2019高考数学二轮复习 专题1 集合、常用逻辑用语、函数与导数 第四讲 导数及其应用 理

合集下载

2019年高考数学二轮复习课件及学案专题一 集合、常用逻辑用语、算法、复数、推理与证明、不等式2-1-1

2019年高考数学二轮复习课件及学案专题一 集合、常用逻辑用语、算法、复数、推理与证明、不等式2-1-1

A=B B,B⃘
[对点训练] 1.(2018· 北京卷)设 a,b 均为单位向量,则“|a-3b|=|3a+ b|”是“a⊥b”的( ) B.必要而不充分条件 D.既不充分也不必要条件
A.充分而不必要件 C.充分必要条件
[解析]
|a-3b|=|3a+b|⇔|a-3b|2=|3a+b|2⇔a2-6a· b+9b2
q,所以綈 q 是綈 p 的充分不必要条件,即 p 是 q 的充分不必要
条件,故选 A.
[答案] A
4.(2018· 山西五校联考)已知 p:(x-m)2>3(x-m)是 q:x2+ 3x - 4<0 的 必 要 不 充 分 条 件 , 则 实 数 m 的 取 值 范 围 为 ________________.
2.集合运算中的常用方法 (1)数轴法:若已知的集合是不等式的解集,用数轴法求解. (2)图象法:若已知的集合是点集,用图象法求解. (3)Venn 图法: 若已知的集合是抽象集合, 用 Venn 图法求解.
[对点训练] 1.(2018· 全国卷Ⅱ)已知集合 A={(x,y)|x2+y2≤3,x∈Z,y ∈Z},则 A 中元素的个数为( A.9
=9a2+6a· b+b2⇔2a2+3a· b-2b2=0,又∵|a|=|b|=1,∴a· b=0 ⇔a⊥b,故选 C.
[答案]
C
2. (2017· 天津卷)设 ( )
π π 1 θ∈R, 则“θ-12<12”是“sinθ<2”的
A.充分而不必要条件 C.充要条件
B.必要而不充分条件 D.既不充分也不必要条件
[解析]
)
B.8
C.5
D.4
由题意可知 A={(-1,0), (0,0), (1,0), (0, -1), (0,1),

2019年高考数学考纲解读专题01集合常用逻辑用语教学案理

2019年高考数学考纲解读专题01集合常用逻辑用语教学案理

专题01 集合、常用逻辑用语【2019年高考考纲解读】从近几年高考题来看,涉及本节知识点的高考题型是选择题或填空题.有时在大题的条件或结论中出现,所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型就可以了.要掌握以函数的定义域、值域、不等式的解集为背景考查集合的交、并、补的基本运算;要能够利用集合之间的关系,利用充要性求解参数的值或取值范围;要掌握命题的四种形式及命题真假的判断;还得注意以新定义集合及集合的运算为背景考查集合关系及运算.要活用“定义法”解题,重视“数形结合”,定义是一切法则和性质的基础,是解题的基本出发点,注意方法的选择,抽象到直观的转化.要体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力.体会分类讨论思想、数形结合思想、函数方程思想等数学思想在解题中的运用.【网络构建】【重点、难点剖析】一、集合的概念及运算1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)数轴法:若已知的集合是不等式的解集,用数轴法求解.(2)图象法:若已知的集合是点集,用图象法求解.(3)Venn图法:若已知的集合是抽象集合,用Venn图法求解.【方法技巧】解答集合问题的策略:(1)集合的化简是实施运算的前提,等价转换是顺利解题的关键.解决集合问题,要弄清集合中元素的本质属性,能化简的要化简;抓住集合中元素的三个性质,对互异性要注意检验;(2)求交集、并集、补集要充分发挥数轴或韦恩图的作用;(3)含参数的问题,要有分类讨论的意识.注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性.二、充分与必要条件的判断充分、必要条件与充要条件的含义若p、q中所涉及的问题与变量有关,p、q中相应变量的取值集合分别记为A,B,那么有以下结论:qA BB AB A【方法技巧】命题真假的判定方法:(1)一般命题p的真假由涉及到的相关知识辨别;(2)四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律;(3)p∨q、p∧q、┐p命题的真假根据p,q的真假与逻辑联结词的含义判定;(4)要判定一个全称命题是真命题,必须对限定集合M的每个元素x验证p(x)成立;但要判定全称命题是假命题,却只要举出集合M中的一个x=x0,使得p(x0)不成立即可(也就是通常所说的“举一个反例”).要判定一个特称命题是真命题,只要在限定集合M中能找到一个x=x0,使p(x0)成立即可;否则,这一存在性命题是假命题.三、命题真假的判定与命题的否定1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2.复合命题真假的判断方法含逻辑联结词的命题的真假判断:“p∨q”有真则真,其余为假;“p∧q”有假则假,其余为真;“綈p”与“p”真假相反.3.全称量词与存在量词(1)全称命题p:∀x∈M,p(x),它的否定綈p:∃x0∈M,綈p(x0).(2)特称命题p:∃x0∈M,p(x0),它的否定綈p:∀x∈M,綈p(x).【方法技巧】充分条件必要条件的判定方法:(1)定义法:分清条件和结论;找推式,判断“p⇒q”及“q ⇒ p”的真假;下结论,根据推式及定义下结论;(2)等价转化法:条件和结论带有否定词语的命题,常转化为其逆否命题来判断;(3)集合法:小范围可推出大范围,大范围不能推出小范围.【题型示例】题型一、集合的含义与表示、集合的运算例1、(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( ) A.9 B.8 C.5 D.4【解析】由题意可知A={(-1,0),(0,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)},故集合A中共有9个元素,故选A.【答案】A【变式探究】解决集合问题的3个注意点(1)集合含义要明确:构成集合的元素及满足的性质.(2)空集要重视:已知两个集合的关系,求参数的取值,要注意对空集的讨论.(3)“端点”要取舍:要注意在利用两个集合的子集关系确定不等式组时,端点值的取舍问题,一定要代入检验,否则可能产生增解或漏解现象.【变式探究】[2018·全国卷Ⅰ]已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1或x>2}D.{x|x≤-1或x≥2}【命题意图】本题考查集合补集的运算、一元二次不等式的解法,考查学生的计算能力.【答案】B.【解析】∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1},∴∁R A={x|-1≤x≤2},故选B.【变式探究】[2018·全国卷Ⅱ]已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( ) A.9 B.8 C.5 D.4【命题意图】本题考查集合中元素的个数,考查了学生的理解能力与推理能力.【变式探究】(2018年浙江卷)已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】因为全集,,所以根据补集的定义得,故选C.【变式探究】(2018年天津卷)设全集为RD.【答案】B本题选择B选项.【变式探究】(2018年北京卷)设集合A. 对任意实数a对任意实数a,(2,1C. 当且仅当a<0时,(2,1(2,1【答案】D【解析】此命题的逆否命题为:故选D.【变式探究】(2018年江苏卷)已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:.【变式探究】(2018年北京卷)已知集合A={x||x|<2},B={–2,0,1,2},则A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】AA.【变式探究】(1)若A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},A∩B=B,则实数m的取值范围是________.【答案】[-1,+∞)题型二充分与必要条件的判断例2 、(2018年浙江卷)已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】因为,所以根据线面平行的判定定理得,由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.【变式探究】(2018A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件【答案】A.本题选择A 选项.【变式探究】(2018·北京卷)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C【解析】|a -3b |=|3a +b |⇔|a -3b |2=|3a +b |2⇔a 2-6a ·b +9b 2=9a 2+6a ·b +b 2⇔2a 2+3a ·b -2b2=0,又∵|a |=|b |=1,∴a ·b =0⇔a ⊥b ,故选C .【方法技巧】充分、必要条件的3种判断方法(1)利用定义判断:直接判断“若p ,则q ”“若q ,则p ”的真假.在判断时,确定条件是什么,结论是什么.(2)从集合的角度判断:利用集合中包含思想判定.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题.(3)利用等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假. 【变式探究】 [2017·天津卷] 设θ∈R,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【命题意图】本题考查了充分条件与必要条件,考查三角函数的图象及性质,考查学生的计算能力及推理能力.【答案】A.【解析】当⎪⎪⎪⎪⎪⎪θ-π12<π12时,可解得0<θ<π6,即0<sin θ<12,故充分性成立;由sin θ<12可取θ=0,但此时不满足条件⎪⎪⎪⎪⎪⎪θ-π12<π12,故必要性不成立.故选A. 【变式探究】命题“∀x∈R,∃n∈N *,使得n≥x 2”的否定形式是( ) A .∀x∈R,∃n∈N *,使得n<x 2B .∀x∈R,∀n∈N *,使得n<x 2C .∃x∈R,∃n∈N *,使得n<x 2D .∃x∈R,∀n∈N *,使得n<x 2【答案】D.【解析】由全称命题的否定是特称命题,特称命题的否定是全称命题得,命题“∀x∈R,∃n∈N *,使得n≥x 2”的否定形式是“∃x∈R,∀n∈N *,使得n<x 2”.【变式探究】已知命题p :函数f(x)=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞) 【答案】C.【解析】由题意可得,对命题p ,令f(0)·f(1)<0, 即-1·(2a -2)<0,得a>1; 对命题q ,令2-a<0,即a>2, 则綈q 对应的a 的范围是(-∞,2]. 因为p 且綈q 为真命题,所以实数a 的取值范围是1<a≤2.故选C. 题型三 命题真假的判定与命题的否定 例3、[2017·全国卷Ⅰ]设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2;p 4:若复数z ∈R ,则z ∈R .其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 4 【答案】B【解析】设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0. 当a =0,b ≠0时,z =a +b i =b i∈ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i∈R ,则a 1b 2+a 2b 1=0.则z 1=z2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i∈R ,则b =0⇒z -=a -b i =a ∈R ,所以p 4为真命题,故选B. 【变式探究】下列命题正确的是( )A .命题“∃x ∈[0,1],使x 2-1≥0”的否定为“∀x ∈[0,1],都有x 2-1≤0” B .若命题p 为假命题,命题q 是真命题,则(綈p )∨(綈q )为假命题 C .命题“若a 与b 的夹角为锐角,则a ·b >0”及它的逆命题均为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0” 【答案】D【方法技巧】解决命题的判定问题应注意的3点(1)判断四种命题真假有下面两个途径,一是先分别写出四种命题,再分别判断每个命题的真假;二是利用互为逆否命题是等价命题这一关系来判断它的逆否命题的真假.(2)要判定一个全称命题是真命题,必须对限定集合M 中的每个元素x 验证p (x )成立.要判定一个特称(存在性)命题是真命题,只要在限定集合M 中,至少能找到一个x =x 0,使p (x 0)成立即可.(3)含有量词的命题的否定,需从两方面进行:一是改写量词或量词符号;二是否定命题的结论,两者缺一不可.【变式探究】“∀x ∈R ,x 2-πx ≥0”的否定是( ) A .∀x ∈R ,x 2-πx <0B.∀x∈R,x2-πx≤0C.∃x0∈R,x20-πx0≤0D.∃x0∈R,x20-πx0<0【答案】D【解析】全称命题的否定是特称命题,所以“∀x∈R,x2-πx≥0”的否定是“∃x0∈R,x20-πx0<0”.故选D.【变式探究】命题“∀x∈[1,2],x2-3x+2≤0”的否定为( )A.∀x∈[1,2],x2-3x+2>0B.∀x∉[1,2],x2-3x+2>0C.∃x0∈[1,2],x20-3x0+2>0D.∃x0∉[1,2],x20-3x0+2>0【答案】C【解析】由全称命题的否定的定义知,命题“∀x∈[1,2],x2-3x+2≤0”的否定为“∃x0∈[1,2],x20-3x0+2>0”,故选C.。

