【精品】2017年广东省惠州市仲恺高新区沥林华科学校八年级上学期期中数学试卷带解析答案
2017年八年级(上)数学期中考试试卷与答案
2017 年八年级(上)数学期中考试试卷(考试时间 100 分钟,试卷总分 100 分)一、选择题 (每小题 2 分,计 16 分.将正确答案的序号填写在下面的表格中 ) 1.以下轴对称图形中,对称轴条数最少的是(▲)AB C D2. 9 的平方根是( ▲ )A . 3B .± 3C .- 3D . 813.下列各数中,有理数是( ▲ )A . 8B .223D .7C . 424.下列各组线段能构成直角三角形的一组是( ▲ )A .3,4,5B .2,3,4C .1, 2, 3D .4, 5,65.根据下列已知条件,能够画出唯一△ABC 的是( ▲ )A .AB =5,BC =6,∠ A =70°B .AB =5,BC =6,AC =13C .∠ A = 50°,∠ B = 80°, AB = 8,D .∠ A = 40°,∠ B = 50°,∠ C =90°AABDE CBDC第 7 题第 6 题6.如图,△ ABD ≌△ ACE ,∠ AEC = 110°,则∠ DAE 的度数为( ▲ )A .40°B .30°C . 50°D . 60°7.如图,△ ABC 中, AB =AC , AD 是∠ BAC 的平分线,已知 AB =5, AD =3,则 BC 的长为( ▲ )A . 5B . 4C . 10D . 88. 规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:① AB=A 1B 1, AD=A 1D 1,∠ A= ∠A 1,∠ B= ∠ B 1,∠ C=∠ C 1;② AB=A 1B 1, AD=A 1D 1,∠ A= ∠A 1,∠ B= ∠ B 1,∠ D=∠ D 1 ;③AB=A 1B 1, AD=A 1D 1,∠ B= ∠B 1,∠ C=∠ C1,∠ D=∠ D1;④ AB=A 1B 1, CD=C1D 1,∠ A= ∠A 1,∠ B= ∠ B1,∠ C=∠ C1.其中能判定四边形ABCD 和四边形 A 1B1C1D 1全等有(▲)个A . 1B. 2C. 3D. 4A A1D D1第 8 题B CB1C1二、填空题(每小题2分,共 20分)9.化简:16=▲,8▲.3=2711+ 3 10.比较大小:2▲.(用“>”、“=”或“<”填空).411.太阳的半径约是696000 千米,用科学计数法表示(精确到万位)约是 _____▲ ____千米.12.如图, PD⊥ AB, PE⊥ AC,垂足分别为 D 、 E,要使△ APD ≌△ APE,可添加的条件是▲. ( 写出一个即可 )BDC AAP DM O N(第 12题)E C A B B C第 13题第14题13.如图 ,在△ ABC 中,∠ C= 90°, AD 平分∠ BAC 交 BC 于点 D ,若 AD= 13, AC= 12,则点D 到 AB 的距离为 ______▲ _______14.如图,在△ ABC 中,∠ ABC、∠ ACB 的角平分线交于点O,MN 过点 O,且 MN∥ BC,分别交 AB、 AC 于点 M、N. 若 MN = 5cm, CN= 2cm,则 BM =▲cm15.如图,△ ABC 为等边三角形, BD 为中线,延长BC 至 E,使 CE=CD =1,连接 DE,则 DE=▲.AAA BDDP EC DB C-1O12B E C(第 15 题)第 16题第18题16.如图,正方形OABC 的边 OC 落在数轴上,点 C 表示的数为 1,点 P 表示的数为- 1,以 P 点为圆心, PB 长为半径作圆弧与数轴交于点D,则点 D 表示的数为▲.17.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程 .已知:直线 l 和 l外一点 P.P求作:直线 l 的垂线,使它经过点Pl作法:如图,( 1)在直线 l 上任意两点 A、B;P( 2)分别以点 A, B 为圆心, AP, BP 长为l半径作弧,两弧相交于点Q;A B( 3)作直线 PQ,Q所以直线 PQ 就是所求作的垂线。
广东省惠州市八年级上学期期中数学试卷
广东省惠州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列四组数中,其中有一组与其他三组规律不同,这一组是()A . 3,4,5B . 6,8,10C . 5,12,13D . 4,5,72. (2分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A . k≤4且k≠3B . k<4且k≠3C . k<4D . k≤43. (2分)设=,=,下列关系中正确的是()A . a>bB . a≥bC . a<bD . a≤b4. (2分)下列说法错误的是()A . 无理数是无限小数B . 如果两条直线被第三条直线所截,那么内错角相等C . 经过直线外一点有且只有一条直线与已知直线平行D . 联结直线外一点与直线上各点的所有线段中,垂线段最短5. (2分)如果A(1﹣a,b+1)关于y轴的对称点在第三象限,那么点B(1﹣a,b)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分) (2017八上·高邑期末) 下列说法中正确的是()A . 9的平方根为3B . 化简后的结果是C . 最简二次根式D . ﹣27没有立方根7. (2分)下列等式不成立的是()A . 6×=6B . ÷=2C . =D . -=28. (2分)一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A . 汽车在高速公路上的行驶速度为100km/hB . 乡村公路总长为90kmC . 汽车在乡村公路上的行驶速度为60km/hD . 该记者在出发后4.5h到达采访地9. (2分)(2017·浦东模拟) 函数y=kx﹣1(常数k>0)的图象不经过的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共10题;共13分)11. (1分)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为________12. (3分)的算术平方根是________,的立方根是________,绝对值是________.13. (1分)(2017·吉林模拟) 若正比例函数y=(m﹣2)x的图象经过一、三象限,则m的取值范围是________.14. (2分) (2016七上·湖州期中) 的平方根是________,﹣的立方根是________.15. (1分) (2019八上·兴化月考) 如图,已知直线AB与x轴交于点A(4,0)、与y轴交于点B(0,3),直线 BD与x轴交于点D,将直线AB沿直线BD翻折,点A恰好落在y轴上的C点,则直线BD对应的函数关系式为________ .16. (1分) (2017八上·江都期末) 如图,在平面直角坐标系中,点,点,点是直线上一点,若,则点的坐标是________.17. (1分)(2013·资阳) 2013•资阳)在一次函数y=(2﹣k)x+1中,y随x的增大而增大,则k的取值范围为________.18. (1分) (2019九上·淅川期末) 如图,点E是矩形纸片的边BC上的一动点,沿直线AE折叠纸片,点B 落在了点B′位置,连结CB′.已知AB=3,BC=6,则当线段CB′最小时BE的长为________.19. (1分)如果点P(3,y1),Q(2,y2)都在一次函数y=2x-1的图象上,则y1________y2 .(“>”、“<”)20. (1分) (2017八下·江海期末) 如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD 于E,AD=8,AB=4,则DE的长为________.三、解答题: (共6题;共50分)21. (5分)计算:+-4sin45°+.22. (10分) (2015八上·句容期末) 解答(1)已知:(x+1)2﹣9=0,求x的值;(2)已知a﹣3的平方根为±3,求5a+4的立方根.23. (5分) (2017八下·抚宁期末) 如图,圆柱形无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度.24. (5分) (2017八下·灌云期末) 请在方格内画出△ABC,使它的顶点都在格点上,且三边长1,,,①求△ABC的面积;②求出最长边上的高.25. (10分)(2017·龙岗模拟) 大梅沙国际风筝节于2016年10月29﹣30日在大梅沙海滨公园举行,老李决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,但每天需支付各种费用共200元,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)当售价定为多少时,老李每天获得利润最大,每天的最大利润是多少?26. (15分) (2017九下·盐都期中) 某公司开发出一种高科技电子节能产品,投资2500万元一次性购买整套生产设备,此外生产每件产品需成本20元,每年还需投入500万广告费,按规定该产品的售价不得低于30元/件且不得高于70元/件,该产品的年销售量y(万件)与售价x(元/件)之间的函数关系如下表:(1)求y与x的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?冰球出当盈利最大或亏损最小时该产品的售价;(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品定价,能否使两年盈利3500万元?若能,求第二年产品的售价;若不能,说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题: (共6题;共50分) 21-1、22-1、22-2、23-1、24-1、25-1、25-2、26-1、26-2、26-3、。
2017-2018学年广东省八年级(上)期中数学试卷
2017-2018学年广东省八年级(上)期中数学试卷2017-2018学年广东省八年级(上)期中数学试卷一、选择题1.下列图形分别是桂林、湖南、甘肃、___的台徽,其中为轴对称图形的是()A。
B。
C。
D。
2.以下列各组线段为边,能组成三角形的是()A。
2cm,3cm,5cmB。
5cm,6cm,10cmC。
1cm,1cm,3cmD。
3cm,4cm,9cm3.已知点M(a,3),点N(2,b)关于y轴对称,则(a+b)2015的值()A。
﹣3B。
﹣1C。
1D。
34.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A。
30°B。
40°C。
50°D。
60°5.十二边形的外角和是()A。
180°B。
360°C。
1440°D。
2160°6.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()A。
