[配套K12]2017-2018学年高中数学 复习课(二) 推理与证明教学案 新人教A版选修1-2

合集下载

2017_2018版高中数学第二章推理与证明2.1.1合情推理学案新人教A版

2017_2018版高中数学第二章推理与证明2.1.1合情推理学案新人教A版

2.1.1 合情推理1.了解合情推理的含义,正确理解归纳推理与类比推理.(重点、易混点)2.能用归纳和类比进行简单的推理.(难点)3.了解合情推理在数学发现中的作用.[基础·初探]教材整理1 归纳推理和类比推理阅读教材P22~P26“例4”以上内容,完成下列问题.判断(正确的打“√”,错误的打“×”)(1)因为三角形的内角和是180°×(3-2),四边形的内角和是180°×(4-2),…,所以n边形的内角和是180°×(n-2),使用的是类比推理.( )(2)类比推理得到的结论可以作为定理应用.( )(3)归纳推理是由个别到一般的推理.( )【解析】(1)错误.它符合归纳推理的定义特征,应该为归纳推理.(2)错误.类比推理不一定正确.(3)正确.由个别到一般或由部分到整体的推理都是归纳推理. 【答案】 (1)× (2)× (3)√ 教材整理2 合情推理阅读教材P 27~P 29的内容,完成下列问题. 1.含义归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.合情推理的过程从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想类比a (b +c )=ab +ac ,则下列结论正确的是( ) A .log a (x +y )=log a x +log a y B .sin(x +y )=sin x +sin y C .ax +y=a x +a yD .a·(b +c )=a·b +a·c【解析】 由类比推理的定义知两类比对象具有某些相似特征时,才能用类比推理,而A 、B 、C 中的两对象没有相似特征,故不适合应用类比推理.【答案】 D[小组合作型](1)在数列{a n }中,a 1=1,a n +1=-a n +1,则a 2 017等于( ) A .2 B .-12C .-2D .1(2)根据图2­1­1中线段的排列规则,试猜想第8个图形中线段的条数为________. 【导学号:81092010】图2­1­1【解析】(1)a1=1,a2=-12,a3=-2,a4=1,…,数列{a n}是周期为3的数列,2 017=672×3+1,∴a2 017=a1=1.(2)分别求出前4个图形中线段的数目,发现规律,得出猜想,图形①到④中线段的条数分别为1,5,13,29,因为1=22-3,5=23-3,13=24-3,29=25-3,因此可猜想第8个图形中线段的条数应为28+1-3=509.【答案】(1)D (2)5091.由已知数式进行归纳推理的方法(1)要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律.(2)要特别注意所给几个等式(或不等式)中结构形式的特征.(3)提炼出等式(或不等式)的综合特点.(4)运用归纳推理得出一般结论.2.归纳推理在图形中的应用策略通过一组平面或空间图形的变化规律,研究其一般性结论,通常需形状问题数字化,展现数字之间的规律、特征,然后进行归纳推理.解答该类问题的一般策略是:续表[再练一题]1.(1)有两种花色的正六边形地面砖,按图2­1­2的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是( )图2­1­2A .26B .31C .32D .36(2)把3,6,10,15,21,…这些数叫做三角形数,这是因为个数等于这些数目的点可以分别排成一个正三角形(如图2­1­3),试求第六个三角形数是________.图2­1­3【解析】 (1)法一:有菱形纹的正六边形个数如下表:数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第六个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.故选B.(2)第六个三角形数为3+3+4+5+6+7=28. 【答案】 (1)B (2)28a b c P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c ,可以得到结论p a h a +p b h b +p ch c =1. 【导学号:81092011】图2­1­4证明此结论,通过类比写出在空间中的类似结论,并加以证明.【精彩点拨】 三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.【自主解答】 p a h a =12BC ·p a12BC ·h a =S △PBCS △ABC,同理,p b h b =S △PAC S △ABC ,p c h c =S △PABS △ABC.∵S △PBC +S △PAC +S △PAB =S △ABC , ∴p a h a +p b h b +p c h c =S △PBC +S △PAC +S △PABS △ABC=1.类比上述结论得出以下结论:如图所示,在四面体ABCD 中,设h a ,h b ,h c ,h d 分别是该四面体的四个顶点到对面的距离,P 为该四面体内任意一点,P 到相应四个面的距离分别为p a ,p b ,p c ,p d ,可以得到结论p a h a +p b h b +p c h c +p dh d=1.证明如下:p a h a =13S △BCD ·p a13S △BCD ·h a =V P ­BCDV A ­BCD,同理,p b h b =V P ­ACD V A ­BCD ,p c h c =V P ­ABD V A ­BCD ,p d h d =V P ­ABCV A ­BCD.∵V P ­BCD +V P ­ACD +V P ­ABD +V P ­ABC =V A ­BCD , ∴p a h a +p b h b +p c h c +p d h d=V P ­BCD +V P ­ACD +V P ­ABD +V P ­ABCV A ­BCD=1.1.一般地,平面图形与空间图形类比如下:2.(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.[再练一题]2.在上例中,若△ABC 的边长分别为a ,b ,c ,其对角分别为A ,B ,C ,那么由a =b ·cosC +c ·cos B 可类比四面体的什么性质?【解】 在如图所示的四面体中,S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小. 猜想S =S 1·cos α+S 2·cos β+S 3·cos γ.[探究共研型]探究1 开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?【提示】 类比推理.探究2 在等差数列{a n }中,对任意的正整数n ,有a 1+a 2+a 3+…+a 2n -1n=a n .类比这一性质,在正项等比数列{b n }中,有什么性质?【提示】 由a 1+a 2+…+a 2n -1类比成b 1·b 2·b 3…b 2n -1,除以n ,即商类比成开n 次方,即在正项等比数列{b n }中,有nb 1·b 2·b 3…b 2n -1=b n .探究3 观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式是什么?【提示】 观察等式发现等式左边各加数的底数之和等于右边的底数,右边数的指数均为2,故猜想第五个等式应为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x 2a 2-y 2b 2=1(a >0,b >0)具有类似特征的性质,并加以证明.【精彩点拨】 双曲线与椭圆类比→椭圆中的结论→ 双曲线中的相应结论→理论证明【自主解答】 类似性质:若M ,N 为双曲线x 2a 2-y 2b2=1(a >0,b >0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n ),(x ,y ),则N (-m ,-n ).因为点M (m ,n )是双曲线上的点, 所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2.则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征. 2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征;然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.[再练一题]3.在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,相应地,在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.可类比得到的结论是________.【导学号:81092012】【解析】 因为等差数列{a n }的公差d =3, 所以(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20) ==100d =300,同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300. 即结论为:数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300. 【答案】 数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为3001.我们把4,9,16,25,…这些数称做正方形数,这是因为个数等于这些数目的点可以分别排成一个正方形(如图2­1­5).图2­1­5则第n 个正方形数是( ) A .n (n -1) B .n (n +1) C .n 2D .(n +1)2【解析】 观察前4个正方形数,恰好是序号加1的平方,所以第n 个正方形数应为(n +1)2.【答案】 D2.如图2­1­6所示,着色的三角形的个数依次构成数列{a n }的前4项,则这个数列的一个通项公式为( )图2­1­6A .a n =3n -1B .a n =3nC .a n =3n-2nD .a n =3n -1+2n -3【解析】 ∵a 1=1,a 2=3,a 3=9,a 4=27,猜想a n =3n -1.【答案】 A3.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( ) 【导学号:81092013】A.r 22 B.l 22 C.lr2D .无法确定【解析】 扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr2.【答案】 C4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.【解析】 由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.【答案】 1∶85.已知在数列{a n }中,a 1=12,a n +1=3a n a n +3.(1)求a 2,a 3,a 4,a 5的值; (2)猜想a n .【解】 (1)a 2=3a 1a 1+3=3×1212+3=37,同理a 3=3a 2a 2+3=38,a 4=39,a 5=310. (2)由a 2=32+5,a 3=33+5,a 4=34+5,a 5=35+5,可猜想a n =3n +5.学业分层测评 (建议用时:45分钟)[学业达标]一、选择题1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论无法判定正误【解析】 合情推理得出的结论不一定正确,故A 错;合情推理必须有前提有结论,故B 对;合情推理中类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理,可进行猜想,故C 错;合情推理得出的结论可以进行判定正误,故D 错.【答案】 B2.下面使用类比推理恰当的是( )A .“若a ·3=b ·3,则a =b ”类比推出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类比推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类比推出“a +bc =a c +bc(c ≠0)” D .“(ab )n=a n b n”类比推出“(a +b )n=a n+b n” 【解析】 由实数运算的知识易得C 项正确. 【答案】 C3.用火柴棒摆“金鱼”,如图2­1­7所示,图2­1­7按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2【解析】 从①②③可以看出,从第②个图开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n 个“金鱼”图需火柴棒的根数为6n +2.【答案】 C4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的( )A .一条中线上的点,但不是中心B .一条垂线上的点,但不是垂心C .一条角平分线上的点,但不是内心D .中心【解析】 由正四面体的内切球可知,内切球切于四个面的中心. 【答案】 D5.已知整数对的序列为(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第57个数对是( )A .(2,10)B .(10,2)C .(3,5)D .(5,3)【解析】 由题意,发现所给数对有如下规律: (1,1)的和为2,共1个; (1,2),(2,1)的和为3,共2个; (1,3),(2,2),(3,1)的和为4,共3个;(1,4),(2,3),(3,2),(4,1)的和为5,共4个; (1,5),(2,4),(3,3),(4,2),(5,1)的和为6,共5个.由此可知,当数对中两个数字之和为n 时,有n -1个数对.易知第57个数对中两数之和为12,且是两数之和为12的数对中的第2个数对,故为(2,10).【答案】 A 二、填空题6.观察下列特殊的不等式: 52-225-2≥2×72, 45-3542-32≥52×⎝ ⎛⎭⎪⎫723, 98-2893-23≥83×⎝ ⎛⎭⎪⎫1125, 910-51095-55≥2×75, …由以上特殊不等式,可以猜测:当a >b >0,s ,r ∈Z 时,有a s -b sa r -br ≥________.【解析】 52-225-2≥2×72=21×⎝ ⎛⎭⎪⎫5+222-1,45-3542-32≥52×⎝ ⎛⎭⎪⎫723=52×⎝ ⎛⎭⎪⎫4+325-2, 98-2893-23≥83×⎝ ⎛⎭⎪⎫1125=83×⎝ ⎛⎭⎪⎫9+228-3, 910-51095-55≥2×75=105×⎝ ⎛⎭⎪⎫9+5210-5, 由以上特殊不等式,可以猜测:当a >b >0,s ,r ∈Z 时,有a s -b sa r -b r ≥s r ⎝ ⎛⎭⎪⎫a +b 2s -r . 【答案】 s r ⎝⎛⎭⎪⎫a +b 2s -r7.二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S .已知四维空间中“超球”的三维测度V =8πr 3,猜想其四维测度W =________.【解析】 因为V =8πr 3,所以W =2πr 4,满足W ′=V . 【答案】 2πr 48.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为________.【解析】 结合等差数列的特点,类比等比数列中b 1b 2b 3…b 9=29可得,在{a n }中,若a 5=2,则有a 1+a 2+a 3+…+a 9=2×9.【答案】 a 1+a 2+a 3+…+a 9=2×9 三、解答题9.已知数列{a n }的前n 项和为S n ,a 1=-23且S n +1S n+2=a n (n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.【解】 先化简递推关系:n ≥2时,a n =S n -S n -1, ∴S n +1S n+2=S n -S n -1,∴1S n+S n -1+2=0.当n =1时,S 1=a 1=-23.当n =2时,1S 2=-2-S 1=-43,∴S 2=-34.当n =3时,1S 3=-2-S 2=-54,∴S 3=-45.当n =4时,1S 4=-2-S 3=-65,∴S 4=-56.猜想:S n =-n +1n +2,n ∈N +. 10.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD2=1AB2+1AC 2,那么在四面体ABCD中,类比上述结论,你能得到怎样的猜想,并说明理由.【证明】 如图所示,由射影定理,得AD 2=BD ·DC ,AB 2=BD ·BC , AC 2=BC ·DC ,∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2.猜想,在四面体ABCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE2=1AB2+1AC2+1AD 2.证明:如图,连接BE 并延长交CD 于F ,连接AF .∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A ,∴AB ⊥平面ACD ,又AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF , ∴1AE2=1AB2+1AF 2.在Rt △ACD 中,AF ⊥CD , ∴1AF2=1AC2+1AD2,∴1AE2=1AB2+1AC2+1AD 2.[能力提升]1.根据给出的数塔,猜测123 456×9+7等于( ) 1×9+2=11; 12×9+3=111; 123×9+4=1 111; 1 234×9+5=11 111; 12 345×9+6=111 111; A .1 111 110 B .1 111 111 C .1 111 112D .1 111 113【解析】 由前5个等式知,右边各位数字均为1,位数比前一个等式依次多1位,所以123 456×9+7=1 111 111,故选B.【答案】 B2.已知结论:“在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AGGD=2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等”,则AO OM=( )A .1B .2C .3D .4【解析】 如图,设正四面体的棱长为1,即易知其高AM =63,此时易知点O 即为正四面体内切球的球心,设其半径为r ,利用等体积法有4×13×34r =13×34×63⇒r =612,故AO =AM -MO =63-612=64,故AO ∶OM =64∶612=3∶1. 【答案】 C3.如图2­1­8所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于_____________________________________.【导学号:81092015】图2­1­8【解析】 如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0), 所以FB →=(c ,b ),AB →=(-a ,b ). 又因为FB →⊥AB →,所以FB →·AB →=b 2-ac =0,所以c 2-a 2-ac =0,所以e 2-e -1=0, 所以e =1+52或e =1-52(舍去).【答案】1+524.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 【解】 (1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.。

2017-2018版高中数学第2章推理与证明章末复习课学案苏教版选修1-2

2017-2018版高中数学第2章推理与证明章末复习课学案苏教版选修1-2

第2章推理与证明【学习目标】1. 了解合情推理的含义,能利用归纳进行简单的推理 2 了解合情推理的含义,能利用类比进行简单的推理3 了解直接证明的两种基本方法:分析法和综合法,并能利用分析法和综合法证明简单的问题 4 了解反证法的思想,并能灵活应用.新知探究点点落实问题导学知识点一合情推理1 .归纳推理⑴ 定义:从个别事实中推演出__________ 的结论的推理称为归纳推理. 归纳推理的思维过程大致是:____________ 工_______________ 工 __________________ .⑵特点:由__________ 到整体、由_________ 到一般的推理.2 .类比推理(1) 定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理.类比推理的思维过程为:⑵ 特点:类比推理是由__________ 到________ 的推理.3 .合情推理合情推理是根据_________________ 、__________________ 、 _____________________ ,以及个人的________ 和直觉等推测某些结果的推理过程. ______________ 和____________ 都是数学活动中常用的合情推理.知识点二演绎推理1•演绎推理由一般性的命题推演出特殊性命题的推理方法叫演绎推理•简言之,演绎推理是由_到________ 的推理.2 •“三段论”是演绎推理的一般模式(1) 大前提——已知的 _____________;(2) 小前提一一所研究的 _____________ ;(3) 结论——根据一般原理,对 ______________ 做出的判断.知识点三直接证明1 .综合法(1)定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.⑵推证过程:已知条件?…?…?薈论(3)思维过程:由因导果.2 •分析法(1)定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件吻合为止,这种证明方法常称为分析法.⑵推证过程:|结论?…?…?|已知条件(3)思维过程:执果索因. 知识点四间接证明用反证法来证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题).题型探究类型一归纳思想a n n例1 已知数列{a n}满足a i= 1, = (n= 1,2 , 3,…).a n+1 n+ 1(1) 求a2, a3, a4, a5,并猜想通项公式a n;(2) 根据(1)中的猜想,有下面的数阵:S = a1,a2+ a3,S3= a4+ a5 + a6,S4= a7+ a8 + a9+ a1o,S5= a“+ a12+ ai3 + a14+ a15.试求S, S+ S, S + S + S,并猜想S+ S s+ $+•••+ Sa n-1 的值.反思与感悟归纳猜想是理性思维的重要体现,是获得发现的源泉.具有共同特征的归纳推理,首先要观察式子的共同结构特点,其次是式子中出现的数字、字母之间的关系,这样便于观察运算规律和结构上的共同点.跟踪训练1设{a n}是集合{2t+ 2s|0 < s W t,且s, t € Z}中所有的数从小到大排列的数列, 且a1 = 3, a2= 5, a3= 6, a4 = 9, a5= 10, &= 12,….将数列{a n}中的各项按照上小下大、左小右大的原则写成如图所示的三角形数表: ■!5 6Q in 12(1)写出这个三角形数表中的第4行、第5行各数;⑵求出a ioo.类型二类比思想例2定义“等和数列”,在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫等和数列,这个常数叫该数列的公和.已知数列{a n}为等和数列,且a i= 2,公和为5.那么a i8的值为________ ,这个数列前n项和S的计算公式为__________________________ . 反思与感悟事物的各个性质之间不是孤立的,而是相互联系相互制约的,等和数列与等差数列之间有着很多类似的性质,利用类比推理可得出等和数列的性质.跟踪训练2已知面积为S的凸四边形中,四条边长分别记为a i, a2, a3, a4,点P为四边形_ ai a2 a3 a4内任意一点,且点P到四条边的距离分别记为h i, h2, h3, h4,若—=—=-3 = — = k,贝U h i ++ 2H 2 + 3H 3+ 4H 4= ________ .类型三正难则反思想例3 已知△ ABC 中,/ C 是直角,求证:/ B 一定是锐角.反思与感悟 反证法是假设原命题不成立,经过正确的推理,最后推出矛盾,这里得出的矛 盾可以是与某个已知条件矛盾,可以是与某个事实、定理、公理相矛盾,也可以是自身相矛 盾•反证法的使用范围:唯一性问题,“至少”“至多”问题,问题本身是否定语气提出的 问题.1 1 1跟踪训练3证明:无论x , y 取任何非零实数,等式 -+-=总不成立.x y x + y类型四综合法与分析法2 2例 4 已知 x , y >0, x + y = 1,求证:log 2(xy + 1) — log 2X — log 2y >log 217— 2. 反思与感悟 证明问题时,往往利用分析法寻找解题思路,用综合法书写证明过程. 跟踪训练 4 求证:川 sin^T — 2cos( a+ B )=2^4.2S出+ 3IW 4h 4 = °类比以上性质,体积为 V 的三棱锥的每个面的面积分别记为 S 4,此三棱锥内任一点 Q 到每个面的距离分别为 H , ", H 3, H 4,达标检测当堂推测巩固反谟1 •有一个奇数列135,7,9 ,…,现在进行如下分组:第一组含一个数{1};第二组含两个数{3,5};第三组含三个数{7,9,11};第四组含四个数{13,15,17,19};…,则每组内各数之和f (n)( n € N*)与组的编号数n的关系式为________________________________________ .2.已知△ ABC中, ADLBC于D,三边是a, b, c,则有a= c cos B+ b cos C;类比上述推理结论,写出下列条件下的结论:四面体LABC中,△ ABC △ PAB △ PBC △ PCA的面积分别是S, S, S2, S3,二面角P—AB— C, P—BC— A, P—AC— B 的度数分别是a , 3 , Y ,则S= ____________________ .3 •将下列给出的反证法证明过程填写完整.已知0,证明关于x的方程ax= b有且仅有一个根.b证明由于a^0,因此方程ax = b至少有一个根x=.a假设方程不止一个根,不妨设X1, x是______________ ,即ax1 = b, ax z= b,所以a(X1 —X2) = 0,因为X1^ X2,所以X1 —X2工0,所以a= 0,这与___________ 矛盾,故假设错误.所以当a^0时,关于x的方程ax= b有且仅有一个根.4 .若tan( a + 3 ) = 2tan a,求证:3sin 3 = sin(2 a + 3 ).规律与方法直接证明和间接证明是数学证明的两类基本证明方法•直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用•间接证明的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.问题导学 知识点一 1. (1) 一般性 实验、观察概括、推广猜测一般性结论⑵部分个别2 . (1)观察、比较 联想、类推 猜测新的结论 (2)特殊 特殊3 .已有的事实 正确的结论 实验和实践的结果 经验归纳推理类比推理 知识点二 1.一般特殊 2 . (1) 一般原理 (2)特殊情况 (3)特殊情况题型探究 例 1 解 (1)因为 a 1 = 1,由=—-知 a n +1 = +• a n ,故 a 2= 2, a 3= 3, a 4= 4,a 5 = 5.a n +1 n + 1n可归纳猜想出 a n = n (n € N*).⑵根据(1)中的猜想,数阵为:S= 1,S 2= 2 + 3= 5, S 3= 4 + 5+ 6 = 15, S = 7 + 8+ 9 + 10= 34, S 5= 11+ 12+ 13+ 14+ 15= 65,故 S = 1 = 14, S + S 3= 1 + 15= 16= 2, S + S 3 + S 5= 1 + 15 + 65= 81 = 34. 可猜想 S + S 3 + S 5 + …+ S an -1 = n 4.跟踪训练 1 解(1)第 1 行:3 = 21 + 2°;第 2 行:5 = 22 + 20,6 = 22 + 21 ;第 3 行:9= 23 + 2。

