完全平方数下
平方数的规律及以内的平方表
平方数的规律及100以内的整数平方表(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同.(2)奇数的平方的个位数字是奇数,十位数字是偶数.(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n型.(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9.(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数.(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数.(12)一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n).一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等.如果正整数x,y,z满足不定方程x2+y2=z2,就称x,y,z为一组勾股数.x,y必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数.z和z2必定都是奇数.五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625;64+225=289;400+441=841记忆技巧:(a+b)2=a2+b2+2ab(a-b)2=a2+b2-2ab||||||a×a b×b2×a×ba×ab×b2×a×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到之间的所有质数是不是n的因子即可,超过的都不必检查了.例如,判定2431是否为质数,因为492=2401<2431<2500=502,所以49<<50,2+4+3+1=10不能被3整除,2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=1117.③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212,另外一些特殊结构的数字应该牢记,如882=7744,112=121,222=484,(121和484从左到右与从右到左看是一样的)122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒).。
北师大版初中数学七年级下册第1章《完全平方公式(一)》说课稿
《完全平方公式(一)》说课稿一、说教材1、地位和作用“完全平方公式”是七年级《数学》下册第一章第八节内容,它分为两课时,本节是第一课时,它是“整式运算”这一章中重要的内容之一,它起到承上启下的作用,既是整式相乘的应用,又为以后学习配方法打下扎实的基础。
2、课程目标:(1)、知识目标:经历探索推导完全平方公式的过程,形成数形结合思想,进一步发展符号感。
掌握完全平方公式的结构特点,并能利用公式熟练进行运算。
(2)、能力目标:培养学生发散性思维能力和推理能力,培养学生语言表达能力,动手实践能力,以及合作交流能力。
(3)情感目标:让学生在探索的过程中,体会科学发现探索方法,在合作交流中,体会团结合作精神。
能从多角度思考问题,敢于发表自己的观点。
3、教学重点、难点:重点:完全平方公式的结构特点及公式的直接运用。
难点:对公式中a、b含义的理解与正确应用。
4、教材安排:本节课先从通过计算和比较试验田的面积引出完全平方公式。
直接让学生运用多项式乘法法则推导完全平方公式。
并通过数形结合思想,让学生理解完全平方公式及其结构特点。
最后通过变式训练进行练习和巩固。
二、说教学方法及教学手段:本节课引导学生从已有的知识和生活经验出发,提出开放性的问题让学生进行合作探索,让学生经历知识的形成与应用,从而更好地理解数学知识的意义。
本节课教学中,对于不同的内容选择了不同的方法。
对于求实验田的总面积,进行开放性教学,引导学生利用拼图等方法合作探究多种方法求解;运用多项式相乘推导公式,让学生独立探索;对于完全平方公式的运用,采用变式训练,促进学生灵活掌握。
为了提高课堂教学效果,本节课将借助于多媒体课件辅助教学。
三、说学法教给学生良好的学习方法比直接教给学生知识更重要。
数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在教学中要不断指导学生学会学习,又要给学生自主探索和合作交流时间。
本节课先从实际出发,创设有助于学生发散性思考的问题情境,引导学生自己积极思考探索,让学生经历“观察、类比、发现、归纳”的过程,从而培养学生动手实践的能力,提高口头表达能力及逻辑推理能力,使学生真正成为学习的主体。
完全平方和平方差公式
平方差公式和完全平方公式(一)平方差公式是先平方再减a²-b²= (a+b)(a-b)。
(二)完全平方公式是先加减最后是平方(a±b)²=a²±2ab+b²。
(三)平方差公式是指两个数的和与这两个数差的积,等于这两个数的平方差,这一公式的结构特征:(四)左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差。
公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式。
(五)该公式需要注意:1.公式的左边是个两项式的积,有一项是完全相同的。
2.右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3.公式中的a,b 可以是具体的数,也可以是单项式或多项式。
完全平方公式指两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
为了区别,会叫做两数和的完全平方公式,或叫做两数差的完全平方公式。
