山东省日照市2017年中考数学真题试题(含解析1)
山东日照数学(含答案) 2017年中考英语真题试卷
2017年山东省日照市中考数学试卷参考答案与试题解析一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【考点】15:绝对值.【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:﹣3的绝对值是3.故选:B.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是中心对称图形,也不是轴对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项错误;D、既是中心对称图形,也是轴对称图形,故本选项错误.故选A.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.【解答】解:4640万=4.64×107.故选:C.4.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】根据勾股定理求出BC,根据正弦的概念计算即可.【解答】解:在Rt△ABC中,由勾股定理得,BC==12,∴sinA==,故选:B.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°【考点】JA:平行线的性质.【分析】根据对顶角的性质和平行线的性质即可得到结论.【解答】解:∵∠AEF=∠1=60°,∵AB∥CD,∴∠2=∠AEF=60°,故选D.6.式子有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>2【考点】72:二次根式有意义的条件.【分析】直接利用二次根式的定义结合分式有意义的条件分析得出答案.【解答】解:式子有意义,则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选:C.7.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等【考点】MM:正多边形和圆;AA:根的判别式;D1:点的坐标;R2:旋转的性质.【分析】根据正多边形和圆的关系、一元二次方程根的判别式、点的坐标以及旋转变换的性质进行判断即可.【解答】解:如图∠AOB==60°,OA=OB,∴△AOB是等边三角形,∴AB=OA,∴圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;故选:A.8.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】根据反比例函数图象可以确定kb的符号,易得k、b的符号,根据图象与系数的关系作出正确选择.【解答】解:∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,A、图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;B、图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;C、图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;D、图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选:D.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B. C.5 D.【考点】MC:切线的性质.【分析】过点D作OD⊥AC于点D,由已知条件和圆的性质易求OD的长,再根据勾股定理即可求出AD的长,进而可求出AC的长.【解答】解:过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD=AO=2.5,∴AD==,∴AC=2AD=5,故选A.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据角平分线的性质得到∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,根据直角三角形的性质得到r=t,根据圆的面积公式即可得到结论.【解答】解:∵∠BAC=60°,AO是∠BAC的角平分线,∴∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上,故选D.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【考点】37:规律型:数字的变化类.【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【解答】解:∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=64,∵上边的数与左边的数的和正好等于右边的数,∴a=11+64=75,故选B.12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】①由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为2以及抛物线过原点,即可得出b=﹣4a、c=0,即4a+b+c=0,结论②正确;③根据抛物线的对称性结合当x=5时y >0,即可得出a﹣b+c>0,结论③错误;④将x=2代入二次函数解析式中结合4a+b+c=0,即可求出抛物线的顶点坐标,结论④正确;⑤观察函数图象可知,当x<2时,yy随x增大而减小,结论⑤错误.综上即可得出结论.【解答】解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b+c=0,结论②正确;③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当x<2时,yy随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选C.二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m=2m(m+2)(m﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是182.【考点】W1:算术平均数.【分析】根据平均数的计算公式用所有数据的和除以数据的个数即可计算出这组数据的平均数,从而得出答案.【解答】解:根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是÷5=182.故答案为182.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是6π.【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】证明△ABE是等边三角形,∠B=60°,根据扇形的面积公式计算即可.【解答】解:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=6,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,==6π,∴S扇形BAE故答案为:6π.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为1+.【考点】G6:反比例函数图象上点的坐标特征.【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=,OM=AN=,求出B(+,﹣),得出方程(+)•(﹣)=k,解方程即可.【解答】解:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM 交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,,∴△AOM≌△BAN(AAS),∴AM=BN=,OM=AN=,∴OD=+,OD=BD=﹣,∴B(+,﹣),∴双曲线y=(x>0)同时经过点A和B,∴(+)•(﹣)=k,整理得:k2﹣2k﹣4=0,解得:k=1±(负值舍去),∴k=1+;故答案为:1+.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:(1)﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2=﹣2﹣1+(1﹣)×4==;(2)﹣÷====,当a=时,原式=.18.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD为矩形.请加以证明.【考点】LC:矩形的判定;KD:全等三角形的判定与性质.【分析】(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.【解答】(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【考点】X6:列表法与树状图法.【分析】(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.【解答】解:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率==.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x 万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【解答】解:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得﹣=4解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥72.答:则至少每年平均增加72万平方米.21.阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为4;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b 相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S △ABP 的最大值和最小值.【考点】FI :一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可; (2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C 到直线3x +4y +5=0的距离,求出⊙C 上点P 到直线3x +4y +5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P 1(3,4)到直线3x +4y ﹣5=0的距离d==4,故答案为4.(2)∵⊙C 与直线y=﹣x +b 相切,⊙C 的半径为1, ∴C (2,1)到直线3x +4y ﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C (2,1)到直线3x +4y +5=0的距离d==3,∴⊙C 上点P 到直线3x +4y +5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.22.如图所示,在平面直角坐标系中,⊙C 经过坐标原点O ,且与x 轴,y 轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S (3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明△QAB理由.【考点】HF:二次函数综合题.【分析】(1)连接OC,由勾股定理可求得MN的长,则可求得OC的长,由垂径定理可求得OD的长,在Rt△OCD中,可求得CD的长,则可求得PD的长,可求得P点坐标;(2)可设抛物线的解析式为顶点式,再把N点坐标代入可求得抛物线解析式;=8S△QAB可求得点Q到x (3)由抛物线解析式可求得A、B的坐标,由S四边形OPMN轴的距离,且点Q只能在x轴的下方,则可求得Q点的坐标,再证明△QAB∽△OBN即可.【解答】解:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=MN=,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得CD===,∴PD=PC﹣CD=﹣=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,=S△OMP+S△OMN=OM•PD+OM•ON=×4×1+×4×3=8=8S△QAB,∴S四边形OPMN=1,∴S△QAB设Q点纵坐标为y,则×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).。
2017年山东省日照市中考数学试题及答案(word版)
2017年山东省日照市中考数学试卷、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分) 1. - 3的绝对值是( ) A - 3B 3C + 3D 丄. . .+.'2. 剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的 是( )A . 120°B . 30 °C . 40 °D . 60 °6.式子 有意义,a^2则实数a 的取值范围是( )A . a >- 1B . a z 2C . a 》—1 且 a z 2D . a > 27.下列说法正确的是()A .圆内接正六边形的边长与该圆的半径相等B .在平面直角坐标系中,不同的坐标可以表示同一点2C . 一元二次方程 ax+bx+c=0 (a z 0) 一定有实数根用科学记数法表示为( )5A . 4.64 X 10 6B . 4.64X 10C .4.64 X 107 D . 4.64 X 10 4.在 Rt △ ABC 中,/C=90° AB=13 ,AC=5,贝U sinA 的值为( )A 5r12C .512 A .B .12D .:3.铁路部门消息:2017年 端午节”小长假期间,全国铁路客流量达到 5 .如图,AB // CD ,直线I 交AB 于点E ,交CD 于点F ,若/仁60 °则/ 2等于4640万人次.4640万A .B . D .。
【精校】2017年山东省日照市中考真题数学
2017年山东省日照市中考真题数学一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.-3的绝对值是( )A.-3B.3C.±3D.1 3解析:当a是负有理数时,a的绝对值是它的相反数-a.-3的绝对值是3.答案:B.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )A.B.C.D.解析:A、既不是中心对称图形,也不是轴对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项错误;D、既是中心对称图形,也是轴对称图形,故本选项错误.答案:A3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为( )A.4.64×105B.4.64×106C.4.64×107D.4.64×108解析:4640万=4.64×107.答案:C4.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为( )A.5 13B. 13C.5 12D.12 5解析:在Rt△ABC中,由勾股定理得,,∴sinA=1213 BCAB=.答案:B5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于( )A.120°B.30°C.40°D.60°解析:∵∠AEF=∠1=60°,∵AB∥CD,∴∠2=∠AEF=60°.答案:D有意义,则实数a的取值范围是( )6.式子a-2A.a≥-1B.a≠2C.a≥-1且a≠2D.a>2a+1≥0,且a-2≠0,解得:a≥-1且a≠2.答案:C7.下列说法正确的是( )A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等解析:如图∠AOB=3606=60°,OA=OB,∴△AOB是等边三角形,∴AB=OA,∴圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误.答案:A.8.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是( )A.B.C.D.解析:∵y=kbx的图象经过第一、三象限,∴kb>0,∴k,b同号,A、图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;B、图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;C、图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;D、图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意.答案:D9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是( )C.5D.5 2解析:过点D作OD⊥AC于点D,∵AB 是⊙O 的直径,PA 切⊙O 于点A ,∴AB ⊥AP ,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC ,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD=12AO=2.5,∴2=,∴. 答案:A10.如图,∠BAC=60°,点O 从A 点出发,以2m/s 的速度沿∠BAC 的角平分线向右运动,在运动过程中,以O 为圆心的圆始终保持与∠BAC 的两边相切,设⊙O 的面积为S(cm2),则⊙O 的面积S 与圆心O 运动的时间t(s)的函数图象大致为( )A.B.C.D.解析:∵∠BAC=60°,AO是∠BAC的角平分线,∴∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上.答案:D11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )A.23B.75C.77D.139解析:∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=64,∵上边的数与左边的数的和正好等于右边的数,∴a=11+64=75.答案:B12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a-b+c <0;④抛物线的顶点坐标为(2,b);⑤当x <2时,y 随x 增大而增大.其中结论正确的是( )A.①②③B.③④⑤C.①②④D.①④⑤解析:①∵抛物线y=ax 2+bx+c(a ≠0)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,0),∴抛物线与x 轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax 2+bx+c(a ≠0)的对称轴为直线x=2,且抛物线过原点,∴-2b a=2,c=0,∴b=-4a ,c=0,∴4a+b+c=0,结论②正确;③∵当x=-1和x=5时,y 值相同,且均为正,∴a-b+c >0,结论③错误;④当x=2时,y=ax 2+bx+c=4a+2b+c=(4a+b+c)+b=b ,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当x <2时,yy 随x 增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.答案:C二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3-8m= .解析:2m3-8m=2m(m2-4)=2m(m+2)(m-2).答案:2m(m+2)(m-2)14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是 .解析:根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是(183+191+169+190+177)÷5=182.答案:18215.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是 .解析:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=6,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,∴S扇形BAE=2606360π⨯=6π.答案:6π16.如图,在平面直角坐标系中,经过点A的双曲线y=kx(x>0)同时经过点B,且点A在点B的左侧,点A,∠AOB=∠OBA=45°,则k的值为 .解析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,AOM BANAMO BNAOA BA∠=∠∠=∠⎧⎪⎪⎩=⎨,,,∴△AOM≌△BAN(AAS),∴,,∴∴,∴双曲线y=kx(x>0)同时经过点A和B,∴·-,整理得:k2-2k-4=0,解得:k=1负值舍去),∴答案:三、解答题17.(1)计算:)-(π-3.14)0+(1-cos30°)×(12)-2; (2)先化简,再求值:21111211a a a a a a ++-÷+-+-,其中. 解析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题.答案:π-3.14)0+(1-cos30°)×(12)-2=2114⎛-+ ⎭⨯⎝=214-+-; (2)21111211a a a a a a ++-÷+-+- =()2111111a a a a a +--⋅++- =1111a a -+- = ()()()1111a a a a --++- =221a --, 当时,原式=()2222211--==---. 