八年级(上)中考题单元试卷:第14章_整式的乘法与因式分解(1)
新人教版八年级数学上册第十四章《整式的乘法与因式分解》单元测试试卷及答案
新人教版八年级数学上册第十四章《整式的乘法与因式分解》单元测试试卷及答案一、选择题(题型注释)1、下列计算正确的是()A.a3•a2=a6 B.(﹣2a2)3=﹣8a6 C.(a+b)2=a2+b2 D.2a+3a=5a22、下列从左边到右边的变形,是因式分解的是( )A.(3-x)(3+x)=9-x2 B.m4-n4=(m2+n2)(m+n)(m -n)C.(y+1)(y-3)=-(3-y)(y+1) D.4yz-2y2z+z=2y(2z-yz)+z3、把分解因式,其结果为( )A.()() B. ()C. D. ()4、如果多项式x2-mx+9是一个完全平方式,那么m的值为( ).A.-3 B.-6 C.±3 D.±65、是一个完全平方式,则m的值为()A.3 B.9 C.-3 D.6、若,,则ab的值为()A.11 B.- 22 C.4 D.不存在7、如果的积中不含x的一次项,则m的值是A.5 B.10 C. D.8、在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.B.C.D.9、下列因式分解正确的是()A. B.C. D.10、2101×0.5100的计算结果是……………………………………()A.1 B.2 C.0.5 D.10二、填空题(题型注释)11、分解因式:___________.12、a•a5-(2a3)2=__________13、因式分解:___________.14、若,则_____.15、计算:=_______.16、已知,,则____________.17、分解因式:m3-9m=__________.18、若多项式x2+ax﹣2分解因式的结果为(x+1)(x﹣2),则a的值为_____.19、()2013×1.52012×(﹣1)2014=_____.20、已知,则=______.三、计算题(题型注释)21、因式分解:⑴⑵⑶⑷22、(2+3)2﹣(2﹣3)2.23、(1)计算:|1﹣|++(﹣2)0;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.24、计算: .四、解答题(题型注释)25、先化简,再求值:其中a=-1,b=126、长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少3厘米。
《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)
《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。
2021年八年级数学上册第十四章《整式的乘法与因式分解》习题(答案解析)(1)
一、选择题1.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .7D 解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.2.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-5B解析:B【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.3.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++ C解析:C【分析】 利用不同的方法表示出空白部分的面积:一种是利用公式2()a b -直接计算,另一种是割补法得222a ab b -+,根据面积相等即可建立等式,得出结论.【详解】解:空白部分的面积:2()a b -,还可以表示为:222a ab b -+,∴此等式是222()2a b a ab b -=-+.故选:C .【点睛】本题考查了完全平方公式的几何意义,注意图形的分割与拼合,会用不同的方法表示出空白部分的面积是解题的关键.4.下列多项式中,不能用完全平方公式分解因式的是( ) A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+ C 解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】 A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 5.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29D 解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.6.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y = D .623x x x ÷= C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.7.已知1x =,1y =,则代数式222x xy y ++的值为( ). A .20B .10 C.D.解析:A【分析】 利用完全平方公式计算即可得到答案.【详解】∵1x =,1y =,∴x+y=∴222x xy y ++=2()x y +=2=20,故选:A .【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.8.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .32D 解析:D【分析】利用积的乘方的逆运算解答.【详解】()()202020213232 -⨯ =20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.9.下列运算正确的是( ).A .236x x x =B .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --= D【分析】根据整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算并判断.【详解】A 、235x x x =,故该项错误;B 、2222x x x +=,故该项错误;C 、22(2)4x x -=,故该项错误;D 、358(3)(5)15a a a --=,故该项正确;故选:D .【点睛】此题考查整式的计算,正确掌握整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算法则是解题的关键.10.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( )A .1B .1-C .2D .2- B解析:B【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得x y 即可求解.【详解】 解:由题意,得:521303100x y x y +-=⎧⎨--=⎩, 解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y 的立方根为﹣1,故选:B .【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题11.分解因式:32m n m -=________.【分析】原式提取公因式再利用平方差公式分解即可【详解】解:原式==故答案为:【点睛】此题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键解析:(1)(1)m mn mn -+【分析】原式提取公因式,再利用平方差公式分解即可.解:原式=3222(1)m n m m m n -=-,=(1)(1)m mn mn -+故答案为:(1)(1)m mn mn -+.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 12.已知18m x =,16n x =,则2m n x +的值为________.【分析】根据同底数幂的乘法可得再根据幂的乘方可得然后再代入求值即可【详解】解:故答案为【点睛】此题主要考查了同底数幂的乘法和幂的乘方关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加;幂的乘 解析:14【分析】根据同底数幂的乘法可得22m n m n x x x +=⋅,再根据幂的乘方可得()22m m x x =,然后再代入18mx =,16n x =求值即可. 【详解】 解:()2222111684m n m n m n x x x x x +⎛⎫=⋅=⋅=⨯= ⎪⎝⎭ , 故答案为14. 【点睛】 此题主要考查了同底数幂的乘法和幂的乘方,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.13.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭,∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.14.若231m n -=,则846m n -+=________.6【分析】将原式化为再整体代入即可【详解】解:∵∴原式==8-2×1=6故答案为:6【点睛】本题考查了求代数式的值把某一部分看成一个整体是解题的关键解析:6【分析】将原式化为82(23)m n --,再整体代入即可.【详解】解:∵231m n -=,∴原式=82(23)m n --=8-2×1=6.故答案为:6.【点睛】本题考查了求代数式的值,把某一部分看成一个整体是解题的关键.15.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故 解析:﹣25【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键. 16.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知}a =}b b =,且a 和b 是两个连续的正整数,则a+b =_____.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9【分析】根据新定义得出a,b的值,再求和即可.【详解】解:∵min{21,a}=21,min{21,b}=b,∴21<a,b<21,又∵a和b为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a,b的值是解题关键.17.关于x的一次二项式mx+n的值随x的变化而变化,分析下表列举的数据x01 1.52mx+n-3-101若mx+n=17,线段AB的长为x,点C在直线AB上,且BC=12AB,则直线AB上所有线段的和是_____________.20或30【分析】把表格中的前两对值代入求出m与n 的值即可求出x的值然后把x的值代入求解即可【详解】解:由表格得x=0时m0+n=-3∴n=-3;x=1时m1+(-3)=-1∴m=2;∵mx+n解析:20或30【分析】把表格中的前两对值代入求出m与n的值,即可求出x的值,然后把x的值代入求解即可.【详解】解:由表格得x=0时,m⋅0+n=-3,∴n=-3;x=1时,m⋅1+(-3)=-1,∴m=2;∵mx+n=17,∴2x-3=17,∴x=10,当点C在线段AB上时,∵BC=12AB,∴BC=12×10=5,∴AC +AB +BC =20;当点C 在点B 右侧时,∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =30.故答案为20或30.【点睛】此题考查了代数式求值和线段的和差计算,熟练掌握运算法则是解本题的关键.18.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______.1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方熟练掌握法则是解题的关键解析:1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦== 故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键19.若2x y a +=,2x y b -=,则22x y -的值为____________.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键解析:4ab .【分析】应用平方差把多项式22x y -因式分解,再整体代入即可.【详解】解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键.20.若代数式23y y +-的值为0,则代数式3242020y y ++的值为___________.2029【分析】由题意得将原式变形成整体代入得再一次整体代入即可求出结果【详解】解:∵∴原式故答案为:【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想进行求解解析:2029【分析】由题意得23y y +=,将原式变形成()2232020y y y y +++,整体代入得2332020y y ++,再一次整体代入即可求出结果.【详解】解:∵23y y +-,∴23y y +=,原式()2232020y y y y =+++ 2332020y y =++()232020y y =++92020=+2029=.故答案为:2029.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想进行求解.三、解答题21.(1)计算:()()()()23232121a a a a a -++-+-(2)分解因式:244xy xy x -+ 解析:(1)10;(2)()22x y -【分析】(1)根据整式的乘法公式及运算法则即可求解;(2)先提取x ,再根据完全平方公式即可因式分解.