2017-2018学年高中数学 第二章 推理与证明 2.2.1 综合法和分析法教学案 新人教A版选修

2017-2018学年高中数学 第二章 推理与证明 2.2.1 综合法和分析法教学案 新人教A版选修

2.2.1 综合法和分析法预习课本P85~89,思考并完成下列问题(1)综合法的定义是什么?有什么特点?(2)综合法的推证过程是什么?(3)分析法的定义是什么?有什么特点?(4)分析法与综合法有什么区别和联系?[新知初探]1.综合法Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件3.综合法、分析法的区别倒溯,执果索因[点睛] 一般来说,分析法解题方向明确,利于寻求解题思路;而综合法解题条理清晰,宜于表述.因此在解决问题时,通常以分析法为主寻求解题思路,再用综合法有条理地表述解题过程.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)综合法是执果索因的逆推证法.( )(2)分析法就是从结论推向已知.( )(3)所有证明的题目均可使用分析法证明.( )答案:(1)×(2)×(3)×2.若a>b>0,则下列不等式中不正确的是( )A.a2>ab B.ab>b2C.1a>1bD.a2>b2答案:C3.欲证2-3<6-7成立,只需证( ) A.(2-3)2<(6-7)2B.(2-6)2<(3-7)2C.(2+7)2<(3+6)2D .(2-3-6)2<(-7)2答案:C4.如果a a >b b ,则实数a ,b 应满足的条件是________. 答案:a >b >0[典例] 在△ABC 中,三边a ,b ,c 成等比数列.求证:a cos 2 C 2+c cos 2 A 2≥32b .[证明] ∵a ,b ,c 成等比数列,∴b 2=ac . ∵左边=a (1+cos C )2+c (1+cos A )2=12(a +c )+12(a cos C +c cos A ) =12(a +c )+12⎝ ⎛⎭⎪⎫a ·a 2+b 2-c22ab +c ·b 2+c 2-a 22bc =12(a +c )+12b ≥ac +b 2=b +b 2=32b =右边, ∴a cos 2C 2+c cos 2 A 2≥32b .当且仅当a =c 时等号成立.综合法的解题步骤[活学活用]1.已知a ,b ,c ,d ∈R,求证:(ac +bd )2≤(a 2+b 2)(c 2+d 2). 证明:∵左边=a 2c 2+2abcd +b 2d 2≤a 2c 2+(a 2d 2+b 2c 2)+b 2d 2=(a 2+b 2)(c 2+d 2)=右边, ∴(ac +bd )2≤(a 2+b 2)(c 2+d 2). 2.设数列{a n }满足a 1=0,11-a n +1-11-a n=1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n,S n =b 1+b 2+…+b n ,证明:S n <1.解:(1)∵11-a n +1-11-a n =1,∴⎩⎨⎧⎭⎬⎫11-a n 是公差为1的等差数列. 又∵11-a 1=1,∴11-a n =n ,a n =1-1n .(2)证明:由(1)得b n =1-a n +1n=n +1-n n +1·n =1n -1n +1,∴S n =b 1+b 2+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1<1. ∴S n <1.[典例] 设a ,b [证明] 当a +b ≤0时,∵ a 2+b 2≥0, ∴a 2+b 2≥22(a +b )成立. 当a +b >0时,用分析法证明如下:要证 a 2+b 2≥22(a +b ), 只需证(a 2+b 2)2≥⎣⎢⎡⎦⎥⎤22(a +b )2. 即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab .∵a 2+b 2≥2ab 对一切实数恒成立, ∴ a 2+b 2≥22(a +b )成立.综上所述,不等式得证.分析法证明不等式的依据、方法与技巧(1)解题依据:分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论;(2)适用范围:对于一些条件复杂,结构简单的不等式的证明,经常用综合法.而对于一些条件简单、结论复杂的不等式的证明,常用分析法;(3)思路方法:分析法证明不等式的思路是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;(4)应用技巧:用分析法证明数学命题时,一定要恰当地用好“要证”、“只需证”、“即证”等词语.[活学活用]已知a ,b ,c 都为正实数,求证: a 2+b 2+c 23≥a +b +c3.证明:要证 a 2+b 2+c 23≥a +b +c3,只需证a 2+b 2+c 23≥⎝⎛⎭⎪⎫a +b +c 32, 只需证3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2bc +2ac , 只需证2(a 2+b 2+c 2)≥2ab +2bc +2ac ,只需证(a -b )2+(b -c )2+(c -a )2≥0,而这是显然成立的,所以 a 2+b 2+c 23≥a +b +c3成立.分析法与综合法的综合应用[典例] 已知a ,b ,c 是不全相等的正数,且0<x <1. 求证:log xa +b2+log xb +c2+log xa +c2<log x a +log x b +log x c .[证明] 要证明log xa +b2+log xb +c2+log xa +c2<log x a +log x b +log x c , 只需要证明log x ⎝⎛⎭⎪⎫a +b 2·b +c 2·a +c 2<log x(abc ),由已知0<x <1,只需证明a +b 2·b +c 2·a +c2>abc ,由公式a +b2≥ab >0,b +c2≥bc >0,a +c2≥ac >0.又∵a ,b ,c 是不全相等的正数, ∴a +b 2·b +c 2·a +c2> a 2b 2c 2=abc . 即a +b 2·b +c 2·a +c2>abc 成立. ∴log x a +b2+log x b +c 2+log xa +c2<log x a +log x b +log x c 成立.分析综合法的应用综合法由因导果,分析法执果索因,因此在实际解题时,常常把分析法和综合法结合起来使用,即先利用分析法寻找解题思路,再利用综合法有条理地表述解答过程.[活学活用]已知△ABC 的三个内角A ,B ,C 成等差数列,a ,b ,c 为三个内角对应的边长,求证:1a +b+1b +c =3a +b +c . 证明:要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,即证c a +b +ab +c=1. 即证c (b +c )+a (a +b )=(a +b )(b +c ), 即证c 2+a 2=ac +b 2.∵△ABC 三个内角A ,B ,C 成等差数列. ∴B =60°.由余弦定理,有b 2=c 2+a 2-2ca cos 60°, 即b 2=c 2+a 2-ac .∴c 2+a 2=ac +b 2成立,命题得证.层级一 学业水平达标1.要证明a +a +7<a +3+a +4(a ≥0)可选择的方法有多种,其中最合理的是( )A .综合法B .类比法C .分析法D .归纳法解析:选C 直接证明很难入手,由分析法的特点知用分析法最合理.2.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ ”,其过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证法解析:选B 结合分析法及综合法的定义可知B 正确.3.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足什么条件( )A .a 2<b 2+c 2B .a 2=b 2+c 2C .a 2>b 2+c 2D .a 2≤b 2+c 2解析:选C 由cos A =b 2+c 2-a 22bc<0,得b 2+c 2<a 2.4.若a =ln 22,b =ln 33,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析:选C 利用函数单调性.设f (x )=ln x x ,则f ′(x )=1-ln xx2,∴0<x <e 时,f ′(x )>0,f (x )单调递增;x >e 时,f ′(x )<0,f (x )单调递减.又a =ln 44,∴b >a >c .5.已知m >1,a =m +1-m ,b =m -m -1,则以下结论正确的是( ) A .a >b B .a <bC .a =bD .a ,b 大小不定 解析:选B ∵a =m +1-m =1m +1+m,b =m -m -1=1m +m -1.而m +1+m >m +m -1>0(m >1), ∴1m +1+m<1m +m -1,即a <b .6.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 取导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析:该证明过程符合综合法的特点. 答案:综合法7.如果a a +b b >a b +b a ,则正数a ,b 应满足的条件是________. 解析:∵a a +b b -(a b +b a )=a (a -b )+b (b -a )=(a -b )(a -b ) =(a -b )2(a +b ).∴只要a ≠b ,就有a a +b b >a b +b a . 答案:a ≠b8.若不等式(-1)na <2+(-1)n +1n对任意正整数n 恒成立,则实数a 的取值范围是________.解析:当n 为偶数时,a <2-1n ,而2-1n ≥2-12=32,所以a <32,当n 为奇数时,a >-2-1n ,而-2-1n <-2,所以a ≥-2.综上可得,-2≤a <32. 答案:⎣⎢⎡⎭⎪⎫-2,329.求证:2cos(α-β)-sin(2α-β)sin α=sin βsin α.证明:要证原等式,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,① 因为①左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α =sin β.所以①成立,所以原等式成立.10.已知数列{a n }的首项a 1=5,S n +1=2S n +n +5,(n ∈N *). (1)证明数列{a n +1}是等比数列. (2)求a n .解:(1)证明:由条件得S n =2S n -1+(n -1)+5(n ≥2)① 又S n +1=2S n +n +5,② ②-①得a n +1=2a n +1(n ≥2), 所以a n +1+1a n +1=(2a n +1)+1a n +1=2(a n +1)a n +1=2. 又n =1时,S 2=2S 1+1+5,且a 1=5, 所以a 2=11, 所以a 2+1a 1+1=11+15+1=2, 所以数列{a n +1}是以2为公比的等比数列.(2)因为a 1+1=6, 所以a n +1=6×2n -1=3×2n,所以a n =3×2n-1.层级二 应试能力达标1.使不等式1a <1b成立的条件是( )A .a >bB .a <bC .a >b 且ab <0D .a >b 且ab >0解析:选D 要使1a <1b ,须使1a -1b <0,即b -aab<0.若a >b ,则b -a <0,ab >0;若a <b ,则b -a >0,ab <0. 2.对任意的锐角α,β,下列不等式中正确的是( ) A .sin(α+β)>sin α+sin β B .sin(α+β)>cos α+cos β C .cos(α+β)>sin α+sin β D .cos(α+β)<cos α+cos β解析:选D 因为α,β为锐角,所以0<α<α+β<π,所以cos α>cos(α+β).又cos β>0,所以cos α+cos β>cos(α+β).3.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选 B ∵x >0,y >0,1x +4y =1,∴x +y 4=⎝ ⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫1x +4y =2+y 4x +4xy ≥2+2y 4x ·4x y =4,等号在y =4x ,即x =2,y =8时成立,∴x +y4的最小值为4,要使不等式m 2-3m >x +y4有解,应有m 2-3m >4,∴m <-1或m >4,故选B.4.下列不等式不成立的是( ) A .a 2+b 2+c 2≥ab +bc +ca B.a +b >a +b (a >0,b >0) C.a -a -1<a -2-a -3(a ≥3) D.2+10>2 6解析:选 D 对A ,∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,∴a 2+b 2+c 2≥ab +bc+ca ;对B ,∵(a +b )2=a +b +2ab ,(a +b )2=a +b ,∴a +b >a +b ;对C ,要证 a -a -1<a -2-a -3(a ≥3)成立,只需证明a +a -3<a -2+a -1,两边平方得2a -3+2a (a -3)<2a -3+2(a -2)(a -1),即a (a -3)<(a -2)(a -1),两边平方得a 2-3a <a 2-3a +2,即0<2.因为0<2显然成立,所以原不等式成立;对于D ,(2+10)2-(26)2=12+45-24=4(5-3)<0,∴2+10<26,故D 错误.5.已知函数f (x )=2x,a ,b 为正实数,A =f ⎝⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系是________.解析:∵a +b2≥ab (a ,b 为正实数),2ab a +b ≤ab ,且f (x )=2x是增函数,∴f ⎝ ⎛⎭⎪⎫2ab a +b ≤f (ab )≤f ⎝⎛⎭⎪⎫a +b 2,即C ≤B ≤A .答案:C ≤B ≤A6.如图所示,四棱柱ABCD ­ A 1B 1C 1D 1的侧棱垂直于底面,满足________时,BD ⊥A 1C (写上一个条件即可).解析:要证BD ⊥A 1C ,只需证BD ⊥平面AA 1C . 因为AA 1⊥BD ,只要再添加条件AC ⊥BD , 即可证明BD ⊥平面AA 1C ,从而有BD ⊥A 1C . 答案:AC ⊥BD (答案不唯一)7.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C . 证明:在锐角三角形ABC 中,∵A +B >π2,∴A >π2-B .∴0<π2-B <A <π2,又∵在⎝ ⎛⎭⎪⎫0,π2内正弦函数y =sin x 是单调递增函数,∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B , 即sin A >cos B .① 同理sin B >cos C ,② sin C >cos A .③ 由①+②+③,得:11 sin A +sin B +sin C >cos A +cos B +cos C.8.已知n ∈N,且n >1,求证:log n (n +1)>log n +1(n +2).证明:要证明log n (n +1)>log n +1(n +2),即证明log n (n +1)-lo g n +1(n +2)>0.(*)∵log n (n +1)-log n +1(n +2)=1log n +1n-log n +1(n +2) =1-log n +1n ·log n +1(n +2)log n +1n . 又∵当n >1时,log n +1n >0,且log n +1(n +2)>0,log n +1n ≠log n +1(n +2),∴log n +1n ·log n +1(n +2)<14[log n +1n +log n +1(n +2)]2=14log 2n +1[n (n +2)]=14log 2n +1(n 2+2n )<14log 2n +1(n +1)2=1, 故1-log n +1n ·log n +1(n +2)>0,∴1-log n +1n ·log n +1(n +2)log n +1n>0. 这说明(*)式成立,∴log n (n +1)>log n +1(n +2).。

