2012年上海中考数学试卷及答案(word版)
2012上海中考数学试题及答案
2012上海中考数学试题及答案本文为中考数学试题及答案的整理,旨在帮助考生更好地了解2012年上海中考数学试题的内容和解题思路。
以下为试题及答案。
1. 选择题1)单选题1. 下列哪个数是有理数?A. √3B. -πC. eD. 5!答案:D2. 若25 ÷ x = 5,则x=?A. -5B. 5/25C. 1/5D. 5答案:C2)多选题1. 设函数f(x)=ax+b,若f(1)=2,f(-1)=0,则以下哪些条件是成立的?I. a=-1 II. a+b=2 III. b=1A. 仅IB. 仅I和IIC. 仅I和IIID. I、II和III答案:B2. 下列哪些数是整数?I. -√2 II. 0.5 III. -7 IV. 10%A. 仅I和IIIB. 仅III和IVC. 仅II和IIID. I、III和IV答案:A、C2. 解答题1)填空题1. 某班学生身高的范围是150cm~170cm,若身高是整数,且大于160cm的学生人数是30人,则身高是整数的学生人数是_________。
答案:102. 已知矩形ABCD的周长为24cm,若AD的长为4cm,则矩形的面积为_________。
答案:28 cm²2)计算题1. 已知函数f(x)的定义域为Df={x|x∈R},且f(x)=2x+3,求f(1)+f(2)的值。
答案:112. 某超市中,牛奶的原价为30元/袋,现在正在优惠促销活动,打9折出售。
若一位顾客购买了5袋牛奶,他需要支付的金额为_________元。
答案:135元3. 解析几何题1. 平面上有三点A(-2, 1),B(3, -2)和C(1, 4),求三角形ABC的面积。
答案:10.5平方单位2. 已知圆和正方形的面积相等,已知圆的半径r=4cm,求正方形的面积。
答案:32平方厘米以上为2012年上海中考数学试题及答案的选取和整理。
希望对考生们的备考有所帮助。
祝愿大家取得优异的成绩!。
(高清版)2012年上海市中考数学试卷
数学试卷 第 7页(共 14页)
【考点】平面向量
16.【答案】3
【解析】∵ AED B
, A 是公共角,∴△ADE∽△ACB ∴
S△ADE S△ACB
AE 2 AB
∵ △ADE 的面积为 4,四边形 BCED 的面积为 5,
∴ △ABC 的面积为 9,
∵
AE
2
,∴
4 9
2 AB
2
解得:
AB
积为 4,四边形 BCDE 的面积为 5,那么 AB 的长为
.
17.我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等
的等边三角形,如果当它们的一边重合时,重心距为 2,那么当它们的一对角成对顶角
时,重心距为
.
18.如图,在 Rt△ABC 中, C 90 , A 30 , BC 1 ,点 D 在 AC 上,将 △ADB 沿直线
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------
2 x<6
3.不等式组
x
2>0
的解集是
()
上 A. x> 3
B. x< 3
C. x>2
4.在下列各式中,二次根式 a b 的有理化因式
上海市中考数学试卷有答案
数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前上海市2012年中考数学试题数 学一、选择题(本大题共6小题,每小题4分,满分24分) 1.在下列代数式中,次数为3的单项式是( ) A .2xyB .33x y +C .3x yD .3xy 2.数据5,7,5,8,6,13,5的中位数是( )A .5B .6C .7D .8 3.不等式组2620x x -⎧⎨-⎩<>的解集是( ) A .3x ->B .3x -<C .2x >D .2x < 4.在下列各式中,( ) ABCD5.在下列图形中,为中心对称图形的是( ) A .等腰梯形B .平行四边形C .正五边形D .等腰三角形6.如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是( ) A .外离B .相切C .相交D .内含二、填空题(本大题共12小题,每小题4分,满分48分) 7.计算1|1|2-= . 8.因式分解xy x -= .9.已知正比例函数(0)y kx k =≠,点(2,3)-在函数上,则y 随x 的增大而 (增大或减小).10.2的根是 .11.如果关于x 的一元二次方程260x x c -+=(c 是常数)没有实根,那么c 的取值范围是 .12.将抛物线2y x x =+向下平移2个单位,所得抛物线的表达式是 .13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 .14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在0.2515.如图,已知梯形ABCD ,AD BC ∥,2BC AD =,如果AD a =,=AB b ,那么AC =(用,a b 表示).16.在ABC △中,点D 、E 分别在AB 、AC 上,ADE B ∠=∠,如果2AE =,ADE △的面积为4,四边形BCDE 的面积为5,那么AB 的长为 .17.我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为2,那么当它们的一对角成对顶角时,重心距为 .18.如图,在Rt ABC △中,90C ∠=,30A ∠=,1BC =,点D 在AC 上,将ADB △沿直线BD 翻折后,将点A 落在点E 处,如果AD ED ⊥,那么线段DE 的长为 .三、解答题(本大题共7小题,满分78分) 19.(本小题满分10分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------121211)32-⨯+-.20.(本小题满分10分)解方程:261393xx x x+=+--.21.(本题满分10分,第(1)小题满分4分.第(2)小题满分6分)如图在Rt ABC△中,90ACB∠=,D是边AB的中点,BE CD⊥,垂足为点E.已知15AC=,3cos5A=.(1)求线段CD的长;(2)求sin DBE∠的值.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本⨯生产数量)23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知:如图,在菱形ABCD中,点E、F分别在边BC、CD,BAF DAE∠=∠,AE与BD交于点G.(1)求证:BE DF=(2)当要DF ADFC DF=时,求证:四边形BEFG是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)如图在平面直角坐标系中,二次函数26y ax x c=++的图象经过点(4,0)A、(1,0)B-,与y轴交于点C,点D在线段OC上,OD t=,点E在第二象限,90ADE∠=,1tan2DAE∠=,EF OD⊥,垂足为F.(1)求这个二次函数的解析式;(2)求线段EF、OF的长(用含t的代数式表示);(3)当ECA OAC∠=∠时,求t的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)如图,在半径为2的扇形AOB中,90AOB∠=,点C是弧AB上的一个动点(不与点A、B重合)OD BC⊥,OE AC⊥,垂足分别为D、E.(1)当1BC=时,求线段OD的长;(2)在DOE△中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD x=,DOE△的面积为y,求y关于x的函数关系式,并写出它的定义域.数学试卷第3页(共14页)数学试卷第4页(共14页)-=a b)()数学试卷第5页(共14页)数学试卷第6页(共14页)【解析】∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:93=.【提示】根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率【考点】概率公式2a b+【解析】∵梯形ABCD,,2BC AD=,AD a=,∴22BC AD a=+,∵AB b=,∴2AC AB BC a b=++=,AD a=,根据平行向量的性质,即可求得BC的值,又由AC AB BC=+,即可求得答案【答案】3【解析】解:设等边三角形的中线长为a,则其重心到对边的距离为:3a,∵它们的一边重合时(图1),重心距为2,∴223a=,解得3a=,∴当它们的一对角成对顶角时(图2)重心距443433a==⨯=.数学试卷第7页(共14页)数学试卷第8页(共14页)数学试卷 第9页(共14页) 数学试卷 第10页(共14页)别化简,进而利用有理数的混合运算法则计算即可. 【考点】二次根式的混合运算,分数指数幂,负整数指数幂 20.【答案】1x =【解析】解:方程的两边同乘(3)(3)x x +-,得(3)63x x x -+=+,整理,得2430x x -+=,解得11x =,23x =.经检验:3x =是方程的增根,1x =是原方程的根, 故原方程的根为1x =.数学试卷 第11页(共14页) 数学试卷 第12页(共14页)(2)关键是证明EDF DAO △∽△,然后利用相似三角形对应边的比例关系以及三角形函数的定义求解;数学试卷 第13页(共14页)数学试卷 第14页(共14页)4x DF OE -=【提示】根据OD BC ⊥可得出22BD BC ==,在Rt BOD △中利用勾股定理即可求出OD 的长;(2)连接AB ,由AOB △是等腰直角三角形可得出AB 的长,再根据D 和E 是中点可得出DE =(3)由BD x =,可知OD =,由于12∠=∠,34∠=∠,所以2345∠+∠=︒,过D 作DF OE ⊥,DF =EF =即可得出结论. 【考点】垂径定理,勾股定理,三角形中位线定理.。