18.如图,已知BA=AE=DC ,AD=EC ,CE ⊥AE ,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.解析:(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.答案:(1)在△DCA和△EAC中,DC EAAD CEAC CA=⎧⎪∠=⎨⎪=⎩,,,∴△DCA≌△EAC(SSS).(2)添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形.故答案为AD=BC(答案不唯一)19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.解析:(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.答案:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个. (2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=31 155=.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?解析:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式. 答案:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得36036041.6x x-=,解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米). 答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360 ,解得:a≥72.答:则至少每年平均增加72万平方米.21.阅读材料:在平面直角坐标系xOy 中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:例如:求点P0(0,0)到直线4x+3y-3=0的距离.解:由直线4x+3y-3=0知,A=4,B=3,C=-3,∴点P0(0,0)到直线4x+3y-3=0的距离为35=. 根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=3544x -+的距离为 ; 问题2:已知:⊙C 是以点C(2,1)为圆心,1为半径的圆,⊙C 与直线y=-34x+b 相切,求实数b 的值;问题3:如图,设点P 为问题2中⊙C 上的任意一点,点A ,B 为直线3x+4y+5=0上的两点,且AB=2,请求出S △ABP 的最大值和最小值.解析:(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C 到直线3x+4y+5=0的距离,求出⊙C 上点P 到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.答案:(1)点P1(3,4)到直线3x+4y-5=0的距离=4,(2)∵⊙C与直线y=-34x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y-b=0的距离d=1=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离=3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP的最大值=12×2×4=4,S△ABP的最小值=12×2×2=2.22.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB ∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.解析:(1)连接OC,由勾股定理可求得MN的长,则可求得OC的长,由垂径定理可求得OD 的长,在Rt△OCD中,可求得CD的长,则可求得PD的长,可求得P点坐标;(2)可设抛物线的解析式为顶点式,再把N点坐标代入可求得抛物线解析式;(3)由抛物线解析式可求得A、B的坐标,由S四边形OPMN=8S△QAB可求得点Q到x轴的距离,且点Q只能在x轴的下方,则可求得Q点的坐标,再证明△QAB∽△OBN即可.答案:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=1252 MN=,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得32 ==,∴PD=PC-CD=5322-=1,∴P(2,-1).(2)∵抛物线的顶点为P(2,-1),∴设抛物线的函数表达式为y=a(x-2)2-1,∵抛物线过N(0,3),∴3=a(0-2)2-1,解得a=1,∴抛物线的函数表达式为y=(x-2)2-1,即y=x2-4x+3;(3)在y=x2-4x+3中,令y=0可得0=x2-4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3-1=2,∵ON=3,OM=4,PD=1,∴S四边形OPMN=S△OMP+S△OMN=12OM·PD+12OM·ON=12×4×1+12×4×3=8=8S△QAB,∴S△QAB=1,设Q点纵坐标为y,则12×2×|y|=1,解得y=1或y=-1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=-1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,-1).考试考高分的小窍门1、提高课堂注意力2、记好课堂笔记3、做家庭作业4、消除焦虑、精中精力、5、不忙答题,先摸卷情、不要畏惧考试。
2017年山东省日照市中考数学试卷
2017年山东省日照市中考数学试卷一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.(3分)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.2.(3分)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.3.(3分)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次,4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×1084.(3分)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.5.(3分)如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°6.(3分)式子有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>27.(3分)下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等8.(3分)反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.9.(4分)如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O 于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5 D.10.(4分)如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.11.(4分)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.13912.(4分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤二、填空题(本大题共4小题,每小题4分,满分16分)13.(4分)分解因式:2m3﹣8m=.14.(4分)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.15.(4分)如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA 为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图分)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时A的横坐标为,∠AOB=∠OBA=45°,三、解答题17.(9分)(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.18.(9分)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.19.(10分)若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.20.(10分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.(12分)阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b 相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0的最大值和最小值.上的两点,且AB=2,请求出S△ABP22.(14分)如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S (3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说△QAB明理由.2017年山东省日照市中考数学试卷参考答案与试题解析一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.(3分)(2017•日照)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:﹣3的绝对值是3.故选:B.【点评】本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.2.(3分)(2017•日照)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是中心对称图形,也不是轴对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项错误;D、既是中心对称图形,也是轴对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•日照)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次,4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.【解答】解:4640万=4.64×107.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2017•日照)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【分析】根据勾股定理求出BC,根据正弦的概念计算即可.【解答】解:在Rt△ABC中,由勾股定理得,BC==12,∴sinA==,故选:B.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c的比叫做∠A的正弦是解题的关键.5.(3分)(2017•日照)如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°【分析】根据对顶角的性质和平行线的性质即可得到结论.【解答】解:∵∠AEF=∠1=60°,∵AB∥CD,∴∠2=∠AEF=60°,故选D.【点评】本题考查了平行线的性质,对顶角的性质,熟练掌握平行线的性质是解题的关键.6.(3分)(2017•日照)式子有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>2【分析】直接利用二次根式的定义结合分式有意义的条件分析得出答案.【解答】解:式子有意义,则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.7.(3分)(2017•日照)下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等【分析】根据正多边形和圆的关系、一元二次方程根的判别式、点的坐标以及旋转变换的性质进行判断即可.【解答】解:如图∠AOB==60°,OA=OB,∴△AOB是等边三角形,∴AB=OA,∴圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;故选:A.【点评】本题考查的是正多边形和圆、一元二次方程根的判别式、点的坐标以及旋转变换的性质,掌握相关的性质和判定是解题的关键.8.(3分)(2017•日照)反比例函数y=的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是()A.B. C.D.【分析】根据反比例函数图象可以确定kb的符号,易得k、b的符号,根据图象与系数的关系作出正确选择.【解答】解:∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,A、图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;B、图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;C、图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;D、图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选:D.【点评】此题主要考查了反比例函数以及一次函数的图象,正确得出k,b的符号是解题关键.9.(4分)(2017•日照)如图,AB是⊙O的直径,PA切⊙O于点A,连结PO 并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5 D.【分析】方法1、过点D作OD⊥AC于点D,由已知条件和圆的性质易求OD 的长,再根据勾股定理即可求出AD的长,进而可求出AC的长.方法2、先求出∠AOP=60°,进而求出∠ACP=∠P,即可得出AC=AP,求出AC 即可.【解答】解:方法1、过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD=AO=2.5,∴AD==,∴AC=2AD=5,故选A,方法2、如图,连接BC,∵AP是⊙O的切线,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠BOC=60°,∴∠ACP=∠BAC=∠BOC=30°=∠P,∴AP=AC,∵AB是⊙O直径,∴∠ACB=90°,在Rt△ABC中,∠BAC=30°,AB=10,∴AC=5,∴AP=5,故选A.【点评】本题考查了切线的性质、等腰三角形的性质以及勾股定理的运用,熟记切线的性质定理是解题的关键.10.(4分)(2017•日照)如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.【分析】根据角平分线的性质得到∠BAO=30°,设⊙O的半径为r,AB是⊙O 的切线,根据直角三角形的性质得到r=t,根据圆的面积公式即可得到结论.【解答】解:∵∠BAC=60°,AO是∠BAC的角平分线,∴∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上,故选D.【点评】此题考查动点问题的函数图象,求得函数解析式,利用函数的性质得出图象是解决问题的关键.11.(4分)(2017•日照)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【解答】解:∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=64,∵上边的数与左边的数的和正好等于右边的数,∴a=11+64=75,故选B.【点评】此题考查数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.12.(4分)(2017•日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【分析】①由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为2以及抛物线过原点,即可得出b=﹣4a、c=0,即4a+b+c=0,结论②正确;③根据抛物线的对称性结合当x=5时y >0,即可得出a﹣b+c>0,结论③错误;④将x=2代入二次函数解析式中结合4a+b+c=0,即可求出抛物线的顶点坐标,结论④正确;⑤观察函数图象可知,当x<2时,yy随x增大而减小,结论⑤错误.综上即可得出结论.【解答】解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b+c=0,结论②正确;③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当x<2时,y随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选C.【点评】本题考查了抛物线与x轴的交点、函数图象上点的坐标特征,逐一分析五条结论的正误是解题的关键.二、填空题(本大题共4小题,每小题13.(4分)(2017•日照)分解因式:2m【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(4分)(2017•日照)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是182.【分析】根据平均数的计算公式用所有数据的和除以数据的个数即可计算出这组数据的平均数,从而得出答案.【解答】解:根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是(183+191+169+190+177)÷5=182.故答案为182.【点评】此题考查了平均数,掌握平均数的计算公式是本题的关键,是一道基础题.15.(4分)(2017•日照)如图,四边形ABCD中,AB=CD,AD∥BC,以点B 为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是6π.【分析】证明△ABE是等边三角形,∠B=60°,根据扇形的面积公式计算即可.【解答】解:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=6,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,∴S==6π,扇形BAE故答案为:6π.【点评】本题考查了平行四边形的性质、等边三角形的判定和性质、扇形的面积公式,熟练掌握扇形的面积公式是本题的关键,扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=或S扇形=lR(其中l为扇形的弧长).16.(4分)(2017•日照)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为1+.【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=,OM=AN=,求出B(+,﹣),得出方程(+)•(﹣)=k,解方程即可.【解答】解:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,,∴△AOM≌△BAN(AAS),∴AM=BN=,OM=AN=,∴OD=+,OD=BD=﹣,∴B(+,﹣),∴双曲线y=(x>0)同时经过点A和B,∴(+)•(﹣)=k,整理得:k2﹣2k﹣4=0,解得:k=1±(负值舍去),∴k=1+;故答案为:1+.【点评】本题考查了坐标与图形性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识;本题综合性强,有一定难度.三、解答题17.(9分)(2017•日照)(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.【分析】(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:(1)﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2=﹣2﹣1+(1﹣)×4==;(2)﹣÷====,当a=时,原式=.【点评】本题考查分式的化简求值、去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂,解答本题的关键是明确它们各自的计算方法.18.(9分)(2017•日照)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD 为矩形.请加以证明.【分析】(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.【解答】(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).【点评】本题考查了矩形的判定、全等三角形的判定与性质、平行四边形的判定;熟练掌握矩形的判定,证明三角形全等是解决问题的关键.19.(10分)(2017•日照)若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【分析】(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.