【2019-2020】高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第四讲不等式教案理

【2019-2020】高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第四讲不等式教案理

【2019-2020】高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第四讲不等式教案理不等式性质及解法授课提示:对应学生用书第9页[悟通——方法结论]1.一元二次不等式ax2+bx+c>0(或<0)(a≠0,Δ=b2-4ac>0),如果a与ax2+bx+c 同号,则其解集在两根之外;如果a与ax2+bx+c异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.2.解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.3.解含参数不等式要正确分类讨论.[全练——快速解答]1.(2018·深圳一模)已知a>b>0,c<0,下列不等关系中正确的是( )A .ac >bcB .a c >b cC .log a (a -c )>log b (b -c )D.aa -c >bb -c解析:法一:(性质推理法)A 项,因为a >b ,c <0,由不等式的性质可知ac <bc ,故A 不正确;B 项,因为c <0,所以-c >0,又a >b >0,由不等式的性质可得a -c >b -c>0,即1a c >1bc >0,再由反比例函数的性质可得a c <b c,故B 不正确; C 项,若a =12,b =14,c =-12,则log a (a -c )=1=0,log b (b -c )=34>1=0,即log a (a -c )<log b (b -c ),故C 不正确;D 项,a a -c -bb -c =a (b -c )-b (a -c )(a -c )(b -c )=c (b -a )(a -c )(b -c ),因为a >b >0,c <0,所以a -c >b -c >0,b -a <0,所以c (b -a )(a -c )(b -c )>0,即a a -c -b b -c>0,所以aa -c >bb -c,故D 正确.综上,选D.法二:(特值验证法)由题意,不妨取a =4,b =2,c =-2. 则A 项,ac =-8,bc =-4,所以ac <bc ,排除A ; B 项,a c =4-2=116,b c =2-2=14,所以a c <b c,排除B ;C 项,log a (a -c )=log 4(4+2)=log 4 6,log b (b -c )=log 2(2+2)=2,显然log 4 6<2,即log a (a -c )<log b (b -c ),排除C.综上,选D. 答案:D2.(2018·湖南四校联考)已知不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,则m -n =( )A.12 B .-52C.52D .-1解析:由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m 2(m <0),解得m =-1,n =32,所以m -n =-52. 答案:B 3.不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)解析:①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,所以x ≥4;②当x -2<0,即x <2时,不等式可化为(x -2)2≤4,所以0≤x <2.综上,不等式的解集是[0,2)∪[4,+∞).答案:B4.已知x ∈(-∞,1],不等式1+2x +(a -a 2)·4x>0恒成立,则实数a 的取值范围为( )A.⎝⎛⎭⎪⎫-2,14B.⎝⎛⎦⎥⎤-∞,14C.⎝ ⎛⎭⎪⎫-12,32D.(]-∞,6解析:根据题意,由于1+2x+(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x=t(0<t≤2),则可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+t t 2,故只要求解h (t)=-1+t t2(0<t≤2)的最大值即可,h (t)=-1t 2-1t =-⎝ ⎛⎭⎪⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a的取值范围为⎝ ⎛⎭⎪⎫-12,32.答案:C5.设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,则使得f (x )≤1成立的x 的取值范围是________.解析:由⎩⎪⎨⎪⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎪⎨⎪⎧x <0,-x 3≤1得-1≤x <0,故使得f (x )≤1成立的x 的取值范围是[-1,9].答案:[-1,9]1.明确解不等式的策略(1)一元二次不等式:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. 2.掌握不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a . (2)f (x )>g (x )对一切x ∈I 恒成立⇔f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法,一定要搞清谁是自变量,谁是参数.一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数.利用分离参数法时,常用到函数单调性、基本不等式等.基本不等式授课提示:对应学生用书第10页[悟通——方法结论]求最值时要注意三点:“一正”“二定”“三相等”.所谓“一正”指正数,“二定”是指应用定理求最值时,和或积为定值,“三相等”是指等号成立.[全练——快速解答]1.(2018·长春模拟)已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12 D .16解析:由4x +y =xy 得4y +1x=1,则x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +y x+1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”,故选B.答案:B2.(2017·高考天津卷)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.答案:43.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30. 答案:30掌握基本不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag (x )+Bg (x )(A >0,B >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.简单的线性规划问题授课提示:对应学生用书第10页[悟通——方法结论]平面区域的确定方法解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.[全练——快速解答]1.(2017·高考全国卷Ⅲ)设x ,y 满足约束条件 ⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3,所以z =x -y 的取值范围是[-3,2].答案:B2.已知平面上的单位向量e 1与e 2 的起点均为坐标原点O ,它们的夹角为π3.平面区域D 由所有满足OP →=λe 1+μe 2的点P 组成,其中⎩⎪⎨⎪⎧λ+μ≤1,0≤λ,0≤μ,那么平面区域D 的面积为( )A.12 B.3 C.32D.34解析:建立如图所示的平面直角坐标系,不妨令单位向量e 1=(1,0),e 2=⎝ ⎛⎭⎪⎫12,32,设向量OP →=(x ,y ),因为OP →=λe 1+μe 2,所以⎩⎪⎨⎪⎧x =λ+μ2,y =3μ2,即⎩⎪⎨⎪⎧λ=x -3y3,μ=23y 3,因为⎩⎪⎨⎪⎧λ+μ≤1,λ≥0,μ≥0,所以⎩⎨⎧3x +y ≤3,3x -y ≥0,y ≥0表示的平面区域D 如图中阴影部分所示,所以平面区域D 的面积为34,故选D. 答案:D3.(2018·福州模拟)某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.已知生产一把椅子需要木工4个工作时,漆工2个工作时;生产一张桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1 500元,生产一张桌子的利润为2 000元.该厂每个月木工最多完成8 000个工作时、漆工最多完成1 300个工作时.根据以上条件,该厂安排生产每个月所能获得的最大利润是________元.解析:设该厂每个月生产x 把椅子,y 张桌子,利润为z 元,则得约束条件 ⎩⎪⎨⎪⎧4x +8y ≤8 000,2x +y ≤1 300,z =1 500x +2 000y .x ,y ∈N ,画出不等式组⎩⎪⎨⎪⎧x +2y ≤2 000,2x +y ≤1 300,x ≥0,y ≥0表示的可行域如图中阴影部分所示,画出直线3x +4y =0,平移该直线,可知当该直线经过点P 时,z 取得最大值.由⎩⎪⎨⎪⎧x +2y =2 000,2x +y =1 300,得⎩⎪⎨⎪⎧x =200,y =900,即P (200,900),所以z max =1 500×200+2 000×900=2 100 000.故每个月所获得的最大利润为2 100 000元.答案:2 100 000解决线性规划问题的3步骤[练通——即学即用]1.(2018·湘东五校联考)已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y 的最大值为6,则(x +5)2+y 2的最小值为( )A .5B .3 C. 5D. 3解析:作出不等式组⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k表示的平面区域如图中阴影部分所示,由z =x +y ,得y =-x +z ,平移直线y =-x ,由图形可知当直线y =-x +z 经过点A 时,直线y =-x +z 的纵截距最大,此时z 最大,最大值为6,即x +y =6.由⎩⎪⎨⎪⎧x +y =6,x -y =0,得A (3,3),∵直线y =k 过点A ,∴k =3.(x +5)2+y 2的几何意义是可行域内的点与D(-5,0)的距离的平方,数形结合可知,(-5,0)到直线x +2y =0的距离最小,可得(x +5)2+y 2的最小值为⎝⎛⎭⎪⎫|-5+2×0|12+222=5.故选A. 答案:A2.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,2x +y ≤1,记z =4x +y 的最大值是a ,则a =________.解析:如图所示,变量x ,y 满足的约束条件的可行域如图中阴影部分所示.作出直线4x +y =0,平移直线,知当直线经过点A 时,z 取得最大值,由⎩⎪⎨⎪⎧2x +y =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,所以A (1,-1),此时z =4×1-1=3,故a =3.答案:33.(2018·高考全国卷Ⅰ)若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.解析:作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max=3×2+2×0=6.答案:6授课提示:对应学生用书第118页一、选择题1.已知互不相等的正数a ,b ,c 满足a 2+c 2=2bc ,则下列等式中可能成立的是( ) A .a >b >cB .b >a >cC .b >c >aD .c >a >b解析:若a >b >0,则a 2+c 2>b 2+c 2≥2bc ,不符合条件,排除A ,D ; 又由a 2-c 2=2c (b -c )得a -c 与b -c 同号,排除C ;当b >a >c 时,a 2+c 2=2bc 有可能成立,例如:取a =3,b =5,c =1.故选B. 答案:B2.已知b >a >0,a +b =1,则下列不等式中正确的是( ) A .log 3a >0B .3a -b<13C .log 2a +log 2b <-2D .3⎝⎛⎭⎪⎫b a +ab≥6 解析:对于A ,由log 3a >0可得log 3a >log 31,所以a >1,这与b >a >0,a +b =1矛盾,所以A 不正确;对于B ,由3a -b<13可得3a -b <3-1,所以a -b <-1,可得a +1<b ,这与b >a >0,a +b =1矛盾,所以B 不正确;对于C ,由log 2a +log 2b <-2可得log 2(ab )<-2=log 214,所以ab <14,又b >a >0,a +b =1>2ab ,所以ab <14,两者一致,所以C 正确;对于D ,因为b >a >0,a +b =1,所以3⎝ ⎛⎭⎪⎫b a +a b >3×2b a ×ab=6, 所以D 不正确,故选C. 答案:C3.在R 上定义运算:x y =x (1-y ).若不等式(x -a )(x -b )>0的解集是(2,3),则a +b =( )A .1B .2C .4D .8解析:由题知(x -a )(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.答案:C4.已知a ∈R ,不等式x -3x +a≥1的解集为P ,且-2∉P ,则a 的取值范围为( ) A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析:∵-2∉P ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3.答案:D5.已知x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,则z =8-x·⎝ ⎛⎭⎪⎫12y 的最小值为( )A .1 B.324C.116D.132解析:不等式组表示的平面区域如图中阴影部分所示,而z =8-x·⎝ ⎛⎭⎪⎫12y=2-3x -y,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y最小,最小值为132.故选D.答案:D6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:由题意得,f (1)=3,所以f (x )>f (1),即f (x )>3.当x <0时,x +6>3,解得-3<x <0;当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).答案:A7.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =3x -2y 的最小值为0,则实数m 等于( )A .4B .3C .6D .5解析:作出不等式组所表示的可行域如图中阴影部分所示,由图可知,当目标函数z =3x -2y 所对应的直线经过点A 时,z 取得最小值0.由⎩⎪⎨⎪⎧y =2x -1,x +y =m ,求得A ⎝⎛⎭⎪⎫1+m 3,2m -13.故z 的最小值为3×1+m 3-2×2m -13=-m 3+53,由题意可知-m 3+53=0,解得m =5.答案:D8.若对任意正实数x ,不等式1x 2+1≤a x恒成立,则实数a 的最小值为( ) A .1 B. 2 C.12 D.22解析:因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x≤12(当且仅当x =1时取等号),所以a ≥12.答案:C9.(2018·太原一模)已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max =|OA |2=13,故选C.答案:C10.(2018·衡水二模)若关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是( ) A.63 B.233 C.433D.263解析:∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a 2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号.∴x 1+x 2+a x 1x 2的最小值是433. 答案:C11.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:C12.(2018·淄博模拟)已知点P (x ,y )∈{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2},x ≥-2M (2,-1),则OM →·OP→(O 为坐标原点)的最小值为( )A .-2B .-4C .-6D .-8解析:由题意知OM →=(2,-1),OP →=(x ,y ),设z =OM →·OP →=2x -y ,显然集合{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2}x ≥-2对应不等式组⎩⎪⎨⎪⎧y ≥x x +2y ≤2x ≥-2所表示的平面区域.作出该不等式组表示的平面区域如图中阴影部分所示,由图可知,当目标函数z =2x -y 对应的直线经过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧x =-2x +2y -2=0得A (-2,2),所以目标函数的最小值z min =2×(-2)-2=-6,即OM →·OP →的最小值为-6,故选C.答案:C 二、填空题13.(2018·青岛模拟)若a >0,b >0,则(a +b )·⎝⎛⎭⎪⎫2a +1b的最小值是________. 解析:(a +b )⎝ ⎛⎭⎪⎫2a +1b =2+2b a +a b +1=3+2b a +a b,因为a >0,b >0,所以(a +b )⎝ ⎛⎭⎪⎫2a +1b≥3+22b a ×a b =3+22,当且仅当2b a =ab,即a =2b 时等号成立.所以所求最小值为3+2 2.答案:3+2 214.(2018·高考全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.解析:由不等式组画出可行域,如图(阴影部分),x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看做常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值. 由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4),∴z max =5+4=9. 答案:915.(2018·石家庄模拟)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,则z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125.答案:-12516.已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________. 解析:令log a b =t ,由a >b >1得0<t<1,2log a b +3log b a =2t +3t =7,得t =12,即log a b=12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a =2时取等号. 故a +1b 2-1的最小值为3. 答案:3。

高考数学二轮总复习讲义课件专题一 集合、常用逻辑用语、不等式、函数与导数 第4讲

高考数学二轮总复习讲义课件专题一  集合、常用逻辑用语、不等式、函数与导数  第4讲

(1)已知一元二次不等式 f(x)≤0 的解集为x|12≤x≤4,则 f(2x)<0 的解集为_{_x_|-__1_<__x_<_2_}____.
(2)(2015·兰州预测)在 R 上定义运算:ac db=ad-bc,若不等
式xa- +11 ax-2≥1 对任意实数 x 恒成立,则实数 a 的最大值为
考点二 简单的线性规划问题 [命题角度] 1.求可行域的面积. 2.求目标函数的最值. 3.由最优解情况或可行域情况确定参数的值或取值范围.
x-y≥0, (1)(2015·高考山东卷)已知 x,y 满足约束条件x+y≤2,
y≥0.
若 z=ax+y 的最大值为 4,则 a=( B )
A.3
B.2
C.-2
2, ab
即 ab≥2 2,
a1=2b,
当且仅当
即 a=4 2,b=2 4 2时取“=”,所以
a1+2b= ab,
ab 的最小值为 2 2.
(2) 令 t = a+1 + b+3 , 则 t2 = a + 1 + b + 3 + 2 (a+1)(b+3)=9+2 (a+1)(b+3)≤9+a+1+b +3=13+a+b=13+5=18, 当且仅当 a+1=b+3 时取等号,此时 a=72,b=32. 所以 tmax= 18=3 2.
(2)快速判断 Ax+By+C≥0 表示的平面区域 ①当 C≠0 时,取原点(0,0),若能满足 Ax+By+C≥0,则不等 式表示的平面区域就是含原点的区域,反之亦然; ②当 C=0 时,取点(0,1)或(1,0),判断方法同上.
3.辨明易错易混点
(1)解形如一元二次不等式 ax2+bx+c>0(a≠0)时,易忽视系数 a
就不能利用基本不等式求解最值;求解函数 y=x+3x(x<0)时应先

高三数学第二轮复习专题集合常用逻辑用语PPT课件

高三数学第二轮复习专题集合常用逻辑用语PPT课件

围是( )
(A)[0, 1 ]
2
(C)(-∞,0]∪[ 1 ,+∞)
2
(B)(0, 1 )
2
(D)(-∞,0)∪( 1 ,+∞)
2
【解题指导】1.数形结合进行判断; 可画出x2+y2≥9和x>3且y≥3表示的图形, 再判断它们之间的 关系. 2.借助数轴进行判断. 3.求出p,q,把非p与非q的关系转化为p与q的关系,再转化为 集合之间的关系,然后列不等式求解.
A={0,1,3,5,8},集合B={2,4,5,6,8},则( A)∩( B)=( )
U
U
(A){5,8}
(B){7,9}
(C){0,1,3}
(D){2,4,6}
3.(2012·扬州模拟)已知集合M={y|y=( 1 )x,x<0},
3
N={x|y=lg(2x-x2)},则M∪N=___________.
【核心自查】 一、主干构建
二、概念理解 1.集合的基本运算 (1)A∪B={x|x∈A,或x∈B}. (2)A∩B={x|x∈A,且x∈B}. (3) U A={x|x∈U,且x A}. 2.充分条件、必要条件与充要条件 (1)若p⇒q,则p是q的_充__分__条__件__,q是p的_必__要__条__件__. (2)若p⇔q,则p与q互为_充__要__条__件__.
【解题指导】1.通过解不等式先求出A,B两个集合,再取交集.
2.根据集合的补集概念,分别求出 A, B,然后求交集.
U
U
3.弄清集合M,N中的元素是什么,把集合M,N具体化后,再求
并集.
【解析】1.选D.集合A={x|x> 2 },B={x|x<-1或x>3},所以