2012年历年上海市初三数学中考试卷及答案
2012年上海市中考数学试卷一.选择题(共6小题)1.(2012上海)在下列代数式中,次数为3的单项式是()A. xy2B. x3+y3C..x3y D..3xy考点:单项式。
解答:解:根据单项式的次数定义可知:A、xy2的次数为3,符合题意;B、x3+y3不是单项式,不符合题意;C、x3y的次数为4,不符合题意;D、3xy的次数为2,不符合题意.故选A.2.(2012上海)数据5,7,5,8,6,13,5的中位数是()A. 5 B. 6 C. 7 D. 8考点:中位数。
解答:解:将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选B.3.(2012上海)不等式组的解集是()A. x>﹣3 B. x<﹣3 C. x>2 D. x<2考点:解一元一次不等式组。
解答:解:,由①得:x>﹣3,由②得:x>2,所以不等式组的解集是x>2.故选C.4.(2012上海)在下列各式中,二次根式的有理化因式是()A.B.C.D.考点:分母有理化。
解答:解:∵×=a﹣b,∴二次根式的有理化因式是:.故选:C.5.(2012上海)在下列图形中,为中心对称图形的是()A.等腰梯形B.平行四边形C.正五边形D.等腰三角形考点:中心对称图形。
解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.6.(2012上海)如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是() A.外离B.相切C.相交D.内含考点:圆与圆的位置关系。
解答:解:∵两个圆的半径分别为6和2,圆心距为3,又∵6﹣2=4,4>3,∴这两个圆的位置关系是内含.故选:D.二.填空题(共12小题)7.(2012上海)计算= .考点:绝对值;有理数的减法。
解答:解:|﹣1|=1﹣=,故答案为:.8.因式分解:xy﹣x= .考点:因式分解-提公因式法。
2012年上海市中考数学试卷-答案
【解析】根据绝对值的定义,∵1111222-==.所以本题答案为12.【提示】首先计算出绝对值里面的结果,再根据:a是负有理数时,a的绝对值是它的相反数a-,可以确定【解析】∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:31 93 =.17.【答案】4【解析】解:设等边三角形的中线长为a,则其重心到对边的距离为:13 a,∵它们的一边重合时(图1),重心距为2,∴223a=,解得3a=,∴当它们的一对角成对顶角时(图2)重心距4434 33a==⨯=.理数的混合运算法则计算即可.【考点】二次根式的混合运算,分数指数幂,负整数指数幂 20.【答案】1x =【解析】解:方程的两边同乘(3)(3)x x +-,得(3)63x x x -+=+,整理,得2430x x -+=,解得11x =,23x =.经检验:3x =是方程的增根,1x =是原方程的根, 故原方程的根为1x =.【提示】观察可得最简公分母是(3)(3)x x +-,方程两边乘最简公分母,可以把分式方程转化为整式方程求【提示】(1)已知点A 、B 坐标,用待定系数法求抛物线解析式即可;(2)关键是证明EDF DAO △∽△,然后利用相似三角形对应边的比例关系以及三角形函数的定义求解; (3)如解答图,通过作辅助线构造一对全等三角形:GCA OAC △≌△,得到CG 、AG 的长度;然后利用勾股定理求得AE 、EG 的长度(用含t 的代数式表示);最后在Rt ECF △中,利用勾股定理,得到关于t 的【提示】根据OD BC ⊥可得出1122BD BC ==,在Rt BOD △中利用勾股定理即可求出OD 的长; (2)连接AB ,由AOB △是等腰直角三角形可得出AB 的长,再根据D 和E 是中点可得出DE = (3)由BD x =,可知OD =,由于12∠=∠,34∠=∠,所以2345∠+∠=︒,过D 作DF OE ⊥,DF =,2EF x =即可得出结论.【考点】垂径定理,勾股定理,三角形中位线定理.。
2012年上海市中考数学试卷及答案
2012年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.在下列代数式中,次数为3的单项式是( )A 2xy ;B 33+x y ;C .3x y ;D .3xy .2数据5,7,5,8,6,13,5的中位数是( )A .5;B .6;C .7 ;D .8.3.不等式组2<62>0x x ⎧⎨⎩--的解集是( )A .>3x -;B .<3x -;C .>2x ;D .<2x . 4.在下列各式中,二次根式a b -的有理化因式( )A .+a b ;B .+a b ;C .a b -;D .a b -.5在下列图形中,为中心对称图形的是( )A .等腰梯形;B .平行四边形;C .正五边形;D .等腰三角形. 6如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是( )A .外离;B .相切;C .相交;D .内含. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.计算112-= . 8.因式分解=xy x - .9.已知正比例函数()=0y kx k ≠,点()2,3-在函数上,则y 随x 的增大而 (增大或减小). 10.方程+1=2x 的根是 .11.如果关于x 的一元二次方程26+=0x x c -(c 是常数)没有实根,那么c 的取值范围是 . 12.将抛物线2=+y x x 向下平移2个单位,所得抛物线的表达式是 .13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 .14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在80~90分数段的学生有 名.分数段 60—70 70—80 80—90 90—100频率 15.如图,已知梯形ABCD ,AD ∥BC ,=2BC AD ,如果=AD a ,=AB b ,那么=AC (用a ,b 表示).D 、E 分别在AB 、AC 16.在△ABC 中,点上,=ADE B ∠∠,如果=2AE ,△ADE 的面积为4,四边形BCDE 的面积为5,那么AB 的长为 .17.我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为2,那么当它们的一对角成对顶角时,重心距为 .18.如图,在Rt △ABC 中,=90C ∠,=30A ∠,=1BC ,点D 在AC 上,将△ADB 沿直线BD 翻折后,将点A 落在点E 处,如果AD ED ⊥,那么线段DE 的长为 . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)()112211231++32221-⎛⎫⨯-- ⎪ ⎪-⎝⎭. 20.(本题满分10分)解方程:261393x x x x +=+--. 21.(本题满分10分,第(1)小题满分4分.第(2)小题满分6分)如图在Rt △ABC 中,∠=90ACB ,D 是边AB 的中点,BE ⊥CD ,垂足为点E .己知=15AC ,3=5cosA .(1)求线段CD 的长;(2)求sin ∠DBE 的值. 22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图所示.(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量. (注:总成本=每吨的成本×生产数量)23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)己知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,∠BAF =∠DAE ,AE 与BD 交于点G . (1)求证:=BE DF(2)当要DF FC =ADDF时,求证:四边形BEFG 是平行四边形. 