【详解】(1)解:原式222366941a a a a a =-+++-+ 10=()2解:原式()244x y y =-+()22x y =-.【点睛】此题主要考查整式的运算与因式分解,解题的关键是熟知整式的运算法则及因式分解的方法.22.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 解析:(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.23.数学活动课上,张老师准备了若干个如图①的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为,b 宽为a 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图②的大正方形.()1观察图②,请你写出代数式()222,,a b a b ab ++之间的等量关系是 ;()2根据()1中的等量关系,解决下列问题;①已知224,10a b a b +=+=,求ab 的值;②已知()()222020201852x x -+-=,求2019x -的值.解析:(1)()2222a b a b ab +=++;(2)①3ab =;②20195x -=±.【分析】(1)整体看是一个边长为(a+b )的正方形,局部看它有一个边长为a ,b 的正方形,两个长为b ,宽为a 的矩形组成,根据图形的面积相等即可确定它们之间的关系; (2)①公式变形为ab=222()()2a b a b +-+计算即可; ②把x-2020变形成(x-2019)-1, 把x-2018变形成(x-2019)+1,用整体思想展开公式计算即可.【详解】()()22212a b a b ab +=++;理由如下:图②是边长为()a b +的正方形,()2S a b ∴=+图②可看成1个边长为a 的正方形,1个边长为b 的正方形以及2个长为,b 宽为a 的长方形的组合图形, 222,S a b ab ∴=++()222 2a b a b ab ∴+=++. ()24a b +=①,()216,a b +∴=即22216a b ab ++=.又2210,a b +=3ab ∴=;②设2019,x a -=则20201,20181x a x a -=--=+,()()222020201852x x -+-=, ()()22 1152a a ∴-++=,22212152,a a a a ∴-++++=22252,a ∴+=2250,a ∴=225,a ∴=即()2201925,x -= 20195x ∴-=±.【点睛】本题考查了完全平方公式的几何意义,公式的应用,以及公式的整体思想代换应用,熟练掌握公式的几何意义和公式的变形是解题的关键.24.计算:(1)()222--(2)()()2215105x y xy xy -÷-(3)()()()2321x x x -+--解析:(13;(2)32x y -+;(3)7x -【分析】(1)同时计算乘方、绝对值、算术平方根及开立方,再计算加减法;(2)用多项式除以单项式法则计算;(3)先根据多项式乘以多项式及完全平方公式计算,再合并同类项即可.【详解】(1)解:原式4232=--3=;(2)解:原式32x y =-+(3)解:原式2223621x x x x x =+---+-7x =-.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数的乘方、绝对值、算术平方根及开立方、加减法运算,整式的多项式乘以多项式及完全平方公式、多项式除以单项式法则是解题的关键.25.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a b 、的代数式分别表示1S 、2S ;(2)若10,23a b ab +==,求12S S +的值;(3)当1229S S +=时,求出图3中阴影部分的面积3S . 解析:(1)S 1=a 2-b 2,S 2=2b 2-ab ;(2)31;(3)292 【分析】(1)根据正方形的面积之间的关系,即可用含a 、b 的代数式分别表示S 1、S 2; (2)根据S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,将a +b =10,ab =23代入进行计算即可; (3)根据S 3=12(a 2+b 2﹣ab ),S 1+S 2=a 2+b 2-ab =29,即可得到阴影部分的面积S 3. 【详解】解:(1)由图可得,S 1=a 2-b 2,S 2=2b 2-ab ;(2)S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,∵a +b =10,ab =23,∴S 1+S 2=a 2+b 2-ab =(a +b )2-3ab =100-3×23=31;(3)由图可得,S 3=a 2+b 2-12b (a +b )-12a 2=12(a 2+b 2-ab ), ∵S 1+S 2=a 2+b 2-ab =29,∴S 3=12×29=292. 【点睛】本题主要考查了完全平方公式的几何背景的应用,解决问题的关键是根据图形之间的面积关系进行推导计算.26.计算(1)20193(1)98|32|--;(2)9(3)(3)x x -+-;(3)2(23)4(3)a b a a b ---.解析:(1)2;(2)221839x b -;()【分析】(1)根据乘方、立方根、算术平方根、绝对值的意义计算出各项值再去括号进行加减即可;(2)先根据平方差公式计算后两项的积,然后去括号合并同类项即可;(3)根据完全平方公式或单项式乘多项式法则计算出前面两个乘法结果后合并同类项即可 .【详解】解:(1)原式=-1+3+2-(2=4-22=+(2)原式=()222999918x x x --=-+=-;(3)原式=222241294129a ab b a ab b -+-+=.【点睛】本题考查实数和整式的混合运算,熟练掌握有关运算法则和乘法公式的应用是解题关键. 27.好学的晓璐同学,在学习多项式乘以多项式时发现:(12x +4)(2x +5)(3x ﹣6)的结果是一个多项式,并且最高次项为:12x •2x •3x =3x 3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢? 根据尝试和总结她发现:一次项就是:12x ×5×(﹣6)+2x ×4×(﹣6)+3x ×4×5=﹣3x . 请你认真领会晓璐同学解决问题的思路、方法,仔细分析上面等式的结构特征,结合自己对多项式乘法法则的理解,解决以下问题:(1)计算(x +2)(3x +1)(5x ﹣3)所得多项式的最高次项为 ,一次项为 ; (2)若计算(x +1)(﹣3x +m )(2x ﹣1)(m 为常数)所得的多项式不含一次项,求m 的值;(3)若(x +1)2021=a 0x 2021+a 1x 2020+a 2x 2019+…+a 2020x +a 2021,则a 2020= .解析:(1)15x 3,﹣11x ;(2)m =-3;(3)2021【分析】(1)求多项式的最高次项,把每个因式的多项式最高次项相乘即可;求一次项,含有一次项的有x ,3x ,5x ,这三个中依次选出其中一个再与另外两项中的常数相乘最终积相加,或者展开所有的式子得出一次项即可.(2)先根据(1)所求方法求出一次项系数,最后用m 表示,列出等式,求出m ; (3)根据前两问的规律可以计算出第(3)问的值.【详解】(1)由题意得:(x +2)(3x +1)(5x ﹣3)所得多项式的最高次项为x ×3x ×5x =15x 3,一次项为:1×1×(﹣3)x +2×3×(﹣3)x +2×1×5x =﹣11x ,故答案为:15x 3,﹣11x ;(2)依题意有:1×m ×(﹣1)+1×(﹣3)×(﹣1)+1×m ×2=0,解得m =﹣3;(3)根据题意可知2020a 即为2021(1)x +所得多项式的一次项系数,∵2021(1)x +展开之后x 的一次项共有2021个,且每一项的系数都为2021(111)1⨯⨯⨯=, ∴20202021202120212021(111)+(111)(111)2021a =⨯⨯⨯⨯⨯⨯++⨯⨯⨯=故答案为:2021.【点睛】本题考查多项式乘多项式以及对多项式中一次项系数的理解,根据题意找出多项式乘多项式所得结果的一次项系数与多项式乘多项式中每个多项式的一次项系数和常数项关系规律是解题关键.28.阅读:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值. 解:设另一个因式为x +n ,得x 2﹣4x +m =(x +3)(x +n )则x 2﹣4x +m =x 2+(n +3)x +3n ∴343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩ ∴另一个因式为x ﹣7,m 的值为﹣21问题:仿照上述方法解答下列问题:(1)已知二次三项式2x 2+3x ﹣k 有一个因式是2x ﹣5,求另一个因式及k 的值. (2)已知2x 2﹣13x +p 有一个因式x ﹣3,则P = .解析:(1)另一个因式为:4x +,20k =;(2)21.【分析】根据题意给出的方法即可求出答案.【详解】解:(1)设另外一个因式为:x n +,∴()()22325x x k x x n +-=-+, ∴2535n n k-=⎧⎨-=-⎩, ∴4n =,20k =;(2)设另一个因式为:2x n +,∴2x 2﹣13x +p =(2x +n )(x ﹣3)∴6133n n p -=-⎧⎨-=⎩∴解得:217p n =⎧⎨=-⎩故答案为:21.【点睛】本题考查因式分解的意义,解题的关键熟练运用因式分解法,本题属于基础题型.。
人教版八年级数学上册《第十四章整式的乘法与因式分解》单元测试卷(带答案)
人教版八年级数学上册《第十四章整式的乘法与因式分解》单元测试卷(带答案)一、单选题(共10小题,满分40分)1.下列计算正确的是( )A .a 2·a 3= a 6B .(a 2)3= a 6C .(2a )3=2aD .a 10÷a 2= a 52.下列因式分解正确的是( ) A .()3333x y x y ++=+B .221142x x x ++=+⎛⎫ ⎪⎝⎭ C .()()22x y x y x y -+=+- D .()()22444x y x y x y -=-+ 3.将295变形正确的是( )A .22295905=+B .()()29510051005=+-C .2229510010005=-+D .22295909055=+⨯+ 4.如果29x mx -+(m 是常数)是完全平方式,那么m 的值为( )A .3B .6±C .9±D .65.下列运算正确的是( )A .a 3+a 3=a 6B .a 2•a 3=a 6C .(ab )2=ab 2D .(a 2)4=a 86.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“创新数”,如8=32﹣12,16=52﹣32,所以8,16都是“创新数”,下列整数是“创新数”的是( ) A .20 B .22 C .26 D .247.下列各式中不能用平方差公式计算的是( )A .()y-x ()x+yB .()2x-y ()-y+2xC .()x-3y ()x+3yD .()4x-5y ()5y+4x 8.已知(x -3)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =3,n =9B .m =3,n =6C .m =-3,n =-9D .m =-3,n =99.如图,长方形ABCD 中812812AB AD <<<<,,放入两个边长都为4的正方形 AEFG ,正方形DJIH 及一个边长为8的正方形KCML ,1S 和2S 分别表示对应阴影部分的面积,若12=S S ,则长方形ABCD 的周长是( )A .36B .40C .44D .4810.如果x y +,x y -与22x y -,4,m n +和mm 分别对应6个字:鹿,鸣,数,我,爱,学,现将()()222244m x y n x y -+-因式分解,结果呈现的可能是哪句话( ) A .我爱鹿鸣 B .爱鹿鸣 C .鹿鸣数学 D .我爱数学二、填空题(共8小题,满分32分)11.如图为杨辉三角表,它可以帮助我们按规律写出()na b +(其中n 为正整数)展开式的系数,请仔细观察表中规律,将()4a b +的展开式补充完整. ()1a b a b +=+ ()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++()4434a b a a b +=++ 22344a b ab b ++12.若4,8x y a b ==,则232x y -可表示为 (用含a 、b 的代数式表示).13.如图,请根据图中标的数据,计算大长方形的面积.通过面积不同的计算方法,可以得到的等式关系是: .14.计算:()2321x x x -⋅+-= . 15.如图所示的运算过程中,若开始输入的值为43,我们发现第1次输出的结果为48,第二次输出的结果为24,…,则第2020次输出的结果为 .16.当2x =时,31ax bx ++的值为6,那么当2x =-时,31ax bx ++的值是 .17.已知关于x 、y 的二次式22754524x xy ay x y ++---可分解为两个一次因式的乘积,则a 的值是 . 18.卫星绕地球运动的速度(第一宇宙速度)为37.910⨯米/秒,求卫星绕地球运行5×103秒后所经过的路程是 米(用科学记数法表示)三、解答题(共6小题,每题8分,满分48分)19.计算.(1)()()2x y a b ++;(2)()()a b a b +-;(3)()13a b a ⎛⎫-- ⎪⎝⎭; (4)()()3223x y x y --;(5)()()322x x +--.20.利用因式分解计算:(1)20032-1999×2001(2)562+442+56×88.21.先化简,再求值:()()()2212112x x x -++-,其中=1x -.22.(1)计算:(﹣2x 2y )3÷(﹣4xy 2);(2)已知,如图,D 是△ABC 的边AB 上一点,AB∥FC ,DF 交AC 于点E ,DE=EF .求证:AE=CE .23.我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到()2222a b a ab b +=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:_______;(2)若10a b c ++=,25ab ac bc ++=则222a b c ++=_______;(3)在棱长为a 的正方体上割去一个棱长为()b b a <的小正方体(如图3),通过用不同的方法计算图中余下几何体的体积,完成填空:()()33____________a b a b -=-.(4)利用(3)得到的恒等式分解因式:3327x y -.24.请阅读游戏玩法并回答问题:(1)如图1,有一个边长为a 的大正方形纸板,在正中心剪下边长为b 的正方形.则阴影部分面积是______.(2)将图1沿虚线剪开后重新拼接成图2,得到一个平行四边形.则这个平行四边形的底是______,高是______,面积是______.(3)由图1到图2可以得到等式______.(4)利用上述得到的等式计算9991001⨯.参考答案:1.B2.B3.C4.B5.D6.D7.B8.A9.B10.A11.612.a b13.()()2232325a b a b a b ab ++=++14.32363x x x --+15.6.16.-417.6。