【解答】解:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(10分)(2017•日照)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【分析】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x 万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【解答】解:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得﹣=4,解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×3+2(54+a)≥360,解得:a≥45.答:则至少每年平均增加45万平方米.【点评】本题考查了分式方程的应用,一元一次不等式的应用.解分式方程时,一定要记得验根.21.(12分)(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣解:由直线4x+3y﹣3=0知,A=4,B=3∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+问题2:已知:⊙C是以点C(2,1)为圆心,x相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的两点,且AB=2,请求出S的最大值和最小值.△ABP【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1,解得b=或.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.【点评】本题考查一次函数综合题,点到直线的距离公式、直线与圆的位置关系等知识,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题,会求圆上的点到直线的距离的最大值以及最小值,属于中考压轴题.22.(14分)(2017•日照)如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C 且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S=8S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说△QAB明理由.【分析】(1)连接OC,由勾股定理可求得MN的长,则可求得OC的长,由垂径定理可求得OD的长,在Rt△OCD中,可求得CD的长,则可求得PD的长,可求得P点坐标;(2)可设抛物线的解析式为顶点式,再把N点坐标代入可求得抛物线解析式;=8S△QAB可求得点Q到(3)由抛物线解析式可求得A、B的坐标,由S四边形OPMNx轴的距离,且点Q只能在x轴的下方,则可求得Q点的坐标,再证明△QAB ∽△OBN即可.【解答】解:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=MN=,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得CD===,∴PD=PC﹣CD=﹣=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,=S△OMP+S△OMN=OM•PD+OM•ON=×4×1+×4×3=8=8S△QAB,∴S四边形OPMN=1,∴S△QAB设Q点纵坐标为y,则×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).【点评】本题为二次函数的综合应用,涉及勾股定理、垂径定理、待定系数法、相似三角形的性质和判定、二次函数的性质等知识.在(1)中利用垂径定理得到OD=2,从而求得CD的长是解题的关键,在(2)中注意设抛物线的顶点式更容易求解,在(3)中求得Q点的纵坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2017年山东省日照市中考数学试卷及答案
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前山东省日照市2017年初中学业水平考试数学 ...................................................................... 1 山东省日照市2017年初中学业水平考试数学答案解析 (5)山东省日照市2017年初中学业水平考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共12小题,其中1~8题每小题3分,9~12题每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的绝对值是( ) A .3-B .3C .3±D .132.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )ABCD3.铁路部门消息:2017年端午节小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为( ) A .54.6410⨯ B .64.6410⨯ C .74.6410⨯D .84.6410⨯4.在Rt ABC △中,90C =∠,13AB =,5AC =,则sin A 的值为( )A .513B .1213C .512D .1255.如图,AB CD ∥,直线l 交AB 于点E ,交CD 于点F ,若160=∠,则2∠等于( )A .120B .30C .40D .60 6.式子2a -有意义,则实数a 的取值范围是( )A .1a -≥B .2a ≠C .1a -≥且2a ≠D .2a > 7.下列说法正确的是( )A .圆内接正六边形的边长与该圆的半径相等B .在平面直角坐标系中,不同的坐标可以表示同一点C .一元二次方程2(0)0ax bx c a ++=≠一定有实数根D .将ABC △绕点A 按顺时针方向旋转60得ADE △,则ABC △与ADE △不全等8.反比例函数kby x=的图象如图所示,则一次函数()0y kx b k =+≠的图象大致是( )ABCD9.如图,AB 是O 的直径,PA 切O 于点A ,连接PO 并延长交O 于点C ,连接AC ,10AB =,30P =∠,则AC 的长度是( )A. B. C .5 D .52毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.如图,60BAC =∠,点O 从点A 出发,以2cm/s 的速度沿BAC ∠的角平分线向右运动.在运动过程中,以点O 为圆心的圆始终保持与BAC ∠的两边相切.设O 的面积为2()cm S ,则O 的面积S 与圆心O 运动的时间()s t 的函数图象大致为 ( )A BCD11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为( )A .23B .75C .77D .13912.已知抛物线2()0y ax bx c a =++≠的对称轴为直线2x =,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②40a b c ++=;③0a b c -+<;④抛物线的顶点坐标为(2,)b ;⑤当2x <时,y 随x 增大而增大.其中结论正确的是 ( ) A .①②③ B .③④⑤ C .①②④D .①④⑤第Ⅱ卷(非选择题 共80分)二、填空题(本大题共4小题,每小题4分,共16分) 13.分解因式:328m m -= .14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是 .15.如图,四边形ABCD 中,AB CD =,AD BC ∥,以点B 为圆心,BA 长为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,6AB =,则扇形(图中阴影部分)的面积是 .16.如图,在平面直角坐标系中,经过点A 的双曲线(0)ky x x=>同时经过点B ,且点A 在点B 的左侧,点A,45AOB OBA ==∠∠,则k 的值为 . 三、解答题(本大题共6小题,共64分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分9分)(1)计算:021(()(2π 3.141co )()2s30----⨯-+.(2)先化简,再求值:21111211a a a a a a ++-÷--+-,其中a18.(本小题满分9分)如图,已知BA AE DC ==,AD EC =,CE AE ⊥,垂足为点E . (1)求证:DCA EAC △≌△.(2)只需添加一个条件,即 ,可使四边形ABCD 为矩形.请加以证明.数学试卷 第5页(共20页) 数学试卷 第6页(共20页)19.(本小题满分10分)若n 是一个两位正整数,且n 的个位数字大于十位数字,则称n 为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次. (1)写出所有个位数字是5的“两位递增数”.(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.20.(本小题满分10分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问:实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.(本小题满分12分) 阅读材料:在平面直角坐标系xOy 中,点00(),P x y 到直线0Ax By C ++=的距离公式为d =.例如:求点0()0,0P 到直线4330x y +-=的距离. 解:由直线4330x y +-=知,4A =,3B =,3C =-,∴点0()0,0P 到直线4330x y +-=的距离为35d ==.根据以上材料,解决下列问题:(1)点1()3,4P 到直线3544y x =-+的距离为 ; (2)已知:C 是以点()2,1C 为圆心、1为半径的圆,C 与直线34y x b =-+相切,求实数b 的值;(3)如图,设点P 为(2)中C 上的任意一点,点,A B 为直线3450x y ++=上的两点,且2AB =,请求出ABP S △的最大值和最小值.22.(本小题满分14分)如图所示,在平面直角坐标系中,C 经过坐标原点O ,且与x 轴、y 轴分别相交于4,0,()()0,3M N 两点.已知抛物线开口向上,与C 交于,,N H P 三点,点P 为抛物线的顶点,抛物线的对称轴经过点C 且垂直x 轴于点D . (1)求线段CD 的长及顶点P 的坐标. (2)求抛物线的函数表达式.(3)设抛物线交x 轴于,A B 两点,在抛物线上是否存在点Q ,使得8QAB OPMN S S =四边形△,且QAB OBN ∽△△成立?若存在,请求出点Q 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2017年山东省日照市中考数学试卷(含答案)
2017年山东省日照市中考数学试卷一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C. D.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105 B.4.64×106 C.4.64×107 D.4.64×1084.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°6.式子有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>27.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等8.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B.C.D.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A. B. C.5 D.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.13912.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m=.14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD 是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.18.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.22.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C 且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN 成立?若存在,请求出Q点的坐标;若不存在,请说明理由.2017年山东省日照市中考数学试卷一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【答案】A.考点:中心对称图形;轴对称图形.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.即4640万=4.64×107.故选C.考点:科学记数法—表示较大的数.4.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【答案】B.试题分析:在Rt△ABC中,根据勾股定理求得BC=12,所以sinA=1213BCAB,故选B.考点:锐角三角函数的定义.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30° C.40° D.60°【答案】D.试题分析:由∠AEF=∠1=60°,AB∥CD,可得∠2=∠AEF=60°,故选D.考点:平行线的性质.6.式子12aa+-a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>2 【答案】C.试题分析:式子12aa+-a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选C.考点:二次根式有意义的条件.7.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等【答案】A.试题分析:如图,∠AOB=3606=60°,OA=OB,可得△AOB是等边三角形,所以AB=OA,即可得圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;故选A.考点:正多边形和圆;根的判别式;点的坐标;旋转的性质.8.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.【答案】D.试题分析:∵y=kbx的图象经过第一、三象限,∴kb>0,∴k,b同号,选项A图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;选项B图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;选项C图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;选项D图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选D.考点:反比例函数的图象;一次函数的图象.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A. B. C.5 D.【答案】A.试题分析:过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD= 12AO=2.5,∴AD=2253 2AO OD-= = ,∴AC=2AD=53,故选A.考点:切线的性质.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.【答案】D.考点:动点问题的函数图象.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【答案】B.试题分析:观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.考点:规律型:数字的变化类.12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【答案】C.考点:抛物线与x轴的交点;二次函数图象与系数的关系.学科网二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m= .【答案】2m(m+2)(m﹣2).试题分析:提公因式2m,再运用平方差公式对括号里的因式分解即可,即2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).考点:提公因式法与公式法的综合运用.14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.【答案】182.试题分析::根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是(183+191+169+190+177)÷5=182.考点:算术平均数.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD 是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.【答案】6π.考点:扇形面积的计算;平行四边形的性质.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.【答案】5试题分析:过A 作AM ⊥y 轴于M ,过B 作BD 选择x 轴于D ,直线BD 与AM 交于点N ,如图所示:则OD=MN ,DN=OM ,∠AMO=∠BNA=90°, ∴∠AOM+∠OAM=90°, ∵∠AOB=∠OBA=45°, ∴OA=BA ,∠OAB=90°, ∴∠OAM+∠BAN=90°, ∴∠AOM=∠BAN ,在△AOM 和△BAN 中,AOM BAN AMO BNA OA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BAN (AAS ),∴AM=BN=2,OM=AN=2k ,∴OD=2k +2,OD=BD=2k ﹣2,∴B (2k +2,2k﹣2),∴双曲线y=(x >0)同时经过点A 和B ,∴(2k +2)•(2k ﹣2)=k , 整理得:k 2﹣2k ﹣4=0, 解得:k=1±5(负值舍去), ∴k=1+5.考点:反比例函数图象上点的坐标特征.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2; (2)先化简,再求值:﹣÷,其中a=.【答案】(1)3+1;(2)原式= 221a --,当2=2-. 试题分析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题. 试题解析:(1)原式32﹣1+(13)×4 333; (2)原式=21111(1)1a a a a a ++-÷+-- =21111(1)1a a a a a +--⋅+-+ =1111a a -+- =1(1)(1)(1)a a a a --++-=221a --, 当2时,原式=22221(2)1=-=---. 考点:分式的化简求值;实数的运算.18.如图,已知BA=AE=DC ,AD=EC ,CE ⊥AE ,垂足为E . (1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即 ,可使四边形ABCD 为矩形.请加以证明.【答案】(1)详见解析;(2)AD=BC(答案不唯一).试题分析:(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.(2)添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;考点:矩形的判定;全等三角形的判定与性质.19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【答案】(1)15、25、35、45;(2)15.试题分析:(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.试题解析:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=31 155.考点:列表法与树状图法.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【答案】(1) 实际每年绿化面积为54万平方米;(2) 则至少每年平均增加72万平方米.试题分析:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a 万平方米.则由“完成新增绿化面积不超过2年”列出不等式.(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a ≥72.答:则至少每年平均增加72万平方米.考点:分式方程的应用;一元一次不等式的应用. 21.阅读材料:在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P 0(0,0)到直线4x+3y ﹣3=0的距离. 解:由直线4x+3y ﹣3=0知,A=4,B=3,C=﹣3, ∴点P 0(0,0)到直线4x+3y ﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P 1(3,4)到直线y=﹣x+的距离为 ;问题2:已知:⊙C 是以点C (2,1)为圆心,1为半径的圆,⊙C 与直线y=﹣x+b 相切,求实数b 的值; 问题3:如图,设点P 为问题2中⊙C 上的任意一点,点A ,B 为直线3x+4y+5=0上的两点,且AB=2,请求出S △ABP 的最大值和最小值.