24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)如图,在平面直角坐标系中,二次函数26y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE ,1=2tan DAE ∠,EF OD ⊥,垂足为F .(1)求这个二次函数的解析式;GFDEBCA(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA =∠OAC 时,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)如图,在半径为2的扇形AOB 中,∠=90AOB ,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E . (1)当=1BC 时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由; (3)设=BD x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.2012年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、A ;2、B ;3、C ;4、C ;5、B ;6、D 二、 填空题7、21; 8、()1x y -; 9、减小 ; 10、3x = ; 11、>9c ; 12、2=+2y x x - ;13、31; 14、150; 15、2a b + ; 16、3; 17、4; 181. 三、 解答题 19.解 :原式=23122324-+++- =231232-+++-=3.20.解:x(x-3)+6=x-3x 2-4x+3=0 x1=2或x2=3经检验:x=3是方程的增根 x=1是原方程的根21.225(或); 257.22.① y=-101x+11(10≤x ≤50)② 40.23.证明:(1)∵四边形ABCD 是菱形,∴AB=AD,∠ABC=∠ADF, ∵∠BAF=∠DAE,∴∠BAF﹣∠EAF=∠DAE﹣∠EAF,即:∠BAE=∠DAF。
2012年上海中考数学真题卷含答案解析
2012年上海市初中毕业统一学业考试数学3A(满分:150分 时间:100分钟)第Ⅰ卷(选择题,共24分)一、选择题(本大题共6题,每题4分,满分24分)1.在下列代数式中,次数为3的单项式是( )A.xy 2B.x 3+y 3C.x 3yD.3xy 2.数据5,7,5,8,6,13,5的中位数是( ) A.5 B.6 C.7 D.83.不等式组{-2x <6,x -2>0的解集是( )A.x>-3B.x<-3C.x>2D.x<24.在下列各式中,二次根式√a -b 的有理化因式是( ) A.√a +b B.√a +√b C.√a -bD.√a -√b5.在下列图形中,为中心对称图形的是( )A.等腰梯形B.平行四边形 C .正五边形 D.等腰三角形6.如果两圆的半径分别为6和2,圆心距为3,那么这两圆的位置关系是( ) A.外离 B.相切 C.相交 D.内含第Ⅱ卷(非选择题,共126分)二、填空题(本大题共12题,每题4分,满分48分)7.计算:|12-1|= . 8.因式分解:xy-x= .9.已知正比例函数y=kx(k ≠0),点(2,-3)在函数图象上,则y 随x 的增大而 (选填“增大”或“减小”).10.方程√x+1=2的根是.11.如果关于x的一元二次方程x2-6x+c=0(c是常数)没有实数根,那么c的取值范围是.12.将抛物线y=x2+x向下平移2个单位,所得新抛物线的解析式为.13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如下表所示(其中每个分数段可包括最小值,不包括最大值),结合表格的信息,可得测试分数在80~90分数段的学生有名.0~9090~1000.25⃗⃗⃗⃗ =a,AB⃗⃗⃗⃗ =b,那么AC⃗⃗⃗⃗ =(用a,b表示).15.如图,已知梯形ABCD,AD∥BC,BC=2AD,如果AD16.在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为5,那么边AB的长为.17.我们把两个三角形的重心之间的距离叫做重心距,在同一平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心距为2,那么当它们的一对角成对顶角时重心距为 .18.如图所示,Rt △ABC 中,∠C=90°,BC=1,∠A=30°,点D 为边AC 上的一动点,将△ADB 沿直线BD 翻折,点A 落在点E 处,如果DE ⊥AD,那么DE= .三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:12×(√3-1)2+1√2-1+312-(√22)-1.20.(本题满分10分)解方程:x x+3+6x 2-9=1x -3.21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在Rt △ABC 中,∠ACB=90°,D 是边AB 的中点,BE ⊥CD,垂足为E. 已知AC=15,cos A=35. (1)求线段CD 的长;(2)求sin∠DBE的值.22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元)与生产数量x(吨)的函数关系式如图所示.(1)求y与x的函数关系式,并写出其定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)3B23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图所示,在菱形ABCD中,点E、F分别在边BC、CD上,∠BAF=∠DAE,AE与BD交于点G.(1)求证:BE=DF;(2)当DFFC =ADDF时,求证:四边形BEFG是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)如图,在平面直角坐标系中,二次函数y=ax2+6x+c过点A(4,0)和B(-1,0),并与y轴交于点C,点D在线段OC上,设DO=t,点E在第二象限,∠ADE=90°,tan∠DAE=12,EF⊥OD于F.(1)求二次函数的解析式;(2)用含t的代数式表示EF和OF的长;(3)当∠ECA=∠CAO时,求t的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)已知扇形AOB中,∠AOB=90°,OA=OB=2,C为AB⏜上的动点,且不与A、B重合,OE⊥AC于E,OD⊥BC于D.(1)若BC=1,求OD的长;(2)在△DOE中,是否存在长度保持不变的边?若存在,求出该边的长;若不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y与x的函数关系式及定义域.2012年上海市初中毕业统一学业考试一、选择题1.A根据单项式定义,可知选项A、C、D中的代数式均为单项式,又由单项式的次数定义可知次数为3的单项式是xy2,故选A.评析本题主要考查了单项式和单项式次数的定义,属于容易题.正确理解两个概念是解决此类问题的关键,易混易错之处是当计算单项式的次数时,常常忽略指数是1的字母,导致确定单项式的次数有误.2.B根据中位数的定义,先把该组数据排序,若有奇数个,则中位数是中间的那个数;若有偶数个,则中位数是中间两个数的平均数.显然在给出的7个数据中,排序后最中间的数据是6,故选B.3.C解不等式-2x<6得x>-3,解不等式x-2>0得x>2,∴不等式组{-2x<6,的解集为x>2.故选C.x-2>04.C根据有理化因式的定义,只要二次根式√a-b乘一个适当的因式,能将其转化为有理式即可.而√a-b·√a-b=a-b,故选C.评析 本题主要考查有理化因式的概念,有理化因式的形式分为两种:①√a 的有理化因式是√a ;②√a ±√b 的有理化因式是√a ∓√b ,属简单题. 5.B 因为绕一个点旋转180度后能与自身重合的图形是中心对称图形,所以选项中的四种图形,只有平行四边形是中心对称图形,故选B.6.D 设R=6,r=2,d=3,则R-r=6-2=4>3,即R-r>d,所以两圆内含.故选D. 二、填空题7.答案 12解析 根据有理数的运算法则和绝对值的意义,得|12-1|=|-12|=12. 8.答案 x(y-1)解析 本题运用提取公因式法进行因式分解,所以xy-x=x(y-1). 9.答案 减小解析 ∵点(2,-3)在函数图象上,∴把(2,-3)代入y=kx(k ≠0)中,得-3=2k,解得k=-32,显然k<0,故y 随x 的增大而减小.评析 本题综合考查了待定系数法求函数的解析式、正比例函数的性质等知识点.熟练掌握正比例函数的性质是解题关键,属容易题. 10.答案 x=3解析 可以把无理方程转化成算术平方根,2是x+1的算术平方根,则x+1=4,易得x=3. 11.答案 c>9解析 由题意得Δ=b 2-4ac<0,即(-6)2-4×1×c<0,解得c>9.. 12.