题的关键.14.(3 分)已知一组数据x1,x2,x3,x4的平均数是 5,则数据 x1+3,x2+3,x3 +3,x4+3 的平均数是 8 .【分析】根据平均数的性质知,要求 x+3, x +3,x+3, x +3 的平均数,只要把1234数x1,x2, x3,x4的和表示出即可.【解答】解:∵ x1, x2,x3,x4的平均数为 5∴x1+x2+x3+x4 =4×5=20,∴x1+3,x2+3,x3+3,x4+3 的平均数为:=(x1+3+x2+3+x3+3+x4+3)÷ 4=(20+12)÷ 4=8,故答案为: 8.【点评】本题考查的是算术平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.15.( 3 分)如图,在 ? ABCD中, AB=3,BC=5,以点 B 的圆心,以任意长为半径作弧,分别交 BA、BC于点 P、 Q,再分别以 P、Q为圆心,以大于 PQ的长为半径作弧,两弧在∠ ABC交于点 M,连接 BM并延长交 AD于点 E,则 DE的长为 2 .【分析】根据作图过程可得得 BE平分∠ ABC;再根据角平分线的性质和平行四边形的性质可证明∠ AEB=∠ CBE,证出 AE=AB=3,即可得出 DE的长.,【解答】解:根据作图的方法得: BE平分∠ ABC,∴∠ ABE=∠CBE∵四边形 ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠ AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=2;故答案为: 2.【点评】此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出 AE=AB是解决问题的关键.16.(3 分)如图,四边形ABCO是平行四边形,OA=2,AB=6,点C 在x 轴的负半轴上,将 ? ABCO绕点 A 逆时针旋转得到 ? ADEF,AD经过点 O,点 F 恰好落在 x 轴的正半轴上,若点 D 在反比例函数 y=(x<0)的图象上,则 k 的值为 4 .【分析】根据旋转的性质以及平行四边形的性质得出∠BAO=∠AOF=∠AFO=∠OAF,进而求出 D 点坐标,进而得出 k 的值.【解答】解:如图所示:过点 D 作 DM⊥x 轴于点 M,由题意可得:∠ BAO=∠OAF, AO=AF,AB∥OC,则∠ BAO=∠AOF=∠AFO=∠ OAF,故∠ AOF=60°=∠ DOM,∵OD=AD﹣OA=AB﹣OA=6﹣2=4,∴ MO=2, MD=2,∴ D(﹣ 2,﹣ 2),∴ k=﹣2×(﹣ 2)=4.故答案为: 4.【点评】此题主要考查了平行四边形的性质以及反比例函数图象上点的坐标特征,正确得出 D 点坐标是解题关键.三、解答题:本大题共 7 小题,其中 17 题 5 分, 18 题 6 分, 19 题 7 分, 20 题 8 分,共 52 分17.( 5 分)计算: | ﹣2| ﹣2cos60° +()﹣1﹣(π﹣)0.【分析】直接利用绝对值的性质以及特殊角的三角函数值和负整数指数幂的性质、零指数幂的性质分别化简求出答案.【解答】解: | ﹣2| ﹣2cos60° +()﹣1﹣(π﹣)0=2﹣2×+6﹣ 1=6.【点评】此题主要考查了绝对值的性质以及特殊角的三角函数值和负整数指数幂的性质、零指数幂的性质等知识,正确化简各数是解题关键.18.( 6 分)解不等式组:.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得 x< 2,解②得 x≥﹣ 1,则不等式组的解集是﹣ 1≤x<2.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.( 7 分)市政府计划投资 1.4 万亿元实施东进战略.为了解市民对东进战略的关注情况.某校数学兴趣小组随机采访部分市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注M0.1B.一般关注1000.5C.不关注30ND.不知道500.25( 1)根据上述统计图可得此次采访的人数为200人,m= 20,n=0.15;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在 15000 名市民中,高度关注东进战略的市民约有 1500 人.m 【分析】(1)根据频数÷频率,求得采访的人数,根据频率×总人数,求得的值,根据 30÷ 200,求得 n 的值;( 2)根据 m的值为 20,进行画图;( 3)根据 0.1 × 15000 进行计算即可.