这个公式的结构特征:1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2.左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内)。
公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式。
(六)该公式需要注意:1.左边是一个二项式的完全平方。
2.右边是二项平方的和,加上(或减去)这两项乘积的二倍,a和b 可是数,单项式,多项式。
3.不论是(a+b)2还是(a-b)2,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。
4.不要漏下一次项。
5.切勿混淆公式。
6.运算结果中符号不要错误。
7.变式应用难,不易于掌握。
五年级下第11讲 完全平方数
第11讲完全平方数一、知识要点1.完全平方数的定义:一个自然数与自身相乘的乘积叫做完全平方数或平方数.2.完全平方数表:3.完全平方数的常用性质:完全平方数乘完全平方数是完全平方数。
二、例题精选【例1】计算:215,225,235,245,255,并说明规律。
【巩固1】计算:162,262,362,462,562,并说明规律。
【例2】试判断下列数是否是完全平方数,若不是请在横线上简述判断理由;若是请在横线上写出它是哪个数的平方。
997:____________________;6983:____________________;5112:____________________;6478:____________________;【巩固2】试判断下列数是否是完全平方数,若不是请在横线上简述判断理由;若是请在横线上写出它是哪个数的平方。
1199:____________________;7886:____________________;1834:____________________;1275:____________________;【例3】A 是由2017个“9”组成的多位数,即920179999个 ,A 是不是某个自然数B 的平方?如果是,写出B ;如果不是,请说明理由.【巩固3】A 是由2018个“56”组成的多位数,即 5620185656...5656个,A 是不是某个自然数B 的平方?如果是,写出B;如果不是,请说明理由.【例4】1016与正整数a的乘积是正整数b的平方,则a的最小值是多少?b的最小值是多少?【巩固4】已知3528a恰是自然数b的平方数,a的最小值是多少?b的最小值是多少?【例5】因为快乐学校的孩子都很喜欢平方数,所以将年份数是平方数的年份定义为“快乐年”。
如公元900年,900=302,所以公元900年是快乐年。
那么从1000年到今年(2018年),有多少个“快乐年”?【巩固5】黑暗世界的小朋友不喜欢年份数是平方数的年份,因为这些年份总会遭遇困恼,其他年份则不会。
平方数的规律及100以内的平方表
平方数的规律及100以内的整数平方表(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同.(2)奇数的平方的个位数字是奇数,十位数字是偶数.(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n型.(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9.(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数.(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数.(12)一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n).一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等.如果正整数x,y,z满足不定方程x2+y2=z2 ,就称x,y,z为一组勾股数.x,y必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数.z和z2必定都是奇数.五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625;64+225=289;400+441=841记忆技巧:(a+b)2= a2 + b2+2ab(a-b)2=a2+b2 -2ab|| | || |a×a b×b 2×a×b a×a b×b 2×a×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到n之间的所有质数是不是n的因子即可,超过n的都不必检查了.例如,判定2431是否为质数,因为492=2401<2431<2500=502,所以49<2431<50 ,2+4+3+1=10不能被3整除, 2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=11×13×17.③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212,另外一些特殊结构的数字应该牢记,如882=7744,112=121,222=484,(121和484从左到右与从右到左看是一样的)122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒).。
初中平方数数运算
初中平方数数运算
一、平方数的定义与性质**
1. 平方数是由一个非负整数n与2相乘得到的数,记作n^2。
例如,4是2的平方,9是3的平方。
2. 平方数具有以下性质:
任何整数的平方都是非负的,即对于任何整数n,有n^2 ≥ 0。