人教版 八年级(上)数学 第14章 整式的乘法与因式分解 单元测试卷 (解析版)
人教版八年级(上)数学第14章整式的乘法与因式分解单元测试卷一.选择题(共10小题)1.计算的结果是A.B.C.D.2.下列运算正确的是A.B.C.D.3.下列各式从左到右的变形属于因式分解的是A.B.C.D.4.下列各题可以用平方差公式计算的是A.B.C.D.5.如果,那么的值为A.3 B.C.6 D.6.若,则、的值分别为A.9;5 B.3;5 C.5;3 D.6;12 7.若多项式可分解为,则的值为A.2 B.1 C.D.8.化简的结果是A.B.C.D.9.在等式“左边填加一个单项式,使其右边可以写成一个完全平方式,下列各选项中不行的是A.B.C.D.10.能够用如图中已有图形的面积说明的等式是A.B.C.D.二.填空题(共6小题)11.分解因式:.12.计算的结果等于.13.已知,,则.14.多项式与多项式的公因式是.15.计算.16.已知,,,试比较,,的大小,用“”将它们连接起来:.三.解答题(共8小题)17.计算:.18.计算:.19.利用平方差公式计算:.20.分解因式:.21.已知,求的值.22.已知,,求的值.23.如果关于的多项式与的乘积展开式中没有二次项,且常数项为10,求的值.24.把几个图形拼成一个图形,再通过图形面积的计算,常常可以得到一些有用的信息,或可以求出一些不规则图形的面积.(1)如图1所示,将一张长方形纸板按图中虚线载剪成九块,其中有两块是边长都为的大正方形,两块是边长都为的小正方形,五块是长为,宽为的全等小长方形,且,观察图形,利用面积的不同表示方法,可以发现一个代数恒等式.(2)将图2中边长为和的正方形拼在一起,,,三点在同一条线上,连接和,若这两个正方形的边长满足,,请求出阴影部分的面积.(3)若图1中每块小长方形的面积为,四个正方形的面积和为,试求图中所有裁剪线(虚线部分)长之和.参考答案一.选择题(共10小题)1.计算的结果是A.B.C.D.解:.故选:.2.下列运算正确的是A.B.C.D.解:、,故选项计算错误;、,故选项计算错误;、,故选项计算错误;、,故选项计算正确;故选:.3.下列各式从左到右的变形属于因式分解的是A.B.C.D.解:、是整式的乘法,故此选项不符合题意;、不属于因式分解,故此选项不符合题意;、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;、把一个多项式转化成几个整式积的形式,故此选项符合题意;故选:.4.下列各题可以用平方差公式计算的是A.B.C.D .解:由平方差公式判断:答案:,满足条件;答案:不满足条件;答案:不满足条件;答案:不满足条件;故选:.5.如果,那么的值为A.3 B.C.6 D.解:,.故选:.6.若,则、的值分别为A.9;5 B.3;5 C.5;3 D.6;12解:,,,,,,故选:.7.若多项式可分解为,则的值为A.2 B.1 C.D.解:,,,,,.故选:.8.化简的结果是A.B.C.D.解:,故选:.9.在等式“左边填加一个单项式,使其右边可以写成一个完全平方式,下列各选项中不行的是A.B.C.D.解:,,,都是完全平方式,观察选项,只有选项符合题意,故选:.10.能够用如图中已有图形的面积说明的等式是A.B.C.D.解:如图,由题意得,长方形③与长方形②的面积相等,正方形④的面积为,于是有,所以,故选:.二.填空题(共6小题)11.分解因式:.解:原式,故答案为:12.计算的结果等于.解:,故答案为:.13.已知,,则64.解:,,.故答案为:64.14.多项式与多项式的公因式是.解:①;②;故答案为:.15.计算.解:.故答案为:16.已知,,,试比较,,的大小,用“”将它们连接起来:.解:,,,,,故答案为.三.解答题(共8小题)17.计算:.解:原式,18.计算:.解:原式.19.利用平方差公式计算:.解:原式,,.20.分解因式:.解:原式.21.已知,求的值.解:,,.22.已知,,求的值.解:将两边平方得:,将代入得:.23.如果关于的多项式与的乘积展开式中没有二次项,且常数项为10,求的值.解:,乘积展开式中没有二次项,且常数项为10,且,解得,,.24.把几个图形拼成一个图形,再通过图形面积的计算,常常可以得到一些有用的信息,或可以求出一些不规则图形的面积.(1)如图1所示,将一张长方形纸板按图中虚线载剪成九块,其中有两块是边长都为的大正方形,两块是边长都为的小正方形,五块是长为,宽为的全等小长方形,且,观察图形,利用面积的不同表示方法,可以发现一个代数恒等式.(2)将图2中边长为和的正方形拼在一起,,,三点在同一条线上,连接和,若这两个正方形的边长满足,,请求出阴影部分的面积.(3)若图1中每块小长方形的面积为,四个正方形的面积和为,试求图中所有裁剪线(虚线部分)长之和.解:(1)大长方形的面积,大长方形的面积,,故答案为:;(2)阴影部分的面积.答:阴影部分的面积为14;(3)由题意得:,,,,,,图中所有裁剪线(虚线部分)长之和.答:图中所有裁剪线(虚线部分)长之和.。
人教版八年级数学上册第14章《整式的乘法与因式分解》中考真题训练(含答案)
人教版八年级数学上册第14章《整式的乘法与因式分解》中考真题训练知识点一 整式的乘法1. 已知16,x x +=则221x x+=( )A.38B.36C.34D.32 2.若()2242x ax x ++=-,则a = .3. 若4,1,a b a b +=-=则()()2211a b +--的值为 . 4. 已知:2212,3,x y x y -=+=求222x xy -的值.5. 【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625, 26×24=624,27×23=621,…,47×3=141,48×2=96,49×1=49.【发现】根据你的阅读回答问题(1)上述内容中,两数相乘,积的最大值为 .(2)设参与上述运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是 .【类比】观察下列两数的积:1×59,2×58,3×57,456,…,m n ⨯,…,56×4,57×3,58×2,59×1.猜想mn 的最大值为 .并用你学过的知识加以证明.知识点二 因式分解6. 下列因式分解正确的是( )A.()21x x x x -=+ B.()()23441a a a a --=+-C.()2222a ab b a b +-=- D.()()22x y x y x y -=+-7. 把228a -分解因式,结果正确的是( ) A.()224a -B.()224a -C.()()222a a +-D.()222a +8. 多项式236x y y -在实数范围内分解因式正确的是( )A.(3y x x +-B.()232y x -C.()236y x -D.(3y x x -9. 若多项式251712x x +-可因式分解成()()x a bx c ++,其中,,a b c 均为整数,则a c +之值为( )A.1B.7C.11D.1310. 若整式22x my +(m 为常数,且m ≠0)能在有理数范围内分解因式,则m 的值可以是 (写一个即可).11. 分解因式:2222b c bc a ++-= .12.分解因式:()()2125.x x -+-参考答案 1. 答案:C解析:22221116,262=34.x x x x x x ⎛⎫+=∴+=+-=- ⎪⎝⎭2. 答案:-4解析:()22242=44 4.x ax x x x a ++=--+∴=-,故答案为-4. 3. 答案:12解析:()()()()224,1,111111a b a b a b a b a b +=-=∴+--=++-+-+()()24312.a b a b =+-+=⨯=4. 答案:()()()2212,3,312,4,27,x y x y x y x y x y x y x -=+-=+=∴-=∴-=∴= ()22227428.x xy x x y ∴-=-=⨯=5. 答案:【解】【发现】(1)两数相乘,积的最大值为625.(2)已知参与运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是a b +=50.【类比】mn 的最大值为900.证明如下:由题意,可得m n +=60,则=60n m -.将=60n m -代入mn ,得260mn m m =-+()()()22230900.300,300,m m m =--+-≥∴--≤∴当m =30时,mn 有最大值为900.6. 答案:D解析:A 选项,()21x x x x -=-,错误;B 选项,()()23441a a a a --=-+,错误;C 选项,222a ab b +-不能因式分解,错误;D 选项,()()22x y x y x y -=+-,正确故选D.7. 答案:C解析:原式=()()()224222a a a -=+-,故选C.8. 答案:A解析:()(2236323.x y y y x y x x -=-=+故选A. 9. 答案:A解析:利用十字相乘法将251712x x +-因式分解,可得251712x x +-()()()()()()=453,453,4,3,43 1.x x x x x a bx c a c a c +-∴+-=++∴==-∴+=-=故选A.10. 答案:(答案不唯一)解析:令m =-1,整式为()()22=.x y x y x y -+-故答案可以为-1. 11. 答案:()()b c a b c a +++-解析:()()()222222=.b c bc a b c a b c a b c a ++-+-=+++- 12. 答案:原式=()()2221210933.x x x x x x -++-=-=+-。
八年级数学上册第十四章整式的乘法与因式分解单元测试卷(含答案)
第十四章 整式的乘法与因式分解 (时间:60分钟 满分:100分)一、选择题(本大题共有10小题,每小题3分,共30分)1.下列各式运算正确的是( )A.532a a a =+B.532a a a =⋅C.632)(ab ab =D.5210a a a =÷2. 计算232(3)x x ⋅-的结果是( )A. 56xB. 62xC.62x -D. 56x - 3.计算32)21(b a -的结果正确的是( ) A. 2441b a B.3681b a C. 3681b a - D.5318a b -4. 44221625)(______)45(b a b a -=+-括号内应填( )A 、2245b a +B 、2245b a +C 、2245b a +-D 、2245b a --5.如图,阴影部分的面积是( )A .xy 27B .xy 29C .xy 4D .xy 26.()()22x a x ax a -++的计算结果是( )A. 3232x ax a +-B. 33x a -C.3232x a x a +-D.222322x ax a a ++-7.下面是某同学在一次测验中的计算摘录①325a b ab +=; ②33345m n mn m n -=-;③5236)2(3x x x -=-⋅;④324(2)2a b a b a ÷-=-; ⑤()235a a =;⑥()()32a a a -÷-=-.其中正确的个数有( )A.1个B.2个C.3个D. 4个8.下列分解因式正确的是( )A.32(1)x x x x -=-.B.2(3)(3)9a a a +-=-C. 29(3)(3)a a a -=+-.D.22()()x y x y x y +=+-.9. 如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ).A .0B .3C .-3D .110. 若3x =15, 3y =5,则3x y-= ( ).A .5B .3C .15D .10二、填空题(本大题共有7小题,每空2分,共16分) 11.计算(-3x 2y )·(213xy )=__________. 12.计算22()()33m n m n -+--=__________. 13.201()3π+=________ 14.当x __________时,(x -3)0=1.15. 若22210a b b -+-+=,则a = ,b =16.