【解答】解:( 1)此次采访的人数为100÷0.5=200(人),m=0.1×200=20,n=30÷200=0.15;( 2)如图所示;( 3)高度关注东进战略的市民约有 0.1 ×15000=1500(人).【点评】本题主要考查了条形统计图以及频数与频率,解决问题的关键是掌握:频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率 =.解题时注意,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.20.( 8 分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从 A 处水平飞行至 B 处需 8 秒,在地面 C 处同一方向上分别测得 A 处的仰角为 75°,B 处的仰角为30°.已知无人飞机的飞行速度为 4 米/ 秒,求这架无人飞机的飞行高度.(结果保留根号)【分析】如图,作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出 BH 的长.【解答】解:如图,作 AD⊥BC,BH⊥水平线,由题意得:∠ ACH=75°,∠ BCH=30°, AB∥CH,∴∠ ABC=30°,∠ ACB=45°,∵AB=32m,∴AD=CD=16m,BD=AB? cos30°=16m,∴BC=CD+BD=(16+16)m,则BH=BC? sin30 °=( 8+8)m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.21.( 8 分)荔枝是的特色水果,小明的妈妈先购买了 2 千克桂味和 3 千克糯米糍,共花费 90 元;后又购买了 1 千克桂味和 2 千克糯米糍,共花费55 元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共 12 千克,要求糯米糍的数量不少于桂味数量的 2倍,请设计一种购买方案,使所需总费用最低.【分析】(1)设桂味的售价为每千克x 元,糯米糍的售价为每千克y 元;根据单价和费用关系列出方程组,解方程组即可;(2)设购买桂味t 千克,总费用为W元,则购买糯米糍(12﹣t )千克,根据题意得出 12﹣t ≥2t ,得出 t ≤4,由题意得出 W=﹣ 5t+240 ,由一次函数的性质得出 W随 t 的增大而减小,得出当 t=4 时, W的最小值 =220(元),求出 12﹣ 4=8即可.【解答】解:(1)设桂味的售价为每千克x 元,糯米糍的售价为每千克y 元;根据题意得:,解得:;答:桂味的售价为每千克15 元,糯米糍的售价为每千克20 元;(2)设购买桂味 t 千克,总费用为 W元,则购买糯米糍( 12﹣t )千克,根据题意得: 12﹣t ≥ 2t ,∴ t ≤ 4,∵ W=15t+20(12﹣t ) =﹣ 5t+240 ,k=﹣5<0,∴ W随 t 的增大而减小,∴当 t=4 时, W的最小值 =220(元),此时 12﹣4=8;答:购买桂味 4 千克,糯米糍 8 千克时,所需总费用最低.【点评】本题考查了一次函数的应用、二元一次方程组的应用;根据题意方程方程组和得出一次函数解析式是解决问题的关键.22.(9 分)如图,已知⊙ O的半径为 2,AB为直径, CD为弦. AB与 CD交于点 M,将沿 CD翻折后,点 A 与圆心 O重合,延长 OA至 P,使 AP=OA,连接 PC(1)求 CD的长;(2)求证: PC是⊙ O的切线;(3)点 G为的中点,在 PC延长线上有一动点 Q,连接 QG交 AB于点 E.交于点F(F 与 B、C不重合).问 GE? GF是否为定值?如果是,求出该定值;如果不是,请说明理由.【分析】(1)连接 OC,根据翻折的性质求出 OM, CD⊥OA,再利用勾股定理列式求解即可;(2)利用勾股定理列式求出 PC,然后利用勾股定理逆定理求出∠ PCO=90°,再根据圆的切线的定义证明即可;( 3)连接 GA、 AF、GB,根据等弧所对的圆周角相等可得∠ BAG=∠AFG,然后根据两组角对应相等两三角相似求出△ AGE和△ FGA相似,根据相似三角形对应边2成比例可得 =,从而得到 GE? GF=AG,再根据等腰直角三角形的性质求解即可.