完全平方数的末位数只能是0,1, 4, 5, 6, 或9。
奇数的平方在十进制下总是以1结尾。
二、平方数的运算律
1. 交换律
2. 结合律
3. 分配律
三、平方数的乘法运算
1. 多个平方数的相乘,可将其因数各自平方后相乘。
四、平方数的除法运算
1. 在除法运算中,将除数和被除数都进行平方,然后进行乘法运算。
五、平方数的加法与减法
1. 在进行加法和减法运算时,应注意考虑符号和完全平方公式。
六、平方数的因数与倍数
1. 一个数的因数是能够整除这个数的整数。
2. 一个数的倍数是能够被这个数整除的整数。
完全平方公式的口诀
完全平方公式的口诀完全平方公式是初中数学常见的数学公式之一,它能够帮助我们轻松地计算一些特殊的乘积。
而为了帮助学生更快更好地掌握这个公式,老师们总是会给出一些“口诀”来帮助学生记忆。
下面,我将介绍一些经典的完全平方公式口诀,希望对大家有所帮助。
一、经典的完全平方公式口诀1. 一加二,幺躲躲,三加三,九不错,四加四,十六在,五加五,廿五来,六加六,三十六。
这是一个非常经典的完全平方公式口诀,可用于计算1到6的完全平方数。
要注意的是,口诀中的“幺躲躲”代表1的平方,“廿五来”代表5的平方。
2. 老师教你秘籍,把加数都平方,两数乘积再取一半,就是平方的值。
这是一个比较通俗易懂的口诀,建议适合初中阶段的学生使用。
它的计算方法是将两个加数都平方,然后将两个数的积除以2,得到的结果就是平方数了。
3. 相加相同,用两平方,相加相异,用差平方。
这个口诀比较精炼,但要求学生先判断两个加数是否相等,再选用不同的计算方法,因此需要一定的数学能力。
具体来说,如果两数相等,就将它们的平方相加;如果两数不等,就将它们的差平方再加上两数中较小数的平方就行了。
4. 一减二,幺躲躲,三减三,九不错,四减四,十六在,五减五,廿五来,六减六,三十六。
这个口诀与第一个口诀类似,只是将加法换成了减法。
同样需要注意的是,“幺躲躲”代表1的平方,“廿五来”代表5的平方。
二、如何运用完全平方公式口诀?掌握完全平方公式口诀后,如何运用它们呢?下面以“相加相异,用差平方”为例,介绍一下计算方法:先将两个数字相加求和,然后除以2得到平均数。
以这两个数为边长,画一个矩形,然后在矩形的对角线上找到平均数。
将这个平均数与两个数的差相乘,就可以得到两数的平方了。
例如,假设我们要计算5和8的平方,应该先将两个数相加得到13,然后除以2得到6.5。
然后画出两边长为5和8的矩形,找到它的对角线,该对角线上的长度为6.5。
最后,将6.5与5和8的差(3)相乘,得到的结果为72.25,即5和8的平方。
平方数的规律及以内的平方表
平方数的规律及以内的平方表Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】平方数的规律及100以内的整数平方表规律:(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同.(2)奇数的平方的个位数字是奇数,十位数字是偶数.(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n型.(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9.(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数.(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数.(12)一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n).一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等.如果正整数x,y,z满足不定方程x2+y2=z2,就称x,y,z为一组勾股数.x,y必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数.z和z2必定都是奇数.五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625;64+225=289;400+441=841记忆技巧:(a+b)2=a2+b2+2ab(a-b)2=a2+b2-2ab||||||a×a b×b2×a×ba×ab×b2×a×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到之间的所有质数是不是n的因子即可,超过的都不必检查了.例如,判定2431是否为质数,因为492=2401<2431<2500=502,所以49<<50,2+4+3+1=10不能被3整除,2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=1117.③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212,另外一些特殊结构的数字应该牢记,如882=7744,112=121,222=484,(121和484从左到右与从右到左看是一样的)122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒).。
五年级下 完全平方数
第11讲完全平方数一、知识要点1.完全平方数的定义:一个自然数与自身相乘的乘积叫做完全平方数或平方数.2.完全平方数表:3.完全平方数的常用性质:完全平方数乘完全平方数是完全平方数。
二、例题精选【例1】计算:215,225,235,245,255,并说明规律。
【巩固1】计算:162,262,362,462,562,并说明规律。
【例2】试判断下列数是否是完全平方数,若不是请在横线上简述判断理由;若是请在横线上写出它是哪个数的平方。