已知4x 2+mx +9是完全平方式,则m =_________.17. 已知5=+b a ,3ab =则22a b +=__________.18. 定义2a b a b *=-,则(12)3**= .三、解答题(本大题共有7小题,共54分)19.(9分)计算:(1)34223()()a b ab ÷ (2)))(()(2y x y x y x -+-+.(3)xy xy y x y x 2)232(2223÷+--20.(12分)分解因式:(1) 12abc -2bc 2; (2) 2a 3-12a 2+18a ;(3) 9a(x -y)+3b(x -y); (4) (x +y )2+2(x +y )+1.21.(5分)先化简,再求值:()()()22x y x y x y x ⎡⎤-++-÷⎣⎦,其中x=3,y=122. (5分) 请你从下列各式中,任选两式作差,并将得到的式子进行因式分解. 2224()19a x y b +, , ,23.(8分)解下列方程与不等式(1) 3(7)18(315)x x x x -=--; (2)(3)(7)8(5)(1)x x x x +-+>+-.24. (7分)数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300-4)2=3002-2×300×(-4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.25.(8分) 下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程.解:设x 2-4x =y原式=(y +2)(y +6)+4 (第一步)= y 2+8y +16 (第二步)=(y +4)2 (第三步)=(x 2-4x +4)2 (第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.参考答案1. B ;2.D ;3. C ;4 .D ;5.A6.B ; 7.B ;8.C.9.C 10.B11.-x 3y 3 ;12.2249m n - ; 13.109 14. ≠315.2, 116.12± ;17. 1918.-219.(1)32a b ;(2)222y xy + (3)2312x y xy --+ 20.(1)2bc(6 a -c);(2)2a (a -3)2;(3) 3(x -y )(3a +b );(4) (x +y +1)2. 21.x-y 222.解:答案不惟一,如291(31)(31)b b b -=+-23.(1) 3x = (2) 1x <-24.错在“-2×300×(-4)”,应为“-2×300×4”,公式用错.∴2962=(300-4)2 =3002-2×300×4 +42=90000-2400+16=87616.25.(1)C ;(2)分解不彻底;4(2)x -(3)4(1)x -。
八年级上册数学单元测试卷-第十四章 整式的乘法与因式分解-人教版(含答案)
八年级上册数学单元测试卷-第十四章整式的乘法与因式分解-人教版(含答案)一、单选题(共15题,共计45分)1、已知,,…,都是正数,如果 M=(+ +…+ )(+ +…+),N=(+ +…+ )(+ +…+ ),那么 M,N 的大小关系是()A.M>NB.M=NC.M<ND.不确定2、计算:等于()A. B. C. D.3、把代数式3x3﹣6x2y+3xy2分解因式,结果正确的是()A.x(3x+y)(x﹣3y)B.3x(x 2﹣2xy+y 2)C.x(3x﹣y)2 D.3x(x﹣y)24、下列运算正确的是( )A.a².a 3=a 6B.(-a) 8÷(-a) 4=a 2C.(-2a²) 3=-6a 6D.a -2= (a≠0)5、下列运算中,结果正确的是()A. B. C. D.6、下列运算正确的是()A.(x 3)4=x 7B.﹣(﹣x)2•x 3=﹣x 5C.x+x 2=x 3D.(x+y)2=x 2+y 27、将方程x2+4x+1=0配方后,原方程变形为()A.(x+2)2=3B.(x+4)2=3C.(x+2)2=﹣3D.(x+2)2=﹣58、下列运算正确的是( )A.(2a 2) 3=6a 6B.-a 2b 2·3ab 3=-3a 2b 5C. =-1 D.- (a-b 2)=-a 2+2ab-b 29、下列分解因式正确的是()A.3x 2﹣6x=x(3x﹣6)B.﹣a 2+b 2=(b+a)(b﹣a)C.4x 2﹣y 2=(4x+y)(4x﹣y)D.4x 2﹣2xy+y 2=(2x﹣y)210、若y2-4y+m=(y-2)2,则m的值为()A.-2B.-4C.2D.411、下列从左到右的变形,属于因式分解的是()A. B. C.D.12、下列各式中,正确的是()A.3a+b=3abB.23x+4=27xC.-2(x-4)=-2x+4D.2-3x=-(3x-2)13、如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().A.(2a 2+5a)cm 2B.(3a+15)cm 2C.(6a+9)cm 2D.(6a+15)cm 214、已知一个正方体的棱长为2×102毫米,则这个正方体的体积为()A.6×10 6立方毫米B.8×10 6立方毫米C.2×10 6立方毫米 D.8×10 5立方毫米15、下列运算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、因式分解:________.17、因式分解:=________.18、计算:()2015×(﹣)2016=________19、计算:a0÷a﹣1=________.20、分解因式xy2+4xy+4x=________.21、若多项式a2+6a+m是一个完全平方式,则m的值是________.22、分解因式:x2-2x=________ .23、已知a=,,,则代数式2(a2+b2+c2-ab-bc-ac)的值是________。
人教版八年级上册数学 第十四章整式的乘法与因式分解试卷(含答案)
人教版八年级上册数学第十四章整式的乘法与因式分解一、单选题1.下列各式,能用平方差公式计算的是()A.(a-2b)(-a+2b)B.(a-2b)(-a-2b)C.(a-1)(a+2)D.(a-2b)(2a+b)2.下列各式中,从左到右的变形是因式分解的是( )A.6x7=3x2⋅2x5B.3x+3y−5=3(x+y)−5C.4x2+4x=4x(x+1)D.(x+1)(x−1)=x2−13.下列运算正确的是()A.a2+a3=a5B.(﹣2a3)2=4a6C.a6÷a3=a2D.(a+2b)2=a2+2ab+b24.在多项式16x2+1添加一个单项式,使得到的多项式能运用完全平方公式分解因式,则下列表述正确的是()嘉琪:添加±8x,16x2+1±8x=(4x±1)2陌陌:添加64x4,64x4+16x2+1=(8x2+1)2嘟嘟:添加−1,16x2+1−1=16x2=(4x)2A.嘉琪和陌陌的做法正确B.嘉琪和嘟嘟的做法正确C.陌陌和嘟嘟的做法正确D.三位同学的做法都不正确5.如图1,将一张长方形纸板的四角各剪去一个边长为a的小正方形(阴影部分),制成如图2的无盖纸盒,若该纸盒的容积为2a2b,则图2中纸盒底部长方形的周长为()A.4a+2b B.2ab C.6a+2b D.4ab6.若x2−kxy+9y2是一个完全平方式,则k的值为()A.3B.6C.±81D.±67.已知a m=2,a n=12,a2m+3n的值为( )A.6B.12C.2D.112b2,则m,n的值分别为()8.已知8a3b m÷28a n+1b2=27A.m=4,n=3B.m=4,n=2C.m=2,n=2D.m=2,n=39.下列有四个结论,其中正确的是()①若(x−1)x+1=1,则x只能是2;②若(x−1)(x2+ax+1)的运算结果中不含x2项,则a=1③若a+b=10,ab=16,则a−b=6④若4x=a,8y=b,则22x−3y可表示为abA.①②③④B.②③④C.①③④D.②④10.已知m=2b+2022,n=b2+2023,则m和n的大小关系中正确的是() A.m>n B.m≥n C.m<n D.m≤n二、填空题11.因式分解:xy−3y=.12.计算:(1)x3⋅x5=;(2)a5÷a2=;(3)[−(−a)2]3=;(4)(−3ab3)3=;(5)(−0.125)2021×82022=;(6)(a−b)2⋅(b−a)3=.13.若x m=4,x n=9,则x2m−n=.14.如果a,b是长方形的长和宽,且(a+b)2=16,(a−b)2=4,则长方形面积是.15.若(2x2+mx−8)(x2−3x+n)的展开式中不含x2和x3项,则m=,n=.16.已知2x-3y-2=0,则(10x)2÷(10y)3=.17.如图,两个正方形的边长分别为a和b,已知a+b=10,ab=22,那么阴影部分的面积是.三、解答题18.计算:(1)a2•(﹣a4)+2(a2)3(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)(3)(2x﹣3y)2+2(y+3x)(3x﹣y)(4)(a﹣2b+3)(a+2b+3)(5)(x−3y−2)2(6)(2m+3n)(2m﹣n)﹣2n(2m﹣n)19.先化简,再求值:[(x−2y)2−(x−y)(x+y)−2y2]÷y,其中x=−1,y=−2.20.如图,在某一禁毒基地的建设中,准备在一个长为6a米,宽为5b米的长方形草坪上修建两条宽分别为a和b米的通道.(1)剩余草坪的面积是多少平方米?(2)若a=1,b=3,则剩余草坪的面积是多少平方米?21.观察以下等式:(x+1)(x2−x+1)=x3+1(x+3)(x2−3x+9)=x3+27(x+6)(x2−6x+36)=x3+216(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2−xy+y2)−(x−y)(x2+xy+y2)22.如图,甲长方形的两边长分别为m+1、m+7;乙长方形的两边长分别为m+2、m+4(其中m为正整数).(1)设图中的甲长方形的面积为S1,乙长方形的面积为S2,试比较S1与S2的大小;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S−S1)是一个常数,请求出这个常数.23.阅读材料:若m2−2mn+2n2−8n+16=0,求m、n的值.解:m2−2mn+2n2−8n+16=0,∴(m2−2mn+n2)+(n2−8n+16)=0,∴(m−n)2+(n−4)2=0.∵(m−n)2≥0,(n−4)2≥0,∴(m−n)2=0,(n−4)2=0,∴m=4,n=4.根据你的观察,探究下面的问题:(1)a2+b2−4a+4=0,则a=______;b=______.(2)已知△ABC的三边长a、b、c都是正整数,且a2+b2−2a−6b+10=0,求c的值.24.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)用两种方法表示图②中的阴影部分的面积;(2)观察图②请你写出三个代数式(m+n)2、(m−n)2、4mn之间的等量关系式.(3)请运用(2)中的关系式计算:若x+y=−6,xy=2.75,求(x−y)2的值.参考答案:1.B2.C3.B4.A5.A6.D7.B8.B9.D10.D11.y(x−3)12.x8a3−a6−27a3b9−8(b−a)513.16914.315. 6 1316.10017.1718.(1)a6(2)21x+17(3)22x2−12xy+7y2(4)a2+6a+9−4b2(5)x2−6xy+9y2−4x+12y+4(6)4m2−n219.−4x+3y,−2.20.(1)剩余草坪的面积是20ab平方米;(2)若a=1,b=3,则剩余草坪的面积是60平方米.21.(1)a2−ab+b2(3)2y322.(1)S1>S2(2)S−S1=923.(1)2,0(2)c=324.(1)S阴影=(m−n)2或S阴影=(m+n)2−4mn(2)(m−n)2=(m+n)2−4mn(3)25。
人教版八年级数学上册 第十四章《整式乘法与因式分解》单元测试卷(含解析)