[配套K12]2017-2018版高中数学 第二章 推理与证明 2.3.1 数学归纳法学案 新人教B

[配套K12]2017-2018版高中数学 第二章 推理与证明 2.3.1 数学归纳法学案 新人教B

2.3.1 数学归纳法明目标、知重点 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法一个与自然数相关的命题,如果(1)当n取第一个值n0时命题成立;(2)在假设当n=k(k∈N k≥n0)时命题成立的前提下,推出当n=k+1时命题也成立,那么可以断定,这个命+,且题对n取第一个值后面的所有正整数成立.2.应用数学归纳法时特别注意(1)用数学归纳法证明的对象是与自然数相关的命题.(2)在用数学归纳法证明中,两个基本步骤缺一不可.[情境导学]多米诺骨牌游戏是一种用木制、骨制或塑料制成的长方形骨牌,玩时将骨牌按一定间距排列成行,保证任意两相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌倒下.只要推倒第一块骨牌,就必然导致第二块骨牌倒下;而第二块骨牌倒下,就必然导致第三块骨牌倒下…,最后不论有多少块骨牌都能全部倒下.请同学们思考所有的骨牌都一一倒下蕴涵怎样的原理?探究点一数学归纳法的原理思考1 多米诺骨牌游戏给你什么启示?你认为一个骨牌链能够被成功推倒,靠的是什么?答(1)第一张牌被推倒;(2)任意相邻两块骨牌,前一块倒下一定导致后一块倒下.结论:多米诺骨牌会全部倒下.所有的骨牌都倒下,条件(2)给出了一个递推关系,条件(1)给出了骨牌倒下的基础.思考2 用数学归纳法证明问题的一般步骤分几步?答一般地,证明一个与自然数n有关的命题P(n),可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N+)时命题成立;(2)(递推是关键)假设当n=k(k≥n0,k∈N+)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.其中,利用假设是证题的核心.思考3 用数学归纳法证明1+3+5+…+(2n-1)=n2,如采用下面的证法,对吗?若不对请改正.证明:(1)n =1时,左边=1,右边=12=1,等式成立. (2)假设n =k 时等式成立,即1+3+5+…+(2k -1)=k 2, 则当n =k +1时,1+3+5+…+(2k +1)=k ++k +2=(k +1)2等式也成立.由(1)和(2)可知对任何n ∈N +等式都成立.答 证明方法不是数学归纳法,因为第二步证明时,未用到归纳假设.从形式上看这种证法,用的是数学归纳法,实质上不是,因为证明n =k +1正确时,未用到归纳假设,而用的是等差数列求和公式.探究点二 用数学归纳法证明等式 例1 用数学归纳法证明 12+22+…+n 2=n n +n +6(n ∈N +).证明 (1)当n =1时,左边=12=1, 右边=++6=1,等式成立.(2)假设当n =k (k ∈N +)时等式成立,即 12+22+…+k 2=k k +k +6,那么,12+22+…+k 2+(k +1)2=k k +k +6+(k +1)2=k k +k ++k +26=k +k 2+7k +6=k +k +k +6=k +k ++k ++1]6,即当n =k +1时等式也成立.根据(1)和(2),可知等式对任何n ∈N +都成立.反思与感悟 用数学归纳法证明与正整数有关的一些等式命题,关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n 的取值是否有关.由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项.跟踪训练1 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N +).证明 当n =1时,左边=1-12=12,右边=12,所以等式成立. 假设n =k (k ∈N +)时, 1-12+13-14+…+12k -1-12k =1k +1+1k +2+ (12)成立. 那么当n =k +1时,1-12+13-14+…+12k -1-12k +1k +-1-1k +=1k +1+1k +2+…+12k +12k +1-1k +=1k +2+1k +3+…+12k +12k +1+[1k +1-1k +] =1k ++1+1k ++2+…+1k ++k +1k +,所以n =k +1时,等式也成立.综上所述,对于任何n ∈N +,等式都成立. 探究点三 用数学归纳法证明数列问题 例2 已知数列11×4,14×7,17×10,…,1n -n +,…,计算S 1,S 2,S 3,S 4,根据计算结果,猜想S n 的表达式,并用数学归纳法进行证明. 解 S 1=11×4=14;S 2=14+14×7=27; S 3=27+17×10=310; S 4=310+110×13=413. 可以看出,上面表示四个结果的分数中,分子与项数n 一致,分母可用项数n 表示为3n +1.于是可以猜想S n =n3n +1.下面我们用数学归纳法证明这个猜想.(1)当n =1时,左边=S 1=14,右边=n 3n +1=13×1+1=14,猜想成立.(2)假设当n =k (k ∈N +)时猜想成立,即 11×4+14×7+17×10+…+1k -k +=k3k +1, 那么,当n =k +1时, 11×4+14×7+17×10+…+1k -k ++1k +-k ++1]=k 3k +1+1k +k +=3k 2+4k +1k +k +=k +k +k +k +=k +1k ++1,所以,当n =k +1时猜想也成立.根据(1)和(2),可知猜想对任何n ∈N +都成立.反思与感悟 归纳法分为不完全归纳法和完全归纳法,数学归纳法是“完全归纳”的一种科学方法,对于无穷尽的事例,常用不完全归纳法去发现规律,得出结论,并设法给予证明,这就是“归纳——猜想——证明”的基本思想.跟踪训练2 数列{a n }满足S n =2n -a n (S n 为数列{a n }的前n 项和),先计算数列的前4项,再猜想a n ,并证明.解 由a 1=2-a 1,得a 1=1; 由a 1+a 2=2×2-a 2,得a 2=32;由a 1+a 2+a 3=2×3-a 3,得a 3=74;由a 1+a 2+a 3+a 4=2×4-a 4,得a 4=158.猜想a n =2n-12n -1.下面证明猜想正确:(1)当n =1时,由上面的计算可知猜想成立. (2)假设当n =k 时猜想成立, 则有a k =2k -12k -1,当n =k +1时,S k +a k +1=2(k +1)-a k +1,∴a k +1=12[2(k +1)-S k ]=k +1-12(2k -2k-12k -1)=2k +1-12k +-1,所以,当n =k +1时,等式也成立.由(1)和(2)可知,a n =2n-12n -1对任意正整数n 都成立.1.若命题A (n )(n ∈N +)在n =k (k ∈N +)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N +)时命题成立,则有( ) A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确 答案 C解析 由已知得n =n 0(n 0∈N +)时命题成立,则有n =n 0+1时命题成立;在n =n 0+1时命题成立的前提下,又可推得n =(n 0+1)+1时命题也成立,依此类推,可知选C. 2.用数学归纳法证明“1+a +a 2+…+a 2n +1=1-a 2n +21-a(a ≠1)”.在验证n =1时,左端计算所得项为( ) A .1+a B .1+a +a 2C .1+a +a 2+a 3D .1+a +a 2+a 3+a 4答案 C解析 将n =1代入a2n +1得a 3,故选C.3.用数学归纳法证明1+2+22+…+2n -1=2n-1(n ∈N +)的过程如下:(1)当n =1时,左边=1,右边=21-1=1,等式成立. (2)假设当n =k (k ∈N +)时等式成立,即1+2+22+…+2k -1=2k-1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1.所以当n =k +1时等式也成立.由此可知对于任何n ∈N +,等式都成立.上述证明的错误是________. 答案 未用归纳假设 解析 本题在由n =k 成立, 证n =k +1成立时,应用了等比数列的求和公式, 而未用上假设条件, 这与数学归纳法的要求不符.4.用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N +)证明 (1)当n =1时,左式=1+12,右式=12+1,所以32≤1+12≤32,命题成立.(2)假设当n =k (k ∈N +)时,命题成立,即1+k 2≤1+12+13+…+12k ≤12+k ,则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +1=1+k +12. 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1),即当n =k +1时,命题成立.由(1)和(2)可知,命题对所有的n ∈N +都成立. [呈重点、现规律]在应用数学归纳法证题时应注意以下几点:(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1;(2)递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障;(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明.。

【配套K12】[学习](全国通用版)2018-2019版高中数学 第二章 推理与证明章末复习学案 新

【配套K12】[学习](全国通用版)2018-2019版高中数学 第二章 推理与证明章末复习学案 新

第二章推理与证明章末复习学习目标 1.整合本章知识要点.2.进一步理解合情推理与演绎推理的概念、思维形式、应用等.3.进一步熟练掌握直接证明与间接证明.4.理解数学归纳法,并会用数学归纳法证明问题.1.合情推理(1)归纳推理:由部分到整体、由个别到一般的推理.(2)类比推理:由特殊到特殊的推理.(3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理:由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.3.直接证明和间接证明(1)直接证明的两类基本方法是综合法和分析法:①综合法是从已知条件推出结论的证明方法; ②分析法是从结论追溯到条件的证明方法.(2)间接证明的一种方法是反证法,是从结论反面成立出发,推出矛盾的方法. 4.数学归纳法数学归纳法主要用于解决与正整数有关的数学命题.证明时,它的两个步骤缺一不可,它的第一步(归纳奠基)是证当n =n 0时结论成立;第二步(归纳递推)是假设当n =k 时结论成立,推得当n =k +1时结论也成立.1.归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( × )2.“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ )3.综合法是直接证明,分析法是间接证明.( × ) 4.反证法是指将结论和条件同时否定,推出矛盾.( × )类型一 合情推理与演绎推理 例1 (1)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2 =43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝⎛⎭⎪⎫sin 8π9-2=43×4×5; …… 照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=________. 考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 43n (n +1)解析 第一个等式中1=3-12,2=3+12;第二个等式中,2=5-12,3=5+12;第三个等式中,3=7-12,4=7+12.由此可推得第n 个等式等于43×2n +1-12×2n +1+12=43n (n +1).(2)根据图(1)的面积关系:S △PA ′B ′S △PAB =PA ′PA ·PB ′PB ,可猜想图(2)有体积关系:V 三棱锥P -A ′B ′C ′V 三棱锥P -ABC=________.考点 类此推理的应用题点 平面几何与立体几何之间的类比 答案PA ′PA ·PB ′PB ·PC ′PC解析 题干两图中,与△PAB ,△PA ′B ′相对应的是三棱锥P -ABC ,P -A ′B ′C ′;与△PA ′B ′两边PA ′,PB ′相对应的是三棱锥P -A ′B ′C ′的三条侧棱PA ′,PB ′,PC ′.与△PAB 的两条边PA ,PB 相对应的是三棱锥P -ABC 的三条侧棱PA ,PB ,PC .由此,类比题图(1)的面积关系,得到题图(2)的体积关系为V 三棱锥P -A ′B ′C ′V 三棱锥P -ABC =PA ′PA ·PB ′PB ·PC ′PC.(3)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.考点 演绎推理的综合应用 题点 演绎推理在其他方面的应用 答案 1和3解析 由题意可知丙不拿2和3.若丙拿1和2,则乙拿2和3,甲拿1和3,满足题意; 若丙拿1和3,则乙拿2和3,甲拿1和2,不满足题意. 故甲的卡片上的数字是1和3.反思与感悟 (1)用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明.(2)进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.(3)演绎推理是由一般到特殊的推理,其结论不会超出前提所界定的范围,所以其前提和结论之间的联系是必然的.因此,在演绎推理中,只要前提及推理正确,结论必然正确.跟踪训练1 (1)如图是由火柴棒拼成的图形,第n个图形由n个正方形组成.通过观察可以发现:第4个图形中有________根火柴棒;第n个图形中有________根火柴棒.考点归纳推理的应用题点归纳推理在图形中的应用答案13 3n+1解析设第n个图形中火柴棒的根数为a n,可知a4=13.通过观察得到递推关系式a n-a n-1=3(n≥2,n∈N*),所以a n=3n+1.(2)若数列{a n}为等差数列,S n为其前n项和,则有性质“若S m=S n(m,n∈N*且m≠n),则S m +n=0.”类比上述性质,相应地,当数列{b n}为等比数列时,写出一个正确的性质:________________.考点类比推理的应用题点等差数列与等比数列之间的类比答案数列{b n}为等比数列,T m表示其前m项的积,若T m=T n(m,n∈N*,m≠n),则T m+n=1 解析由等差数列的运算性质类比推理到等比数列的运算性质时,加减运算类比推理为乘除运算.累加类比为累乘,由此,等差数列{a n}的性质类比到等比数列{b n}中为:数列{b n}为等比数列,T m表示其前m项的积,若T m=T n(m,n∈N*,m≠n),则T m+n=1.类型二综合法与分析法例2 试用分析法和综合法分别推证下列命题:已知α∈(0,π),求证:2sin 2α≤sin α1-cos α. 考点分析法和综合法的综合应用题点分析法和综合法的综合应用证明方法一分析法要证2sin 2α≤sin α1-cos α成立,只需证4sin αcos α≤sin α1-cos α,∵α∈(0,π),∴sin α>0, 只需证4cos α≤11-cos α,∵1-cos α>0,∴4cos α(1-cos α)≤1, 可变形为4cos 2α-4cos α+1≥0, 只需证(2cos α-1)2≥0,显然成立. 方法二 综合法 ∵11-cos α+4(1-cos α)≥4,当且仅当cos α=12,即α=π3时取等号,∴4cos α≤11-cos α.∵α∈(0,π),∴sin α>0, ∴4sin αcos α≤sin α1-cos α,∴2sin 2α≤sin α1-cos α.反思与感悟 分析法和综合法是两种思路相反的推理方法:分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条件清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.跟踪训练2 设a ,b 是两个正实数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2. 考点 分析法及应用 题点 分析法解决不等式问题证明 要证a 3+b 3>a 2b +ab 2成立,即需证 (a +b )(a 2-ab +b 2)>ab (a +b )成立, 即需证a 2-ab +b 2>ab 成立. 只需证a 2-2ab +b 2>0成立, 即需证(a -b )2>0成立.而由已知条件可知,a ≠b ,所以a -b ≠0,所以(a -b )2>0显然成立. 即a 3+b 3>a 2b +ab 2. 类型三 反证法例3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+yx<2中至少有一个成立.考点 反证法及应用 题点 反证法的应用证明 假设1+x y <2和1+y x<2都不成立,则有1+x y ≥2和1+y x≥2同时成立.因为x >0且y >0,所以1+x ≥2y 且1+y ≥2x ,两式相加,得2+x +y ≥2x +2y ,所以x +y ≤2. 这与已知x +y >2矛盾. 故1+x y <2与1+yx<2中至少有一个成立.反思与感悟 反证法常用于直接证明困难或以否定形式出现的命题;涉及“都是……”“都不是……”“至少……”“至多……”等形式的命题时,也常用反证法. 跟踪训练3 已知:ac ≥2(b +d ).求证:方程x 2+ax +b =0与方程x 2+cx +d =0中至少有一个方程有实数根. 考点 反证法及应用 题点 反证法的应用证明 假设两方程都没有实数根,则Δ1=a 2-4b <0与Δ2=c 2-4d <0,有a 2+c 2<4(b +d ),而a 2+c 2≥2ac ,从而有4(b +d )>2ac ,即ac <2(b +d ),与已知矛盾,故原命题成立. 类型四 数学归纳法例4 已知在数列{a n }中,a 1=-23,其前n 项和S n 满足a n =S n +1S n+2(n ≥2),计算S 1,S 2,S 3,S 4,猜想S n 的表达式,并用数学归纳法加以证明.考点 数学归纳法证明数列问题 题点 数学归纳法证明数列通项问题 解 当n ≥2时,a n =S n -S n -1=S n +1S n+2.∴S n =-1S n -1+2(n ≥2).则有S 1=a 1=-23,S 2=-1S 1+2=-34,S 3=-1S 2+2=-45, S 4=-1S 3+2=-56, 由此猜想:S n =-n +1n +2(n ∈N *). 下面用数学归纳法证明:(1)当n =1时,S 1=-23=a 1,猜想成立.(2)假设当n =k (k ≥1,k ∈N *)时猜想成立, 即S k =-k +1k +2成立, 那么当n =k +1时,S k +1=-1S k +2=-1-k +1k +2+2=-k +2k +3=-(k +1)+1(k +1)+2. 即当n =k +1时猜想成立.由(1)(2)可知,对任意正整数n ,猜想均成立.反思与感悟 (1)用数学归纳法证明等式问题是数学归纳法的常见题型,其关键点在于“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始n 0是多少.(2)由n =k 到n =k +1时,除等式两边变化的项外还要利用当n =k 时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明. 跟踪训练4 观察下列四个等式: 第一个式子 1=1 第二个式子 2+3+4=9 第三个式子 3+4+5+6+7=25 第四个式子 4+5+6+7+8+9+10=49 (1)按照此规律,写出第五个等式;(2)请你做出一般性的猜想,并用数学归纳法证明. 考点 利用数学归纳法证明等式 题点 等式中的归纳、猜想、证明解 (1)第5个等式:5+6+7+…+13=81. (2)猜想第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.下面用数学归纳法证明.①当n =1时,左边=1,右边=(2-1)2=1, 猜想成立.②假设当n =k (k ≥1,k ∈N *)时,猜想成立, 即有k +(k +1)+(k +2)+…+(3k -2)=(2k -1)2. 那么当n =k +1时,左边=(k +1)+(k +2)+…+(3k -2)+(3k -1)+3k +(3k +1) =k +(k +1)+(k +2)+…+(3k -2)+(2k -1)+3k +(3k +1) =(2k -1)2+(2k -1)+3k +(3k +1) =4k 2-4k +1+8k =(2k +1)2=[2(k +1)-1]2. 右边=[2(k +1)-1]2, 即当n =k +1时,猜想也成立. 根据①②知,猜想对任意n ∈N *都成立.1.数列5,9,17,33,x ,…中的x 等于( ) A .47 B .65 C .63D .128考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 B解析 5=22+1,9=23+1,17=24+1,33=25+1, 归纳可得:x =26+1=65.2.在平面直角坐标系中,方程x a +y b=1表示x ,y 轴上的截距分别为a ,b 的直线,类比到空间直角坐标系中,在x ,y ,z 轴上截距分别为a ,b ,c (abc ≠0)的平面方程为( ) A.x a +y b +z c=1 B.x ab +y bc +zca=1C.xy ab +yz bc +zxca=1D .ax +by +cz =1考点 类比推理的应用题点 平面几何与立体几何之间的类比 答案 A解析 ∵在平面直角坐标系中,方程x a +y b=1表示的图形是一条直线,具有特定性质:“在x 轴,y 轴上的截距分别为a ,b ”.类比到空间直角坐标系中,在x ,y ,z 轴上截距分别为a ,b ,c (abc ≠0)的平面方程为x a +y b +zc=1.故选A.3.若a >0,b >0,则有( )A.b 2a >2b -a B.b 2a <2b -a C.b 2a≥2b -a D.b 2a≤2b -a 考点 综合法及应用题点 利用综合法解决不等式问题 答案 C解析 因为b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,所以b 2a≥2b -a .4.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实数 C .方程x 3+ax +b =0至多有两个实根 D .方程x 3+ax +b =0恰好有两个实根 考点 反证法及应用 题点 如何正确进行反设 答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故选A. 5.用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)=n 4(n +1)(n ∈N *). 考点 用数学归纳法证明等式 题点 利用数学归纳法证明等式 解 (1)当n =1时,左边=12×1×(2×1+2)=18,右边=14×(1+1)=18.左边=右边,所以等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立, 即有12×4+14×6+16×8+…+12k (2k +2)=k 4(k +1),则当n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+12(k +1)[2(k +1)+2] =k 4(k +1)+14(k +1)(k +2)=k (k +2)+14(k +1)(k +2)=(k +1)24(k +1)(k +2)=k +14(k +2)=k +14[(k +1)+1].所以当n =k +1时,等式也成立,由(1)(2)可知,对于一切n ∈N *,等式都成立.1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.4.数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)当n =n 0时,结论成立.第二步(归纳递推)假设当n =k 时,结论成立,推得当n =k +1时,结论也成立.数学归纳法是在可靠的基础上,利用命题自身具有的传递性,运用有限的步骤(两步)证明出无限的命题成立.一、选择题1.证明命题:“f (x )=e x+1e x 在(0,+∞)上是增函数”.现给出的证法如下:因为f (x )=e x +1e x ,所以f ′(x )=e x -1e x .因为x >0,所以e x >1,0<1e x <1.所以e x-1e x >0,即f ′(x )>0.所以f (x )在(0,+∞)上是增函数,使用的证明方法是( ) A .综合法 B .分析法 C .反证法 D .以上都不是考点 综合法及应用题点 利用综合法解决函数问题 答案 A解析 这是从已知条件出发利用已知的定理证得结论的,是综合法,故选A. 2.若a <b <0,则下列不等式中成立的是( ) A.1a <1bB .a +1b >b +1aC .b +1a>a +1bD.b a <b +1a +1考点 分析法及应用 题点 分析法解决不等式问题 答案 C解析 取a =-2,b =-1,验证可知C 正确.3.我们把1,4,9,16,25,…这些数称为“正方形点数”,这是因为这些数量的点可以排成一个正方形,如图所示,则第n 个正方形点数是( )A .n (n -1)B .n (n +1)C .(n +1)2D .n 2考点 归纳推理的应用 题点 归纳推理在图形中的应用 答案 D解析 由题意可知第n 个正方形点数为n 2.4.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为( )A.25 B.7C.6 D.8考点归纳推理的应用题点归纳推理在数对(组)中的应用答案 B解析由所给的数列规律知,第25项为7.5.已知{b n}为等比数列,b5=2,则b1b2b3…b9=29.若{a n}为等差数列,a5=2,则{a n}的类似结论为( )A.a1a2a3…a9=29B.a1+a2+…+a9=29C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9考点类比推理的应用题点等差数列与等比数列之间的类比答案 D解析由等差数列的性质a1+a9=a2+a8=…=2a5可知D正确.6.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取( )A.2 B.3C.5 D.6考点数学归纳法定义及原理题点数学归纳法第一步:归纳奠基答案 C解析当n取1,2,3,4时,2n>n2+1不成立,当n=5时,25=32>52+1=26,即第一个能使2n>n2+1成立的n值为5,故选C.7.已知a+b+c=0,则ab+bc+ca的值( )A.大于0 B.小于0C.不小于0 D.不大于0考点综合法及应用题点综合法的应用答案 D解析因为(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0,又因为a2+b2+c2≥0,所以2(ab+bc+ca)≤0,即ab+bc+ca≤0.8.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )A .2号学生进入30秒跳绳决赛B .5号学生进入30秒跳绳决赛C .8号学生进入30秒跳绳决赛D .9号学生进入30秒跳绳决赛 考点 演绎推理的综合应用 题点 演绎推理在其他方面的应用 答案 B解析 进入立定跳远决赛的有8人,根据成绩应是1号至8号. 若a >63,则同时进入两决赛的不是6人,不符合题意;若61≤a ≤63,则同时进入两决赛的有1,2,3,5,6,7号,符合题意; 若a =60,则同时进入两决赛的不是6人,不符合题意; 若a ≤59,则同时进入两决赛的有1,3,4,5,6,7号,符合题意. 综上可知,5号进入30秒跳绳决赛. 二、填空题9.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是____________________. 考点 类比推理的应用题点 平面几何与立体几何之间的类比 答案 正四面体的内切球的半径是高的14解析 原问题的解法为等面积法,即正三角形的面积S =12ah 1=3×12ar ⇒r =13h 1(其中a 是正三角形的边长,h 1是高,r 是内切圆半径).类比,用等体积法,V =13Sh 2=4×13R ·S ⇒R =14h 2(其中S 为底面正三角形的面积,h 2是高,R是内切球的半径). 10.已知2+23=223,3+38=338,4+415=4415,…,6+a b =6ab,a ,b 均为正实数,由以上规律可推测出a ,b 的值,则a +b =________.考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 41解析 由题意归纳推理得6+a b =6a b,b =62-1=35,a =6. ∴a +b =6+35=41.11.完成反证法证题的全过程.题目:设a 1,a 2,…,a 7是由数字1,2,…,7任意排成的一个数列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则________均为奇数.① 因为7个奇数之和为奇数,故有(a 1-1)+(a 2-2)+…+(a 7-7)为________.② 而(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=________.③ ②与③矛盾,故p 为偶数. 考点 反证法及应用 题点 反证法的应用答案 a 1-1,a 2-2,…,a 7-7 奇数 0解析 由假设p 为奇数可知,(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=0为奇数,这与0为偶数相矛盾. 三、解答题12.用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2;(2)6+10>23+2.考点 分析法和综合法的综合应用 题点 分析法和综合法的综合应用证明 (1)当a ,b >0时,有a +b2≥ab ,∴lg a +b2≥lg ab ,∴lga +b 2≥12lg(ab )=lg a +lg b2. (2)要证6+10>23+2, 只需证(6+10)2>(23+2)2, 即260>248,这是显然成立的, ∴原不等式成立.13.求证:不论x ,y 取何非零实数,等式1x +1y =1x +y 总不成立.考点 反证法及应用 题点 反证法的应用证明 假设存在非零实数x ,y 使得等式1x +1y =1x +y 成立.于是有y (x +y )+x (x +y )=xy , 即x 2+y 2+xy =0,即⎝ ⎛⎭⎪⎫x +y 22+34y 2=0. 由y ≠0,得34y 2>0.又⎝ ⎛⎭⎪⎫x +y 22≥0, 所以⎝ ⎛⎭⎪⎫x +y 22+34y 2>0.与x 2+y 2+xy =0矛盾,故原命题成立. 四、探究与拓展14.设S ,V 分别表示表面积和体积,如△ABC 的面积用S △ABC 表示,三棱锥O -ABC 的体积用V O -ABC 表示,对于命题:如果O 是线段AB 上一点,则|OB →|·OA →+|OA →|·OB →=0.将它类比到平面的情形时,应该有:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0.将它类比到空间的情形时,应该有:若O 是三棱锥A -BCD 内一点,则有__________. 考点 类比推理的应用题点 平面几何与立体几何之间的类比答案 V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=015.给出下列等式:1=1, 1-4=-(1+2), 1-4+9=1+2+3, 1-4+9-16=-(1+2+3+4),……(1)写出第5个和第6个等式,并猜想第n (n ∈N *)个等式; (2)用数学归纳法证明你猜想的等式. 考点 利用数学归纳法证明等式 题点 等式中的归纳、猜想、证明(1)解 第5个等式为1-4+9-16+25=1+2+3+4+5, 第6个等式为1-4+9-16+25-36=-(1+2+3+4+5+6). 猜想第n 个等式为12-22+32-42+…+(-1)n -1n 2=(-1)n -1·(1+2+3+…+n ).(2)证明 ①当n =1时,左边=12=1,右边=(-1)0×1=1,左边=右边,猜想成立. ②假设当n =k (k ≥1,k ∈N *)时,猜想成立,即12-22+32-42+…+(-1)k -1k 2=(-1)k -1·k (k +1)2,则当n =k +1时,12-22+32-42+…+(-1)k -1k 2+(-1)k (k +1)2=(-1)k -1·k (k +1)2+(-1)k (k +1)2=(-1)k (k +1)·⎣⎢⎡⎦⎥⎤(k +1)-k 2=(-1)k·(k +1)[(k +1)+1]2,故当n =k +1时,猜想也成立由①②可知,对于任意n ∈N *,猜想均成立.。