【解答】(1)解:如图,连接OC,∵沿 CD翻折后,点 A 与圆心 O重合,∴OM=OA=×2=1,CD⊥OA,∵ OC=2,∴CD=2CM=2=2=2;(2)证明:∵ PA=OA=2, AM=OM=1,CM=CD=,∠CMP=∠OMC=90°,∴ PC===2,∵OC=2, PO=2+2=4,22222∴ PC+OC=( 2) +2 =16=PO,∴∠ PCO=90°,∴ PC是⊙ O的切线;(3)解: GE? GF是定值,证明如下,连接 GO并延长,交⊙ O于点 H,连接HF∵点 G为的中点∴∠ GOE=90°,∵∠ HFG=90°,且∠ OGE=∠FGH∴△ OGE∽△ FGH∴=∴GE? GF=OG? GH=2× 4=8.【点评】本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.23.( 9 分)如图,抛物线y=ax2+2x﹣ 3 与 x 轴交于 A、B 两点,且 B(1,0)(1)求抛物线的解析式和点 A 的坐标;(2)如图 1,点 P 是直线 y=x 上的动点,当直线 y=x 平分∠ APB时,求点 P 的坐标;(3)如图 2,已知直线 y=x﹣分别与 x 轴、 y 轴交于 C、 F 两点,点 Q是直线 CF下方的抛物线上的一个动点,过点 Q作 y 轴的平行线,交直线 CF于点 D,点 E 在线段 CD的延长线上,连接 QE.问:以 QD为腰的等腰△ QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.【分析】(1)把B 点坐标代入抛物线解析式可求得a 的值,可求得抛物线解析式,再令 y=0,可解得相应方程的根,可求得 A 点坐标;(2)当点 P 在 x 轴上方时,连接 AP交 y 轴于点 B′,可证△ OBP≌△ OB′P,可求得 B′坐标,利用待定系数法可求得直线 AP的解析式,联立直线 y=x,可求得P 点坐标;当点 P 在 x 轴下方时,同理可求得∠ BPO=∠B′PO,又∠ B′PO在∠ APO 的部,可知此时没有满足条件的点P;(3)过Q作QH⊥DE于点H,由直线CF的解析式可求得点C、F 的坐标,结合条件可求得tan ∠QDH,可分别用DQ表示出QH和DH的长,分DQ=DE和DQ=QE两种情况,分别用 DQ的长表示出△ QDE的面积,再设出点 Q 的坐标,利用二次函数的性质可求得△ QDE的面积的最大值.【解答】解:(1)把 B(1,0)代入 y=ax2+2x﹣3,可得 a+2﹣ 3=0,解得 a=1,∴抛物线解析式为 y=x2+2x﹣ 3,令 y=0,可得 x2+2x﹣3=0,解得 x=1 或 x=﹣3,∴ A 点坐标为(﹣ 3,0);(2)若 y=x 平分∠ APB,则∠ APO=∠BPO,如图 1,若 P 点在 x 轴上方, PA与 y 轴交于点 B′,由于点 P 在直线 y=x 上,可知∠ POB=∠POB′=45°,在△ BPO和△ B′PO中,∴△ BPO≌△ B′PO( ASA),∴BO=B′O=1,设直线 AP解析式为 y=kx+b,把 A、B′两点坐标代入可得,解得,∴直线 AP解析式为 y=x+1,联立,解得,∴ P 点坐标为(,);若P 点在 x 轴下方时,同理可得△ AOP≌△ B′OP,∴∠ BPO=∠B′PO,又∠ B′PO在∠ APO的部,∴∠ APO≠∠ BPO,即此时没有满足条件的 P 点,综上可知 P 点坐标为(,);( 3)如图 2,作 QH⊥ CF,交 CF于点 H,∵CF为 y=x﹣,∴可求得 C(, 0), F( 0,﹣),∴tan ∠OFC==,∵ DQ∥y 轴,∴∠ QDH=∠MFD=∠OFC,∴tan ∠HDQ=,不妨设 DQ=t,DH=t,HQ=t,∵△ QDE是以 DQ为腰的等腰三角形,2若DQ=QE,则 S△DEQ=DE? HQ=×2DH? HQ=× t × t=t 2,∵ t 2<t 2,∴当 DQ=QE时△ DEQ的面积比 DQ=DE时大.设Q点坐标为( x,x2+2x﹣ 3),则 D(x,x﹣),∵ Q点在直线 CF的下方,∴ DQ=t=x﹣﹣( x2+2x﹣ 3) =﹣ x2﹣x+,当 x=﹣时, t max=3,∴( S△DEQ)max=t 2=,即以 QD为腰的等腰三角形的面积最大值为.【点评】本题主要考查二次函数的综合应用,涉及知识点有待定系数法、角平分线的定义、全等三角形的判定和性质、三角形的面积、等腰三角形的性质、二次函数的性质及分类讨论等.在( 2)中确定出直线 AP的解析式是解题的关键,在( 3)中利用 DQ表示出△ QDE的面积是解题的关键.本题考查知识点较多,综合性较强,计算量大,难度较大.。

