2018-2019学年最新人教版七年级数学上册《第二章整式加减》单元测试提高卷及答案-精编试题

合集下载

2018-2019人教版七年级数学上册《第二章整式的加减》单元测试题(含答案)

2018-2019人教版七年级数学上册《第二章整式的加减》单元测试题(含答案)

第二章 整式的加减单元测试一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 ,化简后的结果是 。

2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。

3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

4、已知:11=+xx ,则代数式511(2010-+++x x x x 的值是 。

5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。

6、计算:=-+-7533x x , )9()35(b a b a -+-= 。

7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。

8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。

9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。

10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。

11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。

12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。

二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。

B 、222b a b a 与的意义是+的2倍的和C 、32(ba 的意义是a 的立方除以2b 的商D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+ 三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项. 求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。

人教版七年级数学上《第二章整式加减》单元测试提高卷(含答案)

人教版七年级数学上《第二章整式加减》单元测试提高卷(含答案)

《第二章 整式加减》单元测试提高卷一、选择题1.下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x2.若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式3.已知622x y 和-313m n x y 是同类项,则29517m mn --的值是 ( ) A :-1 B :-2 C :-3 D :-44.已知,2,3=+=-d c b a 则)()(d a c b --+的值是( )A :1-B :1C :5-D :155.一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( )A .x 2-4xy -2y 2B .-x 2+4xy +2y 2C .3x 2-2xy -2y 2D .3x 2-2xy6.当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为( )A .-16B .-8C .8D .167.与多项式3223423a b a ab b -+-相等的是( )A.)42(33223a b a ab b +--B. )42(33223a b a ab b ++-C. )42(33223a b a ab b -+--D. )42(33223a b a ab b -+- 8.当x 分别取2和﹣2时,多项式5235-+x x 的值( )A.互为相反数B.互为倒数C.异号不等D.相9.给出下列判断:①单项式5×103x 2的系数是5;②x ﹣2xy+y 是二次三项式;③多项式﹣3a 2b+7a 2b 2﹣2ab+1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个10.如果A=﹣x 2+4x ﹣1,B=﹣x 2﹣4x+1,那么B ﹣A 等于 ( )A .﹣2x 2B .8x ﹣2C .2﹣8xD .0二、填空题11.已知a ﹣3b=3,则6b+2(4﹣a )的值是 . 12.若2m -n -4=2,则4m -2n -9=________。

(人教版)2018-2019 学年年秋七年级上《第二章整式的加减》测试(含答案)

(人教版)2018-2019 学年年秋七年级上《第二章整式的加减》测试(含答案)

章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列式子,不是整式的是()A.x y-12B.37x C.x-11D.02.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.-2xy2 B.3x2 C.2xy3 D.2x33.如果一个多项式的次数是5,那么这个多项式的任何一项的次数满足()A.都小于5 B.都大于5 C.都不小于5 D.都不大于54.下列各组单项式,不是同类项的是()A.3x2y与-2yx2 B.2ab2与-ba2C.xy3与5xy D.23a与32a5.若单项式2xnym-n与单项式3x3y2n的和是5xny2n,则m与n的值分别是()A.3,9 B.9,9 C.9,3 D.3,36.-[x-(y-z)]去括号后应得()A.-x+y-z B.-x-y+z C.-x-y-z D.-x+y+z7.A,B都是五次多项式,则A-B一定是()A.四次多项式B.五次多项式C.十次多项式D.不高于五次的多项式8.已知a,b两数在数轴上对应的点的位置如图2-1,则化简式子|a+b|-|a-2|+|b+2|的结果是()图2-18A.2a+2b B.2b+3 C.2a-3 D.-19.已知m-n=100,x+y=-1,则式子(n+x)-(m-y)的值是()A.99 B.101 C.-99 D.-10110.某商家在甲批发市场以每包m元的价格购进了40包茶叶,又在乙批发市场以每包n元(m>n)的价格购进了同样的茶叶60包,如果商家以每包m n+2元的价格卖出这种茶叶,那么卖完后,该商家()A.盈利了B.亏损了C.不盈不亏D.盈亏不能确定二、填空题(每小题4分,共32分)11.在多项式3x2+πxy2+9中,次数最高的项的系数是.12.观察下列单项式:3a2,5a5,7a10,9a17,11a26,…,它们是按一定规律排列的,那么这列式子的第n个单项式是.13.若多项式x2-3kxy-3y2+6xy-8不含xy项,则k= .14.写出一个只含有字母x,y的二次三项式.15.如果单项式-xyb+1与ax y2312是同类项,那么(a-b)2 017= .16.在等式的括号内填上恰当的项,x2-y2+8y-4=x2-().17.已知P=2xy-5x+3,Q=x-3xy-2且3P+2Q=5恒成立,则x= .18.如图2-2是王明家的楼梯示意图,其水平距离(即AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a-b)米,则王明家楼梯的竖直高度(即BC的长度)为米.图2-2三、解答题(共58分)19.(8分)计算:(1)-x+2(x-2)-(3x+5);(2)3a2b-2[ab2-2(a2b-2ab2)].20.(8分)王佳在抄写单项式-23xy■z■时,不小心把字母y,z的指数用墨水污染了,他只知道这个单项式的次数是5,你能帮助王佳确定这个单项式吗?21.(10分)已知-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,求a2-2a+1的值.22.(10分)化简求值:(1)把a-2b看作一个“字母”,化简多项式-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3,并求当a-2b=-1时的值.(2)已知|x-2|+(y-1)2=0,求x2+(2xy-3y2)-2(x2+xy-2y2)的值.23.(10分)已知成婷的年龄是m岁,乔豆的年龄比成婷的年龄的2倍少4岁,张华的年龄比乔豆的年龄的12还多1岁,求这三位同学的年龄的和.24.(12分)某超市在春节期间实行打折促销活动,规定如下表:一次性购物促销方法少于200元不打折低于500元但不低于200元打九折500元或超过500元其中500元部分打九折,超过500元部分打八折(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200元时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的式子表示两次购物王老师实际付款多少元?答案一、1.C 解析:A.是多项式,故A不符合题意;B.是单项式,故B不符合题意;C.不是整式,故C 符合题意;D.是单项式,故D 不符合题意.故选C.2.D 解析:A.-2xy2的系数是-2,不符合题意;B.3x2的系数是3,次数是2,不符合题意;C.2xy3的系数是2,次数是4,不符合题意;D.2x3的系数是2,次数是3,符合题意.故选D.3.D 解析:因为多项式里次数最高项的次数,就是这个多项式的次数,该多项式的次数是5,所以这个多项式次数最高项的次数是5,所以这个多项式的任何一项的次数满足都不大于5.故选D.4.B 解析:字母相同且相同字母的指数也相同,故A ,C ,D 不符合题意;相同字母的指数不同,不是同类项,故B 符合题意.故选B.5.C 解析:由题意,得n=3,m-n=2n ,所以m=9,n=3.故选C.6.A 解析:-[x-(y-z )]=-(x-y+z )=-x+y-z .故选A.7.D 解析:若五次项是同类项,且系数相等,则A-B 的次数低于五次;否则A-B 的次数一定是五次.故选D.8.A 解析:由图可得-2<b <-1<1<a <2,且|a |>|b |,则|a+b|-|a-2|+|b+2|=a+b+(a-2)+b+2=a+b+a-2+b+2=2a+2b .故选A.9.D 解析:因为m-n=100,x+y=-1,所以原式=n+x-m+y=-(m-n )+(x+y )=-100-1=-101.故选D.10.A 解析:根据题意,得该商家在甲批发市场购进的茶叶的利润为40()m n m +-2 =20(m+n )-40m=20n-20m (元);在乙批发市场购进的茶叶的利润为60m+n2-n=30(m+n )-60n=30m-30n (元).所以该商家的总利润为20n-20m+30m-30n=10m-10n=10(m-n )(元).因为m >n ,所以m-n >0,即10(m-n )>0,所以该商家盈利了.故选A.二、11.π 解析:在多项式3x2+πxy2+9中,次数最高的项是πxy2,其系数是π.12.(2n+1)an2+1 解析:3a2=(2×1+1)a12+1,5a5=(2×2+1)a22+1,7a10=(2×3+1)a32+1,…,所以第n 个单项式是(2n+1)an2+1.13. 2 解析:原式=x2+(-3k+6)xy-3y2-8.因为该多项式不含xy 项,所以-3k+6=0,所以k=2.14.x2+2xy+1(答案不唯一)15. 1 解析:由同类项的概念可知a-2=1,b+1=3,所以a=3,b=2,所以(a-b )2 017=(3-2)2 017=1.16.y2-8y+4 解析:括号内的项为x2-(x2-y2+8y-4)=y2-8y+4.17. 0 解析:因为P=2xy-5x+3,Q=x-3xy-2,所以3P+2Q=6xy-15x+9+2x-6xy-4=-13x+5.因为3P+2Q=5恒成立,所以-13x+5=5,解得x=0.即x=0时,3P+2Q=5恒成立.18.(a-2b ) 解析:根据题意可得,(3a-b )-(2a+b )=3a-b-2a-b=a-2b .故王明家楼梯的竖直高度(即BC 的长度)为(a-2b )米.三、19.解:(1)原式=-x+2x-4-3x-5=-2x-9.(2)原式=3a2b-2ab2+4a2b-8ab2=7a2b-10ab2.20.解:由题意知,x 的指数是1,则y ,z 的指数的和是4.当y 的指数是1时,z 的指数是3;当y 的指数是2时,z 的指数是2;当y 的指数是3时,z 的指数是1.所以这个单项式是-23 xyz3或-23xy2z2或-23xy3z .21.解:因为-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,所以3+|a|=7,a-4≠0,所以a=-4.故a2-2a+1=(-4)2-2×(-4)+1=25.22.解:(1)-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3=(a-2b)5(-3a+6b)+5(a-2b)3=-3(a-2b)6+5(a-2b)3.当a-2b=-1时,原式=-3×(-1)6+5×(-1)3=-3×1+5×(-1)=-8.(2)原式=x2+2xy-3y2-2x2-2xy+4y2=-x2+y2.因为|x-2|+(y-1)2=0,所以x-2=0,y-1=0,即x=2,y=1,则原式=-4+1=-3.23.解:由题意可知,乔豆的年龄为(2m-4)岁,张华的年龄为12(2m-4)+1岁,则这三位同学的年龄的和为m+(2m-4)+12(2m-4)+1=m+2m-4+(m-2+1)=4m-5(岁).答:这三位同学的年龄的和是(4m-5)岁.24.分析:(1)500元部分按9折付款,剩下的100元按8折付款.(2)当200≤x<500时,他实际付款0.9x元;当x≥500时,他实际付款500×0.9+0.8×(x-500)=0.8x+50(元).(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款-第一次购物款-500)×8折,把相关数值代入即可求解.解:(1)530.500×0.9+(600-500)×0.8=530(元).(2)0.9x0.8x+50.(3)因为200<a<300,所以第一次实际付款为0.9a元,第二次付款超过500元,超过500元部分为(820-a-500)元,所以两次购物王老师实际付款为0.9a+0.8(820-a-500)+450=0.1a+706(元).。

2018年人教版七年级数学上册第二章整式的加减单元测试卷及答案

2018年人教版七年级数学上册第二章整式的加减单元测试卷及答案
2 2 2 2 2 2 2 2 2 2 2 2
)
C. 5 a + 2b- 4 c D .- 5a - 2 b + 4c 10 .如图,两个六边形的面积分别为
2
2
2
16 和 9 ,两个阴影部分的面积分别为
a, b( a< b) ,则 b-
a 的值为 (
)
A. 4 C. 6 请将选择题答案填入下表: 题号 答案 1 2 3
2 2 2
表示为 ________ . 1 2 2 2 2 2 2 2 16 .若 |a + 1| + (b - ) = 0,则 5a + 3b + 2(a - b ) - (5a - 3b ) 的值为 ________ . 2 三、解答题 ( 共 52 分 ) 17 . ( 本小题满分 6 分 ) 已知 12a b x , 8a xy , 4mnx , 60xyz . (1) 观察上述式子,请写出这四个式子都具有的两个特征; (2) 请写出一个新的式子,使该式同时具有你在 (1) 中所写出的两个共同特征.
2 2 3 2 2 3
18 . ( 本小题满分 6 分 ) 去掉下列各式中的括号: (1)8m - (3n + 5) ;
(2)n - 4(3 - 2m);
(3)2(a - 2b) - 3(2m- n) .
(
)
A.系数是 1 ,次数是 5 B .系数是- 1,次数是 6 C.系数是 1 ,次数是 6 D .系数是- 1,次数是 5 3 .多项式 a - 4a b + 3 ab- 1 的项数与次数分别是 A. 3 和 4 B . 4 和 4 C . 3 和 3 D . 4 和 3 4 .已知- 6a b 和 5a b 是同类项,则 A. 17 B . 37 C .- 17 D . 98 5 .用式子表示“ x 的 2 倍与 y 的和的平方”是 ( A. (2 x + y )

