D导数的概念求导法则
导数的定义与求导规则的推导与验证
导数的定义与求导规则的推导与验证定义:导数是微积分中用于描述函数在某一点附近变化率的概念。
它表示函数在该点的切线斜率,能够告诉我们函数在该点的变化速率有多快。
推导与验证:一、导数的定义推导要推导导数的定义,首先需要了解函数在某一点的变化率是如何定义的。
设函数为f(x),如果函数在点x处的变化率可以用差商表示,则有:Δy/Δx = (f(x + Δx) - f(x))/Δx当Δx无限接近于0时,Δy/Δx的极限即为f(x)在x点的导数。
用极限表示为:f'(x) = lim(Δx->0) (f(x + Δx) - f(x))/Δx这就是导数的定义。
二、求导规则的推导与验证求导规则是用来简化计算导数的公式集合,它是通过对导数的定义进行推导得到的。
1. 常数规则如果f(x)是一个常数,那么它的导数为0。
这可以通过导数的定义推导得出:f'(x) = lim(Δx->0) (f(x + Δx) - f(x))/Δx由于f(x)是常数,f(x + Δx) = f(x),因此:f'(x) = lim(Δx->0) (f(x) - f(x))/Δx= lim(Δx->0) 0/Δx= 02. 幂函数规则对于幂函数f(x) = x^n,其中n是一个常数,它的导数规则可以通过导数的定义和数学归纳法推导得出:f'(x) = lim(Δx->0) (f(x + Δx) - f(x))/Δx= lim(Δx->0) ((x + Δx)^n - x^n)/Δx= lim(Δx->0) (x^n + C(n,1)x^(n-1)(Δx) + C(n,2)x^(n-2)(Δx)^2 + ... + (Δx)^n - x^n)/Δx= lim(Δx->0) (C(n,1)x^(n-1)(Δx) + C(n,2)x^(n-2)(Δx)^2 + ... + (Δx)^n)/Δx= C(n,1)x^(n-1) + C(n,2)x^(n-2)(Δx) + ... + (Δx)^(n-1)= n*x^(n-1)3. 和差法则设函数f(x)和g(x)都可导,则有:(f(x) + g(x))' = f'(x) + g'(x)(f(x) - g(x))' = f'(x) - g'(x)这一规则可以通过导数的定义和极限运算的性质推导得出。
导数的定义及求导的运算法则
lim
x0
f (x) x
f (0)
(x 1) 1
lim
1.
x0
x
所以 f(0) f(0) 1,由定理 3.1.1 知,函数 f (x) 在点
x 0 处可导,并且 f (0) 1.
2023/4/22
37-9
续解 当 x 0 时, f (x) ex , f (x) (ex ) ex;
lim y x x0 x
lim
x0
y x
lim x x0
f
(x0 ) 0 0,
即表明函数 y f (x) 在点 x0 点连续.
2023/4/22
37-13
注 1(逆否命题) 如果函数 y f (x) 在点 x0 处不连续,则 函数 y f (x) 在点 x0 处不可导.
lim f ( x) lim ( x x) ( x) 1;
x0
x0
x
当 x 0, f (0) 0,
y y x
o
x
f ' (0)
lim
x0
|
0
x x
|
0
lim
x0
x x
1,
f
'
(0)
lim
x0
|
0
x x
|
0
lim
x0
x x
1,
f (0) 不存在.
即
(|
x
|)
1 1
x0 .
x0
例
(2) 算比值 (3) 求极限
y f ( x x) f ( x);
x
x
y lim y .
x0 x
例1 求函数 f ( x) C(C为常数)的导数.
求导基本法则和公式
求导基本法则和公式导数的概念:数理化中的导数的定义是:数轴上导数是从一个点开始的一条直线(即“导数”),且直线(不经过一根直线)在此导数上连续时,其导数以指数形式递减。
函数的导数基本法则:一个函数的导数等于它的导数和它的不等式倒数之和的整数倍的导数之和之和。
如果某一点的导数等于(零点)或大于(或等于)一个点的导数,则这个点在该点的导数与零点或零点成正比;一个点为零点时的导数在零点的导数为零点;一个方向的导数等于一个方向导数的小数乘以该方向上每一个点导数)的值除以它所处方向(点坐标)的度数乘以所求数得出此数之积。
导数之比表示为导数与零点相差多少个单位而变化)程度就是零点(或区间)或百分比)。
如果用(2)表示导数可以利用任意一个导数除以整条线所形成的数位(数据点)即可得出被求数集或一个导数(或导数)。
下面将为大家介绍求导数所用到的基本法则和公式:由导数可以得导数)为(1-0)^4/2 (k>2. m)=1个点导数等于零点是求函数导数所用之地(或时间单位)在一个方向上与任意时刻导数相同,则求值之比等于零点导数与零点之间总有一个基点是零。
因此导数即为零点或区间(任意位置)时被求得的导数之积。
根据求导公式可以得出: a= f (a+ b)/2* x+ k. x= b→ r是一个区间上导数x与 u的差之和与它在其中一个零点所对应的位阻值之间的关系式为——导数x= t/1、求导数的方法有很多,求解时只要用到一些常见的代数方法即可。
求解的方法有很多,首先要知道哪几种方法是最有效,哪几种方法是最容易出错的方法。
这就要求我们平时要多思考,总结规律,及时纠正。
2、对我们学习比较重要的知识点要会看和会用!3、最常用就是把求解定理或函数与常数相关的基本定理或者公式记下来,并总结出来供大家参考。
从而能够把这些知识融会贯通于我们日常生活中,对于高中数学很重要。
而求解函数导数最基本的法则和公式就是这些。
最后再强调一下关于函数导数法,我认为是最简单的一种求解导数求导方法。
导数的概念、求导法则
链式法则可以用于求复合函数的导数,特别是当函数包含多个嵌 套函数时。
乘积法则
乘积法则
$(uv)' = u'v + uv'$
应用
乘积法则可以用于求两个函数的乘积的导数,例如$y = u(x)v(x)$的导数可以通 过乘积法则求得。
商的求导法则
商的求导法则
$(u/v)' = frac{u'v - uv'}{v^2}$
导数的概念、求导法则
目
CONTENCT
录
• 导数的概念 • 求导法则 • 导数的应用 • 导数与积分的关系
01
导数的概念
导数的定义
总结词
导数是描述函数在某一点附近的变化 率的重要概念。
详细描述
导数定义为函数在某一点处的切线的 斜率,表示函数在该点附近的小变化 量与自变量变化量之比,即函数在一 点的变化率。
导数表示的几何意义
总结词
导数在几何上表示函数图像在该点的 切线斜率。
详细描述
对于可导函数,其导数在几何上表示 该函数图像在某一点的切线斜率。这 个切线的斜率反映了函数值在该点的 变化趋势。
导数的物理意义
总结词
导数在物理中常用于描述物体的运动状态、速度、加速度等 。
详细描述
在物理中,导数常用于描述物体的运动状态,如速度和加速 度。例如,物体的瞬时速度可以通过位移函数的导数来描述 ,瞬时加速度可以通过速度函数的导数来描述。
THANK YOU
感谢聆听
应用
商的求导法则可以用于求两个函数的商的导数,例如$y = u(x)/v(x)$的导数可以 通过商的求导法则求得。
03
导数的应用
切线斜率
导数的概念与函数的求导法则
y − y0 f ( x ) − f ( x0 ) 割线 MN的斜率为 tan ϕ = = , x − x0 x − x0
C N ⎯沿曲线 ⎯⎯ ⎯ → M , x → x0 ,
f ( x ) − f ( x0 ) . 切线 MT的斜率为 k = tan α = lim x → x0 x − x0
二、导数的定义 定义1 设y = f ( x )在点x0的某个邻域U ( x0 )内有定义,
+ h n−1 ] = nx n − 1
即
更一般地 例如,
( x n )′ = nx n − 1 .