2016年河南省中考数学试卷(含详细答案)

2016年河南省中考数学试卷(含详细答案)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前河南省2016年普通高中招生考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.13-的相反数是( ) A .13-B .13C .3-D .32.某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为( ) A .79.510-⨯B .89.510-⨯C .70.9510-⨯D .9510⨯-83.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )AB CD4.下列计算正确的是( )AB .2(3)6-=C .42232a a a -=D .325()a a -=5.如图,过反比例函数(0)ky x x =>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .56.如图,在ABC △中,90ACB ∠=,8AC =,10AB =.DE 垂直平分AC 交AB 于点E ,则DE 的长为( )A .6B .5C .4D .37.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A .甲B .乙C .丙D .丁8.如图,已知菱形OABC 的顶点(0,0)O ,(2,2)B ,若菱形绕点O 逆时针旋转,每秒旋转45,则第60秒时,菱形的对角线交点D 的坐标为( )A .(1,1)-B .(1,1)--C .D .(0,第Ⅱ卷(非选择题 共96分)二、填空题(本大题共7小题,每小题3分,共21分.请把答案填写在题中的横线上) 9.计算:0(2)-= .10.如图,在□ABCD 中,BE AB ⊥交对角线AC 于点E ,若120∠=,则2∠的度数为 .11.若关于x 的一元二次方程230x x k +-=有两个不相等的实数根,则k 的取值范围是 .毕业学校_____________姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)12.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮被分在同一组的概率是 .13.已知(0,3)A ,(2,3)B 是抛物线2y x b x c =-++上两点,该抛物线的顶点坐标是 .14.如图,在扇形AOB 中,90AOB ∠=,以点A 为圆心,OA 的长为半径作OC 交AB 于点C .若2OA =,则阴影部分的面积为 .15.如图,已知AD BC ∥,AB BC ⊥,3AB =.点E 为射线BC 上一个动点,连接AE ,将ABE △沿AE 折叠,点B 落在点B '处,过点B '作AD 的垂线,分别交AD ,BC 于点M ,N .当点B '为线段MN 的三等分点时,BE 的长为 .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:2221(1)21x x x x x x --÷+++,其中x 的值从不等式组1,214x x -⎧⎨-⎩≤<的整数解中选取.17.(本小题满分9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 6754 7638 6834 7326 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m = ,n =;(2)补全频数分布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在 组; (4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.(本小题满分9分)如图,在Rt ABC △中,90ABC ∠=,点M 是AC 的中点,以AB 为直径作O 分别交AC ,BM 于点D ,E . (1)求证:M D M E =;(2)填空:①若6AB =,当2AD D M =时,=DE ;②连接OD ,OE ,当A ∠的度数为 时,四边形ODME 是菱形.