2019年高考数学理科第二伦专题:集合与常用逻辑用语(名师推荐)

2019年高考数学理科第二伦专题:集合与常用逻辑用语(名师推荐)

U A. ∅ B.{2} C.{5} D.{2,5}答案 B解析 A ={x ∈N |x 2≥5}={x ∈N |x ≥},5故∁U A ={x ∈N |2≤x <}={2},故选B.53.已知集合A ={x |y =},B ={x |x 2<9,x ∈Z },则A ∩B 等于( )2+x -x 2A.[-1,2]B.{0,1}C.{0,2}D.{-1,0,1,2}答案 D解析 由2+x -x 2≥0得-1≤x ≤2,∴A =[-1,2],由题意得B ={-2,-1,0,1,2},∴A ∩B ={-1,0,1,2},故选D.4.设命题p :f (x )=ln x +2x 2+mx +1在(0,+∞)内单调递增,命题q :m ≥-5,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析 f ′(x )=+4x +m (x >0),1x 由f ′(x )=+4x +m ≥0,得m ≥-.1x (1x+4x )因为+4x ≥2=4,所以-≤-4,所以m ≥-4,即p :m ≥-4.所以p 是q 1x 1x ·4x (当且仅当x =12时取等号)(1x +4x )的充分不必要条件,故选A.答案:A21.定义一种新的集合运算△:A △B ={x |x ∈A ,且x ∉B },若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算△,B △A =( )A .{x |2<x ≤4}B .{x |3≤x ≤4}C .{x |2<x <3}D .{x |2≤x ≤4}解析:∵A ={x |1<x <3},B ={x |2≤x ≤4},∴B △A ={x |3≤x ≤4}.答案:B22.下列说法中正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的充要条件B .若p :∃x 0∈R ,x -x 0-1>0,则綈p :∀x ∈R ,x 2-x -1<020C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=,则sin α=”的否命题是“若α≠,则sin α≠”π612π612解析:f (0)=0,函数f (x )不一定是奇函数,如f (x )=x 2,所以A 错误;若p :∃x 0∈R ,x -x 0-1>0,则綈20p :∀x ∈R ,x 2-x -1≤0,所以B 错误;p ,q 只要有一个是假命题,则p ∧q 为假命题,所以C 错误;否命题是将原命题的条件和结论都否定,D 正确.答案:D23.已知命题p :∀x ∈R,2x >0;命题q :在曲线y =cos x 上存在斜率为的切线,则下列判断正确的是( )2A .p 是假命题B .q 是真命题C .p ∧(綈q )是真命题D .(綈p )∧q 是真命题解析:易知,命题p 是真命题,对于命题q ,y ′=-sin x ∈[-1,1],而∉[-1,1],故命题q 为假命题,所以2綈q 为真命题,p ∧(綈q )是真命题.故选C.答案:C24.命题p :∃a ∈,使得函数f (x )=在上单调递增;命题q :函数g (x )=x +log 2x 在(-∞,-14)|x +a x +1|[12,3]区间上无零点.则下列命题中是真命题的是( )(12,+∞)A .綈pB .p ∧qC .(綈p )∨qD .p ∧(綈q )解析:设h (x )=x +.当a =-时,函数h (x )为增函数,且h =>0,则函数f (x )在上必单调递增,ax +112(12)16[12,3]即p 是真命题;∵g =-<0,g (1)=1>0,∴g (x )在上有零点,即q 是假命题,故选D.(12)12(12,+∞)答案:D25.若a ,b ∈R ,则>成立的一个充分不必要条件是( )1a 31b 3A .a <b <0B .b >aC .ab >0D .ab (a -b )<0解析:-==,选项A 可以推出>.故选A.1a 31b 3b 3-a 3ab 3 b -a b 2+ab +a 2 ab 31a 31b 3答案:A26.不等式组Error!的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2;p 2:∃(x ,y )∈D ,x +2y ≥2;p 3:∀(x ,y )∈D ,x +2y ≤3;p 4:∃(x ,y )∈D ,x +2y ≤-1.其中的真命题是( )A .p 2,p 3B .p 1,p 2C .p 1,p 4D .p 1,p 3解析:不等式组表示的区域D 如图中阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值范围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.故选B.答案:B27.已知集合A ={x |2x 2+3x -2<0},集合B ={x |x >a },如果“x ∈A ”是“x ∈B ”的充分不必要条件,则实数a 的取值范围是( )A .a ≤-2B .a <-2C .a >-2D .a ≥-2解析:由2x 2+3x -2<0,解得-2<x <,即A ={x |-2<x <},因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以1212A ⊆B ,所以a ≤-2,即实数a 的取值范围是a ≤-2.。

2019年(人教A版)数学高考第二轮复习 数学复习(专题1)集合与常用逻辑用语、函数与导数(4)》课件

2019年(人教A版)数学高考第二轮复习  数学复习(专题1)集合与常用逻辑用语、函数与导数(4)》课件

y=55x×-512-x2-12×05.25+-00.2.55+பைடு நூலகம் 0.25x
0≤x≤5, x>5.
∴y=4.75x-12x2-0.5 0≤x≤5, 12-0.25x x>5.
所以把利润表示为年产量的函数关系是 y=4.75x-12x2-0.5 0≤x≤5,
∴t1 与 t2 同号,因此方程只能有两个相等的实数解,
∴-m2 >0,
∴m=-2.
Δ=m2-4=0,
当 m=-2 时,t=1.∴x=0,
故函数 f(x)的零点是 x=0.
( 文 )(2014·山 西 太 原 五 中 月 考 ) 已 知 函 数 f(x) =
|sinx|,x∈[-π,π]
画出 f(x)在(-3,3)上的图象,cosx 的图象又熟知,运用数
形结合,如图所示,从“形”中找出图象分别在 x 轴上、下部
分的对应“数”的区间为(-π2,-1)∪(0,1)∪(π2,3).
(2014·哈三中二模)对实数 a 和 b,定义运算“*”:a*b=
a,a-b≤1 b,a-b>1
(理)已知 f(x)是定义在(-3,3)上的奇函数,当 0<x<3 时,f(x) 的图象如图所示,那么不等式 f(x)cosx<0 的解集是( )
A.(-3,-π2)∪(0,1)∪(π2,3) B.(-π2,-1)∪(0,1)∪(π2,3) C.(-3,-1)∪(0,1)∪(1,3) D.(-3,-π2)∪(0,1)∪(1,3)
[点评] ①分段函数的最大值:分段函数的最值应分段求出y的最值(或范围)进 行比较,取较大者,如本题第(2)问;
②问题的转化:转化过程应注意等价性、全面性.如
1°利润=销售总收入-(固定成本+直接消耗成本).

2019高考数学理高分大二轮课件专题1第1讲集合与常用逻辑用语

2019高考数学理高分大二轮课件专题1第1讲集合与常用逻辑用语

答案:C
7
精准考点突破
易错防范突破
真题押题精练 增分强化练
首页
下页 末页
考点一 考点二 考点三
2.(量词的否定)命题“? x∈R,? n∈N*,使得n≥x2”的否定形式是
()
A.? x∈R,? n∈N*,使得n<x2
B.? x∈R,? n∈N*,使得n<x2
C.? x∈R,? n∈N*,使得n<x2
∈[0,π2],使 sin x+cos x=12,则下列命题中为真命题的是
A.綈p∧綈q C.p∧綈q
B.綈p∧q D.p∧q
()
解析:对于命题 p,因为 2x>0,所以 21x+2x≥2
21x×2x=2,当且仅当 21x=2x,
易错防范突破
真题押题精练 增分强化练
首页
下页 末页
考点一 考点二 考点三
1.集合问题的核心——元素
(1)抓代表元素:区分数集与点集、图形集,要看集合的代表元素.如:
集合
代表元素
实质
A={x|y=ln(1-x2)}
x
函数y=ln(1-x2)的定义 域,即(-1,1)
B={y|y=ln(1-x2)}
y
D.? x∈R,? n∈N*,使得n<x2
解析:该题中含有两个量词,根据含量词的命题的否定格式,这两个量词都要改
写,“? ”改写为“? ”,“? ”改写为“? ”,“n≥x2”的否定是“n<x2”.故该命题
的否定为“? x∈R,? n∈N*,使得n<x2”,故选D.
答案:D
8
精准考点突破
易错防范突破
专题1 集合与常用逻辑用语、不等式
第1讲 集合与常用逻辑用语

(文理通用)2019届高考数学大二轮复习 第1部分 专题1 集合、常用逻辑用语等 第1讲 集合与常用逻辑用语

(文理通用)2019届高考数学大二轮复习 第1部分 专题1 集合、常用逻辑用语等 第1讲 集合与常用逻辑用语

高考真题体验
• 1.(文)(2018·全国卷Ⅰ,1)已知集合A={0,2},B={-2
,-1A,0,1,2},则A∩B=( )
• A.{0,2}
B.{1,2}
• C.{0} D.{-2,-1,0,1,2}
• [解析] A∩B={0,2}∩{-2,-1,0,1,2}={0,2}.
• 故选A.
(理)(2018·全国卷Ⅰ,2)已知集合 A={x|x2-x-2>0},则∁RA=( B ) A.{x|-1<x<2} B.{x|-1≤x≤2} C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2} [解析] ∵ x2-x-2>0,∴ (x-2)(x+1)>0,∴ x>2 或 x<-1,即 A={x|x>2 或 x<-1}.在数轴上表示出集合 A,如图所示.
根据真值表可知 p∧(綈 q)为真命题,p∧q,(綈 p)∧q,(綈 p)∧(綈 q)为假命题.
故选 B.
(理)(2017·山东卷,3)已知命题 p:∀x>0,ln(x+1)>0;命题 q:若 a>b,则 a2>b2. 下列命题为真命题的是( B )
A.p∧q
B.p∧(綈 q)
C.(綈 p)∧q
D.(綈 p)∧(綈 q)
• 故选C.
• (理)(2018·全国卷Ⅱ,2)已知集合A={(x,y)|x2+y2≤3, x∈Z,y∈ZA},则A中元素的个数为( )
• A.9 B.8
• C.5 D.4
• [解析] 将满足x2+y2≤3的整数x,y全部列举出来,即(- 1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1 ,-1),(1,0),(1,1),共有9个.

