南通市2013届高三第一次调研测试数学参考答案和讲评建议(word)
13大市2013年高三历次考试数学试题分类汇编2:函数
【推荐】江苏省13大市2013年高三历次考试数学试题分类汇编2:函数一、填空题1 .(江苏省泰州、南通、扬州、宿迁、淮安五市2013届高三第三次调研测试数学试卷)已知函数2221 0 () 0ax x x f x x bx c x ⎧--⎪=⎨++<⎪⎩,≥,,是偶函数,直线y t =与函数()y f x =的图象自左向右依次交于四个不同点A ,B ,C ,D .若AB BC =,则实数t 的值为______. 【答案】74- 2 .(江苏省盐城市2013届高三年级第二次模拟考试数学试卷)设函数)(x f y =满足对任意的R x ∈,0)(≥x f 且9)()1(22=++x f x f .已知当]1,0[∈x 时,有242)(--=x x f ,则⎪⎭⎫ ⎝⎛62013f 的值为________. 【答案】53 .(常州市2013届高三教学期末调研测试数学试题)已知函数f (x )=32,2,(1),02x x x x ⎧⎪⎨⎪-<<⎩≥,若关于x 的方程f (x )=kx 有两个不同的实根,则实数k 的取值范围是______. 【答案】10,2⎛⎫ ⎪⎝⎭4 .(苏北三市(徐州、淮安、宿迁)2013届高三第二次调研考试数学试卷)已知函数⎪⎩⎪⎨⎧∈-∈=]3,1(,2329]1,0[,3)(x x x x f x ,当]1,0[∈t 时,]1,0[))((∈t f f ,则实数t 的取值范围是_____. 【答案】37[log ,1]35 .(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)设函数()ln f x x =的定义域为(),M +∞,且0M >,对于任意a ,b ,(,)c M ∈+∞,若a ,b ,c 是直角三角形的三条边长,且()f a ,()f b ,()f c 也能成为三角形的三条边长,那么M 的最小值为________. 【答案】26 .(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)已知函数2,01,()12, 1.2x x x f x x +<⎧⎪=⎨+⎪⎩≤≥若0a b >≥,且()()f a f b =,则()bf a 的取值范围是__. 【答案】5[,3)4;7 .(扬州、南通、泰州、宿迁四市2013届高三第二次调研测试数学试卷)设f (x )是定义在R 上的奇函数,当x < 0时,f (x )=x + e x(e 为自然对数的底数),则()ln6f 的值为____. 【答案】1ln 66- 8 .(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)设函数f(x)是定义在R上的奇函数,且f(a)>f(b), 则f(-a)_________ f(-b)(填“>”或:“<”)【答案】<9 .(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)已知函数123()1234x x x x f x x x x x +++=+++++++,则55(2)(2)22f f -++--=_____. 【答案】810.(常州市2013届高三教学期末调研测试数学试题)函数22()log (4)f x x =-的值域为______.【答案】(,2]-∞11.(江苏省无锡市2013届高三上学期期末考试数学试卷)已知关于x 的函数y=2(1)t x t x-+(f∈R)的定义域为D,存在区间[a,b]⊆D,f(x)的值域也是[a,b].当t 变化时,b-a 的最大值=______________. 【答案】23312.(扬州市2012-2013学年度第一学期期末检测高三数学试题)已知函数2log ()3x x f x ⎧=⎨⎩(0)(0)x x >≤,则=)]0([f f ____. 【答案】013.(南通市2013届高三第一次调研测试数学试卷)定义在R 上的函数()f x ,对任意x ∈R 都有(2)()f x f x +=,当(2,0)x ∈- 时,()4x f x =,则(2013)f =________.【答案】答案:14. 本题考查一般函数的性质——周期性在解题中的应用.14.(镇江市2013届高三上学期期末考试数学试题)方程lg(2)1x x +=有______个不同的实数根.【答案】2;15.(南京市、盐城市2013届高三年级第一次模拟考试数学试题)已知函数21(1),02,()(2),2x x f x f x x ⎧⎪--≤<=⎨-≥⎪⎩, 若关于x 的方程()f x kx =(0)k >有且仅有四个根, 其最大根为, 则函数225()6724g t t t =-+的值域为 . 【答案】41[,1)25--16.(连云港市2012-2013学年度第一学期高三期末考试数学试卷)已知函数f (x )=⎩⎨⎧2,x ∈[0,1]x ,x ∉[0,1].则使f [f (x )]=2成立的实数x 的集合为________. 【答案】{x |0≤x ≤1,或x =2};二、填空题17.(南京市、盐城市2013届高三年级第一次模拟考试数学试题)对于定义在区间D 上的函数()f x , 若任给0x D ∈, 均有0()f x D ∈, 则称函数()f x 在区间D 上封闭.试判断()1f x x =-在区间[2,1]-上是否封闭, 并说明理由; 若函数3()1x a g x x +=+在区间[3,10]上封闭, 求实数a 的取值范围;若函数3()3h x x x =-在区间[,](,)a b a b Z ∈上封闭, 求,a b 的值. 【答案】解: (1)()1f x x =-在区间[2,1]-上单调递增,所以()f x 的值域为[-3,0] 而[-1,0][2,1]⊄-,所以()f x 在区间[2,1]-上不是封闭的(2)因为33()311x a a g x x x +-==+++,①当3a =时,函数()g x 的值域为{}3[3,10]⊆,适合题意②当3a >时,函数()g x 在区间[3,10]上单调递减,故它的值域为309[,]114a a ++, 由309[,]114a a ++[3,10]⊆,得303119104a a +⎧≥⎪⎪⎨+⎪≤⎪⎩,解得331a ≤≤,故331a <≤③当3a <时,在区间[3,10]上有33()3311x a a g x x x +-==+<++,显然不合题意 综上所述, 实数a 的取值范围是331a ≤≤(3)因为3()3h x x x =-,所以2()333(1)(1)h x x x x '=-=+-,所以()h x 在(,1)-∞-上单调递减,在(1,1)-上递增,在(1,)+∞上递增. ①当1a b <≤-时,()h x 在区间[,]a b 上递增,所以()()h a a h b b ≥⎧⎨≤⎩,此时无解 ②当111a b ≤--<≤且时,因max ()(1)2h x h b =-=>,矛盾,不合题意③当11a b ≤->且时,因为(1)2,(1)2h h -==-都在函数的值域内,故22a b ≤-⎧⎨≥⎩, 又33()3()3a h a a a b h b b b ⎧≤=-⎨≥=-⎩,解得202202a a b b -≤≤≥⎧⎨≤≤≤⎩或或,从而22a b =-⎧⎨=⎩④当11a b -≤<≤时,()h x 在区间[,]a b 上递减,()()h b a h a b ≥⎧⎨≤⎩(*), 而,a b Z ∈,经检验,均不合(*)式⑤当111a b -<≤≥且时,因min ()(1)2h x h a ==-<,矛盾,不合题意⑥当1b a >≥时,()h x 在区间[,]a b 上递增,所以()()h a a h b b ≥⎧⎨≤⎩,此时无解 综上所述,所求整数,a b 的值为2,2a b =-=。
13大市2013年高三历次考试数学试题分类汇编3:函数的应用
∵∠MQD=30°,∴MQ=
1 3 ,OQ= (算出一个得 2 分) 2 2
S△PMN=
1 1 3 3 63 3 MN·AQ= × ×(1+ )= 2 2 2 2 8
(2)设∠MOQ=θ ,∴θ ∈[0, ∴S△PMN= =
],MQ=sinθ ,OQ=cosθ 2
1 1 MN·AQ= (1+sinθ )(1+cosθ ) 2 2
15 cm ,从建筑物 AB 的顶部 A 看建筑物 CD 的视角 CAD 45 . (1) 求 BC 的长度; (2) 在线段 BC 上取一点 P ( 点 P 与点 B , C 不重合),从点 P 看这两座建筑物的视角分别 为 APB , DPC , 问点 P 在何处时, 最小?
4
D A
B P
第 17 题图
C
【答案】⑴作 AE CD ,垂足为 E ,则 CE 9 , DE 6 ,设 BC x ,
则 tan CAD tan(CAE + DAE)
tan CAE + tan DAE 1 tan CAE tan DAE
9 6 + x x 1 ,化简得 x 2 15 x 54 0 ,解之得, x 18 或 x 3 (舍) 9 6 1 x x
S2 1 x(2 x) (1 1 )(2 x) 3 1 ( x 2 4 ) , 1 x 2 2 x 2 x
3 于是, S2 1 (2 x 42 ) x 2 2 0 x 3 2 2 x x
关于 x 的函数 S2 在 (1, 3 2) 上递增,在 ( 3 2, 2) 上递减.
答: BC 的长度为 18m ⑵设 BP t ,则 CP 18 t (0 t 18) ,
13大市2013年高三历次考试数学试题分类汇编4:三角函数
.
【答案】-1 29. (南通市 2013 届高三第一次调研测试数学试卷)如图,点 O 为作简谐振动的物体的平衡位
置,取向右方向为正方向,若振幅为 3cm,周期为 3s,且物体向右运动到距平衡位置最远 处时开始计时.则该物体 5s 时刻的位移为________cm. O
(第 12 题)
答案:-1.5. 本题主要考查三角函数及其应用.考题取自教材的例题.教学中应关注课本,以及有关重 要数学模型的应用,讲评时还要强调单位书写等问题. 10 S(t)= 3sin( t ) ,求 S(5)= -1.5 即可. 3 2
2 2 2 2 2 2 2
3 5
5
1-2 3 又 tanα =2,所以 cos2α = 2 =2 +1 5 (2)方法一: π 因为 α ∈(0,π ),且 tanα =2,所以 α ∈(0, ). 2 3 π 4 又 cos2α =- <0,故 2α ∈( ,π ) ,sin2α = 5 2 5 7 2 2 π 由 cosβ =,β ∈(0,π ),得 sinβ = ,β ∈( ,π ) 10 10 2 4 7 2 3 2 2 所以 sin(2α -β )=sin2α cosβ -cos2α sinβ = ×()-(- )× =5 10 5 10 2 π π π 又 2α -β ∈(- , ),所以 2α -β =2 2 4 方法二: π 2tanα 4 因为 α ∈(0,π ),且 tanα =2,所以 α ∈(0, ),tan2α = =- . 2 2 1-tan α 3 从而 2α ∈( π ,π ) 2
经过点 P (1,1) , 点 A( x1 , y1 ), B( x 2 , y 2 ) 是函数 f ( x ) sin(x )( 0) 图象上的任意 两点,若 f ( x1 ) f ( x 2 ) 2 时, x1 x 2 的最小值为
南通市2013届高三第三次调研数学试卷及答案
(第3题)(第5题)南通市2013届高三第三次调研测试数学参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分. 1. 已知集合(]2 1A =-,,[)1 2B =-,,则A B =U ▲ . 【答案】(2 2)-,2. 设复数z 满足(34i)50z ++=(i 是虚数单位),则复数z 的 模为 ▲ . 【答案】13. 右图是一个算法流程图,则输出的S 的值是 ▲ .【答案】24004. “M N >”是“22log log M N >”成立的 ▲ 条件.(从“充要”,“充分不必要”,“必要不充分”中选择一个正确的填写) 【答案】必要不充分5. 根据某固定测速点测得的某时段内过往的100辆 机动车的行驶速度(单位:km/h)绘制的频率分布 直方图如右图所示.该路段限速标志牌提示机动车辆正常行驶速度为60 km/h~120 km/h ,则该时 段内非正常行驶的机动车辆数为 ▲ . 【答案】156. 在平面直角坐标系xOy 中,抛物线22(0)x py p =>上纵坐标为1的一点到焦点的距离为3,则焦 点到准线的距离为 ▲ .【答案】47. 从集合{}1 2 3 4 5 6 7 8 9,,,,,,,,中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为 ▲ .(第9题)【答案】1128. 在平面直角坐标系xOy 中,设点P 为圆C :22(1)4x y -+=上的任意一点,点Q (2a ,3a -) (a ∈R),则线段PQ 长度的最小值为 ▲ .【答案】29. 函数()sin()f x A x ωϕ=+(0A >,0ω>,02)ϕ<π≤在R 上的部分图象如图所示,则(2013)f 的值为 ▲ . 【答案】10.各项均为正数的等比数列{}n a 中,211a a -=.当3a 取最小值时,数列{}n a 的通项公式a n = ▲ . 【答案】12n -11.已知函数2221 0 () 0ax x x f x x bx c x ⎧--⎪=⎨++<⎪⎩,≥,,是偶函数,直线y t =与函数()y f x =的图象自左向右依次交于四个不同点A ,B ,C ,D .若A B B C =,则实数t 的值为 ▲ . 【答案】74-12.过点(1 0)P -,作曲线C :e xy =的切线,切点为1T ,设1T 在x 轴上的投影是点1H ,过点1H 再作曲线C 的切线,切点为2T ,设2T 在x 轴上的投影是点2H ,…,依次下去,得到第1n +()n ∈N 个 切点1n T +.则点1n T +的坐标为 ▲ .【答案】() e nn ,13.在平面四边形ABCD中,点E ,F 分别是边AD ,BC 的中点,且AB 1=,EF =,CD =.若15AD BC ⋅=uuu r uuu r,则AC BD ⋅uuu r uuu r的值为 ▲ . 【答案】1314.已知实数a 1,a 2,a 3,a 4满足a 1+a 2+a 30=,a 1a 42+a 2a 4-a 20=,且a 1>a 2>a 3,则a 4的取值范围是▲ .【答案】二、解答题15.如图,在四棱锥P ABC D -中,底面ABC D 是矩形,四条侧棱长均相等.(1)求证:AB //平面PC D ; (2)求证:平面PAC ⊥平面ABC D . 证明:(1)在矩形ABC D 中,//A B C D , 又AB ⊄平面PC D , C D ⊂平面PC D ,所以AB //平面PC D . ………6分 (2)如图,连结BD ,交A C 于点O ,连结PO , 在矩形ABC D 中,点O 为 A C B D ,的中点, 又PA PB PC PD ===,故PO AC ⊥,PO BD ⊥, ………9分 又AC BD O =I ,A CB D ,⊂平面ABCD ,所以PO ⊥平面ABC D , ………12分 又PO ⊂平面PAC ,所以平面PAC ⊥平面ABC D . ………14分16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知222222sin 2sin sin C b a c A C c a b--=---. (1)求角B 的大小;(2)设222sin sin sin T A B C =++,求T 的取值范围. 解:(1)在△ABC 中,222222s i n 2c o s c o s Bs i n c o s 2s i n s i n 2c o s c o ss i n c o sC b a c a c B c C B A C a b C b C B C c a b ---====----, ………3分因为sin 0C ≠,所以sin cos 2sin cos sin cos B C A B C B =-,所以2sin cos sin cos sin cos sin()sin A B B C C B B C A =+=+=, ………5分 因为sin 0A ≠,所以1cos 2B =,因为0πB <<,所以π3B =. ………7分(2)222131sin sin sin (1cos 2)(1cos 2)242T A B C A C =++=-++-()71714π(cos 2cos 2)cos 2cos 242423A C A A -⎡⎤=⎢⎥⎣+=--⎦+ABC(第15题)PDO()()71171πcos 22cos 2422423A A A =--=-+ ………11分因为2π03A <<,所以4π023A <<,故ππ5π2333A <+<,因此()π11cos 232A -+<≤,所以3924T <≤. ………14分17.