【答案】(1)4;(2)b=5或15;(3)最大值为4,最小值为2.试题分析:(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题;(3)求出圆心C 到直线3x+4y+5=0的距离,求出⊙C 上点P 到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题. 试题解析:(1)点P 1(3,4)到直线3x+4y ﹣5=0的距离223344534⨯+⨯-+;(2)∵⊙C 与直线y=﹣34x+b 相切,⊙C 的半径为1, ∴C (2,1)到直线3x+4y ﹣b=0的距离d=1, ∴226434b +-+=1,解得b=5或15.(3)点C (2,1)到直线3x+4y+5=0的距离d=2264534+++=3,∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2, ∴S △ABP 的最大值=12×2×4=4,S △ABP 的最小值=12×2×2=2. 考点:一次函数综合题.22.如图所示,在平面直角坐标系中,⊙C 经过坐标原点O ,且与x 轴,y 轴分别相交于M (4,0),N (0,3)两点.已知抛物线开口向上,与⊙C 交于N ,H ,P 三点,P 为抛物线的顶点,抛物线的对称轴经过点C 且垂直x 轴于点D .(1)求线段CD 的长及顶点P 的坐标; (2)求抛物线的函数表达式;(3)设抛物线交x 轴于A ,B 两点,在抛物线上是否存在点Q ,使得S 四边形OPMN =8S △QAB ,且△QAB ∽△OBN 成立?若存在,请求出Q 点的坐标;若不存在,请说明理由.【答案】(1) CD=32, P (2,﹣1);(2) y=x 2﹣4x+3;(3) 存在满足条件的点Q ,其坐标为(2,﹣1). 试题分析:(1)连接OC ,由勾股定理可求得MN 的长,则可求得OC 的长,由垂径定理可求得OD 的长,在Rt △OCD 中,可求得CD 的长,则可求得PD 的长,可求得P 点坐标;(2)可设抛物线的解析式为顶点式,再把N 点坐标代入可求得抛物线解析式;(3)由抛物线解析式可求得A 、B 的坐标,由S 四边形OPMN =8S △QAB 可求得点Q 到x 轴的距离,且点Q 只能在x 轴的下方,则可求得Q 点的坐标,再证明△QAB ∽△OBN 即可. 试题解析:(1)如图,连接OC ,∵M (4,0),N (0,3),∴OM=4,ON=3,∴MN=5,∴OC=12MN=52, ∵CD 为抛物线对称轴,∴OD=MD=2,在Rt △OCD 中,由勾股定理可得22225()22OC OD -=-=32, ∴PD=PC ﹣CD=52﹣32=1, ∴P (2,﹣1);(2)∵抛物线的顶点为P (2,﹣1),∴设抛物线的函数表达式为y=a (x ﹣2)2﹣1,∵抛物线过N (0,3),∴3=a (0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x ﹣2)2﹣1,即y=x 2﹣4x+3;(3)在y=x 2﹣4x+3中,令y=0可得0=x 2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,∴S四边形OPMN=S△OMP+S△OMN=12OM•PD+12OM•ON=12×4×1+12×4×3=8=8S△QAB,∴S△QAB=1,设Q点纵坐标为y,则12×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,学-科网综上可知存在满足条件的点Q,其坐标为(2,﹣1).考点:二次函数综合题.。
2017年山东省日照市中考数学试卷(含答案)(同名8277)
2017年山东省日照市中考数学试卷7.下列说法正确的是( )A.圆内接正六边形的边长与该圆的半径相等B .在平面直角坐标系中,不同的坐标可以表示同一点 C. 一元二次方程 ax 2+bx+c=0 (a z 0) 一定有实数根D. 将厶ABC 绕A 点按顺时针方向旋转 60°得厶ADE 则厶ABC 与△ ADE 不全等、选择题: (本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)-3的绝对值是( )1.A. -3B. 3C. 土 3D.剪纸是我国传统的民间艺术•下列剪纸作品既不是中心对称图形,也不是轴对称图形的是(W C O 越铁路部门消息: 2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为(56A. 4.64 X 10 B . 4.64 X 10 C.7 84.64 X 10 D. 4.64 X 10 4.在 Rt △ ABC 中,/ C=90°, AB=13, AC=5,贝 U si nA 的值为(A.5 13B.1213 D.12l 交AB 于点E ,交CD 于点F ,若/仁60°,则/ 2等于(40° D . 60°A. 有意义,则实数 a 的取值范围是(a 》—1 B . a 工 2 C . a 》—1 且 a z 2 D. a > 22. 3. B .6. 式子A . 120° B. 30° C .B .③④⑤C.①②④D.①④⑤10.如图,/ BAC=60,点O 从A 点出发,以2m/s 的速度沿/ BAC 的角平分线向右运动,在运动过程中, 以O 为圆心的圆始终保持与/ BAC 的两边相切,设O O 的面积为S (cm 2),则O O 的面积S 与圆心O 运动的12.已知抛物线y=ax 2+bx+c (0)的对称轴为直线 x=2,与x 轴的一个交点坐标为(4, 0),其部分图象 如图所示,下列结论:①抛物线过原点;②4a+b+c=0 :③a - b+c v 0;④抛物线的顶点坐标为(2, b );⑤当x v 2时,y 随x 增大而增大.其中结论正确的是()&反比例函数y 二丄的图象如图所示,则一次函数 y=kx+b (2 0)的图象的图象大致是()9.如图,AB 是O O 的直径,PA 切O 0于点A ,连结P0并延长交O O 于点C ,连结AC,AB=1Q / P=30°,则AC 的长度是( )113 4 113B . 75 C. 77 D. 139时间t (s )的函数图象大致为(11•观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为( )23.①②③二、填空题(本大题共 4小题,每小题4分,满分16分) 13.分解因式:2m - 8m=.14•为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路 口的汽车数量(单位:辆),结果如下:183 191 169 190 177 则在该时间段中,通过这个路口的汽车数量的平均数是.15.如图,四边形 ABCC 中,AB=CD AD// BC,以点B 为圆心,BA 为半径的圆弧与 BC 交于点E ,四边形AECD16.如图,在平面直角坐标系中,经过点 A 的双曲线y== (x >0)同时经过点 B ,且点A 在点B 的左侧,点A 的横坐标为应,/ A0B 2 OBA=45,贝U k 的值为 ___________ .1a+1.a+1 a+1a -2 a+1a-1 (2)先化简,再求值:,其中a=_ ■: 17. (1)计算:-(2- . l)-(n3.14 ) 0+ (1 - cos30 °)x( 土) -2.三、解答题18. 如图,已知BA=AE=DC AD=EC CE! AE,垂足为E.(1)求证:△ DCA^A EAC______ ,可使四边形ABCD为矩形•请加以证明.19. 若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13, 35, 56等)•在某次数学趣味活动中,每位参加者需从由数字1, 2, 3, 4, 5, 6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1) 写出所有个位数字是5的“两位递增数”;(2) 请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.20. 某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360 万平方米•自2013年初开始实施后,实际每年绿化面积是原计划的 1.6倍,这样可提前4年完成任务.(1 )问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21. 阅读材料:一| A X Q +By 口+E I在平面直角坐标系xOy中,点P (x o, y o)到直线Ax+By+C=0的距离公式为:d= .例如:求点P o (0, 0)到直线4x+3y - 3=0的距离.解:由直线4x+3y - 3=0 知,A=4, B=3, C=- 3,|4X 0+3X 0-3 | 3 •••点P0 (0, 0)到直线4x+3y - 3=0的距离为d= l .根据以上材料,解决下列问题:3 5问题1:点P1 (3, 4)到直线y=-二x+二的距离为____________ ;3问题2:已知:O C是以点C (2, 1 )为圆心,1为半径的圆,O C与直线y=-二x+b相切,求实数b的值;问题3:如图,设点P为问题2中O C上的任意一点,点A, B为直线3x+4y+5=0上的两点,且AB=2,请求22. 如图所示,在平面直角坐标系中,O C经过坐标原点0,且与x轴,y轴分别相交于M( 4, 0), N( 0,3)两点.已知抛物线开口向上,与O C交于N, H, P三点,P为抛物线的顶点,抛物线的对称轴经过点C 且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A, B两点,在抛物线上是否存在点Q使得S四边形OPM=8S^QAB,且厶QAB^A OBN成立? 若存在,请求出Q点的坐标;若不存在,请说明理由.2017年山东省日照市中考数学试卷参考答案、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.- 3的绝对值是()A.- 3B. 3C. ± 3D. \【考点】15:绝对值.【分析】当a是负有理数时,a的绝对值是它的相反数- a【解答】解::-3的绝对值是3.故选:B.2 •剪纸是我国传统的民间艺术•下列剪纸作品既不是中心对称图形,也不是轴对称图形的是(【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是中心对称图形,也不是轴对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C既是中心对称图形,也是轴对称图形,故本选项错误;D既是中心对称图形,也是轴对称图形,故本选项错误•故选A.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到数法表示为()A. 4.64 X 105B. 4.64 X 106C. 4.64 X 107D. 4.64 X 1084640万人次.4640万用科学记【考点】1I :科学记数法一表示较大的数.【分析】科学记数法的表示形式为a x 10n的形式,其中1 w|a| v 10, n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8 -仁7.【解答】解:4640万=4.64 X 107.故选:C.4 .在Rt △ ABC 中,/ C=90°, AB=13, AC=5,贝U si nA 的值为()5B- H 5 12C 1 D13【考点】T1 :锐角三角函数的定义.【分析】根据勾股定理求出BC,根据正弦的概念计算即可.【解答】解:•••/ AEF=/ 1=60°,T AB// CD /-Z 2=Z AEF=60,故选 D. 6.式子•f'1有意义,则实数a 的取值范围是()a'2A. a >- 1 B . a 丰2 C . a >- 1 且 2D. a >2【考点】72:二次根式有意义的条件.【分析】直接利用二次根式的定义结合分式有意义的条件分析得出答案.【解答】 解:式子'■' !有意义,则a+1> 0,且a -2工0,解得:a >- 1且a ^ 2.故选:C.a-2 ,7 .下列说法正确的是( )A. 圆内接正六边形的边长与该圆的半径相等B. 在平面直角坐标系中,不同的坐标可以表示同一点C. 一元二次方程 ax 2+bx+c=0 (0) 一定有实数根0将厶ABC 绕A 点按顺时针方向旋转 60°得厶ADE 则厶ABC 与△ ADE 不全等 【考点】MM 正多边形和圆;AA 根的判别式;D1:点的坐标;R2:旋转的性质.【分析】根据正多边形和圆的关系、一元二次方程根的判别式、点的坐标以及旋转变换的性质判断即可. 【解答】 解:如图/ AOB —=60°, OA=OB 「.A AOB 是等边三角形,/• AB=OA 「・圆内接正六边形的边| 6长与该圆的半径相等, A 正确;在平面直角坐标系中,不同的坐标可以表示不同一点, B 错误;一元二次方程ax 2+bx+c=0 (0)不一定有实数根,C 错误;根据旋转变换的性质可知,将△ ABC 绕A 点按顺时针方向 旋转60°得厶ADE 则厶ABC 与△ ADE 全等,D 错误;故选:A .BC.12 AB 13/• si nA= ,故选:B. 根据对顶角的性质和平行线的性质即可得到结论.【分析】O,则/ 2等于( )【解答】解:在Rt △ ABC 中,由勾股定理得,BC=’=12,图象经过y 轴负半轴,则b v 0,此时,k ,b 异号,故此选项不合题意;O 于点 C,连结 AC AB=10,Z P=30°,【分析】过点D 作OD L AC 于点D,由已知条件和圆的性质易求 OD 的长,再根据勾股定理即可求出 AD 的长, 进而可求出AC 的长.【解答】 解:过点 D 作ODL AC 于点D,v AB 是O O 的直径,PA 切O O 于点A : AB 丄AP, BAP=90 ,•••/ P=30°, AOP=60 ,AOC=120 , •/ OA=OCOAD=30 , •/ AB=10, • OA=5 •择.【解答】 解:T y=的图象经过第一、三象限, kb > 0, ••• k , b 同号,图象过二、 四象限,则 k v 0, 图象经过y 轴正半轴,则b >0,此时,k , b 异号,故此选项不合题意;B 、 图象过二、 四象限,则 k v 0, 图象经过原点,则 b=0,此时,k , b 不同号,故此选项不合题意; 此时,k , b 同号,故此选项符合题意;D.-AO=2.5,b 的符号,根据图象与系数的关系作出正确选【分析】 根据反比例函数图象可以确定 kb 的符号,易得k 、图象过一、三象限,则C k > 0,A.卯B.皿 C . 5质得到r=t ,根据圆的面积公式即可得到结论.【解答】 解:•••/ BAC=60 , AO 是/ BAC 的角平分线,二/ BA0=30 ,设O 0的半径为r , AB 是O 0的切线,T AO=2t ,「. r=t ,二S=n t 2,「. S 是圆心0运动的时间t 的二次函数,Vn> 0,.・.抛物线的开口向上,故选D.【考点】37:规律型:数字的变化类.【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为 21,22, 23,…26,由此可得a , b .【解答】解:•上边的数为连续的奇数1, 3, 5, 7, 9, 11,左边的数为21, 22, 23,…,••• b=26=64,•••上边的数与左边的数的和正好等于右边的数,••• a=11+64=75,故选B.BAC 的角平分线向右运动, 在运动过程中,BAC 的两边相切,设O 0的面积为S (cm?),则O 0的面积S 与圆心0运动的【分析】根据角平分线的性质得到/BA0=30,设O 0的半径为 r , AB 是O 0的切线,根据直角三角形的性10 .如图,/ BAC=60,点0从A 点出发, 以2m/s 的速度沿/ 以0为圆心的圆始终保持与/【考点】E7:动点问题的函数图象.12 .已知抛物线y=ax2+bx+c (a丰0)的对称轴为直线x=2,与x轴的一个交点坐标为(4, 0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0 :③a - b+c v 0;④抛物线的顶点坐标为(2, b);⑤当x v 2时,y随x增大而增大.其中结论正确的是()D.①④⑤【考点】HA抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】①由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为2以及抛物线过原点,即可得出b=- 4a、c=0,即4a+b+c=0,结论②正确;③根据抛物线的对称性结合当x=5时y >0,即可得出a- b+c>0,结论③错误;④将x=2代入二次函数解析式中结合4a+b+c=0,即可求出抛物线的顶点坐标,结论④正确;⑤观察函数图象可知,当xv 2时,yy随x增大而减小,结论⑤错误.综上即可得出结论.【解答】解:①•••抛物线y=ax2+bx+c (a* 0)的对称轴为直线x=2,与x轴的一个交点坐标为(4, 0), •••抛物线与x轴的另一交点坐标为(0, 0),结论①正确;②T抛物线y=ax2+bx+c (a丰0)的对称轴为直线x=2,且抛物线过原点,•- y— =2, c=0,• b= - 4a, c=0 ,• 4a+b+c=0,结论②正确;③•••当x=- 1和x=5时,y值相同,且均为正,• a - b+c> 0,结论③错误;④当x=2时,y=ax2+bx+c=4a+2b+c= (4a+b+c)+b=b,「.抛物线的顶点坐标为(2, b),结论④正确;⑤观察函数图象可知:当xv 2时,yy随x增大而减小,结论⑤错误•综上所述,正确的结论有:①②④.故选C.二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3- 8m= 2m (m+2)( m- 2).【考点】55:提公因式法与公式法的综合运用.【分析】提公因式2m再运用平方差公式对括号里的因式分解.【解答】解:20?- 8m=2m( m - 4)=2m (m+2 (m- 2).故答案为:2m (m+2)(m- 2).14•为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是182•【考点】W1算术平均数.【分析】根据平均数的计算公式用所有数据的和除以数据的个数即可计算出这组数据的平均数,从而得出答案.【解答】解:根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是十5=182 •故答案为182.15 .如图,四边形ABCD中,AB=CD AD// BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是6n .【考点】MO扇形面积的计算;L5 :平行四边形的性质.【分析】证明△ ABE是等边三角形,/ B=60°,根据扇形的面积公式计算即可.【解答】解:I四边形AECD是平行四边形,••• AE=CD v AB=BE=CD=,6 ••• AB=BE=AE:A ABE是等边三角形,•/ B=60°,「. S扇形BA='' ' =6n,故答案为:6 n.36016 .如图,在平面直角坐标系中,经过点A的双曲线y—(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为AOB2 OBA=45,贝U k的值为1+徒.【考点】G6:反比例函数图象上点的坐标特征.【分析】过A作AML y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MNDN=OM/ AMO=/ BNA=90,由等腰三角形的判定与性质得出OA=BA/ OAB=90,证出/ AOM M BAN由AAS证明△ AOM=k,解方程即可.务-亜),得出方程(金^2)?(令-逅)BAN 得出AM=BN应,OM=A【解答】 解:过A 作AML y 轴于M ,过B 作BD 选择x 轴于D,直线BD 与AM 交于点N 如图所示:贝U OD=MNDN=O ,Z AMO Z BNA=90 , AOM Z OAM=90 , vZ AOB Z OBA=45 , • OA=BA ZOAB=90 , r ZAOM=ZBAM*ZAMO=ZBIIA、0A=BA解得:k=1 土 _二(负值舍去),•/ k=1+_ 7故答案为:1+ r.【考点】6D:分式的化简求值;2C :实数的运算;6E :零指数幕;6F:负整数指数幕;T5:特殊角的三角 函数值.【分析】(1)根据去括号得法则、零指数幕、特殊角的三角函数值、负整数指数幕可以解答本题; (2)根据分式的除法和减法可以化简题目中的式子,然后将18 .如图,已知 BA=AE=DC AD=EC CE! AE, (1) 求证:△ DCA^A EAC(2) 只需添加一个条件,即 AD=BC (答案不唯一),可使四边形 ABCD 为矩形.请加以证明.1 a+1 a+1 a+1a £-2a+la-1 ,其中a=「.(2)先化简,再求值:-2 亠2 n(V?)241_2-l~ 2当a=.-时,原式•••/ OAM £ BAN=90 , /-Z AOMI N BAN 在^ AOM ^A BAN 中, ,AOI WA BAN(AAS ,• AM=BN= ", OM=A N = ,•OD 「…,OD =B -五),17. (1)计算:-(2- . ;)-(n3.14 ) 0+ (1 - cos30 °)X(寺)-2;a 的值代入即可解答本题.【解答】解:(1)-( 2- . :)-(n 3.14 ) + (1 - cos30 °)X(^)-2=「;-2- 1+ (1-)X 4=y :J-L 忙;侶:(2) La+1a+1 a '2a+la+1 1a+1 a-1 I 11 a _l - (a+1) - & a-1 _a+l (a-1 )2_a41a^l (a+1) Ca-1) a 2-l垂足为E.•双曲线(x >0)同时经过点A 和B ,/(〔+.:,〔-'■) =k ,整理得:k 2 - 2k - 4=0,【考点】LC:矩形的判定;KD 全等三角形的判定与性质. 