2014-2015学年度 最新 九年级数学五月调研试题含答案
2014—2015人教版数学九年级测试题
2014——2015学年度九年级数学期末测试卷班级 姓名 学号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等 于( ) A .1B .2C .1或2D .02.三角形的两边长分别为3和6,第三边的长是方程2680x x -+=的一个根,则这个三角 形的周长是( )A.9 B.11 C.13 D 、143.过⊙O 内一点M 的最长弦长为10cm,最短弦长为8cm,那么OM 的长为( ) A.3cm B.6cm C. 41cm D.9cm 4.图中∠BOD 的度数是( )A .55°B .110°C .125°D .150°5.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A=100°,∠C=30°,则 ∠DFE 的度数是( C )A.55°B.60°C.65°D.70°(第4题) (第5题)6.有六张背面相同的卡片, 其正面分别画有六个不同的几何图形, 如图, 现将这六张卡片背面朝上洗匀后随机摸取一张, 则摸出的卡片中的图形既是轴对称图形, 又是中心对称图形的概率为 ( )A. 21B. 31C. 32D. 657.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A .AB ACAD AE= B .AB BCAD DE= C.∠B=∠D D.∠C=∠AED8.如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D 为的中点,P是直径AB上一动点,则PC+PD的最小值为()A.22B.2C.1D.2(第8题) (第9题) (第10题)9.如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是⌒AB的中点,CD与AB的交点为E,则DECE等于()A.4 B.3.5 C.3 D.2.810..二次函数y=a x2+bx+c(a≠0)图象如图,下列结论:①a bc>0;②2a+b=0;③当m≠1时,a+b>a m2+bm;④a﹣b+c>0;⑤若a x12+bx1=a x22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤A.1 B.2 C.3 D.4二、填空题(本题共16分,每小题4分)11. 02)325(tan22360sin2+︒+--+︒-= .12.方程xx322=的解是.13.选做一题,两题都做,以第一题计分。
2014--2015年初三数学期末试题及答案
A B DEABCD2014-2015学年第一学期初三年级期末质量抽测数 学 试 卷 120分钟, 120分 2015.1一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的. 1.已知∠A 为锐角,且sin A =12,那么∠A 等于A .15°B .30°C .45°D .60°2.下列图形中,既是轴对称图形又是中心对称图形的是 A .等边三角形B .等腰直角三角形C .正方形D .正五边形3.如图,等边三角形ABC 内接于⊙O ,那么∠BOC 的度数是 A .150° B .120° C .90° D .60°4.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E . 若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比等于A .12 B .14 C .18D .19 5.如图,在△ABC 中,D 为AC 边上一点,若∠DBC =∠A ,BCAC =3,则CD 的长为A .1B .32C .2D .526.如图,点P 是第二象限内的一点,且在反比例函数ky x=的图象上,PA ⊥x 轴于点A , △PAO 的面积为3,则k 的值为A .3B .- 3C . 6D .-67.如图,AB 为⊙O 的弦,半径OD ⊥AB 于点C .若AB =8,CD =2,则⊙O 的半径长为A B .3 C .4 D .58.如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x , MP 2=y ,则表示y 与x的函数关系的图象大致为二、填空题(本题共16分,每小题4分) 9. 抛物线2(2)1y x =-+的顶点坐标是 .10.已知关于x 的一元二次方程220x x m --= 有两个不相等的实数根,则m 的取值范围是 .11. 如图,点P 是⊙O 的直径BA 的延长线上一点,PC 切⊙O 于 点C ,若30P ∠=,PB =6,则PC 等于 .12.如图,在平面直角坐标系中,已知点A (3,0),B (0,4),记Rt △OAB 为三角形①,按图中所示的方法旋转三角形,依次得到三角形②,③,④,……,则三角形⑤的直角顶点的坐标为 ;三角形⑩的直角顶点的坐标为 ;第2015个三角形的直角顶点的坐标为 .①A三、解答题(本题共30分,每小题5分)13. 计算2sin 453tan 45cos60︒-︒-︒+︒. 14. 解方程:01322=+-x x .15.已知△ABC 如图所示地摆放在边长为1的小正方形组成的网格内,将△ABC 绕点C 顺时针旋转90°,得到△11A B C . (1)在网格中画出△11A B C ;(2)直接写出点B 运动到点1B 所经过的路径的长.16. 如图,在平面直角坐标系xOy 中,一次函数y ax b =+的图象与反比例函数k y x=的图象交于A (-1,4),B (2,m )两点. (1)求一次函数和反比例函数的解析式; (2)直接写出不等式ax b +<kx的解集.17.如图,在△ABC 和△CDE 中,∠B =∠D =90°,C 为线段BD 上一点,且AC ⊥CE .AB =3,DE =2,BC =6.求CD 的长.18.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AC=3.(1)求∠B 的度数;(2)求AB 及BC 的长. 四、解答题(本题共20分,每小题5分) 19.已知抛物线22(21)y x m x m m =--+-. (1)求证:此抛物线与x 轴必有两个不同的交点;(2)若此抛物线与直线33y x m =-+的一个交点在y 轴上,求m 的值.EADBCBA20.如图,在修建某条地铁时,科技人员利用探测仪在地面A 、B 两个探测点探测到地下C 处有金属回声.已知A 、B 两点相距8米,探测线AC ,BC 与地面的夹角分别是30°和45°,试确定有金属回声的点C 的深度是多少米?21.已知: 如图,在Rt △ABC 中,∠ C =90°,BD 平分∠ABC ,交AC 于点D ,经过B 、D 两点的⊙O 交AB 于点E ,交BC 于点F , EB 为⊙O 的直径.(1)求证:AC 是⊙O 的切线; (2)当BC =2,cos ∠ABC 13时,求⊙O 的半径.22.已知,正方形ABCD 的边长为6,点E 为BC 的中点,点F 在AB 边上,且∠EDF =45°.(1)利用画图工具,在右图中画出满足条件的图形; (2)猜想tan ∠ADF 的值,并写出求解过程.AB CD五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知:如图,一次函数2+=x y 的图象与反比例函数ky x=的图象交于A 、B 两点,且点A 的坐标为(1,m ). (1)求反比例函数ky x=的表达式; (2)点C (n ,1)在反比例函数ky x=的图象上,求△AOC 的面积; (3)在x 轴上找出点P ,使△ABP 是以AB 为斜边的直角三角形,请直接写出所有符合条件的点P 的坐标.24.如图,已知△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE = 90°,AB =AC ,AD =AE .连接 BD 交AE 于M ,连接CE 交AB 于N ,BD 与CE 交点为F ,连接AF . (1)如图1,求证:BD ⊥CE ;(2)如图1,求证:FA 是∠CFD 的平分线; (3)如图2,当A C =2,∠BCE =15°时,求CF 的长.FEDCBA图1NM图2ABCDE F MN备用图25.如图,二次函数y=-x2+bx+c的图象与x轴交于点A(﹣1,0),B(2,0),与y轴相交于点C.(1)求二次函数的解析式;(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E的坐标,并求出四边形ABEC的最大面积;(3)若点M在抛物线上,且在y轴的右侧.⊙ M与y轴相切,切点为D.以C,D,M为顶点的三角形与△AOC相似,求点M的坐标.备用图2014-2015学年第一学期初三年级期末质量抽测(样题)数学试卷参考答案及评分标准 2015.1一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分)13.解:原式211322332+⨯-⎪⎪⎭⎫ ⎝⎛-⨯= …………………………4分 213213+--= 0=. ……………………………………5分14.解法一:∵ 2a =,3b =-,1c =,∴ .1124)3(2=⨯⨯--=∆ ……………………………………2分 ∴ 413±=x . ……………………………………3分 ∴ 原方程的根为:1211.2x x ==, ……………………………………5分 解法二: 21232-=-x x . 16921169232+-=+-x x . ………………………………………1分161432=⎪⎭⎫ ⎝⎛-x . ………………………………………2分4143±=-x . ………………………………………3分 ∴ 11x =,212x =. ………………………………………5分 解法三:()()0112=--x x ………………………………………2分 210x -=,或10x -=. ………………………………………3分 ∴ 11x =,212x =. ………………………………………5分15.解:(1)如图所示,△A 1B 1C 即为所求作的图形. ……………3分 (2)1BBπ. ……………………………5分16.解:(1)∵ 反比例函数ky x=经过A (-1,4),B (2,m )两点, ∴ 可求得k =-4,m =-2.∴ 反比例函数的解析式为 4y x=-.B (2,-2). ……………………………………2分 ∵ 一次函数y ax b =+也经过A 、B 两点,∴ 422.a b a b =-+⎧⎨-=+⎩,解得 22.a b =-⎧⎨=⎩,∴ 一次函数的解析式为 22y x =-+. ……………………………………3分 (2)如图,-1<x <0,或x >2. ……………………………………5分17.解:∵ 在△ABC 中,∠B =90º, ∴ ∠A +∠ACB = 90º.E ADB∵ AC ⊥CE , ∴ ∠ACB +∠ECD =90º.