第二章 整式的加减(能力提升)-七年级数学上册单元过关测试定心卷(人教版)(知识清单+原卷解析版)

第二章 整式的加减(能力提升)-七年级数学上册单元过关测试定心卷(人教版)(知识清单+原卷解析版)

七年级数学上册单元测试第二章整式的加减(能力提升)整体难度:一般细目表分析七年级数学上册单元测试第二章 整式的加减(能力提升)时间:100分钟 总分:120分一、选择题(每题3分,共24分)1.下列代数式书写正确的是 ( )A .m +3B .112abC .5×aD .(a +2b )元2.下列说法不正确的是 ( )A .整式包括多项式和单项式B .单项式m 次数是0C .312x x y +是四次二项式 D .3是单项式3.下列去括号错误的是 ( )A .()a b c a b c ++=++B .()a c b a c b --=-+C .2()22a b c a b c +-=+-D .22()a a b a a b --+=++4.在下列代数式:12ab ,2a b +,ab 2+b +1,3,x 3+x 2-3中,多项式有 ( ) A .2个 B .3个 C .4个 D .5个5.已知x y y x -=-,2x =,3y =,则2x y -的值为 ( )A .-1B .1C .-1或7D .1或-76.若一个多项式加上2x 2﹣y 2等于x 2+y 2,则这个多项式是 ( )A .x 2﹣2y 2B .x 2C .﹣x 2+2y 2D .﹣x 27.用8m 长的铝合金做成一个长方形的窗框(如图,单位:m ),设长方形窗框的横条长度为()m x ,则长方形窗框的面积为 ( )A .()24m x x - B .()283m x x - C .234m 2x x ⎛⎫- ⎪⎝⎭ D .238m 2x x ⎛⎫- ⎪⎝⎭8.已知实数m 在数轴上的位置如图所示,则化简|2||1|m m +--的结果为 ( )A .21m +B .21m --C .3-D .3二、填空题(每题3分,共24分)9.比较大小:3x 2+5x +1___2x 2+5x ﹣1(用“>、=或<”填空)10.单项式3265x y 的系数是 _____. 11.化简()x y x y +--=___________.12.买一个足球需要m 元,买一个篮球需要n 元,则买3个足球和5个篮球共需______元.13.如图所示,在这个数据运算程序中,若开始输入的x 的值为2,结果输出的是1,返回进行第二次运算,输出的是-4,…,则第2022次输出的结果是_________.14.定义新运算:a #b =3a -2b ,则(x +y )#(x -y )=_________ .15.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有___________个★.16.已知当1x =时,代数式32022++ax bx 的值为2023;则当1x =-时,代数式32022++ax bx 的值为________.三、解答题(每题8分,共72分)17.化简:(1)()()2222432a b ab a b ab -+-+(2)()()22342223a b a b ---+18.(1)化简:()2222156352a b ab a b ab ⎡⎤+--⎣⎦;(2)已知长方形的长为2a b +,宽为32a b -,求它的周长.19.已知:A =2a 2+3ab -2a -1,B =-a 2+ab -1.(1)求A +2B ;(2)若A +2B 的值与a 的取值无关,求b 的值.20.母亲节,阳阳送给妈妈一份精美的礼物,并用丝带把长方体礼品盒打上包装(如图所示,图中虚线为丝带),打蝴蝶结的部分需用丝带()cm x y z -+.(1)用含x 、y 、z 的式子求出打好整个包装需用丝带总长度;(2)若1米丝带费用为3元,求当25x =,14y =,10z =时,(1)中丝带的总费用为多少元?21.某教辅书中一道整式运算的参考答案污损看不清了,形式如下:解:原式=█()2232y x +-118x y =-+.(1)求污损部分的整式;(2)当x=2,y=﹣3时,求污损部分整式的值.22.疫情期间,为了满足市民对口罩的需求,某厂决定生产两款口罩.每天共生(1)若每天生产A种口罩x包,则生产B种口罩__________包.(用含x的代数式表示)(2)用含x的代数式表示该厂每天获得的利润,(利润=售价-成本)并进行化简;(3)当x=300时,求每天获得的利润.23.为节约能源,我市按如下规定收取电费:一户居民每月用电不超过120度,则每度按0.52元收费:若超过120度,则超过的部分每度多收0.2元,设某户居民某月用电x度.(1)请用含x的代数式表示该户居民该月应缴纳的电费(分两种情况讨论);(2)已知该市小明家今年1月份用电96度,2月份用电156度,3月份用电138度,问小明家今年一季度共应缴纳电费多少元?24.对任意一个四位正整数m,如果m的百位数字等于个位数字与十位数字之和,m的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m为“筋斗数”.例如:m=5321,满足1+2=3,2×2+1=5,所以5321是“筋斗数”.例如:m=8523,满足2+3=5,但2×2+3=7≠8,所以8523不是“筋斗数”.(1)判断9633和2642是不是“筋斗数”,并说明理由;(2)若m是“筋斗数”,且m与13的和能被11整除,求满足条件的所有“筋斗数”m.25.在数轴上,|a-b|可以表示数a、b所对应的两点之间的距离,点P为数轴上任意一点,其代表的数为x.如|x-2|可以表示点P与2所对应的点之间的距离.(1)若|x+4|+|x-1|=7,则x=_______,|x+4|+|x-1|的最小值是_______;(2)若2x+|10-5x|+|3-3x|-7的值恒为常数,求x该满足的条件及此时常数的值.七年级数学上册单元测试第二章 整式的加减(能力提升)时间:100分钟 总分:120分二、选择题(每题3分,共24分)1.下列代数式书写正确的是 ( )A .m +3B .112abC .5×aD .(a +2b )元【解析】解:A 、m +3,书写正确,故此选项符合题意;B 、112ab ,应写成32ab ,故此选项不合题意;C 、5×a ,应写成5a ,故此选项不合题意;D 、(a +2b )元,不应有单位,故此选项不合题意;故选:A .【点睛】本题主要考查了代数式的书写,代数式的书写要求: (1)在代数式中出现的乘号,通常简写成“⋅”或者省略不写; (2)数字与字母相乘时,数字要写在字母的前面; (3)在代数式中出现的除法运算,一般按照分数的写法来写,带分数要写成假分数的形式.2.下列说法不正确的是 ( )A .整式包括多项式和单项式B .单项式m 次数是0C .312x x y +是四次二项式 D .3是单项式【解析】A.整式包括多项式和单项式,故A 正确,不符合题意;B.单项式m 次数是1,故B 错误,符合题意;C.312x x y +是四次二项式,故C 正确,不符合题意; D.3是单项式,故D 正确,不符合题意.故选:B .【点睛】本题主要考查了整式的相关定义,解题的关键是熟练掌握单项式的定义,数与字母的乘积叫做单项式,单独的一个数和字母都是单项式.3.下列去括号错误的是 ( )A .()a b c a b c ++=++B .()a c b a c b --=-+C .2()22a b c a b c +-=+-D .22()a a b a a b --+=++【解析】A.()a b c a b c ++=++,故A 正确,不符合题意;B.()a c b a c b --=-+,故B 正确,不符合题意;C.2()22a b c a b c +-=+-,故C 正确,不符合题意;D.()22a a b a a b --+=+-,故D 错误,符合题意.故选:D .【点睛】本题主要考查了去括号法则,熟练掌握去括号法则,是解题的关键,注意括号前面为负号的,将括号和负号去掉,括号内每一项的符号都要发生改变.4.在下列代数式:12ab ,2a b +,ab 2+b +1,3,x 3+x 2-3中,多项式有 ( ) A .2个B .3个C .4个D .5个 【解析】 解:12ab ,2a b +,ab 2+b +1,3,x 3+x 2-3中多项式有:2a b +,ab 2+b +1,x 3+x 2-3,即多项式有3个,故B 正确.故选:B .【点睛】本题主要考查了多项式的定义,熟练掌握几个单项式的和为多项式,是解题的关键.5.已知x y y x -=-,2x =,3y =,则2x y -的值为 ( )A .-1B .1C .-1或7D .1或-7【解析】 解:∵2x =,3y =∴x =±2,y =±3 ∵x y y x -=-∴y ≥x∴y =3,x =±2当y =3,x =2时,2x -y =2×2-3=1;当y =3,x =-2时,2x -y =2×(-2)-3=-7.故选:D .【点睛】本题考查求代数式的值及绝对值的意义,理解绝对值的意义是解题的关键.6.若一个多项式加上2x 2﹣y 2等于x 2+y 2,则这个多项式是 ( )A .x 2﹣2y 2B .x 2C .﹣x 2+2y 2D .﹣x 2【解析】解:该多项式为(x 2+y 2)﹣(2x 2﹣y 2)=x 2+y 2﹣2x 2+y 2=﹣x 2+2y 2,故选:C .【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.7.用8m 长的铝合金做成一个长方形的窗框(如图,单位:m ),设长方形窗框的横条长度为()m x ,则长方形窗框的面积为 ( )A .()24m x x -B .()283m x x -C .234m 2x x ⎛⎫- ⎪⎝⎭D .238m 2x x ⎛⎫- ⎪⎝⎭【解析】解:∵长方形窗框的横条长度为x m ∴长方形窗框的竖条长度为833422x x -⎛⎫=- ⎪⎝⎭m ∴长方形窗框的面积为:342x x ⎛⎫- ⎪⎝⎭m 2 故选C .【点睛】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.8.已知实数m 在数轴上的位置如图所示,则化简|2||1|m m +--的结果为 ( )A .21m +B .21m --C .3-D .3【解析】∵, ∴m <0,且|m |<1,∴m -1<0,m +2>0,∴|2||1|21=21m m m m m +--=+-++,故选A .【点睛】本题考查了数轴的意义,绝对值的化简,正确获取数轴信息,熟练化简绝对值是解题的关键.二、填空题(每题3分,共24分)9.比较大小:3x 2+5x +1___2x 2+5x ﹣1(用“>、=或<”填空)【解析】解:(3x 2+5x +1)﹣(2x 2+5x ﹣1)=3x 2+5x +1﹣2x 2﹣5x +1=x 2+2,∵x 2≥0,∴x 2+2>0,∴3x 2+5x +1>2x 2+5x ﹣1,故答案为:>.【点睛】本题考查整式的加减,理解偶次幂的非负性,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.10.单项式3265x y 的系数是 _____. 【解析】 解:单项式3265x y 的系数是65.故答案为:65.【点睛】本题考查了单项式的系数,充分理解单项式系数的含义是解决本题的关键.11.化简()x y x y +--=___________.【解析】解:()x y x y +--x y x y =+-+2y =,故答案为:2y .【点睛】本题主要考查了整式的加减混合运算,熟练掌握整式的加减混合运算法则是解题的关键.12.买一个足球需要m 元,买一个篮球需要n 元,则买3个足球和5个篮球共需______元.