2017_2018学年高中数学第二章推理与证明2_1_1合情推理教学案新人教A版选修1_2

2017_2018学年高中数学第二章推理与证明2_1_1合情推理教学案新人教A版选修1_2
-2+ -2+ -2+…+ -2= ×4×5;
……
照此规律,
-2+ -2+ -2+…+ -2=________.
解析:通过观看已给出等式的特点,可知等式右边的 是个固定数, 后面第一个数是等式左侧最后一个数括号内角度值分子中π的系数的一半, 后面第二个数是第一个数的下一个自然数,因此,所求结果为 ×n×(n+1),即 n(n+1).
C. D.○
解析:选A 观看可发觉规律:①每行、每列中,方、圆、三角三种形状均各显现一次,②每行、每列有两阴影一空白,即得结果.
2.下面几种推理是合情推理的是( )
①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,那么猜想该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n边形的内角和是(n-2)·180°(n∈N*,且n≥3).
(1)通项公式法:数清所给图形中研究对象的个数,列成数列,观看所得数列的前几项,探讨其转变规律,归纳猜想通项公式.
(2)递推公式法:探讨后一个图形与前一个图形中研究对象的个数之间的关系,把各图形中研究对象的个数看成数列,列出递推公式,再求通项公式.
[活学活用]
1.用火柴棒摆“金鱼”,如下图:
依照上面的规律,第n个“金鱼”图需要火柴棒的根数为( )
5.观看以下各等式: + =2, + =2, + =2, + =2,依照以上各式成立的规律,取得一样性的等式为( )
A. + =2
B. + =2
C. + =2
D. + =2
解析:选A 观看发觉:每一个等式的右边均为2,左侧是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4,因此只有A正确.

配套K12高三数学二轮复习 22.推理与证明(无答案)教学案 旧人教版

配套K12高三数学二轮复习 22.推理与证明(无答案)教学案 旧人教版

第23课时 推理与证明一、基础练习:1、设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,f(n)表示这n 条直线交点的个数,则f(4)=_________;当n>4时,f(n)=___________(用n 表示)2、由图(1)有面积关系:''''PA B PAB S PA PB S PA PB∆∆=⋅,则由图(2)有体积关系:'''P A B C P ABCV V --=__________3、用反证法证明“形如4k+3(k ∈N*)的数不能化为两个整数的平方和”时,开始假设结论的反面成立应写成___________。

4、凡自然数是整数,4是自然数,所以4是整数。

以上三段论推理A 、正确B 、推理形式不正确C 、两个“自然数”概念不一致D 、“两个整数”概念不一致5、如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i=1,2,3,4),此四边形内任一点P 到i 条边的距离记为h i (i=1,2,3,4),若31241234a a a a k ====,则412()i i S ih k ==∑,类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i =(i=1,2,3,4),此三棱锥内任一点Q 到第i 个面的距离记为H i (i=1,2,3,4),若31241234S S S S K ====,则41()i i iH=∑=__________二、例题析解例1:设有椭圆221259x y +=,F 1,F 2是其两个焦点,点M 在椭圆上。

(1)若∠F 1MF 2=90°,求△F 1MF 2的面积。

(2)若∠F 1MF 2=60°,△F 1MF 2的面积是多少?若∠F 1MF 2=45°,△F 1MF 2的面积又是多少?(3)观察以上计算结果,你能看出随∠F 1MF 2的变化,△F 1MF 2的面积将怎样变化吗?试证明你的结论。

2017-2018版高中数学 第二章 推理与证明 2.2.1 第2课时 分析法及其应用学案 新人教A

2017-2018版高中数学 第二章 推理与证明 2.2.1 第2课时 分析法及其应用学案 新人教A

2.2.1 第2课时分析法及其应用1.了解分析法证明数学问题的格式、步骤.(重点)2.理解分析法的思考过程、特点,会用分析法证明较复杂的数学问题.(难点、易混点)[基础·初探]教材整理分析法阅读教材P38~P39“例4”以上内容,完成下列问题.1.分析法的定义从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等),这种证明方法叫做分析法.2.分析法的框图表示Q ⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件判断(正确的打“√”,错误的打“×”)(1)分析法就是从结论推向已知.( )(2)分析法的推理过程要比综合法优越.( )(3)并不是所有证明的题目都可使用分析法证明.( )【解析】(1)错误.分析法又叫逆推证法,但不是从结论推向已知,而是寻找使结论成立的充分条件的过程.(2)错误.分析法和综合法各有优缺点.(3)正确.一般用综合法证明的题目均可用分析法证明,但并不是所有的证明题都可使用分析法证明.【答案】(1)×(2)×(3)√[小组合作型]已知a >b >0,求证:8a<2-ab <8b.【精彩点拨】 本题用综合法不易解决,由于变形后均为平方式,因此要先将式子两边同时开方,再找出使式子成立的充分条件.【自主解答】 要证a -b28a <a +b2-ab <a -b28b,只需证a -b28a<a -b22<a -b 28b.∵a >b >0, ∴同时除以a -b22,得a +b 24a<1<a +b 24b,同时开方,得a +b 2a <1<a +b2b, 只需证a +b <2a ,且a +b >2b , 即证b <a ,即证b <a . ∵a >b >0,∴原不等式成立,即a -b28a<a +b2-ab <a -b28b.1.分析法证明不等式的思维是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件为已知(或已证)的不等式.2.分析法证明数学命题的过程是逆向思维,即结论⇐…⇐…⇐…已知,因此,在叙述过程中,“要证”“只需证”“即证”等词语必不可少,否则会出现错误.[再练一题]1.已知a >0,b >0,求证a b +ba≥a +b .【证明】 要证a b +ba≥a +b , 只需证a a +b b ≥ab (a +b ), 只需证(a )3+(b )3≥ab (a +b ),只需证(a +b )(a -ab +b )≥ab (a +b ), 只需证a -ab +b ≥ab , 只需证(a -b )2≥0,(a -b )2≥0显然成立,故原不等式成立.求证:以过抛物线y 2=2px (p >0)焦点的弦为直径的圆必与直线x =-p2相切.【精彩点拨】【自主解答】 如右图所示,过点A ,B 分别作AA ′,BB ′垂直准线于点A ′,B ′,取AB 的中点M ,作MM ′垂直准线于点M ′.要证明以AB 为直径的圆与准线相切,只需证|MM ′|=12|AB |.由抛物线的定义有|AA ′|=|AF |,|BB ′|=|BF |,所以|AB |=|AA ′|+|BB ′|, 因此只需证|MM ′|=12(|AA ′|+|BB ′|).根据梯形的中位线定理可知上式是成立的,所以以过抛物线y 2=2px 焦点的弦为直径的圆必与直线x =-p2相切.1.分析法是逆向思维,当已知条件与结论之间的联系不够明显、直接或证明过程中所需要用的知识不太明确、具体时,往往采用分析法.2.分析法的思路与综合法正好相反,它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知,即已知条件、已经学过的定义、定理、公理、公式、法则等.[再练一题]2.已知1-tan α2+tan α=1,求证:cos α-sin α=3(cos α+sin α).【证明】 要证cos α-sin α=3(cos α+sin α), 只需证cos α-sin αcos α+sin α=3,只需证1-tan α1+tan α=3,只需证1-tan α=3(1+tan α),只需证tan α=-12.∵1-tan α2+tan α=1,∴1-tan α=2+tan α,即2tan α=-1.∴tan α=-12显然成立,∴结论得证.[探究共研型]探究1 【提示】 综合法与分析法的推理过程是演绎推理,它们的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.探究2 综合法与分析法有什么区别?【提示】 综合法是从已知条件出发,逐步寻找的是必要条件,即由因导果;分析法是从待求结论出发,逐步寻找的是充分条件,即执果索因.在某两个正数x ,y 之间,若插入一个数a ,则能使x ,a ,y 成等差数列;若插入两个数b ,c ,则能使x ,b ,c ,y 成等比数列,求证:(a +1)2≥(b +1)(c +1).【精彩点拨】 可用分析法找途径,用综合法由条件顺次推理,易于使条件与结论联系起来.【自主解答】 由已知条件得⎩⎪⎨⎪⎧2a =x +y ,b 2=cx ,c 2=by .消去x ,y 得2a =b 2c +c 2b,且a >0,b >0,c >0.要证(a +1)2≥(b +1)(c +1), 只需证a +1≥b +c +,因b +c +≤b ++c +2,只需证a +1≥b +1+c +12,即证2a ≥b +c .由于2a =b 2c +c 2b ,故只需证b 2c +c 2b≥b +c ,只需证b 3+c 3=(b +c )(b 2+c 2-bc )≥(b +c )bc , 即证b 2+c 2-bc ≥bc ,即证(b -c )2≥0.因为上式显然成立,所以(a +1)2≥(b +1)(c +1).综合法推理清晰,易于书写,分析法从结论入手,易于寻找解题思路,在实际证明命题时,常把分析法与综合法结合起来使用,称为分析综合法,其结构特点是根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P ;若由P 可推出Q ,即可得证.[再练一题]3.已知△ABC 的三个内角A ,B ,C 成等差数列,求证:1a +b +1b +c =3a +b +c. 【导学号:81092022】【证明】 要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +cb +c =3, 即证c a +b +ab +c=1,只需证c (b +c )+a (a +b )=(a +b )(b +c ), 只需证c 2+a 2=ac +b 2. ∵A ,B ,C 成等差数列, ∴2B =A +C ,又A +B +C =180°,∴B =60°. ∵c 2+a 2-b 2=2ac cos B , ∴c 2+a 2-b 2=ac , ∴c 2+a 2=ac +b 2, ∴1a +b +1b +c =3a +b +c成立.1.要证明2+7>23,可选择的方法有以下几种,其中最合理的是( ) A .综合法 B .分析法 C .比较法D .归纳法【解析】 由分析法和综合法定义可知选B. 【答案】 B2.已知a ≥0,b ≥0,且a +b =2,则( ) A .a ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3【解析】 ∵a +b =2≥2ab ,∴ab ≤1. ∵a 2+b 2=4-2ab ,∴a 2+b 2≥2. 【答案】 C3.3a -3b <3a -b 成立的充要条件是( ) A .ab (b -a )>0 B .ab >0且a >b C .ab <0且a <b D .ab (b -a )<0【解析】 3a -3b <3a -b ⇔(3a -3b )3<(3a -b )3⇔a -b -33a 2b +33ab 2<a -b ⇔3ab 2<3a 2b⇔ab 2<a 2b ⇔ab (b -a )<0.【答案】 D4.设n ∈N ,a =n +4-n +3,b =n +2-n +1,则a ,b 的大小关系是________. 【解析】 要比较n +4-n +3与n +2-n +1的大小,即判断(n +4-n +3)-(n +2-n +1)=(n +4+n +1)-(n +3+n +2)的符号, ∵(n +4+n +1)2-(n +3+n +2)2=2[n +n +-n +n +]=2(n 2+5n +4-n 2+5n +6)<0, ∴n +4-n +3<n +2-n +1. 【答案】 a <b5.已知a ,b ,c ,d ∈R ,求证:ac +bd≤a2+b2c2+d2.【证明】(分析法)①当ac+bd≤0时,显然成立.②当ac+bd>0时,欲证原不等式成立,只需证(ac+bd)2≤(a2+b2)(c2+d2).即证a2c2+2abcd+b2d2≤a2c2+a2d2+b2c2+b2d2.即证2abcd≤b2c2+a2d2.即证0≤(bc-ad)2.因为a,b,c,d∈R,所以上式恒成立.故原不等式成立,综合①②知,命题得证.学业分层测评(建议用时:45分钟)[学业达标] 一、选择题1.若a,b∈R,则1a3>1b3成立的一个充分不必要条件是( )A.ab>0 B.b>aC.a<b<0 D.ab(a-b)<0【解析】由a<b<0⇒a3<b3<0⇒1a3>1b3,但1a3>1b3不能推出a<b<0.∴a<b<0是1a3>1b3的一个充分不必要条件.【答案】 C2.求证:7-1>11- 5.证明:要证7-1>11-5,只需证7+5>11+1,即证7+27×5+5>11+211+1,即证35>11,∵35>11,∴原不等式成立.以上证明应用了( )A.分析法B.综合法C.分析法与综合法配合使用D.间接证法【解析】 该证明方法符合分析法的定义,故选A. 【答案】 A3.要证:a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.a +b22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0【解析】 要证a 2+b 2-1-a 2b 2≤0,只要证明(a 2-1)+b 2(1-a 2)≤0,只要证明(a 2-1)(1-b 2)≤0,即证(a 2-1)(b 2-1)≥0.【答案】 D4.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足什么条件( )A .a 2<b 2+c 2B .a 2=b 2+c 2C .a 2>b 2+c 2D .a 2≤b 2+c 2【解析】 由余弦定理得cos A =b 2+c 2-a 22bc<0,∴b 2+c 2-a 2<0, 即b 2+c 2<a 2. 【答案】 C5.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”,索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0【解析】 由题意知b 2-ac <3a ⇐b 2-ac <3a 2⇐b 2+a (a +b )<3a 2⇐b 2+a 2+ab <3a 2⇐b 2+ab <2a 2⇐2a 2-ab -b 2>0⇐a 2-ab +a 2-b 2>0⇐a (a -b )+(a +b )(a -b )>0 ⇐a (a -b )-c (a -b )>0⇐(a -b )(a -c )>0,故选C. 【答案】 C 二、填空题6.设A =12a +12b ,B =2a +b(a >0,b >0),则A ,B 的大小关系为________.【解析】 ∵A -B =a +b 2ab -2a +b =a +b 2-4ab 2ab a +b =a -b 22ab a +b≥0,∴A ≥B .【答案】 A ≥B7.如果a a >b b ,则实数a ,b 应满足的条件是________. 【导学号:81092024】 【解析】 要使a a >b b 成立,只需(a a )2>(b b )2,只需a 3>b 3>0,即a ,b 应满足a >b >0. 【答案】 a >b >08.如图2­2­4,四棱柱ABCD ­A 1B 1C 1D 1的侧棱垂直于底面,满足________时,BD ⊥A 1C (写上一个条件即可).图2­2­4【解析】 要证BD ⊥A 1C ,只需证BD ⊥平面AA 1C .因为AA 1⊥BD ,只要再添加条件AC ⊥BD ,即可证明BD ⊥平面AA 1C ,从而有BD ⊥A 1C .【答案】 AC ⊥BD (或底面为菱形) 三、解答题9.设a ,b >0,且a ≠b ,求证:a 3+b 3>a 2b +ab 2. 【证明】 法一:分析法 要证a 3+b 3>a 2b +ab 2成立.只需证(a +b )(a 2-ab +b 2)>ab (a +b )成立, 又因a +b >0,只需证a 2-ab +b 2>ab 成立, 只需证a 2-2ab +b 2>0成立, 即需证(a -b )2>0成立.而依题设a ≠b ,则(a -b )2>0显然成立, 由此命题得证. 法二:综合法a ≠b ⇒a -b ≠0⇒(a -b )2>0⇒a 2-2ab +b 2>0⇒a 2-ab +b 2>ab .注意到a ,b >0,a +b >0,由上式即得 (a +b )(a 2-ab +b 2)>ab (a +b ). ∴a 3+b 3>a 2b +ab 2.10.已知三角形的三边长为a ,b ,c ,其面积为S ,求证:a 2+b 2+c 2≥43S . 【证明】 要证a 2+b 2+c 2≥43S ,只要证a 2+b 2+(a 2+b 2-2ab cos C )≥23ab sin C , 即证a 2+b 2≥2ab sin(C +30°), 因为2ab sin(C +30°)≤2ab , 只需证a 2+b 2≥2ab ,显然上式成立.所以a 2+b 2+c 2≥43S .[能力提升]1.已知a ,b ,c ,d 为正实数,且a b <c d,则( ) A.a b <a +cb +d <cd B.a +cb +d <a b <cdC.a b <c d <a +cb +dD .以上均可能【解析】 先取特殊值检验,∵a b <c d, 可取a =1,b =3,c =1,d =2, 则a +cb +d =25,满足a b <a +c b +d <cd. ∴B ,C 不正确. 要证a b <a +cb +d,∵a ,b ,c ,d 为正实数, ∴只需证a (b +d )<b (a +c ),即证ad <bc . 只需证a b <c d .而a b <c d成立, ∴a b <a +cb +d .同理可证a +c b +d <cd.故A 正确,D 不正确. 【答案】 A2.下列不等式不成立的是( ) A .a 2+b 2+c 2≥ab +bc +ca B.a +b >a +b (a >0,b >0) C.a -a -1<a -2-a -3(a ≥3) D.2+10>2 6【解析】 对于A ,∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,∴a 2+b 2+c 2≥ab +bc +ca ;对于B ,∵(a +b )2=a +b +2ab ,(a +b )2=a +b ,∴a +b >a +b ; 对于C ,要证a -a -1<a -2-a -3(a ≥3)成立,只需证明a +a -3<a -2+a -1,两边平方得2a -3+2a a -<2a -3+2a -a -,即a a -<a -a -,两边平方得a2-3a<a2-3a+2,即0<2.因为0<2显然成立,所以原不等式成立;对于D,(2+10)2-(26)2=12+45-24=4(5-3)<0,∴2+10<26,故D 错误.【答案】 D3.使不等式3+22>1+p成立的正整数p的最大值是________.【导学号:81092025】【解析】由3+22>1+p,得p<3+22-1,即p<(3+22-1)2,所以p<12+46-42-23,由于12+46-42-23≈12.7,因此使不等式成立的正整数p的最大值是12.【答案】124.证明:若a>b>c且a+b+c=0,则b2-aca< 3.【证明】∵a>b>c且a+b+c=0,∴a>0,c<0.要证b2-aca<3,只需证b2-ac<3a,即证b2-ac<3a2.因为b=-a-c,故只需证(a+c)2-ac<3a2,即证2a2-ac-c2>0,即证(2a+c)(a-c)>0.∵2a+c>a+b+c=0,a-c>0,∴(2a+c)(a-c)>0成立.∴原不等式成立.11。