∴ ∠A =∠ECD . ……………………………………2分 ∵ 在△ABC 和△CDE 中,∠A =∠ECD ,∠B =∠D =90º,∴ △ABC ∽△CDE . ……………………………………3分∴ DEBC CDAB =. ……………………………………4分∵ AB = 3,DE =2,BC =6,∴ CD =1. ……………………………………5分 18.解:(1)∵ 在△ACD 中,90C ∠=︒,CD =3,AC =3, ∴tan 3CD DAC AC∠==∴ ∠DAC =30º. ……………………………………1分 ∵ AD 平分∠BAC ,∴ ∠BAC =2∠DAC =60º. ……………………………2分 ∴ ∠B =30º. …………………………………………3分(2) ∵ 在Rt △ABC 中,∠C =90°,∠B =30º,AC =3,∴ AB =2AC =6. ……………………………………4分DCBAtan3ACBCB=== (5)分四、解答题(本题共20分,每小题5分)19(1)证明:∵△=[]22(21)4()m m m----…………………………………… 1分=2244144m m m m-+-+=1>0,∴此抛物线与x轴必有两个不同的交点.…………………………… 2分(2)解:∵此抛物线与直线33y x m=-+的一个交点在y轴上,∴233m m m-=-+. (3)分∴2230m m+-=.∴13m=-,21m=. (5)分∴m的值为3-或1.20.解:如图,作CD⊥AB于点D.∴∠ADC=90°.∵探测线与地面的夹角分别是30°和45°,∴∠DBC=45°,∠DAC=30°.∵在Rt△DBC中,∠DCB=45°,∴DB=DC. ............................ 2分∵在Rt△DAC中,∠DAC=30°,∴ AC=2CD . ........................... 3分 ∵ 在Rt △DAC 中,∠ADC =90°,AB =8, ∴ 由勾股定理,得 222AD CD AC +=.∴ 222(8)(2)CD CD CD ++=. ……………………………………… 4分 ∴4CD =±∵4CD =- ∴4CD =+∴ 有金属回声的点C 的深度是(4+)米. ……………………………… 5分 21(1)证明:如图,连结OD .∴ OD OB =. ∴ 12∠=∠. ∵ BD 平分ABC ∠, ∴ 13∠=∠.∴ 23∠=∠. …………………………..1分 ∴ OD BC ∥. ∴ 90ADO C ∠=∠=°. ∴ OD AC ⊥. ∵ OD 是⊙O 的半径,∴ AC 是⊙O 的切线. (2)分(2)解:在Rt △ACB 中,90C ∠=,BC =2 , cos ∠ABC 13=, ∴ 6cos BCAB ABC==∠. …………………………………………………… 3分设O ⊙的半径为r ,则6AO r =-. ∵ OD BC ∥, ∴ AOD ABC △∽△. ∴OD AOBC AB =. ∴626r r -=. 解得 32r =. ∴ O ⊙的半径为32. ………………………………………………………… 5分22. 解:(1)如图1. ………………………… 1分(2)猜想tan ∠ADF 的值为13.……………………2分 求解过程如下: 如图2.在BA 的延长线上截取AG=CE ,连接DG . ∵ 四边形ABCD 是正方形,∴ AD=CD=BC=AB=6,∠DAF=∠ABC=∠ADC=∠BCD = 90°. ∴ ∠GAD = 90°.∴ △AGD ≌ △CED . ………………………………3分FEDCBA 图1∴ ∠GDA=∠EDC ,GD=ED ,AG=CE . ∵ ∠FDE =45°,∴ ∠ADF +∠EDC=45°. ∴ ∠ADF +∠GDA =45°. ∴ ∠GDF=∠EDF . ∵ DF = DF ,∴ ∠GDF ≌∠EDF . ……………………………… 4分 ∴ GF =EF . 设AF =x , 则FB=6-x ,∵ 点E 为BC 的中点, ∴ BE=EC=3.∴ AG=3. ∴ FG=EF=3+x .在Rt △BEF 中,∠B =90°, 由勾股定理,得 222BF BE EF +=, ∴ 2223(6)(3)x x +-=+ . ∴ x=2.∴ AF=2. ……………………………………………………………… 5分∴ 在Rt △ADF 中,tan ∠ADF =AF AD =13. 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)GABCDEF图223.解:(1)∵点A (1,m )在一次函数2+=x y 的图象上,∴ m=3.∴ 点A 的坐标为(1,3). (1)分∵点A (1,3)在反比例函数ky x=的图象上, ∴ k =3. ∴反比例函数ky x=的表达式为3y x =.…………………………………………2分 (2)∵点C (n ,1)在反比例函数3y x=的图象上, ∴ n=3. ∴ C (3,1). ∵ A (1,3),∴ S △AOC =4. …………………………………………………………5分(3)所有符合条件的点P 的坐标:P 1(1,0),P 21,0). ……………………………………………7分 24.(1)证明:如图1.∵ ∠BAC =∠DAE =90°,∠BAE =∠BAE ,∴ ∠CAE =∠BAD .NMF ED CBA在△CAE 和△BAD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,,, ∴ △CAE ≌△BAD . (1)分∴ ∠ACF=∠ABD . ∵ ∠ANC=∠BNF , ∴ ∠BFN =∠NAC =90°.∴ BD ⊥CE . ……………………………………2分(2)证明:如图1’.作AG ⊥CE 于G ,AK ⊥BD 于K . 由(1)知 △CAE ≌△BAD ,∴ CE = BD ,S △CAE =S △BAD . ………………… 3分 ∴ AG = AK .∴ 点A 在∠CFD 的平分线上. ………… 4分即 FA 是∠CFD 的平分线.(3)如图2.∵ ∠BAC = 90°,AB =AC ,∴ ∠ACB =∠ABC =45°.∵ ∠BCE =15°,MN图1'ABCDEFKG图2ABCDE F MN∴ ∠ACN =∠ACB-∠BCE= 30°=∠FBN . 在Rt △ACN 中∵ ∠NAC = 90°,AC =2,∠ACN = 30°,∴ ,33CN AN ==. …………………………………… 5分∵ AB=AC =2,∴ BN= 2-3. …………………………………… 6分在Rt △ACN 中∵ ∠BFN = 90°,∠FBN = 30°,∴ 1323NF BN -==.∴1CF CN NF =+=+ …………………………………… 7分25.解:(1)∵ 二次函数y=-x 2+bx +c 的图象与x 轴相交于点A (﹣1,0),B (2,0),∴ 01,042.b c b c =--+⎧⎨=-++⎩解得 1,2.b c =⎧⎨=⎩∴ 二次函数的解析式为y = -x 2+x+2. ………………………………………2分(2)如图1.∵二次函数的解析式为y =-x 2+x +2与y 轴相交于点C , ∴ C (0,2).设 E (a ,b ),且a >0,b >0. ∵ A (-1,0),B (2,0), ∴ OA =1,OB =2,OC =2. 则S 四边形ABEC = 11112(2)(2)222b a a b ⨯⨯++⋅+-⋅= 1a b ++ ∵ 点 E (a ,b )是第一象限的抛物线上的一个动点, ∴ b = -a 2 +a +2, ∴ S 四边形ABEC = - a 2+2a +3 = -(a -1)2+4∴ 当四边形ABEC 的面积最大时,点E 的坐标为(1,2),且四边形ABEC的最大面积为4.………………………………………………5分(3)如图2.设M (m ,n ),且m >0. ∵ 点M 在二次函数的图象上, ∴ n =-m 2 +m +2.∵ ⊙M 与y 轴相切,切点为D , ∴ ∠MDC =90°.∵ 以C ,D ,M 为顶点的三角形与△AOC 相似,∴12CD OA DM OC ==,或2CD OCDM OA==. …………………………………6分 ①当n >2时,22-122m m m mm m+-+==,或 . 解得 m 1=0(舍去),m 2=12, 或m 3=0(舍去),m 4=-1(舍去). ②同理可得,当n <2时,m 1=0(舍去) ,m 2=32,或m 3=0(舍去),m 4=3. 综上,满足条件的点M 的坐标为(12,94),(32, 54),(3,-4). ……………8分。
2014~2015年九年级第一次月考数学试卷及参考答案
九年级第一次月考数学试卷考生注意:本试卷共八大题,计23小题,满分150分,考试时间120分钟。
一、选择题(本大题共10小题,每小题4分,满分40分)1.二次函数y=x 2的图象向下平移2个单位,得到新图象的二次函数表达式………( ) A .y =x 2-2 B .y =(x -2)2C .y =x 2+2 D .y =(x +2)22.若二次函数y=2x 2-2mx+2m 2-2的图象的顶点在y 轴上,则m 的值是………………( ) A.0 B.±1 C.±2 D.±23.已知(-1,y 1)(-2,y 2)(-4,y 3)是抛物线y=-2x 2-8x+m 上的点,则………………( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 2>y 1>y 3D. y 2>y 3>y 1 4.已知反比例函数y =xm2-1的图像上有两点A(x 1,y 1)、B(x 2,y 2),当x 1<0<x 2时, 有y 1<y 2。
则m 的取值范围是 ………………………………………………………( ) A 、m <0 B.、m >0 C 、m >21 D 、m <21 5.等边三角形的一条中线与一条中位线的比值是………………………………… ( ) A 、1:3 B 、2:3 C 、3:1 D 、1:36.下列各组线段:①a=1,b=2,c=3,d=4;②a=1,b=2,c=2,d=4;③a=2,b=5,c=8,d=20;④a=3, b=2,c=3,d=2;其中各组线段的长度成比例的有………………………………………………………………………………………( ) A .1组 B. 2组 C. 3组 D. 4组7. 下列关于二次函数的说法错误..的是………………………………………………( ) A.抛物线1322++-=x x y 的对称轴是直线x =34; B.点A(3,0)不在抛物线322--=x x y 的图象上; C.二次函数y=(x +2)2-2的顶点坐标是(-2,-2);D.函数y=2x 2+4x-3的图象的最低点在(-1,-5)8.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是 ………………………………………………………………( ) 9.抛物线2y a x b x c =++ 上部分点的横坐标x ,纵坐标y 的对应值如表所示.给出下列说法:①抛物线与y 轴的交点为(0,6); ②抛物线的对称轴是在y 轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y 随x 增大而减小。