14B。
16C。
10D。
127.如图,△ABC中,AB=AC,D为BC的中点,以下结论:1)△ABD≌△ACD;2)AD⊥BC;3)∠B=∠C;4)AD是△ABC的角平分线。
其中正确的有()A。
1个B。
2个C。
3个D。
4个8.已知△DEF≌△ABC,AB=AC,且△ABC的周长是23cm,BC=4cm,则△DEF的边长中必有一边等于()A。
9.5cmB。
9.5cm或9cmC。
4cm或9.5cmD。
9cm9.下列条件中,能判定△ABC≌△DEF的是()A。
∠A=∠D,∠B=∠E,∠C=∠FB。
AC=DF,∠B=∠E,BC=EFC。
AB=DE,∠B=∠E,AC=DFD。
AB=DE,∠B=∠E,BC=EF10.如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠CDE的度数是()A。
110°二、填空题11.三角形的三边长分别为5,x,8,则x的取值范围是4<x<13.12.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=30°。
广东省惠州市八年级上学期数学期中考试试卷
广东省惠州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列标志图中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分)一直角三角形三边长分别为a,a,c,那么由an,an,cn(n为自然数)为三边组成的三角形一定是()A . 等腰三角形B . 等腰直角三角形C . 钝角三角形D . 任意三角形3. (2分) (2018八上·番禺期末) 已知等腰三角形的一边长为4,另一边长为8,则它的周长是().A .B .C .D . 或4. (2分)在和中,① ,② ,③ ,④ ,⑤,⑥ ,则下列各组条件中使和全等的是()A . ④⑤⑥B . ①②⑥C . ①③⑤D . ②⑤⑥5. (2分)(2016·嘉善模拟) 如图,对正方形纸片ABCD进行如下操作:(I)过点D任作一条直线与BC边相交于点E1(如图①),记∠CDE1=a1;(II)作∠ADE1的平分线交AB边于点E2(如图②),记∠ADE2=a2;(III)作∠CDE2的平分线交BC边于点E3(如图③),记∠CDE3=a3;按此作法从操作(2)起重复以上步骤,得到a1 , a2 ,…,an ,…,现有如下结论:①当a1=10°时,a2=40°;②2a4+a3=90°;③当a5=30°时,△CDE9≌△ADE10;④当a1=45°时,BE2= AE2 .其中正确的个数为()A . 1B . 2C . 3D . 46. (2分)(2017·河西模拟) 如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于()A . 20°B . 25°C . 30°D . 35°7. (2分)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A 等于()A . 25B . 30C . 45D . 608. (2分)(2016·历城模拟) 如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B (﹣2,3),C(﹣3,1).将△ABC沿y轴翻折得到△A′B′C′,则点B′的坐标为()A . (2,1)B . (2,3)C . (4,1)D . (0,2)9. (2分)(2019·南浔模拟) 如图,已知在平面直角坐标系xOy中,抛物线y= 与y轴交于点A,顶点为B,直线l:y=- x+b经过点A,与抛物线的对称轴交于点C,点P是对称轴上的一个动点,若AP+ PC 的值最小,则点P的坐标为()A . (3,1)B . (3,)C . (3,)D . (3,)10. (2分) (2016八上·青海期中) 如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC 交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的有()A . ①②③B . ①②③④C . ①②D . ①二、填空题 (共7题;共21分)11. (1分) (2017九上·深圳期中) 如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=________cm.12. (15分)如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,(1)求∠AOC的度数;(2)求证:AE+CD=AC;(3)求证:OE=OD.13. (1分) (2019七下·和平月考) 一个等腰三角形的两边长分别是3cm和6cm,则它的周长为________cm.14. (1分)如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D 作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是________度.15. (1分) (2018·苏州模拟) 如图,正五边形的边长为2,连接对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N,给出下列结论:①∠AME=108°;② ;③MN= ;④ .其中正确结论的序号是________.16. (1分) (2015八上·阿拉善左旗期末) 已知等腰三角形的一腰上的高与底边的夹角为40度,那么它的顶角为________.17. (1分)如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=(AB+AD),若∠D=115°,则∠B=________三、解答题 (共8题;共86分)18. (5分)如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD交BD延长线于点E.(1)若AD=1,求DC;(2)求证:BD=2CE.19. (5分) (2020七下·郑州月考) 已知a,b是等腰三角形ABC的边长且满足a2 +b2 -8a-4b+20=0,求等腰三角形ABC的周长.20. (15分)(2018·济宁模拟) 如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD,CD,过点D作DP//BC,且DP与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.21. (15分) (2020八上·石景山期末) 如图,在等边△ABC中,点D是线段BC上一点.作射线AD,点B关于射线AD的对称点为E.连接EC并延长,交射线AD于点F.(1)补全图形;(2)求∠AFE的度数;(3)用等式表示线段AF、CF、EF之间的数量关系,并证明.22. (10分) (2019八上·长兴月考) 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,点E,F分别是BC,AC的中点。
广东省惠州市八年级上学期数学期中试卷
广东省惠州市八年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,△ABC中,AB=AC,点D在AC上,点E在AB上,且BC=BD,AD=DE=EB,则∠A的度数是()A . 30°B . 36°C . 45°D . 54°2. (2分)下列运算中,计算正确的是()A .B .C .D .3. (2分) (2019八上·阳东期中) 如图,平分,E为AB上点若,则下列结论错误的是()A .B .C . 平分D . 图中共有两对全等三角形4. (2分)下列四个等式从左到右的变形,是多项式因式分解的是()A . (a+3)(a﹣3)=a2﹣9B . x2+2x﹣3=x(x+2)﹣3C . a2b+ab2=ab(a+b)D . m2﹣2m﹣3=m(m﹣2﹣)5. (2分) (2019七下·襄州期末) 如图,将直尺与含角的直角三角板放在一起,若,则的度数是()A .B .C .D .6. (2分) (2019七下·北区期末) 下列四个算式中运算正确的是()A . 102×103=106B . (a2)3=a5C . (﹣a)4÷(﹣a)2=a2D . 20+2﹣1=﹣17. (2分) (2018八上·甘肃期末) 如图,童威书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,他的依据是()A . SASB . ASAC . AASD . SSS8. (2分) (2018八上·黔南期末) 如图为作一个角的角平分线的示意图,该作法的依据是全等三角形判定的基本事实,可简写为()A . SSSB . SASC . ASAD . AAS9. (2分) (2020八上·乌拉特前旗期末) 若x2+2(m-3)x+16是完全平方式,则m的值等于()A . 3B . -5C . -7或1D . 7或-110. (2分) (2017八上·丰都期末) 已知m2﹣m﹣1=0,则计算:m4﹣m3﹣m+2的结果为()A . 3B . ﹣3C . 5D . ﹣5二、填空题 (共6题;共8分)11. (1分)(2019·南昌模拟) 分解因式:4x2–1=________.12. (1分) (2017·临高模拟) 如图,⊙O的半径为5,P为⊙O上一点,P(4,3),PC、PD为⊙O的弦,分别交y轴正半轴于E、F,且PE=PF,连CD,设直线CD为y=kx+b,则k=________.13. (2分)如果一个三角形有两个角相等,那么这两个角所对的边也________ ,简称:“等角对________”14. (1分) (2017七下·单县期末) (﹣)2015×122014=________.15. (1分) (2019七下·延庆期末) 如图,AD是△ABC的中线,E是AD的中点,如果S△ABD=12,那么S△CDE=________.16. (2分)(2018·苏州) 如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为________(结果留根号).三、解答题 (共9题;共56分)17. (5分)(2019·石景山模拟) 如图,直线AB与直线BC相交于点B,点D是直线BC上一点,请按下列要求完成作图(尺规作图,不写作法,保留作图痕迹)(1)作直线DE,使直线D E∥AB;(2)在直线DE上确定一点P,使点P到B,D两点的距离相等.18. (5分) (2018八上·大石桥期末) 阅读下面解题过程,然后回答问题.分解因式: .解:原式= = == =上述因式分解的方法称为”配方法”.请你体会”配方法”的特点,用“配方法”分解因式: .19. (5分)如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转至如图③,当∠CON=5∠DOM时,MN与CD相交于点E,请你判断MN与BC的位置关系,并求∠CEN的度数(3)将图①中的三角板OMN绕点O按每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,三角板MON 运动几秒后直线MN恰好与直线CD平行.