( x μ )′ = μ x μ −1 . ( μ ∈ R )
1
1 −1 1 2 = . ( x )′ = x 2 x 2 ( x )′ = ( −1) x
−1 − 1− 1
1 =− 2. x
2 ′ (x ) = 3x
实例2 切线问题
割线的极限位置——切线位置
播放 播放
y
如图, 如果割线MN绕点 M旋转而趋向极限位置 MT,直线MT就称为曲线 C在点M处的切线. 极限位置即
MN → 0, ∠NMT → 0.y = f ( x)来自N TCo
α
M
ϕ
x0
x
x
设 M ( x 0 , y 0 ), N ( x , y ).
即 f +′ (0) ≠ f −′ (0), ∴ 函数 y = f ( x )在x = 0点不可导 .
y
y= x
o
x
注意
导数的几何意义与物理意义
y
y = f ( x)
(1)几何意义
f ′( x 0 )表示曲线 y = f ( x ) 在点 M ( x 0 , f ( x 0 ))处的
导数的定义与求导法则
导数的定义与求导法则导数是微积分中非常重要的概念,它用于描述函数在某一点上的变化率。
在计算导数时,我们可以使用导数的定义和求导法则来求解。
本文将详细介绍导数的定义和常用的求导法则。
一、导数的定义导数的定义是通过函数的极限来描述函数在某一点上的变化率。
设函数f(x)在点x_0处可导,则它的导数f'(x_0)的定义如下:f'(x_0) = lim(x→x_0) (f(x)-f(x_0))/(x-x_0)上述定义可以理解为函数f(x)在点x_0处的切线斜率。
这个切线斜率可以帮助我们了解函数在该点附近的变化情况。
二、导数的求导法则为了方便计算导数,我们可以利用一些常用的求导法则。
下面是一些重要的求导法则:1. 常数法则:若C为常数,则(d/dx) C = 0,即常数的导数等于0。
2. 幂函数法则:若f(x) = x^n,其中n为常数,则(d/dx) x^n =n·x^(n-1)。
3. 指数函数法则:若f(x) = a^x,其中a为常数,则(d/dx) a^x =a^x·ln(a)。
4. 对数函数法则:若f(x) = log_a(x),其中a为常数,则(d/dx)log_a(x) = 1/(x·ln(a))。
5. 基本初等函数法则:对于常见的基本初等函数,我们可以通过已知函数的导数来求解其他函数的导数,如常数函数、指数函数、对数函数、三角函数等。
6. 和、差、积、商法则:对于多个函数之和、差、积、商,我们可以通过将其化简为基本初等函数的形式来计算导数。
7. 链式法则:对于复合函数,我们可以利用链式法则来求导。
设y=f(u)和u=g(x),则复合函数y=f(g(x))的导数为(dy/dx) =(dy/du) · (du/dx)。
在实际应用中,我们可以根据具体情况选择合适的求导法则来进行计算。
三、导数的应用导数在数学和物理中有广泛的应用。
以下是一些常见的应用:1. 函数的极值点:导数可以帮助我们判断函数的极大值和极小值点。
导数的定义与计算方法
导数的定义与计算方法导数是微积分中的重要概念之一,用于研究函数的变化率和曲线的切线斜率。
本文将从导数的定义入手,介绍导数的计算方法,并给出一些例题来帮助读者更好地理解和应用导数。
一、导数的定义在数学上,给定一个函数y=f(x),其导数定义为函数在某一点x处的变化率。
导数可以用极限来表示,即:f'(x) = lim Δx→0 (f(x+Δx) - f(x))/Δx其中f'(x)表示函数f(x)在点x处的导数,Δx为自变量的增量。
导数的值可以表示函数在该点的切线斜率,即函数曲线在该点处的速率。
二、导数的计算方法导数的计算方法有多种,下面列举几种常见的:1. 基本导数公式对于常见的基本函数,存在一些导数的基本公式,如:- 常数函数导数为零:d/dx(c) = 0,其中c为常数;- 幂函数导数为功率减一:d/dx(x^n) = nx^(n-1),其中n为常数;- 指数函数导数等于自身:d/dx(e^x) = e^x;- 对数函数导数为倒数:d/dx(ln(x)) = 1/x。
通过应用基本导数公式,可以计算更复杂函数的导数。
2. 导数的四则运算规则对于已知的函数f(x)和g(x),导数的四则运算规则如下:- 和差法则:(f(x) ± g(x))' = f'(x) ± g'(x)- 积法则:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- 商法则:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2以上规则为导数的基本运算规则,可以根据需要进行组合和推广。
3. 链式法则如果函数y=f(g(x))是由两个函数复合而成,那么它的导数可以用链式法则来计算。
链式法则可以表示为:d/dx(f(g(x))) = f'(g(x)) * g'(x)通过链式法则,可以求解更复杂的复合函数的导数,进一步扩展了导数的计算方法。
导数的定义和求导规则
导数的定义和求导规则一、导数的定义1.1 极限的概念:当自变量x趋近于某一数值a时,函数f(x)趋近于某一数值L,即称f(x)当x趋近于a时的极限为L,记作:lim (x→a) f(x) = L1.2 导数的定义:函数f(x)在点x=a处的导数,记作f’(a)或df/dx|_{x=a},表示函数在某一点的瞬时变化率。
定义如下:二、求导规则2.1 常数倍法则:如果u(x)是可导函数,c是一个常数,则cu(x)也是可导函数,且(cu(x))’ = c*u’(x)。
2.2 幂函数求导法则:如果u(x) = x^n,其中n为常数,则u’(x) = n*x^(n-1)。
2.3 乘积法则:如果u(x)和v(x)都是可导函数,则(u(x)v(x))’ = u’(x)v(x) +u(x)v’(x)。
2.4 商法则:如果u(x)和v(x)都是可导函数,且v(x)≠0,则(u(x)/v(x))’ =(u’(x)v(x) - u(x)v’(x))/(v(x))^2。
2.5 和差法则:如果u(x)和v(x)都是可导函数,则(u(x) + v(x))’ = u’(x) + v’(x),(u(x) - v(x))’ = u’(x) - v’(x)。
2.6 链式法则:如果y = f(u),u = g(x),则y关于x的导数可以表示为dy/dx = (dy/du) * (du/dx)。
2.7 复合函数求导法则:如果y = f(g(x)),则y关于x的导数可以表示为dy/dx = (df/dg) * (dg/dx)。
2.8 高阶导数:如果f’(x)是f(x)的一阶导数,则f’‘(x)是f’(x)的一阶导数,以此类推。