【配套K12】高中数学第2章推理与证明2.3数学归纳法学案新人教B版选修2_2

【配套K12】高中数学第2章推理与证明2.3数学归纳法学案新人教B版选修2_2

2.3 数学归纳法1.了解数学归纳法的原理,能用数学归纳法证明一些简单命题.2.理解数学归纳法两个步骤的作用,进一步规范书写的语言结构.数学归纳法一个与自然数相关的命题,如果(1)当n取第一个值n0时命题成立;(2)在假设当n=k(k∈N+,且k≥n0)时命题成立的前提下,推出当n=______时命题也成立,那么可以断定,这个命题对n取第一个值后面的所有正整数成立.数学归纳法是专门证明与自然数集有关的命题的一种方法,它是一种完全归纳法,是对不完全归纳法的完善.证明分两步,其中第一步是命题成立的基础,称为“归纳奠基”;第二步解决的是延续性问题,又称“归纳递推”.运用数学归纳法证明有关命题时应注意以下几点:(1)两个步骤缺一不可;(2)在第一步中,n的初始值不一定从1取起,也不一定只取一个数(有时需取n=n0,n0+1等),证明应视具体情况而定;(3)第二步中,证明n=k+1时命题成立,必须使用归纳假设,否则就会打破数学归纳法步骤间的严密逻辑关系,造成推理无效;(4)证明n=k+1时命题成立,要明确求证的目标形式,一般要凑出归纳假设里给出的形式,以便使用归纳假设,然后再去凑出当n=k+1时的结论,这样就能有效减少论证的盲目性.【做一做】对于不等式n2+n<n+1(n∈N+),某同学用数学归纳法证明的过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N+)时,不等式成立,即k2+k<k+1,则当n=k+1时,(k+1)2+(k+1)=k2+3k+2<(k2+3k+2)+(k+2)=(k+1)+1,∴当n=k+1时,不等式成立.上述证法( ).A.过程全部正确B.n=1时验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确1.利用数学归纳法证明问题时有哪些注意事项?剖析:(1)用数学归纳法证明有关命题的关键在第二步,即n=k+1时命题为什么成立?n=k+1时命题成立是利用假设n=k时命题成立,根据有关的定理、定义、公式、性质等数学结论推证出来的,而不是直接代入,否则n=k+1时命题成立也成假设了,命题并没有得到证明.(2)用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都能用数学归纳法证明,学习时要具体问题具体分析.2.运用数学归纳法时易犯的错误有哪些?剖析:(1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错.(2)没有利用归纳假设:归纳假设是必须要用的.假设是起桥梁作用的,桥梁断了就通不过去了.(3)关键步骤含糊不清,“假设n =k 时结论成立,利用此假设证明n =k +1时结论也成立”是数学归纳法的关键一步,也是证明问题中最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性.题型一 用数学归纳法证明恒等式【例题1】用数学归纳法证明1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n.分析:左边式子的特点为:各项分母依次为1,2,3,…,2n ,右边式子的特点为:分母由n +1开始,依次增大1,一直到2n ,共n 项.反思:理解等式的特点:在等式左边,当n 取一个值时,对应两项,即12n -1-12n;在等式右边,当n 取一个值时,对应一项.无论n 取何值,应保证等式左边有2n 项,而等式右边有n 项,然后再按数学归纳法的步骤要求给出证明.题型二 用数学归纳法证明不等式【例题2】已知a >0,b >0,n >1,n ∈N +,用数学归纳法证明:a n +b n 2≥⎝ ⎛⎭⎪⎫a +b 2n.反思:应用数学归纳法证明不等式时,往往通过拼凑项或拆项用上归纳假设,再应用放缩法或其他证明不等式的方法证得n =k +1时命题成立.题型三 归纳——猜想——证明【例题3】某数列的第一项为1,并且对所有的自然数n ≥2,数列的前n 项之积为n 2. (1)写出这个数列的前五项;(2)写出这个数列的通项公式并加以证明. 分析:根据数列前五项写出这个数列的通项公式,要注意观察数列中各项与其序号变化的关系,归纳出构成数列的规律.同时还要特别注意第一项与其他各项的差异,必要时可分段表示.证明这个数列的通项公式可用数学归纳法.反思:先计算出一个数列的前几项,用不完全归纳法猜想得到通项公式,再用数学归纳法给予证明,这是解数列问题的常见思路.题型四 易错辨析易错点:在应用数学归纳法证明问题时两步缺一不可,且在证明由n =k 到n =k +1命题成立时必须用上归纳假设,否则证明过程就是错误的.【例题4】用数学归纳法证明: 12×4+14×6+16×8+…+12n (2n +2)=n 4(n +1). 错证:(1)当n =1时,左边=12×4,右边=14(1+1)=14×2,等式成立.(2)假设当n =k 时等式成立,那么当n =k +1时,直接使用裂项相减法求得 12×4+14×6+16×8+…+12k (2k +2)+1(2k +2)(2k +4)=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫14-16+…+⎝ ⎛⎭⎪⎫12k -12k +2+⎝ ⎛⎭⎪⎫12k +2-12k +4=12⎝ ⎛⎭⎪⎫12-12k +4=k +14[(k +1)+1],即当n =k +1时等式成立. 由(1)和(2),可知等式对一切n ∈N +都成立.1用数学归纳法证明(n +1)(n +2)…(n +n )=2n·1·3…(2n -1)(n ∈N +),从“n =k 到n =k +1”左端需增乘的代数式为( ).A .2k +1B .2(2k +1)C .2k +1k +1D .2k +3k +12平面内原有k 条直线,它们的交点个数记为f (k ),则增加一条直线后,它们的交点个数最多为( ).A .f (k )+kB .f (k )+1C .f (k )+k +1D .kf (k )3利用数学归纳法证明1n +1n +1+1n +2+…+12n<1(n ∈N +,且n ≥2)时,第二步由n =k到n =k +1时不等式左端的变化是( ).A .增加了12k +1这一项B .增加了12k +1和12k +2两项C .增加了12k +1和12k +2两项,同时减少了1k这一项D .以上都不对4用数学归纳法证明“若f (n )=1+12+13+…+1n,则n +f (1)+f (2)+…+f (n -1)=nf (n )(n ∈N +,且n ≥2)”时,第一步要证的式子是___________________________________.5在数列{a n }中,a 1=1,且S n ,S n +1,2S 1成等差数列,则S 2,S 3,S 4分别为________,由此猜想S n =________.答案:基础知识·梳理 k +1【做一做】D 因为从n =k 到n =k +1的证明过程中没有用到归纳假设,故从n =k 到n =k +1的推理不正确.典型例题·领悟【例题1】证明:(1)当n =1时,左边=1-12=12=11+1=右边,∴等式成立.(2)假设n =k 时等式成立,即 1-12+13-14+…+12k -1-12k =1k +1+1k +2+ (12). 则当n =k +1时,左边=1-12+13-14+…+12k -1-12k +12k +1-12k +2=⎝ ⎛⎭⎪⎫1k +1+1k +2+…+12k +12k +1-12k +2=⎝ ⎛⎭⎪⎫1k +2+…+12k +12k +1+⎝ ⎛⎭⎪⎫1k +1-12k +2=1k +2+…+12k +12k +1+1k +=右边.∴当n =k +1时等式也成立.由(1)和(2),知等式对任意n N +都成立.【例题2】证明:(1)当n =2时,左边=a 2+b 22,右边=(a +b2)2,左边-右边=⎝⎛⎭⎪⎫a -b 22≥0,不等式成立.(2)假设当n =k (k N +,k >1)时,不等式成立,即a k +b k 2≥⎝⎛⎭⎪⎫a +b 2k,因为a >0,b >0,k >1,k N +,所以(a k +1+b k +1)-(a k b +ab k )=(a -b )(a k -b k )≥0,于是a k +1+b k +1≥a k b +ab k.当n =k +1时,⎝ ⎛⎭⎪⎫a +b 2k +1=a +b 2×⎝ ⎛⎭⎪⎫a +b 2k ≤a k +b k 2·a +b 2=a k +1+b k +1+a k b +ab k 4≤a k +1+b k +1+a k +1+b k +14=a k +1+b k +12,∴当n =k +1时,不等式也成立.由(1)和(2),知对于a >0,b >0,n >1,n N +,不等式a n +b n 2≥⎝⎛⎭⎪⎫a +b 2n恒成立.【例题3】解:(1)已知a 1=1,由题意,得a 1·a 2=22,∴a 2=22.∵a 1·a 2·a 3=32,∴a 3=3222.同理,可得a 4=4232,a 5=5242.因此该数列的前五项为1,4,94,169,2516.(2)观察这个数列的前五项,猜测数列的通项公式应为 a n =⎩⎪⎨⎪⎧1,n =1,n 2n -2,n ≥2.下面用数学归纳法证明当n ≥2时,a n =n 2n -2.①当n =2时,a 2=222-12=22,等式成立.②假设当n =k (k ≥2)时,结论成立,即a k =k 2k -2.∵a 1·a 2·…·a k -1=(k -1)2,a 1·a 2·…·a k -1·a k ·a k +1=(k +1)2, ∴a k+1=k +2a 1·a 2·…·a k -1·a k=k +2k -·k -2k =k +2k =k +2k +-1]2.∴当n =k +1时,结论也成立.根据①和②,可知当n ≥2时,这个数列的通项公式是a n =n 2n -2.∴a n =⎩⎪⎨⎪⎧1,n =1,n 2n -2,n ≥2.【例题4】错因分析:由n =k 到n =k +1时等式的证明没有用归纳假设,是典型的套用数学归纳法的一种伪证.正确证法:(1)当n =1时,左边=12×4=18,右边=18,等式成立.(2)假设当n =k 时, 12×4+14×6+16×8+…+12k 2k +=k k +成立.那么当n =k +1时, 12×4+14×6+16×8+…+12k 2k ++12k +k +=k k ++1k +k +=k k ++1k +k +=k +2k +k +=k +1k +=k +1k ++1],∴当n =k +1时,等式成立.由(1)和(2),可得对一切n N +等式都成立. 随堂练习·巩固1.B n =k 时,左边=(k +1)(k +2)…(k +k ),而n =k +1时,左边=[(k +1)+1][(k +1)+2]…[(k +1)+(k -1)][(k +1)+k ][(k +1)+(k +1)] =(k +2)(k +3)…(k +k )(2k +1)(2k +2) =2(k +1)(k +2)…(k +k )(2k +1).2.A 第k +1条直线与原来k 条直线相交,最多有k 个交点.3.C 不等式左端共有n +1项,且分母是首项为n ,公差为1,末项为2n 的等差数列,当n =k 时,左端为1k +1k +1+1k +2+…+12k ;当n =k +1时,左端为1k +1+1k +2+1k +3+…+12k +12k +1+12k +2,对比两式,可得结论. 4.2+f (1)=2f (2) 起点n 0=2,观察等式左边最后一项,将n =2代入即可. 5.32,74,158 2n-12 由题意,得2S n +1=S n +2S 1,且S 1=a 1=1,令式子中的n 分别取1,2,3,可得S 2=32,S 3=74,S 4=158,从而猜想S n =2n-12n -1.。

