LM1203

合集下载

立象分享较著名的打印机品牌及型号

立象分享较著名的打印机品牌及型号

较著名的打印机品牌及型号分享:很多人对于条码打印机的品牌都知道一二,但不全,下面由Zebra条形码打印机小编给大家列出了各类叫著名的打印机型号,希望能够帮到大家,对条形码打印机有更进一步的认识。

注意:下列品牌型号是业界公认的品牌型号产地Zebra斑马(中文名)Zebra 105SL 200DPIZebra 105SL 300DPIZebra 110XiIII 200DPIZebra 110XiIII 300DPIZebra 110XiIII 600DPIZebra 110Xi4 200DPIZebra 110Xi4 300DPIZebra 110Xi4 600DPIZebra ZM400 200DPIZebra ZM400 300DPIZebra Z4M 200DPIZebra Z4M 300DPIZebra ZM600 200DPIZebra ZM600 300DPIZebra 140XiIIIZebra 170XiIIIZebra 140Xi4Zebra 170Xi4Zebra 220XiIIIZebra 220Xi4美国SATO佐藤(中文名) CL408eCL412eCL608eCL 612e84Pro 200dpi84Pro 300dpi84Pro 600dpiLM408eLM412e日本Datamax迪玛斯(中文名)I-4208I-4308I-6308美国I-4406I-6404 DMX M-4208 DMX M-4308 DMX H-6308 DMX W-6308 DMX W-8306 DMX H-4606 DMX H-4408Avery艾力(中文名)AP5.4 GenII200dpiAP5.4 GenII 300dpiAP5.6 200dpiAP5.6 300dpi640464066408Monarch 9855美国Symbol讯宝(中文名)LS2208LS2208APLS1203LS4208LS4278DS6708-DL二维DS6707二维LS3008DS3478无线DS3578P370美国Honeywell霍尼韦尔(中文) 1250G / 1250gAP1300GFusion 3780Eclipse 51453800i/3800GpdfVoyager 1400g1900 GHD二维1900 GSR二维1900 COLORMS9540/95201902GSR/GHD无线二维影像美国Dolphin 6500Dolphin 6100MX9MX7美国Dolphin 99EX Tecton 冷链专用Datalogic Gryphon D432+二维Gryphon D100Gryphon D200Gryphon D131Gryphon I GD4100Gryphon I GD4130Gryphon I GD4330Gryphon I GM4130PowerScan PD7100PowerScan 7000 2DPowerScan PBT7100PowerScan PM8300PowerScan PD8300PowerScan PM8500PowerScan PD8500Matrix 200固定式二维Matrix 2000固定式二维Matrix 400固定式二维DS1100固定式一维DS2200固定式一维意大利。