数学试卷 第5页(共28页) 数学试卷 第6页(共28页)19.(本小题满分9分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37,旗杆底部B 点的俯角为45.升旗时,国旗上端悬挂在距地面2.25米处.若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin 370.60≈,cos370.80≈,tan370.75≈)20.(本小题满分9分)学校准备购进一批节能灯,已知1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A 型节能灯的数量不多于B 型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.(本小题满分10分)某班“数学兴趣小组”对函数22||y x x =-的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:其中,m = .(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该图象的另一部分.(3)观察函数图象,写出两条函数的性质. (4)进一步探究函数图象发现:①函数图象与x 轴有 个交点,所以对应方程22||0x x -=有 个实数根;②方程22||2x x -=有 个实数根;③关于x 的方程22||x x a -=有4个实数根,a 的取值范围是 .毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共28页) 数学试卷 第8页(共28页)22.(本小题满分10分) (1)发现如图1,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于 时,线段AC 的长取得最大值,且最大值为 . (用含a ,b 的式子表示) (2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图2所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE . ①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段BF 长的最大值. (3)拓展如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=.请直接写出线段AM 长的最大值及此时点P 的坐标.图1图2图3备用图23.(本小题满分11分)如图1,直线43y x n =-+交x 轴于点A ,交y 轴于点(0,4)C ,抛物线223y x bx c=++经过点A ,交y 轴于点(0,2)B -.点P 为抛物线上一个动点,过点P 作x 轴的垂线PD ,过点B 作BD PD ⊥于点D ,连接PB ,设点P 的横坐标为m .图1图2备用图(1)求抛物线的解析式;(2)当BDP △为等腰直角三角形时,求线段PD 的长;(3)如图2,将BDP △绕点B 逆时针旋转,得到BD P ''△,且旋转角PBP OAC '∠=∠,当点P 的对应点P '落在坐标轴上时,请直接写出点P 的坐标.5 / 14数学试卷第11页(共28页)数学试卷第12页(共28页)【解析】设四个小组分别记作A B C D、、、,画树状图如图:7 / 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)36033332π25111111x x x x xx x x x++=-=-+--.51x-≤<.(2)频数分布直方图如下图所示:9 / 14数学试卷 第19页(共28页)数学试卷 第20页(共28页)所以ODE △,DEM △都是等边三角形,所以OD OE EM DM ===,所以四边形OEMD 是菱形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年中考数学(大题)专项训练07一、解答题(共10小题,每题10分,共100分)1.【试题来源】2016届广东省韶关市始兴县墨江中学九年级上学期模拟考试二数学试卷 如图,一条公路的转弯处是一段圆弧AB .(1)用直尺和圆规作出弧AB 所在圆的圆心O ;(要求保留作图痕迹,不写作法) (2)若弧AB 的中点C 到弦AB 的距离为20m ,AB =80m ,求弧AB 所在圆的半径. 