答案 y=x 2+x-2解析 因为二次函数的图象平移时遵循“上加下减,左加右减”的规律,所以向下平移2个单位后,所得抛物线的解析式是y=x 2+x-2. 13.答案 13解析 P(恰好为红球)=红球的个数白球的个数+红球的个数=36+3=13. 14.答案 150解析根据频数、频率分布的知识可知,所有的频数之和等于总数,所有频率之和等于1,则得分数在80~90分数段分数在80~90分数段的学生的频率为1-0.2-0.25-0.25=0.3,由频率=频数总数的学生有0.3×500=150(名).15.答案2a+b解析利用向量的加法法则易知AC⃗⃗⃗ =AB⃗⃗⃗⃗ +BC⃗⃗⃗ =2a+b.16.答案3解析∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴S △ADE∶S△ACB=AE2∶AB2,即4∶9=22∶AB2,∴AB=3..17.答案4解析如图1和图2所示,等边三角形的重心是它三条中线的交点,交点分每一条中线得到的两条线段的比值(短∶长)为1∶2,当两个等边三角形一边重合时,重心距是两条短线段之和,所以每条短线段的长度为1,长线段的长度为2.因此当两个等边三角形的一对角成对顶角时,重心距为2+2=4.评析本题主要考查了等边三角形的重心及其性质,属中等难度题.18.答案√3-1解析如图,由翻折的性质可知AD=DE,∠ADP=∠EDP.又由AD⊥ED 得,∠ADP=∠EDP=45°,所以∠BDC=45°,因为∠C=90°,所以BC=CD=1,又因为∠A=30°,BC=1,所以AB=2,AC=√3,所以DE=AD=√3-1.评析本题涉及的知识点有对折、等腰直角三角形、垂直、解直角三角形,有一定区分度,属中等难度题.三、解答题19.解析原式=12×(4-2√3)+√2+1+√3-√2(8分)=2-√3+√2+1+√3-√2=3.(10分)评析本题主要考查了实数的混合运算、分数指数、负指数以及分母有理化、完全平方公式等,均是中考常考的基础知识,但是学生容易马虎丢分,属中等难度题.20.解析去分母,得x(x-3)+6=x+3,(3分)整理,得x2-4x+3=0,(5分)解得x1=1,x2=3.(9分)经检验,x=3是增根,x=1是原方程的根.所以原方程的根是x=1.(10分)21.解析(1)在Rt△ABC中,∠ACB=90°,AC=15,cos A=ACAB =35,(1分)∴AB=25.(2分)∵D是AB的中点,∴CD=AB2=252.(4分)(2)在Rt△ABC中,BC=√AB2-AC2=20.(5分)∵BD=CD=AB2=252,∴∠DCB=∠DBC.(6分)∴cos∠DCB=cos∠ABC=BCAB =45.(7分)在Rt△CEB中,∠E=90°, CE=BC·cos∠BCE=16.(8分)∴DE=CE-CD=72.(9分)在Rt△DEB中,∠DEB=90°,∴sin∠DBE=DEBD =725.(10分)22.解析(1)设函数解析式为y=kx+b,(1分)得{10=10k+b,6=50k+b.(2分)解得{k=-110,b=11.(3分)∴y与x的函数关系式为y=-110x+11,(4分)定义域是10≤x≤50.(5分)(2)由题意,得xy=280,(6分)即x(-110x+11)=280,(7分)整理,得x2-110x+2800=0,(8分)解得x1=40,x2=70.(9分)x=70不合题意,舍去.答:该产品的生产数量为40吨.(10分)评析本题主要考查了利用函数图象获取信息、建立函数模型、确定函数解析式和定义域.属中等难度题.23.证明(1)∵∠BAF=∠DAE,∴∠BAE+∠EAF=∠DAF+∠EAF,∴∠BAE=∠DAF.(1分)∵四边形ABCD是菱形,∴AB=AD,∠ABE=∠ADF.(3分)∴△ABE≌△ADF,(4分)∴BE=DF.(5分)(2)∵DFFC =ADDF,DF=BE,∴DFFC=ADBE.(6分)∵AD∥BC,∴DGGB =ADBE,(7分)∴DFFC =DGGB,(8分)∴GF∥BC.(9分)∵BE=DF,BC=DC,∴BEBC =DFDC,(10分)∴EF∥BD.(11分)∴四边形BEFG是平行四边形.(12分)24.解析(1)由二次函数y=ax2+6x+c过点A(4,0)、B(-1,0),得{0=16a+24+c,0=a-6+c.(1分)解得{a=-2,c=8.(2分)∴二次函数的解析式为y=-2x2+6x+8.(3分)(2)∵点D在线段OC上,点E在第二象限,∠ADE=90°,EF⊥OD,∴∠EDF+∠ADO=∠DAO+∠ADO=90°,∴∠EDF=∠DAO,∴Rt△DFE∽Rt△AOD,(4分)∴EFDO =DFAO=DEAD.(5分)在Rt△ADE中,∠ADE=90°,tan∠DAE=DEAD =1 2 ,∴EFDO =DFAO=12,∴EF=12DO,DF=12AO.(6分)∵DO=t,∴EF=t2,(7分)∵点A的坐标为(4,0),∴AO=4,DF=2,∴OF=t-2.(8分)(3)由(1)得,点C的坐标为(0,8).延长CE交x轴于点G,设点G的坐标为(x,0).∵∠ECA=∠CAO,∴CG=AG,(9分)∴√x2+82=√(x-4)2,解得x=-6,∴GO=6.(10分)由已知,可得点F在线段OD上,又∵OF=t-2,∴FC=OC-OF=10-t.(11分)∵EF∥GO,∴EFGO =CF CO,∴t26=10-t8,解得t=6.(12分)评析本题主要考查了二次函数解析式的确定、相似三角形的判定与性质、三角函数、勾股定理等知识的综合应用.本题共有3个小题,第(1)小题较易,第(2)小题难度适中,把相似三角形和三角函数结合起来求解较为简便,第(3)小题偏难,利用勾股定理列方程是解题关键.25.解析(1)在扇形AOB中,∵OD⊥BC,∴BD=12BC.(1分)∵BC=1,∴BD=12.(2分)∵OB=2,∴OD=√OB2-BD2=√152.(3分)(2)存在,边DE的长度保持不变.(4分)连结AB,∵∠AOB=90°,OA=OB=2,∴AB=√OB2+OA2=2√2.(5分)∵OD⊥BC,OE⊥AC,∴CD=BD,CE=AE,(7分)∴DE=12AB=√2.(8分)(3)连结OC,∵点C在AB⏜上,∴OC=OB.∵OD⊥BC,∴∠COD=12∠BOC,同理,∠COE=12∠AOC,(9分)∴∠DOE=12∠BOC+12∠AOC=12∠AOB,∵∠AOB=90°,∴∠DOE=45°.(10分)过点D作DH⊥OE,垂足为H.在Rt△OBD中,OD=√OB2-BD2=√4-x2.在Rt△ODH中,∠DOH=45°,OH=DH=OD·sin45°=√2√4-x2.(11分)2x.(12分)在Rt△DEH中,HE=√DE2-DH2=√22∴OE=OH+HE=√2√4-x2+√22x.2OE·DH,∵S△DOE=12,(13分)∴函数解析式为y=4-x2+x√4-x24定义域为0<x<√2.(14分)评析本题是几何与代数综合的压轴题,综合考查了垂径定理、勾股定理、三角形的中位线的性质、等腰直角三角形的性质以及利用三角形面积进行函数建模,综合性比较强,尤其是第(2)问存在性问题设计得比较巧妙.。
解答2012年上海市中考数学试题
2012年上海市中考数学试卷(有解析)如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.(1)求这个二次函数的解析式;(2)求线段EF、OF的长(用含t的代数式表示);(3)当∠ECA=∠OAC时,求t的值解:(1)二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),∴,解得,∴这个二次函数的解析式为:y=﹣2x2+6x+8;(2)∵∠EFD=∠EDA=90°∴∠DEF+∠EDF=90°,∠EDF+∠ODA=90°,∴∠DEF=∠ODA∴△EDF∽△DAO∴.∵,∴=,∴,∴EF=t.同理,∴DF=2,∴OF=t﹣2.(3)∵抛物线的解析式为:y=﹣2x2+6x+8,∴C(0,8),OC=8.如图,连接EC、A C,过A作EC的垂线交CE于G点.∵∠ECA=∠OAC,∴∠OA C=∠GCA(等角的余角相等);在△CA G与△OCA中,,∴△CA G≌△OCA,∴CG=4,A G=OC=8.如图,过E点作EM⊥x轴于点M,则在Rt△A EM中,∴EM=OF=t﹣2,AM=OA+AM=OA+EF=4+t,由勾股定理得:∵AE2=AM2+EM2=;在Rt△A EG中,由勾股定理得:∴EG===∵在Rt△ECF中,EF=t,CF=OC﹣OF=10﹣t,CE=CG+EG=+4由勾股定理得:EF2+CF2=CE2,即,解得t1=10(不合题意,舍去),t2=6,∴t=6.解析:分析: (1)已知点A、B坐标,用待定系数法求抛物线解析式即可;(2)关键是证明△EDF∽△DAO,然后利用相似三角形对应边的比例关系以及三角形函数的定义求解;(3)如解答图,通过作辅助线构造一对全等三角形:△CAG≌△OCA,得到CG、AG的长度;然后利用勾股定理求得AE、EG的长度(用含t的代数式表示);最后在Rt△ECF中,利用勾股定理,得到关于t的无理方程,解方程求出t的值.点评:本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理和待定系数法求二次函数解析式等多个知识点,难度较大.第(3)问中,涉及到无理方程的求解,并且计算较为复杂,注意不要出错.。