常用芯片功能表

常用芯片功能表

常用芯片功能表17555 HD 单时基电路[返回]27128 ST 16K×8 EPROM2716 2K×8 EPROM2732 4K×8 EPROM2764A-2F1 ST 8K×8 EPRROM27C040-1500C 512K×8 EPROM(CMOS)27C1001-12F1 ST 128K×8 EPROM(CMOS)27C1024 ST [返回]27C128 ST 16K×8 EPROM27C16 2K×8 EPROM(CMOS)27C2001-10F1 ST 256K×8 EPROM(CMOS)27C256B-12F1 ST 32K×8 EPROM(CMOS)27C32 4K×8 EPROM(CMOS) 27C4000D-15 NEC 512K×8 EPROM(CMOS)27C4001-10F1 ST 512K×8 EPROM(CMOS)27C4001-10F1 ST 512K×8 EPROM(CMOS)27C512Q120 NS 64K×8 EPROM(CMOS)27C64A-15F1 ST 8K×8 EPROM(CMOS)27C8001-10F1 ST 1024K×8 EPROM(CMOS)27C801-100F1 ST 1024K×8 EPROM(CMOS) [返回] 27SF020-70-4C-NH SST 256K×8 EPROM(CMOS) 28F256 AMD/INTEL 32K×8 EPROM(CMOS)28F512 AMD/INTEL 64K×8 EPROM(CMOS)29EE010-150-4CF SST 128K×8 FLASH29F010B-70JC AMD 128K×8 FLASH29F010B-90PC AMD 128K×8 FLASH29F040B-70JC AMD 512K×8 FLASH29F040B-90PC AMD 512K×8 FLASH2SD1782K ROHM罗姆3844 MC 电流式控制器[返回]39VF160-90-4C SST4N25 FSC /QTC 光电藕合器(晶体管输岀)DATA 4N26 FSC /QTC 光电藕合器(晶体管输岀) 晶体管输岀DATA 4N27 FSC /QTC 光电藕合器(晶体管输岀)DATA4N28 FSC /QTC 光电藕合器(晶体管输岀)DATA4N30 FSC /QTC 光电藕合器(达林顿输出)DATA4N33 FSC /QTC 光电藕合器(达林顿输出)DATA4N35 FSC /QTC (达林顿输出) 光电藕合器DATA 4N36 FSC /QTC 光电藕合器(达林顿输出) 光电藕合器DATA4N37 FSC /QTC 光电藕合器(达林顿输出) 光电藕合器DATA 4N38 TOS 光电藕合器(达林顿输出) 电藕合器[返回]4N39 TOS 光电藕合器(可控硅驱动器输岀) 光电藕合器4N40 TOS 光电藕合器(可控硅驱动器输岀) 可控硅驱动器输岀光电藕合器628128ALP-7 HD 128K×8 D-RAM65LBC184 TI DATA6N135 FSC /QTC 光电藕合器6N136 FSC /QTC 光电藕合器(带晶体管缓冲器) 6N137 FSC /QTC 高速光电藕合器(带TTL缓冲器) 6N138 FSC /QTC 光电藕合器(带达林顿缓冲器) 6N139 FSC /QTC 光电藕合器(带达林顿缓冲器) 74ACT16244 TI DATA [返回]74AHC1G14DBVR TI DATA74ALVC164245 PHI DATA74ALVT164245 TI DATA74HCT1G125DBVR PHI/TI74HCT237 PHI DATA74LCX14MX FSC 六反相器DATA 74LV08 74LV14 TI 四2输入端与门DATA74LV14 TI 六反相器DATA74LVC1G08DCKR TI DATA [返回]74LVC1G14DCKR TI DATA74LVT16245 PHI80C32-1 INTEL MCS-51系列8位单片机8155 NEC 带I/O口及计时器的随机存储器81C55 OKI 带I/O口及计时器的随机存储器82C79 THINK 可编程键盘/显示接口AD574AJD AD 12位逐次比较型A/D转换器[返回]AD590JH ITS 宽范围温度传感器AD622AR AD 低价格,低功耗仪表放大器DATAAD637JQ AD 高精度,有效值直流放大器DATAAD654-JR AD 500MHZ,低价格压頻转换器DATAAD73360AR AD DATAAD7416AR AD DATAAD7501 AD 多路转换开关AD7513 AD 多路转换开关AD7520JN ITS 10位,COMOS数摸转换器AD7541AKN ADAD7545JN AD DATAAD7722AS AD DATA [返回]AD8044AR-14 AD 150MHZ带宽带电源限输出四运放DATA ADC0804LCN NS A/D转换器ADC0808 NS 多输入逐次比较型A/D转换器ADC0809CCN NS 多输入逐次比较型A/D转换器ADC0820CCN NS A/D转换器ADC0832CCN NS 8位CMOS型A/D转换器ADS1213E BB DATAADSP-21060CZ-160 ADAMS1117-1.8 AMS 低压差、低功耗稳压器[返回]AMS1117-3.3 AMS 低压差、低功耗稳压器AMS1117-5.0 AMS 低压差、低功耗稳压器AMS1117-ADJ AMS 可调.低压差、低功耗稳压器AS1115M-3.3 SIPEX美国600MA、低压差、低功耗稳压器AS2954-5.0 SIPEX美国微功耗、低功耗稳压器AT27C512R-90JC ATMEL 64K×8 EPROMAT89S51-24PC/JC ATMEL 4K×8位FLASH单片机AT89S52-24PC ATMEL 8K×8位FLASH单片机DATAAT89S52-24PI ATMEL 8K×8位FLASH单片机DATAAT89S8252-24AI ATMEL DATAAT89S8252-24JI ATMEL DATAATMEGE8515L-8AI ATMEL 中央控制器BF420 PHI DATA [返回]BT137 600VBTA41-600 STCA3046 ITS 通用晶体管阵列前置放大器大电流晶体管阵列晶体管阵列[返回]CA3080E ITS 前置放大器CA3083 ITS 大电流晶体管阵列CA3089E ITS 晶体管阵列CA3130E ITS 高输入阻抗运算放大器CA3140E ITS 高输入阻抗运算放大器CA3161E ITSCA3162E ITSCA3240E ITSCA3306CE ITSCD22M3494E ITSCF745-04/P microchip 单片机CM8870PI CMD 综合DTMF接收器[返回]CM8880PI CMD 综合DTMF发生接收器CM8888PI CMDCS5523-AS FSCCS8900A-CQ CrystalCS8900A-CQ3 CrystalCXA2647Q SONYCXD3068Q SONYDA1132 KHTEK [返回]DAC0800LCN NS D/A转换器DAC0808LCN NS 8位双极性电流输出型D/A转换器DAC0832LCN NS 8位CMOS型D/A转换器DAC1210 12位CMOS型D/A转换器DAC7644E BB DATADG508ACJ HARDS1488N NS 四线路驱动器DATADS1489AN NS 四线路接收器DATADS18B20 DS 温度传感器DS1990 DALLAS [返回]DS1991 DALLASDS26LS31CN NSDS26LS32ACN NSEL2280CS EL [返回]EPC1441PC ALTERAEPC1CC8 ALTERA DATAEPC2LC20 ALTERA DATAEPCS4SI8 ALTERA DATAEPF6016QC208-3 ALTERA EPM3032ALC44-10 ALTERA DATA EPM3032ATC44-10 ALTERA DATA EPM3128ATC100-10 ALTERA DATA EPM6024AQC208-3 ALTERA DATA EPM7032SLC44 ALTERA EPM7064SLC44-10 ALTERA DATA EPM7064STC100-10 ALTERA DATA EPM7064STC44-10 ALTERA DATA GD75232 TI DATA [返回]H11-574AJD-5 ITSH11A817 QTC 光电藕合器DATAH11A817A QTC 光电藕合器DATAH11A817B QTC 光电藕合器DATAH11A817C QTC 光电藕合器DATAH11D1 QTC 光电藕合器H11G1 FSC 光电藕合器H11L1 FSC 光电藕合器HA17324 HIT 四运算放大器HCNR200 安捷伦/惠普光电藕合器HCNR201 安捷伦线性光耦HCPL-0600 安捷伦/惠普高速光耦HCPL0631 安捷伦/惠线性光耦HCPL2530 安捷伦线性光耦HCPL2531 安捷伦/惠线性光耦HCPL2630 安捷伦/惠线性光耦HCPL316J 安捷伦/惠普光电藕合器[返回] HCPL7800 安捷伦/惠线性光耦HCPL7800A 安捷伦/惠线性光耦HCPL7840 安捷伦/惠普线性光耦HIN232CP ITS 232接口HM6264LP-70 HMC 8K×8 D-RAMHM9270D HMC DTMF解码器HSM5832RS -7 OKIHSM6242BRS-7 OKIHT7133 HTHUF76121P3 ITSHY62WT081ED70C HY 32K×8 D-RAMICL232CPE HAR 232接口[返回]ICL7106CPL ITS 单片三位半双积分A/D,驱动LCD ICL7107CPL ITS 单片三位半双积分A/D,驱动LED ICL7109 二进制输出积分型A/D转换器ICL7116CPL ITS 单片三位半双积分A/D,驱动LCD ICL7126CPL ITS 10MHZ通用频率计数器ICL7135CN TI 单片三位半双积分A/D,驱动LCD ICL7135CPI ITS 单片三位半双积分A/D,驱动LCD ICL7136CPL ITS BCD输出积分型A/D转换器ICL7650SCPD ITS 斩波稳零放大器ICL7660SCPA ITS CMOS直流转换器ICL7665SCPA ITSICL8038CCPD ITS 锯齿波发生器ICL8069 1.2V基准源[返回]ICM7211AIPI ITSICM7211AMIPI ITSICM7216DIPI ITSICM7218AIJI ITSICM7218DIJI ITSICM7232 HIRICM7555IPA ITS CMOS低功耗单时基电路ICM7556IPD ITS CMOS低功耗双时基电路IDT7132 IDTIDT7135-55P IDTIR2101 IR 场效应管IR2101S IR [返回]IR2103S IRIR2127S IRIR2128S IRIRF5210 IRIRF540 IR 场效应管IRFP250 IRIRFP460 IRISPLSI 1016E-80LJ LATTICE 大规模在线可改写门阵列ISPLSI 1024-80LJ LATTICE 大规模在线可改写门阵列ISPLSI1032E-70LJ LATTICE 大规模在线可改写门阵列KA331 FSC 精密电压频率转换器[返回]KA336-5.0 KA 5.0V精密基准电压源DATAKA3848 FSC KAMKA75330ZBU FSCKPC817D COSMO 光电藕合器L293B/D ST [返回]L4981A STL4981AD STL6574D STLA7217 SANYOLA76810A 家电ICLF347N FSC 带宽四运算放大器LF347N NS 带宽四运算放大器DATALF351 NS BI-FET单运算放大器DATALF353N FSC BI-FET双运算放大器LF353N NS BI-FET双运算放大器DATALF356N NS BI-FET单运算放大器DATALF398N NS 采样保持放大器DATALF411CN NS BI-FET单运算放大器DATALF412CN NS BI-FET双运放大器DATALF441CN NS 低功能耗JEFI输入远放LF442CN NS 双低功能耗JEFI输入远放DATALF444CN NS BI-FET四运算大器DATALM1117 多种电压NS 800MA、低压差、低功耗稳压器DATA [返回]LM119J NS DATALM1203AN NS 视频放大器LM139J NS 电压比较器DATALM1458N NS 双运算放大器DATALM1851 NS DATALM1875T NS 音频功率放大器DATALM1881N NS DATALM224J NS 低功耗四运算放大器(工业档)DATALM224N TI / ST 低功耗四运算放大器(工业档) [返回]LM2439T NS 功放ICDATALM2574HVN-5 NSLM2575T-5.0 NS 5V简易开关电源稳压器(1A)DATALM2576HVT-ADJ NS 高压输入可调1.23Vto37V简易开关电源稳压器(3A)DATA LM2576S-5.0 NS 5V简易开关电源稳压器( 3A )DATALM2576T-12 NS 12V简易开关电源稳压器(3A)DATALM2576T-5.0 NS 5V简易开关电源稳压器(3A)DATA LM2576T-ADJ NS 可调1.23Vto37V简易开关电源稳压器(3A)DATA LM2577S-ADJ NS 简易开关电源稳压器( 可调) [返回]LM258N ST 通用型双运算放大器DATALM2621 NS DATALM2677S-ADJ NS DATALM2731 NS DATALM285Z-2.5 NS 2.5V精密基准电压源(工业档)LM2901N NS 低功耗低失调四电压比较器DATALM2902N. NS 四运算放大器DATALM2903N NS FSC 低功耗低失调双电压比较器DATA LM2904N NS FSC 双运放大器DATALM2907N NS 频率电压转换器DATA LM2931AZ NS 5.0V低压差稳压器( TO-92 )DATALM2931CT NS 3Vto29V低压差稳压器DATALM2931T-5.0 NS 5.0V低压差稳压器DATALM2937IMP-12 NS DATALM2940CT-12 NS 12V低压差稳压器DATALM2940CT-5.0 NS 5.0V低压差稳压器DATALM301AN NS 运算放大器DATA [返回]LM305H NS 高精度可调4.5Vto40v稳压器LM3086N NS 三极管阵列LM308H NS 运算放大器(金属封装)DATALM308N NS 运算放大器DATALM311N NS 单电压比较器DATALM317K NS 1.2Vto37V三端正可调稳压器(1.5A)DATA LM317LZ FSC 1.2Vto37V三端正可调稳压器(0.1A) LM317LZ NS 1.2Vto37V三端正可调稳压器(0.1A)DATA LM317T NS 1.2Vto37V三端正可调稳压器(1.5A)DATA LM317T ON 1.2Vto37V三端正可调稳压器(1.5A)LM318N NS 高速运算放大器DATA [返回]LM319N NS 高速双比较器DATALM321 NS DATALM323K NS 精密5V稳压器( 3A )DATALM324N NS 四运算放大器DATALM331N NS 精密电压频率转换器DATALM334Z NS 可调整的当前的来源DATALM335Z NS 精密温度传感器DATALM336Z-2.5 FSC 2.5V精密基准电压源LM336Z-2.5 NS 2.5V精密基准电压源DATALM336Z-5.0 FSC 5.0V精密基准电压源LM336Z-5.0 NS 5.0V精密基准电压源DATALM337IMP NS 三端可调-1.2Vto-37V稳压器(1.5A)DATA LM337K NS 三端可调-1.2Vto-37V稳压器(1.5A)DATA LM337LZ NS 三端可调-1.2Vto-37V稳压器(0.1A)DATA LM337T FSC 三端可调-1.2Vto-37V稳压器(1.5A) [返回] LM337T NS 三端可调-1.2Vto-37V稳压器(1.5A)DATA LM338K NS 三端正可调1.2Vto32V稳压器(5A)DATA LM339N NS 四电压比较器DATALM339N TI 四电压比较器DATALM340MP-5.0 NS 稳压ICDATALM3478MM NS DATALM3485MM NS DATALM348N FSC 四运算放大器LM348N NS 四运算放大器DATALM350T FSC 三端可调1.2Vto32V稳压器DATA LM3524 NS 脉宽调制开关电源控制器DATA [返回] LM358N NS 通用型双运算放大器DATALM358P TI 通用型双运算放大器LM35DZ NS 精密温度传感器DATALM380N NS 音频功率放大器DATALM385Z-1.2 =8069 NS/FSC 1.2V精密基准电压源DATA LM385Z-2.5 NS/FSC 2.5V精密基准电压源DATALM386-1 NS 音频放大器DATALM386-3 NS 音频放大器DATALM3886 NS 音频大功率放大器DATALM3900 四运算放大器LM3914N NS 点/线显示驱动器LM3914N-1 NS 点/线显示驱动器DATALM3915N NS 点/线显示驱动器LM3915N-1 NS 点/线显示驱动器DATA LM3916N NS 点/线显示驱动器DATA [返回]LM392N NS DATALM393N NS 低功耗低失调双电压比较器DATA LM393P TI 低功耗低失调双电压比较器LM3940IMP-3.3 NS 3.3V低压差稳压器DATA LM399H NS 6.9999V电压基准源DATALM431ACZ FSC 精密可调2.5Vto36V基准稳压源DATA LM431ACZ NS 精密可调2.5Vto36V基准稳压源DATA LM4752T NS 音频功率放大器DATALM4766T NS 功放ICDATALM4871 NS 功放ICDATALM555CN NS FSC 单时基电路DATALM556CN FSC 双时基电路LM567CN NS 音频译码器DATALM709CN NSLM723CN NS 高精度可调2Vto37V稳压器DATA [返回] LM725 NS 高精度运算放大器DATALM741CN FSC 通用型运算放大器DATALM75CIMM NS 温度传感器DATALM77CIM NS 温度传感器DATALM833N NS DATALMC272 NS 双路运算放大器LMC6032IN NSLP2950ACN-3.3 SIPEX美国微功耗、可调电压调节器LP324N NS 四运算放大器DATALP3855ES-5.0 NS 稳压ICDATALP3871ES-5.0 NS 稳压ICDATALS1240A ST 电话振铃集成电路LT1118CST-2.85 NS DATALT1129CST-3.3 NS DATALT1761ES5-3.3V LTLT1962EMS LTLT1963ES LTM5M27C201K-12 三凌256K×8 EPROM(CMOS) [返回]MAX1480BCPI/BEPI MAX 完备的,每秒2.5M比特,隔离的RS-422数据接口DATAMAX1602EEE MAX DATA MAX187BCPA MAX 低功率,具有采样/保持和基准源的,12-BIT串行模数转换器DATAMAX197BCNG MAX487ECPA MAX 12位,8通道,故障保护带采保并行A/DMAX202EPE 防静电MAX 5V双组RS-232接收发送器DATAMAX310EWN MAX DATA MAX333ACPP MAX 四组单刀双掷,CMOS模拟开关DATA MAX333AEPP 工业MAX 四组单刀双掷,CMOS模拟开关DATAMAX394CPP MAX 模拟多路转换器DATAMAX4164ESD MAX DATAMAX4427CSA MAX DATAMAX4555CSE MAX DATAMAX4736EUB MAX DATA [返回]MAX483ESA-T MAX 额定转换速率的,350uA带底功率关断的,RS-485接收发送器DATA MAX487ECPA MAX RS-485接收发送器MAX488CPA MAX 额定转换速率的,350uA全双工RS-485接收发送器DATA MAX489CPD/CSD MAX 额定转换速率的,350uA全双工RS-485接收发送器DATAMAX491CPD MAX 500uA全双工RS-485接收发送器MAX5250ACPP MAX MAX5250AEPP MAXMAX532BCPE MAX 双组,串行12-BIT数模转换器DATAMAX541CCSA MAX DATAMAX541CESA MAX DATA MAX7219CNG MAX 串行的,8位数字,数码管显示器驱动器DATA MAX730ACSA MAX DATA MAX730CSA MAX DATAMAX809RUER MAX DATA MAX873BCPA MAX 低功率,低漂移,2.5V高精度基准电压DATA MC13135DW MOT MC1403P1 ON 5.0V基准源MC1413P ON 七重达林顿管驱动器MC14433 三位半A/D转换器MC14467PI MOT 烟雾要检器(电池式)MC14499P MOT 7段串联接囗LED译动器/驱动器MC145026P ON 编码器MC145027P ON 译码器MC145028P ON 译码器MC145167P MOT 双PLL(46/49MHZFS(无绳电话用)MC146818 MC 计时器MC1496P ON 平衡调制/解调器MC33039P MOT 闭环无刷电机适配器MC33063AP1 ON DC-DC转换控制电路MC34063AP1 ON 充电控制器MC68000P10 MOT MC6850P MOT MC68B40P MOTMCT6 QTC 光电藕合器MF10CCN NS MIC29302BT MIC MJ15003 ON 大功率管MJ15004 ON 大功率管MJ15022 ON 大功率管MJ15023 ON 大功率管MOC3010 FSC/QTC 非过零触发可控硅输出光电耦合器DATAMOC3011 FSC/QTC 非过零触发可控硅输出光电耦合器DATAMOC3020 FSC/QTC 非过零触发可控硅输出光电耦合器DATAMOC3021 FSC/QTC 非过零触发可控硅输出光电耦合器DATAMOC3022 FSC/QTC 非过零触发可控硅输出光电耦合器DATAMOC3023 FSC/QTC 非过零触发可控硅输出光电耦合器DATAMOC3041 FSC/QTC 过零触发可控硅输出光电耦合器DATAMOC3042 FSC/QTC 过零触发可控硅输出光电耦合器DATAMOC3043 FSC/QTC 过零触发可控硅输出光电耦合器DATAMOC3052 FSC/QTC 过零触发可控硅输出光电耦合器DATAMOC3061 FSC/QTC 过零触发可控硅输出光电耦合器DATAMOC3062 FSC/QTC 过零触发可控硅输出光电耦合器DATAMOC3063 FSC/QTC 过零触发可控硅输出光电耦合器DATAMOC3081 FSC/QTC 过零触发可控硅输出光电耦合器DATAMOC3082 FSC/QTC 过零触发可控硅输出光电耦合器DATAMOC3083 FSC/QTC 过零触发可控硅输出光电耦合器DATA [返回] MOC8106 FSC 光电藕合器MT8880AE MT 综合DTMF发生接收器MT8888 MT MT8920BE MT MT8924BE MT MT8941BE MT MT8952BE MT MT8965 MT MT8980DE MT MT8985AE MT MT9041BPMT MT9042BP MTMT9075BP MT MT90820AL MT MT9172 MTN80C196KB16 INTEL 16位CMOS微处理器N80C196KC20 INTEL 16位CMOS微处理器N87C196MC INTEL 16位CMOS微处理器N87C196MH INTEL 16位CMOS微外处理器NE5532P TI 高速低噪声双运算放大器DATA NE555P TI 单时基电路NE556N ST 双时基电路NJM2107F JRC DATA NJM2107F JRC DATA NJM2374A JRC DATAOP07CP TI 低噪声精密运算放大器DATA [返回] OP177G AD 超精密运算放大器OP27GP AD/TI 超低噪声精密运算放大器OP37[ ] 超低噪声精密运算放大器OP37GP 超低噪声精密运算放大器OP77 AD OP07换代,超低失调电压运放OPA335 BB/TI OPA541AP BB DATA P525G-1 TOS 光电藕合器[返回]P525G-2 TOS 光电藕合器P80C31BH-1 INTEL MCS-51系列8位单片机(CMOS) P87LPC762BN PHILP 单片机P87LPC762FD 工业档PHILP 单片机DATAP87LPC762FN 工业档PHILP 单片机DATA P87LPC764BN PHILP 单片机PA28F800B5T70 INTEL PC123 SHARP 光电藕合器DATA PC817 SHARP 光电藕合器DATAPC847 SHARP 光电藕合器PC922 SHARP 光电藕合器DATA PCA82C250 HPI [返回] PCF8563P PHILP 时钟IC PCF8563T PHILP 时钟IC PCF8574P PHILP PCF8576CT PHILP PIC12C508 microchi PIC16C711-04/P microchip 单片机PIC16C712-04 microchip 单片机PIC16F873 04/SP microchip 单片机PQ05 SHARP 光电藕合器DATAPQ09 SHARP 光电藕合器DATA PQ12 SHARP 光电藕合器DATA [返回]PS2501 NEC 光电藕合器DATA PS2501 NEC 光电藕合器DATA PS2505-1 NEC 光电藕合器PS2801-1 NEC 光电藕合器PS8701 NEC 光电藕合器S3055PB MACC [返回]S-80845CNUA-B86-T2 日本精工电压检测器SAA5264PS PHI 解码芯片DATA SAA5284GP PHI 解码芯片DATA SAA7111AH PHI SAA7114H PHI 解码芯片DATASAA7185BWP PHI 解码芯片DATA SAA7196H PHI 解码芯片DATA SC16C650AIA44 PHI 异步通信埪制器SC8560 SL 时钟IC SFH615A-3 SIEMENS 光电藕合器SG3524N TI 脉宽调制开关电源控制器SG3525AN ON 开关电源控制器SI4435DY siliconix SL811HST-1.5 CY SN75116N TI DATA SST89E564RD-40-I-PISST ST16C450 XR ST16C554 XR ST3232BTR ST TA2003P TOS [返回] TA31136F TOSHIBA TA8227 UTC TB1238AN TOS 家电IC TC4S81FTOSTD62003AP TOS 七重达林顿管驱动器TDA2003 ST 音频功率放大器TDA2003 UTC 音频功率放大器TDA2030 UTC 音频功率放大器TDA2030A ST 音频功率放大器TDA7010 PHI TE28F160 INTEL DATA TEA5757H PHI 手机录音=语音ICDATATEA5767HA PHI DATA TIL113 QTC 光电藕合器(达林顿输出)TIL117 QTC 晶体管输岀光电藕合器TIP122 ST 达林顿三极管PNP TIP127 ST 达林顿三极管NPNTL051 TI 提高JFET精确操作的扩音器DATA TL062CP TI BI-FET双运算放大器TL064CN TI BI-FET四运算放大器TL072CP TI BI-FET双运算放大器DATA TL074CN TIBI-FET四运算放大器DATA TL0820ACN TITL082CP TI BI-FET双运算放大器DATA TL084CN ST BI-FET四运算放大器TL084CN TI BI-FET四运算放大器DATA TL1451ACNS TI DATA TL16C554 TI/IMP TL3842P TI电流式控制器DATATL3843P TI 电流式控制器DATATL3845P TI 电流式控制器DATA TL431CLP TI 精密可调2.5Vto36V基准稳压源DATATL494CN TI 脉宽调制开关电源控制器DATA TL7705ACD TI 电池供电/欠压控制器DATA TL7705ACP TI 电池供电/欠压控制器DATA TLC0820ACN TI 差分基准输入,3态输岀驱动,2种工作方式可选DATA TLC0831 TI 8位A/D转换器DATA TLC0832CN TI 8位A/D 转换器DATA TLC0834CN TI 8位A/D转换器DATA TLC0838 TI DATATLC1543CN /CD TI 10位A/D转换器[返回] TLC2543CN TI 11路摸拟输入,工作方式可编程DATA TLC272 TI 双路运算放大器DATATLC27L2CDR TI TLC548 TI DATA TLC549 TL DATA TLC5615CP TI 高输入阻抗,底功耗DATA TLC5620CN TI 带缓冲的基准输入,2种输出幅度可选DATA TLC5628CN TI DATA TLC7528CN TI DATA TLC7705IP TI DATATLP181 TOS 光电藕合器TLP250 TOS 光电藕合器TLP521-1 TOS 晶体管输岀光电藕合器DATA TLP521-2 TOS 晶体管输岀(2路)DATA TLP550 TOS 光电藕合器TLP559 TSO 光电藕合器TLP621 光电藕合器TLP621-1 TOS 光电藕合器TLP621-4 TOS 光电藕合器TLP627 TOS 光电藕合器TLP627-1 TOS 光电藕合器TLV2252 TI TMS320C31PQL40 TI DATA TMS320F240PQA TI DATA TMS320LF2407APGEA TI DATA TMS320VC5402PGE-100 TI DATA TMS320VC5409PGE-100 TI DATATMS320VC5410-100 TI DATA TMS320VC5410-160 TI DATA TMS320VC5416-120 TI DATA TN80C196KC20 INTEL 16位CMOS微处理器TOP223Y/P POWER 电源IC TOP224Y/P POWER 电源IC TOP234P POWER 电源ICTP3054BN TI Interface CODEC/Filter COMBO TP3057N NS Interface CODEC/Filter COMBO TP3067N NS TP3071N-G NS COMBO II Programmable PCM CODEC/Filter TPIC6B273N TI TPIC6B595N TI 译码+七重达林顿管驱动器TPS767D301PWP TI DATA TPS767D318PWP TI DATA TPS767D325PWP TI DATA UA733 NS/TI 带宽运算放大器DATA UAA1041B ON UC3842AN MOT 电流式控制器ULN2003AN TI 七重达林顿管驱动器DATA ULN2003AN TI 七重达林顿管驱动器DATAULN2004A TI 七重达林顿管驱动器DATA ULN2803AP TOS 八重达林顿管驱动器UPD43256BGW-70LL NEC UPD7225G00 NEC VD5026 VD 遥控编码器VD5027 VD 遥控译码器VD5028 VD 遥控译码器W24258-70LL Winbond 低压.32K×8位CMOS SRAM W27C020-70 Winbond 256K×8位EPROM W27C02-70 Winbond 256K×8位EPROM W27C512-45 Winbond 32K×8位EPROMW27E040-12 Winbond 512K×8位EPROM W29C011A-15 Winbond 128K×8位FIASH W29C020C-90B Winbond 256K×8位FIASH W29C040-90 Winbond 512K×8位FIASH W29C040P-90 Winbond 512K×8位FIASH W29EE011P-90 Winbond 128K×8位FIASH W77E58-40 Winbond 32K×8MTPROM,(1K+256)×8RAMW77E58P-40 Winbond 32K×8MTPROM,(1K+256)×8RAM W77LE58 Winbond 低压.32K×8MTPROM,(1K+256)×8RAM W77LE58P-40 Winbond 低压.32K×8MTPROM,(1K+256)×8RAM W78E516B-24/-40 Winbond 64K×8掩膜ROM,512×8RAMW78E516BF-40 Winbond 64K×8掩膜ROM,512×8RAM W78E516BP-40 Winbond 64K×8掩膜ROM,512×8RAMW78E52B-24/-40 Winbond 8K×8MTPROM,256×8RAM W78E58B-24/-40 Winbond32K×8MTPROM,256×8RAMW78E58BF-40 Winbond 32K×8MTPROM,256×8RAM W78E58BP-40 Winbond32K×8MTPROM,256×8RAM W78LE516B-24 Winbond 低压64K×8掩膜ROM,512×8RAM X1226 XICOR [返回]X1228 XICOR X24C02 XICOR 串行EEPROM(2K,256×8)X24C04 XICOR 串行EEPROM(4K,512×8)X24C08 XICOR 串行EEPROM(8K,1024×8)X24C44=X24C45 XICOR X24C44P = X24C45 X5043 XICOR X5043 XICOR X5645 XICOR X9241WS XICOR X9312 XICOR X9313 XICOR X9315 XICOR XC95108 PC84 -15 XILINX XC95108 PQ100-10C XILINX XC95108 TQ100-10C XILINX XC95144 XLTQ144 -10C XILINX XC95216PQ160 XILINX XC9536 XICOR XC9572 XICOR XC9572 XILINX XTR105PA BB/TI XTR106PA BB/TIZ80A-SIO-0 串行输入输出接口Z80CPC ZILOG Z80CPU ZILOG 8位中央处理器(时钟2.5MHZ) Z80-CTC 定时器/计数器Z80PIO ZILOG 并行输入输出接口常用器件功能表3LM124J NS 低功耗四运算放大器(军用档)DATALM139J NS 电压比较器DATALM224J NS 低功耗四运算放大器(工业档)DATA LM258N ST 通用型双运算放大器DATALM301AN NS 运算放大器DATALM305H NS 高精度可调4.5Vto40v稳压器LM308H NS 运算放大器(金属封装)DATALM308N NS 运算放大器DATALM311N NS 单电压比较器DATALM317K NS 1.2Vto37V三端正可调稳压器(1.5A)DATA LM317LZ FSC 1.2Vto37V三端正可调稳压器(0.1A) LM317LZ NS 1.2Vto37V三端正可调稳压器(0.1A)DATA LM317T ON 1.2Vto37V三端正可调稳压器(1.5A)LM317T NS 1.2Vto37V三端正可调稳压器(1.5A)DATA LM318N NS 高速运算放大器DATALM319N NS 高速双比较器DATALM323K NS 精密5V稳压器( 3A )DATALP324N NS 四运算放大器DATALM324N NS 四运算放大器DATAHA17324 HIT 四运算放大器LM331N NS 精密电压频率转换器DATAKA331 FSC 精密电压频率转换器LM334Z NS 可调整的当前的来源DATALM336Z-2.5 FSC 2.5V精密基准电压源LM336Z-5.0 FSC 5.0V精密基准电压源LM336Z-2.5 NS 2.5V精密基准电压源DATALM336Z-5.0 NS 5.0V精密基准电压源DATAKA336-5.0 KA 5.0V精密基准电压源DATALM337LZ NS 三端可调-1.2Vto-37V稳压器(0.1A)DATA LM337T FSC 三端可调-1.2Vto-37V稳压器(1.5A)LM337T NS 三端可调-1.2Vto-37V稳压器(1.5A)DATA LM337K NS 三端可调-1.2Vto-37V稳压器(1.5A)DATA LM338K NS 三端正可调1.2Vto32V稳压器(5A)DATA LM339N TI 四电压比较器DATALM339N NS 四电压比较器DATALF347N NS 带宽四运算放大器DATALF347N FSC 带宽四运算放大器LM348N FSC 四运算放大器LM348N NS 四运算放大器DATALM350T FSC 三端可调1.2Vto32V稳压器DATA LF351 NS BI-FET单运算放大器DATALF353N FSC BI-FET双运算放大器LF353N NS BI-FET双运算放大器DATALF356N NS BI-FET单运算放大器DATALM358N NS 通用型双运算放大器DATALM358P TI 通用型双运算放大器LM35DZ NS 精密温度传感器DATALM335Z NS 精密温度传感器DATALM380N NS 音频功率放大器DATALM285Z-2.5 NS 2.5V精密基准电压源(工业档)LM385Z-1.2 =8069 NS/FSC 1.2V精密基准电压源DATA LM385Z-2.5 NS/FSC 2.5V精密基准电压源DATALM386-1 NS 音频放大器DATALM386-3 NS 音频放大器DATALM392N NS DATALM393N NS 低功耗低失调双电压比较器DATA LM393P TI 低功耗低失调双电压比较器LF398N NS 采样保持放大器DATALM399H NS 6.9999V电压基准源DATALF411CN NS BI-FET单运算放大器DATALF412CN NS BI-FET双运放大器DATALF441CN NS 低功能耗JEFI输入远放 LF442CN NS 双低功能耗JEFI输入远放DATA LF444CN NS BI-FET四运算大器DATALM555CN NS FSC 单时基电路DATA17555 HD 单时基电路NE555P TI 单时基电路NE556N ST 双时基电路LM556CN FSC 双时基电路LM567CN NS 音频译码器DATALM709CN NSLM723CN NS 高精度可调2Vto37V稳压器DATA LM725 NS 高精度运算放大器DATAUA733 NS/TI 带宽运算放大器DATALM741CN FSC 通用型运算放大器DATALM833N NS DATALM1203AN NS 视频放大器LS1240A ST 电话振铃集成电路LM1458N NS 双运算放大器DATALM1851 NS DATALM1875T NS 音频功率放大器DATALM1881N NS DATALM2574HVN-5 NSLM2575T-5.0 NS 5V简易开关电源稳压器(1A)DATALM2576T-5.0 NS 5V简易开关电源稳压器(3A)DATA LM2576T-ADJ NS 可调1.23Vto37V简易开关电源稳压器(3A)DATA LM2576S-5.0 NS 5V简易开关电源稳压器( 3A )DATALM2576HVT-ADJ NS 高压输入可调1.23Vto37V简易开关电源稳压器(3A)DATA LM2577S-ADJ NS 简易开关电源稳压器( 可调)LM2901N NS 低功耗低失调四电压比较器DATALM2902N. NS 四运算放大器DATALM2903N NS FSC 低功耗低失调双电压比较器DATALM2904N NS FSC 双运放大器DATALM2907N NS 频率电压转换器DATALM2931AZ NS 5.0V低压差稳压器( TO-92 )DATALM2931T-5.0 NS 5.0V低压差稳压器DATALM2931CT NS 3Vto29V低压差稳压器DATALM2940CT-12 NS 12V低压差稳压器DATALM2940CT-5.0 NS 5.0V低压差稳压器DATALM3086N NS 三极管阵列LM3886 NS 音频大功率放大器DATALM3900 四运算放大器LM3914N NS 点/线显示驱动器LM3914N-1 NS 点/线显示驱动器DATALM3915N NS 点/线显示驱动器LM3915N-1 NS 点/线显示驱动器DATALM3916N NS 点/线显示驱动器DATALM4752T NS 音频功率放大器DATALMC6032IN NSKA3848 FSC KAM。