【分析】(1)由SSS 证明厶DCA^A EAC 即可;(2)先证明四边形 ABCD 是平行四边形,再由全等三角形的性质得出/D=90°,即可得出结论.roc=ES【解答】(1)证明:在厶EAC 中,』二CE ,二△ DCA^A EAC( SSS ;:AC=CA(2)解:添加 AD=BC 可使四边形 ABCD 为矩形;理由如下:••• AB=DC AD=BC 「・四边形 ABCD 是平行四边形,丁 CE! AE,「./ E=90°,由(1)得:△ DCA^A EAC •••/ D=Z E=90°,「.四边形 ABCD 为矩形;故答案为: AD=BC(答案不唯一). 19 •若n 是一个两位正整数,且 n 的个位数字大于十位数字,则称 n 为“两位递增数”(如13, 35, 56等).在某次数学趣味活动中,每位参加者需从由数字 1, 2, 3, 4, 5, 6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1) 写出所有个位数字是 5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被 10整除的概率.【考点】X6:列表法与树状图法.【分析】(1)根据“两位递增数”定义可得; ,找到个位数字与十位数字之积能被 10整除的结果数,根据概率公式求解可得.(2)画树状图列出所有“两位递增数”根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;【解答】解:(1)(2)画树状图为:d共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率20 .某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360 万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的 1.6倍,这样可提前4年完成任务.(1 )问实际每年绿化面积多少万平方米? (2)为加大创城力度,市政府决定从 2016年起加快绿化速度,要求不超过 2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【考点】B7:分式方程的应用; C9: 一元一次不等式的应用.(2)设平均每年绿化面积增加 a 万平方米•则由“完成新增绿化面积不超过 【解答】解:(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意, 得产丄=4解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6 X 33.75=54 (万平方x 1. 6x米). 答:实际每年绿化面积为 54万平方米;(2)设平均每年绿化面积增加 a 万平方米,根据题意得54X 2+2 ( 54+a )> 360解得:a > 72.答:则至少每年平均增加72万平方米.|Ax 0+By 0+C|21 .阅读材料:在平面直角坐标系 xOy 中,点P(x o,y o)到直线Ax+By+C=0的距离公式为:d=例如:求点P o (0, 0)到直线4x+3y - 3=0的距离. 解:由直线 4x+3y - 3=0 知,A=4, B=3, C=- 3,•••点P 0 (0, 0)到直线4x+3y - 3=0的距离为d=根据以上材料,解决下列问题:3 5问题1:点P 1 (3, 4)到直线y=-二x+二的距离为4 ;3问题2:已知:O C 是以点C (2, 1 )为圆心,1为半径的圆,O C 与直线y=-二x+b 相切,求实数b 的值; 问题3:如图,设点P 为问题2中O C 上的任意一点,点 A, B 为直线3x+4y+5=0上的两点,且 AB=2,请求【分析】(1)设原计划每年绿化面积为 x 万平方米,则实际每年绿化面积为 1.6x 万平方米.根据"实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;2年”列出不等式.【考点】FI :一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出O C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.f3X 3+4X 4-5 ||【解答】解:(1)点P i (3, 4)到直线3x+4y - 5=0的距离d= . =4,故答案为4.凶[6+4-b|(2) vO C与直线y= -4x+b相切,O C的半径为1,/• (2,1)到直线3x+4y - b=0的距离d=1,二==孑=1,4 +解得b=5或15 .I 孙4+5|(3)点C(2, 1)到直线3x+4y+5=0的距离d= •=3,「.O C 上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,二S MBP的最大值占X 2 X 4=4, S MBP的最小值吕X 2 X 2=2.2 222 .如图所示,在平面直角坐标系中,O C经过坐标原点O,且与x轴,y轴分别相交于M( 4, 0) , N( 0, 3)两点.已知抛物线开口向上,与O C交于N, H, P三点,P为抛物线的顶点,抛物线的对称轴经过点C 且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A, B两点,在抛物线上是否存在点Q使得S四边形OPMN8S^QAB,且厶QAB^A OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)连接OC由勾股定理可求得MN的长,则可求得OC的长,由垂径定理可求得OD勺长,在Rt △ OCD中,可求得CD的长,则可求得PD的长,可求得P点坐标;(2 )可设抛物线的解析式为顶点式,再把N点坐标代入可求得抛物线解析式;(3)由抛物线解析式可求得 A B 的坐标,由S 四边形°PM =8S M AB 可求得点Q 到x 轴的距离,且点 Q 只能在x 轴的下方,则可求得 Q 点的坐标,再证明厶 QAB^A OBN 即可. 【解答】解:(1)如图,连接 0C •/ M( 4, 0) , N( 0, 3), ••• OM=4 ON=3 二 MN=5 /• OC^MN=-, •/ CD 为抛物线对2 2(2 )v 抛物线的顶点为 P( 2,- 1), •设抛物线的函数表达式为y=a (x - 2) 2 - 1,v 抛物线过N( 0,3),• 3=a (0 - 2) 2 - 1,解得 a=1,「.抛物线的函数表达式为 y= ( x - 2) 2 - 1,即 y=x 2 - 4x+3;(3) 在 y=x 2 - 4x+3 中,令 y=0 可得 0=x 2 - 4x+3,解得 x=1 或 x=3,「. A (1, 0) , B (3, 0) ,• AB=3-仁2,设Q 点纵坐标为y ,则2"X 2X |y|=1,解得y=1或y= - 1,当y=1时,则A QAB 为钝角三角形,而△ OBN 为直角三角形,不合题意,舍去,当y= - 1时,可知P 点即为所求的 Q 点,••• D 为AB 的中点,• AD=BD=QD 「.A QAB 为等腰直角三角形, •/ ON=OB=3OBN 为等腰直角三角形,•••△ QAB^A OBN综上可知存在满足条件的点 Q,其坐标为(2,- 1).•/ ON=3, OM=4 PD=1,•- S 四边形 OPM =S A OM +S A OM 丄 OM?PD*OM?ON 寺X 4 X 3=8=8S AQAB ,…S A QAB =1 ,。
【数学】2017年山东省日照市数学中考真题(解析版)
2017年山东省日照市中考真题一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×1084.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120° B.30°C.40°D.60°6.式子有意义,则实数a的取值范围是()a-2A.a≥﹣1 B.a≠2C.a≥﹣1且a≠2D.a>27.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程a2+b+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等8.反比例函数y=kbx的图象如图所示,则一次函数y=+b(≠0)的图象的图象大致是()A.B. C.D.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5 D.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.13912.已知抛物线y=a2+b+c(a≠0)的对称轴为直线=2,与轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当<2时,y随增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m=.14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC 交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.16.如图,在平面直角坐标系中,经过点A的双曲线y=(>0)同时经过点B,且点A 在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则的值为.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.18.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.阅读材料:在平面直角坐标系Oy中,点P(0,y0)到直线A+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4+3y﹣3=0的距离.22.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.参考答案一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.2.【答案】A.考点:中心对称图形;轴对称图形.3.【答案】C.试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.即4640万=4.64×107.故选C. 考点:科学记数法—表示较大的数.4.【答案】B.试题分析:在Rt△ABC中,根据勾股定理求得BC=12,所以sinA=1213BCAB=,故选B.考点:锐角三角函数的定义.5.【答案】D.试题分析:由∠AEF=∠1=60°,AB∥CD,可得∠2=∠AEF=60°,故选D.考点:平行线的性质.6.【答案】C.a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选C. 考点:二次根式有意义的条件.7.【答案】A.试题分析:如图,∠AOB=3606=60°,OA=OB,可得△AOB是等边三角形,所以AB=OA,即可得圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程a2+b+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;故选A.考点:正多边形和圆;根的判别式;点的坐标;旋转的性质.8.【答案】D.试题分析:∵y=kbx的图象经过第一、三象限,∴b>0,∴,b同号,选项A图象过二、四象限,则<0,图象经过y轴正半轴,则b>0,此时,,b异号,故此选项不合题意;选项B 图象过二、四象限,则<0,图象经过原点,则b=0,此时,,b不同号,故此选项不合题意;选项C图象过一、三象限,则>0,图象经过y轴负半轴,则b<0,此时,,b异号,故此选项不合题意;选项D图象过一、三象限,则>0,图象经过y轴正半轴,则b>0,此时,,b同号,故此选项符合题意;故选D.考点:反比例函数的图象;一次函数的图象.9.【答案】A.试题分析:过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD= 12AO=2.5,∴2=,∴故选A.考点:切线的性质.10.【答案】D.考点:动点问题的函数图象.11.【答案】B.试题分析:观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.考点:规律型:数字的变化类.12.【答案】C.考点:抛物线与轴的交点;二次函数图象与系数的关系.二、填空题(本大题共4小题,每小题4分,满分16分)13.【答案】2m(m+2)(m﹣2).试题分析:提公因式2m,再运用平方差公式对括号里的因式分解即可,即2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).考点:提公因式法与公式法的综合运用.14.【答案】182.试题分析::根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是(183+191+169+190+177)÷5=182.考点:算术平均数.15.【答案】6π.考点:扇形面积的计算;平行四边形的性质.16.【答案】试题分析:过A作AM⊥y轴于M,过B作BD选择轴于D,直线BD与AM交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,AOM BANAMO BNA OA BA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM≌△BAN(AAS),∴,,∴,,∴B),∴双曲线y=(>0)同时经过点A和B,)•)=,整理得:2﹣2﹣4=0,解得:,∴考点:反比例函数图象上点的坐标特征.三、解答题17.【答案】(1)+1;(2)原式= 221a --,当时,原式=2-. 试题分析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题.试题解析:(1)原式﹣2﹣1+(1)×4;(2)原式=21111(1)1a a a a a ++-÷+-- =21111(1)1a a a a a +--⋅+-+ =1111a a -+- =1(1)(1)(1)a a a a --++-=221a --,当=2221=-=--. 考点:分式的化简求值;实数的运算.18.【答案】(1)详见解析;(2)AD=BC (答案不唯一).试题分析:(1)由SSS 证明△DCA ≌△EAC 即可;(2)先证明四边形ABCD 是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.(2)添加AD=BC ,可使四边形ABCD 为矩形;理由如下:∵AB=DC ,AD=BC ,∴四边形ABCD 是平行四边形,∵CE ⊥AE ,∴∠E=90°,由(1)得:△DCA ≌△EAC ,∴∠D=∠E=90°,∴四边形ABCD 为矩形;考点:矩形的判定;全等三角形的判定与性质.19.【答案】(1)15、25、35、45;(2)15. 试题分析:(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.试题解析:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=31 155.考点:列表法与树状图法.20.【答案】(1) 实际每年绿化面积为54万平方米;(2) 则至少每年平均增加72万平方米.试题分析:(1)设原计划每年绿化面积为万平方米,则实际每年绿化面积为1.6万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥72.答:则至少每年平均增加72万平方米.考点:分式方程的应用;一元一次不等式的应用.21.【答案】(1)4;(2)b=5或15;(3)最大值为4,最小值为2.试题分析:(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题;(3)求出圆心C到直线3+4y+5=0的距离,求出⊙C上点P到直线3+4y+5=0的距离的最大值以及最小值即可解决问题.试题解析:(1)点P1(3,4)到直线3+4y﹣5=0的距离;(2)∵⊙C与直线y=﹣34+b相切,⊙C的半径为1,∴C(2,1)到直线3+4y﹣b=0的距离d=1,=1,解得b=5或15.(3)点C(2,1)到直线3+4y+5=0的距离=3,∴⊙C上点P到直线3+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP的最大值=12×2×4=4,S△ABP的最小值=12×2×2=2.考点:一次函数综合题.22.【答案】(1) CD=32,P(2,﹣1);(2) y=2﹣4+3;(3) 存在满足条件的点Q,其坐标为(2,﹣1).试题分析:(1)连接OC,由勾股定理可求得MN的长,则可求得OC的长,由垂径定理可求得OD的长,在Rt△OCD中,可求得CD的长,则可求得PD的长,可求得P点坐标;(2)可设抛物线的解析式为顶点式,再把N点坐标代入可求得抛物线解析式;(3)由抛物线解析式可求得A、B的坐标,由S四边形OPMN=8S△QAB可求得点Q到轴的距离,且点Q只能在轴的下方,则可求得Q点的坐标,再证明△QAB∽△OBN即可.试题解析:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=12MN=52,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得==32,∴PD=PC﹣CD=52﹣32=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(﹣2)2﹣1,即y=2﹣4+3;(3)在y=2﹣4+3中,令y=0可得0=2﹣4+3,解得=1或=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,∴S四边形OPMN=S△OMP+S△OMN=12OM•PD+12OM•ON=12×4×1+12×4×3=8=8S△QAB,∴S△QAB=1,设Q点纵坐标为y,则12×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).考点:二次函数综合题.。
山东省日照市2017年中考数学真题试题(含解析1)[精品]
图象经过 y 轴正半轴,则 b>0,此时,k,b 异号,故此选项不合题意;选项 B 图象过二、四象限,则 k<0,
.
图象经过原点,则 b=0,此时,k,b 不同号,故此选项不合题意;选项 C 图象过一、三象限,则 k>0,图 象经过 y 轴负半轴,则 b<0,此时,k,b 异号,故此选项不合题意;选项 D 图象过一、三象限, 则 k>0,图象经过 y 轴正半轴,则 b>0,此时,k,b 同号,故此选项符合题意;故选 D. 考点:反比例函数的图象;一次函数的图象. 9.如图,AB 是⊙O 的直径,PA 切⊙O 于点 A,连结 PO 并延长交⊙O 于点 C,连结 AC,AB=10,∠P=30°, 则 AC 的长度是( )
.
所以个位数字与十位数字之积能被 10 整除的概率= 考点:列表法与树状图法.
3 1 . 15 5
20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增 360 万平方米.自 2013 年初开始实施后,实际每年绿化面积是原计划的 1.6 倍,这样可提前 4 年完成任务. (1)问实际每年绿化面积多少万平方米? (2)为加大创城力度,市政府决定从 2016 年起加快绿化速度,要求不超过 2 年完成,那么实际平均每年 绿化面积至少还要增加多少万平方米? 【答案】(1) 实际每年绿化面积为 54 万平方米;(2) 则至少每年平均增加 72 万平方米. 试题分析: (1)设原计划每年绿化面积为 x 万平方米,则实际每年绿化面积为 1.6x 万平方米.根据“实际 每年绿化面积是原计划的 1.6 倍,这样可提前 4 年完成任务”列出方程; (2)设平均每年绿化面积增加 a 万平方米.则由“完成新增绿化面积不超过 2 年”列出不等式.
B.30° C.40° D.60°
2017年山东省日照市中考数学试卷