2012年上海市中考数学试卷及答案
2012年上海市初中毕业统一学业考试数 学1. 在下列代数式中,次数为三的单项式是( )A .2xyB .33x y +C .3x yD .3xy2. 数据5,7,5,8,6,13,5的中位数是( )A .5B .6C .7D .83. 不等式组2620x x -<⎧⎨->⎩的解集是( )A .3x >-B .3x <-C .2x >D .2x <4. 在下列根式中,二次根式a b -的有理化因式是( )A .a b +B .a b +C .a b -D .a b -5. 在下列图形中,为中心对称图形的是( )A .等腰梯形B .平行四边形C .正五边形D .等腰三角形6. 如果两圆的半径分别为6和2,圆心距为3,那么这两圆的位置关系是( )A .外离B .相切C .相交D .内含7. 计算:112-= . 8. 因式分解:xy x -= .9. 已知正比例函数(0)y kx k =≠,点(2,3)-在函数上,则y 随x 的增大而(选填“增大”或“减小”).10. 方程12x +=的根是 .11. 如果关于x 的方程260x x c -+=(c 为常数)没有实数根,那么c 的取值范围是 .12. 将抛物线2y x x =+向下平移2个单位,所得的新抛物线的解析式为.13. 布袋中装有个3红球和6个白球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,那么所摸到的球恰好为红球的概率是 . 14. 某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示,其中每个分数段可包括最小值,不包括最大值,结合表格的信息,可得测试分数在8090 分数段的学生有 名.15. 如图,已知梯形ABCD ,AD //BC ,2BC AD =,若AD a =,AB b = ,那么AC = (用a ,b表示).16. 在ABC 中,点D ,E 分别在AB ,AC 上,AED B ∠=∠,如果2AE =,ADE 的面积为4,四边形BCED 的面积为5,那么边AB 的长为 .17. 我们把两个三角形的中心之间的距离叫做重心距,在同一平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心距为2,那么当它们的一分数段 60~70 70~80 80~90 90~100 频率 0.20.250.25DCBA A BD CE对角成对顶角时重心距为 .18. 如图所示,Rt ABC 中,90C ∠=︒,1BC =,30A ∠=︒,点D 为边AC 上的一动点,将ABD 沿直线BD 翻折,点A 落 在点E 处,如果DE AD ⊥时,那么DE = .19. 计算:1122112(31)32221-⎛⎫⨯-++- ⎪-⎝⎭20. 解方程:261393x x x x +=+--21. 如图所示,在Rt ABC ,90ACB ∠=︒,D 是边AB 的中点,BE CD ⊥,垂足为E ,已知15AC =,35cosA =.①求线段CD 的长; ②求sin DBE ∠的值.22. 某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y 万元与生产数量x 吨的函数关系式如图所示.①求y 与x 的函数关系式,并写出其定义域;②当生产这种产品的总成本为280万元时,求该产品的生产数量. (注:总成本=每吨的成本×生产数量)CBDAE DBCA105010xOy623. 如图所示,在菱形ABCD 中,点E 、F 分别在BC 、CD 上,BAF DAE ∠=∠,AE 与BD 相交于点G .①求证:BE DF =; ②当DF AD FC DF=时,求证:四边形BEFG 是平行四边形.24. 如图,在平面直角坐标系中,二次函数26y ax x c =++过点(4A ,0)和(1B -,0),并与y 轴交于点C ,点D 在线段OC 上,设DO t =,点E 在第二象限,且90ADE ∠=︒,12tan DAE ∠=,EF OD ⊥于F . ①求二次函数的解析式;②用含t 的代数式表示EF 和OF 的长; ③当ECA CAO ∠=∠时,求t 的值.25. 已知扇形AOB 中,90AOB ∠=︒,2OA OB ==,C 为 AB 上的动点,且不与A 、B 重合,OE AC ⊥于E ,OD BC ⊥于D . ①若1BC =,求OD 的长;②在DOE 中,是否存在长度保持不变的边,若存在,求出该边的长; 若不存在,请说明理由;③设BD x =,DOE 的面积为y ,求y 与x 的函数关系式及定义域.xD FEO B ACy AOBCDEEDCB AFG2012年上海市初中毕业统一学业考试数学参考答案1 2 3 4 5 6 7 8 9A B C C B D 1/2 (1)x y-减小10 11 12 13 14 15 16 17 183x=9c>22y x x=+-13150 2a b+3 4 31-【详解】1、解:根据单项式的次数定义可知:A、xy2的次数为3,符合题意;B、x3+y3不是单项式,不符合题意;C、x3y的次数为4,不符合题意;D、3xy的次数为2,不符合题意.故选A.2、解:将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选B.3、解:-2x<6 ①x-2>0 ②,由①得:x>-3,由②得:x>2,所以不等式组的解集是x>2.故选C.4、5、解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.7、8、解:xy-x=x(y-1).故答案为:x(y-1).9、10、11、12、13、14、解:80~90分数段的频率为:1-0.2-0.25-0.25=0.3, 故该分数段的人数为:500×0.3=150人. 故答案为:150. 15、16、17、19 .3. 解 :原式=23122324-+++- =231232-+++-=3. 20.1x =.解:x(x-3)+6=x-3 x 2-4x+3=0 x1=2或x2=3经检验:x=3是方程的增根 x=1是原方程的根21.225(或12.5); 257.分析:(1)应用锐角三角比,求出斜边AB 即可(2)运用3cos 5B =,算出CE=16,DE=16-(25/2)=7/2,而DB=25/2 所以7sin 25DE DBE DB ∠==22. ① y=-101x+11(10≤x ≤50) ② 40.分析 (1)直接(10,10)、(50,6)代入 y=kx+b(2) 1(11)28010x x -+= 解得:140x =或270x = 由于1050x ≤≤,故40x = 23 分析(1)利用()ABE ADF ASA ∆≅∆(2)证明://AD BCAD AD DG DF DF BE GB FC∴===//GF BE ∴ 易证:GB=BE所以四边形BEFG 是平行四边形24 第一小问:第二小问:第三小问:25 第一小问解析:第二小问解析:第三小问解析:。
2012年上海中考数学试题(含解析)
2012年上海中考数学试题(含解析)2012年上海中考数学试题第一部分:选择题一、选择题 (本大题共6小题,每小题4分,满分24分).1.(2012上海市,1,4分)在下列代数式中,次数为3的单项式是( )A. xy2B. x3-y3C.x3yD.3xy【答案】A考点剖析:本题考察了单项式的概念,需要学生掌握单项式的次数概念才能够获得正确答案.解题思路:根据单项式次数的概念求解.解答过程:由单项式次数的概念:∴次数为3的单项式是xy2.所以本题选项为A.规律总结:⑴单项式的定义:由数字与字母或字母与字母的相乘组成的代数式叫做单项式⑵单项式的次数:一个单项式中的所有字母的指数的和叫做这个单项式的次数关键词:单项式、单项式次数2.(2012上海市,2,4分)数据5,7,5,8,6,13,5的中位数是( )A.5B.6C.7D.8【答案】B考点剖析:本题考察了中位数的求解方法,需要学生掌握中位数的求解方法才能够获得正确答案.解题思路:根据中位数的求解方法.解答过程:由中位数的求解方法①将一组数据从小到大或者从大到小整齐排列;②进行中位数求解;数据排列:5,5,5,6,7,8,13 数据个数:7个∴中位数是:6 所以本题选择B规律总结:中位数求解的前提是有顺序地将数据排列清楚,然后按照数据的个数进行求解当数据个数为奇数时,中位数就是最中间的那个数当数据个数为偶数时,中位数就是最中间的两个数的平均数关键词: 中位数3.(2012上海市,3,4分)不等式组2620x x -⎧⎨-⎩<>的解集是( ) A .x >-3 B . x <-3 C .x >2D . x <2【答案】C考点剖析:本题考察了一元一次不等式组求解方法,需要学生掌握不等式组的求解方法才能获得正确答案.解题思路:根据不等式组的求解方法解答过程:先将两个一元一次不等式单独求解出来,然后结合数轴把答案表示出来∵2620x x -⎧⎨-⎩<①>② 由①,得-3x > 由②,得>2x∴ >2x 所以本题选择C规律总结:⑴ 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