显示器维修案例(各牌通病)

显示器维修案例(各牌通病)

东方维修培训版权所有

技术支持:010-62102513
显示器芯片级维修教材
编辑:毛泽云
图 6-6 保护电路示意图
6.2 单元电路检修思路
1.电源电路 故障现象:开机无任何反应,(炸机)。 检修思路:开壳后,目测电源电路有无明显损坏,如:电阻发黑,开关管炸裂,则说明 电源炸机。 (1)在修电源电路前,现对整机电路进行初测,包括行管、升压管、升压二极管,电 源各路输出整流二极管,没有坏件修电源,有坏的换新后修电源。 (2)将明显能看到的坏件全部拆下,对没有明显损坏的件全部测量,将坏件拆下。 (3)用无水酒精将电路发黑的地方,清洗干净,将损坏的件换新装好后,再找电源的 元件统统查一遍,切记:乱通电,只要有一颗未查出来,再开机会再次关机。 (4)炸机,易损件: ① 保险 4A/250V ② 开关管,K2645、K2141 ③ 开关管 D 极保护电阻,1Ω/1W、10Ω/2W,可以直接短接。 ④ 开关管 S 极电流检测电阻 0.22Ω/2W、0.33Ω/3W。尖峰吸收,HER207、3842② 脚持续供电二极管 HER207。 ⑤ 开关管 G 极所接元件如图 6-7 所示。
东方维修培训版权所有

技术支持:010-62102513
显示器芯片级维修教材
(3) 查行场振荡 IC 的 ICB+out 信号是否正常,不正常换 IC。
编辑:毛泽云
图 6-8 行振荡 IC 的 ICB+out 输出信号图
小经验:场效应管如是半塑封时,装时须装绝缘热垫。
升压过高现象:出现满屏的回扫线(彩色)。
图 6-9 二次升压电路检修图
二次降压电路的维修流程: 易发的故障现象:开机亮绿灯,无高压,或者机叫灯闪。 检修方法:开机器后,可用万用表检查,降压管和行管是否击穿,一般情况下,降

CRT显示器组成原理框图及各部分主要功能

CRT显示器组成原理框图及各部分主要功能

第二节显示器组成原理框图及各部分主要功能一原理框图显示器由行扫描电路场扫描电路视频处理电路视频放大电路同步信号处理电路亮度调整电路自动亮度ABL 控制电路电源和显像管等八部分组成原理框图见图1.5 所示图1.5 显示器组成原理框图二各框主要功能1 视频处理电路目前流行的显示器绝大部分是VGA 彩色显示器但个别用户还在使用TTL CGAEGA 彩色显示器所以该电路包括这两种显示器的内容VGA 显示器视频处理电路的主要功能是将计算机送入的R G B 模拟脉冲信号进行视频处理后送入视频放大电路视频处理电路多数都采M51387 或LM1203N 两种芯片TTL 彩色显示器视频处理电路先将TTL 数字信号进行放大整形然后进行释码处理再将TTL 信号变成模拟信号送入视频放大电路整形放大一般彩三极管释码处理常采用N82S147AN 同DM74S472N或N82S135N D/A 转换电路前几年常采用分离元件现在均采用集成电路两种显示器视频处理电路都具有对比度控制功能亮平衡调整功能等2 视频放大电路主要功能是对经过视频处理后的模拟信号进行放大常通过射极跟随器输出送入显像管阴极RK GK BK 该电路还具有暗平衡调整功能保证屏幕背景颜色适宜该电路有足够的带宽和放大量保证图像清晰不失真3 行扫描电路1 输送给行偏转线圈线性良好的行频锯齿波电流峰值可达几个安培2 供给显像管所需要的工作电压阳极高压单色显像管为14..17kV 14 英寸彩色显像管为22..30kV 17 英寸以上大屏26..34kV 为14..20 英寸彩色显像管提供聚焦极电压5..8kV 为14 英寸彩管提供加速极电压250..450V 为亮度控供-170..400Vpp 脉冲电压为灯丝提供6.3V 直流或20..30VPP 行脉冲电压目前生产的彩色显示器显像管灯丝电压大多数采用电源供电有些显示器还由电脑控制3 给显像管提供行消隐信号使行扫描逆程中电子束被截止实际上电子束没有完全截止只是屏幕亮度在适合的情况下不出现回扫线4 向行扫描集成电路AFC 鉴相器提供行逆程脉冲信号经积分变为锯齿波作为比较信号与同步信号进行比较达到行扫描频率和相位与同步信号的频率和相位完全同步保证屏幕图像稳定5 向高压保护电路提供高压取样脉冲6 国外一些显示器还提供高压直流取样电压送入高压稳定电路4 场扫描电路1 为场偏转线圈提供线性良好的锯齿波电流2 能够方便地调整场扫描频率幅度和线性确保图像在垂直方向稳定3 为显像管提供场消隐信号5 同步信号处理电路随显示方式的多种变化扫描频率升高范围加宽行场同步信号的频率和极性也随之变化该电路要根据行振荡芯片对同步信号极性的要求提供极性一致的同步信号另外同步信号的幅度要足够大一般为3..5Vpp6 亮度和自动亮度控制Automatic Brightness Limiter 电路显像管电子的发射量有两种控制方式一种由阴极电压的高低控制前几年生产的显示器多数采用阴极控制这种方法控制范围小其控制电压黑白显象管一般为40V 彩色显象管一般为45..185V 由电位器调整电压的大小通过视放电路改变阴极电压的大小第二种是栅极GI 控制通过改变栅极电压的大小来调整阴极电子的发射量亮度控制电路为栅极提供0..-60V直流电压这种控制方式范围大基本取代了阴极控制方式自动亮度控制ABL 电路由于某种原因使得显像管阳极高压升高使图像背景亮度即显像管光栅太亮会缩短显像管寿命而且对人的眼睛也是有害的为了避免这种现象的出现显示器一般都采用这种控制电路简称ABL 电路该电路将行输出变压器阳极高压负端由于显像管亮度变化而产生的电压变化进行取样此电压叫ABL 控制电压经控制电路放大加到视频处理电路中的对比度控制电路通过对比度控制电路使显像管的亮度变暗恢复正常7 显像管通过显像管的屏幕实时地将计算机的工作过程和结果显示出来8 电源向显示器各组成部分提供稳定的直流工作电压即1 行场振荡电路电源电压一般为12V2 行输出电源电压其大小随行同步脉冲频率升高而升高一般为54..130V 常用B+表示大屏幕可到195V3 行推动电路电源电压一般为12V..100V4 场输出电路电源电压一般为12V..100V5 视频放大电路电源电压为60..180V6 视频处理电路电源电压一般为12V7 一般集成电路电源电压为5V8 灯丝电源电压一般为6.3V。