997:____________________;6983:____________________;5112:____________________;6478:____________________;【巩固2】试判断下列数是否是完全平方数,若不是请在横线上简述判断理由;若是请在横线上写出它是哪个数的平方。
1199:____________________;7886:____________________;1834:____________________;1275:____________________;【例3】A 是由2017个“9”组成的多位数,即920179999个 ,A 是不是某个自然数B 的平方?如果是,写出B ;如果不是,请说明理由.【巩固3】A 是由2018个“56”组成的多位数,即 5620185656...5656个,A 是不是某个自然数B 的平方?如果是,写出B;如果不是,请说明理由.【例4】1016与正整数a的乘积是正整数b的平方,则a的最小值是多少?b的最小值是多少?【巩固4】已知3528a恰是自然数b的平方数,a的最小值是多少?b的最小值是多少?【例5】因为快乐学校的孩子都很喜欢平方数,所以将年份数是平方数的年份定义为“快乐年”。
如公元900年,900=302,所以公元900年是快乐年。
那么从1000年到今年(2018年),有多少个“快乐年”?【巩固5】黑暗世界的小朋友不喜欢年份数是平方数的年份,因为这些年份总会遭遇困恼,其他年份则不会。
完全平方数大全
完全平方数目录一、定义二、基础性质及推论三、重要结论四、区别五、特殊的完全平方数六、范例1.例12.例23.例34.例45.例56.例67.例78.例8七、讨论题一、定义及表达式1、定义:若一个数能表示成某个整数的平方,则称这个数为完全平方数,也叫平方数。
1.1例如:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361, 400,441,484,529,…2、标准分解式:大于1的平方数n 的标准分解式如下:1222212kl l l k n p p p =(1)其中12121,,,,k k k p p p p p p ≥<<<是质数,12,,,k l l l 是自然数。
2.1例如:2222422223623,10025,14423,900235,=⨯=⨯=⨯=⨯⨯二、基础性质及推论观察0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361, 400,441,484,529,…完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。
下面我们来研究完全平方数的一些常用性质: 1、性质1:末位数只能是0,1,4,5,6,9. (此为完全平方数的必要不充分条件)证明:设2()n n N ∈为完全平方数,0n 是n 的个位数,则2n 的个位数与20n 的个位数相同。
利用整数同余的知识有如果0(mod10)n n ≡,那么220(mod10)n n ≡又0n 的全体是集合{}0,1,2,3,4,5,6,7,8,9,20n 的全体是{}0,1,4,9,16,25,36,49,64,81,20n 的个位数全体是{}0,1,4,5,6,9。
所以平方数末位数只能是0,1,4,5,6,9.2、性质2:奇数的平方的个位数字一定是奇数,偶数的平方的个位数一定是偶数。
平方数的规律及100以内的平方表讲解学习
平方数的规律及100以内的平方表平方数的规律及100以内的整数平方表规律:(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同.(2)奇数的平方的个位数字是奇数,十位数字是偶数.(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n型.(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9.(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数.(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数.(12)一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n).一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等.如果正整数x,y,z满足不定方程x2+y2=z2 ,就称x,y,z为一组勾股数.x,y必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数.z和z2必定都是奇数.五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625; 64+225=289; 400+441=841记忆技巧:(a+b)2= a2 + b2 + 2ab (a-b)2=a2 + b2 -2ab| | | | | |a×a b×b 2×a×b a×a b×b 2×a×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到之间的所有质数是不是n的因子即可,超过的都不必检查了.例如,判定2431是否为质数,因为492=2401<2431<2500=502,所以49<<50 ,2+4+3+1=10不能被3整除, 2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=1117.③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212 ,另外一些特殊结构的数字应该牢记,如882=7744,112=121,222=484,(121和484从左到右与从右到左看是一样的)122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒).。