2014~2015第一学年度初三数学上期末测试卷 含答案
BC2014-2015学年度第一学期期末初三数学试卷 2015.1一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 已知34m n=,那么下列式子中一定成立的是 A .43m n = B .34m n = C .4m n = D . 12mn =2. 如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是X k B 1 . c o m A .2cmB .4cmC .6cmD .8cm3. 如图,⊙O 是ABC ∆的外接圆,50A ∠=︒ ,则BOC ∠的度数为A .40︒B .50︒C .80︒D .100︒4. 将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是A .22(1)3y x =++B .22(1)3y x =-+C .22(1)3y x =+- D .22(1)3y x =--5.如图,在Rt ABC ∆ ,90C ∠=︒ ,8AC =,6BC =,则sin B 的值等于A .34B . 34C .45D . 356. 如图,AB 是O 的直径,C D 、是圆上两点,70CBA ∠=︒,则D ∠的度数为A .10︒B .20︒C .70︒D .90︒7. 在平面直角坐标系xOy 中,以(3,4)M 为圆心,半径为5的圆与x 轴的位置关系是A .相离B .相交C .相切D .无法确定 8. 如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒. 点O 是BC 中点,点D 沿B →A →C 方向从B 运动 到C .设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为A ABDCBADCBA二、填空题(本题共16分,每小题4分)9. 若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 . 10. 若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是______. 11. 若扇形的圆心角为120°,半径为3cm ,那么扇形的面积是____2cm . 12. 如图,边长为1的正方形ABCD 放置在平面直角坐标系中,顶点A 与坐标原点O 重合,点B 在x 轴上.将正方形ABCD 沿x 轴正方向作无滑动滚动,当点D 第一次落在x 轴上时,D 点的坐标是________,D 点经过的路径的总长度是________;当点D 第2014次落在x 轴上时,D 点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分) 13. 计算:sin 60cos3045tan 45︒︒+︒-︒14. 如图,在ABC ∆中,点D 在边AB 上,ACD ABC ∠=∠,1,3AD AB ==.求AC 的长.15. 已知二次函数243y x x =-+ .(1)求二次函数与x 轴的交点坐标; (2)求二次函数的对称轴和顶点坐标;(3)写出y 随x 增大而减小时自变量x 的取值范围.16. 如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒,EOD CBA17. 如图,AB 是⊙O 的弦,CD 是⊙O 的直径,CD AB ⊥,垂足为E .1,3CE ED == ,求AB 长.18. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60︒ (A 、B 、D 三点在同一直线上)。
2014-2015学年九年级上期中数学试卷及答案
九年级数学期中学业水平检测试卷(满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效。
一、选择题(本大题共8小题,每小题3分,共24分。
每题所给的四个选项,只有一个符合题意,请将正确答案的序号填入答题纸的相应表格中) 1.下列方程为一元二次方程的是A .20-+=ax bx c (a 、b 、c 为常数) B .()231x x x +=-C .(2)3x x -=D .10x x+= 2.用配方法解方程2250x x --=时,原方程应变形为 A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -=3.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是A .k >14-B .k >14-且0k ≠ C .k <14- D .k ≥14-且0k ≠4.一位卖“运动鞋”的经销商抽样调查了9位七年级学生的鞋号,号码分别为(单位:cm ):24,22,21,24,23,25,24,23,24,经销商最感兴趣的是这组数据的 A .中位数B .众数C .平均数D .方差5.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周体育锻炼时间的众数、中位数分别是A .16、10.5B .8、9C .16、8.5D .8、8.56.如图,⊙O 的半径为5,弦AB =8, M 是线段AB 上一个动点,则OM 的取值范围是 A .3≤OM ≤5 B .3≤OM <5 C .4≤OM ≤5 D .4≤OM <5 7. 如图,△ABC 内接于⊙O ,OD ⊥BC 于D ,∠A =50°,则∠COD 的度数是A .40°B .45°C .50°D .60°(小时)(第5题图)(第5题)(第6题)(第7题)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题纸相应位置上)9.若关于x 的方程()2320k x x -+=是一元二次方程,则k 的取值范围是 ▲ . 11.若n (n ≠0)是关于x 的方程x 2+mx +2n =0的根,则m +n 的值为 ▲ .12.在一个不透明的口袋中,装有若干个颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为51,那么口袋中球的总个数为 ▲ . 13.小明等五位同学的年龄分别为:14、14、15、13、14,计算出这组数据的方差是0.4,则20年后小明等五位同学年龄的方差为 ▲ .14.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数为 ▲ . 15.如图,当半径为30cm 的传送带转动轮转过120︒角时,传送带上的物体A 平移的距离为 ▲ cm (结果保留π).16.如图,△ABC 内接于⊙O ,CB =a ,CA =b ,∠A -∠B =90°,则⊙O 的半径为 ▲ . 17.若圆锥的轴截面是一个边长为2的等边三角形,则这个圆锥的侧面积是 ▲. 18.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD =70°, AO ∥DC,则∠B的度数为 ▲ .(第14题) (第15题)(第16题)(第8题)(第18题)三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明或演算步骤) 19.(本题满分8分) 解方程:(1)(2)20x x x -+-= (2)263910x x +-=20.(本题满分8分)如图,学校打算用16 m 的篱笆围成一个长方形的生物园饲养小兔,生物园的一面靠墙(如下图),面积是30 m 2.求生物园的长和宽.21.(本题满分8分)一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、-2、3、-4,搅匀后先从中摸出一个球(不放回),再从余下的3个球中摸出1个球.(1)用树状图列出所有可能出现的结果;(2)求2次摸出的乒乓球球面上数字的积为偶数的概率.22.(本题满分8分)操作题: 如图,⊙O 是△ABC 的外接圆,AB =AC ,P 是⊙O 上一点.(1)请你只用无刻度的直尺........,分别画出图①和图②中∠P 的平分线; (2)结合图②,说明你这样画的理由.生物园23.(本题满分10分)如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB、CD的上方,求AB和CD间的距离.24.(本题满分10分)如图,已知P A、PB切⊙O于A、B两点,PO=4cm,∠APB=60°,求阴影部分的周长.25.(本题满分10分)某农户在山上种脐橙果树44株,现进入第三年收获。
2014-2015学年九年级数学第一次月考试题
2014~2015学年度第一学期九年级数学第一次月考试题(总分150分,时间120分钟)A (卷)100分1、下列方程是一元二次方程的是( )A 、x 2+3x-2y =5B 、1x 2 -2x =1 C 、(x-1) 2 +1= x 2 D 、 5 x 2-8= 3 x 2、在用配方法解方程x 2-6x+1=0中,下列变形正确的是( ) A 、(x-3) 2=8 B 、(x+3) 2=8 C 、(x-3) 2=10 D 、(x+3) 2=10 3、方程x 2―3x ―5=0的根的情况是( )A .有两个不相等的实数根B . 有两个相等的实数根C .没有实数根D .无法确定4、关于x 的方程032)1(2=-++mx x m 是一元二次方程,则m 的取值是( ) A 、任意实数 B 、m ≠1 C 、m ≠-1 D 、m >-15、某商品经过两次降价,由单价100元调至81元,则平均每次降价的百分率是(A )8.5﹪ (B) 9﹪ (C) 9.5 ﹪ (D)10﹪ 6、某厂一月份的总产量为500吨,三月份的总产量达到为720吨。
若平均 每月增率是x ,则可以列方程( );(A )720)21(500=+x (B )720)1(5002=+x (C )720)1(5002=+x (D )500)1(7202=+x7、三角形三边长分别是3和6,第三边长是方程0862=+-x x 的解,则这个三角形的周长是( )(A )11 (B )13 (C )11或13 (D )11和13 8、方程02=-x x 的根是( )(A )x =0 (B )x =1 (C )1,021==x x (D )1x =112-=x9、方程22(2)5m m x --=是一元二次方程,则m 的值是( )A .2±B .-2C .2D .410、若关于x 的方程0132=--x k x 有实数根,则k 的取值范围为( )A 、k ≥0B 、k >0C 、k ≥94-D 、k >94-二、填空题:(每小题3分,共30分) 11、已知方程x2+kx-6=0的一个根是2,则它的另一个根是 , 12、若070)(3)(22222=-+-+y x y x ,则=+22y x __________. 13、方程x x =2的解是 .14、已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是 15、已知x x +2的值是6,则=++3222x x .16、已知相邻的两个整数的积为12,那么这两个整数为 。