某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm ;图2是双层中空玻璃,厚度均为4 mm ,中间留有厚度为x 的空气隔层.根据热传导知识,对于厚度为d 的均匀介质, 两侧的温度差为T ∆,单位时间内,在单位面积上通过的热量T Q k d∆=⋅,其中k 为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系 数为3410 J mm/C -⨯⋅ ,空气的热传导系数为42.510 J mm/C -⨯⋅ .)(1)设室内,室外温度均分别为1T ,2T ,内层玻璃外侧温度为1T ',外层玻璃内侧温度为2T ', 且1122T T T T ''>>>.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过 的热量(结果用1T ,2T 及x 表示);(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计 x 的大小?解:(1)设单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量分别为1Q ,2Q ,图1图2(第17题)(第18题)则31212141082 000T T T T Q ---=⨯⋅=, ………2分34311122224102.51041044T T T T T T Q x---''''---=⨯⋅=⨯⋅=⨯⋅ ………6分111222343444102.510410T T T T T T x---''''---===⨯⨯⨯ 11122234344410 2.510410T T T T T T x ---''''-+-+-=++⨯⨯⨯124 000 2 000T T x -=+. ………9分(2)由(1)知21121Q Q x =+, 当121x =+4%时,解得12x =(mm ).答:当12x =mm 时,双层中空玻璃通过的热量只有单层玻璃的4%. ………14分18.如图,在平面直角坐标系xOy 中,椭圆22221(0)y xa b a b+=>>的右焦点为(1 0)F ,. 分别过O ,F 的两条弦AB ,C D 相交于点E (异于A ,C 两点),且O E E F =. (1)求椭圆的方程;(2)求证:直线A C,BD 的斜率之和为定值.(1)解:由题意,得1c =,c e a==,故a =从而2221b a c =-=,所以椭圆的方程为2212x y +=.① ………5分(2)证明:设直线AB 的方程为y kx =, ②直线C D 的方程为(1)y k x =--, ③ (7)分 由①②得,点A ,B 的横坐标为由①③得,点C ,D 21k +, ………9分记11( )A x kx ,,22( )B x kx ,,33( (1))C x k x -,,44( (1))D x k x -,,则直线A C ,BD 的斜率之和为13241324(1)(1)kx k x kx k x x x x x ----+--132413241324(1)()()(1)()()x x x x x x x x k x x x x +--+-+-=⋅--1234123413242()()()()()x x x x x x x x k x x x x --+++=⋅--………13分2222213242(1)2420212121()()k k k k k k x x x x -⎛⎫---+ ⎪+++⎝⎭=⋅--0=. ………16分19.已知数列{}n a 是首项为1,公差为d 的等差数列,数列{}n b 是首项为1,公比为(1)q q >的等比数列.(1)若55a b =,3q =,求数列{}n n a b ⋅的前n 项和;(2)若存在正整数(2)k k ≥,使得k k a b =.试比较n a 与n b 的大小,并说明理由. 解:(1)依题意,5145511381a b b q -===⨯=, 故5181120514a a d --===-, 所以120(1)2019n a n n =+-=-, ………3分令2111213413(2019)3n n S n -=⨯+⨯+⨯+⋅⋅⋅+-⋅, ① 则213 13213(2039)3(2019)3n n n S n n -=⨯+⨯+⋅⋅⋅+-⋅+-⋅, ② ①-②得,()2121+20333(2019)3n n n S n --=⨯++⋅⋅⋅+--⋅,13(13)1+20(2019)313n nn --=⨯--⋅-(2920)329n n =-⋅-, 所以(2029)3292nn n S -⋅+=. ………7分(2)因为k k a b =, 所以11(1)k k d q-+-=,即111k qd k --=-,故111(1)1k n qa n k --=+--,又1n n b q -=, ………9分所以1111(1)1k n n n q b a qn k --⎡⎤--=-+-⎢⎥-⎣⎦()()111(1)1(1)11n k k q n q k --⎡⎤=-----⎣⎦-()()23231(1)1(1)11n n k k q k q q qnq q q k -----⎡⎤=-++⋅⋅⋅++--++⋅⋅⋅++⎣⎦- ………11分(ⅰ)当1n k <<时,由1q >知()()232311()1(1)1n n k k n n n q b a k n q q q n q q q k ------⎡⎤-=-++⋅⋅⋅++--++⋅⋅⋅+⎣⎦-211()(1)(1)()1n n q k n n q n k n q k ---⎡⎤<-----⎣⎦- 22(1)()(1)1n q qk n n k ----=--0<, ………13分 (ⅱ)当n k >时,由1q >知()()231231(1)()11n n k k k n n q b a k q q qn kqqq k ------⎡⎤-=-++⋅⋅⋅+--++⋅⋅⋅++⎣⎦- 121(1)()()(1)1k k q k n k q n k k q k ---⎡⎤>-----⎣⎦- 22(1)()k q q n k -=-- 0>,综上所述,当1n k <<时,n n a b >;当n k >时,n n a b <;当1 n k =,时,n n a b =. ………16分(注:仅给出“1n k <<时,n n a b >;n k >时,n n a b <”得2分.)20.设()f x 是定义在(0 )+∞,的可导函数,且不恒为0,记()()()n nf xg x n x=∈*N .若对定义域内的每一个x ,总有()0n g x <,则称()f x 为“n 阶负函数”;若对定义域内的每一个x ,总有[]()0n g x '≥, 则称()f x 为“n 阶不减函数”([]()n g x '为函数()n g x 的导函数).(1)若31()(0)a f x x x xx=-->既是“1阶负函数”,又是“1阶不减函数”,求实数a 的取值范围;(2)对任给的“2阶不减函数”()f x ,如果存在常数c ,使得()f x c <恒成立,试判断()f x 是 否为“2阶负函数”?并说明理由. 解:(1)依题意,142()1()1f x a g x x x x==--在(0 )+∞,上单调递增,故15342[()]0a g x xx'=-+≥ 恒成立,得212a x≤, ………2分因为0x >,所以0a ≤. ………4分 而当0a ≤时,1421()10a g x xx=--<显然在(0 )+∞,恒成立,所以0a ≤. ………6分(2)①先证()0f x ≤:若不存在正实数0x ,使得20()0g x >,则2()0g x ≤恒成立. ………8分 假设存在正实数0x ,使得20()0g x >,则有0()0f x >,由题意,当0x >时,2()0g x '≥,可得2()g x 在(0 )+∞,上单调递增, 当0x x >时,022()()f x f x xx >恒成立,即202()()f x f x xx >⋅恒成立,故必存在10x x >,使得20112()()f x f x x mx >⋅>(其中m 为任意常数),这与()f x c <恒成立(即()f x 有上界)矛盾,故假设不成立,所以当0x >时,2()0g x ≤,即()0f x ≤; ………13分 ②再证()0f x =无解:假设存在正实数2x ,使得2()0f x =, 则对于任意320x x >>,有322232()()0f x f x x x >=,即有3()0f x >,这与①矛盾,故假设不成立, 所以()0f x =无解,综上得()0f x <,即2()0g x <,故所有满足题设的()f x 都是“2阶负函数”. ………16分。
江苏省南通市2013届高三第一次调研考试数学试题(WORD解析版)
2013年江苏省南通市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.(5分)已知全集U=R,集合A={x|x+1>0},则∁U A={x|x≤﹣1}.考点:补集及其运算.专题:计算题.分析:求解一元一次不等式化简集合A,然后直接利用补集运算求解.解答:解:由集合A={x|x+1>0}={x|x>﹣1},又U=R,所以∁U A={x|x≤﹣1}.故答案为{x|x≤﹣1}.点评:本题考查了补集及其运算,是基础的会考题型.2.(5分)已知复数z=(i是虚数单位),则复数z所对应的点位于复平面的第三象限.考点:复数代数形式的乘除运算.专题:计算题.分析:利用复数的除法运算把复数z化简为a+bi(a,b∈R)的形式,则复数z所对应的点位于复平面的象限可求.解答:解:由z==.所以复数z所对应的点Z(﹣2,﹣3).则复数z所对应的点位于复平面的第三象限.故答案为三.点评:本题考查了复数代数形式的乘除运算,考查了复数的几何意义,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.3.(5分)已知正四棱锥的底面边长是6,高为,这个正四棱锥的侧面积是48.考点:棱柱、棱锥、棱台的侧面积和表面积.专题:空间位置关系与距离.分析:由已知正四棱锥的底面边长是6,高为,可以求出棱锥的侧高,代入棱锥侧面积公式,可得答案.解答:解:∵正四棱锥的底面边长是6,高为,正四棱锥的侧高为=4∴正四棱锥的侧面积是4××6×4=48故答案为:48点评:本题考查的知识点是棱锥的侧面积,其中根据已知结合勾股定理求出棱锥的侧高是解答的关键.4.(5分)定义在R上的函数f(x),对任意x∈R都有f(x+2)=f(x),当x∈(﹣2,0)时,f(x)=4x,则f(2013)=.考点:函数的周期性;函数的值.专题:压轴题;函数的性质及应用.分析:利用函数的周期性把要求的式子化为f(﹣1),再利用x∈(﹣2,0)时,f(x)=4x,求得f (﹣1)的值.解答:解:∵定义在R上的函数f(x),对任意x∈R都有f(x+2)=f(x),则f(2013)=f(2×1006+1)=f(1)=f(﹣1).∵当x∈(﹣2,0)时,f(x)=4x,∴f(﹣1)=4﹣1=,故答案为.点评:本题主要考查利用函数的周期性求函数的值,属于基础题.5.(5分)已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则p是q的否命题.(从“逆命题、否命题、逆否命题、否定”中选一个填空)考点:四种命题的真假关系.专题:规律型.分析:写出命题P与命题q的条件与结论,再根据四种命题的定义判断即可.解答:解:命题P的条件是:a>0,结论是:a2≠0;命题q的条件是:a≤0,结论是:a2=0;故命题P是命题q的否命题.故答案是否命题.点评:本题考查四种命题的定义.6.(5分)已知双曲线的一个焦点与圆x2+y2﹣10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为.考点:双曲线的标准方程;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:将圆化成标准方程得圆x2+y2﹣10x=0的圆心为F(5,0),可得c==5,结合双曲线的离心率e==算出a=,由平方关系得到b2=20,由此即可得出该双曲线的标准方程.解答:解:∵圆x2+y2﹣10x=0化成标准方程,得(x﹣5)2+y2=25∴圆x2+y2﹣10x=0的圆心为F(5,0)∵双曲线的一个焦点为F(5,0),且的离心率等于,∴c==5,且=因此,a=,b2=c2﹣a2=20,可得该双曲线的标准方程为故答案为:点评:本题给出双曲线的离心率,并且一个焦点为已知圆的圆心,求双曲线的标准方程,着重考查了圆的标准方程、双曲线的基本概念和简单几何性质等知识,属于基础题.7.(5分)若S n为等差数列{a n}的前n项和,S9=﹣36,S13=﹣104,则a5与a7的等比中项为.考点:等比数列的性质;等差数列的前n项和.专题:等差数列与等比数列.分析:由条件利用等比数列的性质可得9a5=﹣36,13a7=﹣104,解得a5=﹣4,a7=﹣8,从而求得a5与a7的等比中项±的值.解答:解:∵S n为等差数列{a n}的前n项和,S9=﹣36,S13=﹣104,则由等比数列的性质可得9a5=﹣36,13a7=﹣104.解得a5=﹣4,a7=﹣8,则a5与a7的等比中项±=,故答案为.点评:本题主要考查等比数列的性质,等比数列求和公式的应用,属于中档题.8.(5分)已知实数x∈[1,9],执行如图所示的流程图,则输出的x不小于55的概率为.。
江苏省南通市2014届高三第一次调研测试化学评卷综合报告及教学对策建议
南通市2014届高三第一次调研测试化 学说明:本试卷分为第一卷(选择题)和第二卷(非选择题)两部分,总分:120分,答题时间:100分钟。
可能用到的相对原子质量:H —1 C —12 N —14 O —16 Zn —65 W —184选择题(共40分)单项选择题:本题包括10 小题,每小题2 分,共计20 分。
每小题只有一个选项符合题意。
1.2013年11月江苏在大部分地市推广使用含硫量大幅减少的苏V 汽油。
下列有关汽油的说法正确的是A .汽油属于可再生能源B .将原油通过萃取、分液可获得汽油C .使用苏V 汽油可降低酸雨发生率D .苏V 汽油只含C 、H 、O 三种元素 2.下列有关化学用语表示正确的是 A .水的电子式: B .中子数为20的氯原子: Cl C .聚丙烯的结构简式:D .钠原子的结构示意图:3.常温下,下列各组离子在指定溶液中一定能大量共存的是 A .0.1 mol·L -1盐酸的澄清透明溶液:Fe 3+、K +、SO 42- 、Br - B .含有NaNO 3的溶液:H +、Fe 2+、SO 42- 、Cl - C .能使石蕊变红的溶液:Cu 2+、Na +、AlO 2-、Cl -D .由水电离出的c (H +)·c (OH -)=10-22的溶液:Na +、Ca 2+、HCO 3- 、NO 3- 4.下列有关物质性质或应用的说法正确的是 A .医疗上,常用碳酸钠治疗胃酸过多 B .在海轮外壳上安装锌块以减缓船体腐蚀 C .液氨汽化放出大量的热,可用作制冷剂 D .明矾具有强氧化性,常用于自来水的杀菌消毒5.粗略测定草木灰中碳酸钾的含量并检验钾元素的存在,需经过称量、溶解、过滤、蒸发、焰色反应等操作。
下列图示对应的操作不.规范..的是A .称量B .溶解C .蒸发D .焰色反应—CH 2—CH 2—CH 2— [ ] n20 176.甲、乙、丙、丁四种物质中,甲、乙、丙均含有相同的某种元素,它们之间的转化关系如下图所示。
南通市2013届高三第二次调研测试数学参考答案及评分建议
因为O为△ABC的外心,所以 ,
于是 .…………………………………………12分
所以当 时, , ;
当 时, , .………………………………………………………14分
16.(本小题满分14分)
如图,在四棱锥 中,平面 平面 ,BC//平面PAD, ,
.求证:
(1) 平面 ;
(2)平面 平面 .
1-t2×②得(a2-r2)y2-2ty(ax-r2)-t2(x2-r2)-t2(x2+y2-r2)=0,
化简得:(a2-r2)y-2t(ax-r2)-t2y=0.
所以直线PQ的方程为(a2-r2)y-2t(ax-r2)-t2y=0.③……………………………………14分
在③中令y= 0得x= ,故直线PQ过定点 .………………………………………………16分
(1)若AB ,求△ABC的另外两条边长;
(2)设O为△ABC的外心,当 时,求 的值.
【解】(1)设△ABC的内角A,B,C的对边分别为a,b,c,
于是 ,所以bc=4.……………………………………………理得 .………………………6分
(2)由 得 ,即 ,解得 或4.……………………………8分
▲.
【答案】9
14.在平面直角坐标系xOy中,设 ,B,C是函数 图象上的两点,且△ABC为正三角形,
则△ABC的高为▲.
【答案】2
二、解答题:本大题共6小题,共90分.请把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)
已知△ABC的内角A的大小为120°,面积为 .
5层,则该小区每平方米的平均综合费用为1 270元.