【解析】解:∵一个足球需要m 元,买一个篮球需要n 元,∴买3个足球、5个篮球共需要(3m +5n )元.故答案为:3m +5n .【点睛】此题主要考查了列代数式,解题的关键是注意代数式的正确书写:数字写在字母的前面,数字与字母之间的乘号要省略不写.13.如图所示,在这个数据运算程序中,若开始输入的x 的值为2,结果输出的是1,返回进行第二次运算,输出的是-4,…,则第2022次输出的结果是_________.【解析】解:第1次运算输出的结果为 12×2=1,第2次运算输出的结果为1−5=-4,第3次运算输出的结果为 12×(−4)=-2,第4次运算输出的结果为 12×(−2)=-1,第5次运算输出的结果为−1−5=-6,第6次运算输出的结果为12×(−6)=-3,第7次运算输出的结果为−3−5=-8,第8次运算输出的结果为12 ×(−8)=-4,归纳类推得:从第2次运算开始,输出结果是以-4,-2,-1,-6,-3,-8循环往复的,因为2022−1=336×6+5,所以第2022次运算输出的结果与第6次输出的结果相同,即为-3.故答案为:-3.【点睛】本题考查了程序图与有理数计算的规律性问题,正确归纳类推出一般规律是解题关键.14.定义新运算:a#b=3a-2b,则(x+y)#(x-y)=_________ .【解析】解:由题意得:(x+y)#(x-y)= 3(x+y)-2(x-y)=3x+3y-2x+2y=x+5y,故答案为:x+5y;【点睛】本题考查了整式的加减,掌握去括号法则是解题关键.15.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有___________个★.【解析】解:由图可知,第1个图形有:1×3+1个;第2个图形有:2×3+1个;第3个图形有:3×3+1个;第4个图形有:4×3+1个;…∴第n个图形有:n×3+1个;∴第20个图形有:20×3+1=61(个);故答案为:61.【点睛】本题考查了图形的规律探究,解题的关键是由特殊到一般推导出一般性规律.16.已知当1x=-时,代数式x=时,代数式32022ax bx的值为2023;则当1++32022ax bx的值为________.++【解析】解:当1x=时,代数式32022ax bx的值为2023;++a b20222023,a b∴+=,1当1x=-时,320222022ax bx a b++=--+a b2022120222021.故答案为:2021【点睛】本题考查的是代数式的求值,掌握“整体代入法求解代数式的值”是解本题的关键.三、解答题(每题8分,共72分)17.化简:(1)()()2222432a b ab a b ab -+-+(2)()()22342223a b a b ---+【解析】(1)解:原式22222222(41432(233))a b ab a b ab a b ab a b ab =+=---+--=;(2)解:原式22224=1264(16=1126266)b b a b a a b a -+--=+-+().【点睛】本题考查整式的运算,熟练掌握合并同类项和去括号法则是解题的关键. 18.(1)化简:()2222156352a b ab a b ab ⎡⎤+--⎣⎦;(2)已知长方形的长为2a b +,宽为32a b -,求它的周长.【解析】解:(1)原式()2222156156a b ab a b ab =+-+2222156156a b ab a b ab =+-+212ab =;(2)因为长方形的长为2a b +,宽为32a b -,所以它的周长为()()()22223232a b a b a b a b ++=++⎡⎤⎦-⎣- ()25a b =-102a b =-.【点睛】本题考查了整式的加减及应用,熟练掌握整式加减的运算法则是解题关键.19.已知:A =2a 2+3ab -2a -1,B =-a 2+ab -1.(1)求A +2B ;(2)若A +2B 的值与a 的取值无关,求b 的值.【解析】(1)解:∵A =2a 2+3ab -2a -1,B =-a 2+ab -1,∴A +2B =2a 2+3ab -2a -1+2(-a 2+ab -1)=2a 2+3ab -2a -1-2a 2+2ab -2=5ab -2a -3;(2)解:∵A +2B 的值与a 的取值无关,∴5ab -2a =0,∴a (5b -2)=0,∴5b -2=0,解得:b =25.【点睛】本题考查了整式的加减,解答本题的关键是掌握去括号法则以及合并同类项法则.20.母亲节,阳阳送给妈妈一份精美的礼物,并用丝带把长方体礼品盒打上包装(如图所示,图中虚线为丝带),打蝴蝶结的部分需用丝带()cm x y z -+.(1)用含x 、y 、z 的式子求出打好整个包装需用丝带总长度;(2)若1米丝带费用为3元,求当25x =,14y =,10z =时,(1)中丝带的总费用为多少元?【解析】(1)解:由题意得打好整个包装需用丝带总长度为2x +4y +2z +(x -y +z )=2x +4y +2z +x -y +z=(3x +3y +3z )cm ,答:打好整个包装需用丝带总长度为(3x +3y +3z )cm .(2)解:当25x =,14y =,10z =时,3x +3y +3z=3×25+3×14+3×10=147(cm )147cm =1.47米,所需费用为1.47×3=4.41元,答:丝带的总费用为4.41元.【点睛】此题考查了列代数式、整式的加减及化简求值等知识,熟练掌握整式的加减是解题的关键.21.某教辅书中一道整式运算的参考答案污损看不清了,形式如下:解:原式=█()2232y x +-118x y =-+.(1)求污损部分的整式;(2)当x =2,y =﹣3时,求污损部分整式的值.【解析】(1)根据题意可得,污损不清的部分为:(-11x +8y )-2(3y 2-2x )=-11x +8y -6y 2+4x2687.y y x =-+-(2)当x =2,y =-3时,原式 ()()2638372=-⨯-+⨯--⨯54241492=---=- 【点睛】此题考查了整式的加减一化简求值,以及代数式求值,熟练掌握运算法则是解本题的关键.22.疫情期间,为了满足市民对口罩的需求,某厂决定生产两款口罩.每天共生(1)若每天生产A种口罩x包,则生产B种口罩__________包.(用含x的代数式表示)(2)用含x的代数式表示该厂每天获得的利润,(利润=售价-成本)并进行化简;(3)当x=300时,求每天获得的利润.【解析】(1)解:∵每天共生产两种口罩500包,每天生产A种口罩x包,∴生产B种口罩(500-x)包,故答案为:(500-x);(2)解:(8-5)x+(9-7)(500-x)=(1000+x)元;答:该厂每天获得的利润(1000+x)元;(3)解:当x=300时,原式=1300元,答:每天获得的利润为1300元.【点睛】本题考查了代数式的求值、列代数式,掌握用数值代替代数式里的字母进行计算,根据题意列出算式是解题关键.23.为节约能源,我市按如下规定收取电费:一户居民每月用电不超过120度,则每度按0.52元收费:若超过120度,则超过的部分每度多收0.2元,设某户居民某月用电x度.(1)请用含x的代数式表示该户居民该月应缴纳的电费(分两种情况讨论);(2)已知该市小明家今年1月份用电96度,2月份用电156度,3月份用电138度,问小明家今年一季度共应缴纳电费多少元?【解析】(1)解:第一种情况:当x≤120度时,该户居民该月应缴纳的电费为0.52x;第二种情况:当x>120度时,该户居民该月应缴纳的电费为:120×0.52+(x﹣120)×(0.52+0.2)=0.72x﹣24(元);(2)96×0.52+0.72×156﹣24+0.72×138﹣24=213.6(元),答:小明家今年一季度共应缴纳电费213.6元.【点睛】本题考查列代数式,代数式求值,得到超过120度的用电量的电费的算法是解决本题的关键.24.对任意一个四位正整数m,如果m的百位数字等于个位数字与十位数字之和,m的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m为“筋斗数”.例如:m=5321,满足1+2=3,2×2+1=5,所以5321是“筋斗数”.例如:m=8523,满足2+3=5,但2×2+3=7≠8,所以8523不是“筋斗数”.(1)判断9633和2642是不是“筋斗数”,并说明理由;(2)若m 是“筋斗数”,且m 与13的和能被11整除,求满足条件的所有“筋斗数”m .【解析】(1)解:9633是“筋斗数”,2642不是“筋斗数”,理由如下:∵6=3+3,9=2×3+3,∴9633是“筋斗数”;∵6=4+2,28+2≠,∴2642不是“筋斗数”;(2)设m 的个位数为a ,0≤a ≤9,十位数为0<b ≤9,且a 、b 为整数∵m 是“筋斗数”,∴m 的百位数为a +b ,千位数为2b +a ;∴m =1000(2b +a )+100(a +b )+10b +a =1100a +110b +2000b +a∵m 与13的和能被11整除,∴1100a +110b +2000b +a +13能被11整除,∵2b +a ≤9且a 、b 为整数∴b ≤4.5∵1100a +110b 能被11整除,∴2000b +a +13能被11整除,∴b =0,a =9或b =1,a =0或b =2,a =2或b =3,a =4,或b =4,a =6,∴a +b =9,2b +a =9或a +b =1,2b +a =2或a +b =4,2b +a =6或a +b =7,2b +a =10(舍去)或a +b =10,2b +a =14(舍去)∴m 的值为9909或2110或6422【点睛】本题是一道新定义题目,考查了有理数整除的相关性质,利用代数式的值进行相关分类讨论,得出结果,解题的关键是能够理解定义.25.在数轴上,|a -b |可以表示数a 、b 所对应的两点之间的距离,点P 为数轴上任意一点,其代表的数为x .如|x -2|可以表示点P 与2所对应的点之间的距离.(1)若|x +4|+|x -1|=7,则x =_______,|x +4|+|x -1|的最小值是_______;(2)若2x +|10-5x |+|3-3x |-7的值恒为常数,求x 该满足的条件及此时常数的值.【解析】解:(1)如图所示,-4和1之间的距离为|1(4)|5,当P 点在-4和1之间时,11|4||1|5x x AP BP AB ++-=+==;当P 点在-4左侧时,2222|4||1|2527x x AP BP AB AP AP ++-=+=+=+=,所以21AP =,此时x =-4-1=-5;当P 点在-4右侧时,3333|4||1|2527x x AP BP AB BP BP ++-=+=+=+=,所以31BP =,此时x =1+1=2;综上所述x =-5或2;由上分析可知,|x +4|+|x -1|的值大于等于5,且当P 点在-4和1之间时等号成立,因此|x +4|+|x -1|的最小值是5;故答案为:-5或2;5;(2)2|105||33|725|2|3|1|7x x x x x x +-+--=+-+--,当1x <时,2|105||33|7210533766x x x x x x x +-+--=+-+--=-+,不是定值; 当12x ≤≤时,2|105||33|721053370x x x x x x +-+--=+-+--=,是定值; 当2x >时,2|105||33|725103371020x x x x x x x +-+--=+-+--=-,不是定值; 综上所述当12x ≤≤时,2x +|10-5x |+|3-3x |-7的值恒为常数,常数值为0.【点睛】本题考查整式的加减的应用,数轴上两点之间的距离,化简绝对值等.能分类讨论是解题关键.。