2.9 隐函数求导法则:如果方程F(x,y) = 0表示隐函数,则y关于x的导数可以表示为(dy/dx) = -F_x / F_y,其中F_x和F_y分别是F(x,y)对x和y的偏导数。
三、导数的应用3.1 函数的单调性:如果f’(x) > 0,则f(x)在区间内单调递增;如果f’(x) < 0,则f(x)在区间内单调递减。
导数的运算公式和法则
导数的运算公式和法则导数是微积分中的重要概念,用于描述函数的变化率。
在求导的过程中,有一些常用的运算公式和法则,可以帮助我们简化计算。
下面是一些常用的导数运算公式和法则。
一、基本导数公式1. 常数导数法则:对于任意常数c,其导数为0,即d/dx(c) = 0。
2. 幂函数导数法则:对于任意实数n,幂函数y = x^n的导数为d/dx(x^n) = nx^(n-1)。
特别地,当n = 0时,常数函数y = c的导数为d/dx(c) = 0。
3. 指数函数导数法则:对于底数为常数a的指数函数y = a^x,其导数为d/dx(a^x) = ln(a) * a^x。
这个法则也适用于自然对数中的指数函数y = e^x,其导数为d/dx(e^x) = e^x。
4. 对数函数导数法则:对于底数为常数a的对数函数y = log_a(x),其导数为d/dx(log_a(x)) = 1 / (x * ln(a))。
特别地,当底数为自然常数e时,对数函数变为自然对数函数y =ln(x),其导数为d/dx(ln(x)) = 1 / x。
5.三角函数导数法则:(1)正弦函数的导数为d/dx(sin(x)) = cos(x)。
(2)余弦函数的导数为d/dx(cos(x)) = -sin(x)。
(3)正切函数的导数为d/dx(tan(x)) = sec^2(x)。
(4)余切函数的导数为d/dx(cot(x)) = -csc^2(x)。
(5)正切函数和余切函数的导数也可以写成d/dx(tan(x)) = 1 /cos^2(x)和d/dx(cot(x)) = -1 / sin^2(x)。
6.反三角函数导数法则:(1)反正弦函数的导数为d/dx(arcsin(x)) = 1 / sqrt(1 - x^2)。
(2)反余弦函数的导数为d/dx(arccos(x)) = -1 / sqrt(1 - x^2)。
(3)反正切函数的导数为d/dx(arctan(x)) = 1 / (1 + x^2)。
导数公式及导数的运算法则
导数公式及导数的运算法则一、导数公式1.基本导数公式:(1) 常数函数的导数为0,即d/dx(c) = 0,其中c为常数。
(2) 幂函数的导数为其指数与常数的乘积,即d/dx(x^n) = n*x^(n-1),其中n为实数。
(3) 自然对数函数的导数为1/x,即d/dx(ln(x)) = 1/x。
(4) 正弦函数的导数为余弦函数,即d/dx(sin(x)) = cos(x)。
(5) 余弦函数的导数为负的正弦函数,即d/dx(cos(x)) = -sin(x)。
2.基本初等函数的导数公式:(1) 常数乘以函数的导数等于函数的导数乘以这个常数,即d/dx(c*f(x)) = c*f'(x),其中f(x)为可导函数,c为常数。
(2) 函数相加(减)的导数等于函数导数的相加(减),即d/dx(f(x)±g(x)) = f'(x)±g'(x),其中f(x)和g(x)为可导函数。
(3) 乘积法则:两个函数相乘的导数等于第一个函数的导数乘以第二个函数,再加上第一个函数乘以第二个函数的导数,即d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)。
(4) 商法则:函数的导数等于分子的导数乘以分母减去分子乘以分母的导数再除以分母的平方,即d/dx(f(x)/g(x)) = (f'(x)*g(x) -f(x)*g'(x))/[g(x)]^23.复合函数的导数:(1) 基本链式法则:若y=f(u)和u=g(x)都是可导函数,则y=f(g(x))也是可导函数,且它的导数等于f'(u)*g'(x),即dy/dx = dy/du *du/dx = f'(u) * g'(x)。
1.反函数的导数:若函数y=f(x)在区间I上具有连续的导数f'(x),且在区间I上f'(x)≠0,则它的反函数x=g(y)在对应的区间J上也有连续的导数,且g'(y)=1/f'(x)。
导数的运算法则及基本公式应用
题目高中数学复习专题讲座导数的运算法则及基本公式应用 高考要求导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导 重难点归纳1深刻理解导数的概念,了解用定义求简单的导数xy∆∆表示函数的平均改变量,它是Δx 的函数,而f ′(x 0)表示一个数值,即f ′(x )=xyx ∆∆→∆lim 0,知道导数的等价形式)()()(lim )()(lim000000x f x x x f x f x x f x x f x x x '=--=∆-∆+→∆→∆2求导其本质是求极限,在求极限的过程中,力求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是顺利求导的关键3对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误4 复合函数求导法则,像链条一样,必须一环一环套下去,而不能丢掉其中的一环 必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系 典型题例示范讲解例1求函数的导数)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx xy ω 命题意图本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法这是导数中比较典型的求导类型知识依托解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数错解分析本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错技巧与方法先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导22222(1)(1)cos (1)[(1)cos ](1):(1)cos x x x x x x y x x''-+--+'=+-解2222222222222222(1)cos (1)[(1)cos (1)(cos )](1)cos (1)cos (1)[2cos (1)sin ](1)cos (21)cos (1)(1)sin (1)cos x x x x x x x x x