江苏省一轮复习数学试题选编7:矩阵与变换(教师版).pdf
江苏省2014届一轮复习数学试题选编37:矩阵与变换 填空题 .(江苏省连云港市2013届高三上学期摸底考试(数学)(选修物理))设矩阵的逆矩阵为,a+b+c+d=_________________. 【答案】0 解答题 .(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)(选修4—2:矩阵与变换) 已知矩阵的一个特征值为,其对应的一个特征向量为,已知,求.【答案】 .(扬州市2012-2013学年度第一学期期末检测高三数学试题)B 选修4 - 2:矩阵与变换若矩阵有特征值,,它们所对应的特征向量分别为和,求矩阵. 【答案】选修4 - 2:矩阵与变换解.设,由 得,即,, 所以 .(江苏省南京市四区县2013届高三12月联考数学试题 )B.选修4-2:(矩阵与变换)已知二阶矩阵M有特征值=3及对应的一个特征向量,并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M. 【答案】B.选修4-2:(矩阵与变换)设,则,故 ,故 联立以上两方程组解得,故=.(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)选修4-2:矩阵与变换 已知,若矩阵所对应的变换把直线:变换为自身,求.【答案】对于直线上任意一点,在矩阵对应的变换作用下变换成点,则,因为,所以, 所以解得所以, 所以 .(扬州、南通、泰州、宿迁四市2013届高三第二次调研测试数学试卷)选修4-2:矩阵与变换设曲线在矩阵对应的变换作用下得到的曲线为,求矩阵M的逆矩阵.【答案】【解】设曲线上任一点在矩阵对应的变换下的像是,由,得因为在圆上,所以,化简可得 依题意可得,或而由可得 故, .(2010年高考(江苏))矩阵与变换在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M=,N=,点A、B、C在矩阵MN对应的变换下得到点A1,B1,C1,△A1B1C1的面积是△ABC面积的2倍,求实数k的值 【答案】,可知A1(0,0)、B1(0,-2)、C1(,-2)。
2014届一轮复习数学试题选编32导数在切线上的应用(教师版)
江苏省2014届一轮复习数学试题选编32:导数在切线上的应用填空题1 .(江苏省南京市四校2013届高三上学期期中联考数学试题)已知函数()y f x =在点(2,(2))f 处的切线为由y =2x -1,则函数2()()g x x f x =+在点(2,(2))g 处的切线方程为__________.【答案】6x -y -5=0 ;2 .(江苏省徐州市2013届高三上学期模底考试数学试题)在曲线331y x x =-+的所有切线中,斜率最小的切线的方程为________.【答案】y=3x+13 .(江苏省南京市四校2013届高三上学期期中联考数学试题)在平面直角坐标系xOy 中,点P是第一象限内曲线y = x 31上的一个动点,以点P 为切点作切线与两个坐标轴交于A ,B 两点,则△AOB 的面积的最小值为______.【答案】4233 ;4 .(江苏省海门市四校2013届高三11月联考数学试卷 )曲线12++=x xe y x在点(0,1)处的切线方程为_____________..【答案】5 .(江苏省淮安市2013届高三上学期第一次调研测试数学试题)过点()1,0-.与函数()x f x e =(e 是自然对数的底数)图像相切的直线方程是__________.【答案】1+=x y6 .(江苏省2013届高三高考压轴数学试题)已知直线2+=x y 与曲线()a x y+=ln 相切,则a 的值为 _______.【答案】37 .(江苏省姜堰市2012—2013学年度第一学期高三数学期中调研(附答案) )若函数))(2()(2c x x x f +-=在2=x 处有极值,则函数)(x f 的图象在1=x 处的切线的斜率为_________.【答案】5-;8 .(苏州市2012-2013学年度第一学期高三期末考试数学试卷)过坐标原点作函数ln y x =图像的切线,则切线斜率为_____.【答案】1e9 .(2010年高考(江苏))函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=_________【答案】2110.(江苏海门市2013届高三上学期期中考试模拟数学试卷)已知直线kx y =是x y ln =的切线,则k 的值为___________【答案】1e11.(2011年高考(江苏卷))在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是__ 【答案】【命题立意】本题主要考查了导数的应用、直线的方程、函数的最值等知识,对学生的运算求解能力、抽象概括能力都有较高的要求.)1(21ee +【解析】设则直线的方程为:,令,则,与垂直的直线方程为:,令,则,所以,考查函数,求导可得当时函数取得最大值.12.(江苏省连云港市2013届高三上学期摸底考试(数学)(选修历史))曲线()sin f x x x =在2x π=处的切线方程为______________.【答案】0x y -=13.(南通市2013届高三第一次调研测试数学试卷)曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为________.【答案】 答案:1e 2y x =-.本题主要考查基本初等函数的求导公式及其导数的几何意义.(1)()e (0)e x f f x f x ''=-+1(1)(1)e (0)1ef f f ''⇒=-+(0)1f ⇒=.在方程2(1)1()e (0)e 2x f f x f x x '=-+中,令x =0,则得(1)e f '=. 讲评时应注意强调“在某点处的切线”与“过某点处的切线”的区别.14.(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为_____________【答案】(0,0)15.(2009高考(江苏))在平面直角坐标系xoy 中,点P 在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为__★___.【答案】【答案】(2,15)-16.(常州市2013届高三教学期末调研测试数学试题)已知点(1,1)A 和点(1,3)B --在曲线C :32(,,y ax bx d a b d =++为常数上,若曲线在点A 和点B 处的切线互相平行,则32a b d ++=______.【答案】717.(江苏省2013届高三高考模拟卷(二)(数学) )若直线y =kx -3与曲线y =2ln x 相切,则实数k =_______.【答案】2e18.(2013江苏高考数学)抛物线2x y =在1=x处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是__________.【答案】解析:本题主要考察导数的几何意义及线性规划等基础知识.x y 2'= ∴21'===x y k ∴切线方程为)1(21-=-x y与x 轴交点为)0,21(A ,与y 轴交点为)1,0(-B , 当直线y x z 2+=过点)0,21(A 时021m ax +=z 当直线y x z 2+=过点)1,0(-B 时2)1(20m in -=-⨯+=z ∴y x 2+的取值范围是⎥⎦⎤⎢⎣⎡-21,2解答题19.(江苏省南京市四校2013届高三上学期期中联考数学试题)已知曲线x()21ln 2222x y x x =++++在点A 处的切线与曲线()sin 2,22y x ππϕϕ⎛⎫=+-<< ⎪⎝⎭在点B 处的切线相同,求ϕ的值.【答案】k 切=y ’=2221≥+++x x ,当且仅当x+2=1x+2,即x+2=1,x=-1时,取等号又k 切=y ’=2)2cos(2≤+ϕx ,∴k 切=2,此时切点A(-1,-1),切线l :y=2x+1 由)2cos(2ϕ+x =2得)2cos(ϕ+x =1,∴)2sin(ϕ+x =0,从而B(21-,0) ∴)1sin(ϕ+-=0, ϕ+-1=k π,Z k ∈,∴ϕ=k π+1,Z k ∈ 又22πϕπ<<-,∴ϕ= 120.(镇江市2013届高三上学期期末考试数学试题)已知0a >,函数3()(f x ax bx x =-∈R)图象上相异两点,A B 处的切线分别为12,l l , 且1l ∥2l .(1)判断函数()f x 的奇偶性;并判断,A B 是否关于原点对称; (2)若直线12,l l 都与AB 垂直,求实数b 的取值范围.【答案】解:(1)()()()()()x f bx ax x b x a x f -=--=---=-33,()x f ∴为奇函数设()()2211,,,y x B y x A 且21x x ≠,又()b ax x f -='23,()x f 在两个相异点,A B 处的切线分别为12,l l ,且1l ∥2l ,∴()()()22111222330k f x ax b k f x ax b a ''==-===->,∴2221x x =又21x x ≠,∴21x x -=, 又()f x 为奇函数, ∴点B A ,关于原点对称(2)由(1)知()()1111,,,y x B y x A --, ∴b ax x y k AB -==2111, 又()x f 在A 处的切线的斜率()b ax x f k -='=2113, 直线12,l l 都与AB 垂直,∴()()22111,31AB k k axb ax b ⋅=--⋅-=-,令021≥=ax t ,即方程014322=++-b bt t 有非负实根,∴302≥⇒≥∆b ,又212103b t t +=> , ∴0034>⇒>b b.综上3≥b 【说明】本题考查函数性质和导数的运算与应用、一元二次方程根的分布;考查换元法考查推理论证能力.。
第一讲导数、导函数的概念及导数的运算全面版
导数与导函数的观点【基础知识点】1.函数从到的均匀变化率为① ____________,若△x x2x1,△ y f ( x2 ) f ( x1 ) ,则均匀变化率可表示为.2.一般的,定义在区间( a ,b)上的函数 f ( x) ,x o( a, b) ,当x 无穷趋近于0 时,y f (x o x) f (x o )A ,则称f ( x)在x x o处可导,并x x无穷趋近于一个固定的常数称 A 为f ( x)在x x o处的导数,记作 f ' ( x o ) 或f ' ( x ) |x xo3.几何意义: f ( x) 在x x0处的导数就是 f ( x) 在x x0处的切线斜率。
4.导函数的观点: f ( x)的对于区间(a , b)上随意点处都可导,则 f ( x) 在各点的导数也随 x 的变化而变化,因此也是自变量x的函数,该函数被称为 f ( x) 的导函数,记作f ' ( x ) 。
【典例分析】【典例 1】函数f ( x)知足f ' (1)2,则当 x 无穷趋近于 0 时,( 1)f (1x) f (1)2x( 2)f (12x) f (1)x变式 :设f(x)在x=x0处可导,(3)f ( x04x)f ( x)无穷趋近于1,则f(x0 ) =___________ x(4)f ( x04x)f ( x)无穷趋近于1,则f(x0 ) =__________ x( 5)当△ x 无穷趋近于0,f ( x02x) f (x02 x)所对应的常数与 f ( x0 ) 的x关系。
总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。
【基础知识点】1.基本初等函数的求导公式:⑴(kx b)k (k,b为常数 ) ⑵(C ) 0 (C 为常数 )⑶ ( x)1⑷( x 2 ) 2 x⑸( x 3) 3x2⑹ (1)1xx 2⑺(x )1由⑶ ~⑹你能发现什么规律 ?2 x⑻ ( x ) x1( 为常数)⑼ (a x )a x ln a (a0,a 1)⑽(log a x)1log a e1 ( a 0,且 a 1)xxlna⑾(e x )e x⑿(lnx ) 1x⒀(sinx ) cosx⒁(cosx)- sinx2.曲线在某点处的切线和曲线过某点的切线.曲线 y = f (x )在点 P ( x 0, f ( x 0))处的切线方程是 y - f ( x 0)= f ' ( x o ) ( x - x 0);3. 求过某点的切线方程,需先设出切点坐标,再依照已知点在切线上求解. 4.函数的差、积、商的求导法例:( 1) ( 2)( 3)f ( x)g ( x) ' f '( x)g '( x)cf ( x) ' cf (x)'f (x)g ( x) ' f '(x) g(x)f ( x)g '(x)f ( x) '( 4)f '( x)g (x) f (x) g '( x)( g (x) 0)g( x)g( x)2【典例分析】【典例 1】求以下函数的导数( 1)y3x 5( 2)y1( 3)y log 4 x( 4)x 4y sin(x)2( 5)y cos(3( 6)yx x x x)2题型一:点在曲线上【典例 2】已知曲线y1x3上一点 P(2,8),则过 P 点的切线方程为.33分析:过点 P 的切线的斜率为k f ' 2 4 ,那么切线方程为y84x 2 ,即312 x 3y 160 .变式:(南通市2013 届高三第一次调研测试数学试卷)曲线 f ( x)f(1)x12在e f (0) x xe2点 (1, f (1)) 处的切线方程为 ________.题型二:点不在曲线上【典例 3】过点(1,0) 作抛物线y x2x1的切线,则此中一条切线为解析:设切点为 x0 , y0,切线的斜率为 f ' x02x0 1 ,则切线方程为:y y0 f 'x0x x0,由于点 ( 1,0) 在切线上,故y0 f ' x0 1x0,解得x00,或 x02,切点为 0,1或2,3,故切线方程为 x y20或3x y30变式: 1.(江苏省淮安市2013届高三上学期第一次调研测试数学试题)过点1,0. 与函数 f x e x( e 是自然对数的底数)图像相切的直线方程是__________.2.( 2011 年高考(江苏卷))在平面直角坐标系xOy 中,已知点P是函数 f ( x)e x (x0)的图象上的动点 , 该图象在P 处的切线l交y轴于点, 过点P作l的垂线交y轴于点,设M N线段 MN的中点的纵坐标为t ,则 t 的最大值是__题型三:已知切线斜率求切线方程【典例 4】求垂直于直线 2 x6y 1 0且与曲线y x33x2 5 相切的直线方程。
江苏省一轮复习数学试题选编:概率学生 含答案
江苏省2014届一轮复习数学试题选编27:概率(学生版)填空题1 .(南京市、盐城市2013届高三年级第一次模拟考试数学试题)袋中装有2个红球, 2个白球, 除颜色外其余均相同, 现从中任意摸出2个小球, 则摸出的两球颜色不同的概率为 .2 .(江苏省徐州市2013届高三考前模拟数学试题)在集合{|,1,2,,10}6n M x x n π===中任取一个元素,所取元素恰好满足方程1cos 2x =的概率是________. 3 .(南京市、淮安市2013届高三第二次模拟考试数学试卷)盒子中有大小相同的3只白球、2只黑球,若从中随机地摸出两只球,则两只球颜色相同的概率是______.4 .(江苏省盐城市2013届高三年级第二次模拟考试数学试卷)现有在外观上没有区别的5件产品,其中3件合格,2件不合格,从中任意抽检2件,则一件合格,另一件不合格的概率为________.5 .(2011年高考(江苏卷))从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______6 .(常州市2013届高三教学期末调研测试数学试题)已知某拍卖行组织拍卖的10幅名画中,有2幅是膺品.某人在这次拍卖中随机买入了一幅画,则此人买入的这幅画是膺品的事件的概率为______.7 .(2012年江苏理)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是____.8 .(苏州市2012-2013学年度第一学期高三期末考试数学试卷)有5个数成公差不为零的等差数列,这5个数的和为15,若从这5个数中随机抽取一个数,则它小于3的概率是_______.9 .(江苏省连云港市2013届高三上学期摸底考试(数学)(选修物理))在4次独立重复试验中,随机事件A 恰好发生l 次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是___________________.10.(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)已知数字发生器每次等可能地输出数字1或2中的一个数字,则连续输出的4个数字之和能被3整除的概率是___.11.(2009高考(江苏))现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为___★___.12.(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)如图,ABCD 是4⨯5的方格纸,向此四边形ABCD 内抛撒一粒豆子,则豆子恰好落在阴影部分内的概率为_______________13.(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,则露在外面的6个数字恰好是2,0,1,3,0,3的概率为________.14.(江苏省徐州市2013届高三上学期模底考试数学试题)在大小相同的4个小球中,2个是红球,2个是白球,若从中随机抽取2个球,则所抽取的球中至少有一个红球的概率是________.15.(江苏省泰州、南通、扬州、宿迁、淮安五市2013届高三第三次调研测试数学试卷)从集合{}1 2 3 4 5 6 7 8 9,,,,,,,,中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为______.16.(江苏省连云港市2013届高三上学期摸底考试(数学)(选修物理))已知一组抛物线2y ax bx c =++,其中a 为1、3、5、7中任取的一个数,b 为2、4、6、8中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线12x =交点处的切线相互平行的概率是_________________.17.(江苏省苏南四校2013届高三12月月考试数学试题)一个质地均匀的正四面体(侧棱长与底面边长相等的正三棱锥)骰子四个面上分别标有1,2,3,4这四个数字,抛掷这颗正四面体骰子,观察抛掷后能看到的数字.若连续抛掷两次,两次朝下面上的数字之积大于6的概率是______.18.(2013江苏高考数学)现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为____________.19.