平方数的规律及100以内的平方表
平方数的规律及100以内的整数平方表(一)(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同.(2)奇数的平方的个位数字是奇数,十位数字是偶数.(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n型.(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9.(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数.(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数.(12)一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n).一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等.如果正整数x,y,z满足不定方程x2+y2=z2 ,就称x,y,z为一组勾股数.x,y必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数.z和z2必定都是奇数.五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625; 64+225=289; 400+441=841记忆技巧:(a+b)2= a2 + b2+2ab(a-b)2=a2+b2 -2ab|| | || |a×a b×b 2×a×b a×a b×b 2×a×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到之间的所有质数是不是n的因子即可,超过的都不必检查了.例如,判定2431是否为质数,因为492=2401<2431<2500=502,所以49<<50 ,2+4+3+1=10不能被3整除, 2341的个位既非0又非5,故只需检查7到47即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=1117.③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212,另外一些特殊结构的数字应该牢记,如882=7744,112=121,222=484,(121和484从左到右与从右到左看是一样的) 122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒).。
完全平方公式八个变形逆用
完全平方公式八个变形逆用而完全平方公式的变形,则是根据题目给定的条件,对于二次方程进行简化或转化,从而更便于求解。
下面就来介绍八个完全平方公式的变形及其逆用方法。
1.两个完全平方数的差a^2-b^2=(a+b)(a-b)逆用:可以将已知的完全平方数进行因式分解,从而求出未知数的值。
例如,已知一个完全平方数为25,可以写成5^2,则可以利用公式a^2-b^2=(a+b)(a-b),将其分解为(5+b)(5-b)=25,求解得到b=0。
2.两个完全平方数的和a^2 + 2ab + b^2 = (a + b)^2逆用:通过因式分解可以将已知的完全平方和转化为完全平方公式。
例如,已知a^2+6a+9=49,可以写成(a+3)^2=49,即(a+3)=√49,求解得到a=43.完全平方的平方根√(a^2)=,a逆用:通过取平方根,可以求解已知完全平方的未知数。
例如,已知√(x^2)=7,可以求解得到,x,=7,即x=7或x=-74.两个完全平方的积(a + b)^2 = a^2 + 2ab + b^2逆用:通过将已知的完全平方和进行展开,可以求解未知数。
例如,已知(x+3)^2=49,可以展开得到x^2+6x+9=49,即x^2+6x-40=0。
再通过求根公式进行求解,得到x=4或x=-10。
5.完全平方的倒数1/a^2=1/a*1/a=(1/a)^2逆用:可以通过求解分母的平方根,来求解完全平方的倒数。
例如,已知1/x^2=1/25,可以求解得到(1/x)^2=1/25,即(1/x)=±(1/5),解得x=5或x=-56.两个完全平方的乘积(a - b)^2 = a^2 - 2ab + b^2逆用:可以将已知的完全平方差展开,从而求解未知数。
例如,已知(x-4)^2=49,可以展开得到x^2-8x+16=49,即x^2-8x-33=0。
通过求根公式进行求解,得到x=-3或x=117.完全平方的倒数的平方根√(1/a^2)=1/√(a^2)=1/,a逆用:通过对倒数的平方根进行求解,来求解完全平方的倒数。
平方数的规律及以内的平方表
平方数的规律及100以内的整数平方表规律:(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同.(2)奇数的平方的个位数字是奇数,十位数字是偶数.(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n型.(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9.(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数.(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数.(12)一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n).