2014-2015年第一学期九年级数学试题答案
2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。
2014—2015学年度九年级上期质量检测数学试题(试题卷)
2014—2015学年度九年级上期质量检测数学试题(试题卷) 姓名 成绩(全卷共25题,满分150分,考试时间120分钟)一、选择题:(本大题共10个小题,每小题4分,共40分) 1.从1到9这九个自然数中任取一个,是偶数的概率是( )A .B .C .D .2.线段d c b a 、、、是成比例线段,224===c b a 、、,则d 的长为( ) A .1 B .2 C .3 D. 4 3.一元二次方程092=-x 的根是( )A .3B .3±C .9D .9± 4.下列函数中,图象经过点)2 1(-,的是( ) A .x y 1=B .x y 1-=C .xy 2= D. x y 2-=5.(2013•包头)3tan30°的值等于( )A .B . 3C .D .6.用配方法解方程122=-x x 时,配方后所得的方程为( )A .0)1(2=+xB .0)1(2=-xC .2)1(2=+xD .2)1(2=-x 7.已知点) 2(1y A ,-,) 1(2y B ,-和) 3(3y C ,都在反比例函数xy 3=的图象上,则321y y y 、、的大小关系是( ) A .321y y y << B .123y y y << C .312y y y << D .231y y y <<8. 如图,小强自制了一个小孔成像装置,其中纸筒的长度为cm 15,他准备了一支长为cm 20的蜡烛,想要得到高度为cm 4的像,蜡烛与纸筒的距离应该为( )A .cm 60B . cm 65C .cm 70D . cm 759. 如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB OE ⊥,垂足为E ,若︒=∠130ADC ,则A OE ∠的大小是( )A .︒75B .︒65C .︒55D .︒5010如图,正方形ABCD 位于第一象限,22=AC ,顶点C A 、在直线x y =上,且A 的横坐标为1,若双曲线)0(≠=k xky 与正方形ABCD 有交点,则k 的取值范围是( ) A .10≤<k 或6≥k B .61≤≤k C .91≤≤k D .10≤<k 或9≥k二、填空题:(本大题共6个小题,每小题4分,共24分)11.如图,已知在Rt△ACB 中,∠C=90°,AB=13,AC=12,则cosB 的值为 . 12.如图,点B 在反比例函数xy 2=()0>x 的图象上,过点B 向x 轴作垂线,垂足为A ,连接OB ,则OAB ∆的面积为__________;13.如图,在矩形ABCD 中,点F E 、分别是CD AB 、的中点,连接DE 和BF ,分别取BF DE 、的中点N M 、,连接MN CN AM 、、.若3=AB ,52=BC ,则图中阴影部分的面积为___________;14.如图,将DEF △缩小为原来的一半,操作方法如下:任意取一点P ,连接DP ,取DP 的中点A ,再连接EP FP 、,取它们的中点B C 、,得到ABC △,则下列说法正确的有___________ ①ABC △与DEF △是位似图形; ②ABC △与DEF △是相似图形;③ABC △与DEF △的周长比是1:2; ④ABC △与DEF △的面积比是1:2.15.从3211 3---、、、、这五个数中,取一个数作为函数xk y 2-=和关于x 的方程 012)1(2=+++kx x k 中k 的值,恰好使所得函数的图象经过第二、四象限,且方程有实根,满足要求的k 的值共有__________个; 16. 如图,正方形OABC 的顶点O 是坐标原点,顶点A 在x 轴的正半轴上,3=OA ,点D 是BC 边的中点,连接OD ,点E 在OC 上且1:2:=OE CE ,过点E 作EF ∥OA 交OD 于点G ,交AB 于点F ,连接DF ,过点G 作DF GH ⊥,垂足为H ,若BC 边上有一点P 与点H 在同一反比例函数的图象上,则点P 的坐标为_____________;三、解答题:(共86分)解答时每小题必须给出必要的演算过程或推理步骤.17.(7分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张。
2014—2015学年第一学期初三年级数学期末考试试卷含答案
2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。
新课标2015年度九年级数学测试(含答案)
10题图13题图12.已知三角形两边长分别是周长为。
13.如图,点A在双曲线yx°,它的斜边MN与边CD交于G,且点G是斜边MN的中点,连接的图象相交于该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的EM=CF的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接图图参考答案1.C . 【解析】试题分析:∵关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有不相等实数根,∴△=22﹣4(k ﹣1)×(﹣2)>0,解得k k ﹣1≠0,k ≠1. 故选C .考点:1.根的判别式2.一元二次方程的定义. 2.D. 【解析】试题分析:(2)2x x x -=-(2)+2=0x x x --() (1)(2)0x x +-=∴10x +=,20x -= 解得:11x =-,22x =故选D.考点: 解一元二次方程----因式分解法. 3.D . 【解析】试题分析:设C (x,y ).根据矩形的性质、点A 的坐标分别求出B (﹣2,y )、D (x,﹣2);根据“矩形ABCD 的对角线BD 经过坐标原点”及直线AB 的几何意义知即:求得xy=4①,又点C ,所以将点C 的坐标代入其中求得xy=k 2+2k+1②;联立①②解关于k 的一元二次方程,求得k=1或-3. 故选D .考点:矩形的性质. 4.A 。
【解析】∵a ,b 分别满足22a 6a 40b 6b 40-+=-+=,,且a ≠b ,∴a 与b 为方程x 2﹣6x+4=0的两根。
∴根据一元二次方程根与系数的关系,得a+b=6,ab=4。
A 。
5.C . 【解析】试题分析:如图,过点A 作AB ⊥x 轴于B ,过点A 1作A 1B 1⊥x 轴于B 1, ∵线段OA 绕点O 按逆时针方向旋转90°得OA 1,∴OA=OA 1,∠AOA 1=90°,∵∠1+∠2=180°﹣90°=90°,∠2+∠A=90°,∴∠1=∠A,在△AOB和△OA1B1中,∵∠1=∠A,∠ABO=∠A1B1O=90°,OA=OA1,∴∴△AOB≌△OA1B1(AAS),∴OB1=AB=b,A1B1=OB=a,∴点A1的坐标为(﹣b,a).故选C.考点:坐标与图形变化-旋转.6.D.【解析】试题分析:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,解得:x=12,故白球的个数为12个.故选D.考点:利用频率估计概率.7.A【解析】试题分析:设P(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=∴当y=b,x=即A b),又∵点B在反比例函数∴当y=b,即B b),∴∴S△ABC。
2014—2015学年度九年级第一次月考数学试题
2014—2015学年度九年级第一次月考数学试题(120分钟 120分)一、选择题(本题有12小题,每小题3分,共36分)1.下面关于x 的方程中①ax 2+bx+c=0;②3(x-9)2-(x+1)2=1;③x+3=1x;④(a 2+a+1)x 2-a=0;④1x +=x-1.一元二次方程的个数是( )A .1B .2C .3D .42.若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( ). A .x =ba-B .x =1C .x =2D .x =33.将方程0362=+-x x 左边配成完全平方式,得到的方程是( ) A.6)3(2=-x B.3)3(2-=-x C.3)3(2=-x D.12)3(2=-x4.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k >-且 0k ≠C .1k <D .1k <且0k ≠5、把二次函数253212++=x x y 的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是( ) A .(-5,1) B .(1,-5) C .(-1,1)D .(-1,3)6、已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <1 B .x >1 C .x >-2 D .-2<x <47、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A 、%10B 、%15C 、%20D 、%258.把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则 ( ).A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =219. 如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分 种上草坪.要使草坪的面积为2540m ,求道路的宽. 如果设小路宽为x ,根据题意,所列方程正确的是( )A .(20-x )(32-x )= 540B .(20-x )(32-x )=100C .(20+x )(32-x )=540D .(20+x )(32-x )= 54032m20m10、不解方程,01322=-+x x 的两个根的符号为( ) (A )同号 (B )异号 (C )两根都为正 (D )不能确定11.当代数式x 2+2x +5的值为8时,代数式2x 2+4x -2的值是 ( ) A .4 B .0 C .-2 D .-4 12.如图,二次函数的图像与轴正半轴相交,其顶点坐标为(121,),下列结论:①;②;③;④.其中正确结论的个数是 ( )A. 1B. 2C. 3D. 4 二、填空题(本题有5小题,每小题3分,共15分)13. 等腰三角形的两边长分别是方程23740x x -+=的两个根,则此三角形的周长为 . 14.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为 . 15对称轴是x=-1的抛物线过点A (-2,1),B (1,4),该抛物线的解析式为 16、二次函数y =x 2-6x +c 的图象的顶点与原点的距离为5,则c =______.17. 如图,边长为1的正方形ABCO,以A 为顶点,且经过点C 的抛物线与对角线交于点D,则点D 的坐标为 .三、解答题 (共69分。
2014-2015学年度九年级数学(上)期末质量检测试题