【答案】(1)见解析画图;(2)50. 【解析】试题解析:(1)如图1,在圆弧AB 上任取一点D ,分别作AB 、AD 的中垂线于交O ,则点O 即为所求;(2)如图2,设圆弧AB 所在圆的半径为r ,则AO=r ,OH=r-20,∵OC ⊥AB ,∴AH=12AB=40,∴在Rt △AHO 中,由勾股定理得:2224020r r +-=(),∴r=50m . 考点:1、垂径定理; 2、勾股定理.2.【试题来源】2016届广东省深圳市17所名校九年级下学期联考数学试卷ABC如图,二次函数的图象与x 轴交于A (﹣3,0)和B (1,0)两点,交y 轴于点C (0,3),点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)求二次函数的解析式;(2)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围; (3)若直线与y 轴的交点为E ,连结AD 、AE ,求△ADE 的面积. 【答案】(1)y=-2x -2x+3;(2)x <﹣2或x >1;(3)4. 【解析】试题解析:(1)设二次函数的解析式为y=ax 2+bx+c (a ≠0,a 、b 、c 常数),根据题意得 ⎪⎩⎪⎨⎧==++=+-30039c c b a c b a 解得⎪⎩⎪⎨⎧=-=-=321c b a ,所以二次函数的解析式为y=﹣2x ﹣2x+3;(2)如图,一次函数值大于二次函数值的x 的取值范围是x <﹣2或x >1. (3)∵对称轴:x=﹣1. ∴D (﹣2,3);设直线BD :y=mx+n 代入B (1,0) D (﹣2,3)解得 直线BD :y= -x+1 把x=0代入求得E (0,1) ∴OE=1 又∵AB=4 ∴S △ADE=12×4×3-12×4×1=4 考点:二次函数与一次函数的性质.3.【试题来源】2015届天津市蓟县中考一模数学试卷“今天你光盘了吗?”这是国家倡导“厉行节约,反对浪费”以来的时尚流行语.某校团委随机抽取了部分学生,对他们进行了关于“光盘行动”所持态度的调查,并根据调查收集的数据绘制了如下两幅不完整的统计图:根据上述信息,解答下列问题: (1)抽取的学生人数为 ; (2)将两幅统计图补充完整;(3)请你估计该校1200名学生中对“光盘行动”持赞成态度的人数. 【答案】(1)200;(2)图形见解析;(3)720人. 【解析】试题解析:解:(1)赞成的所占的百分比是1﹣30%﹣10%=60%, 抽取的学生人数为:120÷60%=200(人); 故答案为:200. (2)根据题意得:无所谓的人数是:200×30%=60(人), 反对的人数是:200×10%=20(人), 补图如下:(3)根据题意得:1200×60%=720(人),答:该校1200名学生中对“光盘行动”持赞成态度的人数有720人. 考点:1、条形统计图; 2、用样本估计总体; 3、扇形统计图. 【试题来源】2015届湖南省株洲市天元区九年级模拟考试数学试卷如图,平面直角坐标系中,矩形OABC 的顶点A (0,3),C (-1,0).将矩形OABC 绕原点顺时针旋转90°,得到矩形C B A O '''.解答下列问题:(1)求出直线B B '的函数解析式;(2)直线B B '与x 轴交于点M 、与y 轴交于点N ,抛物线c bx ax y ++=2的图象经过点C 、M 、N ,求抛物线的函数解析式;(3)将△MON 沿直线MN 翻折,点O 落在点P 处,请你判断点P 是否在抛物线上,说明理由. 【答案】(1)2521+-=x y ;(2)y=252212++-x x ;(3)点P 不在抛物线上,理由略. 【解析】(1)根据四边形OABC 是矩形可知B (-1,3).根据旋转的性质,得B ′(3,1). 把B (-1,3),B ′(3,1)代入y=mx+n 中,利用待定系数法可解得y=2521+-x (2)由(1)得,N (0,25),M (5,0).设二次函数解析式为y=a 2x +bx+c ,把C (-1,0),M (5,0),N (0,25)代入得,利用待定系数法解得二次函数解析式为y=21- 2x +2x+25.(3)过点O 作OD ⊥MN 于点D ,由M 、N 点的坐标,可求出ON 、OM 的值,进而求得MN 的值,然后可求得OD 的值,进而求出OP 的值,得到P 点的坐标,然后将P 点的坐标代入抛物线的解析式,即可判断点P 是否在抛物线上.