【K12教育学习资料】[学习]2018高中数学 第2章 推理与证明 2.1.1 合情推理(1)学案

【K12教育学习资料】[学习]2018高中数学 第2章 推理与证明 2.1.1 合情推理(1)学案

2.1.1 合情推理[学习目标] 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发展中的作用.[知识链接]1.归纳推理和类比推理的结论一定正确吗?答归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然性的,而是或然性的,结论不一定正确.类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.2.由合情推理得到的结论可靠吗?答一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠,例如,费马猜想就被数学家欧拉推翻了.[预习导引]1.归纳推理(1)定义:从个别事实中推演出一般性的结论的推理称为归纳推理.归纳推理的思维过程大致是实验、观察→概括、推广→猜测一般性结论.(2)归纳推理的特点:①归纳推理是从特殊到一般的推理;②由归纳推理得到的结论不一定正确;③归纳推理是一种具有创造性的推理.2.类比推理(1)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理,简称类比法.(2)类比推理的思维过程:观察、比较→联想、类推→猜测新的结论3.合情推理合情推理是根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳推理和类比推理是数学活动中常用的合情推理.要点一归纳推理的应用例1 观察如图所示的“三角数阵”1 (1)2 2 (2)3 4 3 (3)4 7 7 4 (4)51114115 (5)…………记第n(n>1)行的第2个数为a n(n≥2,n∈N*),请仔细观察上述“三角数阵”的特征,完成下列各题:(1)第6行的6个数依次为________、________、________、________、________、________;(2)依次写出a2、a3、a4、a5;(3)归纳出a n+1与a n的关系式.解由数阵可看出,除首末两数外,每行中的数都等于它上一行的肩膀上的两数之和,且每一行的首末两数都等于行数.(1)6,16,25,25,16,6(2)a2=2,a3=4,a4=7,a5=11(3)∵a3=a2+2,a4=a3+3,a5=a4+4由此归纳:a n+1=a n+n.规律方法对于数阵问题的解决方法,既要清楚每行、每列数的特征,又要对上、下行,左、右列间的关系进行研究,找到规律,问题即可迎刃而解.跟踪演练1 根据下列条件,写出数列中的前4项,并归纳猜想它的通项公式.(1)a1=3,a n+1=2a n+1;(2)a1=a,a n+1=12-a n;(3)对一切n∈N*,a n>0,且2S n=a n+1. 解(1)由已知可得a1=3=22-1,a2=2a1+1=2×3+1=7=23-1,a3=2a2+1=2×7+1=15=24-1,a4=2a3+1=2×15+1=31=25-1.猜想a n=2n+1-1,n∈N*.(2)由已知可得a 1=a ,a 2=12-a 1=12-a, a 3=12-a 2=2-a 3-2a ,a 4=12-a 3=3-2a 4-3a. 猜想a n =(n -1)-(n -2)a n -(n -1)a (n ∈N *).(3)∵2S n =a n +1,∴2S 1=a 1+1, 即2a 1=a 1+1,∴a 1=1. 又2S 2=a 2+1,∴2a 1+a 2=a 2+1,∴a 22-2a 2-3=0. ∵对一切n ∈N *,a n >0,∴a 2=3. 同理可求得a 3=5,a 4=7, 猜想出a n =2n -1(n ∈N *). 要点二 类比推理的应用 例2如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边.类比上述定理,写出对空间四面体性质的猜想.解如右图所示,在四面体P -ABC 中,设S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面PAB ,面PBC ,面PCA 与底面ABC 所成二面角的大小. 我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ.规律方法 (1)类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目、位置关系、度量等方面入手.由平面中的相关结论可以类比得到空间中的相关结论.(2)平面图形与空间图形的类比:跟踪演练2 已知P (x 0,y 0)P 点的切线方程的斜率可通过如下方式求得:在y 2=2px 两边同时对x 求导,得2yy ′=2p ,则y ′=p y,所以过P 的切线的斜率k =p y 0.类比上述方法求出双曲线x 2-y 22=1在P (2,2)处的切线方程为________.答案 2x -y -2=0解析 将双曲线方程化为y 2=2(x 2-1),类比上述方法两边同时对x 求导得2yy ′=4x ,则y ′=2x y ,即过P 的切线的斜率k =2x 0y 0,由于P (2,2),故切线斜率k =222=2,因此切线方程为y -2=2(x -2),整理得2x -y -2=0. 要点三 平面图形与空间图形的类比 例3 三角形与四面体有下列相似性质:(1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形.(2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形三个顶点的连线所围成的图形.通过类比推理,根据三角形的性质推测空间四面体的性质填写下表:球、体积等进行类比,是解决和处理立体几何问题的重要方法.跟踪演练3 类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是________.①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等. 答案 ①②③解析 由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,叫类比推理,上述三个结论均符合推理结论,故均正确.1.下列推理中,是归纳推理的有________.①A ,B 为定点,动点P 满足PA +PB =2a >AB ,得P 的轨迹为椭圆; ②由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜出数列的前n 项和S n 的表达式;③由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πab ;④科学家利用鱼的沉浮原理制造潜艇. 答案 ②解析 从S 1,S 2,S 3猜想出数列的前n 项和S n 是从特珠到一般的推理.2.下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子的颜色是________.答案 白色解析 由图知:三白二黑周而复始相继排列,36÷5=7余1.∴第36颗珠子的颜色为白色. 3.将全体正整数排成一个三角形数阵:1 2 3 4 5 67 8 9 1011 12 13 14 15……………………按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________. 答案n 2-n +62解析 前n -1行共有正整数1+2+…+(n -1)个,即n 2-n2个,因此第n 行第3个数是全体正整数中第n 2-n2+3个,即为n 2-n +62.4.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数N (n,4)=n 2, 五边形数N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n ………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1000解析 由N (n,4)=n 2,N (n,6)=2n 2-n , 可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1100-100=1000.1.合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想 一般来说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明.2.归纳推理与类比推理都属合情推理:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.一、基础达标1.下面几种推理是合情推理的是________. ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和是180°;③某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n 边形内角和是(n -2)·180°. 答案 ①②④2.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“__________”,这个类比命题的真假性是__________. 答案 夹在两平行平面间的平行线段相等 真命题 3.观察下列等式:1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,由此推测第n 个等式为________________________________________________________________________ ________________________________________________________________________. 答案 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·(1+2+3+…+n )4.如图(1)有面积关系:S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB ,则图(2)有体积关系:V P -A ′B ′C ′V P -ABC=________.答案PA ′·PB ′·PC ′PA ·PB ·PC解析 把平面中三角形的知识类比到空间三棱锥中,得V P -A ′B ′C ′V P -ABC =PA ′·PB ′·PC ′PA ·PB ·PC. 5.观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第四个等式为________________________________________________________________________. 答案 13+23+33+43+53=(1+2+3+4+5)2(或152)解析 观察前3个等式发现等式左边分别是从1开始的两个数、三个数、四个数的立方和,等式右边分别是这几个数的和的平方,因此可得第四个等式是:13+23+33+43+53=(1+2+3+4+5)2=152. 6.观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第n 个等式为________________________________________________________________________. 答案 n +(n +1)+…+(3n -2)=(2n -1)27.在△ABC 中,若∠C =90°,则cos 2A +cos 2B =1,用类比的方法,猜想三棱锥的类似性质,并证明你的猜想.解 由平面类比到空间,有如下猜想:“在三棱锥P -ABC 中,三个侧面PAB ,PBC ,PCA 两两垂直,且与底面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1”. 证明 设P 在平面ABC 的射影为O ,延长CO 交AB 于M ,记PO =h , 由PC ⊥PA ,PC ⊥PB 得PC ⊥面PAB ,从而PC ⊥PM ,又∠PMC =α, cos α=sin ∠PCO =hPC ,cos β=h PA ,cos γ=h PB, ∵V P -ABC =16PA ·PB ·PC =13⎝ ⎛12PA ·PB cos α+12PB ·⎭⎪⎫PC cos β+12PC ·PA cos γ·h ,∴⎝⎛⎭⎪⎫cos αPC +cos βPA +cos γPB h =1, 即cos 2α+cos 2β+cos 2γ=1.二、能力提升8.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S -ABC 的体积为V ,则r =________. 答案3VS 1+S 2+S 3+S 4解析设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为V 四面体A -BCD =13(S 1+S 2+S 3+S 4)R ,∴R =3VS 1+S 2+S 3+S 4.9.观察分析下表中的数据:答案 F +V -E =2解析 观察F ,V ,E 的变化得F +V -E =2. 10.观察下列等式:12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 …照此规律,第n 个等式可为________________________________________________________________________. 答案 12-22+32-…+(-1)n -1n 2=(-1)n +12n (n +1)解析 分n 为奇数、偶数两种情况.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-n (n +1)2.当n 为奇数时,第n 个等式=-n (n -1)2+n 2=n (n +1)2.综上,第n 个等式:12-22+32-…+(-1)n -1n 2=(-1)n +12n (n +1).11.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解 (1)选择②式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α·(cos30°·cos α+sin30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 12.(1)椭圆C :x 2a 2+y 2b2=1(a >b >0)与x 轴交于A 、B 两点,点P 是椭圆C 上异于A 、B 的任意一点,直线PA 、PB 分别与y 轴交于点M 、N ,求证:AN →·BM →为定值b 2-a 2.(2)类比(1)可得如下真命题:双曲线x 2a 2-y 2b2=1(a >0,b >0)与x 轴交于A 、B 两点,点P 是双曲线C 上异于A 、B 的任意一点,直线PA 、PB 分别与y 轴交于点M 、N ,求证AN →·BM →为定值,请写出这个定值(不要求写出解题过程).(1)证明 设点P (x 0,y 0)(x 0≠±a ),依题意,得A (-a,0),B (a,0),所以直线PA 的方程为y =y 0x 0+a (x +a ). 令x =0,得y M =ay 0x 0+a , 同理得y N =-ay 0x 0-a ,所以y M y N =a 2y 20a 2-x 20. 又点P (x 0,y 0)在椭圆上,所以x 20a 2+y 20b 2=1, 因此y 2=b 2a 2(a 2-x 20), 所以y M y N =a 2y 20a 2-x 20=b 2. 因为AN →=(a ,y N ),BM →=(-a ,y M ),所以AN →·BM →=-a 2+y M y N =b 2-a 2.(2)解 定值为-(a 2+b 2).三、探究与创新13.在平面几何中,对于Rt △ABC ,设BC =a ,CA =b ,AB =c ,C =90°.则(1)a 2+b 2=c 2;(2)cos 2A+cos 2B =1;(3)Rt △ABC 的外接圆的半径r =12a 2+b 2;(4)S △ABC =12ab .把上面的结论类比到空间,写出相类似的结论.解 (1)设三个两两垂直的侧面的面积分别为S 1,S 2,S 3,底面面积为S ,则S 21+S 22+S 23=S 2. (检验:设PA ,PB ,PC 两两互相垂直,PA =m ,PB =n ,PC =t ,PE ⊥AB 于点E ,则 S 2=14(m 2+n 2)·(t 2+m 2n 2m 2+n 2)=S 21+S 22+S 23) (2)设三个两两垂直的侧面与底面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.(检验:因为S 1=S cos α,S 2=S cos β,S 3=S cos γ)(3)设三个两两垂直的侧面形成的侧棱长分别为m 、n 、t ,则这个直四面体的外接球的半径R =m 2+n 2+t 22.(检验:补形为长、宽、高分别为m 、n 、t 的长方体)1 6mnt.(4)设三个两两垂直的侧面形成的侧棱长分别为m、n、t,则这个直四面体的体积为V=。