x x x x x x x x x x x x x x x x x''-+--+++=+-+---+=+--+-+=+(2)解y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γγ=ωxy ′=(μ3)′=3μ2·μ′=3μ2(av -by )′ =3μ2(av ′-by ′)=3μ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx ) (3)解法一设y =f (μ),μ=,v =x 2+1,则y ′x =y ′μμ′v ·v ′x =f ′(μ)·21v -21·2x=f ′(12+x )·21112+x ·2x=),1(122+'+x f x x解法二y ′=[f (12+x )]′=f ′(12+x )·(12+x )′=f ′(12+x )·21(x 2+1)21-·(x 2+1)′=f ′(12+x )·21(x 2+1)21-·2x=12+x x f ′(12+x )例2利用导数求和(1)S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N *) (2)S n =C+2C+3C+…+n C,(n ∈N *)命题意图培养考生的思维的灵活性以及在建立知识体系中知识点灵活融合的能力知识依托通过对数列的通项进行联想,合理运用逆向思维由求导公式(x n )′=nx n -1,可联想到它们是另外一个和式的导数关键要抓住数列通项的形式结构错解分析本题难点是考生易犯思维定势的错误,受此影响而不善于联想 技巧与方法第(1)题要分x =1和x ≠1讨论,等式两边都求导 解(1)当x =1时S n =1+2+3+…+n =21n (n +1); 当x ≠1时,∵x +x 2+x 3+…+x n=xx x n --+11,两边都是关于x 的函数,求导得(x +x 2+x 3+…+x n)′=(xx x n --+11)′即S n =1+2x +3x 2+…+nxn -1=21)1()1(1x nx x n n n -++-+ (2)∵(1+x )n =1+C x +C x 2+…+C x n ,两边都是关于x 的可导函数,求导得n (1+x )n -1=C+2C x +3C x 2+…+n C x n -1,令x =1得,n ·2n -1=C+2C+3C+…+n C,即S n =C+2C+…+n C=n ·2n -1例3 已知曲线Cy =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标解由l 过原点,知k =x y (x 0≠0),点(x 0,y 0)在曲线C 上,y 0=x 03-3x 02+2x 0, ∴x y =x 02-3x 0+2 y ′=3x 2-6x +2,k =3x 02-6x 0+2 又k =x y ,∴3x 02-6x 0+2=x 02-3x 0+2 2x 02-3x 0=0,∴x 0=0或x 0=23 由x ≠0,知x 0=23∴y 0=(23)3-3(23)2+2·23=-83 ∴k =00x y =-41 ∴l 方程y =-41x 切点(23,-83) 学生巩固练习1 y =e sin x cos(sin x ),则y ′(0)等于( ) A0 B1 C -1D22经过原点且与曲线y =59++x x 相切的方程是( ) A x +y =0或25x +y =0 B x -y =0或25x+y =0C x +y =0或25x -y =0D x -y =0或25x-y =03若f ′(x 0)=2,kx f k x f k 2)()(lim 000--→ =_________4设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=_________5已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的方程6求函数的导数 (1)y =(x 2-2x +3)e 2x ;(2)y =31xx - 7有一个长度为5 m 的梯子贴靠在笔直的墙上,假设其下端沿地板以3 m/s 14 m 时,梯子上端下滑的速度8求和S n =12+22x +32x 2+…+n 2x n -1,(x ≠0,n ∈N *) 参考答案1解析y ′=e sin x [cos x cos(sin x )-cos x sin(sin x )],y ′(0)=e 0(1-0)=1 答案B2解析设切点为(x 0,y 0),则切线的斜率为k =x y ,另一方面,y ′=(59++x x )′=2)5(4+-x ,故y ′(x 0)=k ,即)5(9)5(40000020++==+-x x x x y x 或x 02+18x 0+45=0 得x 0(1)=-3, x 0 (2)=-15,对应有y 0(1)=3,y 0(2)=53515915=+-+-,因此得两个切点A (-3,3)或B (-15,53), 从而得y ′(A )=3)53(4+-- =-1及y ′(B )=251)515(42-=+-- ,由于切线过原点,故得切线l A :y =-x 或l B :y =-25x 答案A3解析根据导数的定义 f ′(x 0)=k x f k x f k ---+→)()]([(lim000(这时k x -=∆)1)(21)()(lim 21])()(21[lim 2)()(lim 0000000000-='-=----=---⋅-=--∴→→→x f k x f k x f kx f k x f k x f k x f k k k答案-14解析设g (x )=(x +1)(x +2)……(x +n ),则f (x )=xg (x ),于是f ′(x )=g (x )+xg ′(x ),f ′(0)=g (0)+0·g ′(0)=g (0)=1·2·…n =n ! 