【数学试题】最新人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题.doc

【数学试题】最新人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题.doc

人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式 的系数和次数分别是( ) A.2,2B.2,3C.3,2D.2,42.下列说法正确的是( ) A .ab +c 是二次三项式 B .多项式2x 2+3y 2的次数是4 C .0是单项式 D .34ba是整式 3.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .54.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )25.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy6.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( )A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______. 15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -人教版数学七年级(上)第二章单元质量检测试卷、答案一、选择题(共10小题;共30分)1. 多项式的项数和次数分别为A. ,B. ,C. ,D. ,2. 下列计算正确的是A. B.C. D.3. 的结果是A. B. C. D.4. 若单项式的次数是,则的值是A. B. C. D.5. 今年学校运动会参加的人数是人,比去年增加,那么去年运动会参加的人数为人.A. B. C. D.6. 下列说法正确的是A. 与不是同类项B. 不是整式C. 单项式的系数是D. 是二次三项式7. 设某数为,那么代数式表示A. 某数的倍的平方减去除以B. 某数的倍减的一半C. 某数与的差的倍除以D. 某数平方的倍与的差的一半8. 用字母表示 与 的和除 与 的差为 A.B.C.D.9. 观察下列数表: 第一行 第二行 第三行 第四行根据数表所反映的规律,第 行第 列交叉点上的数应为 A.B.C.D.10. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( )A.4,3B.4,-3C.6,3D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( ) A.2(x-y )=2x-y B.-(m-n )=-m+n C.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53 B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________. 14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数)创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3.当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ;乙每份材料收2.5元印刷费,故答案为25,50,2.5x;(2)对甲来说,印刷大于800份时人教版七年级上册数学单元练习题:第二章整式的加减一、选择题1.单项式的系数是()A. B. π C. 2 D.2.下列各组式子中,是同类项的是()A. 3x2y与-3xy2B. 3xy与-2yxC. 2x与2x2D. 5xy与5yz3.在式子a2+2,,ab2,,﹣8x,0中,整式有()A. 6个B. 5个C. 4个D. 3个4.下列各式计算结果正确的是()A. a+a=a2B. (a﹣1)2=a2﹣1C. a•a=a2D. (3a)3=9a25.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 36.下列说法错误的是()A. 2x2﹣3xy﹣1是二次三项式B. ﹣x+1不是单项式C. 的系数是D. ﹣22xab2的次数是67.计算2a3+3a3结果正确的是()A. 5a6B. 5a3C. 6a6D. 6a38.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y9.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A. a=2bB. a=3bC. a=4bD. a=b10.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. ﹣1B. ﹣5C. 5D. 111.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题12.单项式﹣x3y的系数是________.13.多项式是a -2a -1 是________次________项式.14.下面是按一定规律排列的一列数:,- ,,- …那么第8个数是________.15.观察下列数:,,,,…按规律写出第6个数是________,第10个数是________,第n个数是________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________17.下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有________个★.三、解答题18.化简:(1)2x-5y-3x+y(2)19.先化简,再求值.,其中.20.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.21.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.参考答案一、选择题1.D2. B3.B4.C5. A6. D7. B8. C9.A 10.C 11. B二、填空题12. 13.三;三14. 15.;;16.x n+n217.(1+3n)三、解答题18.(1)解:2x-5y-3x+y=(2-3)x+(-5+1)y=-x-4y(2)解:=2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b19.解:原式=3x²-2xy- [x²-8x+8xy],=3x²-2xy- x²+4x-4xy,= x²-6xy+4x,当时,原式= ×(-2)2-6×(-2)×1+4×(-2),=10+12-8,=14.20.(1)解:上述等式的规律是:两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);如果用m表示十位数,n表示个位数的话,则第一个因数为10m+n,第二个因数为10m+(10﹣n),积为100m(m+1)+n(10﹣n);等式表示出来为:(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)(2)解:∵左边=(10m+n)(10m﹣n+10),=(10m+n)[10(m+1)﹣n],=100m(m+1)﹣10mn+10n(m+1)﹣n2,=100m(m+1)﹣10mn+10mn+10n﹣n2,=100m(m+1)+n(10﹣n)=右边,∴(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)成立21.(1)④4×6﹣52=﹣1(2)(2n﹣1)(2n+1)﹣(2n)2=﹣1(3)解:左边=(2n﹣1)(2n+1)﹣(2n)2=4n2﹣1﹣4n2=﹣1所以(2)中所写的等式一定成立人教版数学七年级上册第2章整式的加减单元检测卷(含答案解析)一.填空题(共6小题,满分24分,每小题4分)1.(4分)将多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为.2.(4分)“x2的3倍与y的倒数的和”,用代数式表示为.3.(4分)如图是一个数值转换机的示意图.当输入x=3时,则输出的结果为.4.(4分)如果x2﹣3xy=6,3xy+y2=10,则x2+y2=.5.(4分)当a=3.6,b=6.4时,求多项式a2+ab﹣b2+a﹣a2﹣ab+b+b2=.6.(4分)当3x+3﹣x=2时,代数式32x+3﹣2x的值是.二.选择题(共10小题,满分30分,每小题3分)7.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个8.(3分)下列说法错误的是()A.x是单项式B.3x4是四次单项式C.的系数是D.x3﹣xy2+2y3是三次多项式9.(3分)三个连续整数的积是0,则这三个整数的和是()A.﹣3B.0C.3D.﹣3或0或3 10.(3分)下列各式合并同类项后,结果正确的是()A.3a+2b=5ab B.3x3y2﹣2x2y=xyC.3x2+2x3=5x5D.4x2y﹣7yx2=﹣3x2y11.(3分)下列说法中,错误的是()A.x2是二次单项式B.x3﹣2xy2+y3是三次三项式C.0是单项式D.﹣的系数是﹣112.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣113.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定14.(3分)将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y15.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨16.(3分)一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能三.解答题(共9小题,满分66分)17.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)18.(6分)先化简,再求值:(1)2x2﹣5x+x2+4x,其中x=﹣3.(2),其中x=6,y=﹣1.19.(6分)已知3x|2a﹣1|y与﹣2xy|b|是同类项,并且a与b互为负倒数,求ab﹣3(﹣b)﹣+6的值.20.(6分)李可同学欲将一个多项式加上2xy﹣3yz+4时,由于错把“加上”当作“减去”使得计算结果为﹣6xy+8yz﹣9,请你求出正确的答案.21.(6分)设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|﹣c=0.化简:|b|﹣|a+b|﹣|c ﹣b|+|a﹣c|.22.(6分)已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.23.(7分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.24.(8分)已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?25.(9分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?人教版数学七年级(上册)第2章整式的加减单元检测卷参考答案一.填空题(共6小题,满分24分,每小题4分)1.(4分)将多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为﹣2x3+x2y﹣5xy+7.【分析】根据多项式的项的概念和降幂排列的概念解答即可.【解答】解:多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为﹣2x3+x2y﹣5xy+7,故答案为:﹣2x3+x2y﹣5xy+7.2.(4分)“x2的3倍与y的倒数的和”,用代数式表示为3x2+.【分析】首先表示出x2的3倍、y的倒数,然后求其和即可.【解答】解:依题意得3x2+.故答案是:3x2+.3.(4分)如图是一个数值转换机的示意图.当输入x=3时,则输出的结果为26.【分析】把x的值代入运算程序进行计算即可得解.【解答】解:x=3时,32×3﹣2=27﹣1=26.故答案为:26.4.(4分)如果x2﹣3xy=6,3xy+y2=10,则x2+y2=16.【分析】已知等式相加即可求出原式的值.【解答】解:∵x2﹣3xy=6,3xy+y2=10,∴x2+y2=x2﹣3xy+3xy+y2=10+6=16,故答案为:165.(4分)当a=3.6,b=6.4时,求多项式a2+ab﹣b2+a﹣a2﹣ab+b+b2=10.【分析】所求式子合并同类项得到最简结果,将a与b的值代入计算即可求出值.【解答】解:a2+ab﹣b2+a﹣a2﹣ab+b+b2=a+b,当a=3.6,b=6.4时,原式=3.6+6.4=10.故答案为:106.(4分)当3x+3﹣x=2时,代数式32x+3﹣2x的值是2.【分析】把3x+3﹣x=2两边平方即可求解.【解答】解:把3x+3﹣x=2两边平方得:32x+3﹣2x+2•3x+3﹣x=4,即32x+3﹣2x=2.故答案是2.二.选择题(共10小题,满分30分,每小题3分)7.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个【分析】根据整式的定义,结合题意即可得出答案.【解答】解:在﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有﹣mn,m,8,x2+2x+6,,,一共6个.故选:C.8.(3分)下列说法错误的是()A.x是单项式B.3x4是四次单项式C.的系数是D.x3﹣xy2+2y3是三次多项式【分析】根据多项式的有关概念,以及单项式的系数的定义即可作出判断.【解答】解:A、x是单项式,正确;B、3x4是四次单项式,正确;C、的系数是,错误;D、x3﹣xy2+2y3是三次多项式,正确;故选:C.9.(3分)三个连续整数的积是0,则这三个整数的和是()A.﹣3B.0C.3D.﹣3或0或3【分析】设最小的整数为n﹣1,根据连续的整数只是相差1,知另外的两个整数分别是n,n+1.由等量关系这三个连续整数的积是0,列出方程.然后根据三个因式的积是0,则每一个因式都可能是0,分情况讨论.【解答】解:设最小的整数为n﹣1,根据题意得(n﹣1)•n•(n+1)=0,解得n﹣1=0或n=0或n+1=0,当n﹣1=0时,n=1,这三个数分别是0,1,2,这三个数的和是3;当n=0时,这三个数分别是﹣1,0,1,这三个数的和是0;当n+1=0时,n=﹣1,这三个数是﹣2,﹣1,0,这三个数的和是﹣3.故选:D.10.(3分)下列各式合并同类项后,结果正确的是()A.3a+2b=5ab B.3x3y2﹣2x2y=xyC.3x2+2x3=5x5D.4x2y﹣7yx2=﹣3x2y【分析】直接利用合并同类项法则计算得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、3x3y2﹣2x2y,无法合并,故此选项错误;C、3x2+2x3,无法合并,故此选项错误;D、4x2y﹣7yx2=﹣3x2y,正确.故选:D.11.(3分)下列说法中,错误的是()A.x2是二次单项式B.x3﹣2xy2+y3是三次三项式C.0是单项式D.﹣的系数是﹣1【分析】根据单项式、多项式的定义即可判断;【解答】解:A、x2是二次单项式;正确,本选项不符合题意.B、x3﹣2xy2+y3是三次三项式;正确,本选项不符合题意.C、0是单项式;正确,本选项不符合题意.D、﹣的系数是﹣1;错误,系数应该是﹣,本选项符合题意.故选:D.12.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】根据单项式的和是单项式,可得同类项,根据同类项,可得m、n的值,根据差的绝对值是大数减小数,可得答案.【解答】解:由题意,得2m=4,n=3.解得m=2,n=3.|m﹣n|=|2﹣3|=1,故选:B.13.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定【分析】利用作差法即可判断两个多项式的大小关系.【解答】解:A﹣B=(3m2﹣5m+2)﹣(3m2﹣5m﹣2)=3m2﹣5m+2﹣3m2+5m+2=4>0,∴A﹣B>0,∴A>B,故选:B.14.(3分)将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.【解答】解:原式=(2+3﹣4)(x+y)=x+y,故选:A.15.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨【分析】原产量n吨,增产30%之后的产量为n×(1+30%),再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n×(1+30%)=n130%吨.故选:B.16.(3分)一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能【分析】可以设每人的原票价为a元,然后按照旅行社的要求代入数据进行计算即可.【解答】解:设每人的原票价为a元,如果选择甲,则所需要费用为a+0.6a×2=2.2a(元),如果选择乙,则所需费用为:×3×a=2.4a(元),∵2.2a<2.4a,∴甲比乙优惠,故选:A.三.解答题(共9小题,满分66分)17.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)【分析】合并同类项就是系数和系数相加作为系数,字母和字母的指数不变.【解答】解:(1)15x+4x﹣10x=(15+4﹣10)x=9x(2)﹣p2﹣p2﹣p2=﹣3p2(3)3x2y﹣3xy2+2yx2﹣y2x=5x2y﹣4xy2(4)=a2b=a2b.18.(6分)先化简,再求值:(1)2x2﹣5x+x2+4x,其中x=﹣3.(2),其中x=6,y=﹣1.【分析】按要求先化简再求值.注意去括号法则:++得+,﹣﹣得+,﹣+得﹣,+﹣得﹣;合并同类项法则:把同类项的系数相加减,字母和字母指数的部分不变.【解答】解:(1)原式=3x2﹣x,当x=﹣3时,原式=30;(2)原式==﹣,当x=6,y=﹣1时,原式=﹣2.19.(6分)已知3x|2a﹣1|y与﹣2xy|b|是同类项,并且a与b互为负倒数,求ab﹣3(﹣b)﹣+6的值.【分析】此题要抓住同类项的定义“所含字母相同,相同字母的指数相同”去列方程:|2a ﹣1|=1,|b|=1,解方程即可求得a,b的值;同时注意a与b互为负倒数这一条件;再将代数式ab﹣3(﹣b)﹣+6化简,将a,b的值代入即可.【解答】解:由题意可知|2a﹣1|=1,|b|=1,解得a=1或0,b=1或﹣1.又因为a与b互为负倒数,所以a=1,b=﹣1.原式=ab﹣a+3b﹣a+6=ab﹣2a+3b+6,当a=1,b=﹣1时,原式=1×(﹣1)﹣2×1+3×(﹣1)+6=0.20.(6分)李可同学欲将一个多项式加上2xy﹣3yz+4时,由于错把“加上”当作“减去”使得计算结果为﹣6xy+8yz﹣9,请你求出正确的答案.【分析】用这个多项式加上﹣6xy+8yz﹣9,求出这个多项式的式子,然后用这个多项式再减去﹣6xy+8yz﹣9,求出结果即可.【解答】解:﹣6xy+8yz﹣9+2(2xy﹣3yz+4)=﹣6xy+8yz﹣9+4xy﹣6yz+8=﹣2xy+2yz﹣1.21.(6分)设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|﹣c=0.化简:|b|﹣|a+b|﹣|c ﹣b|+|a﹣c|.【分析】根据|a|+a=0,|ab|=ab,|c|﹣c=0知a<0,b<0,c>0,继而知a+b<0,c﹣b >0,a﹣c<0,根据绝对值性质去绝对值符号后合并即可得.【解答】解:∵|a|+a=0,|c|﹣c=0,即|a|=﹣a,|c|=c,∴a<0,c>0,∵|ab|=ab,∴ab>0,∴b<0,则原式=﹣b+a+b﹣c+b﹣a+c=b.22.(6分)已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2b﹣3a2b+4ab2+a2b+3a2b=a2b+4ab2,当a=﹣1,b=﹣2时,原式=﹣3﹣16=﹣19.23.(7分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.【分析】根据题意可知,阴影部分面积是长方形面积减去四个正方形的面积.【解答】解:(1)由图可知:ab﹣4x2.(2)阴影部分的面积为:200×150﹣4×102=29 600(m2).24.(8分)已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?【分析】(1)直接把A=x2﹣2xy,B=y2+3xy代入进行计算即可;(2)根据题意得出C的表达式,再去括号,合并同类项即可;(3)把A、B、C的表达式代入,合并同类项后,把x=﹣2,y=﹣3代入进行计算即可.【解答】解:(1)∵A=x2﹣2xy,B=y2+3xy,∴2A﹣3B=2(x2﹣2xy)﹣3(y2+3xy)=2x2﹣4xy﹣3y2﹣9xy=2x2﹣13xy﹣3y2;(2)∵A﹣B+C=0,∴C=B﹣A=(y2+3xy)﹣(x2﹣2xy)=y2+3xy﹣x2+2xy=y2+5xy﹣x2;(3)∵A=x2﹣2xy,B=y2+3xy,C=y2+5xy﹣x2,∴2A﹣B+C=2(x2﹣2xy)﹣(y2+3xy)+(y2+5xy﹣x2)=2x2﹣4xy﹣y2﹣3xy+y2+5xy﹣x2=x2﹣2xy,当x=﹣2,y=﹣3,原式=4﹣2×6=﹣8.25.(9分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?【分析】(1)根据后一排比前一排多2个座位,第n 排比第一排多2(n ﹣1)个座位;(2)①把n =25,m =20代入进行计算即可得解;②利用求和公式列式计算即可得解.【解答】(1)m +2(n ﹣1).(2)①当m =20,n =25时,m +2(n ﹣1)=20+2×(25﹣1)=68(个);②m +m +2+m +2×2+…+m +2×(25﹣1)=25m +600.当m =20时,25m +600=25×20+600=1 100(人).解:(1)第一排有m 个座位,后边的每一排比前一排多两个座位,第n 排有m +2(n ﹣1)=2n +m ﹣2(个);(2)当m =20时,25排:2×25+20﹣2=68(个);(3)25排最多可以容纳:(20+68)×25÷2=88×25÷2=1100(位)答:如果这个剧院共25排,那么最多可以容纳1100位观众.人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