2017年山东省日照市中考数学试卷一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.(3分)﹣3的绝对值是()A.﹣3B.3C.±3D.2.(3分)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.3.(3分)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次,4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108 4.(3分)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.5.(3分)如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°6.(3分)式子有意义,则实数a的取值范围是()A.a≥﹣1B.a≠2C.a≥﹣1且a≠2D.a>27.(3分)下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等8.(3分)反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象大致是()A.B.C.D.9.(4分)如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5D.10.(4分)如图,∠BAC=60°,点O从A点出发,以2cm/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.11.(4分)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23B.75C.77D.13912.(4分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤二、填空题(本大题共4小题,每小题4分,满分16分)13.(4分)分解因式:2m3﹣8m=.14.(4分)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.15.(4分)如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.16.(4分)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.三、解答题17.(9分)(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.18.(9分)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.19.(10分)若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.20.(10分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.(12分)阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0的最大值和最小值.上的两点,且AB=2,请求出S△ABP22.(14分)如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C 交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x 轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S=8S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说△QAB明理由.2017年山东省日照市中考数学试卷参考答案与试题解析一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.【解答】解:﹣3的绝对值是3.故选:B.2.【解答】解:A、既不是中心对称图形,也不是轴对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项错误;D、既是中心对称图形,也是轴对称图形,故本选项错误.故选:A.3.【解答】解:4640万=4.64×107.故选:C.4.【解答】解:在Rt△ABC中,由勾股定理得,BC==12,∴sinA==,故选:B.5.【解答】解:∵∠AEF=∠1=60°,∵AB∥CD,∴∠2=∠AEF=60°,故选:D.6.【解答】解:式子有意义,则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选:C.7.【解答】解:如图∠AOB==60°,OA=OB,∴△AOB是等边三角形,∴AB=OA,∴圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;故选:A.8.【解答】解:∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,A、图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;B、图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;C、图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;D、图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选:D.9.【解答】解:方法1、过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD=AO=2.5,∴AD==,∴AC=2AD=5,故选A,方法2、如图,连接BC,∵AP是⊙O的切线,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠BOC=60°,∴∠ACP=∠BAC=∠BOC=30°=∠P,∴AP=AC,∵AB是⊙O直径,∴∠ACB=90°,在Rt△ABC中,∠BAC=30°,AB=10,∴AC=5,故选:A.10.【解答】解:∵∠BAC=60°,AO是∠BAC的角平分线,∴∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上,故选:D.11.【解答】解:∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=64,∵上边的数与左边的数的和正好等于右边的数,∴a=11+64=75,故选:B.12.【解答】解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b+c=0,结论②正确;③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当x<2时,y随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选:C.二、填空题(本大题共4小题,每小题4分,满分16分)13.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).14.【解答】解:根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是(183+191+169+190+177)÷5=182.故答案为182.15.【解答】解:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=6,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,∴S==6π,扇形BAE故答案为:6π.16.【解答】解:过A作AM⊥y轴于M,过B作BD⊥x轴于D,直线BD与AM交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,,∴△AOM≌△BAN(AAS),∴AM=BN=,OM=AN=,∴OD=+,BD=﹣,∴B(+,﹣),∴双曲线y=(x>0)同时经过点A和B,∴(+)•(﹣)=k,整理得:k2﹣2k﹣4=0,解得:k=1±(负值舍去),∴k=1+;故答案为:1+.三、解答题17.【解答】解:(1)﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2=﹣2﹣1+(1﹣)×4==;(2)﹣÷====,当a=时,原式=.18.【解答】(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).19.【解答】解:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率==.20.【解答】解:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得﹣=4,解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×3+2(54+a)≥360,解得:a≥45.答:则至少每年平均增加45万平方米.21.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1,解得b=或.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.22.【解答】解:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=MN=,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得CD===,∴PD=PC﹣CD=﹣=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,∴S=S△OMP+S△OMN=OM•PD+OM•ON=×4×1+×4×3=8=8S△QAB,四边形OPMN=1,∴S△QAB设Q点纵坐标为y,则×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).。
2017年山东省日照市中考数学试卷
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前山东省日照市2017年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共12小题,其中1~8题每小题3分,9~12题每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的绝对值是( )A .3-B .3C .3±D .132.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )ABCD3.铁路部门消息:2017年端午节小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为( )A .54.6410⨯B .64.6410⨯C .74.6410⨯D .84.6410⨯4.在Rt ABC △中,90C =∠,13AB =,5AC =,则sin A 的值为( )A .513B .1213 C .512D .1255.如图,AB CD ∥,直线l 交AB 于点E ,交CD 于点F ,若160=∠,则2∠等于( )A .120B .30 C .40 D .606.,则实数a 的取值范围是 ( )A .1a -≥B .2a ≠C .1a -≥且2a ≠D .2a > 7.下列说法正确的是 ( )A .圆内接正六边形的边长与该圆的半径相等B .在平面直角坐标系中,不同的坐标可以表示同一点C .一元二次方程2(0)0ax bx c a ++=≠一定有实数根D .将ABC △绕点A 按顺时针方向旋转60得ADE △,则ABC △与ADE △不全等8.反比例函数kby x=的图象如图所示,则一次函数()0y kx b k =+≠的图象大致是( )AB C D 9.如图,AB 是O 的直径,PA 切O 于点A ,连接PO 并延长交O 于点C ,连接AC ,10AB =,30P =∠,则AC 的长度是( )A.B.C .5D .5210.如图,60BAC =∠,点O 从点A 出发,以2cm/s 的速度沿BAC ∠的角平分线向右运动.在运动过程中,以点O 为圆心的圆始终保持与BAC ∠的两边相切.设O 的面积为2()cm S ,则O 的面积S 与圆心O 运动的时间()s t 的函数图象大致为 ( )A B C D毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为 ( )A .23B .75C .77D .13912.已知抛物线2()0y ax bx c a =++≠的对称轴为直线2x =,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②40a b c ++=;③0a b c -+<;④抛物线的顶点坐标为(2,)b ;⑤当2x <时,y 随x 增大而增大.其中结论正确的是 ( ) A .①②③ B .③④⑤ C .①②④D .①④⑤第Ⅱ卷(非选择题 共80分)二、填空题(本大题共4小题,每小题4分,共16分) 13.分解因式:328m m -= .14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是 .15.如图,四边形ABCD 中,AB CD =,AD BC ∥,以点B 为圆心,BA 长为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,6AB =,则扇形(图中阴影部分)的面积是 .16.如图,在平面直角坐标系中,经过点A 的双曲线(0)ky x x=>同时经过点B ,且点A 在点B 的左侧,点A,45AOB OBA ==∠∠,则k 的值为 .三、解答题(本大题共6小题,共64分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分9分)(1)计算:021(()(2π 3.141co )()2s30----⨯-+.(2)先化简,再求值:21111211a a a a a a ++-÷--+-,其中a18.(本小题满分9分)如图,已知BA AE DC ==,AD EC =,CE AE ⊥,垂足为点E . (1)求证:DCA EAC △≌△.(2)只需添加一个条件,即 ,可使四边形ABCD 为矩形.请加以证明.19.(本小题满分10分)若n 是一个两位正整数,且n 的个位数字大于十位数字,则称n 为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”.(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)20.(本小题满分10分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问:实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.(本小题满分12分) 阅读材料:在平面直角坐标系xOy 中,点00(),P x y 到直线0Ax By C ++=的距离公式为d . 例如:求点0()0,0P 到直线4330x y +-=的距离. 解:由直线4330x y +-=知,4A =,3B =,3C =-, ∴点0()0,0P 到直线4330x y +-=的距离为35d =. 根据以上材料,解决下列问题:(1)点1()3,4P 到直线3544y x =-+的距离为 ; (2)已知:C 是以点()2,1C 为圆心、1为半径的圆,C 与直线34y x b =-+相切,求实数b 的值;(3)如图,设点P 为(2)中C 上的任意一点,点,A B 为直线3450x y ++=上的两点,且2AB =,请求出ABP S △的最大值和最小值.22.(本小题满分14分)如图所示,在平面直角坐标系中,C 经过坐标原点O ,且与x 轴、y 轴分别相交于4,0,()()0,3M N 两点.已知抛物线开口向上,与C 交于,,N H P 三点,点P 为抛物线的顶点,抛物线的对称轴经过点C 且垂直x 轴于点D . (1)求线段CD 的长及顶点P 的坐标. (2)求抛物线的函数表达式.(3)设抛物线交x 轴于,A B 两点,在抛物线上是否存在点Q ,使得8QAB OPMN S S =四边形△,且QAB OBN ∽△△成立?若存在,请求出点Q 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2017年山东省日照市中考数学试题(含答案)
试卷类型:A2017年日照市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷3页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共11页.2. 答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.31-的相反数是 ( ) A .31B . -31C . 3D . -32. 下列运算正确的是( )A .523x x x =⋅B .336()x x =C .5510x x x +=D .336x x x =-3. 下列图形中,是中心对称图形的是 ()A .B .C .D .4、下图能说明∠1>∠2的是( )12)A. 21)D.12) )B.12 )) C.5、根据下图所示程序计算函数值,若输入的x 的值为52,则输出的函数值为( ) A .32B .25C .425D .2546.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(2,3) B .(2,-1)C .(4,1)D. (0,1)7. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是( )A . 4cmB . 6cmC . 8cmD . 2cm8.若43=x ,79=y,则y x 23-的值为( )A .74B .47C .3-D .729. 方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是( ). A . k ≥1 B . k ≤1 C . k >1D . k <110. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线x y 6=上的概率为( ) A .118B .112OBA(第7题图)5cm输入x 值y =x -1 (-1≤x <0) 1y x=(2≤x ≤4)y =x 2(0≤x <2)输出y 值C .19D .1611. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( ) A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)12. 如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B 两点,与反比例函数x y 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ; ④AC BD =.其中正确的结论是( )A .①②B . ①②③C .①②③④D . ②③④A BCO xy -46(第11题图)yxDCA BOF E(第12题图)试卷类型:A2017年日照市初中学生学业考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.题号 二 三总分 18 19 20 21 22 23 24 得分二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13、南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为 .14.分解因式:x x 93= .15. 某校篮球班21名同学的身高如下表:身高/cm 180 185 187 190201 人数/名46542则该校篮球班21名同学身高的中位数是______________cm .16. 某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD 垂直平分BC ,AD=BC=48cm ,则圆柱形饮水桶的底面半径的最大值是 cm .得 分评 卷 人BDCA(第16题图2)(第16题图1)17. 在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx b =+和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,… 都是等腰直角三角形,如果A 1(1,1),A 2(23,27),那么点n A 的纵坐标是_ _____.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:()122160tan 33101+-+︒-⎪⎭⎫⎝⎛--;(2)先化简,再求代数式212312+-÷⎪⎭⎫ ⎝⎛+-x x x 的值,其中x 是不等式组⎩⎨⎧<+>-812,02x x 的整数解.yxy=kx+bOB3B2B1A3A 2 A 1 (第17题图)得 分 评 卷 人19. (本题满分9分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款人数的比为1 : 5.请结合以上信息解答下列问题.(1) a = ,本次调查样本的容量是 ; (2) 先求出C 组的人数,再补全“捐款人数分组统计图1”;(3) 若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?捐款人数分组统计表 组别 捐款额x /元 人数 A 1≤x <10 a B 10≤x <20 100 C 20≤x <30 D 30≤x <40 Ex ≥40捐款人数分组统计图1捐款人数分组统计图2座号得 分评 卷 人20. (本题满分9分)如图,AB 是⊙O 的直径,AM 和BN 是它的两条切线,DE 切⊙O 于点E ,交AM 于点D ,交BN 于点C ,(1)求证:OD ∥BE ;(2)如果OD =6cm ,OC =8cm ,求CD 的长.得 分评 卷 人(第20题图)A DNEBC OM得分评卷人21.(本题满分9分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?22.(本题满分9分)如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)(第22题图)APCB36.9°67.5°23.(本题满分10分)(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .求证:CE =CF ;(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE =10, 求直角梯形ABCD 的面积.(第23题图1)AE BCDF(第23题图3)B CA DE(第23题图2)AEBCDG24.(本题满分11分)已知抛物线36232++=bx x y 经过 A (2,0). 设顶点为点P ,与x 轴的另一交点为点B .(1)求b 的值,求出点P 、点B 的坐标; (2)如图,在直线 y=3x 上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,试举例验证你的猜想;如果不存在,试说明理由.得 分评 卷 人A PB xyO (第24题图)x y 3=试卷类型:A2017年日照市初中学生学业考试 数学试题参考答案与评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BABCBDAADCDC二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.3.6×106; 14.x (x +3)(x -3); 15. 187; 16. 30; 17.123-⎪⎭⎫⎝⎛n三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)解:原式=-3-33+1+23…………………………2分 =-2-3…………………………3分 (2)原式=122(1)(1)x x x x x -+·++-11x =+, ………………1分解不等式组⎩⎨⎧<+>-812,02x x 得722x <<,………………………2分因为x 是整数,所以3x =,……………………3分 当3x =时,原式=14.