答案n !5解设l 与C 1相切于点P (x 1,x 12),与C 2相切于Q (x 2,-(x 2-2)2) 对于C 1y ′=2x ,则与C 1相切于点P 的切线方程为 y -x 12=2x 1(x -x 1),即y =2x 1x -x 12①对于C 2y ′=-2(x -2),与C 2相切于点Q 的切线方程为 y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4② ∵两切线重合,∴2x 1=-2(x 2-2)且-x 12=x 22-4, 解得x 1=0,x 2=2或x 1=2,x 2=0 ∴直线l 方程为y =0或y =4x -4 6解(1)注意到y >0,两端取对数,得 ln y =ln(x 2-2x +3)+ln e 2x =ln(x 2-2x +3)+2xxxe x x e x x x x x x y x x x x y x x x x x x x x x x x y y 2222222222222)2(2)32(32)2(232)2(232)2(223222232)32(1⋅+-=⋅+-⋅+-+-=⋅+-+-='∴+-+-=++--=++-'+-='⋅∴(2)两端取对数,得ln|y |=31(ln|x |-ln|1-x |), 两边解x 求导,得31)1(31)1(131)1(131)111(311xx x x y x x y x x x x y y --=⋅-⋅='∴-=---='⋅7解设经时间t 秒梯子上端下滑s 米,则s =5-2925t -, 当下端移开14 m 时,t 0=157341=⋅, 又s ′=-21 (25-9t 2)21-·(-9·2t )=9t 29251t-,所以s ′(t 0)=9×2)157(9251157⨯-⋅=0875(m/s)8解(1)当x =1时,S n =12+22+32+…+n 2=61n (n +1)(2n +1), 当x ≠1时,1+2x +3x 2+…+nx n -1=21)1()1(1x nx x n n n -++-+, 两边同乘以x ,得x +2x 2+3x 2+…+nx n=221)1()1(x nx x n x n n -++-++两边对x 求导,得S n =12+22x 2+32x 2+…+n 2x n-1=322122)1()122()1(1x x n x n n x n x n n n ---+++-+++ 课前后备注。
导数的定义与计算方法
导数的定义与计算方法导数是微积分中的重要概念,用于描述函数的变化率。
本文将介绍导数的定义以及计算方法,帮助读者更好地理解导数的概念和运用。
一、导数的定义导数是函数在某一点处的变化率。
数学上,对于函数f(x),其在点x处的导数记为f'(x),可以通过以下极限定义得到:f'(x) = lim(h→0) [f(x+h) - f(x)] / h其中,lim表示极限,h表示自变量x的增量。
这个极限定义可以理解为当自变量x的增量趋近于0时,函数f(x)在点x处的变化率。
二、导数的计算方法导数的计算方法可以根据函数的具体形式来进行。
下面介绍几种常见的计算方法:1. 可导函数的导数计算法则- 常数法则:如果f(x) = c,其中c为常数,则f'(x) = 0。
- 幂函数法则:如果f(x) = x^n,其中n为常数,则f'(x) = n * x^(n-1)。
- 指数函数法则:如果f(x) = e^x,则f'(x) = e^x。
- 对数函数法则:如果f(x) = log_a(x),其中a为常数且a > 0,则f'(x) = 1 / (x * ln(a))。
- 三角函数法则:如果f(x) = sin(x),则f'(x) = cos(x);如果f(x) = cos(x),则f'(x) = -sin(x)。
- 复合函数法则:如果f(x) = g(h(x)),则f'(x) = g'(h(x)) * h'(x),其中g'表示函数g的导数。
2. 基本初等函数的导数以下是一些基本初等函数的导数计算公式:- (sin x)' = cos x- (cos x)' = -sin x- (tan x)' = sec^2 x- (cot x)' = -csc^2 x- (sec x)' = sec x * tan x- (csc x)' = -csc x * cot x- (log_a x)' = 1 / (x * ln a)- (e^x)' = e^x3. 导数的加法、减法法则如果有两个函数f(x)和g(x)在某点处的导数分别为f'(x)和g'(x),则它们的和、差、常数倍的导数可以通过以下法则计算:- (f(x) + g(x))' = f'(x) + g'(x)- (f(x) - g(x))' = f'(x) - g'(x)- (k * f(x))' = k * f'(x),其中k为常数4. 导数的乘法、除法法则如果有两个函数f(x)和g(x)在某点处的导数分别为f'(x)和g'(x),则它们的乘积和商的导数可以通过以下法则计算:- (f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)- (f(x) / g(x))' = [f'(x) * g(x) - f(x) * g'(x)] / (g(x))^2,其中g(x) ≠ 0以上是导数的一些基本计算方法,能够满足大多数函数的求导需求。
导数的基本概念和计算
导数的基本概念和计算导数是微积分学中的重要概念,用于描述函数在某一点的变化率。
它具有广泛的应用,例如在物理学、工程学和经济学等领域。
本文将介绍导数的基本概念和计算方法,旨在帮助读者更好地理解和运用导数。
一、导数的定义导数描述了函数在某一点的瞬时变化率。
对于函数f(x),在某一点x处的导数记作f'(x)或者dy/dx,可以用以下极限定义表示:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,h表示自变量x的增量。
导数的几何意义是函数曲线在该点的切线斜率。
二、导数的计算根据导数的定义,我们可以通过求极限的方法来计算导数。
下面是一些常用的导数计算规则。
1. 常数法则:对于常数c,导数为0,即d(c)/dx = 0。
2. 幂函数法则:对于函数f(x) = x^n,其中n是常数,导数为d(x^n)/dx = n*x^(n-1)。
这是求导数的基本法则之一。
3. 和差法则:对于两个函数u(x)和v(x),其导数满足(d(u+v)/dx) = du/dx + dv/dx。
4. 乘法法则:对于两个函数u(x)和v(x),其导数满足(d(uv)/dx) = u * dv/dx + v * du/dx。
5. 除法法则:对于两个函数u(x)和v(x),其导数满足(d(u/v)/dx) = (v * du/dx - u * dv/dx)/(v^2)。
6. 复合函数法则:对于复合函数f(g(x)),其导数满足(d(f(g(x)))/dx) = (df/dg) * (dg/dx),其中df/dg表示f对于g的导数,dg/dx表示g对于x的导数。
三、导数的应用导数在数学和实际应用中具有广泛的用途。
下面是一些常见的导数应用示例。
1. 函数极值:函数的极值点对应于函数曲线的斜率为零的点。
通过求函数的导数,我们可以确定函数的极值点。
2. 切线和法线:导数也可以用来求函数曲线在某一点的切线和法线方程。
导数的概念与求导法则
判断可导性
不连续, 一定不可导. 直接用导数定义; 验证左右导数是否存在且相等.