(人教版)2018-2019学年 秋七年级上《第二章整式的加减》测试(含答案)

(人教版)2018-2019学年 秋七年级上《第二章整式的加减》测试(含答案)

第二章测评(时间90分钟,满分120分) 一、选择题(每小题3分,共30分)1.在x2+2,+4,ab2,-1,-5x,0这6个式子中,整式有(C)A.6个B.5个C.4个D.3个2.下列结论正确的是(B)A.单项式的系数是,次数是4B.单项式-xy2z的系数是-1,次数是4C.单项式m的次数是1,没有系数D.多项式2x2+xy2+3是二次三项式3.计算5x-3x=(A)A.2xB.2x2C.-2xD.-24.下列计算正确的是(D)A.x2+x2=x4B.x2+x3=2x5C.3x-2x=1D.x2y-2x2y=-x2y5.下列各式中,是二次三项式的是(C)A.a2+-3B.32+3+1C.32+a+abD.x2+y2+x-y6.下列各算式中,合并同类项正确的是(A)A.x2+x2=2x2B.x2+x2=x4C.2x2-x2=2D.2x2-x2=2x7.单项式xm-1y3与4xyn的和是单项式,则nm的值是(D)A.3B.6C.8D.98.某商店举办促销活动,促销的方法是将原价x元的衣服以元出售,则下列说法中,能正确表达该商店促销方法的是(B)A.原价降价15元后再打8折B.原价打8折后再降价15元C.原价降价15元后再打2折D.原价打2折后再降价15元9.已知a+b=4,c-d=-3,则(b-c)-(-d-a)的值为(A)A.7B.-7C.1D.-110.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.=-x2+y2,阴影部分即为被墨迹弄污的部分,那么被墨汁遮住的一项应是(C)A.-7xyB.+7xyC.-xyD.+xy二、填空题(每小题4分,共24分)11.苹果每千克a元,梨每千克b元,则整式2a+b表示购买2千克苹果和1千克梨的钱数.12.单项式-5x2y的次数是3.13.已知多项式x|m|+(m-2)x-10是二次三项式,m为常数,则m的值为-2.14.去括号并合并同类项:2a-(5a-3)=-3a+3.15)已知a,b互为相反数,则(4a-3b)-(3a-4b)=0.16.已知当x=1时多项式ax5+bx3+cx的值为5,那么当x=-1时该多项式的值为-5.三、解答题(共66分)17.(6分)已知a2xb3y与3a4b6是同类项,求3y3-4x3y-4y3+2x3y的值.解因为a2xb3y与3a4b6是同类项,所以2x=4,3y=6.解得x=2,y=2.3y3-4x3y-4y3+2x3y=-y3-2x3y,当x=2,y=2时,原式=-8-32=-40.18.(6分)已知-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,求a2-2a+1的值.解∵-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,∴3+|a|=7,a-4≠0.∴a=-4.∴a2-2a+1=25.19.(8分)观察下列单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,….(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?解(1)第9个单项式是29-1x9y,即256x9y.(2)第n个单项式为(-1)n+12n-1xny,它的系数是(-1)n+12n-1,次数是n+1. 20.(8分)化简:(1)3x2+2xy-4y2-(3xy-4y2+3x2);(2)4(x2-5x)-5(2x2+3x).解(1)原式=3x2+2xy-4y2-3xy+4y2-3x2=-xy;(2)原式=4x2-20x-10x2-15x=-6x2-35x.21.(8分)先化简,再求值:(1)-5x2y-[2x2y-3(xy-2x2y)]+2xy,其中x=-1,y=-2;(2)5(3a2b-ab2-1)-(ab2+3a2b-5),其中a=,b=.解(1)原式=-5x2y-2x2y+3xy-6x2y+2xy=-13x2y+5xy,当x=-1,y=-2时,原式=26+10=36;(2)原式=15a2b-5ab2-5-ab2-3a2b+5=12a2b-6ab2,当a=,b=时,原式=12×-6×=1-.22.(8分)已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的值无关,求x的值.解(1)∵A=2x2+xy+3y-1,B=x2-xy,∴A-2B=2x2+xy+3y-1-2x2+2xy=3xy+3y-1.∵(x+2)2+|y-3|=0,∴x=-2,y=3.∴A-2B=-18+9-1=-10.(2)由A-2B=y(3x+3)-1的值与y的值无关,得3x+3=0,解得x=-1.23.(10分)为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示).(1)用含m,n的代数式表示该广场的面积S;(2)若m,n满足(m-6)2+|n-5|=0,求出该广场的面积.解(1)根据题意得S=2m·2n-m(2n-0.5n-n)=4mn-0.5mn=3.5mn;(2)∵(m-6)2+|n-5|=0,∴m=6,n=5.∴S=3.5×6×5=105.24.(12分)一列“和谐”号动车组火车行驶在京广铁路线上,动车从北京出发时车上有(5a-2b)个人,到石家庄站下去了一半人,但又上车若干人,这时车上有(10a-3b)人.(1)中途上车多少人?(2)当a=50,b=40时,中途上车多少人?解(1)设中途上车x人,则根据题意x=(10a-3b)-(5a-2b)=10a-3b-a+b=a-2b(人);(2)当a=50,b=40时,x=×50-2×40=295(人).。

【精选6套】最新人教版数学七年级上册第二章整式的加减单元测试及答案.doc

【精选6套】最新人教版数学七年级上册第二章整式的加减单元测试及答案.doc

人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( ) A.4,3 B.4,-3 C.6,3 D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( ) A.2(x-y )=2x-y B.-(m-n )=-m+n C.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53- B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________.14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数)创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3. 当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ; 乙每份材料收2.5元印刷费, 故答案为25,50,2.5x ;(2)对甲来说,印刷大于800份时人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式 2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a ―b )]=___.16.的结果是___.17.小颖在计算a +N 时,误将“+”看成“―”,结果得3a ,则a +N =___. 18.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,•会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m ,再将实数对...(m ,1)放入其中后,得到的实数是___. 三、解答题(共66分) 19.化简:(1)-0.8a 2b -6ab -3.2a 2b +5ab +a 2b . (2)5(a -b )2-3(a -b )2-7(a -b )-(a -b )2+7(a -b ). 20.先化简,再求值:(1)5a 2-4a 2+a -9a -3a 2-4+4a ,其中a =-12. (2)5ab -92a 2b +12a 2b -(114ab +a 2b +5),其中a =1,b =-2. (3)2a 2-(3ab +b 2+a 2-ab )-2b 2,其中a 2-b 2=2,ab =-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a =1,b =-2时,原式=12.(3)2a 2-(3ab +b 2+a 2-ab )-2b 2=2a 2-3ab -b 2-a 2+ab -2b 2=a 2-b 2-2ab ,当a 2-b 2=2,ab =-3时,原式=8.21.依题意,得A =20-Q ,A =20-0.04n ,当n =150时,A =20-0.04×150=14(升). 22.因为7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2019=2019,所以a =2020,b =-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b ,个位数字为a (b >a ),则原两位数为10b +a ;第二步:交换后的两位数为10人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( ) A .-2x 2y 与xy 2B .x 2y 与x 2z C .3mn 与4nmD .-0.5ab 与abc2.已知苹果的单价为a 元/千克,香蕉的单价为b 元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________.12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 的取值无关,求y 的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12.原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A =5x 2-5x +3,B =x 2-x -1, 所以2A -B=2(5x 2-5x +3)-(x 2-x -1) =10x 2-10x +6-x 2+x +1 =9x 2-9x +7.18.解:(1)8x +6y +5(20―x ―y)=(3x +y +100)吨. 答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