LM系列芯片大全

LM系列芯片大全

LM系列芯片大全LM12 80W OPERATIONAL AMPLIFIER 80瓦运算放大器LM124 LM224 LM324 LM2902 Low Power Quad Operational Amplifier 低电压双路运算放大器LM324 Low Power Quad Operational Amplifier 低电压双路运算放大器LM129 LM329 Precision Reference 精密电压基准芯片LM135 LM235 LM335 精密温度传感器芯片LM1458 LM1558 Dual Operational Amplifier 双运算放大器LM158 LM258 LM358 LM2904 Low Power Dual Operational Amplifier 低压双运算放大器LM18293 Four Channel Push-Pull Driver 四通道推拉驱动器LM1868 AM/FM Radio System 调幅/调频收音机芯片LM1951 Solid State 1 Amp Switch 1安培固态开关LM2574 Simple Switcher 0.5A Step-Down V oltage Regulator 0.5A降阶式电压调节器LM1575 LM2575 1A Step-Down V oltage Regulator 1A 降阶式电压调节器LM2576 3A Step-Down V oltage Regulator 3A 降阶式电压调节器LM1577 LM2577 Simple Switch Step-Down V oltage Regulator 降阶式电压调节器LM2587 Simple Switch 5A Flyback Regulator 5A 返馈开关式电压调节器LM1893 LM2893 Carrier Current Transceiver 载体电流收发器LM193 LM293 LM393 LM2903 Low Power Low Offset V oltage Dual Comparator 双路低压低漂移比较器LM2907 LM2917 Frequency to V oltage Converter 频率电压转换器LM101A LM201A LM301A Operational Amplifiers 运算放大器芯片LM3045 LM3046 LM3086 Transistor Array 晶体管阵列LM111 LM211 LM311 V oltage Comparator 电压比较器LM117 LM317 3-Terminal Adjustable Regulator 三端可调式稳压器LM118 LM218 LM318 Operational Amplifier 运算放大器LM133 LM333 3A Adjustable Negative Regulator 3安培可调负电压调节器LM137 LM337 3-Terminal Adjustable Negative Regulator 可调式三端负压稳压器LM34 Precision Fahrenheit Temperature Sensor 精密华氏温度传感器LM342 3-Terminal Positive Regulator 三端正压稳压器LM148 LM248 LM348 / LM149 LM349 双LM741运算放大器LM35 Precision Centigrade Temperature Sensors 精密摄氏温度传感器LM158 LM258 LM358 LM2904 Low Power Dual Operational Amplifiers 低压双运算放大器LM150 LM350 3A Adjustable Regulator 3安培可调式电压调节器LM380 2.5W Audio Amplifier 2.5瓦音频放大器LM386 Low V oltage Audio Power Amplifier 低压音频功率放大器LM3886 High-Performance 68W Audio Power Amplifier With Mute 高性能68瓦音频功率放大器/带静音LM555 LM555C Timer Circuit 时基发生器电路LM556 LM556C Timer Circuit 双时基发生器电路LM565 Phase Locked Loop 相位跟随器LM567 Tone Decoder 音频译码器LM621 BrushLess Motor Commutator 无刷电机换向器LM628 LM629 Precision Motion Controller 精密位移控制器LM675 Power Operational Amplifier 功率运算放大器LM723 V oltage Regulator 电压调节器LM741 Operational Amplifier 运算放大器LM7805 LM78xx 系列稳压器LM7812 LM78xx 系列稳压器LM7815 LM78xx 系列稳压器LM78L00 3-Terminal Positive V oltage Regulator 三端正压调节器LM78L05 3-Terminal Positive V oltage Regulator 三端正压调节器LM78L09 3-Terminal Positive V oltage Regulator 三端正压调节器LM78L12 3-Terminal Positive V oltage Regulator 三端正压调节器LM78L15 3-Terminal Positive V oltage Regulator 三端正压调节器LM78L62 3-Terminal Positive V oltage Regulator 三端正压调节器LM78L82 3-Terminal Positive V oltage Regulator 三端正压调节器LM340 LM78Mxx Series 3-Terminal Positive Regulator 三端正压稳压器LM7905 3-Terminal Nagative V oltage Regulator 三端负压调节器LM7912 3-Terminal Nagative V oltage Regulator 三端负压调节器LM7915 3-Terminal Nagative V oltage Regulator 三端负压调节器LM79Mxx 3-Terminal Nagative V oltage Regulator 三端负压调节器LF147 LF347 Wide Bandwidth Quad JFET input operational amplifier 宽带J型场效应输入运算放大器LF351 Wide Bandwidth Quad JFET input operational amplifier 宽带J型场效应输入运算放大器LF353 Wide Bandwidth Quad JFET input operational amplifier 宽带J型场效应输入运算放大器LF444 Quad Low Power JFET input operational amplifier 双低压J型场效应输入运算放大器。

代换管子

代换管子
7、SD2300 SOT-23-3L <20V 4A 28mΩ>,替代各型2300:
nAPM2300、Si2300、CEM2300、STS2300、AP2300、MT2300、MI2300、ST2300、SSS2300、GT2300、GE2300、GE2312、iTM2300、SM2300、TM2300、ME2314 等等
K3067=K2645=2n60B=6N60=P9N60C=7n60 stk0760 stk0765
可以相互替代的一些场管.
& \6 z n$ X/ j如无特别说明,同一条内的管子可以相互替换.* i2 V6 [# S0 _4 ]5 j
ห้องสมุดไป่ตู้
# e) F% m9 t: [' R1、SD9435 SOP-8 < 5.3A 30V 50 mΩ >,可替代市面上各类型9435 :" k' J4 X: ?; @7 E8 o* ? Q
3、SG9926 TSSOP-8 <6A 20V 28 mΩ>:暂无。
4、SD4953 SOP-8 <30V 5A 53mΩ>,可替代市面上各类型4953 :
c' x" E/ s" ~* CGE4953、 iTM4953、AF4953P、H4953、MT4953 、SSM4953、CEM4953、STS4953、 AP4953、 TM4953、STM4953、SDM4953、STP4953、AO4801、AO4801A、AO4803、AO4803A、AFT4953、SPP4953、STP4953A、SPP4953A、' r! ]. i+ y* y3 Q& g( {

各种运放的特点

各种运放的特点

低功耗、JFET 输入运算放大器
LM358
低功耗双运放
TL072
低功耗 JFET 输入双运算放大器 LM361
高频差动比较器
TL074
低功耗 JFET 输入四运算放大器 LM376
可调稳压电源
TL081
通用 JFET 输入运算放大器
LM386
声频小功放大器
TL082
通用 JFET 输入双运算放大器
LM3900 四电路、最流差动运算放大器
线性运算放大器系列(OP、TL、LM、LF 系列)
型号
功能
型号
功能
OP07
低失调运算放大器
LM318
高速运算放大器
OP07CZ 低失调运算放大器(工业级)
LM319
高速运算放大器
OP20
高精度、微功耗运算放大器
LM324
通用四运放
OP27
超低噪声、高精密运算放大器
LM331
电压、频率/频率、电压转换
宽通用运放(工业级)
LM760
高速差分比较仪
LM208H 精密双极单运放(工业级)
LM776
可编程运放
LM211N 高精度比较器(工业级)
LM777
高电压运放
LM224J 四运放(工业级)
LM796HC 高电压运放
LM231
电压、频率转换(工业级)
LM833
双音频功放
LM258N LM285 LM2902N LM2903N LM2904N LM2907N LM2917N LM301AN LM308N LM310N LM311P
低功耗双运放(工业级)
LF13332
1.2V、2.5V 精密基准源(工业) LF13333