2019高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数

2019高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数

第三讲基本初等函数、函数与方程及函数的应用基本初等函数授课提示:对应学生用书第7页[悟通——方法结论]1.利用指数函数与对数函数的性质比较大小(1)底数相同、指数不同的幂用指数函数的单调性进行比较;底数相同、真数不同的对数值用对数函数的单调性进行比较.(2)底数不同、指数也不同,或底数不同、真数也不同的两个数,可以引入中间量或结合图象进行比较.2.对于含参数的指数、对数问题,在应用单调性时,要注意对底数进行讨论,解决对数问题时,首先要考虑定义域,其次利用性质求解.[全练——快速解答]1.(2017·高考全国卷Ⅰ)设x,y,z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z解析:由2x=3y=5z,可设(2)2x=(33)3y=(55)5z=t,因为x,y,z为正数,所以t>1,因为2=623=68,33=632=69,所以2<33;因为2=1025=1032,55=1025,所以2>55,所以55<2<33.分别作出y=(2)x,y=(33)x,y=(55)x的图象,如图.则3y <2x <5z ,故选D.答案:D2.(2016·高考全国卷Ⅰ)若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c<b cD .c a>c b解析:法一:因为 0<c <1,所以y =log c x 在(0,+∞)上单调递减,又0<b <a ,所以log c a <log c b . 法二:取a =4,b =2,c =12,则log 4 12=-12>log 2 12,排除A ;412=2>212,排除C ;⎝ ⎛⎭⎪⎫124<⎝ ⎛⎭⎪⎫122,排除D.故选B.答案:B3.(2018·吉林实验中学摸底)若f (x )是幂函数,且满足f (9)f (3)=2,则f ⎝ ⎛⎭⎪⎫19=( ) A.12 B.14 C .2D .4解析:设f (x )=x α,由f (9)f (3)=9α3α=3α=2,得α=log 3 2,∴f ⎝ ⎛⎭⎪⎫19=⎝ ⎛⎭⎪⎫19log 3 2=14.答案:B4.(2018·高考全国卷Ⅰ)设函数ƒ(x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足ƒ(x +1)<ƒ(2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)解析:法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,ƒ(x +1)<ƒ(2x )即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1.因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,ƒ(x +1)<ƒ(2x )即1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,ƒ(x +1)=1,ƒ(2x )=1,不合题意.综上,不等式ƒ(x +1)<ƒ(2x )的解集为(-∞,0).故选D.法二:∵ƒ(x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,∴函数ƒ(x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数ƒ(x )为减函数,故ƒ(x +1)<ƒ(2x )转化为x +1>2x . 此时x ≤-1.当2x <0且x +1>0时,ƒ(2x )>1,ƒ(x +1)=1, 满足ƒ(x +1)<ƒ(2x ). 此时-1<x <0.综上,不等式ƒ(x +1)<ƒ(2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0). 故选D. 答案:D基本初等函数的图象与性质的应用技巧(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a 的值不确定时,要注意分a >1和0<a <1两种情况讨论:当a >1时,两函数在定义域内都为增函数;当0<a <1时,两函数在定义域内都为减函数.(2)由指数函数、对数函数与其他函数复合而成的函数,其性质的研究往往通过换元法转化为两个基本初等函数的有关性质,然后根据复合函数的性质与相关函数的性质之间的关系进行判断.(3)对于幂函数y =x α的性质要注意α>0和α<0两种情况的不同.函数的零点授课提示:对应学生用书第8页[悟通——方法结论]1.函数的零点及其与方程根的关系对于函数f (x ),使f (x )=0的实数x 叫做函数f (x )的零点.函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.2.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.(1)(2018·南昌模拟)已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x (e 为自然对数的底数)的零点个数是( )A .0B .1C .2D .3解析:当x >0时,f (x )=ln x -x +1,f ′(x )=1x -1=1-x x,所以x ∈(0,1)时,f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max =f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =e x的大致图象,如图所示,观察到函数y =f (x )与y =e x的图象有两个交点,所以函数g (x )=f (x )-e x(e 为自然对数的底数)有2个零点.答案:C(2)(2017·高考全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12B.13C.12D .1解析:法一:f (x )=x 2-2x +a (ex -1+e-x +1)=(x -1)2+a [ex -1+e-(x -1)]-1,令t =x -1,则g (t)=f (t +1)=t 2+a (e t+e -t)-1. ∵g (-t)=(-t)2+a (e -t+e t)-1=g (t), ∴函数g (t)为偶函数.∵f (x )有唯一零点,∴g (t)也有唯一零点. 又g (t)为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.故选C.法二:f (x )=0⇔a (e x -1+e-x +1)=-x 2+2x .ex -1+e-x +1≥2ex -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (ex -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,则a =12.若a ≤0,则f (x )的零点不唯一. 故选C. 答案:C(3) (2018·高考全国卷Ⅰ)已知函数ƒ(x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,g (x )=ƒ(x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)解析:令h (x )=-x -a ,则g (x )=ƒ(x )-h (x ).在同一坐标系中画出y =ƒ(x ),y =h (x )图象的示意图,如图所示.若g (x )存在2个零点,则y =ƒ(x )的图象与y =h (x )的图象有2个交点,平移y =h (x )的图象,可知当直线y =-x -a 过点(0,1)时,有2个交点,此时1=-0-a ,a =-1.当y =-x -a 在y =-x +1上方,即a <-1时,仅有1个交点,不符合题意. 当y =-x -a 在y =-x +1下方,即a >-1时,有2个交点,符合题意. 综上,a 的取值范围为[-1,+∞). 故选C. 答案:C1.判断函数零点个数的3种方法2.利用函数零点的情况求参数值(或范围)的3种方法[练通——即学即用]1.(2018·福州质检)已知f (x )=⎩⎪⎨⎪⎧2x,x ≥2,(x -1)3,x <2,若函数g (x )=f (x )-k 有两个零点,则两零点所在的区间为( )A .(-∞,0)B .(0,1)C .(1,2)D .(1,+∞)解析:在平面直角坐标系内作出函数f (x )的图象如图所示,由图易得若函数g (x )=f (x )-k 有两个零点,即函数f (x )的图象与直线y =k 有两个交点,则k 的取值范围为(0,1),两个零点分别位于(1,2]和(2,+∞)内,故选D.答案:D2.(2018·洛阳名校联考)若函数f (x )满足f (x -1)=1f (x )-1,当x ∈[-1,0]时,f (x )=x ,若在区间[-1,1)上,g (x )=f (x )-mx +m 有两个零点,则实数m 的取值范围是________.解析:因为当x ∈[-1,0]时, f (x )=x ,所以当x ∈(0,1)时,x -1∈(-1,0),由f (x -1)=1f (x )-1可得,x -1=1f (x )-1,所以f (x )=1x -1+1,作出函数f (x )在[-1,1)上的图象如图所示,因为g (x )=f (x )-mx +m 有两个零点,所以y =f (x )的图象与直线y =mx -m 有两个交点,由图可得m ∈(0,12].答案:(0,12]函数的实际应用授课提示:对应学生用书第8页[悟通——方法结论]解决函数模型的实际应用问题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是:(1)阅读理解,审清题意:分析出已知是什么,求什么,从中提炼出相应的数学问题.(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式.(3)解函数模型:利用数学方法得出函数模型的数学结果.(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.(2018·湖北七市(州)联考)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t(小时)的关系为P =P 0e -k t .如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.解析:前5小时污染物消除了10%,此时污染物剩下90% ,即t =5时,P =0.9P 0,代入,得(e -k )5=0.9,∴e -k=,∴P =P 0e-k t=P 0()t.当污染物减少19%时,污染物剩下81%,此时P =0.81P 0,代入得0.81=()t,解得t =10,即需要花费10小时. 答案:10应用函数模型解决实际问题的一般程序和解题关键(1)一般程序:读题文字语言⇨建模数学语言⇨求解数学应用⇨反馈检验作答(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.[练通——即学即用]1.(2018·保定二模)李华经营了甲、乙两家电动轿车销售连锁店,其月利润(单位:元)分别为L 甲=-5x 2+900x -16 000,L 乙=300x -2 000(其中x 为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为( )A .11 000元B .22 000元C .33 000元D .40 000元解析:设甲连锁店销售x 辆,则乙连锁店销售(110-x )辆,故利润L =-5x 2+900x -16 000+300(110-x )-2 000=-5x 2+600x +15 000=-5(x -60)2+33 000,∴当x =60时,有最大利润33 000元.答案:C2.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e -k t .已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( )A .125B .100C .75D .50解析:由已知,得49a =a ·e -50k ,∴e -k=⎝ ⎛⎭⎪⎫49 .设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e -k t 1,∴827=(e -k)t 1=⎝ ⎛⎭⎪⎫49 , ∴t 150=32,t 1=75. 答案:C授课提示:对应学生用书第117页一、选择题 1.函数y =ax +2-1(a >0且a ≠1)的图象恒过的点是( )A .(0,0)B .(0,-1)C .(-2,0)D .(-2,-1)解析:令x +2=0,得x =-2,所以当x =-2时,y =a 0-1=0,所以y =a x +2-1(a >0且a ≠1)的图象恒过点(-2,0).答案:C2.设a =log 3 2,b =ln 2,c =,则( )A .c >b >aB .a >b >cC .a >c >bD .b >a >c解析:因为e<3,所以由对数函数的性质可得12<a =log 3 2<b =ln 2<1.因为c ==15<12,所以b >a >c .故选D.答案:D3.(2018·长郡中学模拟)下列函数在其定义域上既是增函数又是奇函数的是( ) A .f (x )=sin x B .f (x )=x 3+1C .f (x )=log 2(x 2+1+x ) D .f (x )=1-2x1+2x解析:依题意,对于选项A ,注意到f (0)=f (π),因此函数f (x )=sin x 在其定义域上不是增函数;对于选项B ,注意到f (x )的定义域为R ,但f (0)=1≠0,因此函数f (x )=x 3+1不是奇函数;对于选项C ,注意到f (x )的定义域是R ,且f (-x )=log 2(x 2+1-x )=log 21x 2+1+x=-log 2(x 2+1+x )=-f (x ),因此f (x )是奇函数,且f (x )在R 上是增函数;对于选项D ,注意到f (x )=1-2x1+2x =-1+21+2x 在R 上是减函数.故选C.答案:C4.函数f (x )=|log 2 x |+x -2的零点个数为( ) A .1 B .2 C .3D .4解析:函数f (x )=|log 2 x |+x -2的零点个数,就是方程|log 2 x |+x -2=0的根的个数.令h (x )=|log 2 x |,g (x )=2-x ,画出两函数的图象,如图.由图象得h (x )与g (x )有2个交点,∴方程|log 2 x |+x -2=0的解的个数为2.答案:B5.(2018·河南适应性测试)函数y =a x-a (a >0,a ≠1)的图象可能是( )解析:由函数y =a x-a (a >0,a ≠1)的图象过点(1,0),得选项A 、B 、D 一定不可能;C 中0<a <1,有可能,故选C.答案:C6.某种动物繁殖数量y (单位:只)与时间x (单位:年)的关系为y =a log 2(x +1),设这种动物第一年有100只,到第7年它们发展到( )A .300只B .400只C .500只D .600只解析:由已知第一年有100只,得a =100.将a =100,x =7代入y =a log 2(x +1),得y =300. 答案:A7.(2018·河北衡水中学月考)设函数y =f (x )的图象与y =2x +a的图象关于直线y =x 对称,且f (2)+f (4)=-1,则a =( )A .-1B .1C .2D .4解析:因为函数y =f (x )的图象与y =2x +a的图象关于直线y =x 对称,所以y =f (x )=log 2x -a ,f (2)+f (4)=1-a +2-a =3-2a =-1,所以a =2.故选C.答案:C8.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是(参考数据:lg 3≈0.48)( )A .1033B .1053C .1073D .1093解析:因为lg 3361=361×lg 3≈361×0.48≈173,所以M ≈10173,则M N ≈101731080=1093.答案:D9.(2018·甘肃天水一中月考)已知函数f (x )=ln x -ax 2+ax 恰有两个零点,则实数a 的取值范围为( )A .(-∞,0)B .(0,+∞)C .(0,1)∪(1,+∞)D .(-∞,0)∪{1}解析:f (x )=ln x -ax 2+ax 有两个零点,即函数y =ln x 与y =ax 2-ax 的图象有两个交点,则a >0且a ≠1.故a 的取值范围是(0,1)∪(1,+∞). 故选C.答案:C10.(2018·高考全国卷Ⅲ)设a =log 0.20.3,b =log 2 0.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b解析:∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0, ∴ab <0. ∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +bab<1,∴ab <a +b <0. 故选B. 答案:B11.若函数f (x )=⎩⎪⎨⎪⎧ax +a ,x ≤0,x ln x ,x >0的图象上有且仅有两对点关于原点对称,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1eB.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) C .(1,+∞)D .(0,1)∪(1,+∞)解析:若函数f (x )的图象上有且仅有两对点关于原点对称,则函数y =-ax +a ,x >0的图象与y =x ln x 的图象有且只有两个交点,函数y =-ax +a ,x >0的图象与函数y =x ln x 的图象均过点(1,0).当0<x <1时,函数y =x ln x 的导数y ′<1,当x =1时,函数y =x ln x 的导数y ′=1,当x >1时,函数y =x ln x 的导数y ′>1.故当a ≤0或a =1时,函数y =-ax +a ,x >0的图象与函数y =x ln x 的图象有且只有一个交点,所以使得y =-ax +a ,x >0的图象与函数y =x ln x 的图象有且只有两个交点的实数a 的取值范围是(0,1)∪(1,+∞).故选D.答案:D12.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x 轴的直线l :x =t(0≤t≤a )经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分).若函数y =f (t)的大致图象如图,那么平面图形的形状不可能是( )解析:选项A ,B ,D ,l 在移动过程中扫过平面图形的面积为y ,在中线位置前,都是先慢后快,然后相反.选项C ,后面是直线增加,不满足题意.答案:C 二、填空题13.(2018·高考全国卷Ⅰ)已知函数ƒ(x )=log 2(x 2+a ).若ƒ(3)=1,则a =________. 解析:∵ƒ(x )=log 2(x 2+a )且ƒ(3)=1,∴1=log 2(9+a ),∴9+a =2,∴a =-7. 答案:-714.若幂函数y =(m 2-3m +3)·x(m -2)(m +1)的图象不经过原点,则实数m 的值为________.解析:由⎩⎪⎨⎪⎧m 2-3m +3=1,(m -2)(m +1)≤0,解得m =1或2,经检验m =1或2都适合.答案:1或215.若函数y =⎝ ⎛⎭⎪⎫12|1-x |+m 的图象与x 轴有公共点,则实数m 的取值范围是________.解析:∵|1-x |≥0,∴0<⎝ ⎛⎭⎪⎫12|1-x |≤1,由题意得0<-m ≤1,即-1≤m <0. 答案:[-1,0)16.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/(100 kg))与上市时间t(单位:天)的数据如下表:根据上表数据,Q =a t +b ,Q =a t 2+b t +c ,Q =a ·b t ,Q =a ·log b t.利用你选取的函数,求得:西红柿种植成本最低时的上市天数是________;最低种植成本是________元/(100 kg).解析:因为随着时间的增加,种植成本先减少后增加,而且当t =60和t =180时种植成本相等,再结合题中给出的四种函数关系可知,种植成本与上市时间的变化关系应该用函数Q =a (t -120)2+m 描述.将表中两组数据(60,116)和(100,84)代入,可得⎩⎪⎨⎪⎧a (60-120)2+m =116,a (100-120)2+m =84,解得⎩⎪⎨⎪⎧a =0.01,m =80.所以Q =0.01(t -120)2+80.故当上市天数为120时,种植成本取到最低值80元/(100 kg).答案:120 80。

2019高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数

2019高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数

第二讲 函数的图象与性质一、选择题1.下列四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x x ,1xx 其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y=x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x x ,1xx 的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,故选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),则f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32=-1.所以f (3)+f (-32)=-1. 答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D. 答案:D4.(2017·高考天津卷)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 2 5.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 25.1).易知2<log 2 5.1<3,1<20.8<2,由g (x )在(0,+∞)上单调递增,得g (20.8)<g (log 2 5.1)<g (3),∴b <a <c ,故选C.答案:C5.(2018·太原模拟)函数f (x )=exx的图象大致为( )解析:由f (x )=e xx ,可得f ′(x )=x e x-exx2=x -exx 2, 则当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,故选B.答案:B6.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25) D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·临沂模拟)已知函数f (x )=e x -1+4x -4,g (x )=ln x -1x,若f (x 1)=g (x 2)=0,则( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2)解析:易知f (x )=ex -1+4x -4,g (x )=ln x -1x 在各自的定义域内是增函数,而f (0)=e -1+0-4=1e-4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e >ln 1=0.又f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.已知函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,则M +m =( ) A .4B .2C .1D .0解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2, 令t =x -1,g (t )=(t 2-1)sin t +t , 则y =f (x )=g (t )+2,t ∈[-2,2]. 显然M =g (t )max +2,m =g (t )min +2. 又g (t )为奇函数,则g (t )max +g (t )min =0, 所以M +m =4,故选A. 答案:A9.已知g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g x ,x >0,若f (2-x 2)>f (x ),则x 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),则函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,+x ,x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,+x ,x >0在(-∞,+∞)上单调递增.因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,故选C. 答案:C10.(2018·高考全国卷Ⅱ)已知ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).若ƒ(1)=2,则ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ), ∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ), ∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ), ∴函数ƒ(x )是周期为4的周期函数. 由ƒ(x )为奇函数得ƒ(0)=0. 又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称, ∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0. 又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2. 故选C. 答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f x 1-f x 2x 1-x 2<1,且函数y =f (x )的图象关于原点对称,若f (2)=2,则不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞)解析:由f x 1-f x 2x 1-x 2<1,可得[f x 1-x 1]-[f x 2-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,故选C.答案:C12.(2018·广西三市联考)已知函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧e x ,x ≤4,4e 5-x,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),则m 的取值范围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2解析:作出函数y 1=e|x -2|和y =g (x )的图象,如图所示,由图可知当x =1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e5-x,得e2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________. 解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.若函数f (x )=x (x -1)(x +a )为奇函数,则a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.答案:⎣⎢⎡⎭⎪⎫0,1216.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),则对函数y =f (x )有下列判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。