(4)将如图①位置的两块三角板同时绕点O逆时针旋转,速度分别每秒20°和每秒10°,当其中一个三角板回到初始位置时,两块三角板同时停止转动.经过多少秒后边OC与边ON互相垂直.(直接写出答案)20. (5分) (2019七上·达州期中) 先化简再求值,,其中│xy-6│+(y+2)2 =021. (5分)如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.22. (5分)如图,在Rt△ABC中,∠C=90°,∠A=30°,如果D是AC上的点,且当AD=4时,∠BDC=45°,求BC的长.23. (5分)如图,在△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AB于E,求EB:EA的值.24. (11分) (2019八上·滨海期末) 如图,在平面直角坐标系中,直线:与直线:交于点,与y轴交于点,与x轴交于点C.(1)求直线的函数表达式;(2)求的面积;(3)在平面直角坐标系中有一点,使得,请求出点P的坐标;(4)点M为直线上的动点,过点M作y轴的平行线,交于点N,点Q为y轴上一动点,且为等腰直角三角形,请直接写出满足条件的点M的坐标.25. (10分) (2020八上·丰台期末) 阅读下面的材料:利用分组分解法解决下面的问题:(1)分解因式:;(2)已知△A BC的三边长a , b , c满足,判断△ABC的形状并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共56分)17-1、17-2、18-1、19-1、20-1、21-1、22-1、23-1、24-1、24-2、24-3、24-4、25-1、25-2、。
惠州市八年级上学期数学期中考试试卷
惠州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)如图,CD∥AB ,∠1=120°,∠2=80°,则∠E的度数是()A . 40°B . 60°C . 80°D . 120°2. (1分) (2019九上·台安月考) 如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A . 35°B . 40°C . 50°D . 65°3. (1分)如图是由圆和正方形组成的轴对称图形,对称轴的条数有()A . 2条B . 3条C . 4条D . 6条4. (1分) (2017八下·合浦期中) 已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A . 315°B . 270°C . 180°D . 135°5. (1分) (2017八上·西华期中) 下列说法正确的是()A . 三角形的角平分线、中线、和高都在三角形内部B . 直角三角形只有一条高C . 三角形的高至少有一条在三角形内部D . 三角形的三条高的交点不在三角形内,就在三角形外6. (1分) (2017八上·西华期中) 如图,在△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心、适当长为半径作圆弧,分别交边AC,AB于点M、N;②分别以点M和点N为圆心、大于 MN的长为半径作圆弧,在∠BAC 内,两弧交于点P;③作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A . 15B . 30C . 45D . 607. (1分) (2017八上·西华期中) 如图,∠1,∠2,∠3,∠4都是五边形的外角,且∠1=∠2=∠3=∠4=75°,则∠A的度数是()A . 120°B . 115°C . 110°D . 108°8. (1分) (2017八上·西华期中) 锐角三角形中,最大角α的取值范围是()A . 0°< α < 90°B . 60°< α < 180°C . 60°< α < 90°D . 60°≤α < 90°9. (1分)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A . 8B . 9C . 10D . 1110. (1分) (2017八上·西华期中) 如图所示,在等边△ABC中,E是AC边的中点,AD是BC边上的中线,P 是AD上的动点,若AD=3,则EP+CP的最小值为()A . 2B . 3C . 4D . 5二、填空题 (共6题;共6分)11. (1分) (2019九下·兴化月考) 小明沿坡比为1︰的山坡向上走了100米.那么他升高了________米.12. (1分) (2017八上·西华期中) 已知一个等腰三角形的两边长分别为3和5,则这个三角形的周长为________.13. (1分) (2017八上·西华期中) 正八边形的一个内角是________度.14. (1分)如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是________ (只填一个).15. (1分) (2017八上·西华期中) 如图所示,△ABC中,∠A = 60°,将△ABC沿DE翻折后,点A落在BC 边上的点A'处,如果∠A'EC =70°,那么∠A'DE的度数为________.16. (1分) (2017八上·西华期中) 已知AD是△ABC的边BC上的中线,若AB = 4,AC = 6,则AD的取值范围是________.三、解答题 (共7题;共10分)17. (2分) (2019七上·丹东期中) 一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.18. (1分) (2017八上·西华期中) 如图,已知△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,延长AE交BD于点F,请说出AE与BD的数量关系,并证明你的结论.19. (1分) (2017八上·西华期中) 如图所示,在△ABC中,AB =AC,∠BAC=100°,AB的垂直平分线交AB 于点D,交BC于点E,求∠AEC的度数.20. (1分) (2017八上·西华期中) 如图,在△ABC中,∠ABC = 90°,AB = 7,AC = 25,BC = 24,三条角平分线相交相交于点P,求点P到AB的距离.21. (1分) (2017八上·西华期中) 如图所示,在△ABC中,AB =AC,E为AB上一点,F为AC延长线上一点,且BE=CF,EF交BC于D,求证:DE=DF.22. (1分) (2017八上·西华期中) 一艘轮船自西向东航行,在A处测得小岛P的方位是北偏东75°,航行7海里后,在B处测得小岛P的方位是北偏东60°,若小岛周围3.8海里内有暗礁,问该船一直向东航行,有无触礁的危险?并说明原因.23. (3分) (2017八上·西华期中) 如图,在△ABC中,AB =AC=2,∠B = 40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE = 40°,DE交线段AC于点E.(1)当∠BDA = 115°时,∠BAD= ________°,∠DEC = ________°,当点D从点B向点C运动时,∠BDA 逐渐变________(填“大”或“小”).(2)当DC等于多少时,△ABD≌△DCE?请说明理由.(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共10分)17-1、18-1、19-1、20-1、21-1、22-1、23-1、23-2、23-3、。
2017-2018学年广东省八年级(上)期中数学试卷
2017-2018学年广东省八年级(上)期中数学试卷一、选择题(请将正确答案序号填入以下表格相应的题号下,否则不得分)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 3.已知点M(a,3),点N(2,b)关于y轴对称,则(a+b)2015的值()A.﹣3 B.﹣1 C.1 D.34.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°5.十二边形的外角和是()A.180°B.360°C.1800°D.2160°6.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()A.14 B.16 C.10 D.14或167.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个8.已知△DEF≌△ABC,AB=AC,且△ABC的周长是23cm,BC=4cm,则△DEF的边长中必有一边等于()A.9.5cm B.9.5cm或9cm C.4cm或9.5cm D.9cm9.下列条件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AC=DF,∠B=∠E,BC=EFC.AB=DE,∠B=∠E,AC=DF D.AB=DE,∠B=∠E,BC=EF10.如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠CDE的度数是()A.110°B.70°C.80°D.75°二、填空题11.三角形的三边长分别为5,x,8,则x的取值范围是.12.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=.13.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为度.14.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“AAS”需要添加条件.15.如图,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的.16.如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是.17.在直角坐标系中,如果点A沿x轴翻折后能够与点B(﹣1,4)重合,那么A,B两点之间的距离等于.18.如图,在△ABC中,AB=AC,AF是BC边上的高,点E、D是AF的三等分点,若△ABC 的面积为12cm2,则图中全部阴影部分的面积是cm2.19.如图,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC=.20.△ABC和△FED中,BD=FC,∠B=∠F.当添加条件时,就可得到△ABC≌△FED,依据是(只需填写一个你认为正确的条件).三、解答题(共40分)21.完成下列证明过程.如图,已知AB∥DE,AB=DE,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.