液晶显示器原理

液晶显示器原理

液晶显示器原理(一)液晶的物理特性液晶的物理特性是:当通电时导通,排列变的有秩序,使光线容易通过;不通电时排列混乱,阻止光线通过。

让液晶如闸门般地阻隔或让光线穿透。

从技术上简单地说,液晶面板包含了两片相当精致的无钠玻璃素材,称为Substrates,中间夹著一层液晶。

当光束通过这层液晶时,液晶本身会排排站立或扭转呈不规则状,因而阻隔或使光束顺利通过。

大多数液晶都属于有机复合物,由长棒状的分子构成。

在自然状态下,这些棒状分子的长轴大致平行。

将液晶倒入一个经精良加工的开槽平面,液晶分子会顺着槽排列,所以假如那些槽非常平行,则各分子也是完全平行的。

(二)单色液晶显示器的原理LCD技术是把液晶灌入两个列有细槽的平面之间。

这两个平面上的槽互相垂直(相交成90度)。

也就是说,若一个平面上的分子南北向排列,则另一平面上的分子东西向排列,而位于两个平面之间的分子被强迫进入一种90度扭转的状态。

由于光线顺着分子的排列方向传播,所以光线经过液晶时也被扭转90度。

但当液晶上加一个电压时,分子便会重新垂直排列,使光线能直射出去,而不发生任何扭转。

LCD是依赖极化滤光器(片)和光线本身。

自然光线是朝四面八方随机发散的。

极化滤光器实际是一系列越来越细的平行线。

这些线形成一张网,阻断不与这些线平行的所有光线。

极化滤光器的线正好与第一个垂直,所以能完全阻断那些已经极化的光线。

只有两个滤光器的线完全平行,或者光线本身已扭转到与第二个极化滤光器相匹配,光线才得以穿透。

LCD正是由这样两个相互垂直的极化滤光器构成,所以在正常情况下应该阻断所有试图穿透的光线。

但是,由于两个滤光器之间充满了扭曲液晶,所以在光线穿出第一个滤光器后,会被液晶分子扭转90度,最后从第二个滤光器中穿出。

另一方面,若为液晶加一个电压,分子又会重新排列并完全平行,使光线不再扭转,所以正好被第二个滤光器挡住。

总之,加电将光线阻断,不加电则使光线射出。

然而,可以改变LCD中的液晶排列,使光线在加电时射出,而不加电时被阻断。

PWM开关电源芯片1203P60

PWM开关电源芯片1203P60

NCP1203PWM Current−Mode Controller for UniversalOff−Line Supplies Featuring Standby and Short Circuit ProtectionHoused in SOIC−8 or PDIP−8 package, the NCP1203 represents a major leap toward ultra−compact Switchmode Power Supplies and represents an excellent candidate to replace the UC384X devices. Due to its proprietary SMARTMOS t Very High V oltage Technology, thecircuit allows the implementation of complete off−line AC−DC adapters, battery charger and a high−power SMPS with few external components.With an internal structure operating at a fixed 40 kHz, 60 kHz or 100 kHz switching frequency, the controller features a high−voltage startup FET which ensures a clean and loss−less startup sequence. Its current−mode control naturally provides good audio−susceptibility and inherent pulse−by−pulse control.When the current setpoint falls below a given value, e.g. the output power demand diminishes, the IC automatically enters the so−called skip cycle mode and provides improved efficiency at light loads while offering excellent performance in standby conditions. Because this occurs at a user adjustable low peak current, no acoustic noise takes place.The NCP1203 also includes an efficient protective circuitry which, in presence of an output over load condition, disables the output pulses while the device enters a safe burst mode, trying to restart. Once the default has gone, the device auto−recovers. Finally, a temperature shutdown with hysteresis helps building safe and robust power supplies.Features•Pb−Free Packages are Available•High−V oltage Startup Current Source•Auto−Recovery Internal Output Short−Circuit Protection •Extremely Low No−Load Standby Power•Current−Mode with Adjustable Skip−Cycle Capability •Internal Leading Edge Blanking•250 mA Peak Current Capability•Internally Fixed Frequency at 40 kHz, 60 kHz and 100 kHz •Direct Optocoupler Connection•Undervoltage Lockout at 7.8 V Typical•SPICE Models Available for TRANsient and AC Analysis •Pin to Pin Compatible with NCP1200Applications•AC−DC Adapters for Notebooks, etc.•Offline Battery Chargers•Auxiliary Power Supplies (USB, Appliances, TVs, etc.)SOIC−8D1, D2 SUFFIXCASE 7511MARKINGDIAGRAMSPIN CONNECTIONSPDIP−8N SUFFIXCASE 6268xx= Specific Device CodeA= Assembly LocationWL, L= Wafer LotY, YY= YearW, WW= Work WeekAdj HVFBCSGNDNCV CCDrv(Top View)xxxxxxxxxAWLYYWW18See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.ORDERING INFORMATION查询1203P60供应商Figure 1. Typical Application ExampleV OUTPIN FUNCTION DESCRIPTIONFigure 2. Internal Circuit ArchitectureMAXIMUM RATINGSMaximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.ELECTRICAL CHARACTERISTICS (For typical values T J = 25°C, for min/max values T J = 0°C to +125°C, Max T J = 150°C,J2.Maximum value @ T J = 25°C, please see characterization curves.3.Pin 5 loaded by 1 nF.TEMPERATURE (°C)1251007550250−25150200250300350400I C C @ V C C = 6 V (m A )Figure 3. V CC(on) Threshold versusTemperatureFigure 4. V CC(min) Level versus Temperature8.48.2−258.07.67.2125−2514.013.85012.612.412.21007.42525125TEMPERATURE (°C)TEMPERATURE (°C)V C C (m i n ) L E V E L (V )V C C (o n ) T H R E S H O L D (V )7513.012.813.213.613.450751007.8Figure 5. I C Current Consumption (No Load)versus Temperature Figure 6. I CC Consumption (Loaded by 1 nF)versus TemperatureTEMPERATURE (°C)Figure 7. HV Current Source at V CC = 10 Vversus Temperature Figure 8. I C Consumption at V CC = 6 Vversus TemperatureTEMPERATURE (°C)TEMPERATURE (°C)5005506006507007509501000I C C , C U R R E N T C O N S U M PT I O N (m A )800850900 1.01.21.41.61.82.0I C C ,1 n F L O A D C O N S U M P T I O N (m A )4.04.55.05.56.06.57.58.07.0H V C U R R E N T S O U R C E (m A )6050252015D R I V E S O U R C E R E S I S T A N C E (W )30354540Figure 11. Maximum Current Setpoint versusTemperatureFigure 12. Frequency versus Temperature0.990.970.890.870.85TEMPERATURE (°C)TEMPERATURE (°C)M A X I M U M C U R R E N T S E T P O I N T (V )0.910.930.9555APPLICATION INFORMATIONIntroductionThe NCP1203 implements a standard current mode architecture where the switch−off time is dictated by the peak current setpoint. This component represents the ideal candidate where low part−count is the key parameter,particularly in low−cost AC−DC adapters, auxiliary supplies etc. Due to its high−performance SMARTMOS High−V oltage technology, the NCP1203 incorporates all the necessary components normally needed in UC384X based supplies: timing components, feedback devices, low−pass filter and startup device. This later point emphasizes the fact that ON Semiconductor’s NCP1203 does not need an external startup resistance but supplies the startup current directly from the high−voltage rail. On the other hand, more and more applications are requiring low no−load standby power, e.g. for AC−DC adapters, VCRs etc. UC384X series have a lot of difficulty to reduce the switching losses at low power levels. NCP1203 elegantly solves this problem byskipping unwanted switching cycles at a user−adjustable power level. By ensuring that skip cycles take place at low peak current, the device ensures quiet, noise free operation.Finally, an auto−recovery output short−circuit protection (OCP) prevents from any lethal thermal runaway in overload conditions.Startup SequenceWhen the power supply is first powered from the mains outlet, the internal current source (typically 6.0 mA) is biased and charges up the V CC capacitor. When the voltage on this V CC capacitor reaches the V CC(on) level (typically 12.8 V), the current source turns off and no longer wastes any power. At this time, the V CC capacitor only supplies the controller and the auxiliary supply is supposed to take over before V CC collapses below V CC(min). Figure 13 shows the internal arrangement of this structure:Figure 13. The Current Source Brings V CC Above 12.8 V and then Turns OffAux12.8 V/4.9 VOnce the power supply has started, the V CC shall be constrained below 16 V , which is the maximum rating on pin 6. Figure 14 portrays a typical startup sequence with a V CC regulated at 12.5 V:Figure 14. A Typical Startup Sequence forthe NCP1203t, TIME (sec)13.512.511.510.59.5Current−Mode OperationAs the UC384X series, the NCP1203 features a well−known current mode control architecture which provides superior input audio−susceptibility compared to traditional voltage−mode controllers. Primary current pulse−by−pulse checking together with a fast over current comparator offers greater security in the event of a difficult fault condition, e.g. a saturating transformer.Adjustable Skip Cycle LevelBy offering the ability to tailor the level at which the skip cycle takes place, the designer can make sure that the skip operation only occurs at low peak current. This point guarantees a noise−free operation with cheap transformers. Skip cycle offers a proven mean to reduce the standby power in no or light loads situations.Wide Switching−Frequency OfferFour different options are available: 40 kHz − 65 kHz –100 kHz. Depending on the application, the designer can pick up the right device to help reducing magnetics or improve the EMI signature before reaching the 150 kHz starting point.Overcurrent Protection (OCP)When the auxiliary winding collapses below UVLOlow, the controller stops switching and reduces its consumption. It stays in this mode until Vcc reaches 4.9 V typical, where the startup source is reactivated and a new startup sequence is attempted. The power supply is thus operated in burst mode and avoids any lethal thermal runaway. When the default goes way, the power supply automatically resumes operation.Wide Duty−Cycle OperationWide mains operation requires a large duty−cycle excursion. The NCP1203 can go up to 80% typically.Low Standby PowerIf SMPS naturally exhibit a good efficiency at nominal load, they begin to be less efficient when the output power demand diminishes. By skipping un−needed switching cycles, the NCP1203 drastically reduces the power wasted during light load conditions. In no−load conditions, the NCP1203 allows the total standby power to easily reach next International Energy Agency (IEA) recommendations.No Acoustic Noise while OperatingInstead of skipping cycles at high peak currents, the NCP1203 waits until the peak current demand falls below a user−adjustable 1/3rd of the maximum limit. As a result, cycle skipping can take place without having a singing transformer … You can thus select cheap magnetic components free of noise problems.External MOSFET ConnectionBy leaving the external MOSFET external to the IC, you can select avalanche proof devices which, in certain cases (e.g. low output powers), let you work without an active clamping network. Also, by controlling the MOSFET gate signal flow, you have an option to slow down the device commutation, therefore reducing the amount of ElectroMagnetic Interference (EMI).SPICE ModelA dedicated model to run transient cycle−by−cycle simulations is available but also an averaged version to help you closing the loop. Ready−to−use templates can be downloaded in OrCAD’s Pspice and INTUSOFT’s from ON Semiconductor web site, NCP1203 related section. Overload OperationIn applications where the output current is purposely not controlled (e.g. wall adapters delivering raw DC level), it is interesting to implement a true short−circuit protection. A short−circuit actually forces the output voltage to be at a low level, preventing a bias current to circulate in the optocoupler LED. As a result, the auxiliary voltage also decreases because it also operates in Flyback and thus duplicates the output voltage, providing the leakage inductance between windings is kept low. To account for this situation and properly protect the power supply, NCP1203 hosts a dedicated overload detection circuitry. Once activated, this circuitry imposes to deliver pulses in a burst manner with a low duty−cycle. The system auto−recovers when the fault condition disappears.During the startup phase, the peak current is pushed to the maximum until the output voltage reaches its target and the feedback loop takes over. The auxiliary voltage takes place after a few switching cycles and self−supplies the IC. In presence of a short circuit on the output, the auxiliary voltage will go down until it crosses the undervoltage lockout level of typically 7.8 V. When this happens, NCP1203 immediately stops the switching pulses and unbias all unnecessary logical blocks. The overall consumption drops, while keeping the gate grounded, and the V CC slowly falls down. As soon as V CC reaches typically 4.8 V, the startup source turns−on again and a new startup sequence occurs, bringing V CC toward 12.8 V as an attempt to restart. If the default has gone, then the power supply normally restarts. If not, a new protective burst is initiated, shielding the SMPS from any runaway. Figure 15, on the following page, portrays the typical operating signals in short circuit.Figure 15. Typical Waveforms in Short Circuit Conditions7.8 V12.8 V4.9 VV CCDRIVING PULSESCalculating the V CC CapacitorThe V CC capacitor can be calculated knowing the IC consumption as soon as V CC reaches 12.8 V . Suppose that a NCP1203P60 is used and drives a MOSFET with a 30 nC total gate charge (Qg). The total average current is thus made of ICC1 (700 m A) plus the driver current, Fsw x Qg or 1.8 mA. The total current is therefore 2.5 mA. The D V available to fully startup the circuit (e.g. never reach the 7.8 V UVLO during power on) is 12.8–7.8 = 5 V . We have a capacitor who then needs to supply the NCP1203 with 2.5 mA during a given time until the auxiliary supply takes over. Suppose that this time was measured at around 15 ms.CV CC is calculated using the equation C +D t ·i D VorC w 7.5m F . Select a 22 m F/16 V and this will fit.Skipping Cycle ModeThe NCP1203 automatically skips switching cycles when the output power demand drops below a given level. This is accomplished by monitoring the FB pin. In normal operation, pin 2 imposes a peak current accordingly to the load value. If the load demand decreases, the internal loop asks for less peak current. When this setpoint reaches a determined level (Vpin 1), the IC prevents the current from decreasing further down and starts to blank the output pulses: the IC enters the so−called skip cycle mode, also named controlled burst operation. The power transfer now depends upon the width of the pulse bunches (Figure 17).Suppose we have the following component values:Lp, primary inductance = 350 m H Fsw , switching frequency = 61 kHz Ip skip = 600 mA (or 333 mV/Rsense)The theoretical power transfer is therefore:12·Lp ·Ip 2·Fsw +3.8W If this IC enters skip cycle mode with a bunch length of 10 ms over a recurrent period of 100 ms, then the total power transfer is: 3.8.0.1+380mW .To better understand how this skip cycle mode takes place,a look at the operation mode versus the FB level immediately gives the necessary insight:Figure 16.When FB is above the skip cycle threshold (1.0 V by default), the peak current cannot exceed 1.0 V/Rsense.When the IC enters the skip cycle mode, the peak current cannot go below Vpin1/3.3/Rsense. The user still has the flexibility to alter this 1.0 V by either shunting pin 1 to ground through a resistor or raising it through a resistor up to the desired level. Grounding pin 1 permanently invalidates the skip cycle operation. However, given the extremely low standby power the controller can reach, the PWM in no−load conditions can quickly enter the minimum t on and still transfer too much power. An instability can take place. We recommend in that case to leave a little bit of skip level to always allow 0% duty cycle.Power P1Power P2Power P3Figure 17. Output Pulses at Various Power Levels (X = 5.0 m s/div) P1 t P2 t P3Figure 18. The Skip Cycle Takes Place at Low Peak Currents which Guaranties Noise−Free Operation315.40882.70 1.450 M 2.017 M 2.585 M300 M200 M100 MWe recommend a pin 1 operation between 400 mV and 1.3 V that will fix the skip peak current level between 120 mV/Rsense and 390 mV/Rsense.Non−Latching ShutdownIn some cases, it might be desirable to shut off the part temporarily and authorize its restart once the default hasdisappeared. This option can easily be accomplished through a single NPN bipolar transistor wired between FB and ground. By pulling FB below the Adj pin 1 level, the output pulses are disabled as long as FB is pulled below pin 1. As soon as FB is relaxed, the IC resumes its operation.Figure 19 depicts the application example.Figure 19. Another Way of Shutting Down the IC without a Definitive Latch−Off StateFull Latching ShutdownOther applications require a full latching shutdown, e.g.when an abnormal situation is detected (overtemperature or overvoltage). This feature can easily be implemented through two external transistors wired as a discrete SCR.When the V CC level exceeds the zener breakdown voltage,the NPN biases the PNP and fires the equivalent SCR,permanently bringing down the FB pin. The switching pulses are disabled until the user unplugs the power supply.Figure 20. Two Bipolars Ensure a Total Latch−Off of the SMPS in Presence of an OVPLAuxRhold 0.1 m Rhold ensures that the SCR stays on when fired. The bias current flowing through Rhold should be small enough to let the V CC ramp up (12.8 V) and down (4.9 V) when the SCR is fired. The NPN base can also receive a signal from a temperature sensor. Typical bipolars can be MMBT2222and MMBT2907 for the discrete latch. The MMBT3946features two bipolars NPN+PNP in the same package and could also be used.Protecting the Controller Against Negative SpikesAs with any controller built upon a CMOS technology, it is the designer’s duty to avoid the presence of negative spikes on sensitive pins. Negative signals have the bad habit to forward bias the controller substrate and induce erratic behaviors. Sometimes, the injection can be so strong that internal parasitic SCRs are triggered, engendering irremediable damages to the IC if they are a low impedance path is offered between V CC and GND. If the current sensepin is often the seat of such spurious signals, the high−voltage pin can also be the source of problems in certain circumstances. During the turn−off sequence, e.g.when the user un−plugs the power supply, the controller is still fed by its V CC capacitor and keeps activating the MOSFET ON and OFF with a peak current limited by Rsense. Unfortunately, if the quality coefficient Q of the resonating network formed by Lp and Cbulk is low (e.g. the MOSFET Rdson + Rsense are small), conditions are met to make the circuit resonate and thus negatively bias the controller. Since we are talking about ms pulses, the amount of injected charge (Q = I x t) immediately latches the controller which brutally discharges its V CC capacitor. If this V CC capacitor is of sufficient value, its stored energy damages the controller. Figure 21 depicts a typical negative shot occurring on the HV pin where the brutal V CC discharge testifies for latchup.Figure 21. A negative spike takes place on the Bulk capacitor at the switch−off sequenceSimple and inexpensive cures exist to prevent from internal parasitic SCR activation. One of them consists in inserting a resistor in series with the high−voltage pin to keep the negative current to the lowest when the bulk becomes negative (Figure 22). Please note that the negative spike is clamped to –2 x Vf due to the diode bridge. Also, the power dissipation of this resistor is extremely small since it only heats up during the startup sequence.Another option (Figure 23) consists in wiring a diode from V CC to the bulk capacitor to force V CC to reach UVLOlow sooner and thus stops the switching activity before the bulk capacitor gets deeply discharged. For security reasons, two diodes can be connected in series.Figure 22. A simple resistor in series avoids anylatchup in the controllerCV CCD31N4007CV CCRbulk > 4.7 kFigure 23. or a diode forces V CC to reachUVLOlow sooner†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.D1, D2 SUFFIX CASE 751−07ISSUE AC*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*NOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.3.DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.4.MAXIMUM MOLD PROTRUSION 0.15 (0.006)PER SIDE.5.DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.6.751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07.DIM A MIN MAX MIN MAX INCHES4.805.000.1890.197MILLIMETERS B 3.80 4.000.1500.157C 1.35 1.750.0530.069D 0.330.510.0130.020G 1.27 BSC 0.050 BSC H 0.100.250.0040.010J 0.190.250.0070.010K 0.40 1.270.0160.050M 0 8 0 8 N 0.250.500.0100.020S5.806.200.2280.244YM0.25 (0.010)Z SXS____ǒmm inchesǓSCALE 6:1N SUFFIX CASE 626−05ISSUE LNOTES:1.DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.2.PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).3.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.DIM MIN MAX MIN MAX INCHESMILLIMETERS A 9.4010.160.3700.400B 6.10 6.600.2400.260C 3.94 4.450.1550.175D 0.380.510.0150.020F 1.02 1.780.0400.070G 2.54 BSC 0.100 BSC H 0.76 1.270.0300.050J 0.200.300.0080.012K 2.92 3.430.1150.135L 7.62 BSC 0.300 BSC M −−−10 −−−10 N0.76 1.010.0300.040__ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATIONThe product described herein (NCP1203), may be covered by the following U.S. patents: 6,271,735, 6,362,067, 6,385,060, 6,429,709, 6,587,357. There may be other patents pending.SMARTMOS is a trademark of Motorola, Inc.。