(苏北三市(徐州、淮安、宿迁)2013届高三第二次调研考试数学试卷)从0,1,2,3这四个数字中一次随机取两个数字,若用这两个数字组成无重复数字的两位数,则所得两位数为偶数的概率是_____.20.(江苏省2013届高三高考压轴数学试题)从集合{-1,1,2,3}中随机选取一个数记为m,从集合{-1,1,2}中随机选取一个数记为n,则方程22x ym n+=1表示双曲线的概率为________.21.(江苏省扬州市2013届高三下学期5月考前适应性考试数学(理)试题)已知某一组数据8,9,11,12,x,若这组数据的平均数为10,则其方差为______.若以连续掷两次骰子得到的点数nm,分别作为点P的横、纵坐标,则点P在直线4x y+=上的概率为______.22.(连云港市2012-2013学年度第一学期高三期末考试数学试卷)在数字1、2、3、4四个数中,任取两个不同的数,其和大于积的概率是___.23.(江苏省淮安市2013届高三上学期第一次调研测试数学试题)连续抛掷一个骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)两次,则出现向上点数之和大于9的概率是___________.24.(江苏省南京市四区县2013届高三12月联考数学试题)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为6的概率是____25.(江苏省盐城市2013届高三10月摸底考试数学试题)已知甲、乙、丙三人在3天节日中值班,每人值班1天,那么甲排在乙前面值班的概率是________.26.(江苏省徐州市2013届高三期中模拟数学试题)在闭区间 [-1,1]上任取两个实数,则它们的和不大于1的概率是_______________.27.(江苏省南京市2013届高三9月学情调研试题(数学)WORD版)有3个兴趣小组,甲、乙两位同学各参加其中一个小组,且他们参加各个兴趣小组是等可能的,则甲、乙两位同学参加同一个兴趣小组的概率为_______.28.(苏州市第一中学2013届高三“三模”数学试卷及解答)有一个容量为66的样本,数据的分组[1.5,3.5)[3.5,5.5)[5.5,7.5)[7.5,9.5)[9.5,11.5)频数 6 14 16 20 10 根据样本的频率分布估计,数据落在[5.5,9.5)的概率约是________.29.(扬州市2012-2013学年度第一学期期末检测高三数学试题)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x,y,则x y 2=的概率为_____.30.(2013江苏高考数学)抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:31.(江苏省2013届高三高考模拟卷(二)(数学) )在一个袋子中装有分别标注数字1,2,3,4的四个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为5的概率是_______.32.(2012-2013学年度苏锡常镇四市高三教学情况调研(二)数学试题)在不等式组031y x x y x ⎧⎪≤⎪<≤⎨⎪⎪>⎩所表示的平面区域内所有的格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能成为一个三角形的三个顶点的概率为______.33.(江苏省南通市、泰州市、扬州市、宿迁市2013届高三第二次调研(3月)测试数学试题)设数列{a n }满足:()()*3118220()n n n n a a a a a n ++=---=∈N ,,则a 1的值大于20的概率为 ▲ .34.(2010年高考(江苏))盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是____35.(南京市、盐城市2013届高三第三次模拟考试数学试卷)在一个盒子中有分别标有数字1,2,3,4,5的5张卡片,现从中一次取出2张卡片,则取到的卡片上的数字之积为偶数的概率是________.36.(苏北老四所县中2013届高三新学期调研考试)当A ,B ∈{1,2,3}时,在构成的不同直线Ax -By =0中,任取一条,其倾斜角小于45︒的概率是___________37.(江苏省无锡市2013届高三上学期期中考试数学试题)某学校有两个食堂,甲,乙,丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为___________.解答题38.(2010年高考(江苏))某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%.生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元.设生产各种产品相互独立(1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x 的分布列 (2)求生产4件甲产品所获得的利润不少于10万元的概率39.(2012年江苏理)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.40.(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)(1)山水城市镇江有“三山”——金山、焦山、北固山,一位游客游览这三个景点的概率都是0.5,且该游客是否游览这三个景点相互独立,用ξ表示这位游客游览的景点数和没有游览的景点数差的绝对值,求ξ的分布列和数学期望;(2)某城市有n (n 为奇数,3n ≥)个景点,一位游客游览每个景点的概率都是0.5,且该游客是否游览这n 个景点相互独立,用ξ表示这位游客游览的景点数和没有游览的景点数差的绝对值,求ξ的分布列和数学期望.41.(苏北老四所县中2013届高三新学期调研考试)如图,已知面积为1的正三角形ABC 三边的中点分别为D 、E 、F ,从A ,B,C,D ,E ,F 六个点中任取三个不同的点,所构成的三角形的面积为X (三点共线时,规定X=0)(1)求1()2P X ≥;(2)求E (X )42.(苏州市2012-2013学年度第一学期高三期末考试数学试卷)设10件同类型的零件中有2CB件不合格品,从所有零件中依次不放回地取出3件,以X表示取出的3件中不合格品的件数.(1)求“第一次取得正品且第二次取得次品”的概率;E X.(2)求X的概率分布和数学期望()43.(江苏省南京市2013届高三9月学情调研试题(数学)WORD版)在一个盒子中有大小一样的7个球,球上分别标有数字1,1,2,2,2,3,3.现从盒子中同时摸出3个球,设随机变量X为摸出的3个球上的数字和.(1)求概率P(X≥7);(2)求X的概率分布列,并求其数学期望E(X).2013届高三学情调研卷44.(江苏省扬州市2013届高三下学期5月考前适应性考试数学(理)试题)某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成.(1)求出甲考生正确完成题数的概率分布列,并计算数学期望; (2)若考生乙每题正确完成的概率都是23,且每题正确完成与否互不影响.试从至少正确完成2题的概率分析比较两位考生的实验操作能力.45.(江苏省无锡市2013届高三上学期期末考试数学试卷)某银行的一个营业窗口可办理四类业务,假设顾客办理业务所需的时间互相独立,且都是整数分钟,经统计以往100位顾客办理业务所需的时间(t),结果如下:注:银行工作人员在办理两项业务时的间隔时间忽略不计,并将频率视为概率. (Ⅰ)求银行工作人员恰好在第6分钟开始办理第三位顾客的业务的概率;(Ⅱ)用X 表示至第4分钟末已办理完业务的顾客人数,求X 的分布列及数学期望.46.(2009高考(江苏))对于正整数n ≥2,用n T 表示关于x 的一元二次方程220xax b ++=有实数根的有序数组(,)a b 的组数,其中{},1,2,,a b n ∈(a 和b 可以相等);对于随机选取的{},1,2,,a b n ∈(a 和b 可以相等),记n P 为关于x 的一元二次方程220x ax b ++=有实数根的概率。
江苏省南通市2019届高三第一次模拟考试 数学 Word版答案
2019届高三年级第一次模拟考试(南通)数学参考答案1.{0,1,3}2.53.34.75.236.547.-68.269.4 10.3 11.2 12.2 513.⎝⎛⎭⎫-4,43 14.337 15. (1) 在四棱锥PABCD 中,M ,N 分别为棱PA ,PD 的中点,所以MN ∥AD.(2分)又底面ABCD 是矩形,所以BC ∥AD.所以MN ∥BC.(4分)又BC ⊂平面PBC ,MN ⊄平面PBC ,所以MN ∥平面PBC.(6分)(2) 因为底面ABCD 是矩形,所以AB ⊥AD.又侧面PAD ⊥底面ABCD ,侧面PAD ∩底面ABCD =AD ,AB ⊂底面ABCD ,所以AB ⊥侧面PAD.(8分)又MD ⊂侧面PAD ,所以AB ⊥MD.(10分)因为DA =DP ,又M 为AP 的中点,从而MD ⊥PA.(12分)又PA ,AB 在平面PAB 内,PA ∩AB =A ,所以MD ⊥平面PAB.(14分)16. (1) 在△ABC 中,因为cos A =33,0<A<π, 所以sin A =1-cos 2A =63.(2分) 因为a cos B =2b cos A ,由正弦定理a sin A =b sin B,得sin A cos B =2sin B cos A. 所以cos B =sin B.(4分)若cos B =0,则sin B =0,与sin 2B +cos 2B =1矛盾,故cos B ≠0.于是tan B =sin B cos B=1. 又因为0<B<π,所以B =π4.(7分) (2) 因为a =6,sin A =63,由(1)及正弦定理a sin A =b sin B ,得663=b 22, 所以b =322.(9分) 又sin C =sin (π-A -B)=sin (A +B)=sin A cos B +cos A sin B=63×22+33×22 =23+66.(12分) 所以△ABC 的面积为S =12ab sin C =12×6×322×23+66=6+324.(14分) 17. (1) 因为椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率为12, 所以c a =12,则a =2c. 因为线段AF 中点的横坐标为22, 所以a -c 2=22. 所以c =2,则a 2=8,b 2=a 2-c 2=6.所以椭圆的标准方程为x 28+y 26=1.(4分) (2) 因为点A(a ,0),点F(-c ,0),所以线段AF 的中垂线方程为x =a -c 2. 又因为△ABF 的外接圆的圆心C 在直线y =-x 上, 所以点C ⎝⎛⎭⎫a -c 2,-a -c 2.(6分) 因为点A(a ,0),点B(0,b),所以线段AB 的中垂线方程为:y -b 2=a b ⎝⎛⎭⎫x -a 2. 由点C 在线段AB 的中垂线上,得-a -c 2-b 2=a b ⎝⎛⎭⎫a -c 2-a 2, 整理得,b(a -c)+b 2=ac ,(10分)即(b -c)(a +b)=0.因为a +b>0,所以b =c.(12分)所以椭圆的离心率e =c a =c b 2+c2=22.(14分) 18. (1) 如图1,过点O 作与地面垂直的直线交AB ,CD 于点O 1,O 2,交劣弧CD 于点P ,O 1P 的长即为拱门最高点到地面的距离.在Rt △O 2OC 中,∠O 2OC =π3,CO 2=3, 所以OO 2=1,圆的半径R =OC =2.所以O 1P =R +OO 1=R +O 1O 2-OO 2=5.故拱门最高点到地面的距离为5m .(4分)(2) 在拱门放倒过程中,过点O 作与地面垂直的直线与“拱门外框上沿”相交于点P.当点P 在劣弧CD 上时,拱门上的点到地面的最大距离h 等于圆O 的半径长与圆心O 到地面距离之和; 当点P 在线段AD 上时,拱门上的点到地面的最大距离h 等于点D 到地面的距离.由(1)知,在Rt △OO 1B 中,OB =OO 21+O 1B 2=2 3.以B 为坐标原点,地面所在的直线为x 轴,建立如图2所示的坐标系.①当点P 在劣弧CD 上时,π6<θ≤π2. 由∠OBx =θ+π6,OB =23, 由三角函数定义,得点O ⎝⎛⎭⎫23cos ⎝⎛⎭⎫θ+π6,23sin ⎝⎛⎭⎫θ+π6, 则h =2+23sin ⎝⎛⎭⎫θ+π6.(8分) 所以当θ+π6=π2即θ=π3时,h 取得最大值2+2 3.(10分) ②如图3,当点P 在线段AD 上时,0≤θ≤π6. 设∠CBD =φ,在Rt △BCD 中,DB =BC 2+CD 2=27,sin φ=2327=217,cos φ=427=277. 由∠DBx =θ+φ,得点D(27cos (θ+φ),27sin (θ+φ)).所以h =27sin (θ+φ)=4sin θ+23cos θ.(14分)又当0<θ<π6时,h′=4cos θ-23sin θ>4cos π6-23sin π6=3>0. 所以h =4sin θ+23cos θ在⎣⎡⎦⎤0,π6上递增. 所以当θ=π6时,h 取得最大值5. 因为2+23>5,所以h 的最大值为2+2 3.故h =⎩⎨⎧4sin θ+23cos θ, 0≤θ≤π6,2+23sin ⎝⎛⎭⎫θ+π6,π6<θ≤π2.艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为(2+23)m .(16分)19. (1) 函数f(x)的定义域为(0,+∞),且f′(x)=x -a x 2. ①当a ≤0时,f′(x)>0成立,所以函数f(x)在(0,+∞)为增函数;(2分)②当a>0时,(ⅰ) 当x>a 时,f′(x)>0,所以函数f(x)在(a ,+∞)上为增函数;(ⅱ) 当0<x<a 时,f′(x)<0,所以函数f(x)在(0,a)上为减函数.(4分)(2) ①由(1)知,当a ≤0时,函数f(x)至多一个零点,不合题意;当a>0时,f(x)的最小值为f(a),依题意知f(a)=1+ln a<0,解得0<a<1e.(6分) 一方面,由于1>a ,f(1)=a>0,函数f(x)在(a ,+∞)为增函数,且函数f(x)的图象在(a ,1)上不间断. 所以函数f(x)在(a ,+∞)上有唯一的一个零点.另一方面,因为0<a<1e ,所以0<a 2<a<1e. f(a 2)=1a +ln a 2=1a +2ln a ,令g(a)=1a+2ln a , 当0<a<1e 时,g′(a)=-1a 2+2a =2a -1a 2<0, 所以f(a 2)=g(a)=1a+2ln a>g ⎝⎛⎭⎫1e =e -2>0. 又f(a)<0,函数f(x)在(0,a)为减函数,且函数f(x)的图象在(a 2,a)上不间断,所以函数f(x)在(0,a)有唯一的一个零点.综上,实数a 的取值范围是⎝⎛⎭⎫0,1e .(10分) ②设p =x 1f′(x 1)+x 2f′(x 2)=1-a x 1+1-a x 2=2-⎝⎛⎭⎫a x 1+a x 2. 又⎩⎨⎧ln x 1+ax 1=0,ln x 2+a x 2=0,则p =2+ln (x 1x 2).(12分) 下面证明x 1x 2>a 2.不妨设x 1<x 2,由①知0<x 1<a<x 2.要证x 1x 2>a 2,即证x 1>a 2x 2. 因为x 1,a 2x 2∈(0,a),函数f(x)在(0,a)上为减函数, 所以只要证f ⎝⎛⎭⎫a 2x 2>f(x 1).又f(x 1)=f(x 2)=0,即证f ⎝⎛⎭⎫a 2x 2>f(x 2).(14分)设函数F(x)=f ⎝⎛⎭⎫a 2x -f(x)=x a -a x -2ln x +2ln a(x>a). 所以F′(x)=(x -a )2ax 2>0, 所以函数F(x)在(a ,+∞)上为增函数.所以F(x 2)>F(a)=0,所以f ⎝⎛⎭⎫a 2x 2>f(x 2)成立.从而x 1x 2>a 2成立.所以p =2+ln (x 1x 2)>2ln a +2,即x 1f′(x 1)+x 2f′(x 2)>2ln a +2成立.(16分)20. (1) 设等差数列{a n }的公差为d.因为等差数列{a n }满足a 4=4,前8项和S 8=36,所以⎩⎪⎨⎪⎧a 1+3d =4,8a 1+8×72d =36,解得⎩⎪⎨⎪⎧a 1=1,d =1. 所以数列{a n }的通项公式为a n =n.(3分)(2) ①设数列{b n }的前n 项和为B n .由③-④得3(2n -1)-3(2n -1-1)=(b 1a 2n -1+b 2a 2n -3+…+b n -1a 3+b n a 1+2n)-(b 1a 2n -3+b 2a 2n -5+…+b n -1a 1+2n -2)=[b 1(a 2n -3+2)+b 2(a 2n -5+2)+…+b n -1(a 1+2)+b n a 1+2n]-(b 1a 2n -3+b 2a 2n -5+…+b n -1a 1+2n -2)=2(b 1+b 2+…+b n -1)+b n +2=2(B n -b n )+b n +2.所以3·2n -1=2B n -b n +2(n ≥2,n ∈N *),又3(21-1)=b 1a 1+2,所以b 1=1,满足上式.所以2B n -b n +2=3·2n -1(n ∈N *),⑤(6分)当n ≥2时,2B n -1-b n -1+2=3·2n -2,⑥由⑤-⑥得,b n +b n -1=3·2n -2.(8分)b n -2n -1=-(b n -1-2n -2)=…=(-1)n -1(b 1-20)=0,所以b n =2n -1,b n +1b n=2, 所以数列{b n }是首项为1,公比为2的等比数列.(10分)②由a m b m =3a p b p ,得m 2m -1=3p 2p -1,即2p -m =3p m . 记c n =a n b n ,由①得,c n =a n b n =n 2n -1, 所以c n +1c n =n +12n≤1,所以c n ≥c n +1(当且仅当n =1时等号成立). 由a m b m =3a p b p,得c m =3c p >c p , 所以m <p .(12分)设t =p -m (m ,p ,t ∈N *),由2p -m =3p m ,得m =3t 2t -3. 当t =1时,m =-3,不合题意;当t =2时,m =6,此时p =8符合题意;当t =3时,m =95,不合题意; 当t =4时,m =1213<1,不合题意. 下面证明当t ≥4,t ∈N *时,m =3t 2t -3<1. 不妨设f (x )=2x -3x -3(x ≥4),则f ′(x )=2x ln2-3>0,所以函数f (x )在[4,+∞)上是单调增函数,所以f (x )≥f (4)=1>0,所以当t ≥4,t ∈N *时,m =3t 2t-3<1,不合题意. 综上,所求集合{(m ,p )|a m b m =3a p b p,m ,p ∈N *}={(6,8)}.