证明:∵AB∥DE∴∠=∠()∵AD=CF∴AD+DC=CF+DC即在△ABC和△DEF中AB=DE∴△ABC≌△DEF.22.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.23.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称图形△DEF;(2)写出D、E、F的坐标.24.如图,AB=AC,AC的垂直平分线交AB于D,交AC于E.(1)若∠A=40°,求∠BCD的度数;(2)若AE=5,△BCD的周长17,求△ABC的周长.25.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.(1)求证:△ADE≌△BFE.(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.2017-2018学年广东省八年级(上)期中数学试卷参考答案与试题解析一、选择题(请将正确答案序号填入以下表格相应的题号下,否则不得分)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、5+6>10,能够组成三角形;C、1+1<3,不能组成三角形;D、3+4<9,不能组成三角形.故选B.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.已知点M(a,3),点N(2,b)关于y轴对称,则(a+b)2015的值()A.﹣3 B.﹣1 C.1 D.3【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵点M(a,3),点N(2,b)关于y轴对称,∴a=﹣2,b=3,所以,(a+b)2015=(﹣2+3)2015=1.故选C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【考点】全等三角形的判定与性质.【分析】根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC全等,根据全等三角形对应角相等可得∠2=∠3.【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选D.【点评】本题考查了全等三角形的判定与性质,直角三角形两锐角互余的性质,熟练掌握三角形全等的判定方法是解题的关键.5.十二边形的外角和是()A.180°B.360°C.1800°D.2160°【考点】多边形内角与外角.【分析】根据任何多边形的外角和是360°即可求解.【解答】解:十二边形的外角和是360°.故选B.【点评】本题考查了多边形的外角和,理解任何多边形的外角和是360度是关键.6.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()A.14 B.16 C.10 D.14或16【考点】等腰三角形的性质;三角形三边关系.【分析】因为底边和腰不明确,分两种情况进行讨论.【解答】解:(1)当4是腰时,符合三角形的三边关系,所以周长=4+4+6=14;(2)当6是腰时,符合三角形的三边关系,所以周长=6+6+4=16.故选D.【点评】注意此题一定要分两种情况讨论.但要注意检查是否符合三角形的三边关系.7.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个【考点】等腰三角形的性质.【分析】由“三线合一”可知(2)(4)正确,由等边对等角可知(3)正确,且容易证明△ABD≌△ACD,可得出答案.【解答】解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选D.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形底边上的中线、底边上的高、顶角的角平分线相互重合是解题的关键.8.已知△DEF≌△ABC,AB=AC,且△ABC的周长是23cm,BC=4cm,则△DEF的边长中必有一边等于()A.9.5cm B.9.5cm或9cm C.4cm或9.5cm D.9cm【考点】全等三角形的性质.【分析】根据等腰三角形的性质求出AB,再根据全等三角形对应边相等解答.【解答】解:∵BC=4cm,∴腰长AB=×(23﹣4)=9.5cm,∵△DEF≌△ABC,∴△DEF的边长中必有一边等于9.5cm或4cm,故选:C.【点评】本题考查了等腰三角形的性质,全等三角形的性质,关键是掌握全等三角形的对应边相等.9.下列条件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AC=DF,∠B=∠E,BC=EFC.AB=DE,∠B=∠E,AC=DF D.AB=DE,∠B=∠E,BC=EF【考点】全等三角形的判定.【分析】根据全等三角形的判定定理进行判断.【解答】解:A、没有边的参与,不能判定△ABC≌△DEF,故本选项错误;B、根据SSA不能判定△ABC≌△DEF,故本选项错误;C、根据SSA不能判定△ABC≌△DEF,故本选项错误;D、由全等三角形的判定定理SAS可以证得△ABC≌△DEF.故本选项正确;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠CDE的度数是()A.110°B.70°C.80°D.75°【考点】三角形内角和定理.【分析】由BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,根据角平分线的定义,可求得∠EBC与∠FCB的度数,然后又三角形外角的性质,求得∠CDE的度数.【解答】解:∵BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,∴∠CBE=∠ABC=40°,∠FCB=∠ACB=30°,∴∠CDE=∠CBE+∠FCB=70°.故选B.【点评】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度不大,注意掌握数形结合思想的应用.二、填空题11.三角形的三边长分别为5,x,8,则x的取值范围是3<x<13.【考点】三角形三边关系.【分析】由三角形的两边的长分别为8和5,根据已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和,即可求得答案.【解答】解:根据三角形的三边关系,得:8﹣5<x<8+5,即:3<x<13.故答案为:3<x<13.【点评】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.12.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=70°.【考点】全等三角形的判定与性质.【分析】首先根据全等三角形的性质可得∠EDF=∠BCA,再根据三角形内角和定理计算出∠BCA=70°,进而得到答案.【解答】解:∵△ABC≌△FED,∴∠EDF=∠BCA,∵∠A=30°,∠B=80°,∴∠BCA=70°,∴∠EDF=70°.故答案为:70°.【点评】此题主要考查了全等三角形的性质,解题的关键是掌握全等三角形的对应边相等,题目比较简单,是中考常见题型.13.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360度.【考点】多边形内角与外角;三角形内角和定理.【分析】根据三角形外角的性质,以及四边形的四个内角的和是360°即可求解.【解答】解:∵∠1=∠C+∠D,∠2=∠A+∠B,∴∠A+∠B+∠C+∠D+∠E+∠F=∠1+∠2+∠E+∠F=360°.故答案是:360°.【点评】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.14.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“AAS”需要添加条件∠B=∠C.【考点】全等三角形的判定.【分析】首先根据AD平分∠BAC可得∠BAD=∠CAD,再加上公共边AD=AD,还缺少一个角相等的条件,因此可添加∠B=∠C.【解答】解:添加条件:∠B=∠C;∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(AAS),故答案为:∠B=∠C.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的稳定性.【考点】三角形的稳定性.【分析】根据三角形的稳定性解答即可.【解答】解:加固后构成三角形的形状,利用了三角形的稳定性.故答案为:稳定性.【点评】本题考查了三角形的稳定性,是基础题.16.如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是30°.【考点】多边形内角与外角.【分析】由多边形的内角和公式求得多边形的边数,然后根据任意多边形的外角和是360°求解即可.【解答】解:设这个多边形的边数为n.根据题意得:(n﹣2)×180°=1800°.解得:n=12.360÷12=30°.故答案为:30°.【点评】本题主要考查的是多边形的内角和和外角和,由多边形的内角和公式求得多边形的边数是解题的关键.17.在直角坐标系中,如果点A沿x轴翻折后能够与点B(﹣1,4)重合,那么A,B两点之间的距离等于8.【考点】翻折变换(折叠问题);坐标与图形变化﹣对称.【分析】首先依据关于x轴对称点的坐标特点可求得点A的坐标,然后依据点A和点B的坐标可求得A、B两点之间的距离.【解答】解:∵点A与点B关于x轴对称,B(﹣1,4),∴点A的坐标为(﹣1,﹣4).∴AB=4﹣(﹣4)=4+4=8.所以A,B两点之间的距离等于8.故答案为:8.【点评】本题主要考查的是翻折变换、坐标与图形的变化,依据关于x轴对称点的坐标特点求得点A的坐标是解题的关键.18.如图,在△ABC中,AB=AC,AF是BC边上的高,点E、D是AF的三等分点,若△ABC 的面积为12cm2,则图中全部阴影部分的面积是6cm2.【考点】等腰三角形的性质.【分析】首先由等腰三角形的性质可知BD=DC,从而可知AD是图形的对称轴,由轴对称图形的性质可知:阴影部分的面积等于△ABC面积的一半.【解答】解:∵AB=AC,AD是BC边上的高线,∴BD=D C.∵BD=DC,AD⊥BC,∴AD是△ABC的对称轴.由轴对称图形的性质可知:△EFC的面积=△BEF的面积.∴阴影部分的面积=△ABC的面积=6cm2.故答案为:6.【点评】本题主要考查的是等腰三角形的性质、轴对称的性质,利用轴对称的性质得到阴影部分的面积=S△ABC是解题的关键.19.如图,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC=130°.【考点】三角形内角和定理.【分析】先根据三角形内角和定理求出∠DBC+∠DCB的度数,进而可得出∠BDC的度数.【解答】解:∵∠ABD=40°,∠ACD=35°,∠A=55°,∴∠DBC+∠DCB=180°﹣40°﹣35°﹣55°=50°,∴∠BDC=180°﹣50°=130°.