2014-2015学年度(上)期末数学九年级质量检测试题(满分:120分; 时间 90分钟)一、选择题(每小题3分,共30分)1、已知135=a b ,则b a ba +-的值是( )A 、32B 、23C 、49D 、942、关于x 的一元二次方程22(1)10a x x a --+-=的一个根是0,则a 的值为( ) A 、1或-1. B 、-1 C 、1 D 、123、已知x -1x =3,则4-12x 2+32x 的值为( ) A 、1 B 、32 C 、52 D 、724、如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点A ′在直线y=34x 上,则点B 与其对应点B ′间的距离为( ) A 、94B 、3C 、4D 、55、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是( ) A 、S 1>S 2>S 3 B 、 S 3>S 2>S 1C 、S 2>S 3>S 1D 、S 1>S 3>S 26、如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴 上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以 A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形 是等腰三角形的概率是( )A 、34B 、13C 、23D 、127、在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为(A 、16mB 、18mC 、20mD 、22m8、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2则S 1+S2的值为( )A 、16 B 、17 C 、18 D 、199、如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 与点D 、F,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF,则四边形BCDE 的面积是( )A 、32B 、33C 、4D 、34第4题图第5题图10、已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0根的存在情况是()A、没有实数根B、有两个相等的实数根C、有两个不相等的实数根D、无法确定二、填空题(每小题3分,共24分)11、如图,点D,E分别在AB,AC上且∠ABC=∠AED,若DE=4cm,AE=5cm, BC=8cm,则AB的长为 .12、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1+x2-x1·x2=1-a,则a= .13、如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.14、一水塘里有鲤鱼、鲫鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼 _____尾.15、在平面直角坐标系中,已知A(6,3),B(6,0)两点,以坐标原点为位似中心,位似比为3∶1,把线段AB缩小后得到线段A′B′,则A′B′的长度为 .16、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.17、在锐角三角形ABC中,已知∠A,∠B满足2sin2A⎛-⎝⎭+tan B|=0,则∠C=______.18、已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD= .三、解答题(本题共八小题,共66分)19、(本题6分)作出如下图所示的三种视图.G第16题图E第18题图第19题第13题图20、(本题6分)已知()()0622222=-+-+b ab a ,求:22b a +的值。
2014~2015学年度第一学期期末检测九年级数学试卷(选用)附答案
2014~2015学年度第一学期期末检测九年级数学试卷(选用)(考试时间120分钟 满分120分)成绩一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.一元二次方程x 2-2x =0的解为A .x = 2B .x 1 = 0,x 2 = 2C .x 1 = 0,x 2 = -2D .x 1 = 1,x 2 = 2 2. 抛物线2(1)2y x =-+的顶点坐标是 A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)3.下列图形是中心对称图形的是A B C D4. 如图,A ,B ,C 是⊙O 上的三个点,若∠C =35°,则∠AOB 的度数为 A .35° B . 55° C .65° D . 70°5. 如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点 均在格点上,则tan ∠ABC 的值为A .3B .34C 5D .16.下列事件是随机事件的是 A .明天太阳从东方升起B .任意画一个三角形,其内角和是360°C .通常温度降到0℃以下,纯净的水结冰D .射击运动员射击一次,命中靶心7.一个矩形的长比宽相多3cm ,面积是25cm 2,求这个矩形的长和宽.设矩形的宽为x cm , 则所列方程正确的是A .x 2-3x +25=0B .x 2-3x -25=0C .x 2+3x -25=0D .x 2+3x -50=0B8.如图,点C 是以点O 为圆心,AB 为直径的半圆上的动点(点C 不与 点A ,B 重合),AB =4.设弦AC 的长为x ,△ABC 的面积为y ,则 下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(本题共16分,每小题4分)9.如图,A 是反比例函数(0)ky x x=>图象上的一点,AB 垂直于x 轴,垂足为B ,AC 垂直于 y 轴,垂足为C ,若矩形ABOC 的面积为5,则k 的值为 .10.一枚质地均匀的骰子,六个面分别刻有1到6的点数,掷这个骰子一次,则向上一面的 点数大3的概率是 .11. 如图,在平面直角坐标系xOy 中,点O 是边长为2的正方形ABCD 的中心.写出一个 函数2y x c =+,使它的图象与正方形ABCD 有公共点,这个函数的表达式为 .三、解答题(本题共30分,每小题5分) 13.计算:cos30sin602sin 45tan 45︒︒+︒∙︒- .A(第9题图)(第11题图)(第12题图)14. 用配方法解方程: x 2-4x -1=0.15. 如图,△ABC 中,点D 在AB 上,∠ACD =∠ABC ,若AD =2,AB =6,求AC 的长.16. 如图,在平面直角坐标系xOy 中,以点A (2,3)为圆心的⊙A 交 x 轴于点B ,C ,BC =8, 求⊙A 的半径.17. 如图,正方形ABCD 的边长为2,E 是BC 的中点,以点A 为中心,把△ABE 逆时针旋转90°, 设点E 的对应点为F .(1)画出旋转后的三角形. (2)在(1)的条件下,①求EF 的长;②求点E 经过的路径弧EF 的长.18.如图,甲船在港口P 的南偏东60°方向,距港口30海里的A 处,沿AP 方向以每小时5海里的速度驶向港口P ;乙船从港口P 出发,沿南偏西45°方向驶离港口P .现两船 同时出发,2小时后甲船到达B 处,乙船到达C 处,此时乙船恰好在甲船的正西方向,A求乙船的航行距离 1.41≈ 1.73,结果保留整数).四、解答题(本题共20分,每小题5分)19.已知关于x 的一元二次方程mx 2-(m +1)x +1=0. (1)求证:此方程总有两个实数根;(2)若m 为整数,当此方程的两个实数根都是整数时,求m 的值.20. 如图,直线2y x =-+与反比例函数k y =x的图象相交于点A (a ,3),且与x 轴相交于点B .(1)求该反比例函数的表达式;(2)若P 为y 轴上的点,且△AOP 的面积是△AOB 的面积的23, 请直接写出点P 的坐标.21. 随着“节能减排、绿色出行”的健康生活意识的普及,新能源汽车越来越多地走进百姓的生活. 某汽车租赁公司拥有40辆电动汽车,据统计,当每辆车的日租金为120元时, 可全部租出;当每辆车的日租金每增加5元时,未租出的车将增加1辆;该公司平均每日 的各项支出共2100元.(1) 若某日共有x 辆车未租出,则当日每辆车的日租金为 元;(2) 当每辆车的日租金为多少时,该汽车租赁公司日收益最大?最大日收益是多少?22.如图,在△ABC 中,BA =BC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,BC 的延长线 与⊙O 的切线AF 交于点F . (1)求证:∠ABC =2∠CAF ;(2)若AC=CE :EB =1:4,求CE ,AF 的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知二次函数y =kx 2-(k +3)x +3在x =0和x =4时的函数值相等. (1)求该二次函数的表达式;(2)画出该函数的图象,并结合图象直接写出当y <0时,自变量x 的取值范围;(3)已知关于x 的一元二次方程2220k x m m +-=,当-1≤m ≤3 时,判断此方程根的情况.24. △ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE = α (0°<α ≤90°) ,点F ,G ,P 分别是DE ,BC ,CD 的中点,连接PF ,PG .A(1)如图①,α=90°,点D 在AB 上,则∠FPG = °;(2)如图②,α=60°,点D 不在AB 上,判断∠FPG 的度数,并证明你的结论;(3)连接FG ,若AB =5, AD =2,固定△ABC ,将△ADE 绕点A 旋转,当PF 的长最大时,FG 的长为 (用含α的式子表示).25. 在平面直角坐标系xOy 中,直线y =2x +2与x 轴,y 轴分别交于点A ,B ,抛物线y =ax 2+bx -32经过点A 和点C (4,0) . (1)求该抛物线的表达式.(2)连接CB ,并延长CB 至点D ,使DB =CB ,请判断点D 是否在该抛物线上,并说明理由. (3)在(2)的条件下,过点C 作x 轴的垂线EC 与直线y =2x +2交于点E ,以DE 为直径画⊙M ,①求圆心M 的坐标;②若直线AP 与⊙M 相切,P 为切点,直接写出点P 的坐标.九年级数学试卷参考答案及评分标准 2015.1图①B图②B备用图B二、填空题(本题共16分,每小题4分) 9.5 10.1211.答案不惟一,如2y x =(说明:写成2y x c =+的形式时,c 的取值范围是-2≤c ≤1) 12.60,3π 三、解答题(本题共30分,每小题5分)13.解:原式21=……………………………………………………………………4分 = ………………………………………………………………………………………5分 14.解: x 2-4x =1. ……………………………………………………………………………………………… 1分x 2-4x +4=1+4 ,(x -2)2=5 .