高考数学二轮专题复习:集合与常用逻辑用语

高考数学二轮专题复习:集合与常用逻辑用语

集合与常用逻辑用语【考纲解读】1.通过实例了解集合的含义,体会元素与集合的从属关系,知道常用数集及其记号,了解集合中元素的确定性,互异性,无序性.会用集合语言表示有关数学对象.2.掌握集合的表示方法----列举法和描述法,并能进行自然语言与集合语言的相互转换,了解有限集与无限集的概念.3.了解集合间包含关系的意义,理解子集、真子集的概念和意义,会判断简单集合的相等关系.4.理解并集、交集的概念和意义,掌握有关集合并集、交集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.掌握并集、交集的求法.5.了解全集的意义,理解补集的概念.掌握全集与补集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.掌握补集的求法.6.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析种命题的相互关系;理解必要条件、充分条件与充要条件的意义.7.了解逻辑联结词“或”、“且”、“非”的含义.8.理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.【考点预测】3.注意弄清元素与集合、集合与集合之间的包含关系.4.能根据Venn图表达的集合关系进行相关的运算.5.注意区分否命题与命题的否定,前者是同时否定条件和结论,而后者只否定结论.6.原命题与其逆否命题等价,当直接判定命题条件的充要性有困难时,可等价地转化为对该命题的逆否命题进行判断.7.全称命题的否定是存在性命题,存在性命题的否定是全称命题.【考点在线】考点一集合的概念例1.已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N=()A.(0,1),(1,2) B.{(0,1),(1,2)}C.{y|y=1,或y=2} D.{y|y≥1}从而选B的错误,这是由于在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是点,因此M、N是数集而不是点集.②集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x∈R},这三个集合是不同的.这类题目主要考察不等式的性质成立的条件,以及条件与结论的充要关系.【备考提示】:正确理解集合中的代表元素是解答好本题的关键.练习1:若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于()A.P B.Q C. D.不知道【答案】B【解析】事实上,P、Q中的代表元素都是y,它们分别表示函数y=x2,y= x2+1的值域,由P={y|y≥0},Q={y|y≥1},知QP,即P∩Q=Q.∴应选B.考点二集合元素的互异性集合元素的互异性,是集合的重要属性,教学实践告诉我们,集合中元素的互异性常常被学生在解题中忽略,从而导致解题的失败,下面再结合例题进一步讲解以期强化对集合元素互异性的认识.(a2-3a-8), a3+例2.若A={2,4, a3-2a2-a+7},B={1, a+1, a2-2a+2,-12a2+3a+7},且A∩B={2,5},则实数a的值是________.【答案】2【解析】∵A∩B={2,5},∴a3-2a2-a+7=5,由此求得a=2或a=±1. A={2,4,5}.当a=1时,a2-2a+2=1,与元素的互异性相违背,故应舍去a=1.当a=-1时,B={1,0,5,2,4},与A∩B={2,5}相矛盾,故又舍去a=-1.当a=2时,A={2,4,5},B={1,3,2,5,25},此时A∩B={2,5},满足题设.故a=2为所求.【解析】分两种情况进行讨论.(1)若a+b=a c且a+2b=a c2,消去b得:a+a c2-2a c=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=a c2且a+2b=a c,消去b得:2a c2-a c-a=0,.∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-12考点三集合间的关系例3.设集合A={a|a=3n+2,n∈Z},集合B={b|b=3k-1,k∈Z},则集合A、B的关系是________.【答案】A=B【解析】任设a∈A,则a=3n+2=3(n+1)-1(n∈Z),∴ n∈Z,∴n+1∈Z.∴ a∈B,故A B⊆.①又任设b∈B,则 b=3k-1=3(k-1)+2(k∈Z),∵ k∈Z,∴k-1∈Z.∴ b∈A,故B A⊆②由①、②知A=B.【名师点睛】这里说明a∈B或b∈A的过程中,关键是先要变(或凑)出形式,然后再推理.【备考提示】:集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此应予以重视.反映集合与集合关系的一系列概念,都是用元素与集合的关系来定义的.因此,在证明(判断)两集合的关系时,应回到元素与集合的关系中去.考点四要注意利用数形结合思想解决集合问题集合问题大都比较抽象,解题时要尽可能借助文氏图、数轴或直角坐标系等工具将抽象问题直观化、形象化、明朗化,然后利用数形结合的思想方法使问题灵活直观地获解.例4.设全集U={x|0<x<10,x∈N*},若A∩B={3},A∩C U B={1,5,7},C U A∩C U B={9},则集合A、B是________.【答案】A={1,3,5,7},B={2,3,4,6,8}.【解析】由题意,画出图如下:由图可知: A={1,3,5,7},B={2,3,4,6,8}.【名师点睛】本题用推理的方法求解不如先画出文氏图,用填图的方法来得简捷,由图不难看出.【备考提示】:熟练数形结合的思想是解答好本题的关键.练习4.集合A={x|x2+5x-6≤0},B={x|x2+3x>0},求A∪B和A∩B.【答案】A∪B=R,A∩B={x|-6≤x<-3或0<x≤1}.【解析】本题采用数轴表示法,根据数轴表示的范围,可直观、准确的写出问题的结果.∵ A={x|x2-5x-6≤0}={x|-6≤x≤1},B={x|x2+3x>0}={x|x<-3,或x>0}.如图所示,∴ A∪B={x|-6≤x≤1}∪{x|x<-3,或x>0}=R.A∩B={x|-6≤x≤1}∩{x|x<-3,或x>0}={x|-6≤x<-3,或0<x≤1}.【易错专区】问题1:空集例1.已知集合A={x|x2-3x+2=0},B={x|x2-a x+a-1=0},且A∪B=A,则a的值为______.解:∵ A∪B=A,,∴⊆B A∵ A={1,2},∴ B=∅或B={1}或B={2}或B={1,2}.若B=∅,则令△<0得a∈∅;若B={1},则令△=0得a=2,此时1是方程的根;若B={2},则令△=0得a=2,此时2不是方程的根,∴a∈∅;若B={1,2}则令△>0得a∈R且a≠2,把x=1代入方程得a∈R,把x=2代入方程得a=3.1.(2011年高考山东卷文科1)设集合 M ={x|(x+3)(x-2)<0},N ={x|1≤x ≤3},则M ∩N =( )(A )[1,2) (B)[1,2] (C)( 2,3] (D)[2,3]【答案】A【解析】因为{}|32M x x =-<<,所以{}|12M N x x ⋂=≤<,故选A.2. (2011年高考海南卷文科1)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =⋂,则P 的子集共有( )A.2个B.4个C.6个D.8个【答案】B【解析】因为{}1,3M N ⋂=中有两个元素,所以其子集个数为224=个,选B. 3.(2011年高考安徽卷文科2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则()U S C T 等于( )(A )}{,,,1456 (B) }{,15 (C) }{4 (D) }{,,,,12345 【答案】B【解析】{}1,5,6U T =,所以(){}1,6U S T =.故选B.4.(2011年高考广东卷文科2)已知集合(){,|A x y x y =、为实数,且}221x y +=,5. (2011年高考江西卷文科2)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A.M N ⋃B.M N ⋂C.()()U U C M C N ⋃D.()()U U C M C N ⋂【答案】D【解析】{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U .6.(2011年高考福建卷文科1)若集合M={-1,0,1},N={0,1,2},则M∩N 等于A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}【答案】A【解析】因为{}{}{}1,0,10,1,20,1M N ⋂=-⋂=,故选A.7.(2011年高考湖南卷文科1)设全集{1,2,3,4,5},{2,4},U U M N M C N ===则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4}答案:B解析:画出韦恩图,可知N ={1,3,5}。

2019高考数学二轮复习 专题1 集合与常用逻辑用语 第四讲 导数及其应用 文

2019高考数学二轮复习 专题1 集合与常用逻辑用语 第四讲 导数及其应用 文

第四讲导数及其应用导数的应用涉及的知识点多,综合性强,要么直接求极值或最值,要么利用极值或最值求参数的取值范围,常与函数的单调性、方程的零点、不等式及实际问题形成知识的交汇问题,难度较大.预测2016年的高考,可能出求导法则、切线问题的小题,还有压轴的综合题.导数的概念及运算1.导数的定义.(1)f(x)在x=x0处的导数为:(2)f(x)在定义域内的导数(导函数)2.导数的几何意义.函数y=f(x)在x0处的导数f′(x0)的几何意义是:曲线y=f(x)在点(x0,f(x0))处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).基本初等函数的导数1.基本初等函数的导数公式.函数导数①f(x)=C(C为常数)f′(x)=0(续上表)2.(1)[u (x )±v (x )]′=u ′(x )±v ′(x );(2)[u (x )v (x )]′=u ′(x )·v (x )+u (x )·v ′(x ); (3)⎣⎢⎡⎦⎥⎤u (x )v (x )′=u ′(x )·v (x )-u (x )·v ′(x )v (x )(v (x )≠0).3.复合函数求导.复合函数y =f (g (x ))的导数和y =f (u ),u =g (x )的导数之间的关系为y x ′=y u ′·u x ′. 导数的应用1.函数的单调性与导数的关系. 一般地,在某个区间(a ,b )内:(1)如果f ′(x )>0⇒函数f (x )在这个区间内单调递增; (2)如果_f ′(x )<0⇒函数f (x )在这个区间内单调递减; (3)如果f ′(x )=0⇒函数f (x )在这个区间内是常数函数. 2.函数的极值与导数的关系. 一般地,对于函数y =f (x ):(1)若在点x =a 处有f ′(a )=0,且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则称x =a 为f (x )的极小值点,f (a )叫函数f (x )的极小值.(2)若在点x =b 处有f ′(b )=0,且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则称x =b 为f (x )的极大值点,f (b )叫函数f (x )的极大值.3.求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤: (1)求函数y =f (x )在(a ,b )内的极值;(2)将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.定积分与微积分基本定理 1.定积分的概念:b af (x )d x =∑ni =1b -anf (ξi ). 2.定积分的几何意义.函数y =f (x )[f (x )>0]在区间[a ,b ]内的定积分的几何意义是f (x )的图象,x 轴,x =a ,x =b 所围成的曲边梯形的面积.如图所示,则函数y =f (x )与y =g (x )的图象围成的封闭图形的面积为.3.定积分的性质.4.微积分基本定理(牛顿莱布尼兹公式).一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么b af (x )d x =F (x )|b a =F (b )-F (a ).判断下面结论是否正确(请在括号中打“√”或“×”). (1)f ′(x 0)与(f (x 0))′表示的意义相同.(×) (2)曲线的切线不一定与曲线只有一个公共点.(√) (3)与曲线只有一个公共点的直线一定是曲线的切线.(×) (4)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.(×) (5)函数的极大值不一定比极小值大.(√)(6)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.(√)1.π20(sin x +a cos x )d x =2,则实数a 等于(B ) A .-1 B .1 C. 3 D .- 32.(2015·新课标Ⅰ卷)设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是(D )A.⎣⎢⎡⎭⎪⎫-32e ,1B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34 D.⎣⎢⎡⎭⎪⎫32e ,1解析:∵ f (0)=-1+a <0,∴ x 0=0.又∵ x 0=0是唯一的使f (x )<0的整数,∴⎩⎪⎨⎪⎧f (-1)≥0,f (1)≥0, 即⎩⎪⎨⎪⎧e -1[2×(-1)-1]+a +a ≥0,e (2×1-1)-a +a ≥0,解得a ≥32e .又∵ a <1,∴ 32e ≤a <1,经检验a =34符合题意.故选D. 3.(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为3.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 4.若f ′(x 0)=2,则f (x 0-k )-f (x 0)2k=-1.5. 求下列函数的导数: (1)y =(2x 2-1)(3x +1); (2)y =x 2sin x .答案:(1)y ′=18x 2+4x -3 (2)y ′=2x sin x +x 2cos x。