第十四章《整式乘法与因式分解》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)二、填空题(本大题共8小题,每小题4分,共32分)三、解答题(本大题共6小题,共58分)19.(8分)计算:20.(8分)分解因式:21.(10分)(1)若,求的值;(2)已知,求的值.22.(10分)观察下列等式:…(1)根据以上等式写出______;(2)直接写出的结果(n 为正整数)______;2225,()9m n m n -=+=m n -()()2121y y y m +-+=224424y my m y m -+-+()()2111x x x -÷-=+()()32111xx x x -÷-=++()()432111xx x x x -÷-=+++()()511x x -÷-=()()11nx x -÷-(3)计算:.23.(10分)材料:把多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:.(1)分解因式:(2)若a ,都是正整数且满足,求的值;(3)若a ,b为实数且满足 , ,求S 的最小值.24.(12分)我们学习了完全平方公式,把它适当变形,可解决很多数学问题.2342023122222+++++⋅⋅⋅+()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++1ab a b +++()b a b >40ab a b ---=a b +50ab a b ---=22235S a ab b a b =+++-()()22222222a b a ab b a b a ab b +=++-=-+,例如:若,求的值.解∶又根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)①若,则___________;②若,则________________;(3)如图点C 是线段上的一点,以为边向线段的两侧作正方形,已知,两正方形的面积和20,求图中阴影部分的面积.42a b ab +==,²²a b +4a b += 2()16a b ∴+=22216a ab b ∴++=2ab = 2216216412a b ab ∴+=-=-=22626x y x y +=+=,xy 231m n mn +==,2m n -=()()456m m --=()()2245m m -+-=AB AC BC 、AB 5AB =12S S +=答案解析:一、单选题1.B【分析】先利用多项式与多项式乘法法则,展开后合并同类项,再令含x 、y 的一次项的系数均为零,列方程组求解即可得到答案.【详解】解:==展开后多项式不含x 、y 的一次项,,,,故选B .2.A【分析】本题考查了整式的运算问题,分别利用同底数幂的乘法法则、幂的乘方、积的乘方法则、多项式的除法、乘法法则计算各式进行判断即可.【详解】(1)若,,则; 小明计算正确;(2);小明计算正确;(3);小明计算错误;(4);小明计算错误;(5).小明计算错误;故正确的有2个故答案为:A .3.D【分析】利用面积公式以及面积的和差将阴影面积表示出来即可.【详解】解:∵由图知阴影部分边长分别为(x -1),(x -2),()()2342x y x ay b +-++22422633844x axy bx xy ay by x ay b +++++---224(26)(28)(34)34x a xy b x b a y ay b+++-+-+- 280340b b a -=⎧∴⎨-=⎩34a b =⎧∴⎨=⎩1a b ∴-=-3m a =7n a =3721m n m n a a a +==⨯= ()()2020202020210.12580.125888-⨯=-⨯⨯=()222221a b ab ab a b ab ab ab a -÷=÷-÷=-()3328a a -=-()()22321263253x x x x x x x -+=+--=--连接,则阴影部分的面积,BD ()()1122a a b b a b =+++()212a b =+10=(2)由题意得,故答案为:;(3)由题意得,23.(1);(2)由得,,,,,,,,,解得,,;(3)由得,,,()121(1)1,n n n x x x x x ---÷-=++++ 121n n x x x --++++ ()2342023202412222221++++++=-÷ 2024(21)2 1.-=-1ab a b +++1()()ab a b =+++(1)(1)a b b =+++11()()a b =++40ab a b ---=15ab a b --+=115()()a b b ---=(1)(1)5a b --=a b > 11a b ∴->-551=⨯ 15a ∴-=11b -=6a =2b =8a b ∴+=50ab a b ---=5ab a b =++22235S a ab b a b∴=+++-()222355a a b b a b=+++++-22233155a a b b a b=+++++-2228215a b a b =++++22288216a ab b =++++++()()222216a b =++++,,,当,时,,∴S 的最小值为6.24.(1)解:;(2)①,,,,;②(3)设,则,所以,()2220a +≥ ()210b +≥6S ∴≥2a =-1b =-6S =6x y += 222()236x y x y xy ∴+=++=2226x y += 210xy ∴=5xy ∴=231m n mn +== ,()2222449m n m mn n ∴+=++=2245m n ∴+=()2222441m n m n mn -=+-= 21m n ∴-=±4,5,m a m b -=-= 4(5)45a b m m m ∴-=---=--1m +=-(4)(5)6,m m --= 6,ab ∴=2222(4)(5)m m a b ∴-+-=+2()2a b ab=-+2(1)26=-+⨯112=+13,=,AC m BC n ==2212,S m S n ==221220S S m n +=+=。
人教版初中数学八年级上册《第14章 整式的乘法与因式分解》单元测试卷(含答案解析
人教新版八年级上学期《第14章整式的乘法与因式分解》单元测试卷一.解答题(共19小题)1.计算:(a﹣b)2•(b﹣a)3+(a﹣b)4•(b﹣a)2.计算:(1)(﹣x)3•(﹣x)4•(﹣x)5(2)(﹣a2)•(﹣a)3•(﹣a)4•a2.3.计算:2(x2)3•x3﹣(3x3)3+(5x)2•x7.4.计算:(1)(﹣2xy2)2•3x2y;(2)(﹣2a2)(3ab2﹣5ab3)5.某学校有一块长方形活动场地,长为2x米,宽比长少5米.实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加了4米.(1)求扩大后学生的活动场地的面积.(用含x的代数式表示)(2)若x=20,求活动场地扩大后增加的面积.6.运用完全平方公式计算:992.7.如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少?(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.8.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是.(填上正确的一个即可,不必考虑所有可能的情况)9.计算(1)﹣+(2)2a2(3a2﹣5ab3)(3)(2a+1)(﹣2a+1)10.大家已经知道,完全平方公式和平方差公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:2x(x+y)=2x2+2xy就可以用图的面积表示.(1)请写出图(2)所表示的代数恒等式:;(2)请写出图(3)所表示的代数恒等式:;(3)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2.11.阅读下面材料:小明遇到这样一个问题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.小明发现,可以设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴利用方程组可以解决.请回答:另一个因式为,m的值为;参考小明的方法,解决下面的问题:已知二次三项式2x2+3x﹣k有一个因式是(x﹣4),求另一个因式以及k的值.12.指出下列多项式的公因式:(1)3a2y﹣3ay+6y;(2)xy3﹣x3y2;(3)﹣27a2b3+36a3b2+9a2b.13.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.14.因式分解:(1)x2﹣4(x﹣1);(2)4(m+n)2﹣9(m﹣n)2.15.(1)计算:3﹣[6﹣(2﹣3)2](2)因式分解:4m2﹣16n2.16.分解因式:m2﹣25+9n2+6mn.17.计算(ax+b)(cx+d)=acx2+adx+bcx+bd=acx2+(ad+bc)x+bd,倒过来写可得:acx2+(ad+bc)x+bd=(ax+b)(cx+d).我们就得到一个关于的二次三项式的因式分解的一个新的公式.我们观察公式左边二次项系数为两个有理数的乘积,常数项也为两个有理数的乘积,而一次项系数恰好为这两对有理数交叉相乘再相加的结果.这种因式分解的方法叫十字交叉相乘法.如图1所示.示例:例如因式分解:12x2﹣5x﹣2解:由图2可知:12x2﹣5x﹣2=(3x﹣2)(4x+1)请根据示例,对下列多项式因式分解:①2x2+7x+6②6x2﹣7x﹣318.在实数范围内分解因式﹣9x4+16.19.已知a+b=5,ab=6,求多项式a3b+2a2b2+ab3的值.人教新版八年级上学期《第14章整式的乘法与因式分解》单元测试卷参考答案与试题解析一.解答题(共19小题)1.计算:(a﹣b)2•(b﹣a)3+(a﹣b)4•(b﹣a)【分析】首先根据偶次幂的性质变成同底数幂,再计算同底数幂的乘法,最后合并同类项即可.【解答】解:原式=(b﹣a)2•(b﹣a)3+(b﹣a)4•(b﹣a),=(b﹣a)5+(b﹣a)5,=2(b﹣a)5.【点评】此题主要考查了合并同类项法则以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.2.计算:(1)(﹣x)3•(﹣x)4•(﹣x)5(2)(﹣a2)•(﹣a)3•(﹣a)4•a2.【分析】根据指数幂的运算法则即可求出答案.【解答】解:(1)原式=(﹣x)12=x12(2)原式=(﹣a2)•(﹣a3)•a4•a2=a11【点评】本题考查整式运算,解题的关键是熟练运用整式的法则,本题属于基础题型.3.计算:2(x2)3•x3﹣(3x3)3+(5x)2•x7.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2x6x3﹣27x9+25x2•x7=2x9﹣27x9+25x9=0【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.计算:(1)(﹣2xy2)2•3x2y;(2)(﹣2a2)(3ab2﹣5ab3)【分析】(1)首先利用积的乘方运算法则化简,进而利用单项式乘以单项式运算法则计算得出答案;(2)直接利用单项式乘以多项式运算法则计算得出答案.【解答】解:(1)(﹣2xy2)2•3x2y=4x2y4•3x2y=12x4y5;(2)(﹣2a2)(3ab2﹣5ab3)=﹣2a2×3ab2﹣2a2×(﹣5ab3)=﹣6a3b2+10a3b3.【点评】此题主要考查了积的乘方运算以及单项式乘以多项式运算,正确掌握运算法则是解题关键.5.某学校有一块长方形活动场地,长为2x米,宽比长少5米.实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加了4米.(1)求扩大后学生的活动场地的面积.(用含x的代数式表示)(2)若x=20,求活动场地扩大后增加的面积.【分析】(1)根据题意列出(2x+4)(2x﹣5+4),化简即可求出答案.(2)根据题意列出4x2+6x﹣4﹣2x(2x﹣5),将x=20代入即可求出答案.【解答】(1)根据题意可知:(2x+4)(2x﹣5+4)=(2x+4)(2x﹣1)=4x2+6x﹣4(2)4x2+6x﹣4﹣2x(2x﹣5)=4x2+6x﹣4﹣4x2+10x=16x﹣4.当x=20时,原式=16×20﹣4=316.答:活动场地扩大后增加的面积是316平方米.(8分)【点评】本题考查整式的应用,解题的关键是根据题意列出算式,本题属于基础题型.6.运用完全平方公式计算:992.【分析】直接利用完全平方公式计算得出答案.【解答】解:992=(100﹣1)2=1002﹣2×100×1+12=9801.【点评】此题主要考查了完全平方公式,正确将原式变形是解题关键.7.如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少?(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.【分析】(1)观察可得阴影部分的正方形边长是m﹣n;(2)方法1:边长为m+n的大正方形的面积减去4个长为m,宽为n的小长方形面积;方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积;(3)由(2)可得结论(m+n)2=(m﹣n)2+4mn;(4)由(a﹣b)2=(a+b)2﹣4ab求解.【解答】解:(1)阴影部分的正方形边长是m﹣n.(2)阴影部分的面积就等于边长为m﹣n的小正方形的面积,方法1:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,即(m﹣n)2=(m+n)2﹣4mn;方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,即(m﹣n)2=(m+n)2﹣2m•2n=(m+n)2﹣4mn;(3)(m+n)2=(m﹣n)2+4mn.(4)(a﹣b)2=(a+b)2﹣4ab=49﹣4×5=29.【点评】本题考查了完全平方公式的几何意义,认真观察图形以及掌握正方形、长方形的面积公式计算是关键.8.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是4x.(填上正确的一个即可,不必考虑所有可能的情况)【分析】根据完全平方公式的公式结构解答即可.【解答】解:∵4x2±4x+1=(2x±1)2,∴加上的单项式可以是±4x.故答案为:4x(答案不唯一).【点评】本题考查了完全平方式,熟练掌握完全平方公式的公式结构是解题的关键,开放型题目,答案不唯一.9.计算(1)﹣+(2)2a2(3a2﹣5ab3)(3)(2a+1)(﹣2a+1)【分析】(1)先算开方,再算加减即可;(2)利用单项式乘多项式的法则计算即可;(3)利用平方差公式计算即可.【解答】解:(1)原式=5﹣2+2=5;(2)原式=2a2×3a2﹣2a2×5ab3=6a4﹣10a3b3;(3)原式=(1+2a)(1﹣2a)=1﹣4a2.【点评】本题考查了实数的运算以及整式的运算,掌握运算顺序与法则是解题的关键.10.大家已经知道,完全平方公式和平方差公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:2x(x+y)=2x2+2xy就可以用图的面积表示.(1)请写出图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2;(2)请写出图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2;(3)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2.