上页 下页 返回 结束
例1.已知函数y=f (x)在点x0处可导,求下列极限:
解:
上页
下页
返回
结束
上页
下页
返回
结束
例2. 下列极限是什么函数在哪一点的导数?
e 1 (1) lim ; (2) lim 1 x 0 x x
上页 上页 下页 下页 返回 返回 结束 结束
隐函数的导数
对数求导法 由参数方程所表示的函数的导数 相关变化率
上页 下页 下页 返回 返回 结束 结束 上页
一、隐函数的导数
1. 隐函数的概念 由二元方程 由 例如,
所确定的函数, 称 为隐函数 .
可确定显函数
表示的函数 , 称为显函数 .
求分段函数的导函数 注: 分段函数在分段点的导数一定要按导数的定义计算. 而且一般选用
f ( x0 ) lim
xx 0
f ( x) f ( x0 ) x x0
f ( x) f ( x0 ) f ( x0 ) lim xx 0 x x0
上页
下页
返回
结束
1 x sin x 例6(书P112)讨论函数 f ( x) 0 在 x = 0 处的连续性与可导性。
x 0
解二
利用求导公式.
f ( x) ( x)
x
f (0) 99!
上页 下页 返回 结束
x sin x, x 0 , 求f ( x). 例10 设 f ( x) ln( 1 x), x 0
解 当x 0时, f ( x) x sin x,
导数的定义与基本运算法则
导数的定义与基本运算法则导数是微积分中的重要概念,它描述了函数变化的速度。
在本文中,将介绍导数的定义以及导数的基本运算法则。
一、导数的定义在数学中,导数描述了函数在某一点的变化率。
假设有一个函数f(x),它在点x处的导数记为f'(x)或dy/dx。
导数的定义如下:f'(x) = lim(Δx→0) [f(x+Δx) - f(x)] / Δx上述定义表示当Δx趋近于0时,函数f(x)在点x处的变化率。
如果该极限存在,那么函数在该点处是可导的。
二、导数的基本运算法则导数的基本运算法则是对导数进行运算的规则,它包括常数倍法则、和差法则、乘积法则和商法则。
1. 常数倍法则对于函数f(x)和常数k,有以下结果:(f(x)·k)' = f'(x)·k这意味着在函数中乘以一个常数时,导数等于常数倍的导数。
2. 和差法则对于函数f(x)和g(x),有以下结果:(f(x) + g(x))' = f'(x) + g'(x)(f(x) - g(x))' = f'(x) - g'(x)这意味着对于两个函数的和或差,它们的导数等于各自函数的导数之和或差。
3. 乘积法则对于函数f(x)和g(x),有以下结果:(f(x) · g(x))' = f'(x) · g(x) + f(x) · g'(x)这意味着对于两个函数的乘积,其导数等于第一个函数的导数乘以第二个函数加上第一个函数乘以第二个函数的导数。
4. 商法则对于函数f(x)和g(x),有以下结果:(f(x) / g(x))' = (f'(x) · g(x) - f(x) · g'(x)) / g(x)^2这意味着对于两个函数的商,其导数等于分子的导数乘以分母减去分子乘以分母的导数,再除以分母的平方。
导数定义与计算方法
导数定义与计算方法导数是微积分中非常重要的概念之一,它与函数的变化率以及切线有着密切的关系。
本文将介绍导数的定义及其计算方法,以帮助读者更好地理解和应用导数。
一、导数的定义导数是函数在某一点上的变化率,它可以用极限的概念来定义。
对于给定函数f(x),如果存在一个极限lim┬(Δx→0)〖(f(x+Δx)-f(x))/Δx 〗,则称该极限为函数f(x)在点x处的导数,记作f'(x),也可以表示为dy/dx 或y'。
二、导数的计算方法导数的计算方法主要包括以下几种常见的情况:1. 基本函数的导数- 常数函数的导数为0,即d/dx(c) = 0,其中c为常数。
- 幂函数的导数可以通过幂函数的求导公式来计算,即d/dx(x^n) = nx^(n-1),其中n为常数。
- 指数函数e^x的导数为e^x。
- 对数函数ln(x)的导数为1/x。
2. 基本运算法则- 和差法则:导数的和等于导数的和,即d/dx(f(x)+g(x)) = f'(x) +g'(x)。
- 常数倍法则:导数的常数倍等于常数倍的导数,即d/dx(c*f(x)) = c*f'(x),其中c为常数。
- 乘法法则:导数的乘积等于函数一的导数乘以函数二加上函数一乘以函数二的导数,即d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)。
- 除法法则:导数的商等于分子的导数乘以分母减去分子乘以分母的导数再除以分母的平方,即d/dx(f(x)/g(x)) = (f'(x)*g(x) -f(x)*g'(x))/g^2 (x)。
3. 高阶导数- 导数的导数称为高阶导数,可通过对导数再次求导来计算。
例如f''(x)表示f'(x)的导数,f'''(x)表示f''(x)的导数,以此类推。
4. 链式法则- 当函数具有复合形式时,可以使用链式法则来计算导数。
导数的概念及其计算
x 0
lim
f ( x0 x) f ( x0 ) . x
(2)导数的几何意义:函数 y=f(x)在点 x0 处的导数 f′(x0),就是曲线 y=f(x)在点 P(x0,y0)处的切线的 斜率 . (3)导数的物理意义:函数 s=s(t)在点 t0 处的导数 s′(t0),就是物体的运动方程为 s=s(t)在时刻 t0 时的 瞬时 速度 v.即 v=s′(t0).
x 0
探究提高 由导数的定义可知,求函数 y=f(x)的导数的 一般方法是: (1)求函数的改变量 Δy=f(x+Δx)-f(x); Δy f(x+Δx)-f(x) (2)求平均变化率Δx= ; Δx Δy y (3)取极限,得导数 lim Δx.
x0
变式训练 1 过曲线 y= f (x)= x3 上两点 P(1,1)和 Q(1+ Δ x,1+Δ y)作曲线的割线, 求出当 Δ x= 0.1 时割线的 斜率,并求曲线在点 P 处切线的斜率.