一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等.如果正整数x,y,z满足不定方程x2+y2=z2 ,就称x,y,z为一组勾股数.x,y必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数.z和z2必定都是奇数. 五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625;64+225=289;400+441=841记忆技巧:(a+b)2= a2 + b2 + 2ab (a-b)2=a2 + b2 -2ab| | | | | |a×a b×b 2×a×b a×a b×b 2×a×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到之间的所有质数是不是n的因子即可,超过的都不必检查了.例如,判定2431是否为质数,因为492=2401<2431<2500=502,所以49<<50 ,2+4+3+1=10不能被3整除, 2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=1117.③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212 ,另外一些特殊结构的数字应该牢记,如882=7744,112=121,222=484,(121和484从左到右与从右到左看是一样的)122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
是完全平方数 . 取t=
2
n - 53 , x = t + 1 , y0 = 2 t +1 ,则 185-26 n 0
2
2
11 x0 + 5 x0 y0 + 37 y0
2 2 = 169 t + 185 t +53= ( 13 t + n) 2 2 13 ( n - 53) = + n . 185-26 n 再令 x = ( 185-26 n) x0 ,
10 - 1 8 …+ 10 × 9 = 1 17 16 15 2 [ (10 - 1) + (10 - 10) + (10 - 10 ) + 9 1 17 16 15 9 [ ( 10 + 10 + 10 + …+ 10 ) 9
2 8 + …+ 10 ) ] 1
9 8 …+ ( 10 - 10 ) ]
5 利用完全平方数的表达式特征
10 - 1 ,而 9
n
12345678987654321
是下列各数的和 : 11111111111111111 1111111111111110 111111111111100 11111111111000 1111111110000 111111100000 11111000000 1110000000 100000000 所以 ,12345678987654321 17 15 13 10 - 1 10 - 1 10 - 1 2 = +10 × +10 × + 9 9 9
完全平方数序列的间距具有如下特征 : ( 1) m2 - n2 ≥ 3 ( 0< n < m , m 、 n ∈N) ;
( 2) m2 与 ( m + 1) 2 之间不存在完全平方 2 2 数 ,即 : 若 m < p < ( m + 1 ) , 则 p 不是完全
平方数 . 27 500 n 例9 求最大的正整数 n ,使 4 + 4 + 4 是完全平方数 . 解 : 当 n > 27 时 , 27 500 n 27 473 n - 27 ). A = 4 + 4 + 4 = 4 ( 1+4 +4 27 因为 4 是完全平方数 ,要使 A 为完全平 473 n - 27 方数 ,则 1+4 +4 是完全平方数 . 注意到 473 n - 27 2× 473 n - 27 2 ) 1+4 +4 = 1+2 + (2 2× 473-1 n - 27 2 ) , = 1+2 × 2 + (2 故当 n - 27=2 × 473-1 ,即 n =972 时 , 473 n - 27 1+4 +4 2× 473-1 2× 473-1 )2 = 1+2 × 2 + (2 2× 473-1 )2 = ( 1+2 是平方数 . 此时 , A 是完全平方数 . 从而 , n = 972 符合条件 . 若 n > 972 ,则 2 × 473-1< n -27 . 于是 , 473 n - 27 1+4 +4 2× 473-1 n - 27 2 ) = 1+2 × 2 + (2 n - 27 n - 27 2 ) = ( 1+2 n - 27 ) 2 . < 1+2 × 2 + (2 473 n - 27 又 1+4 +4 2× 473-1 n - 27 2 ) > ( 2 n - 27 ) 2 , = 1+2 × 2 + (2 n - 27 2 473 n - 27 n - 27 2 ) . 则 (2 ) < 1+4 + 4 < (1+2 473 n - 27 故 1+4 +4 不是完全平方数 ,矛盾 . 因此 , n ≤ 972.
a1 ≠b1 ,使对任意正整数 n , a2 b2
2 2
当 x = a1 n + b1 n + c1 , y = a2 n + b2 n + c2 时 ,代数式 11 x + 5 xy +37 y 的值是完全平 方数 . (2001 , 我 爱数学初中生夏令营数学竞 赛) 证明 : ( 1) 从简单的数开始试验 . 取 x = 1 , y =2 ,则 2 2 2 11 x + 5 xy +37 y = 169=13 是完全平方数 . ( 2) 由 ( 1) 可知 ,令 x0 = t , y0 = 2 t . 则
13 ( n - 53) + n 185-26 n 2 2 = [13 ( n - 53) + n ( 185-26 n) ] 2 2 = (13 n - 185 n +689 ) .