【分析】(1)图(2)中,大长方形边长为(x+y),(2x+y),图形中包括了两个边长为x的正方形,三个边长为x、y的长方形,一个边长为y的正方形,根据面积关系得出代数恒等式;(2)图(3)中,大长方形边长为(x+2y),(2x+y),图形中包括了两个边长为x 的正方形,五个边长为x、y的长方形,二个边长为y的正方形,根据面积关系得出代数恒等式;(3)根据题意,画出边长为(x+y),(x+3y)的长方形,再将图形划分,利用面积关系说明等式.【解答】解:(1)由图(2)的面积关系可知,(x+y)(2x+y)=2x2+3xy+y2;故答案为:2x2+3xy+y2;(2)由图(3)的面积关系可知,(x+2y)(2x+y)=2x2+5xy+2y2;故答案为:(x+2y)(2x+y)=2x2+5xy+2y2;(3)以边长为(x+y),(x+3y)画长方形,如图所示,由图可知,(x+y)(x+3y)=x2+4xy+3y2.【点评】本题考查了平方差公式的几何背景,完全平方公式的几何背景.关键是利用形数结合的方法,由大长方形得出图形的长与宽,计算面积,再看图形中包括的小长方形个数及每个小长方形的面积,得出面积结论.11.阅读下面材料:小明遇到这样一个问题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.小明发现,可以设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴利用方程组可以解决.请回答:另一个因式为x﹣7,m的值为﹣21;参考小明的方法,解决下面的问题:已知二次三项式2x2+3x﹣k有一个因式是(x﹣4),求另一个因式以及k的值.【分析】求出方程组的解,即可求出答案;设二次三项式2x2+3x﹣k的另一个因式为2x+a,得出方程组,求出方程组的解即可.【解答】解:解方程组得:,即另一个因式为x﹣7,m=﹣21;设二次三项式2x2+3x﹣k的另一个因式为2x+a,则2x2+3x﹣k=(x﹣4)(2x+a),2x2+3x﹣k=2x2+(a﹣8)x﹣4a,所以,解得:a=11,k=44,即另一个因式是2x+11,k=44,故答案为:x﹣7,﹣21.【点评】本题考查了多项式乘以多项式和解二元一次方程组,能得出二元一次方程组是解此题的关键.12.指出下列多项式的公因式:(1)3a2y﹣3ay+6y;(2)xy3﹣x3y2;(3)﹣27a2b3+36a3b2+9a2b.【分析】多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.【解答】解:(1)(3a2y﹣3ay+6y)的公因式是:3y;(2)(xy3﹣x3y2)是公因式是:xy2;(3)(﹣27a2b3+36a3b2+9a2b)的公因式是:9a2b.【点评】本题考查了公因式的定义.确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.13.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【分析】选择第一、三项相加,利用提取公因式法分解即可.【解答】解:x2+2xy+x2=2x2+2xy=2x(x+y)(答案不唯一).【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.14.因式分解:(1)x2﹣4(x﹣1);(2)4(m+n)2﹣9(m﹣n)2.【分析】(1)把原式拆开,发现刚好是完全平方式,所以用完全平方公式分解即可.(2)可以化为两个数的平方差,运用平方差公式分解则可.【解答】解:(1)x2﹣4(x﹣1),=x2﹣4x+4,=(x﹣2)2;(2)4(m+n)2﹣9(m﹣n)2,=[2(m+n)]2﹣[3(m﹣n)]2,=[2(m+n)+3(m﹣n)][2(m+n)﹣3(m﹣n)],=(2m+2n+3m﹣3n)(2m+2n﹣3m+3n),=(5m﹣n)(5n﹣m).【点评】本题考查了完全平方公式和平方差公式因式分解,熟记公式结构并灵活运用是解题的关键.15.(1)计算:3﹣[6﹣(2﹣3)2](2)因式分解:4m2﹣16n2.【分析】(1)直接利用有理数混合运算法则化简求出答案;(2)直接利用平方差公式分解因式得出答案.【解答】解:(1)3﹣[6﹣(2﹣3)2]=3﹣(6﹣1)=﹣2;(2)4m2﹣16n2=(2m﹣4n)(2m+4n)=4(m﹣2n)(m+2n).【点评】此题主要考查了公式分解因式以及有理数乘法,正确应用平方差公式是解题关键.16.分解因式:m2﹣25+9n2+6mn.【分析】首先分组,进而利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:原式=(m2+6mn+9n2)﹣25=(m+3n)2﹣25=(m+3n+5)(m+3n﹣5).【点评】此题主要考查了分组分解法分解因式,正确分组是解题关键.17.计算(ax+b)(cx+d)=acx2+adx+bcx+bd=acx2+(ad+bc)x+bd,倒过来写可得:acx2+(ad+bc)x+bd=(ax+b)(cx+d).我们就得到一个关于的二次三项式的因式分解的一个新的公式.我们观察公式左边二次项系数为两个有理数的乘积,常数项也为两个有理数的乘积,而一次项系数恰好为这两对有理数交叉相乘再相加的结果.这种因式分解的方法叫十字交叉相乘法.如图1所示.示例:例如因式分解:12x2﹣5x﹣2解:由图2可知:12x2﹣5x﹣2=(3x﹣2)(4x+1)请根据示例,对下列多项式因式分解:①2x2+7x+6②6x2﹣7x﹣3【分析】根据题意给出的因式分解法即可求出答案.【解答】解:由题意可知:①2x2+7x+6=(x+2)(2x+3)②6x2﹣7x﹣3=(2x﹣3)(3x+1)【点评】本题考查因式分解法,解题的关键是正确理解题意给出的方法,本题属于基础题型.18.在实数范围内分解因式﹣9x4+16.【分析】根据平方差公式可以将题目中的式子进行因式分解,本题得以解决.【解答】解:﹣9x4+16=(4+3x2)(4﹣3x2)=(4+3x2)(2+)(2﹣).【点评】本题考查实数范围内分解因式,解答本题的关键是明确分解因式的方法,注意在实数范围分解因式.19.已知a+b=5,ab=6,求多项式a3b+2a2b2+ab3的值.【分析】对所求的式子先提公因式,然后将a+b=5,ab=6代入即可解答本题.【解答】解:∵a+b=5,ab=6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=6×52=6×25=150.【点评】本题考查因式分解的应用,解答本题的关键是对所求式子变形,找出与已知式子之间的关系.。
八年级上册数学单元测试卷-第十四章 整式的乘法与因式分解-人教版(含答案)
八年级上册数学单元测试卷-第十四章整式的乘法与因式分解-人教版(含答案)一、单选题(共15题,共计45分)1、下列计算正确的是()A. B. C.D.2、下列计算正确的是( )A. B. C. D.3、下列等式从左到右的变形,属于因式分解的是()A.( a+b)( a﹣b)=a2﹣b2B. a2+4 a+1=a( a+4)+1C.x3﹣x=x( x+1)( x﹣1) D.4、下列计算正确的是()A.a 3+a 3=2a 6B.a 4•(a 3)2=a 10C.a 6÷a 2=a 3D.(a﹣b)2=a 2﹣b 25、下列运算正确的是()A.a 12÷a 6=a 6B.(a ﹣2b)2=a ﹣4bC.a 3•a 3=2a 6D.(a 2)3=a 56、如图,从边长为cm的正方形纸片中剪去一个边长为cm的正方形( >0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为( )A. B. C. D.7、下列因式分解正确的是()A. B. C.D.8、下列从左边到右边的变形,是因式分解的是()A.(3-x)(3+x)=9-x 2B.x 2+2x+1=x(x+1)+1C.a 2b+ab 2=ab (a+b)D.(a-b)(n-m)=(b-a)(n-m)9、已知,,则的值为( )A.22B.16C.10D.410、下列计算正确的是()A. B. C.D.11、我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图(1)可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图(2)面积的计算,验证了一个恒等式,此等式是()A.a 2﹣b 2=(a+b)(a﹣b)B.(a﹣b)2=a 2﹣2ab+b 2C.(a+b)2=a 2+2ab+b 2 D.(a﹣b)(a+2b)=a 2+ab﹣b 212、函数的自变量的取值范围是()A. B. C. 且 D.13、把多项式1﹣x2+2xy﹣y2分解因式的结果是()A.(1﹣x﹣y)(1+x﹣y)B.(1+x﹣y)(1﹣x+y)C.(1﹣x﹣y)(1﹣x+y)D.(1+x﹣y)(1+x+y)14、若x2+(k+2)x+9是完全平方式,则k的值为()A.4B.±4C.-8D.4或-815、若x>1,y>0,且满足xy=x y,=x3y,则x+y的值为()A.1B.2C.D.二、填空题(共10题,共计30分)16、若,则m=________ .17、分解因式:3-3a2 ________ 。
人教版八年级上册数学第十四章(整式的乘法与因式分解)单元测试卷及答案
人教版八年级上册数学单元测试卷第十四章整式的乘法与因式分解姓名班级学号成绩一、选择题(每题3分,共30分)1.计算(a3)2的结果是( )A.a5B.a6 C.a8D.a92.下列添括号错误的是( )A.a2-b2-b+a=a2-b2+(a-b)B.(a+b+c)(a-b-c)=[a+(b+c)][a-(b+c)]C.a-b+c-d=(a-d)+(c-b)D.a-b=-(b+a)3.计算6m6÷(-2m2)3的结果为( )A.-m B.-1 C.34D.-344.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.x2y﹣y3=y(x+y)(x﹣y)5.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7.计算(﹣0.25)2021×(﹣4)2020的结果是()A.﹣B.C.﹣4 D.48.若x 2+mx +k 是一个完全平方式,则k 等于( ) A .B .C .D .m 29.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x -1,a-b ,3,x 2+1,a ,x +1分别对应“州”“爱”“我”“数”“学”“广”六个字,现将3a (x 2-1)-3b (x 2-1)分解因式,结果呈现的密码信息可能是( )A .我爱学B .爱广州C .我爱广州D .广州数学10.如图,在边长为2a 的正方形中央剪去一个边长为a +2的小正方形(a >2)后,将剩余部分沿虚线剪开,并拼成一个平行四边形,则该平行四边形的面积为( )A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2 二、填空题(每题3分,共24分)11.要使(﹣6x 3)(x 2+ax +5)+3x 4的结果中不含x 4项,则a 的值为_______ 12.计算:()()2323x y z x y z +--+=_______________________ 13.若(a +b )2=25,ab =6,则a ﹣b =_____.14.已知x +y =10,xy =1,则代数式x 2y +xy 2的值为_____ 15.已知10m=5,10n=7,则102m+n = .16.若x 2−(m −1)x+36是一个完全平方式,则m 的值为 . 17.若|a ﹣2|+b 2﹣2b+1=0,则a=______,b=_________.18.如图,边长分别为a ,b 的两个正方形并排放在一起,当a +b =16,ab =60时阴影部分的面积为 .三.解答题(共46分,19题6分,20 ---24题8分) 19.计算: (1)(-1)2 018+⎝ ⎛⎭⎪⎫-12 2-(3.14-π)0; (2)(2x 3y )2·(-2xy )+(-2x 3y )3÷2x 2;(3)(2x -3)2-(2x +3)(2x -3);(4)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a .20.分解因式:(1)m 3n -9mn; (2)(x 2+4)2-16x 2;(3)x 2-4y 2-x +2y; (4)4x 3y +4x 2y 2+xy 3.21.先化简,再求值:(1)(x 2-4xy +4y 2)÷(x -2y )-(4x 2-9y 2)÷(2x -3y ),其中x =-4,y =15;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m ,n 满足⎩⎨⎧m +2n =1,3m -2n =11.22.若a ,b ,c 是△ABC 的三边,满足a 2(c 2﹣a 2)=b 2(c 2﹣b 2),判断并说明△ABC 的形状.23.小马、小虎两人共同计算一道题:(x +a )(2x +b ).由于小马抄错了a 的符号,得到的结果是2x 2-7x +3,小虎漏抄了第二个多项式中x 的系数,得到的结果是x 2+2x -3. (1)求a ,b 的值;(2)请计算这道题的正确结果; (3)当x =-1时,计算(2)中式子的值.24.小红家有一块L 形菜地,要把L 形菜地按如图所示分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a m ,下底都是b m ,高都是(b -a ) m.(1)请你算一算,小红家菜地的面积是多少平方米? (2)当a =10,b =30时,该菜地的面积是多少平方米?