高考数学二轮专题复习第一部分专题一集合、常用逻辑用语、函数与导数、不等式讲义

高考数学二轮专题复习第一部分专题一集合、常用逻辑用语、函数与导数、不等式讲义

专题一集合、常用逻辑用语、函数与导数、不等式第一讲集合与常用逻辑用语考点一集合的概念及运算一、基础知识要记牢1.集合中元素的特性集合元素具有确定性、互异性和无序性.解题时要特别注意集合元素互异性的应用.2.运算性质及重要结论如(1)A∪A=A,A∪∅=A,A∪B=B∪A;(2)A∩A=A,A∩∅=∅,A∩B=B∩A;(3)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A等.二、经典例题领悟好[例1] (1)(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( ) A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)(2)(2018届高三·金丽衢联考)已知全集U=R,集合A={x|x<-1或x>4},B={x|-2≤x≤3},那么阴影部分表示的集合为( )A.{x|-2≤x<4}B.{x|x≤3或x≥4}C.{x|-2≤x≤-1}D.{x|-1≤x≤3}[解析] (1)根据集合的并集的定义,得P∪Q=(-1,2).(2)由题意得,阴影部分所表示的集合为(∁U A)∩B={x|-1≤x≤3},故选D.[答案] (1)A (2)D解答集合间的运算关系问题的思路(1)正确理解各个集合的含义,认清集合元素的属性、代表的意义.(2)根据元素的不同属性采用不同的方法对集合进行化简求解.(3)确定(应用)集合间的包含关系或运算结果,常用到以下技巧:①若已知的集合是不等式的解集,用数轴求解;②若已知的集合是点集,用数形结合法求解;③若已知的集合是抽象集合,用Venn图求解.三、预测押题不能少1.(1)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( ) A .{1,-3} B .{1,0} C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.(2)设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .25D .52解析:选B 因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}. 因为x ∈A ∩B ,所以x 可取0,1; 因为y ∈A ∪B ,所以y 可取-1,0,1,2,3. 则(x ,y )的可能取值如下表所示:故考点二 四种命题及其关系 一、基础知识要记牢与“四种命题”相关联的结论(1)若一个命题有大前提,其他三种命题需保留大前提;(2)一个命题的否命题与命题的否定不是同一个命题:前者既否定条件,又否定结论,后者只否定命题的结论;(3)互为逆否关系的命题真假相同,所以四种命题的真假个数一定为偶数. 二、经典例题领悟好[例2] (1)(2017·全国卷Ⅰ)设有下面四个命题:p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R.其中的真命题为( )A.p1,p3 B.p1,p4C.p2,p3 D.p2,p4 (2)(2017·金华一中模拟)下列命题中为真命题的是( ) A.命题“若x>y,则x>|y|”的逆命题B.命题“x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题[解析] (1)设复数z=a+b i(a,b∈R),对于p1,∵1z=1a+b i=a-b ia2+b2∈R,∴b=0,∴z∈R,∴p1是真命题;对于p2,∵z2=(a+b i)2=a2-b2+2ab i∈R,∴ab=0,∴a=0或b=0,∴p2不是真命题;对于p3,设z1=x+y i(x,y∈R),z2=c+d i(c,d∈R),则z1z2=(x+y i)(c+d i)=cx-dy +(dx+cy)i∈R,∴dx+cy=0,取z1=1+2i,z2=-1+2i,z1≠z2,∴p3不是真命题;对于p4,∵z=a+b i∈R,∴b=0,∴z=a-b i=a∈R,∴p4是真命题.(2)对于A,其逆命题是:若x>|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x>y;对于B,其否命题是:若x≤1,则x2≤1,是假命题.如x=-5,x2=25>1;对于C,其否命题是:若x≠1,则x2+x-2≠0,由于x=-2时,x2+x-2=0,所以原命题的否命题是假命题;对于D,若x2>0,则x>0或x<0,不一定有x>1,因此原命题与它的逆否命题都是假命题.故选A.[答案] (1)B (2)A1在判定四个命题之间的关系时,首先要分清命题的“大前提、条件、结论”,再进行比较.2判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例.3根据“互为逆否关系的命题同真同假”这一性质,当一个命题的真假不易判定时,可转化为判断其等价命题的真假.三、预测押题不能少2.(1)命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是( )A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析:选C 命题的逆否命题是将条件和结论对换后分别否定,因此“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是若x +y 不是偶数,则x 与y 不都是偶数.(2)有下列四个命题:①若“xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题. 其中真命题为( ) A .①② B .②③ C .④D .①②③解析:选D ①的逆命题:“若x ,y 互为倒数,则xy =1”是真命题;②的否命题:“面积不相等的三角形不是全等三角形”是真命题;③的逆否命题:“若x 2-2x +m =0没有实数解,则m >1”是真命题;命题④是假命题,所以它的逆否命题也是假命题,如A ={1,2,3,4,5},B ={4,5},显然A ⊆B 是错误的.故选D.考点三 充要条件 一、基础知识要记牢对于p 和q 两个命题,若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p 和q 互为充要条件.推出符号“⇒”具有传递性,等价符号“⇔”具有双向传递性.二、经典例题领悟好[例3] (1)(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)设A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x -1x +1<0,B ={x ||x -b |<a },若“a =1”是“A ∩B ≠∅”的充分条件,则实数b 的取值范围是________.[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,所以“d >0”是“S 4+S 6>2S 5”的充分必要条件.(2)A ={x |-1<x <1},当a =1时,B ={x |b -1<x <b +1},若“a =1”是“A ∩B ≠∅”的充分条件,则有-1≤b -1<1或-1<b +1≤1,所以b ∈(-2,2).[答案] (1)C (2)(-2,2)判定充分、必要条件时的关注点(1)要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .2要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行,那么可以尝试通过举出恰当的反例来说明.三、预测押题不能少3.(1)“10a>10b”是“lg a >lg b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由10a>10b得a >b ,由lg a >lg b 得a >b >0,所以“10a>10b”是“lg a >lg b ”的必要不充分条件.(2)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选A p 表示以点(1,1)为圆心,2为半径的圆面(含边界),如图所示.q 表示的平面区域为图中阴影部分(含边界).由图可知,p 是q 的必要不充分条件.故选A.[知能专练(一)]一、选择题1.(2017·北京高考)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1}D .{x |1<x <3}解析:选A 由集合交集的定义可得A ∩B ={x |-2<x <-1}.2.(2017·浙江延安中学模拟)命题“若a 2+b 2=0,a ,b ∈R ,则a =b =0”的逆否命题是( ) A .若a ≠b ≠0,a ,b ∈R ,则a 2+b 2=0 B .若a =b ≠0,a ,b ∈R ,则a 2+b 2≠0 C .若a ≠0且b ≠0,a ,b ∈R ,则a 2+b 2≠0 D .若a ≠0或b ≠0,a ,b ∈R ,则a 2+b 2≠0解析:选D “若p,则q”的逆否命题为“若綈q,则綈p”,又a=b=0的实质为a=0且b=0,故其否定为a≠0或b≠0.故选D.3.(2017·宁波模拟)“x<0”是“ln(x+1)<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.4.(2017·吉林模拟)已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是( )A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3]解析:选A 设P={x|x>1或x<-3},Q={x|x>a},因为q是p的充分不必要条件,所以Q P,因此a≥1.5.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=( )A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C 因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.6.(2018届高三·安徽“江南十校”联考)已知集合A={x|x2-x≤0},函数f(x)=2-x(x ∈A)的值域为B,则(∁R A)∩B等于( )A.{x|1<x≤2} B.{x|1≤x≤2}C.{x|0≤x≤1} D.{x|x>1}解析:选A 由题意知,集合A={x|0≤x≤1},∴B={y|1≤y≤2},∁R A={x|x<0或x>1},∴(∁R A)∩B={x|1<x≤2}.7.设集合S n={1,2,3,…,n},n∈N*,若X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.若n=4,则S n的所有奇子集的容量之和为( ) A.7 B.8C.9 D.10解析:选A 若n=4,则S n的所有奇子集为{1},{3},{1,3},故所有奇子集的容量之和为7.8.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( )A.3 B.2C.1 D.0解析:选B 因为A表示圆x2+y2=1上的点的集合,B表示直线y=x上的点的集合,直线y =x与圆x2+y2=1有两个交点,所以A∩B中元素的个数为2.9.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b 相交”是“平面α和平面β相交”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.10.下列关于命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题的结论中成立的是( )A.都为真命题 B.都为假命题C.否命题为真命题 D.逆否命题为真命题解析:选D 对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因为当不等式ax2+bx+c<0的解集非空时,可以有a>0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.二、填空题11.已知集合U={1,2,3,4,5,6},S={1,3,5},T={2,3,6},则S∩(∁U T)=________,集合S共有________个子集.解析:由题意可得∁U T={1,4,5},则S∩(∁U T)={1,5}.集合S的子集有∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5},共8个.答案:{1,5} 812.(2017·南通模拟)给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为________.解析:“a>b”是“3a>3b”的充要条件,①错误;“α>β”是“cos α<cos β”的既不充分也不必要条件,②错误;“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的充要条件,③正确.故正确命题的序号为③.答案:③13.已知R 是实数集,M =⎩⎨⎧⎭⎬⎫x 2x <1,N ={y |y =x -1+1},则N ∩(∁R M )=________,M ∪(∁R N )=________.解析:M =⎩⎨⎧⎭⎬⎫x 2x <1={x |x <0或x >2},N ={y |y =x -1+1}={y |y ≥1},∁R M ={x |0≤x ≤2},∁R N ={y |y <1},∴N ∩(∁R M )={x |1≤x ≤2},M ∪(∁R N )={x |x <1或x >2}. 答案:{x |1≤x ≤2} {x |x <1或x >2}14.若“4x +p <0”是“x 2-x -2>0”的充分条件,则实数p 的取值范围是________. 解析:由x 2-x -2>0,得x >2或x <-1. 由4x +p <0得x <-p4.故-p 4≤-1时,“x <-p4”⇒“x <-1”⇒“x 2-x -2>0”.∴p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件. 答案:[4,+∞)15.(2017·诸暨质检)已知A ={x |-2≤x ≤0},B ={x |x 2-x -2≤0},则A ∪B =________,(∁R A )∩B =________.解析:∵A ={x |-2≤x ≤0},∴∁R A ={x |x <-2或x >0},又B ={x |x 2-x -2≤0}={x |-1≤x ≤2},∴A ∪B ={x |-2≤x ≤2},∴(∁R A )∩B ={x |0<x ≤2}.答案:{x |-2≤x ≤2} {x |0<x ≤2}16.(2017·四川南山模拟)已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________.解析:由题意知,13<x <12是不等式|x -m |<1成立的充分不必要条件,所以⎩⎨⎧⎭⎬⎫x 13<x <12是{x ||x -m |<1}的真子集.而{x ||x -m |<1}={x |-1+m <x <1+m },所以有⎩⎪⎨⎪⎧-1+m ≤13,1+m ≥12(两个不等式不能同时取等号),解得-12≤m ≤43,所以m 的取值范围是⎣⎢⎡⎦⎥⎤-12,43.答案:⎣⎢⎡⎦⎥⎤-12,43 17.设全集U =R ,集合A ={x |x 2-3x -4<0},B ={x |log 2(x -1)<2},则A ∩B =______,A ∪B =________,∁R A =________.解析:∵A ={x |-1<x <4},B ={x |1<x <5},∴A ∩B ={x |1<x <4},A ∪B ={x |-1<x <5},∁R A ={x |x ≤-1或x ≥4}.答案:{x |1<x <4} {x |-1<x <5} {x ≤-1或x ≥4} [选做题]1.已知集合A ={(x ,y )|x =n ,y =na +b ,n ∈Z},B ={(x ,y )|x =m ,y =3m 2+12,m ∈Z},若存在实数a ,b 使得A ∩B ≠∅成立,称点(a ,b )为“£”点,则“£”点在平面区域C ={(x ,y )|x 2+y 2≤108}内的个数为( )A .0B .1C .2D .无数个解析:选A A ={(x ,y )|x =n ,y =na +b ,n ∈Z}={(x ,y )|y =ax +b ,x ∈Z},B ={(x ,y )|x=m ,y =3m 2+12,m ∈Z}={(x ,y )|y =3x 2+12,x ∈Z},联立⎩⎪⎨⎪⎧y =ax +b ,y =3x 2+12,故3x 2-ax +12-b =0,①因为A ∩B ≠∅,故Δ=a 2-12(12-b )=a 2+12b -144≥0,即a 2+12b ≥144,联立⎩⎪⎨⎪⎧a 2+12b ≥144,a 2+b 2≤108,解得a =±62,b =6,代入①中可知x =±2,这与x ∈Z 矛盾,故“£”点在平面区域C ={(x ,y )|x 2+y 2≤108}内的个数为0,故选A.2.对于非空数集A ,B ,定义A +B ={x +y |x ∈A ,y ∈B },下列说法: ①A +B =B +A ;②(A +B )+C =A +(B +C ); ③若A +A =B +B ,则A =B ; ④若A +C =B +C ,则A =B . 其中正确的是( ) A .① B .①② C .②③D .①④解析:选B 对于①,A +B ={x +y |x ∈A ,y ∈B }={y +x |x ∈A ,y ∈B }=B +A ,①正确;对于②,(A +B )+C ={(x +y )+z |x ∈A ,y ∈B ,z ∈C }=A +(B +C ),②正确;对于③,当A ={奇数},B ={偶数}时,A +A ={偶数}=B +B ,显然A ≠B ,③错误,对于④,当A ={奇数},B ={偶数},C ={整数}时,A +C ={整数}=B +C ,显然A ≠B ,④错误.综上所述,正确的为①②,故选B.3.已知命题p :对数log a (-2t 2+7t -5)(a >0,a ≠1)有意义;q :关于实数t 的不等式t2-(a +3)t +(a +2)<0.若命题p 是命题q 的充分不必要条件,则实数a 的取值范围是________.解析:由题意知,-2t 2+7t -5>0,解得1<t <52.∵命题p 是命题q 的充分不必要条件,∴1<t <52是不等式t 2-(a +3)t +(a +2)<0解集的真子集.因为方程t 2-(a +3)t +(a +2)=0两根为1,a +2,故只需a +2>52,解得a >12.即实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.答案:⎝ ⎛⎭⎪⎫12,+∞第二讲函数的概念与性质考点一 函数及其表示 一、基础知识要记牢(1)函数初、高中定义形式不同,本质一样,核心是对应; (2)当两个函数的三要素完全相同时表示同一个函数;(3)分段函数是一个函数而不是几个函数,离开定义域讨论分段函数是毫无意义的. 二、经典例题领悟好[例1] (1)(2015·浙江高考)存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1|(2)(2017·嘉兴模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.(3)(2016·江苏高考)函数y = 3-2x -x 2的定义域是________.