2 = (185-26 n )
2
2
故 a1 = 1 , b1 =-
26 , c1 = 132 , a2 = 2 ,
b2 =- 26 , c2 = 79 符合条件 .
9个
12345678987654321 = A + 10 A +10 A + …+ 10 A2源自86中 等 数 学
= 11 … 1 ×A = A .
9个
2
2 2 2 11 x0 + 5 x0 y0 + 37 y0 = ( 13 t )
实际上 ,12345678987654321 是下列 各数的和 : 111111111 1111111110 11111111100 111111111000 1111111110000 11111111100000 111111111000000 1111111110000000 11111111100000000 因此 ,12345678987654321 是完全平 方数 . 注 : 与本题相关的一个奇妙的宝塔如下 : 2 1 =1 2 11 = 121 2 111 = 12321 2 1111 = 1234321 2 11111 = 123454321 2 111111 = 12345654321 2 1111111 = 1234567654321 2 11111111 = 123456787654321 2 111111111 = 12345678987654321 例 12 (1) 证明 : 存在非零整数对 ( x , y ) , 2 2 使代数式 11 x + 5 xy +37 y 的值是完全平 方数 ; (2) 证明 : 存在 6 个非零整数 a1 、 b1 、 c1 、
收稿日期 :2008-05-30
2008 年第 11 期
5
( m2 - 1) ( m2 + 1) ( 2 m2 - 1) ( 2 m2 + 1)
完全平方数 . 证明 : 因为11 … 1=
n个
为偶数 . 2 2 但 ( 2 m - 1) ( 2 m + 1) 是 奇 数 , 所 以 , 2 2 ( m - 1) ( m + 1) 是偶数 . 从而 , m 是奇数 ,即 m≡ 1 ( mod2 ) . 如果 m ≡ 0 ( mod 3) ,则 2 2 2 2 N′ = 2 ( m - 1) ( m + 1) (2 m - 1) (2 m + 1) ≡ 2 ×( -1 ) × 1 ×( -1 ) × 1≡ 2 ( mod 3) , 与 N′ 是完全平方数矛盾 . 所以 , m ≡ 1 ,2 ( mod 3) . 由 m≡ 1 ( mod 2) ,得 m ≡ 1 ,3 ,5 ( mod 6) . 由 m≡ 1 ,2(mod3) ,得 m ≡ 1 ,2,4,5(mod6) . 所以 , m ≡ 1 ,5 ( mod 6) . 令 m =6t ± 1. 则 2 2 m = 36 t ± 12 t +1=12 k +1 . 2 2 2 2 故 N′ = 2 ( m - 1) ( m + 1) (2 m - 1) (2 m + 1) =2 × 12 k ( 12 k +2 ) ( 24 k +1 ) ( 24 k +3 ) = 144 k ( 6 k +1 ) ( 24 k +1 ) ( 8 k +1 ) . 所以 , k ( 6 k +1 ) ( 24 k +1 ) ( 8 k +1 ) 为完 全平方数 . 但 k、 6 k +1 、 24 k +1 、 8 k +1 两两互质 , 因此 , k 、 6 k +1 、 24 k +1 、 8 k +1 都是完全平 方数 . 因为 6 k +1 、 24 k +1 是 完 全 平 方 数 , 所以 , 4 ( 6 k +1 ) 、 24 k +1 是完全平方数 , 即 24 k +4 、 24 k +1 是完全平方数 . 2 2 令 24 k +4= x ,24 k +1= y . 则 2 2 3=24 k +4- ( 24 k +1 ) = x - y ≥ 3. 因为不等式等号成立 ,所以 , y = 1 , x =2 , k =0 . 从而 , m = ± 1 , a =2 ,与 a >2 矛盾 . 故 N 不是完全平方数 .
2 9个
= 11 … 1 .
根据完全平方数的定义 , 任何一个完全 平方数总可以写成一个整数平方的形式 , 根 据这一特点 ,可利用配方法 ,将有关式子配成 完全平方 ,然后证明平方下的数为整数 . 例 11 求证 :12345678987654321 是