…………………………………………………………………………………………… 3分x -2=∴12x =+22x =………………………………………………………………………5分 15.解:∵∠ACD =∠ABC ,∠A=∠A , …………………………………………………………………… 2分∴△ACD ∽△ABC . ……………………………………………………………………………… 3分∴AD ACAC AB=. …………………………………………………………………………………… 4分 ∵AD =2,AB =6,∴26AC AC =.∴212AC =.∴AC = …………………………………………………………………………………………5分16.解:如图,作AD ⊥BC 于点D .………………………………… 1分连接AB . ∴142BD BC ==. ………………………………………… 3分 ∵点A 的坐标是(2,3),∴AD=3.……………………………………………………… 4分在Rt△ABD中,∴5AB……………………………………… 5分∴⊙A的半径为5.17.解:(1)如图1.………………………… 1分(说明:点F在CD的延长线上)∴△ADF为所求.(2)①如图2,依题意,AE=AF,∠EAF =90°.…………… 2分在Rt△ABE中,∵AB=2,112BE BC==,∴AE=…………………………………………… 3分在Rt△AEF中,EF=……………………………… 4分②l==.……………………………… 5分∴弧EF.18.解:如图,作PD⊥BC于点D.………………………1分根据题意,得∠BPD=60°,∠CPD=45°.PB=AP - AB =20.………………………………… 2分在Rt△BPD中,∴cos60=10PD PB=∙︒.……………………………3分在Rt△CPD中,∴cos45PDPC=︒…………………………… 4分∴14PC≈.…………………………………………5分答:乙船的航行距离约是14海里.C图1D图2四、解答题(本题共20分,每小题5分)19.解:(1)证明:∆=〔-(m +1)]2-4m =(m -1)2.…………………………………………………………………………………… 1分∵(m -1)2≥0, ∴∆≥0.∴该方程总有两个实数根. …………………………………………………………………2分(2)解:x =当m 为整数1或-1时,x 2为整数,即该方程的两个实数根都是整数, ∴m 的值为1或-1.……………………………………………………………………………5分20.解:(1)∵点A (a ,3)在直线2y x =-+ 上,∴ 3=-a +2. ∴ a=-1.………………………………………………………………………………………… 1分 ∴A (-1,3).∵点A (-1,3)在反比例函数ky =x的图象上,∴31k=-.∴ k =-3. ………………………………………………………………………………………… 2分∴3y =x -. ……………………………………………………………………………………… 3分(2)(0,4 )或(0,-4 ).……………………………………………………………………………5分21.解:(1)120+5x ;……………………………………………………………………………………………………………………………… 1分(2)设有x 辆车未租出时,该汽车租赁公司日收益为y 元.根据题意,有()()4012052100y x x =-+-. (3)分即 25802700y x x =-++.∵05<-, ∴当8082(5)x =-=⨯-时,y 有最大值.y 有最大值是3020. ……………………………………………………………………………………………………………………… 4分∴120+5x =120+5×8=160. …………………………………………………………………………………………………………… 5分答:当每辆车的日租金为160元时,该汽车租赁公司日收益最大,最大日收益为3020元.22. (1)证明:如图,连接BD .∵AB 为⊙O 的直径,∴∠ADB =90°.…………………………………… 1分∴∠DAB +∠ABD =90°. ∵AF 是⊙O 的切线, ∴∠FAB =90°.…………………………………… 2分 即∠DAB +∠CAF =90°.∴∠CAF =∠ABD . ∵BA =BC ,∠ADB =90°, ∴∠ABC =2∠ABD .∴∠ABC =2∠CAF .………………………………… 3分(2)解:如图,连接AE .∴∠AEB =90°. 设CE = x ,∵CE :EB =1:4,∴EB =4x ,BA =BC =5x ,AE=3x . 在Rt △ACE 中,AC 2=CE 2+AE 2.即(2= x 2+(3x ) 2.∴x =2.∴CE =2.…………………………………………………………………………………………… 4分∴EB =8,BA =BC =10,AE =6.∵tan AE AFEB BAABF ==∠. ∴6810AF =. ∴AF =152. ……………………………………………………………………………………… 5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解: (1) 由题意可知,此二次函数图象的对称轴为2x =,即()322k k-+-=.A∴1k =. …………………………………………………………………………………………1分 ∴y=x 2-4x +3. ……………………………………………………………………………………2分(2)如图1…………………………………………3分1<x <3. …………………………………………………………………………………………………………………………… 4分(3)由(1)得此方程为220x m m +-=.22=4m m ∆--()()=-m 2+4m . …………………………………………………………………………………… 5分∴Δ是m 的二次函数.由图2可知,当-1≤m <0时,Δ<0; 当m =0时,Δ=0;当0<m ≤3时,Δ>0. ∴当-1≤m <0时,原方程没有实数根;当m =0时, 原方程有两个相等的实数根 ;当0<m ≤3时,原方程有 两个不相等的实数根. ………………………………7分24.(1)90;………………………………………………………1分 (2)∠FPG =120°;……………………………………………2分证明:如图,连接BD ,CE . ∵∠BAC =∠DAE , ∴∠BAD =∠CAE . ∵AB =AC ,AD =AE ,∴△BAD ≌△CAE ……………………………………3分∴∠1=∠2.∵点F ,G ,P 分别是DE ,BC ,CD 的中点, ∴PF ∥CE ,PG∥B图1图2BD .……………………………………………………………………………4分∴∠FPD=∠ECD =∠2+∠3,∠4=∠5. ∴∠DPG =∠4+∠6=∠5+∠6.∴∠FPG=∠FPD +∠DPG =∠2+∠3 +∠5+∠6=∠1+∠3 +∠5+∠6. 即∠FPG=∠ABC +∠ACB =180°-∠BAC =120°.…………………………………………………5分(3)7sin(90)2α︒-. ……………………………………………………………………………………7分(说明:也可以写成7cos 2α)25.解:(1)依题意,可知 A (-1, 0),B (0,2).抛物线y =ax 2+bx -32经过点A ,C (4,0) 所以有 203216+40.3a b a b ⎧--=⎪⎪⎨⎪-=⎪⎩, ………………………………………………………………………1分解得 161.2a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴2112623y x x =--.………………………………………………………………………………2分(2)点D 在该抛物线上.………………………………………………………………………………3分依题意,可得BO =2,CO =4. 过点D 作DF 垂直x 轴于点F , ∴△CDF ∽△CBO . ∴2===1DC DF CF BC BO CO . ∴DF =4,OF = CF - OC = 4.∴ D (-4,4).……………………………………4分∵()()21124623⨯-⨯-=-4-4,∴点D 在该抛物线上.(3)①由题意可知E (4,10). 设DE 与y 轴的交点为M ′, ∵M ′B ∥EC ,∴'1'DM DBEM CB==.∴D M′=EM′.∴M′即⊙M的圆心M.∴152BM EC==.∴M(0,7). (6)分②(-4,4)或(3,3). (8)分说明:各解答题的其他正确解法请参照以上标准给分.。
【解析版】铁力三中2014-2015年九年级上第一次月考数学试卷
解答: 解:由一元二次方程的定义可得
,解得:m=2.故选 B.
点评: 一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且 a≠0)特别要注意 a ≠0 的条件.这是在做题过程中容易忽视的知识点.
6.函数 y=x2﹣2x+3的图象的顶点坐标是( ) A. (1,﹣4) B. (﹣1,2) C. (1,2) D. (0,3)
27.某商场销售一批衬衫,进货价为每件 40元,按每件 50元出售,一个月内可售出 500 件.已知这种衬衫每件涨价 1 元,其销售量要减少 10件.为在月内赚取 8000元的利润, 同时又要使顾客得到实惠.售价应定为每件多少元?
第 3 页(共 16 页)
2014-2015 学年黑龙江省伊春市铁力三中九年级(上) 第一次月考数学试卷
参考答案与试题解析
一.选择题:(每题 3 分) 1.已知 m 是方程 x2﹣x﹣1=0的一个根,则代数式 m2﹣m 的值等于( )
A. 1 B. 0 C. ﹣1 D. 2
考点: 一元二次方程的解;代数式求值. 专题: 计算题. 分析: 一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数 的值;即用这个数代替未知数所得式子仍然成立;将 m 代入原方程即可求 m2﹣m 的值. 解答: 解:把 x=m代入方程 x2﹣x﹣1=0可得:m2﹣m﹣1=0, 即 m2﹣m=1; 故选 A. 点评: 此题应注意把 m2﹣m 当成一个整体.利用了整体的思想.
4.从正方形的铁皮上,截去 2cm宽的一条长方形,余下的面积 48cm2,则原来的正方形铁 皮的面积是( )
A. 9cm2 B. 68cm2 C. 8cm2 D. 64cm2
考点: 一元二次方程的应用. 专题: 几何图形问题. 分析: 可设正方形的边长是 xcm,根据“余下的面积是 48cm2”,余下的图形是一个矩 形,矩形的长是正方形的边长,宽是 x﹣2,根据矩形的面积公式即可列出方程求解. 解答: 解:设正方形的边长是 xcm,根据题意得: x(x﹣2)=48, 解得 x1=﹣6(舍去),x =8, 那么原正方形铁片的面积2是 8×8=64cm2. 故选 D. 点评: 本题考查了一元二次方程应用以及矩形及正方形面积公式,表示出矩形各边长是解 题关键.