[解析] (1)取x =0,π2,可得f (0)=0,1,这与函数的定义矛盾,所以选项A 错误;取x=0,π,可得f (0)=0,π2+π,这与函数的定义矛盾,所以选项B 错误;取x =1,-1,可得f (2)=2,0,这与函数的定义矛盾,所以选项C 错误;取f (x )= x +1,则对任意x ∈R 都有f (x 2+2x )= x 2+2x +1=|x +1|,故选项D 正确.(2)当a ≤0时,f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.当a >0时,f (a )=-a 2<0,由f (f (a ))=a 4-2a 2+2=2,解得a = 2.(3)要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,得(x -1)(x +3)≤0,即-3≤x ≤1,故所求函数的定义域为[-3,1].[答案] (1)D (2) 2 (3)[-3,1]1.理解函数概念的要点函数概念本质是对应,以具体函数模型为基础,在新背景、综合背景下理解. 2.求函数定义域的类型和相应方法 1若已知函数的解析式,则这时函数的定义域是使解析式有意义的自变量的取值范围,只需构建并解不等式组即可;2实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义., 3.求函数值时应注意的问题分段函数的求值解不等式问题,必须依据条件准确地找出利用哪一段求解;对具有周期性的函数求值要利用好其周期性.三、预测押题不能少1.(1)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C 由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3],则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1,因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m ,则c -m =6,因此c =m +6∈(6,9].(2)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.解析:∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案:-2 考点二 函数的图象 一、基础知识要记牢函数的图象包括作图、识图、用图,其中作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.正确作图是解题的基本保障,识图、用图是解题的手段和目标.二、经典例题领悟好[例2] (1)(2016·浙江高考)函数y =sin x 2的图象是( )(2)函数f (x )的图象是如图所示的折线段OAB ,其中A (1,2),B (3,0),函数g (x )=xf (x ),那么函数g (x )值域为( )A .[0,2]B.⎣⎢⎡⎦⎥⎤0,94 C.⎣⎢⎡⎦⎥⎤0,32D .[0,4][解析] (1)∵y =sin(-x )2=sin x 2,∴函数为偶函数,可排除A 项和C 项;当x =±π2时,y =sin x 2=1,而π2<π2,且y =sin π24<1,故D 项正确. (2)由题图可知直线OA 的方程是y =2x ; 而k AB =0-23-1=-1,所以直线AB 的方程为y =-(x -3)=-x +3.由题意,知f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,-x +3,1<x ≤3,所以g (x )=xf (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,-x 2+3x ,1<x ≤3.当0≤x ≤1时,g (x )=2x 2∈[0,2];当1<x ≤3时,g (x )=-x 2+3x =-⎝ ⎛⎭⎪⎫x -322+94,显然,当x =32时,取得最大值94;当x =3时,取得最小值0.综上所述,g (x )的值域为⎣⎢⎡⎦⎥⎤0,94.[答案] (1)D (2)B由解析式确定函数图象的判断技巧(1)由函数的定义域,判断图象左右的位置,从函数的值域,判断图象的上下位置. (2)由函数的单调性,判断图象的变化趋势. (3)由函数的奇偶性,判断图象的对称性. (4)由函数的周期性,判断图象的循环往复. 三、预测押题不能少2.(1)函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x +b 的大致图象是( )解析:选A 由二次函数的图象可知b <-1,0<a <1,所以g (x )=a x+b 为减函数,其图象由指数函数y =a x的图象向下平移|b |个单位长度得到,故选A.(2)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.解析:作出函数f (x )的图象如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a 2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2. 答案:(-∞,-2) 考点三 函数的性质 一、基础知识要记牢(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f (a +x )=f (x )(a 不等于0),则其一个周期T =|a |.二、经典例题领悟好[例3] (1)(2017·北京高考)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数(2)(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (6)=( ) A .-2B .-1C .0D .2(3)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)[解析] (1)因为f (x )=3x-⎝ ⎛⎭⎪⎫13x ,且定义域为R ,所以f (-x )=3-x-⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x -3x =-[ 3x -⎦⎥⎤⎝ ⎛⎭⎪⎫13x =-f (x ),即函数f (x )是奇函数.又y =3x 在R 上是增函数,y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,所以f (x )=3x-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.(2)由题意知当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (x +1)=f (x ).又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1). 又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.故选D. (3)∵f (x )满足f (x -4)=-f (x ), ∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1). ∵f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11). [答案] (1)A (2)D (3)D函数性质综合应用问题的3种类型和解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.三、预测押题不能少3.(1)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:选D ∵f (x )为奇函数,∴f (-x )=-f (x ). ∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)单调递减,∴-1≤x -2≤1, ∴1≤x ≤3.(2)下列函数中既是奇函数又在其定义域上是减函数的是( ) A .y =lg 1+x1-xB .y =e -x-e xC .y =sin x -|cos x |D .y =x 3-3x解析:选B 选项A 错误,因为函数f (-x )=lg 1-x 1+x =-lg 1+x1-x =-f (x ),所以是奇函数且定义域为(-1,1),因为g (x )=1+x 1-x =21-x -1是增函数,所以y =lg 1+x1-x 是增函数;选项B 正确,f (-x )=e x-e -x=-(e -x-e x )=-f (x ),所以是奇函数,因为y =e -x=⎝ ⎛⎭⎪⎫1e x 是减函数,y =-e x是减函数,所以y =e -x -e x是减函数;选项C 错误,f (-x )=-sin x -|cos x |≠-f (x ),所以f (x )=sin x -|cos x |不是奇函数;选项D 错误,函数y =x 3-3x 是奇函数但不是单调函数.故选B.(3)若f (x )是定义在f (x )是定义在R 上的周期为4的函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x 1-x ,0≤x ≤1,cos πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫293=________.解析:因为f (x )的周期为4,则f ⎝ ⎛⎭⎪⎫293=f ⎝ ⎛⎭⎪⎫8+53=f ⎝ ⎛⎭⎪⎫53=cos 5π3=cos π3=12,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫293=f ⎝ ⎛⎭⎪⎫12=12⎝ ⎛⎭⎪⎫1-12=14.答案:14[知能专练(二)]一、选择题1.已知函数f (x )为奇函数,且当x >0时, f (x ) =x 2+1x,则f (-1)=( )A .-2B .0C .1D .2解析:选A f (-1)=-f (1)=-2.2.(2017·大连测试)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( )A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1解析:选C 函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项B 的函数是偶函数,但其单调性不符合,只有选项C 符合要求.3.(2016·全国卷Ⅰ)函数y =2x 2-e |x |在[-2,2]的图象大致为( )解析:选D f (2)=8-e 2>8-2.82>0,排除A ;f (2)=8-e 2<8-2.72<1,排除B ;x >0时,f (x )=2x 2-e x ,f ′(x )=4x -e x ,当x ∈⎝ ⎛⎭⎪⎫0,14时,f ′(x )<14×4-e 0=0,因此f (x )在⎝ ⎛⎭⎪⎫0,14单调递减,排除C.故选D.4.(2017·天津高考)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:选C 由f (x )为奇函数,知g (x )=xf (x )为偶函数.因为f (x )在R 上单调递增,f (0)=0,所以当x >0时,f (x )>0,所以g (x )在(0,+∞)上单调递增,且g (x )>0.又a =g (-log 25.1)=g (log 25.1),b =g (20.8),c =g (3),20.8<2=log 24<log 25.1<log 28=3,所以b <a <c .5.若f (x )=⎩⎪⎨⎪⎧a x,x >1,⎝ ⎛⎭⎪⎫4-a 2x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)解析:选B 由题意可知函数f (x )在(-∞,1]和(1,+∞)上都为增函数,且f (x )的图象在(-∞,1]上的最高点不高于其在(1,+∞)上的最低点,即⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥4-a 2+2,解得a ∈[4,8).6.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 22x ,则“同根函数”是( )A .f 2(x )与f 4(x )B .f 1(x )与f 3(x )C .f 1(x )与f 4(x )D .f 3(x )与f 4(x )解析:选A f 4(x )=log 22x =1+log 2x ,f 2(x )=log 2(x +2),将f 2(x )的图象沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )的图象,根据“同根函数”的定义可知选A.7.(2016·全国卷Ⅱ)已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m解析:选B 因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x2=0,f -x +f x2=1,所以函数y =f (x )的图象关于点(0,1)对称.函数y =x +1x =1+1x,故其图象也关于点(0,1)对称.所以函数y =x +1x与y =f (x )图象的交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对均关于点(0,1)对称,所以∑i =1mx i =0,∑i =1my i =2×m2=m ,所以∑i =1m(x i +y i )=m .二、填空题8.若函数f (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,a ,x =0,g 2x ,x <0为奇函数,则a =________,f (g (-2))=________.解析:由函数f (x )是R 上的奇函数可得f (0)=a =0.因为g (-2)=f (-1)=-f (1)=-4,所以f (g (-2))=f (-4)=-f (4)=-25.答案:0 -259.(2016·四川高考)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.解析:∵f (x )为奇函数,周期为2,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0. ∵f (x )=4x,x ∈(0,1),∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12 =-f ⎝ ⎛⎭⎪⎫12=-412=-2.∴f ⎝ ⎛⎭⎪⎫-52+f (1)=-2. 答案:-210.(2016·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R.若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.解析:因为函数f (x )的周期为2,结合在[-1,1)上f (x )的解析式,得f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110.由f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,得-12+a =110,解得a=35.所以f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25. 答案:-2511.已知函数f (x )=x +1|x |+1,x ∈R ,则不等式f (x 2-2x )<f (3x -4)的解集为________.解析:当x ≥0时,f (x )=x +1x +1=1,当x <0时,f (x )=x +11-x =-1-2x -1, 作出f (x )的图象,如图所示.可得f (x )在(-∞,0)上递增,不等式f (x 2-2x )<f (3x -4)即为⎩⎪⎨⎪⎧3x -4≥0,x 2-2x <0或⎩⎪⎨⎪⎧3x -4<0,x 2-2x <0,x 2-2x <3x -4,即有⎩⎪⎨⎪⎧x ≥43,0<x <2或⎩⎪⎨⎪⎧x <43,0<x <2,1<x <4,解得43≤x <2或1<x <43,所以1<x <2,即不等式的解集为(1,2). 答案:(1,2)12.(2017·杭州模拟)设集合A ={x |x 2-|x +a |+2a <0,a ∈R},B ={x |x <2}.若A ≠∅且A ⊆B ,则实数a 的取值范围是________.解析:由题意知x 2-|x +a |+2a <0⇒x 2<|x +a |-2a ,其解集A ≠∅时,可设A ={m <x <n }. 首先,若n =2时,则|2+a |-2a =4, 解得a =-2,满足A ⊆B .由函数y =|x +a |-2a 的图象可知,当a <-2时,n >2,不满足A ⊇B ,不合题意,即可知a ≥-2;考虑函数y =|x +a |-2a 的右支与y =x 2相切时,则x +a -2a =x 2,即x 2-x +a =0,解得a =14.又当a ≥14时,A =∅,即可知a <14.综上可知:-2≤a <14.或考虑函数y =|x +a |和函数y =x 2+2a 进行数形结合.答案:⎣⎢⎡⎭⎪⎫-2,14 三、解答题13.已知二次函数f (x )=ax 2+bx +3是偶函数,且过点(2,7),g (x )=x +4. (1)求f (x )的解析式; (2)求函数F (x )=f (2x)+g (2x +1)的值域;(3)若f (x )≥mx +m +4对x ∈[2,6]恒成立,求实数m 的取值范围. 解:(1)由题意,对任意x ∈R ,f (-x )=f (x ), ∴ax 2-bx +3=ax 2+bx +3,得2bx =0, 又∵x ∈R ,∴b =0,得f (x )=ax 2+3.把点(2,7)代入得4a +3=7,解得a =1,∴f (x )=x 2+3. (2)F (x )=f (2x)+g (2x +1)=(2x )2+3+2x +1+4=(2x )2+2×2x+7.设2x=t ,则t ∈(0,+∞),F (t )=t 2+2t +7=(t +1)2+6>7,∴函数F (x )的值域为(7,+∞).(3)依题意得当x ∈[2,6]时,x 2+3≥mx +m +4恒成立,即x 2-mx -m -1≥0对x ∈[2,6]恒成立.设p (x )=x 2-mx -m -1,则⎩⎪⎨⎪⎧m 2<2,p 2≥0或⎩⎪⎨⎪⎧m 2>6,p 6≥0或Δ=m 2+4m +4≤0,即⎩⎪⎨⎪⎧m <4,m ≤1或⎩⎪⎨⎪⎧m >12,m ≤5或m =-2,得m ≤1.综上可知,实数m 的取值范围是(-∞,1]. 14.设a >0,b ∈R ,函数f (x )=ax-2bx +b (0<x ≤1). (1)求函数f (x )的最小值;(2)若f (x )+|2a -b |≥0在区间(0,m ]上恒成立,求实数m 的最大值.解:(1)当b ≥0时,f (x )在0<x ≤1上递减,此时f (x )min =f (1)=a -2b +b =a -b ;当b <0时,有ax -2bx ≥2ax×-2bx =2-2ab ,x = a -2b 时等号成立.当-a 2≤b <0,即 a-2b≥1时,f (x )在0<x ≤1上递减,此时f (x )min =f (1)=a -b .当b <-a2,即a-2b<1时,此时f (x )min=f ⎝⎛⎭⎪⎫a -2b =2-2ab +b ,综上知f (x )min=⎩⎪⎨⎪⎧a -b ,b ≥-a2,2-2ab +b ,b <-a2.(2)当b ≤2a 时,f (x )+|2a -b |=a x-2bx +2a≥a x-4ax +2a =a ⎝ ⎛⎭⎪⎫1x -4x +2, 当b >2a 时,f (x )+|2a -b |=ax+2b (1-x )-2a≥a x+4a (1-x )-2a =a ⎝ ⎛⎭⎪⎫1x -4x +2. 由1x -4x +2≥0,解得1-54≤x ≤1+54, 又因为1+54<1,所以m 的最大值为1+54.