故答案为:130°【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.20.△ABC和△FED中,BD=FC,∠B=∠F.当添加条件AB=EF时,就可得到△ABC≌△FED,依据是SAS(只需填写一个你认为正确的条件).【考点】全等三角形的判定.【分析】先证出BC=FD,由SAS即可证明△ABC≌△EF D.【解答】解:添加条件:AB=EF;依据是SAS;理由如下:∵BD=FC,∴BC=F D.在△ABC和△EFD中,,∴△ABC≌△EFD(SAS);故答案为:AB=EF,SAS.【点评】本题考查了三角形全等的判定方法;熟练掌握全等三角形的判定方法,并能进行推理论证是解决问题的关键.三、解答题(共40分)21.完成下列证明过程.如图,已知AB∥DE,AB=DE,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.证明:∵AB∥DE∴∠A=∠EDC(两直线平行,同位角相等)∵AD=CF∴AD+DC=CF+DC即AC=DF在△ABC和△DEF中AB=DE∠A=∠EDC,AC=DF∴△ABC≌△DEF(SAS).【考点】全等三角形的判定.【分析】根据平行线的性质可得∠A=∠EDC,根据等式的性质可得AC=DF,然后利用SAS 判定△ABC≌△DEF即可.【解答】证明:∵AB∥DE∴∠A=∠EDC(两直线平行,同位角相等)∵AD=CF∴AD+DC=CF+DC,即AC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.【考点】全等三角形的判定.【分析】根据∠BCE=∠ACD=90°,可得∠3=∠5,又根据∠BAE=∠1+∠2=90°,∠2+∠D=90°,可得∠1=∠D,继而根据AAS可判定△ABC≌△DE C.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).【点评】本题考查了全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称图形△DEF;(2)写出D、E、F的坐标.【考点】作图﹣旋转变换.【分析】(1)利用关于y轴对称点的坐标性质进而得出对应点位置得出答案即可;(2)利用(1)中所画图形,进而得出各点坐标即可.【解答】解:(1)如图所示:△DEF即为所求;(2)由(1)得:D(﹣2,3);E(﹣3,1);F(2,﹣2).【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键.24.如图,AB=AC,AC的垂直平分线交AB于D,交AC于E.(1)若∠A=40°,求∠BCD的度数;(2)若AE=5,△BCD的周长17,求△ABC的周长.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】(1)根据等腰三角形的性质和三角形内角和等于180°列式求出∠BCD的度数;(2)根据线段垂直平分线的性质可得AD=BD,AB=2AE,把△BCD的周长转化为AC、BC 的和,然后代入数据进行计算即可得解.【解答】解:(1)∵AB=AC,∠A=40°,∴∠BCD=(180°﹣∠A)=(180°﹣40°)=70°;(2)∵DE是AB的垂直平分线,∴AD=BD,AB=2AE=10,∵△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC=17,∴△ABC的周长=10+17=27.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的内角和定理,准确识图并熟记性质是解题的关键.25.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.(1)求证:△ADE≌△BFE.(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】(1)由平行线的性质得出∠ADE=∠BFE,由E为AB的中点,得出AE=BE,由AAS证明△AED≌△BFE即可;(2)由△AED≌△BFE,得出对应边相等DE=EF,证明FM=DM,由三角形的三线合一性质得出EM⊥DF,即可得出结论.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△AED和△BFE中,,∴△AED≌△BFE(AAS);(2)解:EM与DM的关系是EM垂直且平分DF;理由如下:连接EM,如图所示:由(1)得:△AED≌△BFE,∴DE=EF,∵∠MDF=∠ADF,∠ADE=∠BFE,∴∠MDF=∠BFE,∴FM=DM,∴EM⊥DF,∴ME垂直平分DF.【点评】本题考查了平行线的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握全等三角形的判定与性质,并能进行推理论证是解决问题的关键.。
惠州市八年级上学期期中数学试卷
惠州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)已知等边△ABC,点A在坐标原点,B点的坐标为(6,0),则点C的坐标为()A . (3,3)B . (3,2 )C . (2 ,3)D . (3,3 )2. (2分)下列说法中正确的是()A . -42的平方根是±4B . 把一个数先平方再开平方得原数C . -a没有平方根D . 正数a的算术平方根是3. (2分) (2017八下·仁寿期中) 在平面直角坐标系中,▱ABCD的顶点A(0,0),B(5,0),D(2,3),则顶点C的坐标是()A . (3,7)B . (5,3)C . (7,3)D . (8,2)4. (2分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴,y轴上,连OB,将纸片OABC沿OB折叠,使点A落在A′的位置,若OB=,tan∠BOC=,则点A′的坐标()A . (﹣,)B . (﹣,)C . (﹣,)D . (﹣,)5. (2分)若,则m+n的值是()A . -1B . 0C . 1D . 26. (2分)(2019·大连模拟) 正方形ABCD、正方形BEFG,点A,B,E在半圆O的直径上,点D,C,F在半圆O上,若EF=4,则该半圆的半径为()A .B . 8C .D .二、填空题 (共6题;共10分)7. (1分)(2020·宁波模拟) 计算的结果________。
8. (1分)(2020·沈阳模拟) 如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC 的值为________.9. (1分) (2019八上·武安期中) 已知点A(x,-4)与点B(3,y)关于y轴对称,那么x+y的值为________.10. (1分)数轴上点A、B分别表示实数1、﹣1,则A、B两点间的距离为________.11. (5分) (2018八上·阳新月考) 如图,在一个长为20m,宽为16m的矩形草地上放着一根长方体木块,已知该木块的较长边和场地宽AD平行,横截面是边长为2m的正方形,一只蚂蚁从点A处爬过木块到达点C处需要走的最短路程是__m.12. (1分) (2019九上·吴兴期中) 如图,AB是⊙O的直径,C、D是⊙O上的两个动点(点C、D不与A、B 重合),在运动过程中弦CD始终保持不变,F是弦CD的中点,过点C作CE⊥AB于点E.若CD=5,AB=6,当EF取得最大值时,CE的长度为________ 。
广东省惠州市八年级上学期期中数学试卷
广东省惠州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·湘西) 下列四个图形中,是轴对称图形的是()A .B .C .D .2. (2分) (2016八上·西昌期末) 下列各组线段中,能构成三角形的是()A . 3,4,7B . ,2C . 2x+1,x﹣l,3x(x>l)D . 2k,3k,4k(k>0)3. (2分)(2020·南漳模拟) 下列计算中,结果正确的是()A . x2+x2=x4B . x2•x3=x6C . x2﹣(﹣x)2=0D . x6÷x2=a34. (2分)(2018·嘉兴模拟) 下列计算正确的是()A . x3+x3=x6B . 2x3-x3=x3C . x2·x3=x6D . (x2)3=x55. (2分) (2017八下·宁城期末) 若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A . k>3B . 0<k≤3C . 0≤k<3D . 0<k<36. (2分)已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A . 增大B . 减小C . 不变D . 不能确定7. (2分) (2019九上·苍南期中) 如图,将点P(-2,3)向右平移n个单位后落在直线y=2x-1上的点P'处,则n等于()A . 4B . 5C . 6D . 78. (2分) (2019八上·和平月考) 下列判断中正确的有()个①直角三角形的两边为3和4,则第三边长为5②有一个内角等于其它两个内角和的三角形是直角三角形③若三角形的三边满足b2=a2﹣c2 ,则△ABC是直角三角形④若△ABC中,∠A:∠B:∠C=8:15:17,则△ABC是直角三角形A . 1B . 2C . 3D . 49. (2分) (2019八下·衢州期末) 如图,将边长为的正方形绕点B逆时针旋转30°,那么图中点M的坐标为()A . (,1)B . (1,)C . (,)D . (,)10. (2分)(2017·佳木斯模拟) 将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图象大致为()A .B .C .D .二、填空题 (共5题;共11分)11. (1分)(2018·开封模拟) 如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,则y与x的解析式是________.12. (1分)(2019·邹平模拟) 如图,在直角坐标系中,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时,反射角等于入射角,当小球第1次碰到矩形的边时的点为P1 ,第2次碰到矩形的边时的点为P2 ,…,第n次碰到矩形的边时的点为Pn,则点P2019的坐标是________.13. (7分)已知:如图,点B、E、C、F在同一条直线上,且AB=DE,AC=DF,BE=CF.求证:AB∥DE.请将下面的过程和理由补充完整解:∵BE=CF________∴BE+EC=CF+EC即________.