2018年秋七年级数学上册 第二章 整式的加减单元综合测试卷(含解析)(新版)新人教版

2018年秋七年级数学上册 第二章 整式的加减单元综合测试卷(含解析)(新版)新人教版

第二章 整式的加减考试时间:120分钟;满分:150分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共10小题,满分40分,每小题4分) 1.(4分)下列代数式中,整式为( )A .x+1B .11+x C .12+x D .xx 1+ 2.(4分)在代数式π,x 2+12+x ,x+xy ,3x 2+nx+4,﹣x ,3,5xy ,xy 中,整式共有( )A .7个B .6个C .5个D .4个 3.(4分)单项式2πr 3的系数是( ) A .3B .πC .2D .2π4.(4分)单项式2a 3b 的次数是( ) A .2B .3C .4D .55.(4分)对于式子:22y x +,b a 2,21,3x 2+5x ﹣2,abc ,0,xy x 2+,m ,下列说法正确的是( ) A .有5个单项式,1个多项式 B .有3个单项式,2个多项式 C .有4个单项式,2个多项式 D .有7个整式 6.(4分)下列说法正确的是( )A .53xy -的系数是﹣3 B .2m 2n 的次数是2次 C .32y x -是多项式 D .x 2﹣x ﹣1的常数项是17.(4分)如果2x a+1y 与x 2y b ﹣1是同类项,那么ba 的值是( )试卷第!异常的公式结尾页,总4页 A .21 B .23C .1D .3 8.(4分)若单项式a m ﹣1b 2与nb a 221的和仍是单项式,则n m 的值是( ) A .3B .6C .8D .99.(4分)下面计算正确的是( ) A .(m+1)a ﹣ma=1B .a+3a 2=4a 3C .﹣(a ﹣b )=﹣a+bD .2(a+b )=2a+b10.(4分)一个长方形的周长为6a+8b ,其中一边长为2a ﹣b ,则另一边长为( ) A .4a+5b B .a+b C .a+5b D .a+7b3第Ⅱ卷(非选择题)二.填空题(共4小题,满分20分,每小题5分) 11.(5分)下列代数式:(1)mn 21-,(2)m ,(3)21,(4)b a ,(5)2m+1,(6)5y x -,(7)yx yx -+2,(8)x 2+2x+32,(9)y 3﹣5y+y3中,整式有 .(填序号) 12.(5分)如果多项式(﹣a ﹣1)x 2﹣31x b+x+1是关于x 的四次三项式,那么这个多项式的最高次项系数是 ,2次项是13.(5分)如图是小明家的楼梯示意图,其水平距离(即:AB 的长度)为(2a+b )米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a ﹣b )米.问小明家楼梯的竖直高度(即:BC 的长度)为 米.14.(5分)若x=y+3,则41(x ﹣y )2﹣2.3(x ﹣y )+0.75(x ﹣y )2+103(x ﹣y )+7等于 .三.解答题(共9小题,满分90分) 15.(8分)计算: (1)3xy ﹣4xy ﹣(﹣2xy ) (2)(﹣3)2÷241÷(﹣32)+4+22×(﹣23) 16.(8分)若3x m y n是含有字母x 和y 的5次单项式,求m n的最大值. 17.(8分)已知多项式x 2y m+1+xy 2﹣3x 3﹣6是六次四项式,单项式6x 2n y 5﹣m的次数与这个多项式的次数相同,求m+n 的值.试卷第!异常的公式结尾页,总4页 不※※…装……18.(8分)如果两个关于x 、y 的单项式2mx a y 3与﹣4nx 3a ﹣6y 3是同类项(其中xy ≠0).(1)求a 的值;(2)如果它们的和为零,求(m ﹣2n ﹣1)2017的值.19.(10分)若(2mx 2﹣x+3)﹣(3x 2﹣x ﹣4)的结果与x 的取值无关,求m 的值. 20.(10分)已知多项式(m ﹣3)x |m|﹣2y 3+x 2y ﹣2xy 2是关于的xy 四次三项式.(1)求m 的值; (2)当x=23,y=﹣1时,求此多项式的值. 21.(12分)嘉淇准备完成题目:发现系数“(1)他把“”猜成3,请你化简:(3x 2+6x+8)﹣(6x+5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?22.(12分)阅读下面材料: 计算:1+2+3+4+…+99+100化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050 根据阅读材料提供的方法,计算:a+(a+m )+(a+2m )+(a+3m )+…+(a+100m )23.(14分)老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a 2+4ab+4b 2)=a 2﹣4b 2(1)求所捂的多项式 (2)当a=﹣2,b=21时,求所捂的多项式的值2018年秋七年级上学期 第二章 整式 单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分) 1.【分析】直接利用整式、分式、二次根式的定义分析得出答案. 【解答】解:A 、x+1是整式,故此选项正确; B 、11+x ,是分式,故此选项错误; C 、12+x 是二次根式,故此选项错误; D 、xx 1+,是分式,故此选项错误; 故选:A .【点评】此题主要考查了整式、分式、二次根式的定义,正确把握相关定义是解题关键. 2.【分析】根据多项式与单项式统称为整式,判断即可.【解答】解:在代数式π(单项式),x 2+12+x (分式),x+xy (多项式),3x 2+nx+4(多项式),﹣x (单项式),3(单项式),5xy (单项式),xy(分式)中,整式共有6个,故选:B .【点评】此题考查了整式,弄清整式的定义是解本题的关键. 3.【分析】根据多项式的系数即可得出结论. 【解答】解:单项式2πr 3的系数是2π, 故选:D .【点评】此题主要考查了单项式的系数,熟练掌握单项式系数的确定方法即可得出结论. 4.【分析】根据单项式的性质即可求出答案.2【解答】解:该单项式的次数为:4 故选:C .【点评】本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型. 5.【分析】分别利用多项式以及单项式的定义分析得出答案. 【解答】解:22y x +,b a 2,21,3x 2+5x ﹣2,abc ,0,x y x 2+,m 中:有4个单项式,21,abc ,0,m ;2个多项式为:22y x +,3x 2+5x ﹣2. 故选:C .【点评】此题主要考查了多项式以及单项式,正确把握相关定义是解题关键. 6.【分析】直接利用单项式以及多项式的定义分别分析得出答案. 【解答】解:A 、﹣53xy 的系数是﹣53,故此选项错误; B 、2m 2n 的次数是3次,故此选项错误; C 、32yx -是多项式,正确; D 、x 2﹣x ﹣1的常数项是﹣1,故此选项错误; 故选:C .【点评】此题主要考查了单项式以及多项式,正确把握相关定义是解题关键. 7.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a 、b 的值,然后代入求值.【解答】解:∵2x a+1y 与x 2y b ﹣1是同类项,∴a+1=2,b ﹣1=1, 解得a=1,b=2.∴b a =21. 故选:A .【点评】此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键. 8.【分析】首先可判断单项式a m ﹣1b 2与nb a 221是同类项,再由同类项的定义可得m 、n 的值,代入求解即可.【解答】解:∵单项式a m ﹣1b 2与nb a 221的和仍是单项式, ∴单项式am ﹣1b 2与nb a 221是同类项, ∴m ﹣1=2,n=2, ∴m=3,n=2, ∴n m=8. 故选:C .【点评】本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同. 9.【分析】根据去括号和合并同类项进行判断即可. 【解答】解:A 、(m+1)a ﹣ma=a ,错误; B 、a+3a 2=a+3a 2,错误; C 、﹣(a ﹣b )=﹣a+b ,正确; D 、2(a+b )=2a+2b ,错误; 故选:C .【点评】此题考查去括号和添括号问题,关键是根据法则进行解答. 10.【分析】根据长方形的周长公式即可求出另一边的长. 【解答】解:由题意可知:长方形的长和宽之和为:286ba =3a+4b ,4∴另一边长为:3a+4b ﹣(2a ﹣b )=3a+4b ﹣2a+b=a+5b , 故选:C .【点评】本题考查整式加减,涉及长方形的周长,属于基础题型.二.填空题(共4小题,满分20分,每小题5分) 11.【分析】利用整式的定义判断得出即可. 【解答】解:(1)mn 21-,(2)m ,(3)21,(5)2m+1,(6)5y x -,(8)x 2+2x+32都是整式, 故整式有(1)、(2)、(3)、(5)、(6)、(8). 故答案为:(1)、(2)、(3)、(5)、(6)、(8).【点评】此题主要考查了整式的定义,正确把握整式的定义是解题关键. 12.【分析】根据题意可得b=4,﹣a ﹣1=0,解可得a 的值,进而可得多项式为﹣x 4+x+1,然后再确定最高次项系数和2次项.【解答】解:由题意得:b=4,﹣a ﹣1=0, 解得:a=﹣1,∴多项式﹣31x 4+x+1这个多项式的最高次项系数是﹣31,2次项不存在, 故答案为:﹣31;不存在.【点评】此题主要考查了多项式,关键是掌握多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a 个单项式,次数是b ,那么这个多项式就叫b 次a 项式. 13.【分析】从A 点沿着楼梯爬到C 点长度的和应该是楼梯的水平宽度与垂直高度的和,依此用(3a ﹣b )减去(2a+b ),即可求得小明家楼梯的竖直高度. 【解答】解:(3a ﹣b )﹣(2a+b ) =3a ﹣b ﹣2a ﹣b=a ﹣2b (米).故小明家楼梯的竖直高度(即:BC 的长度)为 (a ﹣2b )米. 故答案为:(a ﹣2b ).【点评】考查了整式的加减,整式的加减实质上就是合并同类项. 14.【分析】由x=y+3得x ﹣y=3,整体代入原式计算可得. 【解答】解:∵x=y+3, ∴x ﹣y=3, 则原式=41×32﹣2.3×3+0.75×3﹣103×3+7 =2.25﹣6.9+2.25﹣0.9+7 =3.7,故答案为:3.7.【点评】此题考查了整式的加减﹣化简求值,熟练掌握整体代入思想的运用是解本题的关键.三.解答题(共9小题,满分90分) 15.【分析】(1)根据合并同类项的法则即可求出答案. (2)根据有理数运算的法则即可求出答案. 【解答】解:(1)原式=3xy ﹣4xy+2xy=xy , (2)原式=9÷49÷(﹣32)+4+4×(﹣23) =4×(﹣23)+4﹣6 =﹣6+4﹣6 =﹣8【点评】本题考查学生的计算能力,解题的关键是熟练运用相关运算法则,本题属于基础题型. 16.【分析】根据单项式的概念即可求出答案.【解答】解:因为3x m y n是含有字母x 和y 的五次单项式所以m+n=5所以m=1,n=4时,m n=14=1;m=2,n=3时,m n=23=8;m=3,n=2时,m n=32=9;m=4,n=1时,m n=41=4,故m n的最大值为9.【点评】本题考查了单项式的概念以及有理数的乘方,利用分类讨论分析是解题关键.17.【分析】根据已知得出方程2+m+1=6,求出m=3,根据已知得出方程2n+5﹣m=6,求出方程的解即可.【解答】解:∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,∴m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.【点评】本题考查了多项式的有关内容的应用,注意:多项式中次数最高的项的次数叫多项式的次数.18.【分析】(1)根据同类项的定义求解即可.(2)根据合并同类项的法则把系数相加即可.【解答】解:(1)由题意,得3a﹣6=a,解得a=3;(2)由题意,得2m﹣4n=0,解得m=2n,6(m ﹣2n ﹣1)2017=(﹣1)2017=﹣1.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.19.【分析】原式去括号合并得到最简结果,由结果与x 的取值无关求出m 的值.【解答】解:(2mx 2﹣x+3)﹣(3x 2﹣x ﹣4)=2mx 2﹣x+3﹣3x 2+x+4=(2m ﹣3)x 2+7,∵(2mx 2﹣x+3)﹣(3x 2﹣x ﹣4)的结果与x 的取值无关,∴2m ﹣3=0,解得:m=23. 【点评】此题考查了整式的加减,关键是根据多项式的值与x 的取值无关,得出关于m 的方程.20.【分析】(1)直接利用多项式的次数的确定方法得出m 的值;(2)将x ,y 的值代入求出答案.【解答】解:(1)∵多项式(m ﹣3)x|m|﹣2y 3+x 2y ﹣2xy 2是关于的xy 四次三项式, ∴|m|﹣2+3=4,m ﹣3≠0,解得:m=﹣3,(2)当x=23,y=﹣1时,此多项式的值为: ﹣6×23×(﹣1)3+(23)2×(﹣1)﹣2×23×(﹣1)2 =9﹣49﹣3 =415. 【点评】此题主要考查了多项式以及绝对值,正确得出m 的值是解题关键.21.【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a,将a看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a的值.【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点评】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.22.【分析】由阅读材料可以看出,100个数相加,用第一项加最后一项可得101,第二项加倒数第二项可得101,…,共100项,可分成50个101,在计算a+(a+m)+(a+2m)+(a+3m)+…+(a+100d)时,可以看出a共有100个,m,2m,3m,…100m,共有100个,m+100m=101m,2m+99d=101d,…共有50个101m,根据规律可得答案.【解答】解:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.【点评】此题主要考查了整式的加法,关键是根据阅读材料找出其中的规律,规律的归纳是现在中考中的热点,可以有效地考查同学们的观察和归纳能力.823.【分析】(1)根据整式的运算法则即可求出答案.(2)将a 与b 的值代入(1)的多项式即可求出答案.【解答】解:(1)所捂多项式=(a 2+4ab+4b 2)+a 2﹣4b 2=2a 2+4ab(2)当a=﹣2,b=21时, 所捂多项式=2×4+4×(﹣2)×21 =8+(﹣4)=4【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.。

(人教版)2018 -2019学年年秋七年级上《第二章整式的加减》测试(含答案)

(人教版)2018 -2019学年年秋七年级上《第二章整式的加减》测试(含答案)

第二章 整式的加减检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列单项式中,与错误!未找到引用源。

是同类项的是( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.3ab2.已知m-n=100,x+y=-1,则代数式(n+x )-(m-y )的值是( )A.99B.101C.-99D.-1013.下列各式去括号错误的是( ) A.213)213(+-=--y x y x B.b a n m b a n m -+-=-+-+)( C.332)364(21++-=+--y x y x D.723121)7231()21(-++=+--+c b a c b a 4.李老师做了个长方形教具,其中一边长为2a+b ,另一边长为a-b ,则该长方形的周长 是( )A.6a+bB.6aC.3aD.10a-b5.两个三次多项式的和的次数是( )A .六次B .三次C .不低于三次D .不高于三次6.化简()160.5x --的结果是( )A.160.5x --B.5.016+xC.816-xD.168x -+7.如果单项式13a x y +-与21 2b y x 是同类项,那么a b ,的值分别为( )A.23a b ==,B.12a b ==, C.13a b ==, D.22a b ==, 8.设错误!未找到引用源。

,错误!未找到引用源。

,那么错误!未找到引用源。

与错误!未找到引用源。

的大小关系是( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

<错误!未找到引用源。

D.无法确定9.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(-x2+3xy -0.5y2)-(-0.5x2+4x y -1.5y2)=-0.5x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨水遮住的一项应是( )A.-7xyB.-xyC.7xyD.xy10.多项式错误!未找到引用源。