(16分)21.A.由题意知(MN )-1=⎣⎢⎢⎡⎦⎥⎥⎤14002, 则MN =⎣⎢⎢⎡⎦⎥⎥⎤40012.(4分) 因为N =⎣⎢⎢⎡⎦⎥⎥⎤10012,则N -1=⎣⎢⎡⎦⎥⎤1002.(6分) 所以矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤40012⎣⎢⎡⎦⎥⎤1002=⎣⎢⎡⎦⎥⎤4001.(10分) B. (1) 直线l 的极坐标方程可化为ρ(sin θcos π4-cos θsin π4)=2,即ρsin θ-ρcos θ=2. 又x =ρcos θ,y =ρsin θ,所以直线l 的直角坐标方程为x -y +2=0.(4分)(2) 曲线C ⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数)的普通方程为x 2=y . 由⎩⎪⎨⎪⎧x 2=y ,x -y +2=0得x 2-x -2=0, 所以直线l 与曲线C 的交点A (-1,1),B (2,4).(8分)所以直线l 被曲线C 截得的线段长为AB =(-1-2)2+(1-4)2=3 2.(10分)C.由柯西不等式,得[(a 2+1)+(b 2+1)+(c 2+1)](1a 2+1+1b 2+1+1c 2+1)≥(a 2+11a 2+1+b 2+11b 2+1+c 2+11c 2+1)2=9,(5分) 所以1a 2+1+1b 2+1+1c 2+1≥9a 2+b 2+c 2+3≥91+3=94.(10分) 22. (1) 记“X 是‘回文数’”为事件A.9个不同的2位“回文数”乘以4的值依次为44,88,132,176,220,264,308,352,396,其中“回文数”有44,88.所以事件A 的概率P(A)=29.(3分) (2) 根据条件知,随机变量ξ的所有可能取值为0,1,2.由(1)得P(A)=29.(5分) 设“Y 是‘回文数’”为事件B ,则事件A ,B 相互独立.根据已知条件得,P(B)=20C 29=59. P(ξ=0)=P(A)P(B)=(1-29)×(1-59)=2881;P(ξ=1)=P(A)P(B)+P(A)P(B)=(1-29)×59+29×⎝⎛⎭⎫1-59=4381; P(ξ=2)=P(A)P(B)=29×59=1081(8分) 所以,随机变量ξ所以随机变量ξ的数学期望为E(ξ)=0×2881+1×4381+2×1081=79.(10分) 23. (1) 集合A 1={1,2,3}的子集有∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}, 其中所有元素和为3的整数倍的集合有∅,{3},{1,2},{1,2,3}, 所以A 1的“和谐子集”的个数等于4.(3分)(2) 记A n 的“和谐子集”的个数等于a n ,即A n 有a n 个所有元素和为3的整数倍的子集; 另记A n 有b n 个所有元素和为3的整数倍余1的子集,有c n 个所有元素和为3的整数倍余2的子集. 由(1)知,a 1=4,b 1=2,c 1=2.集合A n +1={1,2,3,…,3n -2,3n -1,3n ,3n +1,3n +2,3(n +1)}的“和谐子集”有以下四类(考察新增元素3n +1,3n +2,3(n +1)):第一类:集合A n ={1,2,3,…,3n -2,3n -1,3n}的“和谐子集”,共a n 个; 第二类:仅含一个元素3(n +1)的“和谐子集”,共a n 个;同时含两个元素3n +1,3n +2的“和谐子集”,共a n 个;同时含三个元素3n +1,3n +2,3(n +1)的“和谐子集”,共a n 个; 第三类:仅含一个元素3n +1的“和谐子集”,共c n 个;同时含两个元素3n +1,3(n +1)的“和谐子集”,共c n 个; 第四类:仅含一个元素3n +2的“和谐子集”,共b n 个;同时含有两个元素3n +2,3(n +1)的“和谐子集”,共b n 个, 所以集合A n +1的“和谐子集”共有a n +1=4a n +2b n +2c n 个. 同理得b n +1=4b n +2c n +2a n ,c n +1=4c n +2a n +2b n .(7分)所以a n +1-b n +1=2(a n -b n ),a 1-b 1=2,所以数列{a n -b n }是以2为首项,2为公比的等比数列.所以a n -b n =2n .同理得a n -c n =2n .又a n +b n +c n =23n ,所以a n =23×2n +×23n (n ∈N *).(10分)。
江苏省南通市2023届高三第一次调研测试(一模)化学试题
化学
满分为100分,考试时间为75分钟
可能用到的相对原子质量:H 1 C 12 O 16 Cl 35.5 Ti 48 V 51
一、单项选择题:共13题,每题3分,共39分。每题只有一个选项最符合题意。
1.党的二十大报告指出“推动绿色发展,促进人与自然和谐共生”。下列做法不合理的是
6.实验室制取 并探究其性质,下列实验装置和操作不能达到实验目的的是
A.用装置甲制取 B.用装置乙干燥
C.用装置丙收集 D.用装置丁探究 的还原性
7. 易液化,能与多种物质发生反应,将金属钠投入液氧中有 产生, 能与 合生成 ,加热条件下 能将CuO还原成Cu。下列说法正确的是
A. 分子中 H-N-H键角为120°
实验2将镁条放入滴有酚酞的1 溶液中,产生气泡,溶液逐渐变红
实验3将镁条放入滴有酚酞的1 溶液(pH≈7),产生气泡,溶液逐渐变红
实验4将镁条放入滴有酚酞的1 NaCl溶液中,产生气泡,溶液逐渐变红
下列基于相应实验现象得出的结论不正确的是
A.实验1加热时发生反应的化学方程式为
B.实验2反应后的溶液中存在:
二、非选择题:共4题,共61分。
14.从废脱硝催化剂(主要成分为 、 )中回收 和 ,具有重要意义。
(1)碳氯化—氧化法提取 。将粉碎后的催化剂渣料与过量焦炭混合投入高温氯化炉充分反应,将生成的 与其他气体分离,并将其氧化得 。该过程主要涉及以下反应:
反应I
反应Ⅱ
已知常压下 的沸点为136.4℃,C的燃烧热为 ,CO的燃烧热为 。
15.一种pH荧光探针的合成路线如下:
(1)B→C过程中发生反应的类型依次是加成反应、_______(填反应类型)。
南通市2013届高三第一次调研测试数学参考答案及评分标准(word)2013.1.24
南通市2013届高三第一次调研测试数学I参考答案与评分标准(考试时间:120分钟 满分:160分)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.已知全集U =R ,集合{}10A x x =+>,则U A =ð ▲ . 答案:(,1]-∞-.2.已知复数z =32i i -(i 是虚数单位),则复数z 所对应的点位于复平面的第 ▲ 象限.答案:三.3.已知正四棱锥的底面边长是6,这个正四棱锥的侧面积是 ▲ . 答案:48.4.定义在R 上的函数()f x ,对任意x ∈R 都有(2)()f x f x +=,当(2,0)x ∈- 时,()4x f x =, 则(2013)f = ▲ . 答案:14. 5.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”, 则p 是q 的 ▲ .(从“逆命题、否命题、逆否命题、否定”中选一个填空) 答案:否命题.6.已知双曲线22221yx a b-=的一个焦点与圆x 2+y 2-10x =0的圆心重合,,则该双曲线的标准方程为 ▲ .答案:221520y x -=. 7.若S n 为等差数列{a n }的前n 项和,S 9=-36,S 13=-104, 则a 5与a 7的等比中项为 ▲ . 答案:±8.已知实数x ∈[1,9],执行如右图所示的流程图, 则输出的x 不小于55的概率为 ▲ .答案:38.9.在△ABC 中,若AB =1,AC||||AB AC BC += ,则||BA BC BC ⋅ = ▲ .ABC DEF A 1B 1C 1(第15题)答案:12. 10.已知01a <<,若log (21)log (32)a a x y y x -+>-+,且x y <+λ,则λ的最大值为▲ . 答案:-2. 11.曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ . 答案:1e 2y x =-. 12.如图,点O 为作简谐振动的物体的平衡位置,取向右方向为正方向,若振幅为3cm ,周期为3s ,且物体向右运动到距平衡位置最远处时开始计时.则该物体5s 时刻的位移为 ▲ cm . 答案:-1.5.13.已知直线y =ax +3与圆22280x y x ++-=相交于A ,B 两点,点00(,)P x y 在直线y =2x 上,且P A =PB ,则0x 的取值范围为 ▲ . 答案:(1,0)(0,2)- .14.设P (x ,y )为函数21y x =-(x >图象上一动点,记353712x y x y m x y +-+-=+--,则当m 最小时,点 P 的坐标为 ▲ . 答案:(2,3).二、解答题:本大题共6小题,共计90分.请把答案写在答题卡相应的位置上.解答时应写出文字说明,证明过程或演算步骤. 15.(本题满分14分)如图,在正三棱柱ABC -A 1B 1C 1中,E 是侧面AA 1B 1B 对角线的交点,F 是侧面AA 1C 1C 对角线的交点,D 是棱BC 的中点.求证: (1)//EF 平面ABC ; (2)平面AEF ⊥平面A 1AD .解:(1)连结11A B A C 和.因为E F 、分别是侧面11AA B B 和侧面11AA C C 的对角线的交点, 所以E F 、分别是11A B A C 和的中点.所以//EF BC . ………………………………………………………3分(第12题)OEF A 1B 1C 1又BC ⊂平面ABC 中,EF Ø平面ABC 中,故//EF 平面ABC . ………………………………………………6分 (2)因为三棱柱111ABC A B C -为正三棱柱, 所以1A A ⊥平面ABC ,所以1BC A A ⊥.故由//EF BC ,得1EF A A ⊥. ………………………………………8分 又因为D 是棱BC 的中点,且ABC ∆为正三角形,所以BC AD ⊥. 故由//EF BC,得EF AD ⊥. …………………………………………………………………10分而1A A AD A= ,1,A A AD ⊂平面1A A D ,所以EF ⊥平面1A A D .…………………………………12分又EF ⊂平面AEF ,故平面AEF ⊥平面1A A D .………………………………………………………14分16.(本题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan A B C +=. (1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求22a b +的取值范围. 解:(1)因为sin sin tan A B C +=,即sin sin sin C A B +=,所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-, 得sin()sin()C A B C -=-. ……………………………………………………………………………4分所以C A B C -=-,或()C A B C π-=--(不成立). 即2C A B=+, 得3C π=. …………………………………………………………………7分(2)由πππ,,,333C A B αα==+=-设2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, …………………………………………………………8分故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos22332⎡⎤-++-=+⎢⎥⎣⎦ααα. ………………………………………11分ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤.……………………………14分17.(本题满分14分)某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,()ABCD AB AD >为长方形薄板,沿AC 折叠后,AB '交DC 于点P .当△ADP 的面积最大时最节能,凹多边形ACB PD '的面积最大时制冷效果最好.(1)设AB =x 米,用x 表示图中DP 的长度,并写出x 的取值范围; (2)若要求最节能,应怎样设计薄板的长和宽? (3)若要求制冷效果最好,应怎样设计薄板的长和宽?解:(1)由题意,AB x=,2BC x =-.因2x x >-,故12x <<. ……………………………2分设DP y =,则PC x y =-.因△ADP ≌△CB P ',故PA PC x y ==-. 由22PA A D D P =+,得 2221()(2)2(1)x y x yy x-=-+⇒=-,12x <<.……………………5分(2)记△ADP 的面积为1S ,则11(1)(2)S x x=-- ………………………………………………………………………………………6分23()2x =-+≤-当且仅当x ∈(1,2)时,S 1取得最大值.…………………………………………………………8分故当薄板长为米,宽为2米时,节能效果最好. ………………………………………9分ABCD(第17题)B 'P(3)记△ADP 的面积为2S ,则221114(2)(1)(2)3()22S x x x x x x =-+--=-+,12x <<.……………………………………………10分于是,3222142(2)02x S x x x x -+'=--==⇒11分关于x 的函数2S 在(1上递增,在上递减.所以当x 时,2S 取得最大值. ……………………………………………………13分故当薄板长为米,宽为2米时,制冷效果最好. ………………………………………14分18.(本题满分16分)已知数列{a n }中,a 2=1,前n 项和为S n ,且1()2n n n a a S -=. (1)求a 1;(2)证明数列{a n }为等差数列,并写出其通项公式; (3)设1lg 3n n na b +=,试问是否存在正整数p ,q (其中1<p <q ),使b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.解:(1)令n =1,则a 1=S 1=111()2a a -=0. ………………………………………………………………3分 (2)由1()2n n n a a S -=,即2n n naS =, ① 得 11(1)2n n n a S +++=. ② ②-①,得 1(1)n n n ana +-=. ③ 于是,21(1)n n na n a ++=+. ④ ③+④,得212n n n na na na +++=,即212n n n a a a +++=. ……………………………………………7分又a 1=0,a 2=1,a 2-a 1=1,所以,数列{a n }是以0为首项,1为公差的等差数列.所以,a n =n -1. ………………………………………………………………………………………9分(3)假设存在正整数数组(p ,q ),使b 1,b p ,b q 成等比数列,则lg b 1,lg b p ,lg b q 成等差数列,于是,21333p q p q=+. …………………………………………………………………………………11分所以,213()3q p p q =-(☆). 易知(p,q )=(2,3)为方程(☆)的一组解. ……………………………………………………………13分当p ≥3,且p ∈N *时,112(1)224333p p p p p p +++--=<0,故数列{23pp}(p ≥3)为递减数列, 于是2133pp -≤323133⨯-<0,所以此时方程(☆)无正整数解. 综上,存在唯一正整数数对(p ,q )=(2,3),使b 1,b p ,b q 成等比数列. …………………………16分注 在得到③式后,两边相除并利用累乘法,得通项公式并由此说明其为等差数列的,亦相应评分.但在做除法过程中未对n ≥2的情形予以说明的,扣1分.19.(本题满分16分)已知左焦点为F (-1,0)的椭圆过点E (1).过点P (1,1)分别作斜率为k 1,k 2的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点. (1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求k 1;(3)若k 1+k 2=1,求证直线MN 恒过定点,并求出定点坐标. 解:依题设c =1,且右焦点F '(1,0).所以,2a =EF EF '+=b 2=a 2-c 2=2,故所求的椭圆的标准方程为22132y x +=. …………………………………………………………4分(2)设A (1x ,1y ),B (2x ,2y ),则22111x y +=①,22221x y +=②.②-①,得 21212121()()()()032x x x x y y y y -+-++=.所以,k 1=212121212()423()63P P y y x x xx x y y y -+=-=-=--+. ………………………………………………………9分(3)依题设,k 1≠k 2.设M (M x ,M y ),直线AB 的方程为y -1=k 1(x -1),即y =k 1x +(1-k 1),亦即y =k 1x +k 2,代入椭圆方程并化简得 2221122(23)6360k x k k x k +++-=. 于是,1221323M k k x k -=+,221223M k y k =+. ……………………………………………………………11分同理,1222323N k k x k -=+,122223N k y k =+. 当k 1k 2≠0时, 直线MN的斜率k =M N M Ny y x x -=-222211212146()9()k k k k k k k k +++-+=21211069k k k k --.……………………………………13分 直线MN 的方程为2211222211121063()92323k k k k k y x k k k k ---=--++, 即 21211222221211110610632()2323k k k k k k k y x k k --=+⋅+++, 亦即 21211062k k y x -=-.此时直线过定点2(0,)3-. ………………………………………………………………………………15分当k 1k 2=0时,直线MN 即为y 轴,此时亦过点2(0,)3-.综上,直线MN恒过定点,且坐标为2(0,)3-. ……………………………………………………16分20.