2.曲线 y=f(x)“在点 P(x0,y0)处的切线”与“过点 P(x0,y0)的切线”的区别与联系 (1)曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点, 切线斜率为 k=f′(x0)的切线,是唯一的一条切线. (2)曲线 y=f(x)过点 P(x0,y0)的切线,是指切线经过 P 点.点 P 可以是切点,也可以不是切点,而且这样的 直线可能有多条.
基础自测 1. 已知函数 f ( x) =13-8 x+ 2 x , 且 f ' ( x0 ) =
2
3 2 4,则 x0 的值为________.
解析
f ' ( x) =-8+2 2x,
f ' ( x0 ) =-8+2 2 x0 =4,∴ x0 =3 2.
导数的定义与求导法则
导数的定义与求导法则导数是微积分中的重要概念,用于描述函数在某一点上的变化率。
在本文中,我们将介绍导数的定义以及常用的求导法则。
一、导数的定义在微积分中,函数$f(x)$在$x=a$处的导数可以通过以下极限定义来表示:$$f'(a)=\lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$$其中$h$表示函数$f(x)$中$x$的增量。
这个定义表示了函数在$x=a$处的瞬时变化率。
二、常用的求导法则为了更方便地求导数,我们可以使用一些常用的求导法则。
下面是其中的一些重要法则:1. 常数法则如果$c$是一个常数,而$f(x)$是一个可导函数,则$(cf(x))'=cf'(x)$。
这个法则表示了常数倍的函数导数等于函数导数的常数倍。
2. 和差法则如果$f(x)$和$g(x)$都是可导函数,则$(f(x) \pm g(x))'=f'(x) \pmg'(x)$。
这个法则表示了两个函数之和(差)的导数等于各自函数的导数之和(差)。
3. 乘法法则如果$f(x)$和$g(x)$都是可导函数,则$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$。
这个法则表示了两个函数乘积的导数等于第一个函数的导数乘以第二个函数,再加上第一个函数乘以第二个函数的导数。
4. 商法则如果$f(x)$和$g(x)$都是可导函数,且$g(x) \neq 0$,则$\left(\frac{f(x)}{g(x)}\right)'=\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}$。
这个法则表示了两个函数商的导数等于分子的导数乘以分母,减去分子乘以分母的导数,再除以分母的平方。
5. 链式法则如果$u(x)$和$v(x)$都是可导函数,则$(u(v(x)))'=u'(v(x))v'(x)$。
导数的定义与求导法则详解
导数的定义与求导法则详解导数是微积分中的重要概念之一。
在数学中,导数用来描述函数在某一点的变化率。
它不仅可以帮助我们了解函数的性质,还可以应用于各种实际问题的求解。
本文将详细介绍导数的定义以及常用的求导法则。
一、导数的定义导数的定义是基于极限的概念,即函数在某一点的导数等于该点的函数值与自变量趋于该点时函数值之差的比值的极限。
用数学符号表示如下:若函数f(x)在点x_0处导数存在,记为f'(x_0)或dy/dx|x=x_0,已知函数在该点处连续,则导数的定义为:f'(x_0) = lim┬(Δx→0)〖(f(x_0+Δx)-f(x_0))/Δx 〗导数可以理解为函数图像在某点处的切线斜率,当导数为正时,函数递增;当导数为负时,函数递减;当导数为零时,函数取得极值。
二、导数的求导法则求导法则是用来计算函数的导数的一组规则。
根据导数的定义,可以推导得到以下常用的求导法则:1. 基本常数法则:常数的导数为0,即d/dx(c)=0,其中c为常数。
2. 变量的幂法则:对于任意的实数n,导数d/dx(x^n)=nx^(n-1),其中x为自变量。
3. 求和差法则:导数是线性运算,对于任意的可导函数f(x)和g(x),有d/dx(f(x)±g(x))=d/dx(f(x))±d/dx(g(x))。
4. 乘法法则:对于可导函数f(x)和g(x),有d/dx(f(x)⋅g(x))=f'(x)⋅g(x)+f(x)⋅g'(x)。
5. 商法则:对于可导函数f(x)和g(x),有d/dx(f(x)/g(x))=(f'(x)⋅g(x)-f(x)⋅g'(x))/[g(x)]^2。
6. 复合函数法则:若y=f(g(x)),其中f(u)和g(x)都是可导函数,则d/dx(y)=d/dx(f(g(x)))=f'(g(x))⋅g'(x)。
7. 反函数法则:若y=f(x)的反函数为x=g(y),则g'(y)=[1/f'(x)],其中f'(x)≠0。
导数的四则运算法则
导数的四则运算法则导数的四则运算法则是微积分中非常重要的一个内容,它们是利用导数的性质进行四则运算的基本规则。
本质上,这些规则是微分操作与代数运算之间的对应关系,它们使得我们能够灵活、高效地应用导数概念解决各种实际问题。
1. 常数倍法则:设k是常数,对于任意可导函数f(x),有d/dx (k·f(x)) = k·(d/dx) f(x)。
它表示常数倍的函数导数等于常数倍的函数原函数的导数。
2. 常数法则:对于常数c,有d/dx(c) = 0。
它表示常数的导数等于0,因为常数在任意两点之间没有变化。
3.基本变换法则:设f(x)和g(x)是可导函数,对于任意实数a和b,有:a. d/dx (f(x) ± g(x)) = (d/dx)f(x) ± (d/dx)g(x),它表示函数的加减运算在取导数时可以分别取导。
b. d/dx (a·f(x) ± b·g(x)) = a·(d/dx)f(x) ±b·(d/dx)g(x),它表示常数倍的函数的加减运算在取导数时可以先取导再进行加减运算。
4.乘积法则:设u(x)和v(x)是可导函数,对于任意实数a和b,有:d/dx (u(x)·v(x)) = u(x)·(d/dx)v(x) + v(x)·(d/dx)u(x),它表示两个函数乘积的导数等于第一个函数乘以第二个函数的导数再加上第二个函数乘以第一个函数的导数。
特别地,若其中一个函数是常数函数,则该法则简化为常数倍法则。
5.商法则:设u(x)和v(x)是可导函数,对于任意实数a和b(b≠0),有:d/dx (u(x)/v(x)) = (v(x)·(d/dx)u(x) -u(x)·(d/dx)v(x))/v^2(x),它表示两个函数商的导数等于分子函数乘以分母函数的导数再减去分母函数乘以分子函数的导数,最后除以分母函数的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h0
h
h0
h
lim 2 cos(x h)
h0
2
lim cos(x h)
h0
2
cos x
即
(sin x) cos x
类似可证得 (cos x) sin x
例4. 求函数
的导数.