2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)
九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。
2014—2015学年下学期九年级五月质量调研数学试题
2014—2015学年下学期九年级五月质量调研数学试题说明:1、本试卷共五大题,总分120分,考试时间100分钟;2、答案必须写在答题卡各题目指定区域;3、考生务必保持答题卡整洁.考试结束时将答题卡上交,试卷带走。
一、选择题(本大题10小题,每小题3分,共30分在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上) 1.下列各数中,最小的实数是( )A .12B .2-C .0D .12-2.下列几何体的主视图是三角形的是( )A .B .C .D .3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数 B .方差 C .平均数 D .中位数 4.下列计算正确的是( )A .3233m m m =⋅ B .336)2(m m = C .222)(b a b a +=+ D .m n mn =-335.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为( ) A .10° B .15° C .25° D .35°6.已知关于x 的一元二次方程220x x a +-=有两个相等的实数根,则a 的值是( )A .4B .4-C .1D .1- 7. 已知a >b.若c 是任意实数,则下列不等式中总是成立的是( ) A . a -c<b -cB. a +c>b +cC. ac<bcD. ac>bc8.若三角形的两条边长分别为6cm 和10cm ,则它的第三边不可能...为( )㎝ A. 5 B. 8 C. 10 D. 179.如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.B. 5C. 4D. 10.世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点A 沿AO 匀速直达土楼中心古井点O 处,再从点O 沿OB 也匀速走到点B ,紧接着沿回到南门,下面可以近似地刻画小王与土楼中心O 的距离s 随时间t 变化的图象是( )A .B .C .D . 二、填空题(本大题6小题,每小题4分,共24分.请将下列各题的正确答案填写在答题卡相应位置上) 11.据报载,2014年我国发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 _________ .12.分解因式:29my m -= _________ .13.要使式子1+a 有意义,则a 的取值范围是 .14.如图,AB 是⊙O 的直径,C ,D 是⊙O 上两点,CD ⊥A B .若∠DAB =65°,则∠AOC = . 15.一个正多边形的内角和是其外角和的216.如图,P A 、PB 与⊙O 相切,切点分别为A 、B ,P A =3,∠P 若BC 为⊙O 的直径,则图中阴影部分的面积为 .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:12)31(60sin 4)21(001+----18.先化简,再求值:()()()2x 5x 1x 2+-+-,其中2-=x19.(1)已知:线段a ,∠α.求作:△ABC ,使BC=a ,∠C=∠B=∠α.(不写作法,保留作图痕迹) (2)在(1)的图形中,如果BC=36,∠α=30°,求△ABC 的面积.四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,从A 地到B 地的公路需经过C 地,图中AC =10千米,∠CAB =25°,∠CBA =45°.因城市规划的需要,将在A 、B 两地之间修建一条笔直的公路. (1)求改直后的公路AB 的长;(2)问公路改直后该段路程比原来缩短了多少千米?(精确到0.1) (sin 25°≈0.42,cos 25°≈0.91,,41.12≈)21.某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元的资金购进这两款汽车共15辆,问A 款汽车最多能购进多少辆?22.一个不透明的袋子中装有大小、质地完全相同的3个球,球上分别标有2,3,5三个数字. (1)从这个袋子中任意摸出一个球,所标数字是奇数的概率为 .(2)从这个袋子中任意摸出一个球,记下所标数字,不放回,再从袋子中任意摸出一个球,记下所标数字,将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用画树状图或列表的方法写出过程)五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图,点A (2,2)在双曲线x k y =1(x >0)上,点C 在双曲线xy 92-=(x <0)上,分别过A 、C 向x 轴作垂线,垂足分别为F 、E ,以A 、C 为顶点作正方形ABCD ,且使点B 在x 轴上,点D 在y 轴的正半轴上.备用图25.如图,在平面直角坐标系中,抛物线c bx x y ++-=2与y 轴交于点A (0,3),且经过点(5,-2),点B 与点A 关于对称轴对称,过点B 作BC ⊥x 轴,垂足为C ,连结OB. (1)求二次函数的解析式,并求出点B 的坐标.(2)把△AOB 以每秒1个单位的速度向右平移,得到△PDE ,PE 交OB 于点F ,PD 交BC 于点M ,设向右平移运动的时间为t (s ).设平移过程中与△OBC 重叠部分的面积为S ,试探求S 与t 的函数关系式,并求当t 为何值时,S 最大?(3)在(2)的条件下,是否存在某一时刻t ,使△OCE 为等腰三角形?若存在,求出点E 的坐标;若不存在,请说明理由.。
万州区2014-2015学年度上期末九年级教学质量监测数学试题
万州区2014-2015学年度上期末九年级教学质量监测数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卷上,不得在试卷上直接作答: 2.答题前认真阅读答题卷上的注意事项: 3.考试结束,将答题卷交给监考教师。
参考公式:抛物线y=ax2+bx+c(c ≠o)的顶点坐标为(-a b 2,a b ac 442-),对称轴为x =-ab2一、选择题:(本大题12个小题,每小题4分,共48分)每个小题都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案填在答题卷中对应表格内。
1.下列四个数中,最小的数是A .3B .3C .0D .-21 2.下列运算正确的是A .a 3+a 3=2a 6B .a 6÷a 2=a 3C .a m •a 2=a 2mD .(一a 3)2 =a 63.如图所示的几何体是由一些小立方块搭成的,则这个几何体的主视图是4.如图,AB ∥CD ,∠A =70º,A C=BC ,则∠BCD 的度数为 A .l00º B .105ºC .l10ºD .140º5.分式方程:2+x x=3的解是 A .x = -l B .x = l C.x = -3 D.x = 36.直线y=kx+3经过点(1,4),则k 的值是A .1B .-1C .21 D.-21 九年级数学期末试题第1页(共6页)7.已知△ABC 与△DEF 相似,相似比为2:3,△ABC 的周长是10cm ,△DEF 的周长是A. l0cmB.15cmC.20cmD.30cm8.将抛物线y=3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是A.y=3 (x+2)2+4B.y=3 (x -2)2+4C.,,y=3(x-2)2- 4 D .y=3 (x+2)2- 49.王婆婆傍晚从家步行到附近的广场去跳坝坝舞,途中想到开水杯子忘带了,立刻按照原速度原路返回,返家途中遇到给她送杯子的王叔叔,接过杯子后,王婆婆加速向广场赶去.能大致反映王婆婆离家距离s 与步行时间t 的函数关系图象是10.观察下列图形的变化规律,第一个图形有3个三角形,第二个图形有7个三角形,第三个图形有1 1个三角形,依此类推,第十个图形中三角形的个数是A .31B .33C .39D .4111.如图,在矩形ABCD 中,AB=1,BC=2,将其折叠,使AB 边落 在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为 A .216- B .215- C .213- D. 212-12.如图,双曲线y= -x2与矩形OABC 的对角线OB 相交 于点D ,且BD :DO=1 :2,则矩形OABC 的面积为A .29B .6 C. 3 D .23九年级数学期末试题第2页(共6页)二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卷中对应的横线上。
2014-2015学年下学期五月质量调研数学附答案
2014-2015学年下学期五月质量调研数学一、选择题(本大题10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.23-的值是( )A .6B .6-C .9D .9-2.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B ... 3.一元二次方程0422=-+x x 的根的情况为( ).A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 无法确定 4.二次函数2(0)y axbxc a =++≠的图象如图所示,则下列说法不正确的是( ) A .240b ac ->B .0a >C .0c >D .02ba-< 5.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是( ) A.点A 与点D B. 点A 与点CC. 点B 与点CD. 点B 与点D 6.下列计算正确的是( ) A .()623a a -=- B .222)(b a b a -=- C .235325a a a += D .336a a a =÷ 7.不等式组⎩⎨⎧≥-<1202x x 的解集在数轴上表示为( )A. B . C . D .8.我校举行了“建设宜居中山,关注环境保护”的知识竞赛,某班学生的成绩统计如下:则该班学生成绩的众数和中位数分别是( ) . 8D则AEC ∠等于( ) A .60B .50C .45D .3010.如图,已知直线2+-=x y 分别与x 轴,y 轴交于A ,B两点, 与双曲线xky =交于E ,F 两点,若AB =2EF ,则k 的值是 A .-1 B .1 C .12 D .34二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.a ﹣4ab 2分解因式结果是12.地球上陆地的面积约为149 000 000平方千米,把数据149 000 000用科学记数法表示为 . 13.化简:)1(1-÷⎪⎭⎫⎝⎛-a a a =______________________ 14.如图,DE 是△ABC 的中位线,若△ADE 的周长是18,则△ABC 的周长是__________. 15.如图,AB 是O 的直径,CD 是O 的弦,连接AC AD ,,若35CAB ∠=,则ADC ∠的度数为 .16.如图,在△ABC 中,AB =2,BC =3.5,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 .第14题第15题 第16题三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算101sin 45()1)2-+-18.如图,在ABC △中,10AB AC ==,BC=310.(1)用尺规作图作BC 边上的高AD (保留作图痕迹,不写作法和证明);(2)求∠BAC 的度数.19.某乡镇决定对一段公路进行改造,已知这项工程中甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荆门市2014-2015学年九年级五月调研考试数 学 试 卷说明:1.全卷分两部分,第一部分为选择题,第二部分为非选择题,考试时间120分钟,满分120分.2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠.3.