在△ABC和△DEF中,=DE(已知)AC=DF________BC=________∴△ABC≌△DEF________∴∠ABC=∠DEF________∴AB∥DE________.14. (1分)(2017·市中区模拟) 如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,点M运动的路径长为________.15. (1分) (2020八下·江都期末) 如图,等边三角形ABO的顶点A在反比例函数y=(x<0)的图象上,边BO在x轴上,等边三角形ABO的面积为,则k=________.三、解答题 (共7题;共60分)16. (15分)作图题:(1)如图1,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等.(2)利用方格纸画出图2中△ABC关于直线l的对称图形△A′B′C′.则△A′B′C′的面积为?(3)如图3,已知在Rt△ABC中,∠ACB=90°,P是AB边上的中点,试在AC上找一点E,使得△PEB的周长最短.17. (10分) (2018九上·肇庆期中) 将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图①的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:△BCE≌△B1CF.(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.18. (5分)如图,在△ABC中,AB=AC,D,E分别是AB,AC的中点,F是BE,CD的交点.请写出图中两对全等的三角形,并选出其中一对加以证明.19. (5分)如图,若∠B=40°,∠C=71°,∠BME=133°,∠EPB=140°,∠F=47°.求∠A,∠D.20. (10分) (2017九上·河东开学考) 如图,在平面直角坐标系中,点0是坐标原点.边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,点E是对角线AC上一点,连接OE、BE,BE的延长线交OA于点P,若△OCE的面积为12.(1)求点E的坐标:(2)求△OPE的周长.21. (5分) (2019八上·禅城期末) 如图,已知,,求证:AC平分.22. (10分)(2018·溧水模拟) 如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:△ADG≌△CDG.(2)若=,EG=4,求AG的长.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共11分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共7题;共60分)答案:16-1、答案:16-2、答案:16-3、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:。
广东省惠州市八年级上学期数学期中考试试卷
广东省惠州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2017七上·上城期中) 如果一个实数的平方根与它的立方根相等,则这个数是().A . 和B . 正实数C .D .2. (1分)下列由线段a,b,c组成的三角形不是直角三角形的是()A . a=3,b=4,c=5B . a=2, b=3,c=C . a=12,b=10,c=20D . a=5,b=13,c=123. (1分) (2019七下·温州期中) 下列不是二元一次方程的解的是()A .B .C .D .4. (1分)已知一次函数y=kx+b,当x增加2时,y减小3,则k的值是()A . -B . -C .D .5. (1分)矩形纸片ABCD的边长AB=4,AD=2。
将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图所示),则着色部分的部分面积为()A .B .C .D .6. (1分) 16的平方根是()A . ±4B . 24C . ±8D . ±27. (1分)如图,直线y=kx+b与x轴交于点A(-4,0),则当y<0时,x的取值范围是()毛A . x>-4B . x>0C . x<-4D . x<08. (1分)无论实数m取什么值,直线y=x+m与y=-x+5的交点都不能在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (1分)下列函数中y既不是x的正比例函数,也不是反比例函数的是()A .B .C .D .10. (1分) (2019七下·余杭期末) 小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则()A . 他身上的钱会不足95元B . 他身上的钱会剩下95元C . 他身上的钱会不足105元D . 他身上的钱会剩下105元二、填空题 (共9题;共9分)11. (1分) (2019八上·兴化月考) a的平方根是±3,那么a=________.12. (1分) (2019七下·海口期中) 已知方程3x-2y=1,用含x的式子表示y,则y=________.13. (1分) (2017八下·南召期中) 把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式为________.14. (1分)已知一次函数的图象经过点(1,2)与(3,5),那么这个函数的表达式为________.15. (1分)若是方程2x+3y=0的一个解,则8a+12b+15的值是________16. (1分)用“>”“<”或“=”连接:﹣π________﹣3.14.17. (1分)若方程组与有相同的解,则a= ________,b= ________.18. (1分)(2017·吉林模拟) 如图,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标是________.19. (1分)(2018·道外模拟) 如图,在△ABC中,∠B=45°,在BC边上取一点D,使CD=CA,点E在AC上,连接ED,若∠AED=45°,且CE=1,BD=2,则AD的长是________.三、解答题 (共6题;共13分)20. (2分) (2017七下·靖江期中) 已知方程组和有相同的解,求a2﹣2ab+b2的值.21. (4分) (2015八下·灌阳期中) .22. (1分) (2019九上·光明期中) 如图1,已知抛物线y=ax2+bx+c与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点C(0,2),(1)求抛物线的函数表达式;(2)如图2,在抛物线对称轴上取两个点G、H(G在H的上方),且满足GH=1,连接CG,AH,求四边形CGHA 的周长的最小值;(3)如图3,点P是抛物线第一象限的一个动点,过点P作PQ⊥x轴于点Q,交BC于点D,PE⊥BC于点E,设△PDE的面积为S,求当S取得最大值时点P的坐标,并求S的最大值.23. (1分)已知一个数m的平方根是3a+1和a+11,求m的立方根.24. (3分)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A 关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标.(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.25. (2分)(2018·沙湾模拟) 某校计划购买一批排球和足球,已知购买2个排球和1个足球共需321元,购买3个排球和2个足球共需540元.(1)求每个排球和足球的售价;(2)若学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买足球多少个?参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共6题;共13分)20-1、21-1、22-1、22-2、22-3、23-1、24-1、24-2、24-3、25-1、25-2、第11 页共11 页。
广东省惠州仲恺高新区沥林华科学校八年级数学上学期期中试题(无答案) 新人教版
八年级数学(上)期中试卷(时间:90分钟,满分:120分)一、选择题(每小题5分,共25分)1、依据下列选项条件,不能判定两个三角形全等的是()A、两角和一边B、两边及夹角C、三个角D、三条边2、在一个三角形中有两个内角分别是50°、80°,则第三个内角的度数为()A、80°B、50°C、65°D、无法判断3、十二边形的内角和为()A、180°B、360°C、1800°D、无法计算4、下列图案中不属于轴对称图形的是()A、B、 C、5、已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.5 B.10 C.2 D.1二、填空题(每空5分,共25分)6、如图1,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.你补充的条件是.7、如图2,△ABC中,∠A=50,∠C=70,则外角∠ABD度数为 .8、如图3,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为 .图1 图2 图39、五边形的外角和等于度.10三、作图题(每题10分,共计20分)11、(1)请作出△ABC中AC边上的高BD;(2)作出△ABC中线CG.12、(1)在直角坐标系中作出△ABC关于y轴对称的图形△A₁B₁C₁.(2)写出△ABC各顶点关于x轴对应的点的坐标A′ B′ C′四、解答题(每小题10分,共50分)13、已知等腰三角形的周长是14cm.若其中一边长为4cm,求另外两边长.14、如图,已知:AD是BC上的中线,且DF=DE,求证:BE∥CF.15、如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.16、如图,已知:在△ABC中,AB=AC ,BD=CD,∠BAD=40°,AD=AE.求∠CDE的度数.17、. 如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况:(1)将下面的表格补充完整:Array(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.。
广东省惠州市八年级上学期数学期中考试试卷