显示器集成电路及晶体管对照表

显示器集成电路及晶体管对照表

显示器型号电源电路场扫描电路行扫描电路行输出管ASCR CM3708UC3842 2SK7272SC4769 AST ASTECD12SC3460 MCT2201Z TDA1675A MC1391P 2SC3883 AST AST—12SC3153 4N35TDA1170TDA25952SC4237 AST AST—22SC3153 4N35TDA1670TDA1180P2SC3026 AST AST—3UPC1394C 2SC3153 HA11423 2SC3482 AST AST—42SC3460 4N35TDA1170TDA25292SC3461 AST AST—52SC3460 4N35TDA1675A LM13912SD1879 AST CM—6P MC3842 2SK1117TDA1675LM 1391P2SC3883 AST MPX—1UPC1394C 2SC3153 HA11423 2SC3482 AST MPX—22SC3460 4N35TDA1670TDA25952SC3461 AST MPX—32SC3153 4N35TDA1670A TDA1180P2SC3026 AM4020SG4842 BZE80A HA11235 BUH5150 AOC H—41156A152—156A157—156A74LS22157A504—2S AOC MM—41156A152—156A157—156A74LS22157A504—2S AOC MM—411R56A152—156A157—156A74LS22157A504—2S AOC M—60356A133—12/193—356A157—156A230—157A457—2 AOC MM—41356A133—12/193—356A157—156A230—157A457—2 AOC M—60556A102—356A107—156A74LS22157A504—2S AOC MM—411D56A102—356A107—156A74LS22157A504—2S AOC CM—31257A486—156A270—256A140—157A563—1 AOC CM—31357A560—156A325—156A340—157A501—1 AOC CM—33357A560—156A325—156A340—157A581—1 BMC BMC—122SD880TDA1170S/N TDA1180S/N BU806 BMC JB—1410P2B2SD880TDA1170S/N TDA1180S/N BU806 BMC JB—1410P2BD2SD880TDA1170S/N TDA1180S/N BU806 BMC PC—8851B2SD880TDA1170S/N TDA1180S/N BU806 BMC PC—8851D2SD880TDA1170S/N TDA1180S/N BU806BF BF—182SD531A TDA1170TDA1180BU806 CASPER 1489/D2SC3150 4N35TDA1170N MC1391P BU406 CASPER TM—5156H2SC3153 4N35TDA1675TDA1180P2SC3026 CASPER TM—5154Y2SC3153 4N35TDA1670A TDA1180P2SD1428 CASPER TM—5158H2SC3460TDA16752SD1879 CZX CZX—182SD531A TDA1170TDA1180BU806 CTX CC—14352SC3457 CNX36LA7830LA78502SC3883 CTX CTX—2MJE13007 HA11235 2SD209 COMPAQ 420UC3842 2SD1402TDA1170N AN57902SC3883 COMPAQ 472P STR58041TDA8351TDA48052SD1878 COMPAQ TE1420Q2SC3460 CNX82A TDA1670MC1391P 2SD2125 CHUN 64cm UPC2360 UPC5280 LA7825 LM6140 UPC13982SD1428 DATAS CH—7423P2SC3153 4N35TDA1675A MC1391P 2SC4237 DATAS CH—7423T2SC4235 4N35TDA1170N MC1391P BU406 DATAS CH—5403V2SC4235 4N35TDA1170N MC1392P2SC4107DATAS HC—7423P2SC3153 4N35TDA1675A MC1391PERGO MA2563L123CB BD534L UPC1379C BU406 ERGO TY—14152SC3460 4N35TDA1170N TDA25952SD1398 ERGO MA—2563BD534L UPC1379C BU406 ELITE JH—1492D2SC4235 4N35TDA1170MC1391BU406 ENVISION EC—1428UC3842 2SK727TDA1675LA78512SC4769 EMC EMC—1IPS3842 2SK1794VA2801HV5055BU250D EMC EM—1428UC3842 2SK727TDA1670LA78512SC4769 FREFRONT MTS9600UPC1394 TL494CN ST LA7838LA78502SC3486 FM1439UC3842TDA1170N TDA25962SC4769 GW100SI3122V TDA1170N2SD1365 GW100A SI3122V TDA1170N2SD1365 GW100B2SC3153 4N35TDA1170N TDA1180P2SC3447 GW100C2SC3150TDA1170N TDA1180P2SC3447 GW1402SC3150 4N35TDA1170N MC1391P 2SC2898 GW140H2SC3150 4N35TDA1170N MC1391P 2SC2898 GW200JU0114 2SD1403 HA11414 2SD1426 GW300JU0114 2SD1403 HA11414 2SD1426 GW240JU0114 2SD1403 HA11414 2SD1428 GW240A TDA1170N TDA25952SD1397 GW400STK7308UPC1488HA112352SD1403 GW5002SD1403 2SC3153TDA1170N TDA25952SD1397 GW500A TDA1170N TDA25952SD1881 GW600C2SD1403 2SC3153TDA1170N TDA25962SD1397 HVT1410IPS3842 2SK1117VA2801HV50552SC4123 HITACHI 2010DK STK54031 UPC1394 HA11560 2SC3883 IBM IBM—12SD820 HA11235 2SD996B IBM IBM—2 HA11423 2SD900B IBM IBM3196TDA2653A TDA2595BU826 IBM 51530022SC3153TDA1670TDA1180P2SD1455 IBM 6540—00N UC3842AN TDA4860TDA4858IBM 6546—4AN TEA1504TDA4860TDA4853K—160IX0137CE IX0065CE K—170IX0137CE IX0065CE 2SD870 K—180STK7308 HA11414 2SD870 LYMIC 214S MC3842 2SK1461TDA1675A LM1391N2SC3883 LEO SRC—14912SC3460 SOC832A TDA1670MC1391P 2SD2125M51977P 2SK872UPC1498H HA114232SC3486 MULTISYNC JC—1403HMENEC JB—14102SC1114UPC1031H22SC940 NEC JC—2001VMA STK7408×2 STR2005 S LA7835 LA7860L A78512SC3685 NEC JC—1404HMN M51995P 2SK782 TLP6LA7835HA114232SK758 NEC JC—1404HMN—1UC3842 IRFPF40LA7835HA114232SK758 PGS HX—122SC1875AN5510AN54102SC1942PMV—14AC IR3M02(M57494) HA11235 2SC3412 SUN MDA—900SI3122V TDA1170N BU806B SUN VGA348TDA4601 2SC3153TDA1670 TDA49AN57902SC4124 SHARP 12M—32LE IX0137CE HA11235 2SD869 SHARP 12M—312C IX0137CE HA11235 2SD869 SAMSUNG CK4656STR54041KA2131KA21342SD1398TDA1180P2SD1554 SAMSUNG KX—7000KA29100KA2964 KA1488SSAMSUNG 4993STR53401SAMSUNG 14STR54041KA2131KA21342SD1398 SUPER EM—1428IP3842N 2SK1794TDA1675A LA78512SC4769 SAMPO2SC3153 4N35TDA1170N MC1391P 2SD1398 SAMPO KDS—1300NE TDA4600 BU208 HA11235 2SC1942 SAMPO KDS—1342E TDA4600 BU208 HA11235 2SC1942 SUPERSYNC MD—14III TDA4601 2SC3461TDA1670A MC1391P 2SC3883LA7830LA78512SC3406 SUPERSYNC MC—11III STK7406 STR2012 STRSHANHU M1420—01E SG3842 BZE80A HA11235 BUH5150 SVGA 8514/A SG3842 BZE80A HA11235 BUH5150 TYSTAR TY—14112SC3460 MJE13007TDA1170N TDA25952SD1396 THOMSON DT—12MJE3055TA TEA BU806 TOPCON CN—14052SD3497 4N35TDA1170N TDA25952SC3026 TOPCON CN—7423P2SC3460M 4N35TDA1675A MC1391P 2SC4237 TVM PWB—1290STK7404×2 STR2005 S LA7830LA78512SC3486 TVM PWB—1291STK7404×2 STR2005 S LA7830LA78512SC3486 TVM PWB—1293STK7404×2 STR2005 S LA7830LA78512SC3486 TVM PWB—1361STK7404×2 STR2005 S LA7830LA78512SC3486 TVM PWB—1362STK7404×2 STR2005 S LA7830LA78512SC3486 VGM VGM—1414TDA4605 BUZ90A HA12SC3883 WANSTROW CM1428D UC3842 2SK727TDA1675LA78512SC4769 WANSTROW CM1431D UC3842 2SK727TDA1675LA78512SC4769 WANSTROW CM1435D UC3842 2SK727TDA1675LA78512SC4769 WANSTROW CM1439D UC3842 2SK727TDA1675LA78512SC4769 WYSE VGA—670UC3842 MTH8N60TDA1670MC1391P 2SD2125 WESCOM 600E2SD1403 2SC3153TDA1170N TDA25952SD1403 YTC IP3842TDA1170N2SD1163皇冠33TDA1170S TDA2593长城0520A IX0137CE HA12SD869长城0520S IX0137CE HA12SD869华福CTX—C146V TL494CN 2SC3729TDA1670A TDA25952SC3883华福CTX—C1410H IPS3842 2SK1117VA2801HV50552SC4123联想LX—SVGA2SC3460TDA1675MC13912SC4769联想SC—428PS KA3882 MTH6N80TDA4866TDA4850联想LX—GJ556D56A379—1256A574—156A573—12SC5297惠普D1196惠普D2811TDA4866TDA4852惠普D2813TDA4851BU2508北泰GA—1408DBL3842 2SK1794DBL254D TDA4LA78512SC5250海信HS—1428XZ UC3842A P4NA60TDA8172STV77782SC5129海信HS—1428R UC3842B 2SK2141LA7837GL11512SC5250视频及色度电路同步信号处理LM1203N SN74LS86NLM1203N 2SD160974LS86M51387P74LS862SC291174LS2442SD16097404M51387P 2SC460674LS86LM1203N 2SD160974LS86P2SC291174042SD16097404M51387P74LS86LM120374LS8656A74LS13656A74LS13656A74LS13656A360—156A74LS86B56A360—156A74LS86B56A308—156A308—157A494—156A74LS—8656A330—156A74LS—8656A330—156A74LS—862SC2229 2N39042SC2229 2N39042SC2229 2N39042SC2229 2N39042SC2229 2N39042N3904 2SC222974072SC1921HD7407PM51387P74LS86M74S473N74LS86M51387P74LS86AN2N3904 2SC222974072SC147374LS86N3DG546 3CG307A SN74LS06M51387P74LS86LM1203N74LS86LM1203N74LS86 MC14556 LM1260M51387P 2SC350274LS86P2SD1609C PH236974LS86P2SC4046 PH236974LS86PM51387P74LS86P2SC268274LS26NLM1203N74LS862SC268274LS86N2SD16097406LM1203N74LS86LM1203EMC3000ALM1203N74LS862SC291174LS86PLM1203N WT80412SC641 2SC151474LS86 74LS1572SC641 2SC151474LS86P2SC641 2SC151474LS86P2SC1514 2SC190674LS86M51392P74LS86PM51392P74LS86P2SD2271SN74LS86N2SC151474LS86P2SC350274LS86PLM1203N 2SC3502SN74LS86NM51387P74LS86PLM1203N 2SD136974LS86PLM1203N74LS86PLM1203N74LS86PLM120374LS862SD757 2SB71774LS052SD1609 2SB1109BD139SN75125N2SD756 2SB7167486TDA4882LSC435138BTDA4885 LSC4570P CM23—IBMG5474LS06(HD7406)2SD2271SN74LS86NLM1203N74LS86PLM1203N SN74LS86M51387P2SC1507M51387PM51387P UPD78C11G—252—36 M51387P UPD78C11G—2522SC1507SN7406N2SC2910 2SA12082SC2229 BSX2074LS86CXA104474LS862SC206874LS136P2SC2068CD1464K 2SC15077404LM120374LS86AN5355 2SD160974LS86P2SD757 2SB717LM120374LS86LM120374LS86LM120374LS86LM120374862SC1921LM120374LS86PM51387P74LS86M51392P×3M51392P×3M51392P×3M51392P×3M51392P×3LM120374LS86NLM1203N74LS86LM1203N74LS86LM1203N74LS86LM1203N74LS86LM1203N74LS86LM1203N74LS86P2SC1921 2N3904SN7047N2SC2068HD7406P2SC2068HA7406PM51387P74LS86PLM120374LS86LM120374LS86LM1203N LM2406T SL60556A539—2 56A551—2N T68P61ALM1203 LM2416LM1203TDA4882LM1203WT8043LM1203N LM2406T NT68P61A TLS1233N WT8045N24B。

常见LCD液晶电源IC的代换

常见LCD液晶电源IC的代换

常见LCD液晶电源IC的代换各位朋友你们好,很高兴认识各位.有技术上面的问题可以到本站论坛讨论,希望大家能经常交流技术\经验.以及其他生活常识.谢谢大家的大力支持!我今天给大家介绍几个LCD液晶显示器电源IC的代换希望能帮上大家.DAP8A\DAP7A\LD7575\203D6可以直接代换DAP02\SG5841\2G6841可以直接代换1200AP40\1200AP60\1203P60可以直接代换DM0465R\CM0565R\DM0565R可以直接代换TOP246Y\TOP247Y可以直接代换常见显示器IC代换OCP5001-----------TL5001AMC3100----------LTC3406/AT1366/MP2104OCP2150----------- LTC3406/AT1366/MP2104ACT6906----------- LTC3406/AT1366/MP2104OCP2160-----------LTC3407AMC34063A-----------AMC34063AMC7660------------AJC1564ACT4060--------------ZA3020LV/MP1410/MP9141ACT4065------------ZA3020/MP1580ACT4070----------ZA3030/MP1583/MP1591MP1593/MP1430AMC2576-------LM2576AMC2596-------LM2596OCP2576--------LM2576OMC2596-------LM2596/AP1501VA7910---------MAX1674/75 L6920 AJC1610SM9621---------RJ9621/AJC1642PT1301----------RJ9266PT4101----------AJC1648/MP3202PT4102----------LT1937/AJC1896/AP1522/RJ9271/MP1540ACT6311-------LT1937SP1937-----------LT1937/AJC1896/AP1522/RJ9271/MP1540OCP3601---------MB3800OCP1451---------TL1451/BA9741/SP9741/AP200电源ICSTR-G5643D G5653D G8653D 直接代换203D6和DAP8A 直接代换1200AP40和1200AP60直接代换5S0765和DP104、DP704直接代换DP804和DP904直接代换2S0680和2S0880直接代换TEA1507和TEA1533直接代换三星的DP104,704,804可以用5S0765代换,DP904不能用任何块代换行场振荡、场输出、视频ICTDA9109和SID2511、KB2511、STV7779直接代换TDA9103和STV7778直接代换TDA9112和TDA9113直接代换TDA9115和TDA9116、STV6888直接代换TDA9118和STV9118直接代换TDA8172和TDA9302、TDA8177直接代换TDA1675 和DBL2056直接代换TDA9210和STV9210直接代换LM1203和LM2203、DBL2054直接代换TDA9116用STV6888代换,TDA4856可以用TDA4841PS代换,TDA9112可以用TDA9113代换,S1D2511可以用TDA9109代换。

硬件CRT

硬件CRT

一..填空题(将答案填在在横线上,共10分1显示器根据显像原理的不同主要分为两大类:一类是:_ 平板式另一类是阴极射线管 2晶振的作用是: 产生原始的时钟频率.3用万用表检查行输出电源电压应在行输出变压器测量. 4白平衡是通过亮平衡和暗平衡来来调整的5按导电类型分,三极管可分为NPN和PNP 6行输出级电路的作用主要有两方面,一方面是:为偏转线圈提供锯齿电流一方面产生高中低压直流电7场振荡电路一般采用方波振荡方式.二.选择题(在每题给出的四个选项中只有一项符合题目要求共40分)1.下列不是属于电阻表示方法是( D)A.直标法B.色环表示法C.数字表示法 D.希腊字母表示法2. 下列不是显示器中主要元器件 ( C) A.电阻器B.电容器C.贴片电感D.二极管3. 目前主流显示器的点距是 (D ) A. 2.0mm~~2.8mm B.0.1mm~~0.2mm C.0.3mm~~0.5mm D. 0.2mm~~0.28mm4. 电阻器的主要参数(A)A.额定功率放 B.可变电阻 C光敏电阻 D.保险电阻5.下列不属于整流管故障是 ( D) A.整流管击穿短路 B. 整流管正向电阻变大C. 整流管反向电阻变小 D.CPU无供电6.. 在万用表中,”V~”表示测量(D )的挡位A. 电阻 B.直流电压 C.直流电流 D交流电压7.下列属于显示器的晚期故障的是 ( B ) A.产品保修期内发生的故障 B.显示器使用数年之后发生的故障C.产品开箱时发现的故障D.产品使用三年后发生的故障8.下列属于外部原因造成显示器的是 ( D ) A.显示器内部元器件的性能不良造成的故障B. 非专用人员乱拆,乱调造成的故障C.运输过程中的剧烈振动造成的故障D. 电压不稳定造成的显示器的故障9.当交流市电输入为210V时,显示器整流滤波后的输入电压为(A )V 210*1.414 A. 297 B.300 C.310 D. 36010. 下列不属于CRT显示器技术参数的 (D ) A.像素 B.点距 C.分辨率 D.外壳11.下列属于整流滤波电路的是 ( D) A.EMI电路 B. 行场振荡电路 C.同步电路 D.整流桥12. 下列不属于显示器常用维修工具 (C ) A.万用表 B.示波器 C.锤子 D.晶体管图示仪13.贴片电阻上标出” 113“表示电阻值是 ( D ) A.113欧 B.11M欧 C.11欧 D. 11K欧14. 场效应管三个极分别为 (B ) A.B、C、E B. D、G、S C. A、K D.A、K、R15.滤波器型号是(C )A.二极管滤波 B. 三极管滤波 C. L型滤波 D.场效应管滤波16.三端集成稳压电源LM7908输出电压为(B)伏 A.+8V B.-8VC.+79VD.-79V17.下列不属于显示器故障维修常用方法 ( D) A.测电流法 B.测电压法 C.测电阻法 D.升压测量法18.消磁方式 ( A) A.手动和自动消磁 B.自动消磁 C.智能消磁 D.半自动消磁19.灯丝电压是 (C ) A.20V B.120V C.6.3V D.18V20.行振荡电路组成是: ( D) A.行振荡器 B.定时电阻 C.定时电容 D 行振荡器和RC定时元件21.行振荡器模块产生波形是: ( C) A.正弦波 B. 余弦波 C自由行频方波 D,锯齿波*22.行频自动跟踪电路的作用: ( C) A.行频调整 B.相位调整 C. 行频调整和相位调整 D.AFC电路*23.行激励级作用是: ( B) A.矩形脉冲电压放大 B. 矩形脉冲功率放大 C.矩形脉冲电流放大 D. 矩形脉冲频率放大.24.造成行振电路故障是: (A ) A.定时电阻损坏 B.输出电路 C.场输出电路 D. 行推动电路*25.行输出电路故障是 ( C ) A.水平一条亮线 B.图像上下跳动 C.垂直一条亮线 D.偏色*26.显示器二次电源输出电压为: ( B ) A.220V B.145V C.380V D.56V27.用示波器在行推动三极管的基极测试波形时,正常情况下就能看到的波形是: (A ) A.方波 B. 正弦波 C. 余弦波 D. 锯齿波28.行输出管基极直流电压正常情况下一般为: ( B) A.0.6V B.0.2V~0.3V C.0.1V D.0.4V~05V29.行频升高时,在”S”校正电路中的”S”校正电容容量是: (B ) A.增加 B.减少 C.不变 D.无关30.下列属于行激励电路的是: ( A ) A.行推动管 B.行振荡电路 C.行输出管 D.回扫变压器31.下列不是场振荡电路故障检测点: (C ) A.定时电阻 B.定时电容 C.显示器不显示 D.场锯齿波输出端32. 下列不属于场输出电路的常见故障现象是: (A ) A.垂直一条亮线 B.水平面一条亮线 C.场线性不良 D.场幅不足33.TDA8172集成电路是 (A ) A.场输出集成电路 B.电源芯片 C.暗平衡调整集成电路 D.动态汇聚集成电路34.下列不是属于构成视频通道电路是 : (C ) A.输入电缆及接口 B.前置放大电路 C.行场扫描处理电路 D. 末级视放电路35.造成输入接口电路故障间接原因有 ( D) A.电缆断线 B.接触不良 C.限幅匹配元件的二极管损坏 D.场管坏36.LM1203集成电路是 (B ) A.场输出集成电路 B.视频处理电路 C.暗平衡调整集成电路 D.动态汇聚集成电路37. 下列不属于I2C总线控制系统的主要作用是 ( D) A.用户操作功能 B.维修调整功能 C.自检功能 D.模拟识别功能38.显示器CPU不正常工作,原因是: (D ) A.供电正常 B.复位正常 C.振荡正常 D.存储器坏39.显示器的存储器常用型号主要有 (A ) A.24C04 B.LM358 C.74L01 D.54L1540.CPU工作过程是: ( C) A.供电正常 B.振荡正常 C.自检启动 D.不能模式识别三.多项选择题:(每题20分)1. 电容器的标注是 ( ABC) A.直标法 B.色标法 C.数标法 D.用希腊字母标法2. 变压器的主要参数是 (ABCD ) A.变压比 B.额定电压 C.绝缘电阻 D.漏电感3. 显像管的结构是(AB )A.荧光屏 B.电子枪 C.高压包 D.管座4. 调节磁环是 ( AC) A.二极在磁环 B.三极在磁环 C.四极在磁环 D.五极在磁环5. 显像管常见故障是: ( ABCD) A.显像管漏气 B.显像管老化 C.碰极 D.灯丝断6. 失真的校正是: ( ABCD) A.交越失真校正 B.非线性失真校正C.”S”形延伸失真 D.枕形失真*7.造成控制系统故障原因有( ABCD) A.晶振不良 B.复位电路坏 C.开机控制健坏 D.调整项相应电路损坏*8.下列造成场振荡电路故障原因的是 ( ABCD) A.AGC电容损坏或性能不良 B.定时电阻损坏七性能不良C.定时电容损坏或性能不良D.锯齿波形成电容损坏或性能不良*9.支持多频显示器的行输现电源的类型主要有 ( ABC) A.升压式行输出电源 B.降压式行输出电源C.独立行输出电源D.二次电源输出电压固定*10.造成末级视频放大电路故障的原因主要有 (ABCD ) A.末级视频放大电路无供电 B.行场钳位脉冲不正常C.单个视频通道损坏D.末级视频放大集成电路损坏四.简答题:1.场效应管好坏判断?(用数字万用表)(5分)第一步。