(本题满分16分)已知函数()(0ln x f x ax x x=->且x ≠1).(1)若函数()f x 在(1,)+∞上为减函数,求实数a 的最小值;(2)若212,[e,e ]x x ∃∈,使f (x 1)≤2()f x a '+成立,求实数a 的取值范围.解:(1)因f (x )在(1,)+∞上为减函数,故2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立. ………………2分所以当(1,)x ∈+∞时,max ()0f x '≤. 又()22ln 111()ln ln (ln )x f x a a x x x -'=-=-+-()2111ln 24a x =--+-, 故当11ln 2x =,即2e x =时,max 1()4f x a '=-.所以10,4a -≤于是14a ≥,故a 的最小值为1. ……………………………………………………6分 (2)命题“若212,[e,e ],x x ∃∈使()12()f x f x a '≤+成立”等价于 “当2[e,e ]x ∈时,有()m i n m a x()f x f x a '≤+”. ……………………………………………………7分 由(1),当2[e,e ]x ∈时,max 1()4f x a '=-,∴()max 14f x a '+=.问题等价于:“当2[e,e ]x ∈时,有m i n 1()4f x ≤”. ……………………………………………………8分01当14a ≥时,由(1),()f x 在2[e,e ]上为减函数,则min()f x =222e 1(e )e 24f a =-≤,故21124ea ≥-. ……………………………………………10分2当1a <时,由于()f x '()2111ln 24a x =--+-在2[e,e ]上为增函数, 故()f x '的值域为2[(e),(e )]f f '',即1[,]4a a --.(i )若0a -≥,即0a ≤,()0f x '≥在2[e,e ]恒成立,故()f x 在2[e,e ]上为增函数, 于是,min()f x =1(e)e e e>4f a =-≥,不合. …………………………………………………12分(ii )若0a -<,即104a <<,由()f x '的单调性和值域知,∃唯一20(e,e )x ∈,使0()0f x '=,且满足:当0(e,)x x ∈时,()0f x '<,()f x 为减函数;当20(,e )x x ∈时,()0f x '>,()f x 为增函数;所以,min ()f x =00001()ln 4x f x ax x =-≤,20(e,e )x ∈. 所以,2001111111ln 44e 244ln e a x x ≥->->-=,与104a <<矛盾,不合. ………………………15分综上,得21124ea ≥-.………………………………………………………………………………16分AB EFDCO(第21A 题)南通市2013届高三第一次调研测试数学附加题参考答案与评分标准(考试时间:30分钟 满分:40分)21.【选做题】本题包括A ,B ,C ,D 共4小题,请从这4题中选做2小题,每小题10分,共20分.请在答题卡上准确填涂题目标记,解答时应写出文字说明、证明过程或演算步骤.A .选修4-1:几何证明选讲如图,△ABC 是⊙O 的内接三角形,若AD 是△ABC 的高,AE 是⊙O 的直径,F 是 BC的中点.求证:(1)AB AC AE AD ⋅=⋅; (2)FAE FAD ∠=∠.证明:(1)连BE ,则E C ∠=∠,又Rt ABE ADC ∠=∠=∠,所以△ABE ∽△ADC ,所以AB AE AD AC =.∴AB AC AE AD ⋅=⋅. ……………………………………………………………………………………5分(2)连OF ,∵F 是 BC的中点,∴BAF CAF ∠=∠. 由(1),得B A ∠=∠,∴FAE FAD ∠=∠. …………………………………………………10分B .选修4-2:矩阵与变换已知曲线2:2C y x = ,在矩阵M 1002⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线1C ,1C 在矩阵N 0110-⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线2C ,求曲线2C 的方程.解:设A =NM ,则A 011002100210--⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, ………………………………………………………3分 设()','P x y 是曲线C 上任一点,在两次变换下,在曲线2C 上的对应的点为(),P x y ,则02'2'10''x x y y y x --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 即2',',x y y x =-⎧⎨=⎩∴',1'.2x y y x =⎧⎪⎨=-⎪⎩ ……………………………7分 又点()','P x y 在曲线2:2C y x = 上,∴21()22x y-=,即218y x =.………………………………10分C .选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为2222cos 3sin 3+=ρθρθ,直线l的参数方程为1x y t ⎧=⎪⎨=+⎪⎩(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解:曲线C的普通方程是2213x y +=. …………………………………………………………………2分 直线l的普通方程是0x . ………………………………………………………………4分设点M的直角坐标是,sin )θθ,则点M 到直线l 的距离是d=. …………………………………………………7分因为)4+≤πθ,所以当πsin()14θ+=-,即ππ2π(42k k θ+=-∈Z ),即3π2π(4k k θ=-∈Z )时,d 取得最大值.==θθ 综上,点M 的极坐标为7π)6时,该点到直线l 的距离最大. ………………………10分注 凡给出点M的直角坐标为(,不扣分.D .选修4-5:不等式选讲已知0,0,a b >>且21a b +=,求224S a b =-的最大值. 解:0,0,21,a b a b >>+=∴2224(2)414a b a b ab ab +=+-=-, ………………………………………………………………2分且12a b =+≥,即,1ab ≤, ……………………………………………………5分∴224S a b =-(14)ab =-41ab =-≤,当且仅当11,42a b ==时,等号成立. …………………………………………………………………10分22.(本小题满分10分).解答时应写出文字说明、证明过程或演算步骤.如图,已知定点R (0,-3),动点P ,Q 分别在x 轴和y 轴上移动,延长PQ至点M ,使1PQ QM = ,且0PR PM ⋅=.(1)求动点M 的轨迹C 1;(2)圆C 2: 22(1)1x y +-=,过点(0,1)的直线l 依次交C 1于A ,D 两点(从左到右),交C 2于B ,C 两点(从左到右),求证:AB CD ⋅为定值.解:(1)法一:设M (x ,y ),P (x 1,0),Q (0,y 2),则由10,2PR PM PQ QM ⋅==及R (0,-3),得11122()(3)0,1,211.22x x x y x x y y y ⎧⎪--+-=⎪⎪-=⎨⎪⎪=-⎪⎩化简,得24x y =. ……………………………………………………………4分所以,动点M 的轨迹C 1是顶点在原点,开口向上的抛物线. ………………………………………5分法二:设M (x ,y ).由12PQ QM = ,得 (,0),(0,)23xyP Q -.(第22题)所以,3(,3),(,)22x xPR PM y =-= .由0PR PM =,得3(,3)(,)022x x y -⋅=,即23304x y -=.化简得 24x y =. …………………4分所以,动点M 的轨迹C 1是顶点在原点,开口向上的抛物线. ………………………………………5分(2)证明:由题意,得 A B C D A B C D ⋅=⋅,⊙C 2的圆心即为抛物线C 1的焦点F . 设11(,)A x y ,22(,)D x y ,则1111AB FA FB y y =-=+-=. ……………………………………7分同理 2C D y =. 设直线l 的方程为 (1)x k y =-.由2(1),1,4x k y y x =-⎧⎪⎨=⎪⎩得221(1)4y k y =-,即2222(24)0k y k y k --+=. 所以,121AB CD AB CD y y ⋅=⋅==. ………………………………………………………………10分23.(本小题满分10分).解答时应写出文字说明、证明过程或演算步骤.已知数列{a n }满足:1*1122,1()n a n a a a a n -+=-=+∈N . (1)若1a =-,求数列{a n }的通项公式;(2)若3a =,试证明:对*n ∀∈N ,a n 是4的倍数. 解:(1)当1a =-时,1114,(1)1n a n a a -+=-=-+.令1n n b a =-,则115,(1)n b n b b +=-=-. 因15b =-为奇数,n b 也是奇数且只能为1-, 所以,51,2n n b n -=⎧=⎨-≥⎩即4,1,0, 2.n n a n -=⎧=⎨≥⎩………………………………………………………3分(2)当3a =时,1114,31n a n a a -+==+. ………………………………………………………………4分下面利用数学归纳法来证明:a n 是4的倍数.当1n =时,1441a ==⨯,命题成立;设当*()n k k =∈N 时,命题成立,则存在t ∈N *,使得4k a t =,1414(1)1313127(41)1k a t t k a ---+∴=+=+=⋅-+27(41)14(277)m m =⋅++=+,其中,4(1)14544434(1)4(1)4(1)44C 4(1)C 4C 4t t r r t r t t t t m --------=-⋅++-⋅+-⋅ ,m ∴∈Z ,∴当1n k =+时,命题成立.∴由数学归纳法原理知命题对*n ∀∈N 成立. …………………………………………………10分南通市2013届高三第一次调研测试数学Ⅰ讲评建议第1题 考查集合运算.注意集合的规范表示法,重视集合的交并补的运算.第2题 考查复数的基本概念及几何意义.对复数的概念宜适当疏理,防止出现知识盲点. 第3题 考查常见几何体的表面积与体积的计算.应熟练掌握常见几何体的表面积的计算,灵活应用等体积法计算点面距.第4题 本题考查一般函数的性质——周期性在解题中的应用.第5题 本题考查简易逻辑的知识.应注意四种命题及其关系,注意全称命题与特称性命题的转换.第6题 本题考查双曲线的标准方程、简单性质与圆的有关知识.对双曲线的讲评不宜过分引申.第7题 本题主要考查等差数列的基本概念及其简单运算.法一 用性质.S 9=9a 5= -36,S 13= 13a 7= -104,于是a 5= -4,a 7= -8,等比中项为±法二 用基本量.S 9=9a 1+36d = -36,S 13=13a 1+78d = -104,解得a 1=4,d = -2.下同法一.第8题 本题主要考查算法及几何概型等知识.法一 当输入x =1时,可输出x =15;当输入x =9时,可输出y =79.于是当输入x的取值范围为[1,9]时,输出x 的取值范围为[15,79],所求概率为7955379158-=-.法二 输出值为87x +.由题意:8755x +≥,故69x ≤≤. 第9题 本题主要考查向量与解三角形的有关知识.满足||||AB AC BC +=的A ,B ,C 构成直角三角形的三个顶点,且∠A 为直角,于是BA BC ⋅ =2BA =1.第10题 本题主要考查对数与线性规划的基础知识及简单运算.讲评时应强调对数的真数应大于0.强调对数函数的单调性与底数a 之间的关系.第11题 本题主要考查基本初等函数的求导公式及其导数的几何意义. (1)()e (0)e x f f x f x ''=-+1(1)(1)e (0)1ef f f ''⇒=-+(0)1f ⇒=. 在方程2(1)1()e (0)e 2x f f x f x x '=-+中,令x =0,则得(1)e f '=. 讲评时应注意强调“在某点处的切线”与“过某点处的切线”的区别. 第12题 本题主要考查三角函数及其应用.考题取自教材的例题.教学中应关注课本,以及有关重要数学模型的应用,讲评时还要强调单位书写等问题.S (t )=103sin()32t ππ+,求S (5)= -1.5即可.第13题 本题主要考查直线与圆的有关知识. 圆心C (-1,0)到直线l :y =ax +3的距离为3d =<,解得a >0或a <34-. 由P A =PB ,CA =CB ,得PC ⊥l ,于是1PC k a =-,进而可求出x 0的取值范围.第14题 考查灵活运用所学知识分析问题与解决问题的能力,考查运用基本不等式解决问题.讲评时应注意加强对学生运用整体法观察问题解决问题能力的培养.法一 2223631013x x x x m x x +-+-=+--2231613x x x x --=++--. 当且仅当223113x x x x --=--,即2x =时m 取得最小,此时点P 的坐标为(2,3). 法二 33213612x y x y m x y -+--+-=+--21612y x x y --=++--.当且仅当2112y x x y --=--时m 取得最小值.下略. 第15题 本题主要考查空间点线面的位置关系,考查逻辑推理能力以及空间想象能力.讲评时应注意强调规范化的表达.注意所用解题依据都应来自于课本的有关定义、公理、定理等.第16题 本题主要考查三角函数及解三角形的有关知识,涉及两角和与差的三角公式、正余弦定理等.讲评时,应适当渗透切化弦、化同名、边角互化、减少变量等策略,同时注意三角形内本身一些关系在解决问题时的应用,例如两边之和大于第三边,sin (A +B )=sinC ,面积公式及等积变换等.(2)法一:由πππ,,,333C A B αα==+=-设2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, 故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos22332ααα⎡⎤-++-=+⎢⎥⎣⎦.ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤. 法二:由正弦定理得:2sin c R C ==.由余弦定理得:2222cos c a b ab C =+-,故2234a b ab +=+.因为0,0a b >>,所以2234a b +>.又222a b ab +≤,故2222342a b a b +++≤,得2232a b +≤.因此,223342a b <+≤.第17题 本题主要考查应用所学数学知识分析问题与解决问题的能力.试题以常见的图形为载体,再现对基本不等式、导数等的考查.讲评时,应注意强调解决应用问题的一般步骤与思维规律,教学中应帮助学生克服解决应用题时的畏惧心理,在学生独立解决应用问题的过程中不断增强他们的自信心.在使用基本不等式应注意验证取等号的条件,使用导数时应谨慎决断最值的取值情况.第18题 本题主要考查等差数列与等比数列的基础知识及基本运算,考查创新能力.两个基本数列属C 能要求,属高考必考之内容,属各级各类考试之重点.第(3)问中,若数列{a n }为等差数列,则数列{n a k }(k >0且k ≠1)为等比数列;反之若数列{a n }为等比数列,则数列{log a n a }(a >0且a ≠1)为等差数列.第(3)问中,如果将问题改为“是否存在正整数m ,p ,q (其中m <p <q ),使b m ,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(m ,p ,q );若不存在,说明理由.”那么,答案仍然只有唯一组解.此时,在解题时,只须添加当m ≥2时,说明方程组无解即可,其说明思路与原题的解题思路基本相同.对于第(2)问,在得到关系式:1(1)n n n a na +-=后,亦可将其变形为11n n a n a n +=-,并进而使用累乘法(迭乘法),先行得到数列{a n }的通项公式,最后使用等差数列的定义证明其为等差数列亦可.但需要说明n ≥2.考虑到这是全市的第一次大考,又是考生进入高三一轮复习将近完成后所进行的第一次大规模的检测,因而在评分标准的制定上,始终本着让学生多得分的原则,例如本题中的第(1)问4分,不设置任何的障碍,基本让学生能得分.第19题 本题主要考查直线与椭圆的基础知识,考查计算能力与独立分析问题与解决问题的能力.讲评本题时,要注意对学生耐挫能力的培养.第(2)问,亦可设所求直线方程为y -1=k 1(x -1),与椭圆方程联立,消去一个变量或x 或y ,然后利用根与系数的关系,求出中点坐标与k 1的关系,进而求出k 1的值.第(3)问,可有一般的情形:过定椭圆内的定点作两条斜率和为定值的动弦,则两动弦的中点所在直线过定值.此结论在抛物线中也成立.另外,也可以求过两中点所在直线的斜率的最值.近几年江苏高考解析几何大题的命题趋势:多考一点“算”,少考一点“想”. 第20题 本题主要考查函数与导数的知识,考查运用所学数学知识分析问题与解决问题的能力.第(2)可另解为:命题“若212,[e,e ],x x ∃∈使()12()f x f x a '+≤成立”等价于“21[e,e ]x ∃∈,使()1max ()f x f x a '+≤”.由(1),当2[e,e ]x ∈时,max 1()4f x a '=-,于是()max 14f x a '+=.故21[e,e ]x ∃∈,使11111()ln 4x f x ax x =-≤,即21[e,e ]x ∃∈,使1111ln 4a x x -≥.所以当2[e,e ]x ∈时,()min11a -≥.记211(),[e,e ]ln 4g x x x x =-∈,则222224(ln )11()(ln )44(ln )x x g x x x x x x -+-'=+=⋅.因2[e,e ]x ∈,故224[4e,4e ],(ln )[1,4]x x ∈∈,于是2()0,[e,e ]g x x '<∀∈恒成立. 所以,11()ln 4g x x x =-在2[e,e ]上为减函数,所以,min 2221111()2ln e 4e 4e g x =-=-.所以,21124ea -≥.。
2014届数学试题选编12:等差数列及其前n项和(教师版)-Word版含答案-(1)(1)
①求证: ;
②判断数列 是否为等差数列,若是等差数列,请证明;若不是,请说明理由.