……………………4分19. 解:(1)20,500;…………………………2分 (2)500×40%=200,C 组的人数为200. … 4分补图见图. …………………………5分 (3)∵D 、E 两组的人数和为:500×(28%+8%)=180,………………7分 ∴捐款数不少于30元的概率是:1800.36.500=……………………………… 9分 20.(1)证明:连接OE ,∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径,∴∠ADO=∠EDO , ∠DAO=∠DEO =90°, ……………………2分∴∠AOD=∠EOD=12∠AOE , ∵∠ABE=12∠AOE ∴∠AOD=∠ABE ,∴OD ∥BE …………………5分(2)由(1)得:∠AOD=∠EOD=12∠AOE , 同理,有:∠BOC=∠EOC=12∠BOE∴∠AOD +∠EOD +∠BOC +∠EOC=180° ∴∠EOD +∠EOC =90°,∴△DOC 是直角三角形,…………………………7分∴ CD=cm )(10643622=+=+OC OD ……………………9分21.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………4分 解这个方程组,得:⎩⎨⎧==.300,400y x∴工厂从A 地购买了400吨原料,制成运往B 地的产品300吨. ………7分 (2)依题意,得:300×8000-400×1000-15000-97200=1887800∴批产品的销售款比原料费与运输费的和多1887800元. ………………9分 22.解:过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里.在Rt △APC 中,∵tan ∠A =PC AC ,∴AC =5tan 67.512PC x=︒.…………3分在Rt △PCB 中,∵tan ∠B =PC BC ,∴BC =4tan 36.93x x=︒.…………5分∵AC +BC =AB =21×5,∴54215123x x +=⨯,解得60x =. (第20题答案图)A DNEBC OM∵sin PC B PB ∠=,∴60560100sin sin 36.93PC PB B ===⨯=∠︒(海里). ∴向阳号轮船所处位置B 与城市P 的距离为100海里.………………9分23. 解答:(1)证明:在正方形ABCD 中, ∵BC =CD ,∠B =∠CDF ,BE =DF , ∴△CBE ≌△CDF .∴CE =CF . …………………………2分(2)证明: 如图2,延长AD 至F ,使DF =BE .连接CF . 由(1)知△CBE ≌△CDF ,∴∠BCE =∠DCF .∴∠BCE +∠ECD =∠DCF +∠ECD 即∠ECF =∠BCD =90°,又∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG .…………………………5分 ∴GE =GF∴GE =DF +GD =BE +GD . ……………6分(3)解:如图3,过C 作CG ⊥AD ,交AD 延长线于G .在直角梯形ABCD 中, ∵AD ∥BC ,∴∠A =∠B =90°,又∠CGA =90°,AB =BC ,∴四边形ABCD 为正方形.∴AG =BC .…………………………7分 已知∠DCE =45°,根据(1)(2)可知,ED =BE +DG .……8分所以10=4+DG ,即DG =6.设AB =x ,则AE =x -4,AD =x -6 在Rt △AED 中, ∵222AE AD DE +=,即()()2224610-+-=x x . 解这个方程,得:x =12,或x =-2(舍去).…………………………9分 ∴AB =12.所以梯形ABCD 的面积为S=.10812)126(21)(21=⨯+=+AB BC AD答:梯形ABCD 的面积为108. …………………………10分 24.解:(1)由于抛物线36232++=bx x y 经过A (2,0), 所以3624230++⨯=b , 解得34-=b .…………………………1分 所以抛物线的解析式为3634232+-=x x y . (*) 将(*)配方,得()324232--=x y , (第23题答案图1)A EBCD F(第23题答案图2) A EBC D G F B C A D E G (第23题答案图3)所以顶点P 的坐标为(4,-23)…………………………2分 令y =0,得()0324232=--x , 解得6,221==x x . 所以点B 的坐标是(6,0). ………………3分(2)在直线 y=3x 上存在点D ,使四边形OPBD 为平行四边形. ……4分理由如下:设直线PB 的解析式为kx y =+b ,把B (6,0),P (4,-23)分别代入,得⎪⎩⎪⎨⎧-=+=+.324,06b k b k 解得⎪⎩⎪⎨⎧-==.36,3b k 所以直线PB 的解析式为363-=x y .…………………………5分 又直线OD 的解析式为x y 3=所以直线P B ∥OD . …………………………6分设设直线OP 的解析式为mx y =,把P (4,-23)代入,得324-=m 解得23-=m .如果OP ∥BD ,那么四边形OPBD 为平行四边形.…………7分设直线BD 的解析式为n x y +-=23,将B (6,0)代入,得0=n +-33,所以33=n 所以直线BD 的解析式为n x y +-=23, 解方程组⎪⎩⎪⎨⎧+-==.3323,3x y x y 得⎪⎩⎪⎨⎧==.32,2y x 所以D 点的坐标为(2,23)…………………8分(3)符合条件的点M 存在.验证如下:过点P 作x 轴的垂线,垂足为为C ,则PC =23,AC =2,由勾股定理,可得AP =4,PB =4,又AB =4,所以△APB 是等边三角形,只要作∠PAB 的平分线交抛物线于M 点,连接PM ,BM ,由于AM =AM , ∠PAM =∠BAM ,AB =AP ,可得△AMP ≌△AMB.因此即存在这样的点M ,使△AMP ≌△AMB.…………………………11分A PB xyO第24题答案图C M Dx y 3=。
2017年山东省日照市中考数学试题及答案(word版)
2017 年山东省日照市中考数学试卷一、选择题:(本大题共12 小题,此中1~8 题每题 3 分,9~12 题每题 3 分,满分40 分)1.﹣ 3 的绝对值是()A.﹣ 3 B . 3 C.± 3 D .2.剪纸是我国传统的民间艺术.以下剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.3.铁路部门信息:2017 年“端午节”小长假时期,全国铁路客流量达到4640 万人次.4640 万用科学记数法表示为()A .× 1054.在 Rt △ ABC A .中,∠B .× 106C.×107C=90°, AB=13 , AC=5 ,则 sinA 的值为(B.C.D .× 108)D .5.如图,AB ∥ CD ,直线l 交AB 于点E,交CD 于点F,若∠1=60 °,则∠ 2 等于()A.120°B.30°C. 40° D .60°6.式子存心义,则实数 a 的取值范围是()A . a≥﹣ 1B . a≠ 2 C. a≥﹣ 1 且a≠ 2 D .a> 27.以下说法正确的选项是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不一样的坐标能够表示同一点C.一元二次方程ax2+bx+c=0 ( a≠0)必定有实数根D.将△ABC 绕 A 点按顺时针方向旋转60°得△ ADE ,则△ ABC 与△ ADE 不全等8.反比率函数y= 的图象以下图,则一次函数y=kx+b(k≠ 0)的图象的图象大概是()A.B.C.D.9.如图, AB 是⊙ O 的直径, PA 切⊙ O 于点 A ,连结 PO 并延伸交⊙ O 于点 C,连结 AC ,AB=10,∠P=30°AC的长度是(),则A .B .C. 5 D .10.如图,∠BAC=60°,点O 从A 点出发,以2m/s 的速度沿∠BAC 的角均分线向右运动,在运动过程中,以O 为圆心的圆一直保持与∠BAC 的两边相切,设⊙O 的面积为S(cm2),则⊙ O 的面积S 与圆心O 运动的时间t ( s)的函数图象大概为()A.B.C.D.11.察看下边“品”字形中各数之间的规律,依据察看到的规律得出 a 的值为()A.23B.75C.77D.13912.已知抛物线y=ax 2+bx+c( a≠ 0)的对称轴为直线x=2 ,与 x 轴的一个交点坐标为(4,0),其部分图象以下图,以下结论:①抛物线过原点;②4a+b+c=0 ;③a﹣ b+c< 0;④抛物线的极点坐标为(2,b);⑤当 x< 2 时, y 随 x 增大而增大.此中结论正确的选项是()A .①②③B .③④⑤C.①②④ D .①④⑤二、填空题(本大题共 4 小题,每题 4 分,满分16 分)13.分解因式:2m3﹣ 8m=.14.为认识某初级中学邻近路口的汽车流量,交通管理部门检查了某周一至周五下午下学时间段经过该路口的汽车数目(单位:辆),结果以下:183191 169190 177则在该时间段中,经过这个路口的汽车数目的均匀数是.15.如图,四边形ABCD 中, AB=CD ,AD ∥BC,以点 B 为圆心,BA 为半径的圆弧与BC 交于点E,四边形AECD 是平行四边形,AB=6 ,则扇形(图中暗影部分)的面积是.16.如图,在平面直角坐标系中,经过点 A 的双曲线 y= ( x> 0)同时经过点在点 B 的左边,点 A 的横坐标为,∠ AOB= ∠ OBA=45°,则 k 的值为B ,且点.A三、解答题17.( 1)计算:﹣(2﹣)﹣(π﹣)0 +( 1﹣ cos30 °)×()﹣2;(2)先化简,再求值:﹣÷,此中a= .18.如图,已知BA=AE=DC , AD=EC , CE⊥AE ,垂足为E.(1)求证:△DCA ≌△ EAC ;(2)只要增添一个条件,即,可使四边形ABCD 为矩形.请加以证明.19.若 n 是一个两位正整数,且n 的个位数字大于十位数字,则称n 为“两位递加数”(如13, 35, 56 等).在某次数学兴趣活动中,每位参加者需从由数字1,2, 3, 4, 5, 6 组成的全部的“两位递加数”中随机抽取 1 个数,且只好抽取一次.(1 )写出全部个位数字是 5 的“两位递加数”;(2 )请用列表法或树状图,求抽取的“两位递加数”的个位数字与十位数字之积能被10 整除的概率.20.某市为创立全国文明城市,展开“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增 360 万平方米.自2013 年初开始实行后,实质每年绿化面积是原计划的 1.6 倍,这样可提早 4 年达成任务.(1)问实质每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从 2016 年起加速绿化速度,要求不超出 2 年达成,那么实质均匀每年绿化面积起码还要增添多少万平方米?21.阅读资料:在平面直角坐标系xOy中,点P( x0, y0)到直线Ax+By+C=0的距离公式为:d=.比如:求点P0( 0, 0)到直线4x+3y ﹣ 3=0 的距离.解:由直线4x+3y ﹣ 3=0 知, A=4 , B=3 , C=﹣ 3,∴点 P0( 0,0)到直线4x+3y ﹣3=0 的距离为d==.依据以上资料,解决以下问题:问题 1:点 P1( 3, 4)到直线 y= ﹣x+的距离为;问题 2:已知:⊙ C 是以点 C( 2,1)为圆心, 1 为半径的圆,⊙ C 与直线 y= ﹣x+b 相切,务实数 b 的值;问题 3:如图,设点 P 为问题 2 中⊙ C 上的随意一点,点 A ,B 为直线 3x+4y+5=0 上的两点,且 AB=2 ,恳求出 S△ABP的最大值和最小值.22.以下图,在平面直角坐标系中,⊙ C 经过坐标原点O,且与 x 轴, y 轴分别订交于 M (4, 0),N ( 0,3)两点.已知抛物线张口向上,与⊙ C 交于 N, H, P 三点, P 为抛物线的极点,抛物线的对称轴经过点 C 且垂直 x 轴于点 D.(1 )求线段 CD 的长及极点 P 的坐标;(2 )求抛物线的函数表达式;(3 )设抛物线交 x 轴于 A, B 两点,在抛物线上能否存在点Q,使得 S 四边形OPMN =8S△QAB,且△ QAB ∽△ OBN 建立?若存在,恳求出Q 点的坐标;若不存在,请说明原因.2017 年山东省日照市中考数学试卷参照答案与试题分析一、选择题:(本大题共12 小题,此中1~8 题每题 3 分,9~12 题每题 3 分,满分40 分)1.﹣ 3 的绝对值是()A.﹣ 3 B . 3 C.± 3 D .【考点】15:绝对值.【剖析】当 a 是负有理数时, a 的绝对值是它的相反数﹣a.【解答】解:﹣ 3 的绝对值是3.应选: B.2.剪纸是我国传统的民间艺术.以下剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【考点】 R5:中心对称图形;P3:轴对称图形.【剖析】依据轴对称图形和中心对称图形的观点对各选项剖析判断即可得解.【解答】解: A 、既不是中心对称图形,也不是轴对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项错误;D、既是中心对称图形,也是轴对称图形,故本选项错误.应选 A.3.铁路部门信息: 2017 年“端午节”小长假时期,全国铁路客流量达到4640 万人次 .4640 万用科学记数法表示为()5 6 7 8A .× 10B .× 10 C.×10 D .× 10【考点】 1I:科学记数法—表示较大的数.【剖析】科学记数法的表示形式为a× 10n的形式,此中1≤ |a|< 10,n 为整数.确立n 的值是易错点,因为4640 万有 8 位,因此能够确立n=8﹣ 1=7 .【解答】解: 4640 万 =4.64 × 107.应选: C.4.在Rt △ ABC 中,∠C=90°, AB=13 , AC=5 ,则sinA 的值为()A .B .C. D .【考点】T1:锐角三角函数的定义.【剖析】依据勾股定理求出BC ,依据正弦的观点计算即可.【解答】解:在 Rt△ABC 中,由勾股定理得, BC= =12 ,∴sinA==,应选: B.5.如图, AB ∥ CD ,直线 l 交 AB 于点 E,交 CD 于点 F,若∠ 1=60 °,则∠ 2 等于()A.120°B.30°C.40°D.60°【考点】 JA:平行线的性质.【剖析】依据对顶角的性质和平行线的性质即可获得结论.【解答】解:∵∠ AEF= ∠ 1=60°,∵AB ∥CD,∴∠ 2=∠ AEF=60°,应选 D.6.式子存心义,则实数a 的取值范围是()A . a≥﹣ 1B . a≠ 2 C. a≥﹣ 1 且a≠ 2 D .a> 2【考点】 72:二次根式存心义的条件.【剖析】直接利用二次根式的定义联合分式存心义的条件剖析得出答案.【解答】解:式子存心义,则 a+1≥ 0,且 a﹣ 2≠0,解得: a≥﹣ 1 且 a≠2.应选: C.7.以下说法正确的选项是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不一样的坐标能够表示同一点C.一元二次方程ax2+bx+c=0 ( a≠0)必定有实数根D.将△ ABC 绕 A 点按顺时针方向旋转60°得△ ADE ,则△ ABC 与△ ADE 不全等【考点】 MM :正多边形和圆;AA :根的鉴别式;D1:点的坐标; R2:旋转的性质.【剖析】依据正多边形和圆的关系、一元二次方程根的鉴别式、点的坐标以及旋转变换的性质进行判断即可.【解答】解:如图∠ AOB==60°, OA=OB ,∴△ AOB 是等边三角形,∴AB=OA ,∴圆内接正六边形的边长与该圆的半径相等, A 正确;B 错误;在平面直角坐标系中,不一样的坐标能够表示不一样一点,一元二次方程ax2+bx+c=0 ( a≠ 0)不必定有实数根, C 错误;依据旋转变换的性质可知,将△ABC 绕 A 点按顺时针方向旋转60°得△ ADE ,则△ABC 与△ADE 全等,D 错误;应选: A .8.反比率函数 y=的图象以下图,则一次函数y=kx+b(k≠ 0)的图象的图象大概是()A.B.C.D.【考点】 G2:反比率函数的图象;F3:一次函数的图象.【剖析】依据反比率函数图象能够确立kb 的符号,易得 k、b 的符号,依据图象与系数的关系作出正确选择.【解答】解:∵ y=的图象经过第一、三象限,∴k b > 0,∴k, b 同号,A、图象过二、四象限,则 k< 0,图象经过y 轴正半轴,则b>0,此时, k, b 异号,故此选项不合题意;B、图象过二、四象限,则 k< 0,图象经过原点,则b=0,此时, k, b 不一样号,故此选项不合题意;C、图象过一、三象限,则 k> 0,图象经过y 轴负半轴,则b<0,此时, k, b 异号,故此选项不合题意;D、图象过一、三象限,则 k> 0,图象经过 y 轴正半轴,则 b>0,此时, k, b 同号,故此选项切合题意;应选: D.9.如图, AB 是⊙ O 的直径, PA 切⊙ O 于点 A ,连结 PO 并延伸交⊙ O 于点 C,连结 AC ,AB=10 ,∠ P=30°,则 AC 的长度是()A .B .C. 5 D .【考点】 MC :切线的性质.【剖析】过点 D 作 OD⊥ AC 于点 D,由已知条件和圆的性质易求OD 的长,再依据勾股定理即可求出 AD 的长,从而可求出AC 的长.【解答】解:过点 D 作 OD⊥AC 于点 D,∵AB 是⊙ O 的直径, PA 切⊙ O 于点 A,∴AB ⊥AP,∴∠ BAP=90°,∵∠ P=30°,∴∠ AOP=60°,∴∠ AOC=120°,∵OA=OC ,∴∠ OAD=30°,∵A B=10 ,∴OA=5 ,∴OD= AO=2.5 ,∴AD==,∴AC=2AD=5,应选 A.10.如图,∠BAC=60°,点O 从A 点出发,以2m/s 的速度沿∠BAC 的角均分线向右运动,在运动过程中,以O 为圆心的圆一直保持与∠BAC 的两边相切,设⊙O 的面积为S(cm2),则⊙ O 的面积S 与圆心O 运动的时间t ( s)的函数图象大概为()A.B.C.D.【考点】E7:动点问题的函数图象.r, AB 是⊙ O 的切线,根【剖析】依据角均分线的性质获得∠ BAO=30°,设⊙ O 的半径为据直角三角形的性质获得 r=t ,依据圆的面积公式即可获得结论.【解答】解:∵∠ BAC=60°, AO 是∠ BAC 的角均分线,∴∠ BAO=30°,设⊙ O 的半径为 r,AB 是⊙ O 的切线,∵A O=2t ,∴r=t ,2∴S=πt,∴S 是圆心 O 运动的时间t 的二次函数,∵π> 0,∴抛物线的张口向上,应选 D.11.察看下边“品”字形中各数之间的规律,依据察看到的规律得出 a 的值为()A.23B.75C.77D.139【考点】 37:规律型:数字的变化类.【剖析】由图可知:上面的数与左边的数的和正好等于右侧的数,上面的数为连续的奇数,左边的数为1 2 3 62 , 2 , 2 , 2,由此可得 a,b.【解答】解:∵上面的数为连续的奇数1, 3, 5,7, 9,11,左边的数为21, 22, 23,,∴b=2 6=64,∵上面的数与左边的数的和正好等于右侧的数,∴a=11+64=75 ,应选 B.12.已知抛物线y=ax 2+bx+c( a≠ 0)的对称轴为直线x=2 ,与 x 轴的一个交点坐标为(4,0),其部分图象以下图,以下结论:①抛物线过原点;②4a+b+c=0 ;③a﹣ b+c< 0;④抛物线的极点坐标为(2,b);⑤当x< 2 时, y 随 x 增大而增大.此中结论正确的选项是()A .①②③B .③④⑤C.①②④ D .①④⑤【考点】 HA :抛物线与x 轴的交点; H4 :二次函数图象与系数的关系.【剖析】①由抛物线的对称轴联合抛物线与x 轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为 2 以及抛物线过原点,即可得出 b=﹣ 4a、c=0,即 4a+b+c=0 ,结论②正确;③依据抛物线的对称性联合当x=5 时 y> 0,即可得出 a﹣ b+c>0,结论③错误;④将 x=2 代入二次函数分析式中联合4a+b+c=0 ,即可求出抛物线的极点坐标,结论④正确;⑤察看函数图象可知,当x<2 时, yy 随 x 增大而减小,结论⑤错误.综上即可得出结论.【解答】解:①∵抛物线y=ax2+bx+c ( a≠0)的对称轴为直线x=2 ,与 x 轴的一个交点坐标为( 4, 0),∴抛物线与 x 轴的另一交点坐标为(0, 0),结论①正确;②∵抛物线2y=ax +bx+c ( a≠ 0)的对称轴为直线 x=2 ,且抛物线过原点,∴﹣=2 , c=0,∴b= ﹣ 4a, c=0,∴4a+b+c=0 ,结论②正确;③∵当 x= ﹣1 和 x=5 时, y 值同样,且均为正,∴a﹣ b+c> 0,结论③错误;④当 x=2 时, y=ax 2+bx+c=4a+2b+c= (4a+b+c ) +b=b,∴抛物线的极点坐标为(2,b),结论④正确;⑤察看函数图象可知:当x<2 时, yy 随 x 增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.应选 C.二、填空题(本大题共 4 小题,每题 4 分,满分16 分)13.分解因式:2m3﹣ 8m= 2m( m+2)( m﹣ 2).【考点】 55:提公因式法与公式法的综合运用.【剖析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解: 2m3﹣ 8m=2m ( m2﹣ 4)=2m( m+2)( m﹣ 2).故答案为: 2m( m+2)( m﹣ 2).14.为认识某初级中学邻近路口的汽车流量,交通管理部门检查了某周一至周五下午下学时间段经过该路口的汽车数目(单位:辆),结果以下:183191169190177则在该时间段中,经过这个路口的汽车数目的均匀数是182 .【考点】 W1:算术均匀数.【剖析】依据均匀数的计算公式用全部数据的和除以数据的个数即可计算出这组数据的均匀数,从而得出答案.【解答】解:依据题意,得在该时间段中,经过这个路口的汽车数目的均匀数是÷5=182 .故答案为 182.15.如图,四边形ABCD 中, AB=CD , AD ∥ BC ,以点 B 为圆心, BA 为半径的圆弧与BC 交于点 E,四边形 AECD 是平行四边形, AB=6 ,则扇形(图中暗影部分)的面积是6π .