广东省惠州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各数中,属于无理数的是()A .B . -2C . 0D .2. (2分) 8的平方根和立方根分别是()A . 8和4B . ±4和2C . 和8D . ± 和23. (2分)已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是()A .B .C .D .4. (2分) (2020八上·常州期末) 在平面直角坐标系中,点(-1,2)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分) (2016九上·济宁期中) 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A . 6B . 5C . 3D . 36. (2分)点P(﹣2,1)在平面直角坐标系中所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得为等腰三角形,则点C的个数有A . 4个B . 6个C . 8个D . 10个8. (2分) (2017七下·三台期中) 线段EF是由线段PQ平移得到的,点P(﹣1,4)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标为()A . (﹣8,﹣2)B . (﹣2,﹣2)C . (2,4)D . (﹣6,﹣1)9. (2分)下列函数的图象,一定经过原点的是()A . y=x2-1B . y=3x2-2xC . y=2x+1D . y=10. (2分)已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中正确的结论的个数是()A . 1B . 2C . 3D . 4二、填空题 (共5题;共10分)11. (5分) (2019八下·东台月考) 计算 = ________.12. (2分) (2019八下·博乐月考) 如图所示,数轴上点A所表示的数为________.13. (1分)(2018·嘉兴模拟) 已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线上,点N在直线y=x+3上,设则抛物线y=﹣abx2+(a+b)x的顶点坐标是________ .14. (1分)下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形有4个,则图2中以格点为顶点的等腰直角三角形有________ 个.15. (1分)(2017·微山模拟) 如图,将边长分别为6,2 的矩形硬纸片ABCD折叠,使AB,CB均落在对角线BD上,点A与点H重合,点C与点G重合,折痕分别为BE,BF.下面三个结论:①∠EBF=45°;②FG是BD 的垂直平分线;③DF=5.其中正确的结论是________(只填序号)三、解答题 (共8题;共64分)16. (10分) (2016七上·萧山月考) 计算.(1)(2)17. (10分)计算下列各题(1)(4+ )(4﹣)(2)4 + ﹣ +4(3)已知函数y=(x+1)(x﹣1)﹣1中自变量x=2 ,求函数值;(4)求直线L1:y=3x﹣2与L2:y=﹣3x+1的交点坐标.18. (6分) (2017七上·西城期末) 观察下面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:① 1× =1-② 2× =2-③ 3× =3-……(1)在下面给出的四个正方形中画出第四个图形,并在右边写出与之对应的等式;________;________(2)猜想并写出与第n个图形相对应的等式:________。
广东省惠州市八年级上学期期中数学试卷
广东省惠州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2014·韶关) 一个多边形的内角和是900°,这个多边形的边数是()A . 10B . 9C . 8D . 72. (2分)下列图形中,是轴对称图形但不是中心对称图形的是()A .B .C .D .3. (2分)若点A(2﹣a,1﹣2a)关于y轴的对称点在第三象限,则a的取值范围是()A . a<B . a>2C . <a<2D . a<或a>24. (2分) (2017八下·常山月考) 如果一个三角形的三边长分别为1,k,3,则化简的结果是()A . ﹣5B . 1C . 13D . 19﹣4k5. (2分)如图,在△ABC中,点O是∠ABC的平分线与线段BC的垂直平分线的交点,则下列结论不一定成立的是()A . OB=OCB . OD=OFC . BD=DCD . OA=OB=OC6. (2分)如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1 , P2 ,连接P1P2交OA 于点M,交OB于点N,P1P2=15,则△PMN的周长为()A . 14B . 15C . 16D . 177. (2分)下面说法错误的是()A . 三角形的三条角平分线交于一点B . 三角形的三条中线交于一点C . 三角形的三条高交于一点D . 三角形的三条高所在的直线交于一点8. (2分) (2019八下·青铜峡月考) 下列各选项中的两个直角三角形不一定全等的是()A . 两条直角边对应相等的两个直角三角形.B . 两个锐角对应相等的两个直角三角形.C . 斜边和一条直角边对应相等的两个直角三角形.D . 有一个锐角及这个锐角的对边对应相等的两个直角三角形全等.9. (2分)在直角△ABC中,∠C=90º,AC=BC,BD平分∠ABC,DE⊥AB于E,若CD=3,则AD的长度是()A . 3B . 4C .D .10. (2分) (2019八上·武安期中) 如图,∠E=∠F=90°,∠B=∠C , AE=AF ,下列结论错误的结论是()A . CD=DN;B . ∠1=∠2;C . BE=CF;D . △ACN≌△ABM .二、填空题 (共8题;共8分)11. (1分) (2016八上·江宁期中) 如图,∠A=100°,∠E=25°,△ABC与△DEF关于直线l对称,则△ABC 中的∠C=________°.12. (1分)若一个多边形的内角和为360°,则这个多边形的边数为________.13. (1分)已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是________14. (1分)(2018·柳州模拟) 如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E,某同学分析图形后得出以下结论,上述结论一定正确的是________(填代号).①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.15. (1分)从汽车的后视镜中看见某车车牌的后5位号码是,该车牌的后5位号码实际是________.16. (1分) (2017九下·丹阳期中) 已知菱形ABCD的对角线AC、BD相交于点O ,AE⊥BC , BD =8,sin∠CBD=,则AE=________。
惠州市八年级上学期数学期中考试试卷
惠州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2017·市北区模拟) 下列图形既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (1分)等腰三角形的三边长分别为3x-2,4x-3,6-2x,则该三角形的周长为()A . 6B . 6或9或8.5C . 9或8.5D . 与x的取值有关3. (1分)一个等腰三角形的顶角是40°,则它的底角是()A . 40°B . 50°C . 60°D . 70°4. (1分) (2015九上·海南期中) 如图甲、乙、丙三个三角形中能确定和右图△ABC完全重合的是()A . 甲和丙B . 丙和乙C . 只有甲D . 只有丙5. (1分)在△ABC中,AD⊥BC,D为BC中点,则以下结论不正确的是().A . △ABC是等边三角形B . ∠B=∠CC . AD是BAC的平分线D . △ABD≌△ACD6. (1分) (2018八下·邗江期中) 如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE,BE,则∠AEB的度数是()A . 120°B . 135°C . 150°D . 45°7. (1分)如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于F点,AB=BF。
添加一个条件,使四边形ABCD是平行四边形。
你认为下面四个条件中可选择的是()A . AB=BCB . CD=BFC . ∠A=∠CD . ∠F=∠CDE8. (1分)某花园内有一块五边形的空地如图所示,为了美化环境,现计划在五边形各顶点为圆心,2 m长为半径的扇形区域(阴影部分)种上花草,那么种上花草的扇形区域总面积是()A . 6πm2B . 5πm2C . 4πm2D . 3πm29. (1分) (2017九上·江津期中) 下列命题错误的是()A . 直径是弦B . 若a+b>0 ,则a >0 ,b >0C . 线段垂直平分线上的点到线段两端的距离相等D . 矩形的对角线互相平分10. (1分) (2017七下·兴化期末) 如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则结论:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正确的有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共6分)11. (1分) (2019八上·龙华期末) 若点A(2,-1)关于轴的对称点A的坐标是则的值是________.12. (1分) (2019八上·武汉月考) 如图,AD⊥BC 于 D,且 DC=AB+BD,若∠BAC=108°,则∠C 的度数是________度.13. (1分) (2016八下·费县期中) 已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=________度.14. (1分)如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=3cm.BC=2cm,将△DBC沿射线BC 平移一定的距离得到△D1B1C1 ,连接AC1 , BD1 .如果四边形ABD1C1是矩形,那么平移的距离为________ cm.15. (1分) (2019八下·松北期末) 如图,在平行四边形ABCD中,∠BAD的平分线AE交边CD于E,▱ABCD 的周长是16cm,EC=2cm,则BC=________.16. (1分)如图,中,平分,的中垂线交于点,交于点,连接 .若,,则的度数为=________.三、解答题 (共8题;共15分)17. (1分)已知:如图,四边形ABCD是平行四边形,DE∥AC,交BC的延长线于点E,EF⊥AB于点F,求证:AD=CF.18. (3分)已知点A(﹣2,﹣1),B(3,1),C(1,4).(1)在直角坐标系中描出点A、B、C,画出△ABC.(2)求出△ABC的面积.(3)作出△ABC在坐标系中关于y轴对称的△A1B1C1 .19. (1分) (2015八上·武汉期中) 已知:如图,在△ABC中,点D是BC的中点,过点D作直线交AB,CA 的延长线于点E,F.当BE=CF时,求证:AE=AF.20. (2分)(2018·阜宁模拟) 如图,△ABC中,AB=BC.