(3)过点O 作OD ⊥MN 于点D ,∵M (5,0),N (0,25), ∴ON=25,OM =5,∴MN=,∴∵将△M ON 沿直线MN 翻折,点O 落在点P 处, ∴OP=∴P (2,4)代入抛物线的解析式, 点P 不在抛物线上. 考点:二次函数综合题.5.【试题来源】2015届湖南省株洲市天元区九年级模拟考试数学试卷如上图,在△ABC 和△EDC 中,AC =CE =CB =CD ,∠ACB =∠ECD =90°,AB 与CE 交于F ,ED 与AB 、BC 分别交于M 、H .(1)求证:CF =CH ;(2)如下图,△ABC 不动,将△EDC 绕点C 旋转到∠BCE=45°时,试判断四边形ACDM 是什么四边形?并证明你的结论.【答案】(1)证明见解析;(2)四边形ACDM是菱形,证明见解析.【解析】试题解析:(1)证明:∵ACB=ECD=90°,∴∠ACE+∠BCE=∠BCD+∠BCF,∴∠ACF=∠BCD,∵AC=CE=CB=CD,∴△ACF≌△DCH,∴CF=CH.(2)四边形ACDM是菱形;证明如下:∵∠ACB=90°,AC=CB,∴∠B=45°,∵∠ECD=90°,∠BCE=45°,∴∠BCD=45°,∴AB∥CD,同理AC∥DM,∴四边形ACDM是平行四边形.∵AC=CD,∴四边形ACDM是菱形.考点:1.菱形的性质;2,全等三角形的判定与性质.6.【试题来源】2015届河南省周口市项城市中考一模数学试卷在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.【答案】(1)每台电脑0.5万元,每台电子白板1.5万元;(2)有三种购买方案,方案1:需购进电脑15台,则购进电子白板15台,方案2:需购进电脑16台,则购进电子白板14台,方案3:需购进电脑17台,则购进电子白板13台.选择方案3最省钱,即购买电脑17台,电子白板13台最省钱.【解析】试题解析:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得:⎩⎨⎧=+=+5.225.32y x y x ,解得:⎩⎨⎧==5.15.0y x ,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑a 台,则购进电子白板(30﹣a )台,根据题意得:()()⎩⎨⎧≥-+≤-+28305.15.030305.15.0a a a a ,解得:15≤a ≤17,∵a 只能取整数,∴a=15,16,17,∴有三种购买方案,方案1:需购进电脑15台,则购进电子白板15台,方案2:需购进电脑16台,则购进电子白板14台,方案3:需购进电脑17台,则购进电子白板13台.方案1:15×0.5+1.5×15=30(万元),方案2:16×0.5+1.5×14=29(万元),方案3:17×0.5+1.5×13=28(万元),∵28<29<30,∴选择方案3最省钱,即购买电脑17台,电子白板13台最省钱.考点:1、一元一次不等式组的应用; 2、二元一次方程组的应用. 7.【试题来源】2015届浙江省宁波市江北区中考模拟数学试卷已知:如图,在平面直角坐标系中,O 为坐标原点,△OAB 的顶点A 、B 的坐标分别是A (0,5),B (3,1),过点B 画BC ⊥AB 交直线y=﹣m (m >45)于点C ,连结AC ,以点A 为圆心,AC 为半径画弧交x 轴负半轴于点D ,连结AD 、CD .(1)求证:△ABC ≌△AOD ;(2)设△ACD 的面积为S ,求S 关于m 的函数关系式; (3)若四边形ABCD 恰有一组对边平行,求m 的值.【答案】(1)参见解析;(2)S=56(m+1)2+152(m>54);(3)3或8.【解析】试题分析:(1)利用两点间的距离公式或勾股定理计算出AB=5,则AB=OA,可根据“HL”证明△ABC≌△AOD;(2)先做辅助线,过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,通过角相等证明Rt△ABF∽Rt△BCE,利用相似比把BC用m表示出来,可得BC=53(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+259(m+1)2,然后证明△AOB∽△ACD,利用相似性质得S△AOB:S△ACD=(ABAC)2,而S△AOB=152,于是可得S=56(m+1)2+152(m>54);(3)先做辅助线,作BH⊥y轴于H,如图,分类讨论:当AB∥CD时,则∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函数得到tan∠AOB=3,tan∠ACB=ABBC=31m+,所以31m+=3;当AD∥BC,则∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,则∠ACB=∠4,根据三角函数定义得到tan∠4=34,tan∠ACB=ABBC=31m+,则31m+=34,然后分别解关于m的方程即可得到m的值.