2012年上海市中考数学试卷及答案
2012年上海市初中毕业统一学业考试1. 在下列代数式中,次数为三的单项式是( )A .2xyB .33x y +C .3x yD .3xy2. 数据5,7,5,8,6,13,5的中位数是( )A .5B .6C .7D .83. 不等式组2620x x -<⎧⎨->⎩的解集是( )A .3x >-B .3x <-C .2x >D .2x <4. 在下列根式中,二次根式a b -的有理化因式是( )A .a b +B .a b +C .a b -D .a b -5. 在下列图形中,为中心对称图形的是( )A .等腰梯形B .平行四边形C .正五边形D .等腰三角形6. 如果两圆的半径分别为6和2,圆心距为3,那么这两圆的位置关系是( )A .外离B .相切C .相交D .内含7. 计算:112-= . 8. 因式分解:xy x -= .9. 已知正比例函数(0)y kx k =≠,点(2,3)-在函数上,则y 随x 的增大而 (选填“增大”或“减小”).10. 方程12x +=的根是 .11. 如果关于x 的方程260x x c -+=(c 为常数)没有实数根,那么c 的取值范围是 . 12. 将抛物线2y x x =+向下平移2个单位,所得的新抛物线的解析式为 .13. 布袋中装有个3红球和6个白球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,那么所摸到的球恰好为红球的概率是 .14. 某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示,其中每个分数段可包括最小值,不包括最大值,结合表格的信息,可得测试分数在8090分数段的学生有 名.15. 如图,已知梯形ABCD ,AD //BC ,2BC AD =,若A D a =,AB b =,那么AC =(用a ,b 表示).16. 在ABC 中,点D ,E 分别在AB ,AC 上,AED B ∠=∠,如果2AE =,ADE 的面积为4,四边形BCED 的面积为5,那么 边AB 的长为 .17. 我们把两个三角形的中心之间的距离叫做重心距,在同一平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心距为2,那么当它们的一对角成对顶角时重心距为 . 18. 如图所示,Rt ABC 中,90C ∠=︒,1BC =,30A ∠=︒,点D 为边AC 上的一动点,将ABD 沿直线BD 翻折,点A 落 在点E 处,如果DE AD ⊥时,那么DE = .19. 计算:1122112(31)32221-⎛⎫⨯-++- ⎪-⎝⎭20. 解方程:261393x x x x +=+--CBDA分数段 60~70 70~80 80~90 90~100 频率0.20.250.25DCB AABDCE21. 如图所示,在Rt ABC ,90ACB ∠=︒,D 是边AB 的中点,BE CD ⊥,垂足为E ,已知15AC =,35cosA =. ①求线段CD 的长;②求sin DBE ∠的值.22. 某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y 万元与生产数量x 吨的函数关系式如图所示.①求y 与x 的函数关系式,并写出其定义域;②当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23. 如图所示,在菱形ABCD 中,点E 、F 分别在BC 、CD 上,BAF DAE ∠=∠,AE 与BD 相交于点G .①求证:BE DF =;②当DF ADFC DF=时,求证:四边形BEFG 是平行四边形.24. 如图,在平面直角坐标系中,二次函数26y ax x c =++过点(4A ,0)和(1B -,0),并与y 轴交于点C ,点D 在线段OC 上,设DO t =,点E 在第二象限,且90ADE ∠=︒,12tan DAE ∠=,EF OD ⊥于F .①求二次函数的解析式;②用含t 的代数式表示EF 和OF 的长; ③当ECA CAO ∠=∠时,求t 的值.xD FEO B ACy E DBC A10 5010xO y 6EDCBAFG25. 已知扇形AOB 中,90AOB ∠=︒,2OA OB ==,C 为AB 上的动点,且不与A 、B 重合,OE AC ⊥于E ,OD BC ⊥于D .①若1BC =,求OD 的长;②在DOE 中,是否存在长度保持不变的边,若存在,求出该边的长;若不存在,请说明理由;③设BD x =,DOE 的面积为y ,求y 与x 的函数关系式及定义域.AOBCDE。
(高清版)2012年上海市中考数学试卷
数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前上海市2012年中考数学试题数 学一、选择题(本大题共6小题,每小题4分,满分24分) 1.在下列代数式中,次数为3的单项式是( )A .2xyB .33x y +C .3x yD .3xy 2.数据5,7,5,8,6,13,5的中位数是( )A .5B .6C .7D .8 3.不等式组2620x x -⎧⎨-⎩<>的解集是( ) A .3x ->B .3x -<C .2x >D .2x < 4.在下列各式中,( )ABCD5.在下列图形中,为中心对称图形的是( )A .等腰梯形B .平行四边形C .正五边形D .等腰三角形6.如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是 ( ) A .外离B .相切C .相交D .内含二、填空题(本大题共12小题,每小题4分,满分48分) 7.计算1|1|2-= . 8.因式分解xy x -= .9.已知正比例函数(0)y kx k =≠,点(2,3)-在函数上,则y 随x 的增大而 (增大或减小).10.2的根是 .11.如果关于x 的一元二次方程260x x c -+=(c 是常数)没有实根,那么c 的取值范围是 .12.将抛物线2y x x =+向下平移2个单位,所得抛物线的表达式是 .13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 .14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在15.如图,已知梯形ABCD ,AD BC ∥,2BC AD =,如果AD a =,=AB b ,那么AC =(用,a b r r表示).16.在ABC △中,点D 、E 分别在AB 、AC 上,ADE B ∠=∠,如果2AE =,ADE △的面积为4,四边形BCDE 的面积为5,那么AB 的长为 .17.我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为2,那么当它们的一对角成对顶角时,重心距为.18.如图,在Rt ABC △中,90C ∠=o,30A ∠=o,1BC =,点D 在AC 上,将ADB △沿直线BD 翻折后,将点A 落在点E 处,如果AD ED ⊥,那么线段DE 的长为 .三、解答题(本大题共7小题,满分78分) 19.(本小题满分10分)121211)32-⨯+-.20.(本小题满分10分) 解方程:261393x x x x +=+--.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)21.(本题满分10分,第(1)小题满分4分.第(2)小题满分6分)如图在Rt ABC △中,90ACB ∠=o ,D 是边AB 的中点,BE CD ⊥,垂足为点E .已知15AC =,3cos 5A =. (1)求线段CD 的长; (2)求sin DBE ∠的值.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图所示. (1)求y 关于x 的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量. (注:总成本=每吨的成本⨯生产数量)23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,BAF DAE ∠=∠,AE 与BD 交于点G .