【答案】解:(Ⅰ)由于 和 都不属于集合 ,所以该集合不具有性质 ;
由于 、 、 、 、 、 、 、 、 、 都属于集合 ,所以该数集具有性质
(Ⅱ)① 具有性质 ,所以 与 中至少有一个属于 ,
由 ,有 ,故 , ,
故
② , ,故 .
由 具有性质 知, ,
又 ,
,
即 ①
由 知, , ,,, 均不属于 ,
由 具有性质 , , ,,, 均属于 ,
,而 ,
, , ,,
即 ②
由①②可知 ,
即 ( ).故 构成等差数列
.(2009高考(江苏))设 是公差不为零的等差数列, 为其前 项和,满足
(1)求数列 的通项公式及前 项和 ;
【答案】8
.(南京市、淮安市2013届高三第二次模拟考试数学试卷)已知数列{ }的通项公式为 ,数列{ }的通项公式为 .若将数列{ },{ }中相同的项按从小到大的顺序排列后看作数列{ },则 的值为_____.
【答案】961
.(江苏海门市2013届高三上学期期中考试模拟数学试卷)已知函数f(x)=,则f()+f()++f()=________________.
【答案】
.(2010年高考(江苏))设各项均为正数的数列 的前n项和为 ,已知 ,数列 是公差为 的等差数列.
①求数列 的通项公式(用 表示)
②设 为实数,对满足 的任意正整数 ,不等式 都成立.求证: 的最大值为
【答案】(1) .
(2)由
.(江苏省南京市四校2013届高三上学期期中联考数学试题)数列 的前n项和为 ,存在常数A,B,C,使得 对任意正整数n都成立.若数列 为等差数列,求证 :3A-B+C=0.
南通市2023届高三第一次调研测试数学试题解析版
南通市2023届高三第一次调研测试数学试题一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|1≤x≤3},B={x|2<x<4},则A∩B=()A.(2,3]B.[1,4)C.(﹣∞,4)D.[1,+∞)【解答】解:A∩B={x|2<x≤3}=(2,3].故选:A.2.(5分)已知向量满足,则=()A.﹣2B.﹣1C.0D.2【解答】解:根据题意可得,故选:C.3.(5分)在复平面内,复数z1,z2对应的点关于直线x﹣y=0对称,若z1=1﹣i,则|z1﹣z2|=()A.B.2C.D.4【解答】解:z1=1﹣i对应的点为(1,﹣1),其中(1,﹣1)关于x﹣y=0的对称点为(﹣1,1),故z2=﹣1+i,故.故选:C.4.(5分)2022年神舟接力腾飞,中国空间站全面建成,我们的“太空之家”遨游苍穹.太空中飞船与空间站的对接,需要经过多次变轨.某飞船升空后的初始运行轨道是以地球的中心为一个焦点的椭圆,其远地点(长轴端点中离地面最远的点)距地面S1,近地点(长轴端点中离地面最近的点)距地面S2,地球的半径为R,则该椭圆的短轴长为()A.B.C.D.【解答】解:由题意得a+c=S1+R,a﹣c=S2+R,∴b2=a2﹣c2=(S1+R)(S2+R),故,∴,故选:D.5.(5分)已知,则=()A.B.C.D.【解答】解:∵=sinα+cosα=sin(α+)=,∴=1﹣2=1﹣2×=,故选:B.6.(5分)已知随机变量X服从正态分布N(1,σ2),有下列四个命题:甲:P(X>m+1)>P(X<m﹣2);乙:P(X>m)=0.5;丙:P(X≤m)=0.5;丁:P(m﹣1<X<m)<P(m+1<X<m+2).如果只有一个假命题,则该命题为()A.甲B.乙C.丙D.丁【解答】解:命题乙,丙同真假,由题意可知,四个命题只有一个为假命题,故乙,丙均为真命题,所以μ=m,P(X>m+1)=P(X<m﹣1)>P(X<m﹣2),故甲正确,P(m﹣1<X<m)=P(m<X<m+1)>P(m+1<X<m+2),故丁错.故选:D.7.(5分)已知函数f(x)的定义域为R,且f(2x+1)为偶函数,f(x)=f(x+1)﹣f(x+2),若f(1)=2,则f(18)=()A.1B.2C.﹣1D.﹣2【解答】解:因为f(2x+1)为偶函数,所以f(2x+1)=f(﹣2x+1),所以f(x+1)=f(﹣x+1),则f(x)关于x=1对称,设,,关于x=1对称,==.,所以f(x+1)=f(x)+f(x+2),即符合条件,所以.故选:A.8.(5分)若过点P(t,0)可以作曲线y=(1﹣x)e x的两条切线,切点分别为A(x1,y1),B(x2,y2),则y1y2的取值范围是()A.(0,4e﹣3)B.(﹣∞,0)∪(0,4e﹣3)C.(﹣∞,4e﹣2)D.(﹣∞,0)∪(0,4e﹣2)【解答】解:设切点,则切线方程为,又切线过(t,0),∴,x0﹣1=﹣x0(t﹣x0),∴有两个不相等实根x1,x2,其中,∴t>1或t<﹣3,,令g(t)=(1﹣t)e t+1,t>1或t<﹣3,g'(t)=﹣te t+1,当t<﹣3时,g'(t)>0,当t>1时,g'(t)<0,∴函数g(x)在(﹣∞,﹣3)上递增,在(1,+∞)上递减,又g(﹣3)=4e﹣2,g(1)=0,当t→﹣∞时,g(t)→0,当t→+∞时,g(t)→+∞,∴g(t)∈(﹣∞,0)∪(0,4e﹣2),即.二、选择题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南通市2013届高三第一次调研测试数学I参考答案与评分标准(考试时间:120分钟 满分:160分)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.已知全集U =R ,集合{}10A x x =+>,则U A =ð ▲ . 答案:(,1]-∞-.2.已知复数z =32i i -(i 是虚数单位),则复数z 所对应的点位于复平面的第 ▲ 象限.答案:三.3.已知正四棱锥的底面边长是6,高为7,这个正四棱锥的侧面积是 ▲ . 答案:48.4.定义在R 上的函数()f x ,对任意x ∈R 都有(2)()f x f x +=,当(2,0)x ∈- 时,()4x f x =, 则(2013)f = ▲ . 答案:14. 5.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”, 则p 是q 的 ▲ .(从“逆命题、否命题、逆否命题、否定”中选一个填空) 答案:否命题.6.已知双曲线22221yx a b-=的一个焦点与圆x 2+y 2-10x =0的圆心重合,且双曲线的离心率等于5,则该双曲线的标准方程为 ▲ .答案:221520y x -=. 7.若S n 为等差数列{a n }的前n 项和,S 9=-36,S 13=-104, 则a 5与a 7的等比中项为 ▲ . 答案:42±.8.已知实数x ∈[1,9],执行如右图所示的流程图, 则输出的x 不小于55的概率为 ▲ .答案:38.9.在△ABC 中,若AB =1,AC =3,||||AB AC BC +=,则||BA BC BC ⋅= ▲ .开始 结束Yn ←1输入x 输出xn ←n +1 x ←2x +1n ≤3 N(第8题)ABC DEF A 1B 1C 1(第15题)答案:12. 10.已知01a <<,若log (21)log (32)a a x y y x -+>-+,且x y <+λ,则λ的最大值为▲ . 答案:-2. 11.曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ . 答案:1e 2y x =-. 12.如图,点O 为作简谐振动的物体的平衡位置,取向右方向为正方向,若振幅为3cm ,周期为3s ,且物体向右运动到距平衡位置最远处时开始计时.则该物体5s 时刻的位移为 ▲ cm . 答案:-1.5.13.已知直线y =ax +3与圆22280x y x ++-=相交于A ,B 两点,点00(,)P x y 在直线y =2x 上,且PA =PB ,则0x 的取值范围为 ▲ . 答案:(1,0)(0,2)-.14.设P (x ,y )为函数21y x =-(3)x >图象上一动点,记353712x y x y m x y +-+-=+--,则当m 最小时,点 P 的坐标为 ▲ . 答案:(2,3).二、解答题:本大题共6小题,共计90分.请把答案写在答题卡相应的位置上.解答时应写出文字说明,证明过程或演算步骤. 15.(本题满分14分)如图,在正三棱柱ABC -A 1B 1C 1中,E 是侧面AA 1B 1B 对角线的交点,F 是侧面AA 1C 1C 对角线的交点,D 是棱BC 的中点.求证: (1)//EF 平面ABC ; (2)平面AEF ⊥平面A 1AD .解:(1)连结11A B AC 和.因为E F 、分别是侧面11AA B B 和侧面11AA C C 的对角线的交点, 所以E F 、分别是11A B AC 和的中点.所以//EF BC . ………………………………………………………3分 又BC ⊂平面ABC 中,EF Ø平面ABC 中,(第12题)OAEF A 1B 1C 1故//EF 平面ABC . ………………………………………………6分 (2)因为三棱柱111ABC A B C -为正三棱柱, 所以1A A ⊥平面ABC ,所以1BC A A ⊥.故由//EF BC ,得1EF A A ⊥. ………………………………………8分 又因为D 是棱BC 的中点,且ABC ∆为正三角形,所以BC AD ⊥. 故由//EF BC ,得EF AD ⊥. …………………………………………………………………10分而1A AAD A=,1,A A AD ⊂平面1A A D ,所以EF ⊥平面1A A D .…………………………………12分 又EF ⊂平面AEF ,故平面AEF ⊥平面1A A D.………………………………………………………14分16.(本题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A B C A B +=+.(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求22a b +的取值范围. 解:(1)因为sin sin tan cos cos A B C A B +=+,即sin sin sin cos cos cos C A B C A B+=+,所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-, 得sin()sin()C A B C -=-. ……………………………………………………………………………4分所以C A B C -=-,或()C A B C π-=--(不成立). 即2C A B =+, 得3C π=. …………………………………………………………………7分(2)由πππ,,,333C A B αα==+=-设2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, …………………………………………………………8分故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos 22332⎡⎤-++-=+⎢⎥⎣⎦ααα. ………………………………………11分ππ2π2π,2,3333αα<<<<由-知-1cos212α-<≤,故223342a b <+≤.……………………………14分17.(本题满分14分)某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,()ABCD AB AD >为长方形薄板,沿AC 折叠后,AB '交DC 于点P .当△ADP 的面积最大时最节能,凹多边形ACB PD '的面积最大时制冷效果最好.(1)设AB =x 米,用x 表示图中DP 的长度,并写出x 的取值范围; (2)若要求最节能,应怎样设计薄板的长和宽? (3)若要求制冷效果最好,应怎样设计薄板的长和宽?解:(1)由题意,AB x =,2BC x =-.因2x x >-,故12x <<. ……………………………2分设DP y =,则PC x y =-.因△ADP ≌△CB P ',故PA PC x y ==-. 由22PA A D D P =+,得 2221()(2)2(1)x y x yy x-=-+⇒=-,12x <<.……………………5分(2)记△ADP 的面积为1S ,则11(1)(2)S x x=-- ………………………………………………………………………………………6分23()222x x=-+≤-,当且仅当2x =∈(1,2)时,S 1取得最大值.…………………………………………………………8分故当薄板长为2米,宽为22-米时,节能效果最好. ………………………………………9分(3)记△ADP 的面积为2S ,则221114(2)(1)(2)3()22S x x x x x x=-+--=-+,ABCD(第17题)B 'P12x <<.……………………………………………10分于是,33222142(2)022x S x x x x-+'=--==⇒=.……………………………………………………11分关于x 的函数2S 在3(1,2)上递增,在3(2,2)上递减. 所以当32x =时,2S 取得最大值. ……………………………………………………13分故当薄板长为32米,宽为322-米时,制冷效果最好. ………………………………………14分18.(本题满分16分)已知数列{a n }中,a 2=1,前n 项和为S n ,且1()2n n n a a S -=. (1)求a 1;(2)证明数列{a n }为等差数列,并写出其通项公式; (3)设1lg 3n n na b +=,试问是否存在正整数p ,q (其中1<p <q ),使b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.解:(1)令n =1,则a 1=S 1=111()2a a -=0. ………………………………………………………………3分 (2)由1()2n n n a a S -=,即2n n naS =, ① 得 11(1)2n n n a S +++=. ② ②-①,得 1(1)n n n a na +-=. ③ 于是,21(1)n n na n a ++=+. ④ ③+④,得212n n n na na na +++=,即212n n n a a a +++=. ……………………………………………7分又a 1=0,a 2=1,a 2-a 1=1,所以,数列{a n }是以0为首项,1为公差的等差数列. 所以,a n =n-1. ………………………………………………………………………………………9分(3)假设存在正整数数组(p ,q ),使b 1,b p ,b q 成等比数列,则lg b 1,lg b p ,lg b q 成等差数列,于是,21333p q p q=+. …………………………………………………………………………………11分所以,213()33q p p q =-(☆). 易知(p,q )=(2,3)为方程(☆)的一组解. ……………………………………………………………13分当p ≥3,且p ∈N *时,112(1)224333p p p p p p +++--=<0,故数列{23pp}(p ≥3)为递减数列, 于是2133p p -≤323133⨯-<0,所以此时方程(☆)无正整数解. 综上,存在唯一正整数数对(p ,q )=(2,3),使b 1,b p ,b q 成等比数列. …………………………16分注 在得到③式后,两边相除并利用累乘法,得通项公式并由此说明其为等差数列的,亦相应评分.但在做除法过程中未对n ≥2的情形予以说明的,扣1分.19.(本题满分16分)已知左焦点为F (-1,0)的椭圆过点E (1,233).过点P (1,1)分别作斜率为k 1,k 2的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点. (1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求k 1;(3)若k 1+k 2=1,求证直线MN 恒过定点,并求出定点坐标. 解:依题设c =1,且右焦点F '(1,0).所以,2a =EF EF '+=222323(11)2333⎛⎫+++= ⎪⎝⎭,b 2=a 2-c 2=2,故所求的椭圆的标准方程为22132y x +=. …………………………………………………………4分 (2)设A (1x ,1y ),B (2x ,2y ),则2211132x y +=①,2222132x y +=②.②-①,得 21212121()()()()032x x x x y y y y -+-++=.所以,k 1=212121212()423()63P P y y x x xx x y y y -+=-=-=--+. ………………………………………………………9分(3)依题设,k 1≠k 2.设M (M x ,M y ),直线AB 的方程为y -1=k 1(x -1),即y =k 1x +(1-k 1),亦即y =k 1x +k 2,代入椭圆方程并化简得 2221122(23)6360k x k k x k +++-=. 于是,1221323M k k x k -=+,221223M k y k =+. ……………………………………………………………11分同理,1222323N k k x k -=+,122223N k y k =+. 当k 1k 2≠0时, 直线MN的斜率k =M N M N y y x x -=-222211212146()9()k k k k k k k k +++-+=21211069k k k k --.……………………………………13分 直线MN 的方程为2211222211121063()92323k k k k k y x k k k k ---=--++, 即 21211222221211110610632()992323k k k k k k k y x k k k k k k --=+⋅+--++, 亦即 2121106293k k y x k k -=--.此时直线过定点2(0,)3-. ………………………………………………………………………………15分当k 1k 2=0时,直线MN 即为y 轴,此时亦过点2(0,)3-.综上,直线MN恒过定点,且坐标为2(0,)3-. ……………………………………………………16分20.(本题满分16分)已知函数()(0ln x f x ax x x=->且x ≠1).(1)若函数()f x 在(1,)+∞上为减函数,求实数a 的最小值;(2)若212,[e,e ]x x ∃∈,使f (x 1)≤2()f x a '+成立,求实数a 的取值范围.