显示器工作原理

显示器工作原理

第二例故障分析与解决
故障现象:显示器或彩电在关闭电源的时候出现一个很亮的亮点,俗称 “关机亮点” 故障分析:这是在关闭电源后,仍然有电子轰击在荧光屏的正中央位置, 从而产生“关机亮点” 故障原因:1.断电后灯丝余热,使阴极继续发射电子 2.阳极高压不能很快降为0,继续加速 3.行场偏转线圈没有形成行场偏转磁场 故障解决:从产生原因入手,有三种可能的处理办法: 1.不产生灯丝余热 2.使阳极高压迅速降为0 3.继续形成行场偏转磁场 事实上仅方案 2 可行:关机后使栅电压为负,并保存一定的时间,将电 子束截止,防止关机亮点的产生

பைடு நூலகம்

作业二:调查当前的显示器市场,研究现下主流显示器的性能、技
术指标、价格及参数等,找出性价比最高的显示器,以帮助其它专业 的同学配机

问题:为什么新买的显示器或彩电容易出现局部或大面积的花屏现
象?为什么在看电视时距离要足够的远?从而引入下一堂课的内容: 显示器的消磁电路、X射线保护回路。要求学生做好预习

显像管管脚结构图
第一例故障分析与解决



故障现象:开机无显示或显示效果很差,几分钟甚 至几十分钟才正常 故障分析:主要问题是管座材料在高压电场作用下 的极化变性或铜电极材料被氧化锈蚀引起漏电 故障解决:打开显示器或彩电的机盖,检查显像管 管座是否有绿锈或变色。刮掉铜锈或更换显像管座 即可
显像管的侧剖面图



由计算机输出的 RGB 红绿蓝三种带有灰度等级信息的颜色信 号及行场同步信号经15芯电缆进入显示器 RGB 三原色信号送到视频处理电路(如 LM1203 )完成对比度 (视频放大增益调节)和亮度(黑电平钳位)的调节 放大到3V峰峰值的三路视频信号分别驱动功率视放管,视放 管以不小于60V的视频电压激励显像管的三个阴极 三阴极激发出电子束并在阳极高压的作用下轰击到荧光屏上 相应的颜色点,使其发光 电子束同时在行、场偏转线圈的作用下扫描成像

l开头的集成电路

l开头的集成电路
LA4195T 双声道音频功率放大集成电路
LA4200 音频功率放大1.5W集成电路
LA4225 音频功率放大5W集成电路
LA4230 音频功率放大6W集成电路
LA4261 双声道音频功率放大集成电路
LA4275 音频功率放大集成电路
LA4280 双声道音频功率放大集成电路
LA4282 双声道音频功率放大10W×2集成电路
LA7800 行、场扫描信号处理集成电路
LA7801 行、场扫描信号处理集成电路
LA7802 行、场扫描信号处理集成电路
LA7806 行、场扫描信号处理集成电路
LA7810 频段转换集成电路
LA7820 行、场扫描振荡集成电路
LA7833 场扫描输出集成电路
LA7837 场扫描输出集成电路
LD3080 行扫描信号处理集成电路
LE803 光电耦合集成电路
LE93C46S 电可改写编程只读存储集成电路
LF347N 话筒信号前置放大集成电路
LF353 双运算放大集成电路
LH1509NT 色度、亮度及行场扫描信号处理集成电路
LH28F400SUT 接口集成电路
LH3561 色度解码集成电路
LC864916A 微处理集成电路
LC866232A 微处理集成电路
LC8696232 微处理集成电路
LC8992 延迟集成电路
LC89925 延迟集成电路
LC89950 延迟集成电路
LC89978M-TE-L 延迟集成电路
LC92C44S 存储集成电路
LC9600AM-C 数/模转换集成电路
LA7217 同步信号分离集成电路

液晶电源管理芯片型号与封装代换型号

液晶电源管理芯片型号与封装代换型号

液晶品牌与型号电源管理芯片型号与封装可代换型号xaslipyelBENQ 71G+1200AP40 直插1200AP10 1200AP60AOC 712SI EA1532A贴片xaslipyel三星940BW DM0565Rxaslipyel优派型号忘记 TOP245YNxaslipyelLG W1934S TOP246YNxaslipyel飞利浦170s6 dap02alsz 贴片xaslipyelLG型号忘记 LAF0001 可以用FAN7601代xaslipyel飞利浦170s6 dap02alsz=sg6841xaslipyelHP17驱动高压电源全一体 SG5841SZ贴片,可用SG6841DZ 代用。

xaslipyel联想后来出的像IBM的 17的,SG6841DZ 可用SG6841D代用xaslipyel三星型号忘记 DM0465R(我记得还有这么一款的)xaslipyel飞利浦170c7 EA1532A贴片xaslipyel200D6、203D6、DAP8A 三种可以代用xaslipyel优派VA1703WB ld7552bps 贴片xaslipyel其他我知道的常用型号有xaslipyelSG6841DZ 贴片很多机器上用到xaslipyelSG5841SZ 贴片用SG6841DZ可以代用,xaslipyel美格WB9 LD7575PS清华同方 XP911W LD7575PS联想LXM -WL19AH LXM-WL19BH LD7575PS(早期有的用:NCP1203D6)联想LXM-17CH: 1203D6方正17寸:1203D6与LD7575PS方正19寸:LD7575PSBenQ: FP94VW FP73G FP71G+S FP71G+G FP71GX等都是用:1200AP40 LG 22(南京同创):LAF001与STR W6252 。

LG 19寸:LAF001 联想L193(福建-捷联代工):NCP1203D6PHILIPS 170S5 (FAN7601)还有LD7575可用203D6代用,只是1脚的对地电阻不同,LD7575是100K,203D6是24.1K,LP7552可用SG6841代用希望大家都列下来,这样子备PWM IC的时候就有个数了,知道买什么样子的电源管理芯片备用着,有时候手上没有,知道是电源管理坏了在那里干着急,反正PWM IC便宜的,可以每样备个2个,以备不时之需介绍几个LCD液晶显示器电源IC的代换希望能帮上大家.DAP8A\DAP7A\LD7575\203D6可以直接代换DAP02\SG5841\SG6841可以直接代换1200AP40\1200AP60\1203P60可以直接代换DM0465R\CM0565R\DM0565R可以直接代换TOP246Y\TOP247Y可以直接代换常见显示器IC代换OCP5001-----------TL5001AMC3100----------LTC3406/AT1366/MP2104 OCP2150----------- LTC3406/AT1366/MP2104 ACT6906----------- LTC3406/AT1366/MP2104 OCP2160-----------LTC3407AMC34063A-----------AMC34063AMC7660------------AJC1564ACT4060--------------ZA3020LV/MP1410/MP9141ACT4065------------ZA3020/MP1580ACT4070----------ZA3030/MP1583/MP1591MP1593/MP1430 AMC2576-------LM2576AMC2596-------LM2596OCP2576--------LM2576OMC2596-------LM2596/AP1501VA7910---------MAX1674/75 L6920 AJC1610SM9621---------RJ9621/AJC1642PT1301----------RJ9266PT4101----------AJC1648/MP3202PT4102----------LT1937/AJC1896/AP1522/RJ9271/MP1540 ACT6311-------LT1937SP1937-----------LT1937/AJC1896/AP1522/RJ9271/MP1540 OCP3601---------MB3800OCP1451---------TL1451/BA9741/SP9741/AP200电源IC STR-G5643D G5653D G8653D 直接代换203D6和DAP8A 直接代换1200AP40和1200AP60直接代换5S0765和DP104、DP704直接代换DP804和DP904直接代换2S0680和2S0880直接代换TEA1507和TEA1533直接代换三星的DP104,704,804可以用5S0765代换,DP904不能用任何块代换行场振荡、场输出、视频ICTDA9109和SID2511、KB2511、STV7779直接代换TDA9103和STV7778直接代换TDA9112和TDA9113直接代换TDA9115和TDA9116、STV6888直接代换TDA9118和STV9118直接代换TDA8172和TDA9302、TDA8177直接代换TDA1675 和DBL2056直接代换TDA9210和STV9210直接代换LM1203和LM2203、DBL2054直接代换TDA9116用STV6888代换,TDA4856可以用TDA4841PS代换,TDA9112可以用TDA9113代换,S1D2511可以用TDA9109代换203D6200D6LD7575DAP8A203X6直接代换SG6841SG5841DAPO2直接代换DM0456 DM0565直接代换1200AP401200AP601203AP10直接代。

VGA彩显失色故障的检修

VGA彩显失色故障的检修
接着用振压法检查显示部分的有关电路,看是否存在接触不良现象,经轻轻拍打未见好转迹象,估计是电路出了故障。打开机壳,用万用表检查显像管尾板的红、绿、蓝三色通道的分立元件电路部分,重点检查晶体管,未发现损坏。用示波器对视频处理集成电路芯片(LM1203)进行波形检查,发现红色信号的输出端(脚25)与输入端(脚4)的相位一致,皆是正向脉冲;而绿色(脚20输出,脚6输入)和蓝色(脚16输出,脚9输入)信号的输出与输入却是反相的变为负脉冲了。参见附图所示,从图中可以看出,被反相了的负向脉冲绿、蓝信号在抵达后续电路放大处理时,只能使后续电路的晶体管截止,而不会再有放大处理功能。所以,显像管自然不会再按需要显示绿色和蓝色成分了。
至于调大亮度时底色仍是正常的白色这一现象,是因为显像管是完好的,黑、白平衡电路也是正常的,所以底色也就不会改变了。
更换集成电路芯片LM1203,显示器即恢复正常显示。
需要说明的是,附图中的电路是根据实际电路测绘而画出的,仅供参考。该电路共有三套,分别完成对红、绿、蓝色信号的放大处理功能,图中的电压值是实测值。
VGA彩■故障现象: 一部台湾产VGA彩色显示器发生故障,显示字符和图形时仅有红色,失去绿色和蓝色,而调大亮度时,底色仍显示正常的白色。
■故障分析与排除:开始怀疑为显像管的绿枪与蓝枪有问题,将红色信号输出与绿、蓝色信号进行交换试验,发现绿、蓝二色均能正常显示,说明显像管没有问题。

彩色电视机视频处理电路原理图解

彩色电视机视频处理电路原理图解

彩色电视机视频处理电路原理图解视频处理电路,它通过匹配网络输人从显示卡送来的视频信号,经信号放大及对比度掌握、自动亮度限制等处理后,再输人到末级视放。

视放电路的核心是处理集成电路,常用的有LM1203、M51387、CXA1044等。

以下用典型的视频处理电路LM1203的电路结构和工作原理分析,它是特地为彩色显示器设计的宽带预视放芯片,功能方框见图1所示。

图1 视频处理电路功能框图LM1203内部含有R、G、B三通道放大器,每个通道都设有黑电平箱位电路,通过调整外元件,可转变放大器的基准直流电平,用作暗平衡掌握。

它犹如步转变RGB三路放大器的基准直流电平,则可实现亮度掌握。

内部还设有对比度掌握电路,用来同步转变三路放大器的增益,达到对比度调整的目的。

图中为一路基色通道的原理框图。

视频信号由AI反相放大并经对比度调整电路后加至A2正相输人端,因此转变电容上的电压,便调整了该通道的暗平流。

视频信号由AI反相放大并经对比度调整电路后加至A2正相输人端,,因此转变电容上的电压,便调整了该通道的暗平流源充电电流的幅值打算,而恒流源是由黑电平箝位比较器A3掌握的,转变A3的反相输’人端、正相输人端,即箱位(-)。