∵∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3(同角的余角相等),∴Rt△ABF∽Rt△BCE,∴ABBC=AFBE,即5BC=31m+,∴BC=53(m+1),在Rt△ACB中,AC2=AB2+BC2=25+259(m+1)2,∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OA C+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∵相似三角形面积的比等于相似比的平方,∴S△AOB:S△ACD=(ABAC)2=22ABAC=22525259(1)m++,而S△AOB=12×5×3=152,∴S △ACD=152÷22525259(1)m ++,化简得:S=56(m+1)2+152(m >54);(3)作BH ⊥y 轴于H ,如图,①当AB ∥CD 时,则∠ACD=∠CAB ,而△AOB ∽△ACD ,∴∠ACD=∠AOB ,∴∠CAB=∠AOB ,而tan ∠AOB=BH OH =31=3,tan ∠CAB=BC AB =5(1)35m +=13m +,∴13m +=3,解得m=8;②当AD ∥BC ,则∠5=∠ACB ,而△AOB ∽△ACD ,∴∠4=∠5,∴∠ACB=∠4,而tan ∠4=BH AH =34,而tan ∠ACB=AB BC =55(1)3m +=31m +,∴31m +=34,解得m=3.综上所述,m 的值为3或8.考点:1.相似三角形的判定与性质;2.等腰三角形的性质;3.勾股定理和三角函数的定义. 8.【试题来源】2015届浙江省宁波市江北区中考模拟数学试卷解方程:5351=++x x x 【答案】x=143.【解析】考点:解分式方程.9.【试题来源】2015届浙江省杭州市西湖区中考一模数学试卷如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,点A ,B ,C 的坐标分别为(0,﹣1),(1,﹣1),(5,﹣1)(1)判断△ABC 的形状;(2)将△ABC 绕点C 顺时针旋转90°得到△A 1B 1C ,请在网格中画出△A 1B 1C ,并直接写出点A 1和B 1的坐标; (3)将△ABC 绕线段AC 所在直线旋转一周,求所得几何体的表面积.【答案】(1)直角三角形;(2)图形详见解析;A 1(5,6),B 1(3,5);(3). 【解析】试题解析:解:(1)∵AC=52+(2=52,在△ABC 中,AB 2+BC 2=AC 2, ∴△ABC 的形状是直角三角形; (2)如图,△A 1B 1C 即为所求.由图可知,A 1(5,6),B 1(3,5);(3)∵Rt △ABC 中,∠ABC=90°,AC=5, 所得两个圆锥的底面半径都为2,∴几何体的表面积=π×2π×2×.故所得几何体的表面积为.考点:1、作图-旋转变换; 2、圆锥的计算.10.【试题来源】2015届湖北省黄冈市启黄中学中考模拟数学试卷在平面直角坐标系xOy 中,过点A (﹣4,2)向x 轴作垂线,垂足为B ,连接AO .双曲线xky =经过斜边AO 的中点C ,与边AB 交于点D .(1)求反比例函数的解析式; (2)求△BOD 的面积.- 11 - 【答案】(1)y=﹣x 2;(2)1.【解析】试题解析:解:(1)设所求反比例函数的解析式为y=x k,∵A (﹣4,2),AO 的中点为C ,∴C (﹣2,1). ∵双曲线x ky 经过点C ,∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣x 2;(2)∵反比例函数y=﹣x 2经过点D ,DB ⊥x 轴于B ,∴S △BOD=21×|k|=21×2=1.考点:1.待定系数法求反比例函数解析式;2.反比例函数系数k 的几何意义.。

相关文档
最新文档