答案一、选择题(每题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 BDDDBBAACC二、填空题(每题3分,共24分) 11.12解:原式=543466303x ax x x ---+=()54363630x a x x -+--∵(﹣6x 3)(x 2+ax +5)+3x 4的结果中不含x 4项,得360a -= 解得12a = 故答案为:12. 12.2224129x y yz z -+- 解:()()2323x y z x y z +--+()()=2323x y z x y z +---⎡⎤⎡⎤⎣⎦⎣⎦()2223x y z =-- ()2224129x y yz z =--+222=4129x y yz z -+-13.±1解:(a+b)2=a2+2ab+b2=25(a﹣b)2=a2﹣2ab+b2=(a2+2ab+b2)﹣4ab=(a+b)2﹣4ab=25﹣24=1 ∴a﹣b=±114.1015.17516.若x2−(m−1)x+36是一个完全平方式,则m的值为.解析:∵x2−(m−1)x+36是一个完全平方式∴m−1=±12故m的值为−11或13故答案为:−11或13.17.2,1【解析】∵|a﹣2|+b2﹣2b+1=0∴|a﹣2|+(b-1)2=0∴a-2=0,b-1=0∴a=2,b=1.18.22三.解答题(共46分,19题6分,20 ---24题8分)19.解:(1)原式=1+14-1=14;(2)原式=4x6y2·(-2xy)-8x9y3÷2x2=-8x7y3-4x7y3=-12x7y3;(3)原式=(2x-3)·[(2x-3)-(2x+3)]=(2x-3)·(-6)=-12x+18;(4)原式=(a2-4ab+4b2+a2-4b2-4a2+2ab)÷2a=(-2a2-2ab)÷2a=-a-b.20.解:(1)原式=mn(m2-9)=mn(m+3)(m-3);(2)原式=(x2+4+4x)(x2+4-4x)=(x+2)2(x-2)2;(3)原式=x2-4y2-(x-2y)=(x+2y)(x-2y)-(x-2y)=(x-2y)(x+2y-1);(4)原式=xy(4x2+4xy+y2)=xy(2x+y)2.21.解:(1)原式=(x -2y )2÷(x -2y )-(2x +3y )(2x -3y )÷(2x -3y )=x -2y-2x -3y =-x -5y . ∵x =-4,y =15∴原式=-x -5y =4-5×15=3.(2)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn . 解方程组⎩⎨⎧m +2n =1,3m -2n =11,得⎩⎨⎧m =3,n =-1.∴原式=2mn =2×3×(-1)=-6. 22.解:∵a 2(c 2﹣a 2)=b 2(c 2﹣b 2) ∴a 2(c 2﹣a 2)﹣b 2(c 2﹣b 2)=0a 2c 2﹣a 4﹣b 2c 2+b 4=0 c 2(a 2﹣b 2)﹣(a 4﹣b 4)=0c 2(a 2﹣b 2)﹣(a 2+b 2)(a 2﹣b 2)=0(a 2﹣b 2)(c 2﹣a 2﹣b 2)=0 ∴a 2﹣b 2=0或c 2﹣a 2﹣b 2=0 ∵a ,b ,c 是△ABC 的三边 ∴a =b 或c 2=a 2+b 2∴△ABC 是等腰三角形或直角三角形. 23.解:(1)根据题意,得小马的计算过程如下:(x -a )(2x +b )=2x 2+bx -2ax -ab =2x 2+(b -2a )x -ab =2x 2-7x +3. 小虎的计算过程如下:(x +a )(x +b )=x 2+(a +b )x +ab =x 2+2x -3. 所以b -2a =-7,a +b =2 解得a =3,b =-1.(2)由(1)得正确的算式是(x+3)(2x-1)=2x2-x+6x-3=2x2+5x-3.(3)当x=-1时2x2+5x-3=2×(-1)2+5×(-1)-3=-6.24.解:(1)小红家菜地的面积是2×12×(a+b)(b-a)= (b2-a2) m2.(2)当a=10,b=30时,该菜地的面积是302-102=800(m2).。
人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)
人教版八年级数学上册第十四章《整式的乘法与因式分解》测试题(含答案)一、单选题1.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .a 2﹣b 2=(a +b )(a ﹣b )B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a 2+ab =a (a +b )2.在下列运算中,正确的是()A .236x x x ⋅=B .23x x x +=C .326()x x =D .933x x x ÷= 3.下列等式中,从左到右的变形是因式分解的是( )A .229(3)x x -=-B .22(1)21x x x +=++C .24(2)(2)x x x -=+-D .221x x x ⎛⎫+=+ ⎪⎝⎭4.已知23m m -的值为5,那么代数式2203026m m -+的值是( )A .2030B .2020C .2010D .20005.下列计算正确的是( )A .224a a a +=B .3252⋅=a a aC .235(2)312⋅=a a aD .21333⎛⎫+= ⎪⎝⎭a a a 6.如果25m m +=,那么代数式()()222m m m -++的值为( )A .-6B .-1C .9D .147.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( )A .0B .5C .5-D .5或5-8.若关于x 的多项式(x 2+2x +4)(x +k )展开后不含有一次项,则实数k 的值为( ) A .﹣1 B .2 C .3 D .﹣29.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 10.下列算式中不能利用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y ---C .()()x y x y --+D .()()x y y x +-二、填空题 11.若表示一种新的运算,其运算法则为2a bc d =+-,则的结果为________.12.如果二次三项式x 2+3x +a 是一个完全平方式,那么常数a 的值是 ___.13.已知a 是方程x 2-5x +1=0的一个根,则a 4+a -4的个位数字为_____.14.若多项式2(1)16x m x --+能用完全平方公式进行因式分解,则m =________.15.若2224(3)ax x b mx ++=-,则=a ________.16.因式分解:(1)22x y -+=___________;(2)222x xy y -+=___________;(3)24a a -=___________;(4)265m m -+=___________.17.若2x +3y ﹣2=0,则4x •8y =___.18.在实数范围内分解因式221x x +-=___.三、解答题19.先化简,再求值:x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3),其中x 满足2x 2+3=4x .20.((教材呈现)下图是华师版八年级上册数学教材第49页B 组的第12题和第13题.(例题讲解)老师讲解了第12题的两种方法:(方法运用)请你任选第12题的解法之一,解答教材第49页B 组的第13题.(拓展)如图,在ABC 中,90ACB ∠=︒,分别以AC 、BC 为边向其外部作正方形ACDE 和正方形BCFG .若6AC BC +=,正方形ACDE 和正方形BCFG 的面积和为18,求ABC 的面积.21.计算:(59x 3y )•(﹣3xy 2)3•(12x )2.22.33x y x y .23.先化简,再求值:()2232()()a b ab b b a b b a --÷++-,其中12021a =-,2021b =.24.某校“数学社团”活动中,小亮对多项式进行因式分解,m 2-mn +2m -2n =(m 2-mn )+(2m -2n )=m (m -n )+2(m -n ) =(m -n )(m +2).以上分解因式的方法叫做“分组分解法”,请你在小亮解法的启发下,解决下面问题:(1)因式分解a 3-3a 2-9a +27;(2)因式分解x 2+4y 2-4xy -16;(3)已知a ,b ,c 是ABC 的三边,且满足222a ab c ac bc -+=-,判断ABC 的形状并说明理由.参考答案1.A【详解】解:大正方形的面积﹣小正方形的面积=a 2﹣b 2,矩形的面积=(a +b )(a ﹣b ),故a 2﹣b 2=(a +b )(a ﹣b ),故选:A .2.C【详解】解:A 、235x x x ,故错误,不符合题意;B . 2x x +不是同类项,不能合并,故错误,不符合题意;C . 326()x x =,故正确,符合题意;D . 936x x x ÷=,故错误,不符合题意;3.C【详解】解:A 、29(3)(3)x x x -=+-,则原等式不成立,此项不符题意;B 、22(1)21x x x +=++等式的右边不是乘积的形式,则此项不符题意;C 、24(2)(2)x x x -=+-是因式分解,此项符合题意;D 、221x x x ⎛⎫+=+ ⎪⎝⎭等式右边中的2x 不是整式,则此项不符题意; 4.B【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B .5.C【详解】A. ∵2a 和2a 是同类项,∵22242a a a a +=≠,故选项A 错误;B. 532522a a a a ⋅≠=,故选项B 错误;C. 52323(32)3412a a a a a ⋅==,故选项C 正确;D. 2213333a a a a a ⎛⎫+=+⎭≠ ⎪⎝,故选项D 错误. 6.D【详解】解:()()222m m m -++, 22244m m m m =-+++,2224m m =++,由25m m +=得:22210m m +=,则原式10414=+=,故选:D .7.C【详解】解:∵多项式2(5)2x a x ++-中不含x 的一次项,∵5+a =0,解得a =-5,故选:C .8.D【详解】解:(x 2+2x +4)(x +k )=x 3+kx 2+2x 2+2kx +4x +4k=x 3+(k +2)x 2+(2k +4)x +4k ,∵关于x 的多项式乘多项式(x 2+2x +4)(x +k )的结果中不含有x 的一次项, ∵2k +4=0,解得,k =−2,9.D【详解】A .3a 和2a 不是同类项,不能合并,此选项错误;B .2355()()()a a a a -⋅-=-=-,此选项错误;C . ()326a a =,此选项错误; D .235a a a ⋅=,此选项正确,故选:D .10.C【详解】解:A 、()()22x y x y x y +-=-,故A 不符合题意;B 、()()22()x y x y y x ---=--,故B 不符合题意;C 、()()x y x y --+不能利用平方差公式计算,故C 符合题意;D 、()()22x y y x y x +-=-,故D 不符合题意;11.223m m n +【详解】解:由题意得,=2222(2)3m m n n m -+-,=223243m m n m +-=223m m n +,故答案为:223m m n +.12.94【详解】解:∵二次三项式x 2+3x +a 是一个完全平方式,∵x 2+3x +a =x 2+2•x •32+(32)2, ∵a =94, 故答案为:94. 13.7【详解】解:由题意可得:2510a a ,0a ≠, ∵15a a +=, ∵22211223a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵24242112527a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵个位数字是7;故答案是7.14.9或-7或9【详解】解:∵多项式x 2-(m -1)x +16能用完全平方公式进行因式分解, ∵m -1=±8,解得:m =9或m =-7,故答案为:9或-715.16【详解】解:∵222(3)9=6mx x x m m --+,2224(3)ax x b mx ++=- ∵m 2=a ;-6m =24∵m =-4,a =16故答案为:1616.()()y x y x +- 2()x y - (4)a a - (1)(5)m m -- 【详解】解:(1)2222()()y x x y x x y y -++=--=(2)2222()x xy y x y -+=-(3)24(4)a a a a -=-(4)265(1)(5)m m m m -+=--故答案为()()y x y x +-,2()x y -,(4)a a -,(1)(5)m m -- 17.4【详解】解:48x y ⋅=()()2323232=2222x x x yy x +⋅=⋅, ∵x +3y -2=0,∵x +3y =2,∵原式=22=4,故答案为:4.18.(11x x ++【详解】解:原式=2212x x ++-2(1)2x =+-(11x x =+++,故答案为(11x x +++.19.2x 2-4x +3;原式=0.【详解】x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3)=﹣x 3+2x 2﹣(﹣x 3-x 2+3x + x 2+x ﹣3)=﹣x 3+2x 2+x 3+x 2-3x - x 2-x +3=2x 2-4x +3∵2x 2+3=4x∵2x 2-4x +3=0∵原式=0.20.【方法运用】见解析;【拓展】92【详解】【方法运用】∵(a -b )2= a 2+b 2-2ab∵2ab = a 2+b 2-(a -b )2.∵a -b =1,a 2+b 2=25,∵2ab = 25-1=24.∵ab =12.【拓展】由题意,得AC 2+BC 2=18.∵(AC +BC )2=62,AC 2+2AC •BC +BC 2=36. ∵2AC •BC =36﹣(AC 2+BC 2)=36﹣18=18. ∵AC •BC =9.∵S ∵ABC =12AC •BC =92. 21.87154x y - 【详解】 (59x 3y )•(﹣3xy 2)3•(12x )2 ()233332251392x x x y y ⎛⎫=-⨯⨯⋅⋅⋅⋅⋅ ⎪⎝⎭ 87154x y =- 22.2269x y y -+-【详解】解:33x y x y33x y x y 223x y2269x y y =-+-23.2ab -,2【详解】解:原式=223222÷-÷-÷+-a b b ab b b b b a=22222--+-a ab b b a=2ab -, 当12021a =-,2021b =时,原式=1220212021⎛⎫-⨯-⨯ ⎪⎝⎭=2. 24.(1)(a +3)(a -3)2;(2)(x -2y -4)(x -2y +4) ;(3)等腰三角形,见解析 【详解】解:(1)a 3-3a 2-9a +27=a 2(a -3)-9(a -3)=(a 2-9)(a -3) =(a -3)(a +3)(a -3) =(a +3)(a -3)2;(2)x 2+4y 2-4xy -16=(x 2-4xy +4y 2)-16=(x -2y )2-42=(x -2y -4)(x -2y +4);(3)∵ABC 是等腰三角形,理由如下:∵222a ab c ac bc -+=-,∵2220a ac c ab bc -+-+=,∵()()20a c b a c ---=,∵()()0a c a c b ---=,∵a ,b ,c 是∵ABC 的三边,∵a -c -b <0.∵a -c =0,∵a =c ,∵∵ABC 是等腰三角形.。