箱位(+)都可达到转变通道放大器基准直流电平的目的,但A3工作与否是由输入的箝位脉冲打算的,在负极性的箝位脉冲到来时,A3放大电路开启工作。

AZ输出的信号再由TI放大,TI的放大倍数由R1/(R2+R)打算,在该脚可附接一小电容,为放射极补偿电容,相当于增大了视频信号的高频增益,起到高频补偿的作用。

Ti输出的视频信号由A4放大,经T2射极输出。

其它两路的基色通道的原理相同。

视频通道发生故障常消失屏幕显示一片白或显示器显示的颜色不正常(缺基色)。

对于消失前一种故障现象的可能缘由,一是视频处理电路的集成芯片LM1203N损坏,二是视频放大电路消失故障(电源电压加上或视放管开路)。

对于消失后种故障现象,主要是缺少基色,如缺少某一种颜色,显示的颜色就不正常。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TL H 9178LM1203RGB Video Amplifier SystemJanuary 1996LM1203RGB Video Amplifier SystemGeneral DescriptionThe LM1203is a wideband video amplifier system intended for high resolution RGB color monitor applications In addi-tion to three matched video amplifiers the LM1203contains three gated differential input black level clamp comparators for brightness control and three matched attenuator circuits for contrast control Each video amplifier contains a gain set or ‘‘Drive’’node for setting maximum system gain (Av e 4to 10)as well as providing trim capability The LM1203also contains a voltage reference for the video inputs For high resolution monochrome monitor applications see the LM1201Video Amplifier System datasheetFeaturesY Three wideband video amplifiers (70MHz b 3dB)YInherently matched (g 0 1dB or 1 2%)attenuators for contrast controlYThree externally gated comparators for brightness con-trolYProvisions for independent gain control (Drive)of each video amplifierY Video input voltage reference YLow impedance output driverBlock and Connection DiagramTL H 9178–1FIGURE 1Order Number LM1203N See NS Package Number NA28FC 1996National Semiconductor Corporation RRD-B30M56 Printed in U S AAbsolute Maximum RatingsIf Military Aerospace specified devices are required please contact the National Semiconductor Sales Office Distributors for availability and specifications Supply Voltage V CC Pins1 13 23 28(Note1)13 5V Voltage at Any Input Pin V IN V CC t V IN t GND Video Output Current I16 20or2528mA Power Dissipation P D2 5W (Above25 C)Derate Based on i JA and T JThermal Resistance i JA50 C W Junction Temperature T J150 C Storage Temperature Range T STG b65 C to a150 C Lead Temperature (Soldering 10sec )265 C ESD susceptibility1kV Human body model 100pF discharged through a1 5k X resistorOperating Ratings(Note9)Temperature Range0 C to70 C Supply Voltage(V CC)10 8V s V CC s13 2VElectrical Characteristics See Test Circuit(Figure2) T A e25 C V CC1e V CC2e12V DC Static Tests S17 21 26Open V12e6V V14e0V V15e2 0V unless otherwise statedLabel Parameter Conditions TypTested Design Units Limit(Note2)Limit(Note3)(Limits)Is Supply Current V CC1only7390 0mA(max)V11Video Input Reference Voltage2 42 2V(min)2 6V(max) lb Video Input Bias Current Any One Amplifier5 020m A(max) V14l Clamp Gate Low Input Voltage Clamp Comparators On1 20 8V(max) V14h Clamp Gate High Input Voltage Clamp Comparators Off1 62 0V(min) I14l Clamp Gate Low Input Current V14e0V b0 5b5 0m A(max) I14h Clamp Gate High Input Current V14e12V0 0051m A(max) lclamp a Clamp Cap Charge Current V5 8or10e0V850500m A(min) lclamp b Clamp Cap Discharge Current V5 8or10e5V b850b500m A(min) Vol Video Output Low Voltage V5 8or10e0V0 91 25V(max) Voh Video Output High Voltage V5 8or10e5V8 98 2V(min)D Vo(2V)Video Output Offset Voltage Between Any Two Amplifiersg0 5g50mV(max)V15e2VD Vo(4V)Video Output Offset Voltage Between Any Two Amplifiersg0 5g50mV(max)V15e4VAC Dynamic Tests S17 21 26Closed V14e0V V15e4V unless otherwise statedSymbol Parameter Conditions TypTested Design Units Limit(Note2)Limit(Note3)(Limits)Av max Video Amplifier Gain V12e12V V IN e560mVp-p6 04 5V V(min)D Av5V Attenuation 5V Ref Av max V12e5V b10dBD Av2V Attenuation 2V Ref Av max V12e2V b40dBAv match Absolute gain match Av max V12e12V(Note5)g0 5dBD Av track1Gain change between amplifiers V12e5V(Notes5 8)g0 1g0 5dB(max)D Av track2Gain change between amplifiers V12e2V(Notes5 8)g0 3g0 7dB(max)THD Video Amplifier Distortion V12e3V V O e1Vp-p0 5%f(b3dB)Video Amplifier Bandwidth V12e12V70MHz (Notes4 6)V O e100mV rmst r Output Rise Time(Note4)V O e4Vp-p5nst f Output Fall Time(Note4)V O e4Vp-p7ns http www national com2AC Dynamic Tests S17 21 26Closed V14e0V V15e4V unless otherwise stated(Continued)Symbol Parameter Conditions TypTested DesignUnits Limit(Note2)Limit(Note3)Vsep Video Amplifier10kHz Isolation V12e12V(Note7)b65dB10kHzVsep Video Amplifier10MHz Isolation V12e12V(Notes4 7)b46dB10MHzNote1 V CC supply pins1 13 23 28must be externally wired together to prevent internal damage during V CC power on off cyclesNote2 These parameters are guaranteed and100%production testedNote3 Design limits are guaranteed(but not100%production tested) These limits are not used to calculate outgoing quality levelsNote4 When measuring video amplifier bandwidth or pulse rise and fall times a double sided full ground plane printed circuit board without socket is recommend-ed Video Amplifier10MHz isolation test also requires this printed circuit boardNote5 Measure gain difference between any two amplifiers V IN e1Vp-pNote6 Adjust input frequency from10kHz(Av max ref level)to the b3dB corner frequency(f b3dB)Note7 Measure output levels of the other two undriven amplifiers relative to driven amplifier to determine channel separation Terminate the undriven amplifier inputs to simulate generator loading Repeat test at f IN e10MHz for Vsep e10MHzNote8 D Av track is a measure of the ability of any two amplifiers to track each other and quantifies the matching of the three attenuators It is the difference in gain change between any two amplifiers with the Contrast Voltage V12at either5V or2V measured relative to an Av max condition V12e12V For example atAv max the three amplifiers gains might be17 4dB 16 9dB and16 4dB and change to7 3dB 6 9dB and6 5dB respectively for V12e5V This yields the measured typical g0 1dB channel trackingNote9 Operating Ratings indicate conditions for which the device is functional See Electrical Specifications for guaranteed performance limitsPeaking capacitors See Frequency Responseusing various peaking cups graph on next pageTL H 9178–2FIGURE2 LM1203Test Circuithttp www national com3Typical Performance CharacteristicsContrast vs FrequencyTL H 9178–11Crosstalk vs FrequencyTL H 9178–12Frequency Response Using Various Peaking CapsTL H 9178–13Attenuation vs Contrast VoltageTL H 9178–14Pulse ResponseRise Fall Times Vert e 1V Div Horiz e 10ns Div––GNDTL H 9178–15http www national com 4TL H 9178–3FIGURE 3 LM1203Typical Application30X resistors are added to the input pins for protection against current surges coming through the 10m F input capacitors By increasing these resistors to well over 100X the rise and fall times of the LM1203can be increased for EMI considerationshttp www national com5Applications InformationFigure4shows the block diagram of a typical analog RGB color monitor The RGB monitor is used with CAD CAM work stations PC’s arcade games and in a wide range of other applications that benefit from the use of color display terminals The RGB color monitor characteristics may differ in such ways as sweep rates screen size CRT color trio spacing(dot pitch) or in video amplifier bandwidths but will still be generally configured as shown in Figure4 Separate horizontal and vertical sync signals may be required or they may be contained in the green video input signal The video input signals are usually supplied by coax cable which is terminated in75X at the monitor input and internally ac cou-pled to the video amplifiers These input signals are approxi-mately1volt peak to peak in amplitude and at the input of the high voltage video section approximately6V peak to peak At the cathode of the CRT the video signals can be as high as60V peak to peak One important requirement of the three video amplifiers is that they match and track each other over the contrast and brightness control range The Figure4block labeled‘‘VIDEO AMPLIFICATION WITH GAIN AND DC CONTROL’’describes the function of the LM1203which contains the three matched video amplifiers contrast control and brightness controlTL H 9178–4FIGURE4 Typical RGB Color Monitor Block Diagram http www national com6Circuit DescriptionFigure 5is a block diagram of one of the video amplifiers along with the contrast and brightness controls The con-trast control is a dc-operated attenuator which varies the ac gain of all three amplifiers simultaneously while not introduc-ing any signal distortions or tracking errors The brightness control function requires a ‘‘sample and hold’’circuit (black level clamp)which holds the dc bias of the video amplifiers and CRT cathodes constant during the black level reference portion of the video waveform The clamp comparator when gated on during this reference period will charge or discharge the clamp capacitor until the plus input of the clamp comparator matches that of the minus input voltage which was set by the brightness controlFigure 6is a simplified schematic of one of the three video amplifiers along with the recommended external compo-nents The IC pin numbers are circled with all external com-ponents shown outside of the dashed line The video input is applied to pin 6via the 10m F coupling capacitor DC biasto the video input is through the 10k X resistor which is connected to the 2 4V reference at pin 11 The low frequen-cy roll-off of the amplifier is set by these two components Transistor Q1buffers the video signal to the base of Q2 The Q2collector current is then directed to the V CC 1sup-ply directly or through the 1k load resistor depending upon the differential DC voltage at the bases of Q3and Q4 The Q3and Q4differential base voltage is determined by the contrast control circuit which is described below RF decou-pling capacitors are required at pins 2and 3to insure high frequency isolation between the three video amplifiers which share these common connections The black level dc voltage at the collector of Q4is maintained by Q5and Q6which are part of the black level clamp circuit also described below The video signal appearing at the collector of Q4is then buffered by Q7and level shifted down by Z1and Q8to the base of Q9which will then provide additional system gainTL H 9178–5FIGURE 5 Block Diagram of LM1203Video Amplifier with Contrast and Black Level Controlhttp www national com7Circuit Description (Continued)T L H 9178–6F IG U R E 6 S i m p l i f i e d L M 1203V i d e o A m p l i f i e r S e c t i o n w i t h R e c o m m e n d e d E x t e r n a l C o m p o n e n t shttp www national com8Circuit Description (Continued)The ‘‘Drive’’pin will allow the user to trim the Q9gain of each amplifier to correct for differences in the CRT and high voltage cathode driver gain stages A small capacitor (33pF)at this pin will extend the high frequency gain of the video amplifier by compensating for some of the internal high frequency roll off To use this capacitor and still provide variable gain adjustment the 51X and series 100X pot should be used with the red and green drive pins The 91X resistor used with the blue drive pin will set the system gain to approximately 6 2and allow adjustment of the red and green gains to 6 2plus or minus 25% The video signal at the collector of Q9is buffered and level shifted down by Q10and Q11to the base of the output emitter follower Q12 Between the emitter of Q12and the video output pin is a 40X resistor which was included to prevent spurious oscilla-tions when driving capacitive loads An external emitter re-sistor must be added between the video output pin and ground The value of this resistor should not be less than 390X or package power limitations may be exceeded when worst case (high supply max supply current max temp)cal-culations are made If negative going pulse slewing is a problem because of high capacitive loads (l 10pF) a more efficient method of emitter pull down would be to connect a suitable resistor to a negative supply voltage This has the effect of a current source pull down when the minus supply voltage is b 12V and the emitter current is approximately10mA The system gain will also increase slightly because less signal will be lost across the internal 40X resistor Pre-cautions must be taken to prevent the video output pin from going below ground because IC substrate currents may cause erratic operation The collector currents from the vid-eo output transistors are returned to the power supply at V CC 2pin 23 When making power dissipation calculations note that the data sheet specifies only the V CC 1supply current at 12V The IC power dissipation contribution of V CC 2is dependent upon the video output emitter pull down loadIn applications that require video amplifier shut down be-cause of fault conditions detected by monitor protection cir-cuits pin 11and the wiper arms of the contrast and bright-ness controls can be grounded without harming the IC This assumes some series resistance between the top of the control pots and V CCFigure 7shows the internal construction of the pin 112 4V reference circuit which is used to provide temperature and supply voltage tracking compensation for the video amplifier inputs The value of the external DC biasing resistors should not be larger than 10k X because minor differences in input bias currents to the individual video amplifiers may cause offsets in gainTL H 9178–7FIGURE 7 LM1203Video Input Voltage Reference and Contrast Control Circuitshttp www national com9Circuit Description(Continued)Figure7also shows how the contrast control circuit is con-figured Resistors R23 24 diodes D3 4and transistor Q13 are used to establish a low impedance zero TC half supply voltage reference at the base of Q14 The differential ampli-fier formed by Q15 16and feedback transistor Q17along with resistors R27 28establish a diferential base voltage for Q3and Q4in Figure6 When externally adding or sub-tracting current from the collector of Q16 a new differential voltage is generated that reflects the change in the ratio of currents in Q15and Q16 To provide voltage control of the Q16current resistor R29is added between the Q16collec-tor and pin12 A capacitor should be added from pin12to ground to prevent noise from the contrast control pot from entering the ICFigure8is a simplified schematic of the clamp gate and clamp comparator sections of the LM1203 The clamp gate circuit consists of a PNP input buffer transistor(Q18) a PNP emitter coupled pair referenced on one side to2 1V(Q19 20)and an output switch(Q21) When the clamp gate input at pin14is high(l1 5V)the Q21switch is on and shunts the I1850m A current to ground When pin14is low(k1 3V) the Q21switch is off and the I1850m A current source is mirrored or‘‘turned around’’by reference diode D5and Q26 to provide a850m A current source for the clamp compara-tor(s) The inputs to the comparator are similar to the clamp gate input except that an NPN emitter coupled pair is used to control the current which will charge or discharge the clamp capacitors at pins5 8 or10 PNP transistors are used at the inputs because they offer a number of advan-tages over NPNs PNPs will operate with base voltages at or near ground and will usually have a greater reverse emitter base breakdown voltage(BVebo) Because the differential input voltage to the clamp comparator during the video scan period could be greater than the BVebo of NPN transistors a resistor(R34)with a value one half that of R33or R35is connected between the bases of Q23and Q27 This resis-tor will limit the maximum differential input to Q24 25to approximately350mV The clamp comparator common mode range is from ground to approximately9V and the maximum differential input voltage is V CC and groundTL H 9178–8FIGURE8 Simplified Schematic of LM1203Clamp Gate and Clamp Comparator Circuits http www national com10Additional Applications of the LM1203Figure 9shows how the LM1203can be set up as a video buffer which could be used in low cost video switcher appli-cations Pin 14is tied high to turn off the clamp compara-tors The comparator input pins should be grounded as shown Sync tip (black level if sync is not included)clamping is provided by diodes at the amplifier inputs Note that the clamp cap pins are tied to the Pin 112 4V reference This was done along with the choice of 200X for the drive pin resistor to establish an optimum DC output voltage Thecontrast control (Pin 12)will provide the necessary gain or attenuation required for channel balancing Changing the contrast control setting will cause minor DC shifts at the amplifier output which will not be objectionable as the out-put is AC coupled to the load The dual NPN PNP emitter follower will provide a low impedance output drive to the AC coupled 75X output impedance setting resistor The dual 500m F capacitors will set the low frequency response to approximately 4HzTL H 9178–9FIGURE 9 RGB Video Buffer with Diode Sync Tip Clamps and 75X Cable Driverhttp www national com11Additional Applications of the LM1203(Continued)When diode D4at Pin11is switched to ground the input video signals will be DC shifted down and clamped at a voltage near ground(approximately250mV) This will dis-able the video amplifiers and force the output DC level low The DC outputs from other similarly configured LM1203s could overide this lower DC level and provide the output signals to the75X cable drivers In this case any additional LM1203s would share the same390X output resistor The maximum DC plus peak white output voltage should not be allowed to exceed7V because the‘‘off’’amplifier output stage could suffer internal zener damage See Figure3and text for a description of the internal configuration of the vid-eo amplifier Figure10shows the configuration for a three channel high frequency amplifier with non gated DC feedback Pin14is tied low to turn on the clamp comparators(feedback amplifi-ers) The inverting inputs(Pins17 21 26)are connected to the amplifier outputs from a low pass filter Additional low frequency filtering is provided by the clamp caps The drive resistors can be made variable or fixed at values between0 and300X Maximum output swings are achieved when the DC output is set to approximately4V The high frequency response will be dependent upon external peaking at the drive pinsTL H 9178–10FIGURE10 Three Channel High Frequency Amplifier with Non-gated DC Feedback(Non-video Applications) http www national com12TL H 9178–16FIGURE 11 LM1203 LM1881Application Circuit for PC Boardhttp www national com13P C B o a r d w i t h C o m p o n e n t sT L H 9178–17http www national com1415http www national comL M 1203R G B V i d e o A m p l i f i e r S y s t e mPhysical Dimensions inches (millimeters)unless otherwise notedLit 10731528-Lead Molded Dual-In-Line Package (N)Order Number LM1203N NS Package Number NA28FLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION As used herein 1 Life support devices or systems are devices or 2 A critical component is any component of a life systems which (a)are intended for surgical implant support device or system whose failure to perform can into the body or (b)support or sustain life and whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system or to affect its safety or with instructions for use provided in the labeling can effectivenessbe reasonably expected to result in a significant injury to the userNational Semiconductor National Semiconductor National Semiconductor National Semiconductor CorporationEuropeHong Kong LtdJapan Ltd1111West Bardin RoadFax a 49(0)180-530858613th Floor Straight Block Tel 81-043-299-2308。

相关文档
最新文档