(1)用直尺和圆规作△ABC的中线BD;(不要求写作法,保留作图痕迹);(2)在(1)的条件下,若BC=6,BD=4,求的值.21. (1分)如图,☉O与四边形ABCD的四边都相切.若∠AOB=70°,求∠COD的度数.22. (2分)(2019·开江模拟) 如图,在中,,以为直径作圆,分别交于点,交的延长线于点,过点作于点,连接交线段于点.(1)求证:是圆的切线;(2)若为的中点,求的值;(3)若,求圆的半径.23. (2分) (2018八上·青岛期末) 已知:△ABC是等边三角形.(1)如图,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.试判断BF与CF的数量关系,并加以证明;(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.若△BFD是等腰三角形,求∠FBD的度数.24. (3分) (2017八下·江苏期中) 我们定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,在△ABC中,AB=BC,且BC≠AC,请你在图1中用尺规作图作出△ABC的一条“等分积周线”;(2)在图1中,过点C能否画出一条“等分积周线”?若能,说出确定的方法;若不能,请说明理由.(3)如图3,在△ABC中,AB=BC=6cm,AC=8cm,请你不过△ABC的顶点,画出△ABC的一条“等分积周线”,并说明理由.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共15分)17-1、18-1、18-2、18-3、19-1、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年广东省惠州市仲恺高新区沥林华科学校八年级(上)期中数学试卷一、选择题(每小题5分,共25分)1.(5分)依据下列选项条件,不能判定两个三角形全等的是()A.两角和一边B.两边及夹角C.三个角D.三条边2.(5分)在一个三角形中有两个内角分别是50°、80°,则第三个内角的度数为()A.80°B.50°C.65°D.无法判断3.(5分)十二边形的内角和为()A.180°B.360°C.1800°D.无法计算4.(5分)下列图案中不属于轴对称图形的是()A. B.C.D.5.(5分)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1二、填空题(每空5分,共25分)6.(5分)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD ≌△COB,你补充的条件是.7.(5分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是.8.(5分)如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为.9.(5分)五边形的外角和等于度.10.(5分)点M(1,2)关于x轴对称的点的坐标为.三、作图题(每题10分,共计20分)11.(10分)(1)请作出△ABC中AC边上的高BD;(2)作出△ABC中线CG.12.(10分)(1)在直角坐标系中作出△ABC关于y轴对称的图形△A₁B₁C₁.(2)写出△ABC各顶点关于x轴对应的点的坐标A′B′C′.四、解答题(每小题10分,共50分)13.(10分)已知等腰三角形的周长是14cm.若其中一边长为4cm,求另外两边长.14.(10分)如图,已知:AD是BC上的中线,且DF=DE.求证:BE∥CF.15.(10分)如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.16.(10分)在△ABC中,AB=AC,BD=CD,∠BAD=40°,AD=AE.求∠CDE的度数.17.(10分)如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况:(1)将下面的表格补充完整:(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.2016-2017学年广东省惠州市仲恺高新区沥林华科学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题5分,共25分)1.(5分)依据下列选项条件,不能判定两个三角形全等的是()A.两角和一边B.两边及夹角C.三个角D.三条边【解答】解:A、全等三角形的判定定理ASA,AAS,正确;B、全等三角形的判定定理SAS,正确;C、根据三角对应相等不能推出两三角形全等,错误;D、根据全等三角形的判定定理SSS,正确;故选:C.2.(5分)在一个三角形中有两个内角分别是50°、80°,则第三个内角的度数为()A.80°B.50°C.65°D.无法判断【解答】解:∵三角形的两个内角分别是50°、80°,∴它的第三个角的度数为180°﹣50°﹣80°=50°.故选:B.3.(5分)十二边形的内角和为()A.180°B.360°C.1800°D.无法计算【解答】解:(12﹣2)•180°=1800°.故选:C.4.(5分)下列图案中不属于轴对称图形的是()A. B.C.D.【解答】解:A、是轴对称图形,本选项错误;B、不是轴对称图形,本选项正确;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:B.5.(5分)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1【解答】解:根据三角形的三边关系可得:AB﹣BC<AC<AB+BC,∵AB=6,BC=4,∴6﹣4<AC<6+4,即2<AC<10,则边AC的长可能是5.故选:B.二、填空题(每空5分,共25分)6.(5分)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD ≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.7.(5分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是120°.【解答】解:∵∠A=50°,∠C=70°,∴∠ABD=∠A+∠C=120°,故答案为:120°.8.(5分)如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为3.【解答】解:∵△ABE≌△ACF∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故答案为:3.9.(5分)五边形的外角和等于360度.【解答】解:五边形的外角和是360°.故答案为:360.10.(5分)点M(1,2)关于x轴对称的点的坐标为(1,﹣2).【解答】解:点M(1,2)关于x轴对称的点的坐标为:(1,﹣2).故答案为:(1,﹣2).三、作图题(每题10分,共计20分)11.(10分)(1)请作出△ABC中AC边上的高BD;(2)作出△ABC中线CG.【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段CG即为所求.12.(10分)(1)在直角坐标系中作出△ABC关于y轴对称的图形△A₁B₁C₁.(2)写出△ABC各顶点关于x轴对应的点的坐标A′(﹣2,﹣3)B′(﹣3,﹣2)C′(﹣1,﹣1).【解答】解:(1)如图,△A1B1C1即为所求;(2)∵A(﹣2,3),B(﹣3,2),C(﹣1,1),∴A′(﹣2,﹣3),B′(﹣3,﹣2),C′(﹣1,﹣1).故答案为:(﹣2,﹣3),(﹣3,﹣2),(﹣1,﹣1).四、解答题(每小题10分,共50分)13.(10分)已知等腰三角形的周长是14cm.若其中一边长为4cm,求另外两边长.【解答】解:若4cm长的边为底边,设腰长为xcm,则4+2x=14,解得x=5,若4cm长的边为腰,设底边为xcm,则2×4+x=14,解得x=6.两种情况都成立.所以等腰三角形另外两边长分别为5cm、5cm或4cm、6cm.14.(10分)如图,已知:AD是BC上的中线,且DF=DE.求证:BE∥CF.【解答】证明:∵AD是BC上的中线,∴BD=DC.又∵DF=DE(已知),∠BDE=∠CDF(对顶角相等),∴△BED≌△CFD(SAS).∴∠E=∠CFD(全等三角形的对应角相等).∴CF∥BE(内错角相等,两直线平行).15.(10分)如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE.16.(10分)在△ABC中,AB=AC,BD=CD,∠BAD=40°,AD=AE.求∠CDE的度数.【解答】解:∵AB=AC,∴△ABC为等腰三角形,∵AD=AE,∴△ADE为等腰三角形,∵∠BAD=40°,∴∠DAE=40°,∴∠ADE=(180°﹣∠DAE)=(180°﹣40°)=70°,又∵△ABC为等腰三角形,BD=CD,∴AD⊥CD(三线合一),∴∠CDE=90°﹣∠ADE=90°﹣70°=20°.故答案为:20°.17.(10分)如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况:(1)将下面的表格补充完整:(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.【解答】解:(1)n=4时,360°÷4=90°,∠α=90°÷2=45°,n=5时,360°÷5=72°,∠α=72°÷2=36°,n=6时,360°÷6=60°,∠α=60°÷2=30°,边数为n时,∠α=×=;(2)假设存在一个正多边形,其中的∠α=21°,则=21°,解得n=(不是整数),所以,不存在一个正多边形使∠α=21°.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
A3.在Rt△POQ中,OP=OQ=4.M是PQ中点,把一把三角尺的直角顶点放在点M处,以M 为旋转中心.旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B。
(1)求证:MA=MB;(2)连接AB.探究:在旋转三角尺的过程中.△AOB的周长是否存在最小值.若存在,求出最小值;若不存在,请说明理由.4.如图,在锐角△ABC 中,AB =42BAC =45°,∠BAC 的平分线交BC 于点D ,M 和N 分别是AD ,AB 上的动点,则BM+MN 的最小值是 .5.如图,△ABC 中,︒=∠60BAC ,︒=∠45ABC ,AB =22,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于E ,F ,连接EF ,则线段EF 长度的最小值为 。
B6. 在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,3OA=,4OB=,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且2EF=,当四边形CDEF的周长最小时,求点E、F的坐标.。