解:(1)因f (x )在(1,)+∞上为减函数,故2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立. ………………2分所以当(1,)x ∈+∞时,max ()0f x '≤. 又()22ln 111()ln ln (ln )x f x a a x x x -'=-=-+-()2111ln 24a x =--+-, 故当11ln 2x =,即2e x =时,max 1()4f x a '=-.所以10,4a -≤于是14a ≥,故a 的最小值为14. ……………………………………………………6分 (2)命题“若212,[e,e ],x x ∃∈使()12()f x f x a '≤+成立”等价于 “当2[e,e ]x ∈时,有()min max ()f x f x a '≤+”. ……………………………………………………7分由(1),当2[e,e ]x ∈时,max 1()4f x a '=-,∴()max 14f x a '+=.问题等价于:“当2[e,e ]x ∈时,有min 1()4f x ≤”. ……………………………………………………8分01当14a ≥时,由(1),()f x 在2[e,e ]上为减函数,则min()f x =222e 1(e )e 24f a =-≤,故21124ea ≥-. ……………………………………………10分2当14a <时,由于()f x '()2111ln 24a x =--+-在2[e,e ]上为增函数, 故()f x '的值域为2[(e),(e )]f f '',即1[,]4a a --.(i )若0a -≥,即0a ≤,()0f x '≥在2[e,e ]恒成立,故()f x 在2[e,e ]上为增函数, 于是,min()f x =1(e)e e e>4f a =-≥,不合. …………………………………………………12分(ii )若0a -<,即104a <<,由()f x '的单调性和值域知,∃唯一20(e,e )x ∈,使0()0f x '=,且满足:当0(e,)x x ∈时,()0f x '<,()f x 为减函数;当20(,e )x x ∈时,()0f x '>,()f x 为增函数;所以,min ()f x =00001()ln 4x f x ax x =-≤,20(e,e )x ∈. 所以,2001111111ln 44e 244ln e a x x ≥->->-=,与104a <<矛盾,不合. ………………………15分综上,得21124ea ≥-. ………………………………………………………………………………16分AB EFDCO(第21A 题)南通市2013届高三第一次调研测试数学附加题参考答案与评分标准(考试时间:30分钟 满分:40分)21.【选做题】本题包括A ,B ,C ,D 共4小题,请从这4题中选做2小题,每小题10分,共20分.请在答题卡上准确填涂题目标记,解答时应写出文字说明、证明过程或演算步骤.A .选修4-1:几何证明选讲如图,△ABC 是⊙O 的内接三角形,若AD 是△ABC 的高,AE 是⊙O 的直径,F 是BC 的中点.求证:(1)AB AC AE AD ⋅=⋅; (2)FAE FAD ∠=∠.证明:(1)连BE ,则E C ∠=∠,又Rt ABE ADC ∠=∠=∠,所以△ABE ∽△ADC ,所以AB AE AD AC =.∴AB AC AE AD ⋅=⋅. ……………………………………………………………………………………5分(2)连OF ,∵F 是BC 的中点,∴BAF CAF ∠=∠. 由(1),得B A ∠=∠,∴FAE FAD ∠=∠. …………………………………………………10分B .选修4-2:矩阵与变换已知曲线2:2C y x = ,在矩阵M 1002⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线1C ,1C 在矩阵N 0110-⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线2C ,求曲线2C 的方程. 解:设A =NM ,则A 011002100210--⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, ………………………………………………………3分设()','P x y 是曲线C 上任一点,在两次变换下,在曲线2C 上的对应的点为(),P x y , 则02'10''x x y y y x --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 即2',',x y y x =-⎧⎨=⎩∴',1'.2x y y x =⎧⎪⎨=-⎪⎩ ……………………………7分 又点()','P x y 在曲线2:2C y x = 上,∴21()22x y-=,即218y x =.………………………………10分C .选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为2222cos 3sin 3+=ρθρθ,直线l 的参数方程为3,1x t y t ⎧=-⎪⎨=+⎪⎩(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解:曲线C的普通方程是2213x y +=. …………………………………………………………………2分 直线l 的普通方程是330x y +-=. ………………………………………………………………4分设点M 的直角坐标是(3cos ,sin )θθ,则点M 到直线l 的距离是3cos 3sin 32d +-=θθπ32sin()142θ+-=. …………………………………………………7分因为22sin()24-≤+≤πθ,所以当πsin()14θ+=-,即ππ2π(42k k θ+=-∈Z ),即3π2π(4k k θ=-∈Z )时,d 取得最大值.此时623cos ,sin 22=-=-θθ. 综上,点M 的极坐标为7π(2,)6时,该点到直线l 的距离最大. ………………………10分注 凡给出点M 的直角坐标为62(,)22--,不扣分.D .选修4-5:不等式选讲已知0,0,a b >>且21a b +=,求2224S ab a b =--的最大值. 解:0,0,21,a b a b >>+=∴2224(2)414a b a b ab ab +=+-=-, ………………………………………………………………2分且1222a b ab=+≥,即24ab ≤,18ab ≤, ……………………………………………………5分∴2224S ab a b =--2(14)ab ab =--241ab ab =+-212-≤,当且仅当11,42a b ==时,等号成立. …………………………………………………………………10分22.(本小题满分10分).解答时应写出文字说明、证明过程或演算步骤.如图,已知定点R (0,-3),动点P ,Q 分别在x 轴和y 轴上移动,延长PQ 至点M ,使12PQ QM =,且0PR PM ⋅=.(1)求动点M 的轨迹C 1;(2)圆C 2: 22(1)1x y +-=,过点(0,1)的直线l 依次交C 1于A ,D 两点(从左到右),交C 2于B ,C 两点(从左到右),求证:AB CD ⋅为定值.解:(1)法一:设M (x ,y ),P (x 1,0),Q (0,y 2),则由10,2PR PM PQ QM ⋅==及R (0,-3),得11122()(3)0,1,211.22x x x y x x y y y ⎧⎪--+-=⎪⎪-=⎨⎪⎪=-⎪⎩化简,得24x y =. ……………………………………………………………4分O RPxyQM(第22题)所以,动点M 的轨迹C 1是顶点在原点,开口向上的抛物线. ………………………………………5分法二:设M (x ,y ).由12PQ QM =,得 (,0),(0,)23xyP Q -. 所以,3(,3),(,)22x xPR PM y =-=.由0PR PM =,得 3(,3)(,)022x x y -⋅=,即23304x y -=.化简得 24x y =. …………………4分所以,动点M 的轨迹C 1是顶点在原点,开口向上的抛物线. ………………………………………5分(2)证明:由题意,得 A B C DA B C D ⋅=⋅,⊙C 2的圆心即为抛物线C 1的焦点F . 设11(,)A x y ,22(,)D x y ,则1111AB FA FB y y =-=+-=. ……………………………………7分同理 2C D y =.设直线l 的方程为 (1)x k y =-.由2(1),1,4x k y y x =-⎧⎪⎨=⎪⎩得221(1)4y k y =-,即2222(24)0k y k y k --+=. 所以,121AB CD AB CD y y ⋅=⋅==. (10)分23.(本小题满分10分).解答时应写出文字说明、证明过程或演算步骤.已知数列{a n }满足:1*1122,1()n a n a a a a n -+=-=+∈N . (1)若1a =-,求数列{a n }的通项公式;(2)若3a =,试证明:对*n ∀∈N ,a n 是4的倍数. 解:(1)当1a =-时,1114,(1)1n a n a a -+=-=-+.令1n n b a =-,则115,(1)n b n b b +=-=-. 因15b =-为奇数,n b 也是奇数且只能为1-, 所以,51,2n n b n -=⎧=⎨-≥⎩即4,1,0, 2.n n a n -=⎧=⎨≥⎩ ………………………………………………………3分(2)当3a =时,1114,31n a n a a -+==+. ………………………………………………………………4分下面利用数学归纳法来证明:a n 是4的倍数. 当1n =时,1441a ==⨯,命题成立;设当*()n k k =∈N 时,命题成立,则存在t ∈N *,使得4k a t =,1414(1)1313127(41)1k a t t k a ---+∴=+=+=⋅-+27(41)14(277)m m =⋅++=+,其中,4(1)14544434(1)4(1)4(1)44C 4(1)C 4C 4t t r r t rt t t t m --------=-⋅++-⋅+-⋅,m ∴∈Z ,∴当1n k =+时,命题成立.∴由数学归纳法原理知命题对*n ∀∈N 成立. …………………………………………………10分南通市2013届高三第一次调研测试数学Ⅰ讲评建议第1题 考查集合运算.注意集合的规范表示法,重视集合的交并补的运算.第2题 考查复数的基本概念及几何意义.对复数的概念宜适当疏理,防止出现知识盲点. 第3题 考查常见几何体的表面积与体积的计算.应熟练掌握常见几何体的表面积的计算,灵活应用等体积法计算点面距.第4题 本题考查一般函数的性质——周期性在解题中的应用.第5题 本题考查简易逻辑的知识.应注意四种命题及其关系,注意全称命题与特称性命题的转换.第6题 本题考查双曲线的标准方程、简单性质与圆的有关知识.对双曲线的讲评不宜过分引申.第7题 本题主要考查等差数列的基本概念及其简单运算.法一 用性质.S 9=9a 5= -36,S 13= 13a 7= -104,于是a 5= -4,a 7= -8,等比中项为42±.法二 用基本量.S 9=9a 1+36d = -36,S 13=13a 1+78d = -104,解得a 1=4,d = -2.下同法一.第8题 本题主要考查算法及几何概型等知识.法一 当输入x =1时,可输出x =15;当输入x =9时,可输出y =79.于是当输入x的取值范围为[1,9]时,输出x 的取值范围为[15,79],所求概率为7955379158-=-.法二 输出值为87x +.由题意:8755x +≥,故69x ≤≤. 第9题 本题主要考查向量与解三角形的有关知识.满足||||AB AC BC +=的A ,B ,C 构成直角三角形的三个顶点,且∠A 为直角,于是BA BC ⋅=2BA =1.第10题 本题主要考查对数与线性规划的基础知识及简单运算.讲评时应强调对数的真数应大于0.强调对数函数的单调性与底数a 之间的关系.第11题 本题主要考查基本初等函数的求导公式及其导数的几何意义. (1)()e (0)e x f f x f x ''=-+1(1)(1)e (0)1ef f f ''⇒=-+(0)1f ⇒=. 在方程2(1)1()e (0)e 2x f f x f x x '=-+中,令x =0,则得(1)e f '=. 讲评时应注意强调“在某点处的切线”与“过某点处的切线”的区别. 第12题 本题主要考查三角函数及其应用.考题取自教材的例题.教学中应关注课本,以及有关重要数学模型的应用,讲评时还要强调单位书写等问题.S (t )=103sin()32t ππ+,求S (5)= -1.5即可.第13题 本题主要考查直线与圆的有关知识. 圆心C (-1,0)到直线l :y =ax +3的距离为2|3|31a d a -=<+,解得a >0或a <34-.由PA =PB ,CA =CB ,得PC ⊥l ,于是1PC k a =-,进而可求出x 0的取值范围.第14题 考查灵活运用所学知识分析问题与解决问题的能力,考查运用基本不等式解决问题.讲评时应注意加强对学生运用整体法观察问题解决问题能力的培养.法一 2223631013x x x x m x x +-+-=+--2231613x x x x --=++--. 当且仅当223113x x x x --=--,即2x =时m 取得最小,此时点P 的坐标为(2,3). 法二 33213612x y x y m x y -+--+-=+--21612y x x y --=++--.当且仅当2112y x x y --=--时m 取得最小值.下略. 第15题 本题主要考查空间点线面的位置关系,考查逻辑推理能力以及空间想象能力.讲评时应注意强调规范化的表达.注意所用解题依据都应来自于课本的有关定义、公理、定理等.第16题 本题主要考查三角函数及解三角形的有关知识,涉及两角和与差的三角公式、正余弦定理等.讲评时,应适当渗透切化弦、化同名、边角互化、减少变量等策略,同时注意三角形内本身一些关系在解决问题时的应用,例如两边之和大于第三边,sin (A +B )=sinC ,面积公式及等积变换等.(2)法一:由πππ,,,333C A B αα==+=-设2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, 故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos 22332ααα⎡⎤-++-=+⎢⎥⎣⎦.ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤. 法二:由正弦定理得:32sin 2c R C ==. 由余弦定理得:2222cos c a b ab C =+-,故2234a b ab +=+.因为0,0a b >>,所以2234a b +>.又222a b ab +≤,故2222342a b a b +++≤,得2232a b +≤.因此,223342a b <+≤. 第17题 本题主要考查应用所学数学知识分析问题与解决问题的能力.试题以常见的图形为载体,再现对基本不等式、导数等的考查.讲评时,应注意强调解决应用问题的一般步骤与思维规律,教学中应帮助学生克服解决应用题时的畏惧心理,在学生独立解决应用问题的过程中不断增强他们的自信心.在使用基本不等式应注意验证取等号的条件,使用导数时应谨慎决断最值的取值情况.第18题 本题主要考查等差数列与等比数列的基础知识及基本运算,考查创新能力.两个基本数列属C 能要求,属高考必考之内容,属各级各类考试之重点.第(3)问中,若数列{a n }为等差数列,则数列{n a k }(k >0且k ≠1)为等比数列;反之若数列{a n }为等比数列,则数列{log a n a }(a >0且a ≠1)为等差数列.第(3)问中,如果将问题改为“是否存在正整数m ,p ,q (其中m <p <q ),使b m ,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(m ,p ,q );若不存在,说明理由.”那么,答案仍然只有唯一组解.此时,在解题时,只须添加当m ≥2时,说明方程组无解即可,其说明思路与原题的解题思路基本相同.对于第(2)问,在得到关系式:1(1)n n n a na +-=后,亦可将其变形为11n n a n a n +=-,并进而使用累乘法(迭乘法),先行得到数列{a n }的通项公式,最后使用等差数列的定义证明其为等差数列亦可.但需要说明n ≥2.考虑到这是全市的第一次大考,又是考生进入高三一轮复习将近完成后所进行的第一次大规模的检测,因而在评分标准的制定上,始终本着让学生多得分的原则,例如本题中的第(1)问4分,不设置任何的障碍,基本让学生能得分.第19题 本题主要考查直线与椭圆的基础知识,考查计算能力与独立分析问题与解决问题的能力.讲评本题时,要注意对学生耐挫能力的培养.第(2)问,亦可设所求直线方程为y -1=k 1(x -1),与椭圆方程联立,消去一个变量或x 或y ,然后利用根与系数的关系,求出中点坐标与k 1的关系,进而求出k 1的值.第(3)问,可有一般的情形:过定椭圆内的定点作两条斜率和为定值的动弦,则两动弦的中点所在直线过定值.此结论在抛物线中也成立.另外,也可以求过两中点所在直线的斜率的最值.近几年江苏高考解析几何大题的命题趋势:多考一点“算”,少考一点“想”. 第20题 本题主要考查函数与导数的知识,考查运用所学数学知识分析问题与解决问题的能力.第(2)可另解为:命题“若212,[e,e ],x x ∃∈使()12()f x f x a '+≤成立”等价于“21[e,e ]x ∃∈,使()1max ()f x f x a '+≤”.由(1),当2[e,e ]x ∈时,max 1()4f x a '=-,于是()max 14f x a '+=.故21[e,e ]x ∃∈,使11111()ln 4x f x ax x =-≤,即21[e,e ]x ∃∈,使1111ln 4a x x -≥.所以当2[e,e ]x ∈时,()min11ln 4a x x -≥.记211(),[e,e ]ln 4g x x x x =-∈,则222224(ln )11()(ln )44(ln )x x g x x x x x x -+-'=+=⋅.因2[e,e ]x ∈,故224[4e,4e ],(ln )[1,4]x x ∈∈,于是2()0,[e,e ]g x x '<∀∈恒成立. 所以,11()ln 4g x x x =-在2[e,e ]上为减函数,所以,min 2221111()2ln e 4e 4e g x =-=-.所以,21124ea -≥.。