【考点】 MO :扇形面积的计算;L5:平行四边形的性质.【剖析】证明△ ABE 是等边三角形,∠B=60°,依据扇形的面积公式计算即可.【解答】解:∵四边形AECD 是平行四边形,∴AE=CD ,∵A B=BE=CD=6 ,∴AB=BE=AE ,∴△ ABE 是等边三角形,∴∠ B=60°,∴S 扇形BAE==6π,故答案为: 6π.16.如图,在平面直角坐标系中,经过点 A 的双曲线y=(x>0)同时经过点在点 B 的左边,点 A 的横坐标为,∠ AOB=∠ OBA=45° ,则k的值为1+ B ,且点.A【考点】 G6:反比率函数图象上点的坐标特点.【剖析】过 A 作 AM ⊥ y 轴于 M ,过 B 作 BD 选择 x 轴于 D,直线 BD 与 AM 交于点 N,则OD=MN , DN=OM ,∠ AMO= ∠ BNA=90°,由等腰三角形的判断与性质得出OA=BA ,∠OAB=90°,证出∠AOM= ∠ BAN ,由AAS 证明△AOM ≌△ BAN ,得出AM=BN= ,OM=AN= ,求出B(+,﹣),得出方程(+)?(﹣)=k ,解方程即可.【解答】解:过 A 作 AM ⊥ y 轴于 M ,过 B 作 BD 选择 x 轴于 D ,直线 BD 与 AM 交于点 N ,以下图:则 OD=MN , DN=OM ,∠ AMO= ∠ BNA=90° , ∴∠ AOM+ ∠OAM=90° ,∵∠ AOB= ∠ OBA=45° , ∴OA=BA ,∠OAB=90° , ∴∠ OAM+ ∠BAN=90° , ∴∠ AOM= ∠BAN ,在△ AOM 和△ BAN 中,,∴△ AOM ≌△ BAN (AAS ),∴AM=BN=, OM=AN=,∴OD=+ ,OD=BD=﹣ ,∴B ( ∴双曲线 ∴(++y=,﹣),( x > 0)同时经过点)?( ﹣) =k ,A 和B ,整理得: k 2﹣ 2k ﹣ 4=0 ,解得: k=1 ±(负值舍去) ,∴k=1+;故答案为: 1+.三、解答题17.( 1)计算:﹣(2﹣)﹣( π﹣)0 +( 1﹣ cos30 °)×()﹣2;(2)先化简,再求值:﹣÷,此中a= .【考点】 6D:分式的化简求值;2C :实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特别角的三角函数值.【剖析】( 1)依据去括号得法例、零指数幂、特别角的三角函数值、负整数指数幂能够解答此题;(2)依据分式的除法和减法能够化简题目中的式子,而后将 a 的值代入即可解答此题.【解答】解:( 1)﹣( 2﹣)﹣(π﹣)0 +( 1﹣ cos30 °)×()﹣ 2= ﹣ 2﹣ 1+ (1﹣)× 4==;(2)﹣÷====,当 a=时,原式=.18.如图,已知BA=AE=DC , AD=EC , CE⊥AE ,垂足为E.(1)求证:△ DCA ≌△ EAC ;(2)只要增添一个条件,即AD=BC (答案不独一),可使四边形ABCD为矩形.请加以证明.【考点】 LC :矩形的判断;KD :全等三角形的判断与性质.【剖析】( 1)由 SSS 证明△ DCA ≌△ EAC 即可;(2)先证明四边形ABCD 是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.【解答】( 1)证明:在△DCA 和△ EAC 中,,∴△ DCA ≌△ EAC ( SSS);(2)解:增添AD=BC ,可使四边形ABCD 为矩形;原因以下:∵AB=DC , AD=BC ,∴四边形 ABCD 是平行四边形,∵CE ⊥AE ,∴∠ E=90°,由( 1)得:△ DCA ≌△ EAC ,∴∠ D=∠ E=90°,∴四边形 ABCD 为矩形;故答案为: AD=BC (答案不独一).19.若 n 是一个两位正整数,且n 的个位数字大于十位数字,则称n 为“两位递加数”(如13, 35, 56 等).在某次数学兴趣活动中,每位参加者需从由数字1,2, 3, 4, 5, 6 组成的全部的“两位递加数”中随机抽取 1 个数,且只好抽取一次.(1 )写出全部个位数字是 5 的“两位递加数”;(2 )请用列表法或树状图,求抽取的“两位递加数”的个位数字与十位数字之积能被10 整除的概率.【考点】 X6 :列表法与树状图法.【剖析】( 1)依据“两位递加数”定义可得;(2)画树状图列出全部“两位递加数”,找到个位数字与十位数字之积能被10 整除的结果数,依据概率公式求解可得.【解答】解:( 1)依据题意全部个位数字是 5 的“两位递加数”是 15、25、 35、45 这 4 个;(2)画树状图为:共有 15 种等可能的结果数,此中个位数字与十位数字之积能被10 整除的结果数为3,因此个位数字与十位数字之积能被10 整除的概率 = = .20.某市为创立全国文明城市,展开“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360 万平方米.自2013 年初开始实行后,实质每年绿化面积是原计划的 1.6 倍,这样可提早 4 年达成任务.(1)问实质每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从 2016 年起加速绿化速度,要求不超出 2 年达成,那么实质均匀每年绿化面积起码还要增添多少万平方米?【考点】 B7:分式方程的应用; C9:一元一次不等式的应用.【剖析】( 1)设原计划每年绿化面积为x 万平方米,则实质每年绿化面积为万平方米.根据“实质每年绿化面积是原计划的倍,这样可提早 4 年达成任务”列出方程;(2)设均匀每年绿化面积增添 a 万平方米.则由“达成新增绿化面积不超出 2 年”列出不等式.【解答】解:( 1)设原计划每年绿化面积为x 万平方米,则实质每年绿化面积为 1.6x 万平方米,依据题意,得﹣=4解得: x=33.75 ,经查验 x=33.75 是原分式方程的解,则 1.6x=1.6 × 33.75=54(万平方米).答:实质每年绿化面积为54 万平方米;(2)设均匀每年绿化面积增添 a 万平方米,依据题意得54× 2+2( 54+a)≥ 360解得: a≥ 72.答:则起码每年均匀增添72 万平方米.21.阅读资料:在平面直角坐标系xOy 中,点P( x0, y0)到直线Ax+By+C=0 的距离公式为:d= .比如:求点P0( 0, 0)到直线4x+3y ﹣ 3=0 的距离.解:由直线4x+3y ﹣ 3=0 知, A=4 , B=3, C=﹣ 3,∴点P0( 0,0)到直线4x+3y ﹣3=0 的距离为d= =.依据以上资料,解决以下问题:问题1:点P1( 3, 4)到直线y= ﹣x+ 的距离为4;问题2:已知:⊙ C 是以点C( 2,1)为圆心, 1 为半径的圆,⊙ C 与直线y= ﹣x+b 相切,务实数 b 的值;问题3:如图,设点P 为问题 2 中⊙ C 上的随意一点,点 A ,B 为直线3x+4y+5=0 上的两点,且 AB=2 ,恳求出S△ABP的最大值和最小值.【考点】 FI:一次函数综合题.【剖析】( 1)依据点到直线的距离公式就是即可;(2)依据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心 C 到直线 3x+4y+5=0 的距离,求出⊙ C 上点 P 到直线 3x+4y+5=0 的距离的最大值以及最小值即可解决问题.【解答】解:( 1)点 P1( 3, 4)到直线 3x+4y ﹣ 5=0 的距离 d= =4,故答案为4.(2)∵⊙ C 与直线 y= ﹣x+b 相切,⊙ C 的半径为1,∴C( 2,1)到直线 3x+4y ﹣ b=0 的距离 d=1 ,∴=1,解得 b=5 或 15.(3)点 C( 2, 1)到直线 3x+4y+5=0 的距离 d= =3,∴⊙ C 上点 P 到直线 3x+4y+5=0 的距离的最大值为4,最小值为2,∴S△ABP的最大值 = × 2× 4=4, S△ABP的最小值 = × 2× 2=2.22.以下图,在平面直角坐标系中,⊙ C 经过坐标原点O,且与x 轴, y 轴分别订交于M (4, 0),N ( 0,3)两点.已知抛物线张口向上,与⊙ C 交于N, H, P 三点, P 为抛物线的极点,抛物线的对称轴经过点 C 且垂直x 轴于点D.(1)求线段CD 的长及极点P 的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x 轴于A, B 两点,在抛物线上能否存在点Q,使得S 四边形OPMN =8S△QAB,且△ QAB ∽△ OBN 建立?若存在,恳求出Q 点的坐标;若不存在,请说明原因.【考点】 HF:二次函数综合题.【剖析】( 1)连结 OC,由勾股定理可求得MN 的长,则可求得OC 的长,由垂径定理可求得 OD 的长,在Rt△ OCD 中,可求得CD 的长,则可求得PD 的长,可求得P 点坐标;(2)可设抛物线的分析式为极点式,再把N 点坐标代入可求得抛物线分析式;(3)由抛物线分析式可求得 A 、B 的坐标,由 S 四边形OPMN =8S△QAB可求得点Q 到 x 轴的距离,且点 Q 只好在 x 轴的下方,则可求得Q 点的坐标,再证明△QAB ∽△ OBN 即可.【解答】解:(1)如图,连结OC,∵M ( 4, 0), N( 0, 3),∴OM=4 , ON=3 ,∴MN=5 ,∴OC= MN=,∵CD 为抛物线对称轴,∴OD=MD=2 ,在 Rt△ OCD 中,由勾股定理可得CD===,∴PD=PC ﹣CD=﹣=1,∴P( 2,﹣ 1);(2)∵抛物线的极点为 P(2,﹣ 1),∴设抛物线的函数表达式为 y=a( x﹣ 2)2﹣ 1,∵抛物线过N ( 0, 3),∴3=a( 0﹣ 2)2﹣ 1,解得 a=1,∴抛物线的函数表达式为y=( x﹣ 2)2﹣ 1,即 y=x2﹣4x+3 ;(3)在 y=x2﹣ 4x+3 中,令 y=0 可得 0=x 2﹣ 4x+3 ,解得 x=1 或 x=3,∴A ( 1, 0), B( 3,0),∴AB=3 ﹣ 1=2,∵ON=3 , OM=4 ,PD=1 ,∴S 四边形OPMN =S△OMP +S△OMN = OM?PD+ OM?ON=× 4× 1+×4× 3=8=8S△QAB,∴S△QAB =1,设 Q 点纵坐标为y,则× 2×|y|=1,解得y=1或y=﹣1,当 y=1 时,则△ QAB 为钝角三角形,而△ OBN 为直角三角形,不合题意,舍去,当y= ﹣ 1 时,可知 P 点即为所求的 Q 点,∵D 为 AB 的中点,∴AD=BD=QD ,∴△ QAB 为等腰直角三角形,∵ON=OB=3 ,∴△ OBN 为等腰直角三角形,∴△ QAB ∽△ OBN ,综上可知存在知足条件的点Q,其坐标为(2,﹣ 1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年山东省日照市中考数学试卷一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【答案】A.考点:中心对称图形;轴对称图形.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.即4640万=4.64×107.故选C.考点:科学记数法—表示较大的数.4.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【答案】B.试题分析:在Rt△ABC中,根据勾股定理求得BC=12,所以sinA=1213BCAB,故选B.考点:锐角三角函数的定义.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30° C.40° D.60°【答案】D.试题分析:由∠AEF=∠1=60°,AB∥CD,可得∠2=∠AEF=60°,故选D.考点:平行线的性质.6.式子12aa+-有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>2【答案】C.1a+a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选C. 考点:二次根式有意义的条件.7.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等【答案】A.试题分析:如图,∠AOB=3606=60°,OA=OB,可得△AOB是等边三角形,所以AB=OA,即可得圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;故选A.考点:正多边形和圆;根的判别式;点的坐标;旋转的性质.8.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.【答案】D.试题分析:∵y=kbx的图象经过第一、三象限,∴kb>0,∴k,b同号,选项A图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;选项B图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;选项C图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;选项D图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选D.考点:反比例函数的图象;一次函数的图象.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A. B. C.5 D.【答案】A.试题分析:过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD= 12AO=2.5,∴AD=2253AO OD-= = ,∴AC=2AD=53,故选A.考点:切线的性质.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.【答案】D.考点:动点问题的函数图象.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【答案】B.试题分析:观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.考点:规律型:数字的变化类.12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【答案】C.考点:抛物线与x轴的交点;二次函数图象与系数的关系.二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m= .【答案】2m(m+2)(m﹣2).试题分析:提公因式2m,再运用平方差公式对括号里的因式分解即可,即2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).考点:提公因式法与公式法的综合运用.14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.【答案】182.试题分析::根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是(183+191+169+190+177)÷5=182.考点:算术平均数.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD 是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.【答案】6π.考点:扇形面积的计算;平行四边形的性质.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.【答案】5试题分析:过A 作AM ⊥y 轴于M ,过B 作BD 选择x 轴于D ,直线BD 与AM 交于点N ,如图所示:则OD=MN ,DN=OM ,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA ,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN ,在△AOM 和△BAN 中,AOM BAN AMO BNA OA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BAN (AAS ),∴AM=BN=2,OM=AN=2k ,∴OD=2k +2,OD=BD=2k ﹣2, ∴B (2k +2,2k ﹣2), ∴双曲线y=(x >0)同时经过点A 和B ,∴(2+2)•(2﹣2)=k , 整理得:k 2﹣2k ﹣4=0,解得:k=1±5(负值舍去),∴k=1+5.考点:反比例函数图象上点的坐标特征.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2; (2)先化简,再求值:﹣÷,其中a=. 【答案】(1)3+1;(2)原式= 221a --,当2=2-. 试题分析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题.试题解析:(1)原式32﹣1+(13)×4 333;(2)原式=21111(1)1a a a a a ++-÷+-- =21111(1)1a a a a a +--⋅+-+ =1111a a -+- =1(1)(1)(1)a a a a --++- =221a --, 当2时,原式=22221(2)1=-=---. 考点:分式的化简求值;实数的运算.18.如图,已知BA=AE=DC ,AD=EC ,CE ⊥AE ,垂足为E .(1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即 ,可使四边形ABCD 为矩形.请加以证明.【答案】(1)详见解析;(2)AD=BC(答案不唯一).试题分析:(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.(2)添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;考点:矩形的判定;全等三角形的判定与性质.19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【答案】(1)15、25、35、45;(2)15.试题分析:(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.试题解析:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=31 155.考点:列表法与树状图法.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【答案】(1) 实际每年绿化面积为54万平方米;(2) 则至少每年平均增加72万平方米.试题分析:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a 万平方米.则由“完成新增绿化面积不超过2年”列出不等式.(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥72.答:则至少每年平均增加72万平方米.考点:分式方程的应用;一元一次不等式的应用.21.阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【答案】(1)4;(2)b=5或15;(3)最大值为4,最小值为2.试题分析:(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题;(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.试题解析:(1)点P1(3,4)到直线3x+4y﹣5=0的距离223344534⨯+⨯-+;(2)∵⊙C与直线y=﹣34x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴226434b+-+=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d=2264534+++=3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP的最大值=12×2×4=4,S△ABP的最小值=12×2×2=2.考点:一次函数综合题.22.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C 且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.【答案】(1) CD=32, P(2,﹣1);(2) y=x2﹣4x+3;(3) 存在满足条件的点Q,其坐标为(2,﹣1).试题分析:(1)连接OC,由勾股定理可求得MN的长,则可求得OC的长,由垂径定理可求得OD的长,在Rt△OCD中,可求得CD的长,则可求得PD的长,可求得P点坐标;(2)可设抛物线的解析式为顶点式,再把N 点坐标代入可求得抛物线解析式;(3)由抛物线解析式可求得A 、B 的坐标,由S 四边形OPMN =8S △QAB 可求得点Q 到x 轴的距离,且点Q 只能在x 轴的下方,则可求得Q 点的坐标,再证明△QAB ∽△OBN 即可. 试题解析:(1)如图,连接OC ,∵M (4,0),N (0,3),∴OM=4,ON=3,∴MN=5,∴OC=12MN=52, ∵CD 为抛物线对称轴,∴OD=MD=2,在Rt △OCD 中,由勾股定理可得22225()22OC OD -=-=32, ∴PD=PC ﹣CD=52﹣32=1, ∴P (2,﹣1);(2)∵抛物线的顶点为P (2,﹣1),∴设抛物线的函数表达式为y=a (x ﹣2)2﹣1,∵抛物线过N (0,3),∴3=a (0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x ﹣2)2﹣1,即y=x 2﹣4x+3;(3)在y=x 2﹣4x+3中,令y=0可得0=x 2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,∴S四边形OPMN=S△OMP+S△OMN=12OM•PD+12OM•ON=12×4×1+12×4×3=8=8S△QAB,∴S△QAB=1,设Q点纵坐标为y,则12×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).考点:二次函数综合题.。