(1)求证:BE DF = (2)当要DF ADFC DF=时,求证:四边形BEFG 是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分) 如图在平面直角坐标系中,二次函数26y ax x c =++的图象经过点(4,0)A 、(1,0)B -,与y 轴交于点C ,点D 在线段OC 上,OD t =,点E 在第二象限,90ADE ∠=o ,1tan 2DAE ∠=,EF OD ⊥,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当ECA OAC ∠=∠时,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分) 如图,在半径为2的扇形AOB 中,90AOB ∠=o,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD BC ⊥,OE AC ⊥,垂足分别为D 、E . (1)当1BC =时,求线段OD 的长;(2)在DOE △中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD x =,DOE △的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.上海市2012年中考数学试题数学答案解析一、选择题1.【答案】A【解析】由单项式次数的概念:∴次数为3的单项式是2xy 所以本题选项为A .数学试卷 第5页(共14页)数学试卷 第6页(共14页)【解析】根据绝对值的定义,∵1111222-==.所以本题答案为12. 【提示】首先计算出绝对值里面的结果,再根据:a 是负有理数时,a 的绝对值是它的相数学试卷 第7页(共14页) 数学试卷 第8页(共14页)3193=. 【提示】根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红【解析】解:设等边三角形的中线长为a ,则其重心到对边的距离为:3a , ∵它们的一边重合时(图1),重心距为2,∴223a =,解得3a =, ∴当它们的一对角成对顶角时(图2)重心距443433a ==⨯=.【提示】先设等边三角形的中线长为a ,再根据三角形重心的性质求出a 的值,进而可数学试卷 第9页(共14页) 数学试卷 第10页(共14页)(3)63x x x -+=+,整理,得2430x x -+=,解得11x =,23x =.经检验:3x =是方程的增根,1x =是原方程的根, 故原方程的根为1x =.【提示】观察可得最简公分母是(3)(3)x x +-,方程两边乘最简公分母,可以把分式方程数学试卷 第11页(共14页)数学试卷 第12页(共14页)(2)关键是证明EDF DAO △∽△,然后利用相似三角形对应边的比例关系以及三角形函数的定义求解;(3)如解答图,通过作辅助线构造一对全等三角形:GCA OAC △≌△,得到CG 、AG的长度;然后利用勾股定理求得AE 、EG 的长度(用含t 的代数式表示);最后在【提示】根据OD BC ⊥可得出22BD BC ==,在Rt BOD △中利用勾股定理即可求出OD 的长;(2)连接AB ,由AOB △是等腰直角三角形可得出AB 的长,再根据D 和E 是中点可得出DE =(3)由BD x =,可知OD =,由于12∠=∠,34∠=∠,所以2345∠+∠=︒,数学试卷 第13页(共14页) 数学试卷 第14页(共14页)过D 作DF OE ⊥,DF =EF =即可得出结论. 【考点】垂径定理,勾股定理,三角形中位线定理.。
上海市中考数学试题及答案
2012年上海中考数学试题一、选择题:(本大题共6题,每题4分,满分24分)1.在下列代数式中,次数为3的单项式是( )A 2xy ;B 33+x y ;C .3x y ;D .3xy .2数据5,7,5,8,6,13,5的中位数是( )A .5;B .6;C .7 ;D .8.3.不等式组2<62>0x x ⎧⎨⎩--的解集是( ) A .>3x -; B .<3x -; C .>2x ; D .<2x .4的有理化因式( )ABC; D.5在下列图形中,为中心对称图形的是( )A .等腰梯形;B .平行四边形;C .正五边形;D .等腰三角形. 6如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是( )A .外离;B .相切;C .相交;D .内含.二、填空题:(本大题共12题,每题4分,满分48分)7.计算112-= . 8.因式分解=xy x - .9.已知正比例函数()=0y kx k ≠,点()2,3-在函数上,则y 随x 的增大而 (增大或减小).10的根是 .11.如果关于x 的一元二次方程26+=0x x c -(c 是常数)没有实根,那么c 的取值范围是 .12.将抛物线2=+y x x 向下平移2个单位,所得抛物线的表达式是 .13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 .14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在80~90分数段的学生有 名.15.如图,已知梯形ABCD ,AD ∥BC ,=2BC AD ,如果=AD a ,=AB b ,那么=AC (用a ,b 表示).16.在△ABC 中,点D 、E 分别在AB 、AC 上,=ADE B∠∠,如果=2AE ,△ADE 的面积为4,四边形BCDE 的面积为5,那么AB 的长为 .17.我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为2,那么当它们的一对角成对顶角时,重心距为. 18.如图,在Rt △ABC 中,=90C ∠,=30A ∠,=1BC ,点D 在AC 上,将△ADB 沿直线BD 翻折后,将点A 落在点E 处,如果AD ED ⊥,那么线段DE 的长为 .三、解答题:(本大题共7题,满分78分)19.(本题满分10分))112211+322-⎛⎫⨯- ⎪ ⎪⎝⎭. 20.(本题满分10分)解方程:261393xx xx +=+--. 21.(本题满分10分,第(1)小题满分4分.第(2)小题满分6分)如图在Rt △ABC 中,∠=90ACB ,D 是边AB 的中点,BE ⊥CD ,垂足为点E .己知=15AC ,3=5cosA . (1)求线段CD 的长;(2)求sin ∠DBE 的值.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图所示.(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)己知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,∠BAF =∠DAE ,AE 与BD 交于点G .(1)求证:=BE DF(2)当要DF FC =AD DF 时,求证:四边形BEFG 是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)如图,在平面直角坐标系中,二次函数26y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE , 1=2tan DAE ∠,EF OD ⊥,垂足为F . (1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示);(3)当∠ECA =∠OAC 时,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)如图,在半径为2的扇形AOB 中,∠=90AOB ,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .D E B(1)当=1BC 时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设=BD x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域. 答案1.A .2.B .3.C .4.C .5.B .6.D .7.21. 8.()1x y - .9.减小.10.3x =.11.>9c .12.2=+2y x x -.13.31. 14.150.15.2a b +.16.3.17.4.181.19.3.解 :原式=23122324-+++- =231232-+++-=3.20..1x =.解:x(x-3)+6=x-3x 2-4x+3=0x1=2或x2=3经检验:x=3是方程的增根 x=1是原方程的根21.225(或12.5); 257. 22.① y=-101x+11(10≤x ≤50) ② 40.23.24.25.。
2012年上海中考数学