【6套】最新人教版数学七年级上册第二章整式的加减单元测试及答案.doc

【6套】最新人教版数学七年级上册第二章整式的加减单元测试及答案.doc

人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式 2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a―b)]=___.16.的结果是___.17.小颖在计算a+N时,误将“+”看成“―”,结果得3a,则a+N=___.18.数学家发明了一个魔术盒,当任意实数对...(a,b)进入其中时,•会得到一个新的实数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:请写出剩油量A与行驶路程n与耗油量Q之间的关系式,并计算当n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每小题3分,共30分)1.建军的作业本中有四道列代数式的题目,其中错误的是().A.减去5等于x的数是x+5 B.4与a的积的平方为4a2C.m与n的和的倒数为1m n+D.比x的立方的2倍小5的数是2x3-52.下列说法中,正确的是().A.15x+是多项式B.213xπ-的系数是13-C.2x2-1的项是2x2和1 D.3xy2-y2+6是三次三项式3图1 图23.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是().A.(1-10%)(1+15%)x万元B.(1-10%+15%)x万元C.(x-10%)(x+15%)万元D.(1+10%-15%)x万元4.敏敏手中的纸条上写着多项式a3+a x+1b-2a2b2,慧慧手中的纸条上写着单项式-a3 b4 c,若这两个式子的次数相等,则x的值为().A.5 B.6 C.7 D.85.若多项式m3+m x+1n-2m2n2与单项式-a3 b4 c的次数相等,则x的值为().A.5 B.6 C.7 D.85.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为().A.7 B.9 C.-7 D.-96.友龙在电脑中设置了一个运算程序:输入数a,加“⊗”键,再输入数b,得到运算a⊗b=2ab2+a2b. 若a=-2,b=3,则输出的值为().A.-9 B.-12 C.-24 D.67.有一个三位数,它的百位上的数字是a,十位上的数字比百位上的数字大1,个位上的数字比百位上的数字小1,则这个三位数一定是().A.2的倍数B.3的倍数C.5的倍数D.9的倍数8.已知y=x-1,则(x-y)2+(y-x)+1的值为().A.-1B.0 C.1 D.29.已知有理数a、b、c在数轴上的位置如图1所示,且a与b互为相反数,那么| a-c |-| b+c |的值为().A.0 B.1 C.a+b D.2c10.如图2,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”的图案,再将剪下的两个小长方形拼成一个新长方形,则新长方形的周长为().A.2a-3b B.4a-8b C.2a-4b D.4a-10b二、填空题(每小题3分,共24分)11.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电若不超过100度,每度按a元收费;若超过100度,那么超过部分每度按b元收费. 某户居民在一个月内用电160度,那么该户居民这个月应缴纳电费____________元.12.已知单项式2a3b n+1与单项式-3a m-2b2的和仍是单项式,则3m-4n=_________. 13.如图3,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示. 则打包带的长至少要____________.(用含x、y、z的代数式表示)图图414.已知(a +6)2+|b 2-2b -3 |=0,则2b 2-4b -a 的值为_________.15.已知关于x 的多项式(a +b )x 4+(b -2)x 3-2 (a +1)x 2+2ax -15中,不含x 3项和x 2项,则当x =-2时,这个多项式的值为__________.16.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第100个单项式是________. 17.已知x=34-12,y=32,求-x +(px -y 2)-2(x -y 2)的值,龙龙在做题时,把x 的值看成x=34,但最后也算出了正确的结果,若计算过程无误,由此可判定p 的值为_______. 18.出租车收费的标准因地而异,A 市的标准为:起步价10元,3千米后每千米为1.2元;B 市的标准为:起步价8元,3千米后每千米为1.4元. 则在A 市乘坐出租车x(x >3)千米比在B 市乘坐相同路程的出租车多花___________元. 三、解答题(共66分) 19.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若x =-6,求所捂二次三项式的值.20.(8分)如图4,一只蚂蚁从点A 沿数轴向右爬2个单位到达点B. 若点A 表示的数a为32-,设点B 所表示的数为b .(1)求b 的值;(2)先化简223(2)[322()]a ab a b ab b ---++,再求值.21.(8分)已知A=-6x 2+4x ,B=-x 2-3x ,C=5x 2-7x +4,小明和小金在计算时对x 分别取了不同的数值,并进行了多次计算,但所得A -B +C 的结果却是一样的,你认为这可能吗?说明你的理由. 22.(10分)张、王、李三家合办一个股份制企业,总股数为(5a 2-3a +3),每股20元,张家持有(2a 2+1)股,王家比张家少(a -1)股. (1)求王家和李家分别持有的股数.(2)若年终按持有股15%的比例支付股利,当a =300时,问李家能获得多少钱?222(3)51x x x --=-+第1个第2个第3个第4个23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:(1)填写下表:(2)归纳猜测第n个图形棋子的个数(用含n的代数式表示);(3)建军认为第671个图形有2016颗黑色棋子,你同意他的说法吗?请说明理由.24.(10分)观察代数式x-3x2+5x3-7x4+……并回答下列问题:(1)它的第100项是什么?(2)它的第n(n为正整数)项是什么?(3)当x=1时,求它的前2016项的和.参考答案一、选择题1.B.提示:列代数式表示“a与4的积的平方”为(4a)2.2.D.提示:选项A分母中含有字母,故不是多项式,选项B的系数是13π-,选项C的项是2x2和-1.3.A.提示:由于2月份产值是(1-10%)x万元,故3月份产值是在(1-10%)x万元的基础上增加了15%,即为(1-10%)(1+15%)x万元.4.B.提示:由于-a3 b4 c的次数为8,则a3+a x+1b-2a2b2的次数x+1+1=8,故x=6. 5.D.提示:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,所以2×1-3=x,故x=-1;又因为2x-7=y,即2×(-1)-7=y,故y=-9.6.C.提示:当a=-2,b=3时,2ab2+a2b=2×(-2)×32+(-2)2×3=-24.7.B .提示:根据题意得100a +10(a +1)+(a -1)=111a +9=3(37a +3),故为3的倍数. 8.C .提示:由y=x -1,得y -x=-1或x -y=1,整体代入得,原式=12+(-1)+1=1. 9.A .提示:因为a 与b 互为相反数,所以a +b=0;根据数轴得a -c <0,b +c >0,故原式=-(a -c)-(b +c)=-a +c -b -c=-(a +b)=0.10.B .提示:根据示意图知,剪下的两个小长方形拼成的新长方形的长为(a -b),宽为(a-3b),所以新长方形的周长为2(a -b)+2(a -3b) =2a -2b +2a -6b=4a -8b. 二、填空题11.(100a +60b). 提示:前100度按每度a 元收费,故可收100a 元;超过100度的部分有60度,可收60b 元.12.11.提示:根据题意,两个单项式是同类项,所以m -2=3,n +1=2,故m =5,n =1. 13.2x +4y +6z. 提示:根据打包方式知,包带等于“长”的有2x ,包带等于“宽”的有4y ,包带等于“高”的有6z ,所以总长为2x +4y +6z.14.2.提示:由题意得a +6=0,b 2-2b -3=0,故a =-6,b 2-2b =3. 所以2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.15.5.提示:根据题意,得a =-1,b =2,所以这个多项式为x 4-2x -15. 当x =-2时,x 4-2x -15=(-2)4-2×(-2)-15=5.16.199x 100. 提示:由于x 的指数是连续自然数,而系数是连续奇数,即系数为(2n -1),故第100个单项式的系数为2×100-1=199. 所以这个单项式为199x 100.17.3.提示:-x +(px -y 2)-2(x -y 2)=-x +px -y 2-2x +2y 2=(p -3)x +y 2,因为把x 的值看错,但结果仍正确,所以x 的系数p -3=0,故p=3.18.(2.6-0.2x). 提示:在A 、B 两市乘车的费用分别为 [10+1.2(x -3)]元和[8+1.4(x -3)]元,故A 市比B 市乘坐相同路程需多花[10+1.2(x -3)]-[8+1.4(x -3)]= (2.6-0.2x)元. 三、解答题 19.(1)设所捂的二次三项式为A ,则有A -2(x 2-3)=x 2-5x +1.所以A=(x 2-5x +1)+2(x 2-3)= x 2-5x +1+2x 2-6= 3x 2-5x -5. (2)当x=-2时,3x 2-5x -5=3×(-2)2-5×(-2)-5=17. 20.(1)由于31222-+=,所以12b =.(2)原式22(36)(3222)a ab a b ab b =---++2236328a ab a ab ab =---=-.当32a =-,b =12时,原式=-8×(32-)×12=6.21.可能. 理由如下:A -B +C=(-6x2人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每题3分,共30分) 1、用代数式表示比b 的18小7的数( ) A.18b +7 B.18b -7 C.18(b -7) D.78b - 2、下列代数式中,不是单项式的是( )A.5B.2x C.2x D.23a3、①; ②;③; ④分别是同类项的是( )(A )①② ; (B )①③; (C )②③ ; (D )②④ 4、-( a-1)-(-a-2)+3的值是( ) (A )4; (B )6;(C )0; (D )与的值有关。

人教版数学七年级上册第二章整式的加减《单元测试题》含答案

人教版数学七年级上册第二章整式的加减《单元测试题》含答案

D. a+b+c
A. 3 B. 4 C. 6 D. 7 6.一个多项式加上﹣2a+7 等于 3a2+a+1,则这个多项式是( ) A. 3a2﹣a﹣6 B. 3a2+3a+8 C. 3a2+3a﹣6 D. ﹣3a2﹣3a+6 7.如图,两个面积分别为 35,23 的图形叠放在一起,两个阴影部分的面积分别为 a,b(a>b),则 a﹣b 的值为 ()
A. 6 B. 8 C. 9 D. 12 【答案】D 【解析】 【分析】 设重叠部分面积为 c,(a-b)可理解为(a+c)-(b+c),即两个长方形面积的差. 【详解】设重叠部分的面积为 c, 则 a-b=(a+c)-(b+c)=35-23=12, 故选 D. 【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键. 8.如图 1 为 2018 年 5 月份的日历表,某同学任意框出了其中的四个数字,如图 2,若用 m 表示框图中相应位置 的数字,则“?”位置的数字可表示为( )
ቤተ መጻሕፍቲ ባይዱ
15.若关于 x、y 的代数式 mx3﹣3nxy2+2x3﹣xy2+y 中不含三次项,则(m﹣3n)2018=_____.
16.若
,
,则
的值为______________.
三.解答题(共 7 小题)
17.化简:
(1)2a﹣4b﹣3a+6b
(2)(7y﹣5x)﹣2(y+3x)
18.通常用作差法可以比较两个数或者两个式子的大小.
故选 A. 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运 用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符 号.顺序为先大后小. 5.多项式 4xy2﹣3xy+12 的次数为( ) A. 3 B. 4 C. 6 D. 7 【答案】A 【解析】 【分析】 直接利用多项式的次数确定方法是解题关键. 【详解】多项式 4xy2-3xy+12 的次数为,最高此项 4xy2 的次数为:3. 故选 A. 【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键. 6.一个多项式加上﹣2a+7 等于 3a2+a+1,则这个多项式是( ) A. 3a2﹣a﹣6 B. 3a2+3a+8 C. 3a2+3a﹣6 D. ﹣3a2﹣3a+6 【答案】C 【解析】 【分析】 先根据题意列出算式,再去掉括号合并同类项即可. 【详解】根据题意得:这个多项式为(3a2+a+1)-(-2a+7)=3a2+a+1+2a-7=3a2+3a-6, 故选 C. 【点睛】本题考查了整式的加减和列代数式,能根据题意列出算式是解此题的关键. 7.如图,两个面积分别为 35,23 的图形叠放在一起,两个阴影部分的面积分别为 a,b(a>b),则 a﹣b 的值为 ()

2018-2019 人教版数学七年级上册 第二章 整式的加减 2.2 整式的加减 同步训练

2018-2019 人教版数学七年级上册  第二章  整式的加减   2.2 整式的加减  同步训练

人教版数学七年级上册第二章整式的加减 2.2 整式的加减同步训练1. 化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9 C.8x-3 D.18x-32. 用2a+5b减去4a-4b的一半,应得到( )A.4a-b B.b-a C.a-9b D.7b3. 在2-[2(x+y)-( )]=x+2中,括号内填的式子应是( )A.3x+2y B.-x+2y C.x-2y D.-x-2y4. 已知A=a2+b2-c2,B=-4a2+2b2+3c2,若A+B+C=0,则多项式C为( )A.5a2+3b2+2c2 B.5a2-3b2+4c2 C.3a2-3b2-2c2 D.3a2+3b2+4c2 5. 一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是( )A.12a+16b B.6a+8b C.3a+8b D.6a+4b6. 某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A.(200-6x)人 B.(140-15x)人C.(200-15x)人 D.(140-60x)人7. 多项式7a2-6a3b+3a2b+3a2+6a3b-3a2b-10a2的值( )A.与字母a,b都有关 B.只与字母a有关C.只与字母b有关 D.与字母a,b都无关8. 一家商店以每包a 元的价格进了30包甲种茶叶,又以每包b 元的价格买进60包乙种茶叶.如果以每包a +b 2元的价格卖出这两种茶叶,则卖完后,这家商店( )A .赚了B .赔了C .不赔不赚D .不能确定赔或赚9. 任意写一个四位数,交换这个四位数的千位数字与十位数字、百位数字与个位数字,得一新数,则这两个数的和一定是下列哪个数的倍数( )A .99B .100C .101D .10210. 计算:3a -(2a -b)= .11. 一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下 .12. 单项式-3x ,-2x ,5x 的和为____.13. 3ab 减去-2ab 列式为 ,结果为____.14. 一个十位数字是a ,个位数字是b 的两位数表示为 ,交换这个两位数的十位数字和个位数字,又得一个新的两位数,新数与原数的差是 .15. 某商场一月份的销售额为a 元,二月份比一月份销售额多b 元,三月份比二月份减少10%,第一季度的销售额总计为 元;当a =2万元,b =5000元时,第一季度的总销售额为 元.16. 先化简,再求值:-3a +[2b -(a -b)+a]+(6a -b).其中a =13,b =2517. 某村小麦种植面积是a hm2,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5 hm2,列式表示水稻种植面积、玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?18.某轮船顺水航行3 h,逆水航行1.5 h,已知轮船在静水中的速度是a km/h,水流速度是y km/h,轮船共航行多少千米?19. 一位同学做一道题:“已知两个多项式A,B,计算2A+B”.他误将“2A+B”看成“A+2B”,求得的结果为9x2-2x+7.已知B=x2+3x-2,请求出正确答案.20. 已知有理数a,b,c在数轴上的对应点如图,试化简:|a|-|a+b|+|c-a|+|b+c|.参考答案:1---9 ADACB CDDC10. a +b11. 3a +2b12. 013. 3ab -(-2ab) 5ab14. 10a +b 9b -9a15. (2.9a +1.9b) 6750016. 解:原式=-3a +2b -a +b +a +6a -b =3a +2b ,将a =13,b =25代入上式中,得3×13+2×25=1+50=51,即原式的值为51 17. 解:水稻种植面积:3a hm 2;玉米种植面积:(a -5)hm 2;水稻种植面积比玉米种植面积大:3a -(a -5)=(2a +5)hm 218. 解:根据题意得3(a +y)+1.5(a -y)=(4.5a +1.5y)千米19. 解:由题意得A +2(x 2+3x -2)=9x 2-2x +7,则A =9x 2-2x +7-2(x 2+3x -2)=9x 2-2x +7-2x 2-6x +4=7x 2-8x +11,所以正确答案为2A +B =2(7x 2-8x +11)+(x 2+3x -2)=14x 2-16x +22+x 2+3x -2=15x 2-13x +2020. 解:由图可知:a <b <0<c ,且|b|>|c|,所以原式=-a +a +b +c -a -b -c =-a。