第三讲基本初等函数、函数与方程及函数的应用 考点一 基本初等函数的图象与性质一、基础知识要记牢指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况,当a>1时,两函数在定义域内都为增函数,当0<a<1时,两函数在定义域内都为减函数.二、经典例题领悟好[例1] (1)(2017·杭州模拟)将函数f(x)=ax+b,g(x)=log a(1+bx)的图象画在同一个平面直角坐标系中,其中可能正确的是( )(2)设a=log36,b=log510,c=log714,则( )A.c>b>a B.b>c>aC.a>c>b D.a>b>c[解析] (1)因为g(0)=0,故排除D;选项A中,由直线可以看出b<0,由1+bx>0知,函数在y轴右侧的图象是有限的,排除A;选项C中,由直线可以看出b>0,由1+bx>0知,函数在y轴左侧的图象是有限的,排除C,故选B.(2)a=log36=log33+log32=1+log32,b=log510=log55+log52=1+log52,c=log714=log77+log72=1+log72,∵log32>log52>log72,∴a>b>c.[答案] (1)B (2)D1基本初等函数的图象是其性质的直观载体,要结合图象理解性质;图象变换要以基本函数图象为基础,结合性质等判断、应用.2比较指数函数值、对数函数值、幂函数值大小有三种方法:一是根据同类函数的单调性进行比较;二是采用中间值0或1等进行比较;三是将对数式转化为指数式,或将指数式转化为对数式,通过转化进行比较.三、预测押题不能少1.(1)函数y=x-x 13的图象大致为( )解析:选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A.(2)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析:选A 因为a =243,b =425=245,由函数y =2x在R 上为增函数知,b <a ;又因为a =243=423,c =2513=523,由函数y =x 23在(0,+∞)上为增函数知,a <c .综上得b <a <c .故选A.考点二 二次函数 一、基础知识要记牢二次函数的相关结论若f (x )=ax 2+bx +c (a ≠0),则(1)f (x )的图象与x 轴交点的横坐标是方程ax 2+bx +c =0的实根.(2)若x 1,x 2为f (x )=0的实根,则f (x )在x 轴上截得的线段长应为|x 1-x 2|=b 2-4ac|a |.(3)当⎩⎪⎨⎪⎧a >0,Δ<0时,恒有f (x )>0;当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.二、经典例题领悟好[例2] (1)(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关(2)若二次函数f (x )满足f (3)=f (-1)=-5,且f (x )的最大值是3,则函数f (x )的解析式为________.(3)若函数f (x )=cos 2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2上是减函数,则a 的取值范围是________.[解析] (1)f (x )=⎝ ⎛⎭⎪⎫x +a 22-a24+b ,①当0≤-a2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b,1+a +b },∴M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,∴M -m =f (1)-f (0)=1+a 与a 有关,与b 无关; ③当-a2>1时,f (x )在[0,1]上单调递减,∴M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关. 综上所述,M -m 与a 有关,但与b 无关.(2)法一:设f (x )=ax 2+bx +c (a ≠0),依题意得⎩⎪⎨⎪⎧9a +3b +c =-5,a -b +c =-5,4ac -b 24a =3,解得⎩⎪⎨⎪⎧a =-2,b =4,c =1,所以二次函数的解析式为f (x )=-2x 2+4x +1.法二:设f (x )=a (x -m )2+n (a ≠0),因为f (3)=f (-1), 所以抛物线的对称轴为x =3+-12=1,则m =1.又f (x )的最大值是3,则a <0,n =3,即f (x )=a (x -1)2+3, 由f (3)=-5得4a +3=-5,则a =-2,所以二次函数的解析式为f (x )=-2(x -1)2+3=-2x 2+4x +1. 法三:设f (x )+5=a (x -3)(x +1)(a ≠0), 即f (x )=ax 2-2ax -3a -5=a (x -1)2-4a -5, 又f (x )的最大值是3,则a <0,且-4a -5=3,所以a =-2, 所以二次函数的解析式为f (x )=-2x 2+4x +1. (3)f (x )=cos 2x +a sin x =1-2sin 2x +a sin x ,令t =sin x ,x ∈⎝ ⎛⎭⎪⎫π6,π2, 则t ∈⎝ ⎛⎭⎪⎫12,1,原函数化为y =-2t 2+at +1,由题意及复合函数单调性的判定可知y =-2t 2+at +1在⎝ ⎛⎭⎪⎫12,1上是减函数,结合二次函数图象可知,a 4≤12,所以a ≤2.答案:(1)B (2)f (x )=-2x 2+4x +1 (3)(-∞,2]解决有关二次函数两类综合问题的思想方法(1)含有参数的二次函数与不等式的综合问题注意分类讨论思想、函数与方程思想的运用. (2)二次函数的最值问题,通常采用配方法,将二次函数化为y =a (x -m )2+n (a ≠0)的形式,得其图象顶点(m ,n )或对称轴方程x =m ,分三种情况:①顶点固定,区间固定; ②顶点含参数,区间固定; ③顶点固定,区间变动. 三、预测押题不能少2.(1)若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12成立,则a 的最小值是( )A .0B .2C .-52D .-3解析:选C 设f (x )=x 2+ax +1,其图象开口向上,对称轴为直线x =-a 2.当-a 2≥12,即a ≤-1时,f (x )在⎝ ⎛⎦⎥⎤0,12上是减函数,应有f ⎝ ⎛⎭⎪⎫12≥0⇒a ≥-52,∴-52≤a ≤-1.当-a 2≤0,即a ≥0时,f (x )在⎝ ⎛⎦⎥⎤0,12上是增函数,应有f (0)=1≥0,恒成立,故a ≥0.当0<-a 2<12,即-1<a <0时,应有f ⎝ ⎛⎭⎪⎫-a 2=a 24-a22+1=1-a 24≥0恒成立,故-1<a <0.综上,a 的取值范围是a ≥-52,所以a 的最小值是-52,故选C.(2)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x(x >0)图象上一动点.若点P ,A 之间的最短距离为22,则满足条件的实数a 的所有值为________.解析:设P ⎝⎛⎭⎪⎫x ,1x ,则|PA |2=(x -a )2+⎝ ⎛⎭⎪⎫1x -a 2=⎝ ⎛⎭⎪⎫x +1x 2-2a ⎝ ⎛⎭⎪⎫x +1x +2a 2-2,令t =x +1x,则t ≥2(x >0,当且仅当x =1时取“=”),则|PA |2=t 2-2at +2a 2-2.①当a ≤2时,(|PA |2)min =22-2a ×2+2a 2-2=2a 2-4a +2,由题意知,2a 2-4a +2=8, 解得a =-1或a =3(舍).②当a >2时,(|PA |2)min =a 2-2a ×a +2a 2-2=a 2-2. 由题意知,a 2-2=8,解得a =10或a =-10(舍), 综上知,a =-1,10. 答案:-1,10 考点三 函数的零点一、基础知识要记牢确定函数零点的常用方法(1)解方程判定法,方程易解时用此法; (2)利用零点存在的判定定理;(3)利用数形结合,尤其是那些方程两端对应的函数类型不同时多以数形结合法求解. 二、经典例题领悟好[例3] (1)(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12B.13C.12D .1(2)(2018届高三·温州六校联考)函数f (x )=3-x+x 2-4的零点个数是________. [解析] (1)法一:由f (x )=x 2-2x +a (ex -1+e-x +1),得f (2-x )=(2-x )2-2(2-x )+a [e2-x -1+e-(2-x )+1]=x 2-4x +4-4+2x +a (e1-x+ex -1)=x 2-2x +a (ex -1+e-x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e1-1+e-1+1)=0,解得a =12.法二:由f (x )=0⇔a (e x -1+e -x +1)=-x 2+2x .ex -1+e-x +1≥2ex -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (ex -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 综上所述,a =12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高考数学二轮复习专题1 集合、常用逻辑用语、函数与导数第四讲导数及其应用理2.导数的几何意义.函数y=f(x)在x0处的导数f′(x0)的几何意义是:曲线y=f(x)在点(x0,f(x0))处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).2.导数的四则运算法则.(1)[u (x )±v (x )]′=u ′(x )±v ′(x );(2)[u (x )v (x )]′=u ′(x )·v (x )+u (x )·v ′(x ); (3)⎣⎢⎡⎦⎥⎤u (x )v (x )′=u ′(x )·v (x )-u (x )·v ′(x )v 2(x )(v (x )≠0).3.复合函数求导.复合函数y =f (g (x ))的导数和y =f (u ),u =g (x )的导数之间的关系为y x ′=y u ′·u x ′.1.函数的单调性与导数的关系.一般地,在某个区间(a,b)内:(1)如果f′(x)>0⇒函数f(x)在这个区间内单调递增;(2)如果f′(x)<0⇒函数f(x)在这个区间内单调递减;(3)如果f′(x)=0⇒函数f(x)在这个区间内是常数函数.2.函数的极值与导数的关系.一般地,对于函数y=f(x):(1)若在点x=a处有f′(a)=0,且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则称x=a为f(x)的极小值点,f(a)叫函数f(x)的极小值.(2)若在点x=b处有f′(b)=0,且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则称x=b为f(x)的极大值点,f(b)叫函数f(x)的极大值.3.求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在(a,b)内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.判断下面结论是否正确(请在括号中打“√”或“×”). (1)f ′(x 0)与(f (x 0))′表示的意义相同.(×) (2)曲线的切线不一定与曲线只有一个公共点.(√) (3)与曲线只有一个公共点的直线一定是曲线的切线.(×) (4)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.(×) (5)函数的极大值不一定比极小值大.(√)(6)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.(√)2.(2015·新课标Ⅰ卷)设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是(D )A.⎣⎢⎡⎭⎪⎫-32e ,1B.⎣⎢⎡⎭⎪⎫-32e ,34C.⎣⎢⎡⎭⎪⎫32e ,34 D.⎣⎢⎡⎭⎪⎫32e ,1解析:∵ f (0)=-1+a <0,∴ x 0=0.又∵ x 0=0是唯一的使f (x )<0的整数,∴ ⎩⎪⎨⎪⎧f (-1)≥0,f (1)≥0,即⎩⎪⎨⎪⎧e -1[2×(-1)-1]+a +a ≥0,e (2×1-1)-a +a ≥0,解得a ≥32e .又∵ a <1,∴ 32e ≤a <1,经检验a =34,符合题意.故选D.3.(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为3.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.5.求下列函数的导数: (1)y =(2x 2-1)(3x +1); (2)y =x 2sin x .答案:(1)y ′=18x 2+4x -3 (2)y ′=2x sin x +x 2cos x一、选择题1.函数y =12x 2-ln x 的单调递减区间为(B )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)解析:∵y=12x 2-ln x ,∴y ′=x -1x ,由y′≤0,解得-1≤x ≤1,又x >0,∴0<x≤1.故选B .2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为(A )A .⎣⎢⎡⎦⎥⎤-1,-12B .[-1,0]C .[0,1]D .⎣⎢⎡⎦⎥⎤12,1解析:设P(x 0,y 0), ∵y′=2x +2,∴曲线C 在点P 处的切线斜率为2x 0+2.又切线倾斜角范围是⎣⎢⎡⎦⎥⎤0,π4,∴斜率范围是[0,1].即2x 0+2∈[0,1],∴x 0∈⎣⎢⎡⎦⎥⎤-1,-12.3.若f(x)=-12x 2+b ln (x +2)在(-1,+∞)上是减函数,则b 的取值范围是(C )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1)解析:∵f′(x)=-x 2-2x +b x +2=-(x +1)2+b +1x +2.则由已知f′(x)≤0在(-1,+∞)上恒成立,∴1+b≤0. ∴b ≤-1.4.(2015·陕西卷)对二次函数f(x)=ax 2+bx +c(a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是(A )A .-1是f(x)的零点B .1是f(x)的极值点C .3是f(x)的极值D .点(2,8)在曲线y =f(x)上解析:A 中-1是f(x)的零点,则有a -b +c =0.①B 中1是f(x)的极值点,则有b =-2a.②C 中3是f(x)的极值,则有4ac -b24a=3.③D 中点(2,8)在曲线y =f(x)上,则有4a +2b +c =8.④联立①②③解得a =-34, b =32, c =94.联立②③④解得a =5,b =-10,c =8,从而可判断A 错误,故选A .5.(2014·江西卷)在同一直角坐标系中,函数y =ax 2-x +a 2与y =a 2x 3-2ax 2+x +a(a∈R)的图象不可能的是(B )解析:当a =0时,两函数图象如D 所示,当a ≠0时,对函数y =a 2x 3-2ax 2+x +a ,令y ′=3a 2x 2-4ax +1=0得:x =1a 或x =13a ,y =ax 2-x +a 2的对称轴为x =12a .当a <0时,由1a <12a <13a 知B 不对,当a >0时,由1a >12a >13a知A ,C 正确. 6.(2015·新课标Ⅱ卷)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是(A )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞) 解析:记函数g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2,因为当x >0时,xf ′(x )-f (x )<0,故当x >0时,g ′(x )<0,所以g (x )在(0,+∞)单调递减,由因为函数f (x )(x ∈R )是奇函数,故函数g (x )是偶函数,所以g (x )在(-∞,0)单调递减,且g (-1)=g (1)=0,当0<x <1时,g (x )>0,则f (x )>0;当x <-1时,g (x )<0,则f (x )<0,综上所述,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.答案:A7.函数y =f (x )在定义域⎝ ⎛⎭⎪⎫-32,3 内可导,其图象如图所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为(A )A.⎣⎢⎡⎦⎥⎤-13,1∪[2,3)B.⎣⎢⎡⎦⎥⎤-1,12∪⎣⎢⎡⎦⎥⎤43,83C.⎣⎢⎡⎦⎥⎤-32,12∪[1,2]D.⎣⎢⎡⎦⎥⎤-32,-13∪⎣⎢⎡⎦⎥⎤12,43二、填空题9.(2015·陕西卷)函数y =x e x在其极值点处的切线方程为y =-1e.解析:由题知y ′=e x +x e x,令y ′=0,解得x =-1,代入函数解析式可得极值点的坐标为⎝⎛⎭⎪⎫-1,-1e ,又极值点处的切线为平行于x 轴的直线,故方程为y =-1e . 三、解答题10.已知函数f (x )=2x 3+ax 与g (x )=bx 2+c 的图象都过点P (2,0),且在点P 处有相同的切线.(1)求实数a ,b ,c 的值;(2)设函数F (x )=f (x )+g (x ),求F (x )的单调区间,并指出函数F (x )在该区间上的单调性.解析:(1)因为函数f (x )=2x 3+ax 与g (x )=bx 2+c 的图象都过点P (2,0),所以⎩⎪⎨⎪⎧2×23+2a =0,4b +c =0.得a =-8,4b +c =0.故f (x )=2x 3-8x ,f ′(x )=6x 2-8.又当x =2时,f ′(x )=16,又g ′(x )=2bx , 所以2b ×2=16,得b =4,c =-16. 所以a =-8,b =4,c =-16. (2)因为F (x )=2x 3+4x 2-8x -16, 所以F ′(x )=6x 2+8x -8.由F ′(x )>0,得x <-2或x >23;由F ′(x )<0,得-2<x <23.所以,当x ∈(-∞,-2)时,F (x )是增函数;当x ∈⎝ ⎛⎭⎪⎫23,+∞时,F (x )也是增函数; 当x ∈⎝⎛⎭⎪⎫-2,23时,F (x )是减函数.11.(2015·新课标Ⅱ卷)设函数f (x )=e mx+x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 解析:(1)证明:f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1, 即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1.① 设函数g (t )=e t -t -e +1,则g ′(t )=e t-1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e<0, 故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1; 当m <-1时,g (-m )>0,即e -m+m >e -1. 综上,m 的取值范围是[-1,1].。

相关文档
最新文档