2012年上海中考数学一、选择题(共6小题;共30分)1. 不等式组的解集是______A. B. C. D.2. 在下列代数式中,次数为的单项式是______A. B. C. D.3. 数据,,,,,,的中位数是______A. B. C. D.4. 在下列各式中,二次根式的有理化因式______A. B. C. D.5. 在下列图形中,为中心对称图形的是______A. 等腰梯形B. 平行四边形C. 正五边形D. 等腰三角形6. 如果两圆的半径长分别为和,圆心距为,那么这两个圆的位置关系是______A. 外离B. 相切C. 相交D. 内含二、填空题(共12小题;共60分)7. 计算 ______.8. 因式分解: ______.9. 布袋中装有个红球和个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是______.10. 某校名学生参加生命安全知识测试,测试分数均大于或等于且小于,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表 1 的信息,可测得测试分数在分数段的学生有______名.分数段频率11. 我们把两个三角形的重心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为,那么当它们的一内角成对顶角时,重心距为______.12. 如果正比例函数(是常数,)的图象经过点,那么的值随的值增大而______(填“增大”或“减小”).13. 方程的根是______.14. 如果关于的一元二次方程(是常数)没有实数根,那么的取值范围是______.15. 将抛物线向下平移个单位后,所得新抛物线的表达式是______.16. 如图,已知梯形中,,,如果,,那么 ______(用,表示).17. 如图,在中,点,分别在边,上,.如果,的面积为,四边形的面积为,那么边的长为______.18. 如图,在中,,,,点在边上,将沿直线翻折后,点落在点处.如果,那么线段的长为______.三、解答题(共7小题;共91分)19. 计算:.20. 解方程:.21. 如图,在中,,是边的中点,,垂足为点.已知,.(1)求线段的长;(2)求的值.22. 某工厂生产一种产品,当生产数量至少为吨,但不超过吨时,每吨的成本(万元/吨)与生产数量(吨)的函数关系如图所示.(1)求关于的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为万元时,求该产品的生产数量.(注:总成本每吨的成本生产数量)23. 已知:如图,在菱形中,点,分别在边,上,,与交于点.(1)求证:;(2)当时,求证:四边形是平行四边形.24. 如图,在平面直角坐标系中,二次函数的图象经过点,,与轴交于点,点在线段上,,点在第二象限,,,,垂足为点.(1)求这个二次函数的解析式;(2)求线段,的长(用含的代数式表示);(3)当时,求的值.25. 如图,在半径长为的扇形中,,点是上的一个动点(不与点,重合),,,垂足分别为,.(1)当时,求线段的长;(2)在中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由;(3)设,的面积为,求关于的函数解析式,并写出它的定义域.答案第一部分1. C2. A3. B4. C5. B6. D第二部分7.8.9.10.11.12. 减小13.14.15.16.17.18.第三部分原式19.20. 方程的两边同乘得整理,得解得经检验,是原方程的增根,是原方程的根,故原方程的根为.21. (1)由于,,,所以,,由于点为的中点,所以.(2)如图,过点作于,为的中点,,,,.,,,,22. (1)设与的函数解析式为,函数的图象经过和两点,把它们代入其解析式得解得所以关于的函数解析式为.(2)由题意知即解得由于,所以.答:当生产这种产品的总成本为万元时,应生产这种产品吨.23. (1)四边形是菱形,,,,,即,,.(2),,,,.,,.四边形是平行四边形.24. (1)二次函数的图象经过点,.解得这个二次函数的解析式为.(2),,,,..,,即,.同理,,.(3)如图,过作的垂线交于点.过点作轴于点.抛物线的解析式为,,.在与中,(),,.在中,,,由勾股定理得在中,由勾股定理得在中,,,,由勾股定理得即解得,,点在线段上,舍去,.25. (1),,.(2)存在,是不变的.如图,连接,则,和分别是和的中点,.(3)如图,,,,.过作,垂足为,,,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年上海中考数学试题
一、选择题:(本大题共6题,每题4分,满分24分)
1.在下列代数式中,次数为3的单项式是( )
A 2xy ;
B 33+x y ;
C .3x y ;
D .3xy .
2数据5,7,5,8,6,13,5的中位数是( )
A .5;
B .6;
C .7 ;
D .8.
3.不等式组2<62>0x x ⎧⎨⎩
--的解集是( ) A .>3x -; B .<3x -; C .>2x ; D .<2x .
4
.在下列各式中,二次根式 )
A
B
C
; D
.
5在下列图形中,为中心对称图形的是( )
A .等腰梯形;
B .平行四边形;
C .正五边形;
D .等腰三角形.
6如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是( ) A .外离; B .相切; C .相交; D .内含.
二、填空题:(本大题共12题,每题4分,满分48分)
7.计算112
-= .
8.因式分解=xy x - .
9.已知正比例函数()=0y kx k ≠,点()2,3-在函数上,则y 随x 的增大而 (增大或减小).
10
的根是 .
11.如果关于x 的一元二次方程2
6+=0x x c -(c 是常数)没有实根,那么c 的取值范围是
.
12.将抛物线2=+y x x 向下平移2个单位,所得抛物线的表达式是 .
13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 .
14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在80~90分数段的学生有 名.
分数段
60—70 70—80 80—90 90—100 频率
0.2 0.25 0.25
15.如图,已知梯形ABCD ,AD ∥BC ,=2BC AD ,如果=AD a ,=AB b ,那么=AC (用a ,b 表示).
16.在△ABC 中,点D 、E 分别在AB 、AC 上,=ADE B ∠∠,如果=2AE ,△ADE 的面积为4,四边形BCDE 的面积为5,那么AB 的长为 .
17.我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为2,那么当它们的一对角成对顶角时,重心距为 .
18.如图,在Rt △ABC 中,=90C ∠,=30A ∠,=1BC ,点D 在AC 上,将△ADB 沿直线BD 翻折后,将点A 落在点E 处,如果AD ED ⊥,那么线段DE 的长为 .
B C
A
三、解答题:(本大题共7题,满分78分)
19.(本题满分10分) ()1
12211231++32221-⎛⎫⨯-- ⎪ ⎪-⎝⎭.
20.(本题满分10分)
解方程:261393
x x x x +=+--.
21.(本题满分10分,第(1)小题满分4分.第(2)小题满分6分)
如图在Rt △ABC 中,∠=90ACB ,D 是边AB 的中点,BE ⊥CD ,垂足为点E .己知=15AC ,3=5
cosA . (1)求线段CD 的长;
(2)求sin ∠DBE 的值.
22.
某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图所示.
(1)求y 关于x 的函数解析式,并写出它的定义域;
(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.
(注:总成本=每吨的成本×生产数量)
23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)
己知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,∠BAF =∠DAE ,AE 与BD 交于点G .
(1)求证:=BE DF
(2)当要
DF FC =AD DF 时,求证:四边形BEFG 是平行四边形.
G F
D E B C A
24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)
如图,在平面直角坐标系中,二次函数2
6y ax x c =++的图像经过点()4,0A 、()1,0B -,
与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE , 1=2
tan DAE ∠,EF OD ⊥,垂足为F . (1)求这个二次函数的解析式;
(2)求线段EF 、OF 的长(用含t 的代数式表示);
(3)当∠ECA =∠OAC 时,求t 的值.
25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)
如图,在半径为2的扇形AOB 中,∠=90AOB ,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .
(1)当=1BC 时,求线段OD 的长;
(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
(3)设=BD x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.
2012年上海中考数学试题答案
11
A C
B D。