最新人教版高中数学选修2-2第二章《推理与证明复习》示范教案

最新人教版高中数学选修2-2第二章《推理与证明复习》示范教案

第二章推理与证明复习课教学目标1.知识与技能目标(1)帮助学生进一步加深对合情推理和演绎推理的理解,力争使学生做到规范的应用这两种推理方法去解决相关问题;(2)掌握两种证明方法的思维过程和特点,并熟练掌握两种证明方法的操作流程;(3)进一步理解数学归纳法的基本原理、步骤,通过证明数学命题巩固对数学归纳法原理的再认识.2.过程与方法目标通过本章的学习,理解推理与证明的原理与方法,培养和提高学生的合情推理或演绎推理的能力,感受逻辑证明在数学以及日常生活中的作用,培养学生由具体到抽象的思维方法,提高学生的理性思维能力.3.情感、态度与价值观通过本章的学习,培养学生言之有理、论证有据的习惯,并能在今后的学习中有意识地使用这些推理与证明的方法.重点难点重点:(1)能利用归纳、类比、“三段论”进行简单推理;(2)了解综合法、分析法和反证法的思考过程与特点;(3)了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数n有关的数学命题.难点:(1)根据归纳、类比、“三段论”推理的结构和特点,进行简单推理(2)根据问题的特点,选择适当的证明方法或把不同的证明方法综合使用;(3)理解数学归纳法的思想实质,了解第二个步骤的作用,并且能够根据归纳假设作出证明.教学过程形成网络1.本章的知识结构图:2.本章基本知识点:(1)合情推理与演绎推理:①归纳推理的概念:根据一类事物的______对象具有某种性质,推出该类事物的____对象都具有这种性质的推理,或有____事实概括出________的推理,称为归纳推理(简称归纳).简言之,归纳推理是由______到________,由______到______的推理.②类比推理的定义:这种由两个(两类)对象具有__________和其中一类对象的某些__________,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由______到________的推理.③合情推理的定义:根据已有的事实,经过__________、__________、__________、__________,再进行__________、__________,然后提出猜想的推理,我们把它统称为合情推理.④演绎推理的定义:从____出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由______到______的推理.“三段论”是演绎推理的一般模式;包括(ⅰ)大前提——____________;(ⅱ)小前提——____________;(ⅲ)结论——______________.(2)直接证明与间接证明:①综合法定义:一般地,利用____________等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②分析法定义:一般地,从______出发,逐步寻求使它成立的__________,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理),这种证明方法叫做分析法.③反证法定义:假设__________不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明________,从而证明了__________,这样的证明方法叫做反证法.④数学归纳法定义:一般地,证明一个与正整数n有关的命题P(n),可按下列步骤进行:(ⅰ)(归纳奠基)证明当______时命题成立;(ⅱ)(归纳递推)假设________命题成立,证明当____也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.提出问题:1.请同学们独立完成知识填空.2.在完成知识填空的同时,回想一下本章主要有哪些基本题型,解决这些基本题型的方法和步骤分别是什么?活动设计:学生独立完成基本知识填空,然后让几位同学口答填空答案,教师借助多媒体投影出知识填空的答案,适当的规范学生的表述,回忆旧知识,并思考、讨论回答所提出的问题.学情预测:学生在前面几节学习的基础上,能够顺利的完成基本知识填空,但在准确、规范表达上会存在着一定的差距;题型和方法的总结更是五花八门.活动结果:知识填空答案:(1)合情推理与演绎推理:①部分全部个别一般结论部分整体个别一般②某些类似特征已知特征特殊特殊③观察分析比较联想归纳类比④一般性的原理一般特殊已知的一般原理所研究的特殊情况据一般原理,对特殊情况作出的判断(2)直接证明与间接证明:①已知条件和某些数学定义、公理、定理②要证明的结论 充分条件③原命题 假设错误 原命题正确④(ⅰ)n 取第一个值n 0(n 0∈N *)(ⅱ)n =k(k ≥n 0,k ∈N *)时当n =k +1时命题设计意图全面系统地梳理基础知识,帮助学生巩固基础,加深对概念、公式、定理的理解,教师利用下一环节“典型示例”和同学们一块总结本章的重点题型和方法.典型示例类型一:归纳推理例1观察圆周上n 个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?思路分析:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质,(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).解:设f(n)为n 个点可连的弦的条数,则f(2)=1,f(3)=3,f(4)=6,…,猜想:f(n)=n (n -1)2. 点评:归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.巩固练习1.下列推理是归纳推理的是( )A .A 、B 为定点,若动点P 满足︱PA ︱+︱PB ︱=2a >︱AB ︱,则点P 的轨迹是椭圆B .由a 1=1,a n +1=3a n -1,求出S 1,S 2,S 3,猜想出数列的通项a n 和S n 的表达式C .由圆x 2+y 2=1的面积S =πr 2,猜想出椭圆的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇2.如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色的?( )A .白色B .黑色C .白色可能性大D .黑色可能性大答案:1.B 2.A类型二:类比推理例2在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立.类比上述性质,在等比数列{b n }中,若b 9=1,则有等式______成立.思路分析:找出两类对象之间可以准确表述的相似特征;然后,由一类对象的已知特征去推测另一类对象的特征,从而做出一个猜想.解:在等差数列{a n }中,若a 10=0,则a 1+a 19=a 2+a 18=…=a n +a 20-n =2a 10=0, 所以a 1+a 2+…+a n +…+a 19=0,即a 1+a 2+…+a n =-a 19-a 18-…-a n +1=a 1+a 2+…+a 19-n .相似地,在等比数列{b n }中,若b 9=1,则有等式b 1·b 2·…·b n =b 1·b 2·…·b 17-n (n <17,n ∈N *)成立.点评:本题主要考查观察分析能力,抽象概括能力,考查运用类比的思想方法,由等差数列{a n }满足的一般结论,而得到等比数列{b n }所满足的一般结论.巩固练习平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行.类似地写出空间的一个四棱柱为平行六面体的两个充要条件.充要条件①________________.充要条件②________________.答案:①底面是平行四边形 ②两组相对侧面分别平行类型三:演绎推理例3如图,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别为棱AB ,BC 的中点.证明:平面MNB 1⊥平面BDD 1B 1.思路分析:本题所依据的大前提是面面垂直的判定定理,小前提是平面MNB 1与平面BDD 1B 1之间所满足的证明面面垂直所需要的条件,这是证明本题的关键.证明:在正方体ABCD —A 1B 1C 1D 1中,∵BB 1⊥平面ABCD ,MN ⊂平面ABCD ,∴BB 1⊥MN.∵MN ∥AC ,AC ⊥BD ,∴MN ⊥BD.又BD ∩BB 1=B ,∴MN ⊥平面BDD 1B 1.∵MN ⊂平面MNB 1,∴平面MNB 1⊥平面BDD 1B 1.点评:“三段论”中,第一个判断称为大前提,它提供了一个一般原理,第二判断叫小前提,指出了一个特殊情况,这两个判断联合起来,揭示了一般原理和特殊情况的内在联系,从而产生了第三个判断结论,演绎推理是一种必然性推理,演绎推理的前提和结论之间有蕴含关系,因而,只要前提是真的,推理的形式是正确的,那么结论必然是真的,但错误的前提可导致错误的结论.巩固练习如果函数f(x +1)是偶函数,那么函数y =f(2x)的图象的一条对称轴是直线…( )A .x =-1B .x =1C .x =-12D .x =12答案:D类型四:直接证明例4已知a ,b ,c 为正实数,a +b +c =1.求证:a 2+b 2+c 2≥13. 思路分析:这是一个条件不等式的证明问题,要注意观察不等式的结构特点和已知条件的合理应用,从而选择出适当的证明方法.证明:(法一):a 2+b 2+c 2-13=13(3a 2+3b 2+3c 2-1)=13[3a 2+3b 2+3c 2-(a +b +c)2]=13(3a 2+3b 2+3c 2-a 2-b 2-c 2-2ab -2ac -2bc)=13[(a -b)2+(b -c)2+(a -c)2]≥0,∴a 2+b 2+c 2≥13. (法二):(a +b +c)2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+b 2+c 2+c 2+a 2,∴3(a 2+b 2+c 2)≥(a +b +c)2=1.∴a 2+b 2+c 2≥13. (法三):设a =13+α,b =13+β,c =13+γ.∵a +b +c =1,∴α+β+γ=0. ∴a 2+b 2+c 2=(13+α)2+(13+β)2+(13+γ)2=13+23(α+β+γ)+α2+β2+γ2=13+α2+β2+γ2≥13.∴a 2+b 2+c 2≥13. 点评:充分利用“1”的代换是本题化简证明的关键.巩固练习已知数列{a n }的前n 项和S n =-a n -(12)n -1+2(n 为正整数),令b n =2n a n , 求证:数列{b n }是等差数列,并求数列{a n }的通项公式.解:(1)由S n =-a n -(12)n -1+2得a 1=-a 1+1 a 1=12, 并且a n +1=S n +1-S n =-a n +1-(12)n +2-[-a n -(12)n -1+2]=a n -a n +1+(12)n , 得到a n +1=12a n +12n +1.于是b n +1=2n +1a n +1=2n a n +1=b n +1. ∴数列{b n }是以1为首项,1为公差的等差数列.∵b n =b 1+(n -1)d ,∴b n =n.又∵b n =2n a n ,∴a n =n 2n . 类型五:间接证明例5已知a ,b ,c ∈(0,1),求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于14. 思路分析:这是否定性命题,条件比较简单,直接证明比较难入手,可考虑用反证法.解:假设三式同时大于14,即(1-a)b>14,(1-b)c>14,(1-c)a>14, 三式同向相乘,得(1-a)a(1-b)b(1-c)c>164.① 又(1-a)a ≤(1-a +a 2)2=14,同理,(1-b)b ≤14,(1-c)c ≤14. 所以(1-a)a(1-b)b(1-c)c ≤164, 与①式矛盾,即假设前提不成立,故结论正确.点评:反证法常用于直接证明困难或以否定形式出现的命题;涉及“都是……”“都不是……”“至少……”“至多……”等形式的命题,也常用反证法.巩固练习已知:ac ≥2(b +d).求证:方程x 2+ax +b =0与方程x 2+cx +d =0中至少有一个方程有实数根.证明:假设两方程都没有实数根,则Δ1=a 2-4b<0与Δ2=c 2-4d<0,有a 2+c 2<4(b +d),而a 2+c 2≥2ac ,从而有4(b +d)>2ac ,即ac<2(b +d),与已知矛盾,故原命题成立.类型六:数学归纳法例6已知等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r(b>0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1成立. 解:(1)因为对任意的n ∈N *,点(n ,S n )均在函数y =b x +r 的图象上,所以得S n =b n +r. 当n =1时,a 1=S 1=b +r ;当n ≥2时,a n =S n -S n -1=b n +r -(b n -1+r)=b n -b n -1=(b -1)b n -1.又因为{a n }为等比数列,所以r =-1,公比为b ,a n =(b -1)b n -1.(2)证明:当b =2时,a n =(b -1)b n -1=2n -1,b n =2(log 2a n +1)=2(log 22n -1+1)=2n ,则b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n. 下面用数学归纳法证明不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n >n +1成立. ①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立. ②假设当n =k 时不等式成立,即b 1+1b 1·b 2+1b 2·…·b k +1b k =32·54·76·…·2k +12k >k +1成立. 则当n =k +1时,左边=b 1+1b 1·b 2+1b 2·…·b k +1b k ·b k +1+1b k +1=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=(2k +3)24(k +1) =4(k +1)2+4(k +1)+14(k +1)=(k +1)+1+14(k +1)>(k +1)+1. 所以当n =k +1时,不等式也成立.由①、②可得不等式对任意的n ∈N *都成立.巩固练习1.用数学归纳法证明对n 为正偶数时某命题成立,若已假设n =k(k ≥2偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立2.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k 2成立时,总可推出f(k +1)≥(k +1)2成立”.那么,下列命题总成立的是( )A .若f(3)≥9成立,则当k ≥1时,均有f(k)≥k 2成立B .若f(5)≥25成立,则当k ≤5时,均有f(k)≥k 2成立C .若f(7)<49成立,则当k ≥8时,均有f(k)<k 2成立D .若f(4)=25成立,则当k ≥4时,均有f(k)≥k 2成立答案:1.B 2.D拓展实例例 已知函数f(x)=a x +x -2x +1(a>1). (1)证明函数f(x)在(-1,+∞)上为增函数;(2)用反证法证明f(x)=0没有负数根.思路分析:(1)直接利用函数单调性的定义证明即可.(2)合理利用第(1)问提供的结论,当f(x)=0有负数根时,利用函数与方程的关系,找到与已知矛盾的结论即可.证明:(1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0,所以ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又因为x 1+1>0,x 2+1>0,所以x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 2+1)(x 1+1)=3(x 2-x 1)(x 2+1)(x 1+1)>0, 于是f(x 2)-f(x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f(x)在(-1,+∞)上为增函数.(2)设存在x 0<0(x 0≠-1),满足f(x 0)=0,则ax 0=-x 0-2x 0+1,又0<ax 0<1,所以0<-x 0-2x 0+1<1, 即12<x 0<2与x 0<0(x 0≠-1)假设矛盾.故f(x 0)=0没有负数根. 点评:掌握综合法、分析法和反证法的思考过程、特点;根据问题的特点,选择适当的证明方法或把不同的证明方法综合使用.变练演编例用数学归纳法证明当n ∈N *时,1·n +2·(n -1)+3·(n -2)+…+(n -2)·3+(n -1)·2+n·1=16n(n +1)(n +2). 思路分析:与正整数有关的数学命题,可以用数学归纳法进行证明,故只需严格按照数学归纳法的步骤证明即可.证明:(1)当n =1时,1=16·1·2·3,结论成立. (2)假设n =k 时结论成立,即1·k +2·(k -1)+3·(k -2)+…+(k -2)·3+(k -1)·2+k·1=16k(k +1)(k +2). 当n =k +1时,则1·(k +1)+2·k +3·(k -1)+…+(k -1)·3+k·2+(k +1)·1=1·k +2·(k -1)+…+(k -1)·2+k·1+[1+2+3+…+k +(k +1)]=16k(k +1)(k +2)+12(k +1)(k +2)=16(k +1)(k +2)(k +3), 即当n =k +1时结论也成立.综合上述,可知结论对一切n ∈N *都成立.点评:一般地,证明一个与正整数n 有关的命题,有如下步骤:(1)证明当n 取第一个值n 0时命题成立;(2)假设当n =k(k ≥n 0,k 为自然数)时命题成立,证明当n =k +1时命题也成立. 提出问题:是否存在常数a ,b 使等式1·n +2·(n -1)+3·(n -2)+…+(n -2)·3+(n -1)·2+n·1=16n(n +a)(n +b)对一切自然数n 都成立,并证明你的结论.活动设计:引导学生适当改变题目的条件和结论,进行一题多变,学生自己设计题目进行研究,对于数学归纳法不应只满足于证明现成的结论,更应当认真思考结论是如何得到的;归纳推理常起到重要的作用是:“归纳—猜想—证明”是由特殊到一般的重要思维方法.活动结果:令n =1,得1=16(1+a)(1+b),令n =2,得4=26(2+a)(2+b), 整理得⎩⎪⎨⎪⎧ab +a +b =5,ab +2(a +b )=8.解得a =1,b =2. 数学归纳法证明过程见“变练演编”中的例题.设计意图通过本题发现,探索性命题的解题思路是:从给出的条件出发,通过观察、实验、归纳、猜想,探索出结论,然后再对归纳猜想的结论进行证明.达标检测1.下面说法正确的个数有( )①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般形式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式无关.A .1个B .2个C .3个D .4个2.若a ,b ,c 是不全相等的实数,求证:a 2+b 2+c 2>ab +bc +ca.证明过程如下:∵a ,b ,c ∈R ,∴a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又∵a ,b ,c 不全相等,∴以上三式至少有一个“=”不成立,∴将以上三式相加得2(a 2+b 2+c 2)>2(ab +bc +ac),∴a 2+b 2+c 2>ab +bc +ca.此证法是( )A .分析法B .综合法C .分析法与综合法并用D .反证法3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n (2n 2+1)3时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是( )A .(k +1)2+2k 2B .(k +1)2+k 2C .(k +1)2 D.13(k +1)[2(k +1)2+1] 答案:1.B 2.B 3.B课堂小结1.知识收获:(1)合情推理与演绎推理;(2)直接证明与间接证明;(3)数学归纳法.2.方法收获:(1)推理的三种基本方法:归纳推理、类比推理、演绎推理;(2)证明问题的三种基本方法:综合法、分析法、反证法;(3)用数学归纳法证明与自然数有关的命题.3.思维收获:学会使用日常学习和生活中经常使用的思维方法,感受逻辑证明在数学以及日常生活中的作用,并养成言之有理,论证有据的好习惯.布置作业本章复习参考题A 组第5题、第7题.补充练习基础练习1.如果数列{a n }是等差数列,则( )A .a 1+a 8<a 4+a 5B .a 1+a 8=a 4+a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 52.设f 0(x)=sinx ,f 1(x)=f 0′(x),f 2(x)=f 1′(x),…,f n +1(x)=f n ′(x),n ∈N ,则f 2 007(x)等于( )A .sinxB .-sinxC .cosxD .-cosx3.设a ,b ,c 大于0,则3个数:a +1b ,b +1c ,c +1a的值( ) A .都大于2 B .至少有一个不大于2C .都小于2D .至少有一个不小于24.已知f(x +1)=2f (x )f (x )+2,f(1)=1(x ∈N *),猜想f(x)的表达式为( ) A .f(x)=42x +2 B .f(x)=2x +1C .f(x)=1x +1D .f(x)=22x +1答案:1.B 2.D 3.D 4.B拓展练习5.已知数列{a n }满足S n +a n =2n +1,(1)写出a 1,a 2,a 3,并推测a n 的表达式;(2)用数学归纳法证明所得的结论.解:(1)a 1=32,a 2=74,a 3=158,猜测a n =2-12n . (2)①由(1)已得当n =1时,命题成立;②假设n =k 时,命题成立,即a k =2-12k , 当n =k +1时,a 1+a 2+…+a k +a k +1+a k +1=2(k +1)+1,且a 1+a 2+…+a k =2k +1-a k ,∴2k +1-a k +2a k +1=2(k +1)+1=2k +3.∴2a k +1=2+2-12k ,a k +1=2-12k +1, 即当n =k +1时,命题成立.根据①②得n ∈N *,a n =2-12n 成立. 设计说明设计思想:通过基础知识填空,帮助学生回顾基本概念、定理和相关结论,通过典型示例总结本章的基本题型和方法;通过练习和作业加深对概念的理解和应用的熟练性.设计意图:由于本章概念多、理论性较强,通过基础知识填空,帮助学生准确记忆相关概念,并形成本章的知识网络;通过典型示例教学总结题型和方法,熟练相关题型的解题步骤和准确规范的表述;教学中不要急于求成,而应在后续的教学中经常借助这些概念表达、阐述和分析.设计特点:从学生的认知基础出发结合具体的题型和方法,加深概念理解的同时,熟练相关方法的应用,同时在应用新知的过程中,将所学的知识条理化,使自己的认知结构更趋合理.备课资料例1:若a 、b 、c 均为实数,且a =x 2-2x +π2,b =y 2-2y +π3,c =z 2-2z +π6,求证:a 、b 、c 中至少有一个大于0.思路分析:直接证明较难入手,运用反证法进行证明.证明:设a 、b 、c 都不大于0,a ≤0,b ≤0,c ≤0,∴a +b +c ≤0.而a +b +c =(x 2-2x +π2)+(y 2-2y +π3)+(z 2-2z +π6)=(x 2-2x)+(y 2-2y)+(z 2-2z)+π=(x -1)2+(y -1)2+(z -1)2+π-3,∴a +b +c >0,这与a +b +c ≤0矛盾,故a 、b 、c 中至少有一个大于0.点评:反证法是一种间接证明命题的基本方法.在证明一个数学命题时,如果运用直接证明比较困难或难以证明时,可运用反证法进行证明.反证法的基本思想是:通过证明命题的否定是假命题,从而说明原命题是真命题.例2:数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n =1,2,3,…). 证明:(1)数列{S n n}是等比数列;(2)S n +1=4a n . 思路分析:利用a n 与S n 的关系,合理转化已知条件a n +1=n +2n S n即可. 证明:(1)由a n +1=n +2n S n ,而a n +1=S n +1-S n 得n +2n S n=S n +1-S n . ∴S n +1=2(n +1)n S n .∴S n +1n +1S n n=2.∴数列{S n n}为等比数列. (2)由(1)知{S n n }的公比为2,∴S n +1n +1=4S n -1n -1=4n -1·a n (n -1)n +1,∴S n +1=4a n . 点评:综合法又叫顺推法,其实质就是由因导果法.例3:已知a>0,b>0,a +b =1,求证:(a +1a )(b +1b )≥254. 思路分析:用分析法将一个较为复杂的不等式转化为简单的不等式,找到使之成立的充分条件.证明:要证(a +1a )(b +1b )≥254,只需证4a 2b 2+4(a 2+b 2)+4≥25ab , ∵a +b =1,∴a 2+b 2=1-2ab.只需证4a 2b 2+4(1-2ab)+4≥25ab ,即4a 2b 2-33ab +8≥0.(*)只需证ab ≤14或ab ≥8.∵a>0,b>0,a +b =1≥2ab ,∴ab ≤14. 又ab ≥8不可能,∴ab ≤14时,使得(*)式成立.∴原不等式成立. 点评:由待证结论出发,步步寻找使该结论成立的充分条件.例4:在△ABC 中(如图1),若CE 是∠ACB 的角平分线,则AC BC =AE BE.其证明过程:作EG ⊥AC 于点G ,EH ⊥BC 于点H ,CF ⊥AB 于点F.∵CE 是∠ACB 的平分线,∴EG =EH.又∵AC BC =AC·EG BC·EH =S △AEC S △BEC ,AE BE =AE·CF BE·CF =S △AEC S △BEC ,∴AC BC =AE BE. (1)把上面结论推广到空间中:在四面体A —BCD 中(如图2),平面CDE 是二面角A-CD-B 的角平分面,类比三角形中的结论,你得到的相应空间的结论是__________.(2)证明你所得到的结论.图1 图2思路分析:运用类比思想,由平面图形边长成比例类比到空间图形面积(体积)成比例.解:(1)结论:S △ACD S △BCD =AE BE 或S △ACD S △BCD =S △AEC S △BEC 或S △ACD S △BCD =S △AED S △BED. (2)证明:设点E 到平面ACD 、平面BCD 的距离分别为h 1、h 2,则由平面CDE 平分二面角A-CD-B 知h 1=h 2.又∵S △ACD S △BCD =h 1S △ACD h 2S △BCD =V A —CDE V B —CDE ,AE BE =S △AED S △BED =V C —AED V C —BED =V A —CDE V B —CDE .∴S △ACD S △BCD =AE BE. 点评:类比推理应从具体问题出发,通过观察、分析、联想进行对比、归纳,从而提出猜想.(设计者:赵海彬)。

配套K12高中数学第2章推理与证明2.1.1合情推理学案新人教B版选修2_2

配套K12高中数学第2章推理与证明2.1.1合情推理学案新人教B版选修2_2

2.1.1 合情推理1.理解合情推理的含义,能利用归纳推理和类比推理进行简单的推理. 2.体会并认识合情推理在数学发现中的重要作用.1.推理的结构与合情推理(1)从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设),叫做______;一部分是由已知推出的判断,叫做______.(2)前提为真时,结论______为真的推理,叫做合情推理.推理也可以看作是用连接词将前提和结论逻辑的连接,常用的连接词有:“因为……所以……”;“根据……可知……”;“如果……那么……”等.【做一做1】下列说法正确的是( ). A .由合情推理得出的结论一定是正确的 B .合情推理必须有前提有结论 C .合情推理不能猜想D .合情推理得出的结论无法判定正误 2.归纳推理(1)根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做________(简称______).(2)归纳推理的一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).归纳推理的特点:(1)归纳推理是由部分到整体、由个别到一般的推理;(2)归纳推理的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然性的,而是或然性的,所以“前提真而结论假”的情况是有可能发生的;(3)人们在进行归纳推理的时候,总是先搜集一不定期的事实材料,有了个别性的、特殊性的事实作为前提,然后才能进行归纳推理,因此归纳推理要在观察和实验的基础上进行;(4)归纳推理能够发现前的事实、获得新结论,是科学发现的重要手段。