人教版初中七年级数学上册第二章《整式的加减》提高卷(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》提高卷(含答案解析)

1.下列代数式的书写,正确的是()A.5n B.n5 C.1500÷t D.114x2y A解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为1500t,故书写错误,不合题意;D、114x2y=54x2y,故书写错误,不合题意;故选:A.【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.2.与(-b)-(-a)相等的式子是( )A.(+b)-(-a) B.(-b)+aC.(-b)+(-a) D.(-b)-(+a)B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒3.下列计算正确的是()A.﹣1﹣1=0 B.2(a﹣3b)=2a﹣3b C.a3﹣a=a2D.﹣32=﹣9D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 4.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( )A .2018B .2018-C .1009-D .1009C解析:C 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n,然后把n 的值代入进行计算即可得解. 【详解】 解:123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=- 678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-, 故选择C 【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.5.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7 B .-1C .5D .11A解析:A先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1; 第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.6.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C解析:C 【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10. 【详解】 解:8×10−6=74, 故选:C . 【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数. 7.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+ B .21x x -+- C .253x x -+-D .2513x x -- C【分析】根据题意列出关系式,去括号合并即可得到结果. 【详解】∵一个多项式与x 2-2x+1的和是3x-2, ∴这个多项式=(3x-2)-(x 2-2x+1) =3x-2-x 2+2x-1 =253x x -+-. 故选:C . 【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 8.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解. 【详解】解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下: 496 497 498 499 500 501 502 503 504 505 506507508509510511512513故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程. 11.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B 【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断. 【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错;(3)单项式-x 3y 2的系数是-1,正确; (4)3x 2-y+5xy 2是3次3项式,故错误. 故选:B . 【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法. 12.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210m xm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 13.下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2 B .该多项式是三次三项式 C .该多项式的常数项是1 D .该多项式的二次项系数是1-B解析:B 【分析】直接利用多项式的相关定义进而分析得出答案. 【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误; 故选:B . 【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.14.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +- D .(120%)15%a + A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元. 故选A . 【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 15.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64 B .31,32,33 C .31,62,63 D .31,45,46C解析:C 【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数. 【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63. 故选:C . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 1.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值. 【详解】解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =,故答案为19. 【点睛】本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0. 2.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可. 【详解】 ∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环, 所以2020÷3=673…1,则a 2020=a 1=2. 故答案为:2. 【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.3.已知等式:2222233+=⨯,233 3388+=⨯,244 441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案 解析:109【分析】先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可. 【详解】解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10 ∴a+b=10+99=109. 故答案为109. 【点睛】本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.4.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101【解析】 试题1111++++133********⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101.5.===,……=m =_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9 【分析】13n +,将210n +=代入即可得出答案.【详解】解:==……,13n +210n +=8n ∴=19m n ∴=+= 故答案为:9. 【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.-25【分析】由x=1时代数式ax+b+1的值是﹣3求出a+b 的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x =1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b =﹣4∴(a解析:-25. 【分析】由x =1时,代数式ax +b +1的值是﹣3,求出a +b 的值,将所得的值整体代入所求的代数式中进行计算即可得解. 【详解】解:∵当x =1时,ax +b +1的值为﹣3, ∴a +b +1=﹣3, ∴a +b =﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25. 【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.7.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据 解析:3【分析】根据题意可知单项式322m x y -与3-x y 是同类项,从而可求出m 的值.【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式,∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.8.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.9.“a的3倍与b的34的和”用代数式表示为______.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a+b;故答案为:3a+b 【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列解析:3 34 a b【分析】a的3倍表示为3a,b的34表示为34b,然后把它们相加即可.【详解】根据题意,得3a+34 b;故答案为:3a+34 b.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.10.如图,大、小两个正方形ABCD与正方形BEFG并排放在一起,点G在边BC上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF的面积是______平方厘米.【分析】设出两个正方形边长分别为ab(a>b)表示正方形面积之差用ab表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab(a>b)由已知四边形的面积为:故答案为:【点睛】本题考查解析:31 2【分析】设出两个正方形边长分别为a,b(a>b),表示正方形面积之差,用a、b表示四边形CDGF的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a,b(a>b)由已知2231a b -=四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312 【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第二章 整式加减》单元测试提高卷
一、选择题
1.下列各式中,去括号或添括号正确的是( )
A 、c b a a c b a a +--=+--2)2(22
B 、)123(123-+-+=-+-y x a y x a
C 、1253)]12(5[3+--=---x x x x x x
D 、-)1()2(12-+--=+--a y x a y x
2.若A 和B 都是4次多项式,则A+B 一定是( )
A 、8次多项式
B 、4次多项式
C 、次数不高于4次的整式
D 、次数不低于4次的整式
3.已知622x y 和-313
m n x y 是同类项,则29517m mn --的值是 ( ) A :-1 B :-2 C :-3 D :-4
4.已知,2,3=+=-d c b a 则)()(d a c b --+的值是( )
A :1-
B :1
C :5-
D :15
5.一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( )
A .x 2-4xy -2y 2
B .-x 2+4xy +2y 2
C .3x 2-2xy -2y 2
D .3x 2-2xy
6.当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为( )
A .-16
B .-8
C .8
D .16
7.与多项式3223423a b a ab b -+-相等的是( )
A.)42(33223a b a ab b +--
B. )42(33223a b a ab b ++-
C. )42(33223a b a ab b -+--
D. )42(33223a b a ab b -+- 8.当x 分别取2和﹣2时,多项式5235-+x x 的值( )
A.互为相反数
B.互为倒数
C.异号不等
D.相
9.给出下列判断:①单项式5×103x 2的系数是5;②x ﹣2xy+y 是二次三项式;③多项式﹣3a 2b+7a 2b 2﹣2ab+1的次数是9;④几个有理数相乘,当负因数有
奇数个时,积为负.其中判断正确的是( )
A .1个
B .2个
C .3个
D .4个
10.如果A=﹣x 2+4x ﹣1,B=﹣x 2﹣4x+1,那么B ﹣A 等于 ( )
A .﹣2x 2
B .8x ﹣2
C .2﹣8x
D .0
二、填空题
11.已知a ﹣3b=3,则6b+2(4﹣a )的值是 .
12.若2m -n -4=2,则4m -2n -9=________。

14.已知=++=+-=+4,142,82b ab a ab b ab a 则 ;=-b a 。

15. 已知a 是正数,则=-a a 73 __________. 16.当1-=x 时,代数式k x x --42的值为0,则当3=x 时,这个代数式的值是
17.下列各题中的两项是同类项的有 (只填序号)
①a 3与b 3②﹣2与3 ③12a 3b 与ba 3④﹣13
a 2
b 2与0.2a 2b 2. 18.观察下列单项式:﹣x 2,2x 3,﹣3x 4,4x 5,…,则按此规律第2008个单项式是 . 19.按图所示的程序流程计算,若开始输入的值为x =3,则最后输出的结果是 。

20、用形状和大小相同的黑色棋子按下图所示的方式排列,按照这样的规律,第n 个图形需要棋子 枚。

(用含n 的代数式表示)
① ② ③ ……
三、解答题
21.先化简,再求值:
(1)
)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a (2)()()
23523132a a a +---,其中31-=a (3)3(2x 2-3xy -5x -1)+6(-x 2+xy -1),其中x 、y 满足(x +2)2+|y -23
|=0.
22.有这样一道题,“当2,2a b ==-时,求多项式3323313(42
a b a b b a b -+- 221)4a b b --223b -+3321()4
a b a b ++的值”,马明做题时把2a =错抄成2a =-,王海没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由。

23.已知:A ﹣2B=7a 2﹣7ab ,且B=﹣4a 2+6ab+7.
(1)求A 等于多少?
(2)若|a+1|+(b ﹣2)2=0,求A 的值.
24.阅读材料:“如果代数式5a +3b 的值为-4,那么代数式2(a +b)+4(2a +b)的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b.把式子5a +3b =-4两边同乘以2,得10a +6b =-8.
仿照上面的解题方法,完成下面的问题:
(1)已知a 2+a =0,求a 2+a +2017的值;
(2)已知a -b =-3,求3(a -b)-a +b +5的值;
(3)已知a 2+2ab =-2,ab -b 2=-4,求2a 2+5ab -b 2的值
25.已知有理数a,b,c在数轴上的位置如图所示且
-
-
-
-。

c
-
a+
c
b
c
a=,化简b
b
b
26.如图,四边形ABCD与四边形CEFG是两个边长分别为a、b的正方形.(1)用a、b的代数式表示三角形BGF的面积;
(2)当a=4cm,b=6cm时,求阴影部分的面积.
答案
1.B
2.C
3.A
4.A
5.B
6.A
7.A
8.C
9.A .10.C .
11.2 12. 3 13.16 14.6 -22 15. -4a 16. -8
17.②③④ 18.2008x 2009 19.21 20.3n+1
21.(1)原式=b a ab 223- = -10
(2)原式=21a-9a 2-8 = -16
(3)原式=6x 2-9xy -15x -3-6x 2+6xy -6=-3xy -15x -9.由(x +2)2
+|y -23|=0,得x =-2,y =23.当x =-2,y =23时,原式=-3×(-2)×23-15×(-2)-9=4+30-9=25.
22.原式=3a 3b 3-
21a 2b +b -4a 3b 3+41a 2b +b 2-2b 2+3+a 3b 3+4
1a 2b =b -b 2+3,
结果中不含字母a ,因此它的值与a 的取值无关,不论a 取何值都不影响结果。

23解:(1)∵A ﹣2B=A ﹣2(﹣4a 2+6ab+7)=7a 2﹣7ab ,
∴A=(7a 2﹣7ab )+2(﹣4a 2+6ab+7)=﹣a 2+5ab+14;
(2)依题意得:a+1=0,b ﹣2=0,
a=﹣1,b=2.
原式A=﹣(﹣1)2+5×(﹣1)×2+14=3.
24.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)
(2)∵a-b =-3,∴3(a-b)-a +b +5=3×(-3)-(-3)+5=-1.(6分)
(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)
25.由图知a -c >0,c -b <0,b <0,c +b <0,
∴原式=a -c -[﹣(c -b )]-(﹣b )-[﹣(c +b )]=a +b +c , 又∵b a =,且a >0,b <0,
∴a+b =0, ∴原式=c 。

26.(1)根据题意得:
△BGF 的面积是:21BG•FG=2
1(a+b )•b; (2)阴影部分的面积=正方形ABCD 的面积+正方形CGFE 的面积-△ADB 的面积-△BFG 的面积
=a 2+b 2-21a 2-2
1(a+b )•b =21a 2+21b 2-2
1ab 当a =4cm ,b =6cm 时,上式=21×16+21×36-21×4×6=14cm 2.。

相关文档
最新文档