选择题1-12题,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13-24题,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡对应的答题区内.第一部分 选择题一、选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,只有一个是正确的) 1.若m 与3互为相反数,则3m -的值为( ▲ ) A .0 B .6 C .103D . 832.将32300000用科学记数法表示为( ▲ )A .73.2310⨯B .83.2310⨯C .632.310⨯D .80.32310⨯ 3.下列运算中,结果等于6a 的是( ▲ ) A .23a a ⋅B .122a a ÷C .33()aD .6()a -4.如图所示的工件的俯视图是( ▲ )5.已知三角形两边的长分别是4和10,则此三角形第三边的长可以是( ▲ ) A .5 B .6C .11D .166.如图,在五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、∠EDC 的外角,则∠1+∠2+∠3等于( ▲ ) A .90° B .180° C .210° D .270°7.在一次演讲比赛中,参赛的10名学生成绩统计如图所示,下列说法中错误的是( ▲ ) A .众数是90分 B .中位数是90分 C .平均数是90分 D .极差是15分 8.方程210x x -+=与方程2510x x --=的所有实数根的和是( ▲ )A .6B .5C .3D .29.如图,已知321////l l l ,相邻两条平行直线间的距离相等,若等腰直角△ABC 的直角顶点C 在1l 上,另两个顶点A 、B 分别在2l 、3l 上,则tan α的值是( ▲)A .13B .617C D 10.已知a 、b 、c 为非零实数,且满足b c a b a ck a c b+++===,则一次函数1y kx k =++的图象一定经过( ▲ )A .第一、二、三象限B .第二、四象限C .第一象限D .第二象限 11.若二次函数2(0)y ax bx c a =++≠的图象上有两点,坐标分别为),(11y x ,),(22y x ,其中12x x <,120y y <,则下列判断正确的是( ▲ )A .0a <B .0a >第9题图αl 3l 2l 1CB A第6题图第7题图C .方程20ax bx c ++=必有一根0x 满足102x x x <<D .12y y <12.如图,菱形ABCD 中,AB=BD ,点B 、C 、D 、G 四个点都在⊙O 上,连接BG 并延长交AD于点F ,连接DG 并延长交AB 于点E ,BD 与CG 交于点H ,连接FH .判断下列结论: ①AE =DF ; ②FH ∥AB ; ③△DGH ∽△BGE ;④当CG 为⊙O 的直径时,DF =AF . 其中正确结论的个数是( ▲ )A .1B .2C .3D .4第二部分 非选择题二、填空題(本题共5小题,每小题3分,共15分)1314.甲、乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则当乙车到达B 城时,甲车离B 城的距离为 ▲ km .15.如图所示,经过B (2,0)、C (6,0)两点的⊙H 与y 轴的负半轴相切于点A ,双曲线xky =经过圆心H ,则k = ▲ .第12题图HGFE D CBA16.如图,△ACD 内接于⊙O ,CB 垂直于过点D 的切线,垂足为B ,如果BC =3,3sin 4A ∠=,那么⊙O 的半径为 ▲ .17.如图,已知点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx b =+和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果1A (1,1)、2A (72,32),那么点n A 的纵坐标是 ▲ .三、解答题(本题共7小题,共69分)18.(本题满分8分)先化简,再求值:2211(1)2+1m m m m -+÷-,其中m =19.(本题满分9分)如图,已知四边形ABCD 、DEFG 都是正方形,连接AE 、CG . (1)求证:AE =CG ;(2)猜想AE 与CG 之间有怎样的位置关系?并证明你的猜想.第16题图D第17题图20.(本题满分10分)我市去年竣工的商品房有A 、B 、C 、D 、E 五种型号共若干套,其中B 型商品房的入住率为40%,将A 、B 、C 、D 、E 五种型号的套数及入住的情况绘制成如下两幅不完整的统计图.(1)直接写出各型号已入住商品房套数的众数及B 型商品房所占的百分比; (2)各型号的商品房一共有多少套?(3)房产商为了促销,将入住未满的型号商品房各拿出一套进行优惠活动,小张随机选到了其中两种型号,请用画树状图或列表法求出小张恰好选中A 、C 型号商品房的概率.第20题图各型号竣工的商品房套数 扇形统计图各型号已入住商品房套数折线统计图型号21.(本题满分10分)已知关于x 的方程2(1)(31)220k x k x k ++-+-=. (1)求证:无论k 取何值,此方程总有实数根; (2)若此方程有两个整数根,求正整数k 的值;(3)若抛物线2(1)(31)22y k x k x k =++-+-与x 轴的两个交点之间的距离为3,求k 的值.22.(本题满分10分)如图,已知AB 是⊙O 的直径,BP 是⊙O 的弦,弦CD ⊥AB 于点F ,交BP 于点G ,点E 在CD 的延长线上,且EP =EG .(1)求证:直线EP 为⊙O 的切线;(2)点P 在劣弧AC 上运动,其他条件不变,若2BG BF =·BO ,试证明BG =PG ;(3)在(2)的条件下,已知⊙O 的半径为3,sin 3B =CD 的长.23.(本题满分10分)某公司生产的商品的市场指导价为每件150元,公司的实际销售价格可第22题图以浮动x 个百分点(即销售价格=150(1+x %)),经过市场调研发现,这种商品的日销售量y (件)与销售价格浮动的百分点x 之间的函数关系为224y x =-+.若该公司按浮动12-个百分点的价格出售,每件商品仍可获利10%. (1)求该公司生产销售每件商品的成本为多少元?(2)当实际销售价格定为多少元时,日销售利润为660元?(说明:日销售利润=(销售价格一成本)×日销售量)(3)该公司决定每销售一件商品就捐赠a 元利润(a ≥1)给希望工程,公司通过销售记录发现,当价格浮动的百分点大于2-时,扣除捐赠后的日销售利润随x 增大而减小,直接写出a 的取值范围.24.(本题满分12分)已知抛物线2y ax bx c =++经过原点O 及点A (4,0)和点B (2,3)-. (1)求抛物线的解析式;(2)如图1,设抛物线的对称轴与x 轴交于点C ,将直线2y x =-沿y 轴向下平移n 个单位后得到直线l ,若直线l 经过B 点,与y 轴交于点D ,且与抛物线的对称轴交于点E .若P 是抛物线上一点,且PB =PE ,求点P 的坐标;(3)如图2,将抛物线向上平移6个单位得到新抛物线,直接写出....下列两个问题的答案: ①直线2y x =-至少向上平移多少个单位才能与新抛物线有交点? ②新抛物线上的动点Q 到直线2y x =-的最短距离是多少?荆门市2014-2015学年九年级五月调研考试数学参考答案及评分标准一、选择题(本大题共12小题,每小题3分,共36分)1-12. BADCC BCBAD CD二、填空题(本大题共5小题,每小题3分,共15分)13.1x >-且1x ≠ 14.60 15.38- 16.83 17.13()2n - 三、解答题(本大题共7小题,共69分) 18.(本题满分8分)解:原式2+1(1)(1)(1)m m m m m -=⋅+- 1m m-=. …………………………………………………………………………4分当m =22-==. ………………………………………8分 19.(本题满分9分)(1)证明: ∵ABCD 、DEFG 都是正方形,∴AD =CD ,DE =DG ,∠ADC =∠GDE =90°, ∴∠CDG =∠ADE =90° +∠ADG , ∴△ADE ≌△CDG .(SAS )∴AE =CG . …………………………………………4分 (2)猜想:AE ⊥CG .证明如下:设AE 与CG 交点为M ,AD 与CG 交点为N . ∵△ADE ≌△CDG , ∴∠DAE =∠DCG . 又∵∠ANM =∠CND , ∴∠AMN =∠ADC =90°,∴ AE ⊥CG . …………………………………………9分20.(本题满分10分)(1)40套,20﹪ …………………………………………………2分(众数没写单位不扣分)(2) ∵10020%500÷=,∴各型号的商品房一共有500套. …………………………4分 (只要答案正确就可不扣分) (3)画树形图如下:从图中可看出,所有等可能的情况共12种,其中,恰好选中A 、C 型号商品房的情况有2种,∴16212P ==. ………………………………………………………10分 21.(本题满分10分)(1)当1k =-时,方程为440x --=是一元一次方程,有一个实数根;……………1分当1k ≠-时,22(31)4(1)(22)(3)0k k k k ∆=--+-=-≥,此时方程有两个实数根. 综上所述,无论k 取何值,此方程总有实数根. ……………………………………3分 (2)∵13(3)2(1)k k x k -±-=+,∴11x =-,2421x k =-+. ………………………………5分∵方程的两个根是整数,∴11,2,4k +=±±±又∵k 为正整数,∴1k =或3. ……………………………………7分 (3)依题意得123x x -=或213x x -=,当41(2)31k ---=+时,3k =-;当4(2)(1)31k ---=+时,0k =. ∴3k =-或0 ……………………………………………………………10分22.(本题满分10分)(1)证明:连接OP ,∵EP =EG ,∴∠EPG =∠EGP ,又∵∠EPG =∠BGF ,∴∠EPG =∠BGF , ∵OP =OB ,∴∠OPB =∠OBP ,∵CD ⊥AB ,∴∠BFG =∠BGF +∠OBP =90°, ∴∠EPG +∠OPB =90°,∴直线EP 为⊙O 的切线; …………………………………………………3分 (2)证明:连接OG ,∵2BG BF =·BO ,∴BG BFBO BG=, 又∵∠B =∠B ,∴△BFG ∽△BGO ,∴∠BGO =∠BFG =90°,∴BG =PG ; …………………………………………………6分(3)解:连接OD ,∵sin 3B =OG OB =,∵OB =r =3,∴OG由(2)得∠B =∠OGF ,∴sin∠OGF =OF OG =,∴OF =1,在Rt △ODF 中,DF =∴CD =2DF = ……………………………………………………………10分23.(本题满分10分)解:(1)设该公司生产销售每件商品的成本为y 元,依题意得150(1-12%)=y (1+10%). 解得,y =120.答:该公司生产销售每件商品的成本为120元. ……………………………………3分 (2)由题意得(224)[150(1%)120]660x x -++-=. ……………………………………5分整理得28200x x +-=. 解得12x =,210x =-.此时,商品定价为每件135元或153元,日销售利润为660元. ………………7分 (3)1≤a ≤6. ………………………………………………………10分 24.(本题满分12分)x(1)依题意得423,1640.a b a b -=⎧⎨+=⎩ 解得:14a =,1b =-.∴抛物线的解析式为214y x x =-. ………………………………………………3分 (2)设直线l 的解析式为2y x n =-+,∵直线l 过点B (2,3)-,∴1n =-.∴直线l 的解析式为21y x =--,∴D (0,1)-. ∵抛物线的对称轴为2x =,∴C (2,0),E (2,5)-. ∴点D (0,1)-是线段BE 的中点. 又∵CE =CB =5,∴CD 垂直平分BE .∵PB =PE ,∴点P 是抛物线与直线CD 的交点. 易求CD 的解析式为112y x =-, 由211214y x y x x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得113x y ⎧=+⎪⎨=⎪⎩223x y ⎧=⎪⎨=⎪⎩ ∴点P的坐标为(3+或(3-. ……………………………8分 (3)①5; …………………………………………………………10分…………………………………………………………12分。