【做一做2-1】数列2,5,11,20,x,47,…中的x 等于( ). A .28 B .32 C .33 D .27【做一做2-2】已知等式sin 230°+sin 230°+sin 30°·sin 30°=34,sin 240°+sin 220°+sin 40°·sin 20°=34,下面的等式中具有一般性且包含了已知等式的是( ).A .sin 2α+sin 2(60°-α)+sin α·sin(60°-α)=34B .sin 2α+sin 2(60°+α)+sin α·sin(60°+α)=34C .sin 2(60°+α)+sin 2(60°-α)+sin(60°+α)·sin(60°-α)=34D .sin 2α+sin 2α+sin α·sin α=343.类比推理(1)根据____________之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做________(简称______).它属于合情推理.(2)类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).类比推理有以下几个特点:(1)类比是从人们已经掌握了的事物的属性之中,推测正在研究中的事物的属性,它以旧有认识作基础,类比出新的结果;(2)类比是从一种事物的特殊属性推测另一种事物的特殊属性; (3)类比的结果是猜测性的,不一定可靠,但它却具有发现的功能.【做一做3-1】在平面内,两条相交直线将整个平面分成四部分,类似地,在空间,两个相交平面将整个空间分成________.【做一做3-2】十进制中,2 004=4×100+0×101+0×102+2×103,那么在五进制中,数码2 004折合成十进制为( ).A .29B .254C .602D .2 004归纳推理的一般步骤是什么?剖析:(1)实验、观察:通过观察个别事物发现某些相同性质.(2)概括、推广:从已知的相同性质中推出一个明确表述的一般性命题,并且在一般情况下,如果归纳的个别情况越多,越具有代表性,那么推广的一般性结论也就越可靠.(3)猜测一般性结论:通过实例去分析、归纳问题的一般性结论.题型一 归纳推理【例题1】在一容器内装有浓度为r %的溶液a 升,注入浓度为p %的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n (每次注入的溶液浓度都是p %),计算b 1,b 2,b 3,并归纳出b n 的计算公式.反思:归纳法是获得数学结论的一条重要途径,运用不完全归纳法通过观察、实验,从特例中归纳出一般性结论,形成猜想.题型二 类比推理【例题2】在长方形ABCD 中,对角线AC 与两邻边所成的角分别为α,β,且cos 2α+cos 2β=1,则在立体几何中,给出类比猜想.分析:考虑到平面几何中为长方形,故可联想到立体几何中的长方体.反思:(1)类比推理应从具体问题出发,通过观察、分析、联想进行对比、归纳,提出猜想.(2)也可类比为:长方体的体对角线与同顶点出发的三个面所成的角分别为α,β,γ,则有cos 2α+cos 2β+cos 2γ=1.(3)(2)中的结论是不对的,实际上此时cos 2α+cos 2β+cos 2γ=2,由此可知类比的结论不是唯一的,也不一定正确.题型三 易错辨析易错点:在进行类比推理时,由于类比的相似性少或被一些表面现象迷惑导致类比结论错误,解决这类问题的关键是:先充分认识两类事物的相同(或相似)之处,充分考虑其中的本质联系,再进行类比.错解一:三棱锥的体积等于其内切球半径与三棱锥各棱长之和的乘积的3.错解二:三棱锥的体积等于其内切球半径与三棱锥各面面积之和的乘积的12.1已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33等于( ). A .3 B .-3 C .6 D .-62已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =12×底×高,可推知扇形的面积公式S 扇等于( ).A .r 22B .l 22C .12lr D .不可类比 3对于命题“正三角形内任意一点到各边的距离之和为定值”推广到空间是正四面体内任意一点到各面的距离之和( ).A .为定值B .为变数C .有时为定值,有时为变数D .与正四面体无关的常数4如图所示,由火柴杆拼成的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第4个图形中,火柴杆有________根;第n 个图形中,火柴杆有________根.5设f (x )=12x +2,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.答案:基础知识·梳理1.(1)前提 结论 (2)可能 【做一做1】B2.(1)归纳推理 归纳【做一做2-1】B ∵5=2+3×1,11=5+3×2,20=11+3×3,∴x =20+3×4=32. 【做一做2-2】A 等式右边为34,左侧两角和为60°.3.(1)两类不同事物 类比推理 类比 【做一做3-1】四部分【做一做3-2】B 找到十进制与五进制的相似之处.十进制中由低到高的单位依次为100,101,102,…,五进制中由低到高的单位依次为50,51,52,…,那么在五进制中2 004=4×50+0×51+0×52+2×53=4+2×53=4+250=254,∴五进制中的数码2 004折合成十进制为254.故选B.典型例题·领悟【例题1】解:由题意可得,b 1=a ·r 100+a 4·p100a +a 4=1100⎝ ⎛⎭⎪⎫45r +15p , b 2=ab 1+a 4·p 100a +a 4=1100⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫452r +15p +452p ,b 3=a ·b 2+a 4·p100a +a 4=1100⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫453r +15p +452p +4253p ,所以归纳得b n =1100⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫45n r +15p +452p +…+4n -15n p . 【例题2】解:在长方形ABCD 中,cos 2α+cos 2β=⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=a 2+b 2c 2=c2c 2=1.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.证明如下:如图,cos 2α+cos 2β+cos 2γ=⎝ ⎛⎭⎪⎫m l 2+⎝ ⎛⎭⎪⎫n l 2+⎝ ⎛⎭⎪⎫g l 2=m 2+n 2+g 2l 2=l 2l 2=1. 【例题3】错因分析:错解一中“三角形周长”的类比错误,错解二中“12”的类比错误.“三角形周长”应类比为“三棱锥的各面面积之和”;“12”应类比为“13”.正解:三棱锥的体积等于其内切球半径与三棱锥各面面积之和的乘积的13.随堂练习·巩固1.A 由题意可得,a 1=3,a 2=6,a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,a 8=6,归纳出每6项一个循环,则a 33=a 3=3.2.C 由扇形的弧长与半径类比于三角形的底与高,可得S 扇=12lr .3.A4.13 3n +15.3 2 ∵f (x )+f (1-x )=12x +2+121-x +2=12x +2+2x2+2·2x=12, ∴f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=6×12=3 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习课(二) 直接证明与间接证明(1)近几年的高考中归纳推理和类比推理有时考查,考查的形式以填空题为主,其中归纳推理出现的频率较高,重点考查归纳、猜想、探究、类比等创新能力.(2)处理与归纳推理相关的类型及策略①与数字有关:观察数字特点,找出等式左右两侧的规律可解. ②与式有关:观察每个式的特点,找到规律后可解.③进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想.其中找到合适的类比对象是解题的关键.1.归纳推理的特点及一般步骤2.类比推理的特点及一般步骤[典例] (1)在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P ­ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( )A.18 B.19 C.164D.127(2)(陕西高考)观察下列等式: 1-12=12,1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, ……,据此规律,第n 个等式可为______________________________________________. [解析] (1)正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127. (2)等式的左边的通项为12n -1-12n ,前n 项和为1-12+13-14+…+12n -1-12n ;右边的每个式子的第一项为1n +1,共有n 项,故为1n +1+1n +2+…+1n +n. [答案] (1)D (2)1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n[类题通法](1)用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明.(2)进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.1.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55解析:选D 因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.2.在平面几何中:△ABC 的∠C 内角平分线CE 分AB 所成线段的比为AC BC =AEBE.把这个结论类比到空间:在三棱锥A ­BCD 中(如图),DEC 平分二面角A ­CD ­B 且与AB 相交于E ,则得到类比的结论是________________.解析:由平面中线段的比转化为空间中面积的比可得AE EB =S △ACDS △BCD. 答案:AE EB =S △ACDS △BCD(1)演绎推理在高考中不会刻意去考查,但实际上是无处不在,常以数列、不等式、立体几何、解析几何等主干知识为载体进行考查.(2)解答此类问题,结合已学过的知识和生活中的实例,了解演绎推理的含义、基本方法在证明中的应用是关键.演绎推理是由一般到特殊的推理,其结论不会超出前提所界定的范围,所以其前提和结论之间的联系是必然的.因此,在演绎推理中,只要前提及推理正确,结论必然正确.[典例] 已知f (x )=-4+1x2,数列{a n }的前n 项和为S n ,点P n ⎝⎛⎭⎪⎫a n ,-1a n +1在曲线y =f (x )上(n ∈N *),且a 1=1,a n >0.(1)求数列{a n }的通项公式; (2)求证:S n >12(4n +1-1),n ∈N *.[解] (1)f (a n )=-1a n +1=-4+1a 2n,且a n >0,∴1a n +1=4+1a 2n,∴1a2n +1-1a 2n=4(n ∈N *).∴数列⎩⎨⎧⎭⎬⎫1a 2n 是等差数列,首项1a 21=1,公差d =4,∴1a 2n =1+4(n -1),∴a 2n =14n -3. ∵a n >0,∴a n =14n -3(n ∈N *).(2)证明:∵a n =14n -3 =224n -3>24n -3+4n +1=4n +1-4n -32,∴S n =a 1+a 2+…+a n >12[(5-1)+(9-5)+…+(4n +1-4n -3)] =12(4n +1-1). [类题通法]应用三段论证明问题时,要充分挖掘题目外在和内在条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的,严密的,才能得出正确的结论.常见的解题错误:(1)条件理解错误(小前提错); (2)定理引入和应用错误(大前提错); (3)推理过程错误等.1.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系是 .解析:当0<a <1时,函数f (x )=a x为减函数,a =5-12∈(0,1),∴函数f (x )=⎝ ⎛⎭⎪⎫5-12x为减函数,故由f (m )>f (n ),得m <n . 答案:m <n2.设a >0,f (x )=e xa +ae x 是R 上的偶函数,求a 的值.解析:∵f (x )=e xa +ae x 是R 上的偶函数,∴f (-x )=f (x ),即e -xa +a e -x =e xa +ae x ,∴1a (e -x -e x )+a ⎝ ⎛⎭⎪⎫1e-x -1e x =0.∴⎝ ⎛⎭⎪⎫a -1a ⎝⎛⎭⎪⎫e x -1e x =0对一切x ∈R 恒成立,∴a -1a=0,即a 2=1.又a >0,∴a =1.(1)综合法与分析法是高考重点考查内容,一般以某一知识点作为载体,考查由分析法获得解题思路以及用综合法有条理地表达证明过程.(2)理解综合法与分析法的概念及区别,掌握两种方法的特点,体会两种方法的相辅相成、辩证统一的关系,以便熟练运用两种方法解题.1.综合法:是从已知条件推导出结论的证明方法;综合法又叫做顺推证法或由因导果法.2.分析法:是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“只需证……”等分析到一个明显成立的结论P ,再说明所要证明的数学问题成立.[典例] 设a >0,b >0,a +b =1, 求证:1a +1b +1ab≥8.[证明] 法一:综合法 因为a >0,b >0,a +b =1,所以1=a +b ≥2ab ,ab ≤12,ab ≤14,所以1ab ≥4,又1a +1b=(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥4,所以1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).法二:分析法因为a >0,b >0,a +b =1,要证1a +1b +1ab≥8.只要证⎝ ⎛⎭⎪⎫1a +1b +a +b ab≥8, 只要证⎝ ⎛⎭⎪⎫1a +1b +⎝ ⎛⎭⎪⎫1b +1a ≥8,即证1a +1b≥4.也就是证a +b a +a +bb≥4. 即证b a +a b≥2,由基本不等式可知,当a >0,b >0时,b a +a b≥2成立, 所以原不等式成立. [类题通法]综合法和分析法的特点(1)综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题的常用的方法,综合法是由因导果的思维方式,而分析法的思路恰恰相反,它是执果索因的思维方式.(2)分析法和综合法是两种思路相反的推理方法:分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条理清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.1.已知a >0,b >0,如果不等式2a +1b ≥m2a +b 恒成立,那么m 的最大值等于( )A .10B .9C .8D .7解析:选B ∵a >0,b >0,∴2a +b >0.∴不等式可化为m ≤⎝ ⎛⎭⎪⎫2a +1b (2a +b )=5+2⎝ ⎛⎭⎪⎫b a +a b .∵5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9,即其最小值为9,∴m ≤9,即m 的最大值等于9. 2.若a >b >c >d >0且a +d =b +c , 求证:d +a <b +c . 证明:要证d +a <b +c , 只需证(d +a )2<(b +c )2, 即a +d +2ad <b +c +2bc , 因a +d =b +c ,只需证ad <bc , 即ad <bc ,设a +d =b +c =t ,则ad-bc=(t-d)d-(t-c)c=(c-d)(c+d-t)<0,故ad<bc成立,从而d+a<b+c成立.(1)问.(2)反证法是间接证明的一种基本方法,使用反证法进行证明的关键是在正确的推理下得出矛盾.[考点精要]1.使用反证法应注意的问题:利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.2.一般以下题型用反证法:(1)当“结论”的反面比“结论”本身更简单、更具体、更明确;(2)否定性命题、唯一性命题,存在性命题、“至多”“至少”型命题;(3)有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明比较困难,往往用反证法.[典例] (1)否定:“自然数a,b,c中恰有一个偶数”时正确的反设为( )A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数(2)已知:ac≥2(b+d).求证:方程x2+ax+b=0与方程x2+cx+d=0中至少有一个方程有实数根.[解析] (1)自然数a,b,c的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a,b,c中恰有一个偶数”时正确的反设为“a,b,c中都是奇数或至少有两个偶数.”答案:D(2)证明:假设两方程都没有实数根.则Δ1=a2-4b<0与Δ2=c2-4d<0,有a2+c2<4(b +d),而a2+c2≥2ac,从而有4(b+d)>2ac,即ac<2(b+d),与已知矛盾,故原命题成立.[类题通法]反证法是利用原命题的否命题不成立则原命题一定成立来进行证明的,在使用反证法时,必须在假设中罗列出与原命题相异的结论,缺少任何一种可能,反证法都是不完全的.[题组训练]1.已知x ∈R ,a =x 2+12,b =2-x ,c =x 2-x +1,试证明a ,b ,c 至少有一个不小于1.证明:假设a ,b ,c 均小于1,即a <1,b <1,c <1, 则有a +b +c <3,而a +b +c =2x 2-2x +12+3=2⎝ ⎛⎭⎪⎫x -122+3≥3,两者矛盾,所以假设不成立, 故a ,b ,c 至少有一个不小于1.2.设二次函数f (x )=ax 2+bx +c (a ≠0)中的a ,b ,c 都为整数,已知f (0),f (1)均为奇数,求证:方程f (x )=0无整数根.证明:假设方程f (x )=0有一个整数根k , 则ak 2+bk +c =0,∵f (0)=c ,f (1)=a +b +c 都为奇数, ∴a +b 必为偶数,ak 2+bk 为奇数. 当k 为偶数时,令k =2n (n ∈Z),则ak 2+bk =4n 2a +2nb =2n (2na +b )必为偶数, 与ak 2+bk 为奇数矛盾;当k 为奇数时,令k =2n +1(n ∈Z),则ak 2+bk =(2n +1)·(2na +a +b )为一奇数与一偶数乘积,必为偶数,也与ak 2+bk 为奇数矛盾.综上可知方程f (x )=0无整数根.1.用演绎推理证明函数y =x 3是增函数时的大前提是( ) A .增函数的定义B .函数y =x 3满足增函数的定义 C .若x 1<x 2,则f (x 1)<f (x 2) D .若x 1>x 2,则f (x 1)>f (x 2)解析:选A 根据演绎推理的特点知,演绎推理是一种由一般到特殊的推理,所以函数y =x 3是增函数的大前提应是增函数的定义.2.数列{a n }中,已知a 1=1,当n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .a n =3n -2B .a n =n 2C .a n =3n -1D .a n =4n -3解析:选B 求得a 2=4,a 3=9,a 4=16,猜想a n =n 2.3.在平面直角坐标系内,方程x a +yb=1表示在x ,y 轴上的截距分别为a ,b 的直线,拓展到空间直角坐标系内,在x ,y ,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c=1 B.x ab +y bc +zca=1 C.xy ab +yz bc +zxca=1 D .ax +by +cz =1解析:选A 类比到空间应选A.另外也可将点(a,0,0)代入验证.4.(山东高考)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根 D .方程x 3+ax +b =0恰好有两个实根解析:选A 至少有一个实根的否定是没有实根,故要做的假设是“方程x 3+ax +b =0没有实根”.5.公差不为零的等差数列{a n }的前n 项和为S n .若a 4是a 3与a 7的等比中项,S 8=32,则S 10=( )A .18B .24C .60D .90解析:选C 由a 24=a 3a 7得(a 1+3d )2=(a 1+2d )(a 1+6d ),即2a 1+3d =0.再由S 8=8a 1+562d =32,得2a 1+7d =8,则d =2,a 1=-3.所以S 10=10a 1+902d =60,选C. 6.已知结论:“在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AGGD=2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等”,则AO OM=( )A .1B .2C .3D .4解析:选C 如图,设正四面体的棱长为1,则易知其高AM =63,此时易知点O 即为正四面体内切球的球心,设其半径为r ,利用等积法有4×13×34r=13×34×63⇒r=612,故AO=AM-MO=63-612=64,故AO∶OM=64∶612=3. 7.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是.解析:分别观察正方体的个数为:1,1+5,1+5+9,…归纳可知,第n个叠放图形中共有n层,构成了以1为首项,以4为公差的等差数列,所以S n=n+[n(n-1)×4]÷2=2n2-n,所以S7=2×72-7=91.答案:918.对于命题:若O是线段AB上一点,则|OB|·OA+|OA|·OB=0,将它类比到平面的情形是:若O是△ABC内一点,则S△OBC·OA+S△OCA·OB+S△OBA·OC=0,将它类比到空间的情形应该是:若O是四面体ABCD内一点,则________________________________________________________________________.解析:根据类比的特点和规律,所得结论形式上一致,由线段类比到平面,平面类比到空间,由线段长类比为三角形面积,三角形面积再类比成四面体的体积,故可以类比为V O­BCD·OA+V O­ACD·OB+V O­ABD·OC+V O­ABC·OD=0.答案:V O­BCD·OA+V O­ACD·OB+V O­ABD·OC+V O­ABC·OD=09.(全国卷Ⅰ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是______.解析:法一:由题意得丙的卡片上的数字不是2和3.若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法.故甲的卡片上的数字是1和3.法二:因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.答案:1和310.设函数f (x )=e xln x +2ex -1x,证明:f (x )>1.证明:由题意知f (x )>1等价于x ln x >x e -x-2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e,则h ′(x )=e -x(1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0. 故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e .综上,当x >0时,g (x )>h (x ),即f (x )>1. 11.下面(a)、(b)、(c)、(d)为四个平面图.(1)数出每个平面图的顶点数、边数、区域数,并将相应结果填入下表:(2)E ,F ,G ,试推断E ,F ,G 之间的等量关系;(3)现已知某个平面图有2 016个顶点,且围成2 016个区域,试根据以上关系确定该平面图的边数.解:(1)(2)E +G -F =1.(3)边数F =E +G -1=2 016+2 016-1=4 031.12.△ABC 是以B 为直角顶点的直角三角形,AB =1,BC =2,D 为BC 的中点.直线l 过点A 且垂直于平面ABC ,P 是l 上异于A 的点(如右图).(1)证明:P 在l 上运动时,恒有∠BPD <∠BAD ; (2)证明:P 在l 上运动时,∠CPD <∠CAD 并不恒成立. 证明:(1)由PA ⊥平面ABC 和CB ⊥AB 得CB ⊥PB , 于是tan ∠BPD =DB PB <DBAB=tan ∠BAD ,而这两个角都是锐角, ∴∠BPD <∠BAD .(2)∵∠CPD ,∠CAD 都是锐角, ∴∠CPD <∠CAD ⇒cos ∠CPD >cos ∠CAD . 要证cos ∠CPD >cos ∠CAD 不恒成立, 也就是只要证明存在点P , 使得cos ∠CPD ≤co s ∠CAD 成立.令PA =x ≠0,在Rt△PAB 中,PB =1+x 2, 在Rt△PBD 中,PD =1+x 2+1=x 2+2, 在Rt△PBC 中,PC =x 2+5, 在△PCD 中,由余弦定理可得 cos ∠CPD =x 2+3x 2+x 2+,在△ADC 中,同理可求得cos ∠CAD =31010,故只要证明不等式x 2+3x 2+x 2+≤31010有非零解, 而上述不等式可化为x 2≤3,显然有非零解, 故P 在l 上运动时,∠CPD <∠CAD 并不恒成立.。

相关文档
最新文档