解:
lim f (x h) f (x) lim ln(x h) ln x
解: y lim f (x x) f (x)
x0
x
例2. 求函数
解:
lim f (x) f (a) lim xn an
xa x a
xa x a
lim ( xn1 a xn2 a2 xn3 an1)
xa
说明:
对一般幂函数 y x ( 为常数) (x ) x1
f (x) f (x0 ) x x0
k
lim
x x0
f (x) f (x0 ) x x0
瞬时速度
f (t0 )
o y
t0
f (t)
t
s
y f (x)
切线斜率
CM
两个问题的共性:
o
x0 x x
所求量为函数增量与自变量增量之比的极限 .
类似问题还有:
加速度 是速度增量与时间增量之比的极限 变
第一节 导数的概念
第二章
一、引例 二、导数的定义 三、导数的几何意义 四、函数的可导性与连续性的关系 五、单侧导数
一、 引例
1. 变速直线运动的速度(瞬时速度) 设描述质点运动位置的函数为
则 到 的平均速度为
v f (t) f (t0 ) t t0
而在 时刻的瞬时速度为
v lim
t t0
若
( x 0)
( x 0 )
存在, 则称之为函数
在
f (x0 ) ( f(x0 ))
即 f (x0 )
f (t) f (t0 ) t t0
注
自由落体运动
s
1 2
gt
2
f (t0 )
o t0
f (t)
t
s
2. 切线斜率 曲线
y
在 M 点处的切线
割线 M N 的极限位置 M T
(当
时)
切线 MT 的斜率
o
y f (x)
N
CM
T
x0 x x
lim tan
割线 M N 的斜率 tan
存在, 则称函数
在点 处可导, 且极限为
在点 的导数. 记作:
y xx0 ;
f (x0 ) ;
dy dx
x
x0
;
d f (x) dx x x0
即
y
x x0Biblioteka f (x0 )
lim y x0 x
运动质点的位置函数 s f (t)
在 t0 时刻的瞬时速度
f (t0 )
o t0
f (t0 )
f (t) s t
曲线 C : y f (x) 在 M 点处的切线斜率
y y f (x)
N
CM
T
f (x0 )
o x0 x x
注
y f (x) f (x0) x x x0
若上述极限不存在 , 就说函数 在点 x0不可导.
若 lim y , 也称 x0 x
1 2
f (x0 )
f (x0 )
三、 导数的几何意义
y y f (x)
曲线
若 若 若
在点
tan f (x0 )
的切线斜率为
CM
T
曲线过
上升;
o x0
x
y
曲线过
下降;
切线与 x 轴平行, 称为驻点;
(x0 , y0 )
若
切线与 x 轴垂直 .
o
x0 x
y
曲线在点
处的
切线方程:
1
平行的切线方程分别为
1 1
即
1
四、 函数的可导性与连续性的关系
定理1.
证: 设
在点 x 处可导, 即
存在 , 因此必有
其中
故 所以函数
x 0
在点 x 连续 .
y
y x
注意: 函数在点 x 连续未必可导.
反例:
在 x = 0 处连续 , 但不可导. o
x
五、 单侧导数
定义2 . 设
在点 的某个右 (左)邻域内有定义,
在 的导数为无穷大 .
若函数在开区间 I 内每点都可导, 就称函数在 I 内可导.
此时导数值构成的新函数称为导函数.
记作: y ; f (x) ; dy ; d f (x) .
dx dx
注意:
f (x0)
f (x) xx0
d f (x0 ) dx
例1. 求函数
(C 为常数) 的导数.
角速度 是转角增量与时间增量之比的极限 化
电流强度 是电量增量与时间增量之比的极限
率 问
线密度 是质量增量与长度增量之比的极限 题
注
二、导数的定义
定义1 . 设函数
在点 的某邻域内有定义 ,若
lim f (x) f (x0 ) lim y
xx0 x x0
x0 x
y f (x) f (x0) x x x0
o
x0
x
法线方程:
( f (x0 ) 0)
例5. 问曲线
哪一点有垂直切线 ? 哪一点处
的切线与直线
平行 ? 写出其切线方程.
解:
1
x
2 3
3
y x0 ,
故在原点 (0 , 0) 有垂直切线
令
11 33 x2
1, 3
得
x 1 ,
对应 y 1 ,
则在点(1,1) , (–1,–1) 处与直线
h0
h
h0 h0
Ex 2. 设
存在, 求极限 lim f (x0 h) f (x0 h).
h0
2h
是否可按下述方法作:
解: 令原式t x0hlim0h,则
f (x0 )
f (x00)hf)(x0f (xh0))
2(2hh)
原式
1 2
f (x0 )
h0
h
h0
h
lim 1 h0 h
lim
或
x1 1
hx
lim 1 h h0 h x
h0
lim
h0
即
ln e (ln x) 1 x
Ex 1. 证明函数
在 x = 0 不可导.
证:
f (0 h) f (0) h
h h
1, 1,
lim f (0 h) f (0) 不存在 ,
(以后将证明)
例如,(
1
x ) (x 2 )
1 2
x
1 2
1 2x
1 x
(x1)
x11
1 x2
(
1
3
) (x 4 )
3
x
7 4
xx
4
例3. 求函数
的导数.
解:
则
lim f (x h) f (x) lim sin(x h) sin x