人教版八年级数学上册第14章整式的乘法与因式分解单元测试题含答案
⼈教版⼋年级数学上册第14章整式的乘法与因式分解单元测试题含答案第⼗四章整式的乘法与因式分解⼀、选择题1.下列各式由左边到右边的变形为因式分解的是()A.a2-b2+1=(a+b)(a-b)+1B.m2-4m+4=(m-2)2C.(x+3)(x-3)=x2-9D.t2+3t-16=(t+4)(t-4)+3t2.分解因式:x3-x,结果为()A.x(x2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是()A.16m2-4=(4m+2)(4m-2)B.m4-1=(m2+1)(m2-1)C.m2-6m+9=(m-3)2D.1-a2=(a+1)(a-1)4.下列多项式能因式分解的是()A.m2+n B.m2-m+1C.m2-2m+1D.m2-n5.计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y26.已知a+b=3,ab=2,计算:a2b+ab2等于()A.5B.6C.9D.17、下列运算中结果正确的是()A、x3·x3=x6;B、3x2+2x2=5x4;C、(x2)3=x5;D、(x+y)2=x2+y2.8、ab减去a2-ab+b2等于()。
A、a2+2ab+b2;B、-a2-2ab+b2;C、-a2+2ab-b2;D、-a2+2ab+b29、已知x2+kxy+64y2是⼀个完全式,则k的值是()A、8B、±8C、16D、±1610、如下图(1),边长为a的⼤正⽅形中⼀个边长为b的⼩正⽅形,⼩明将图(1)的阴影部分拼成了⼀个矩形,b a ab如图(2)。
这⼀过程可以验证()A、a2+b2-2ab=(a-b)2;B、a2+b2+2ab=(a+b)2;图1图2 (第10题图)C、2a2-3ab+b2=(2a-b)(a-b);D、a2-b2=(a+b)(a-b)⼆、填空题11.若单项式-3x4a-b y2与3x3y a+b是同类项,则这两个单项式的积为.12.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.13.若16b2+a2+m是完全平⽅式,则m=.14.分解因式:x3﹣x=.15.因式分解:4a3﹣12a2+9a=.16、若4x2+kx+25=(2x-5)2,那么k的值是三、解答题17.(8分)因式分解:(1)3a2-27b2;(2)x2-8(x-2).18.(10分)计算:(1)已知a+b=3,ab=-2,求a2+b2和a2-ab+b2的值;(2)已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值;(3)已知a-b=1,a 2+b2=25,求ab的值.19.已知⼀个长⽅形的周长为20,其长为a,宽为b,且a,b满⾜a2-2ab+b2-4a+4b+4=0,求a,b的值.20、李⽼师给学⽣出了⼀道题:当a=0.35,b=-0.28时,求7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.题⽬出完后,⼩聪说:“⽼师给的条件a=0.35,b=-0.28是多余的.”⼩明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?21、如图为杨辉三⾓表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b4答案BDCCA BACDD11.-9x6y412.013.±8ab14.x(x+1)(x﹣1).15.a(2a-3)216.-20;17.解(1)3a2-27b2=3(a2-9b2)=3(a+3b)(a-3b);(2)x2-8(x-2)=x2-8x+16=(x-4)2.18(1)a2+b2=(a+b)2-2ab=32-2×(-2)=13;a2-ab+b2=(a+b)2-3ab=32-3×(-2)=15.(2)∵(x+y)2=x2+y2+2xy=1,(x-y)2=x2+y2-2xy=49,即解得(3)∵a-b=1,∴(a-b)2=a2+b2-2ab=1.∵a2+b2=25,∴25-2ab=1,解得ab=12.19.解∵长⽅形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a2-2ab+b2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得⽅程组解得20.原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,合并得结果为0,与a、b的取值⽆关,所以⼩明说的有道理.21.4;6;4;。
人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)
人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)一、选择题(每题3分,共30分) 1.下列运算正确的是( )A .a 3+a 3=a 6B .2(a +1)=2a +1C .(ab )2=a 2b 2D .a 6÷a 3=a 22.(1+x 2)(x 2-1)的计算结果是( )A .x 2-1B .x 2+1C .x 4-1D .1-x 43.任意给定一个非零数m ,按下列程序计算,最后输出的结果是( )A .mB .m -2C .m +1D .m -14.下列计算正确的是( )A .-3x 2y ·5x 2y =2x 2yB .-2x 2y 3·2x 3y =-2x 5y 4C .35x 3y 2÷5x 2y =7xyD .(-2x -y )(2x +y )=4x 2-y 2 5.下列式子从左到右变形是因式分解的是( )A .a 2+4a -21=a (a +4)-21B .a 2+4a -21=(a -3)(a +7)C .(a -3)(a +7)=a 2+4a -21D .a 2+4a -21=(a +2)2-25 6.下列因式分解正确的是( )A .2x 2-2=2(x +1)(x -1)B .x 2+2x -1=(x -1)2C .x 2+1=(x +1)2D .x 2-x +2=x (x -1)+2 7.若(a +b )2=(a -b )2+A ,则A 为( )A .2abB .-2abC .4abD .-4ab8.计算(x 2-3x +n )(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为( )A .m =3,n =1B .m =0,n =0C .m =-3,n =-9D .m =-3,n =89.若a ,b ,c 是三角形的三边长,则代数式(a -b )2-c 2的值( )A .大于0B .小于0C .等于0D .不能确定10.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示,设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =25b B .a =3b C .a =27bD .a =4b二、填空题(每题3分,共18分)11.计算:(m+1)2-m2=____.12.计算:|-3|+(π+1)0-4=____.13.已知x=y+4,则代数式x2-2xy+y2-25的值为____.14.若a=2,a-2b=3,则2a2-4ab的值为____.15.若6a=5,6b=8,则36a-b=____.16.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____.三、解答题(共52分) 17.(16分)计算:(1)5x 2y ÷(-31xy )×(2xy 2)2;(2)9(a -1)2-(3a +2)(3a -2);(3)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a ;(4)[a (a 2b 2-ab )-b (-a 3b -a 2)]÷a 2b .18.(9分)把下列各式因式分解:(1)x (m -x )(m -y )-m (x -m )(y -m );(2)ax 2+8ax +16a ;(3)x 4-81x 2y 2.19.(7分)已知xy =1,求代数式-31x (xy 2+y +x 3y 4)的值.20.(8分)如图,某市有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.21.(12分)观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”: ①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a +b ≤9,写出表示“数字对称等式”一般规律的式子(含a ,b ),并证明.参考答案1.C2.C3.C4.C5.B6.A7.C8.A9.B10.B11.2m +112.213.-914.122515.6416.a2+2ab+b2=(a+b)217.(1)原式=-60x3y4.(2)原式=-18a+13.(3)原式=-a-b.(4)原式=2ab.18.(1)原式=-(m-x)2(m-y). (2)原式=a(x+4)2. (3)原式=x2(x+9y)(x-9y)19.原式=-1.20.63平方米.21.(1)①275572②6336(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).人教版八年级上数学第14章整式的乘法与因式分解单元测试(解析)一、选择题()1.把分解因式,标准答案是()A. B.C. D.【答案】D【解析】【分析】此题主要考查了分组分解法分解因式,熟练应用乘法公式分解因式是解题关键.将前两项和后两项分别提取公因式,进而结合平方差公式分解因式得出答案.【解答】解:===.故选D.2.已知2n+216+1是一个有理数的平方,则n不能取以下各数中的哪一个()A. 30B. 32C. -18D. 9【答案】B【解析】解:2n是乘积二倍项时,2n+216+1=216+2•28+1=(28+1)2,此时n=8+1=9,216是乘积二倍项时,2n+216+1=2n+2•215+1=(215+1)2,此时n=2×15=30,1是乘积二倍项时,2n+216+1=(28)2+2•28•2-9+(2-9)2=(28+2-9)2,此时n=-18,综上所述,n可以取到的数是9、30、-18,不能取到的数是32.故选B.分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n的值,然后选择答案即可.本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.3.若-x2y=2,则-xy(x5y2-x3y+2x)的值为()A. 16B. 12C. 8D. 0【答案】A【解析】解:原式=-x6y3+x4y2-2x2y,当-x2y=2时,x2y=-2原式=-(x2y)3+(x2y)2-2×(x2y)=-(-2)3+(-2)2-2×(-2)=16,故选:A.原式利用单项式乘以多项式法则计算即可得到结果.此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.4.若(x+2)(x-a)=x2+bx-10,则b的值为()A. -3B. 3C. -5D. 5【答案】A【解析】解:∵(x+2)(x-a)=x2-ax+2x-2a=x2+(2-a)x-2a=x2+bx-10,∴2-a=b,-2a=-10,解得:a=5,b=-3.故选A.由多项式乘以多项式的运算法则求解可求得原式=x2+(2-a)x-2a,继而可得2-a=b,-2a=-10,则可求得答案.此题考查了多项式乘以多项式的知识.注意熟记多项式乘以多项式的运算法则是关键.二、填空题(本大题共8小题,共24.0分)5.如果(x+1)(x2-4ax+a)的乘积中不含x2项,则a为______ .【答案】【解析】解:(x+1)(x2-4ax+a)=x3-4ax2+ax+x2-4ax+a=x3+(-4a+1)x2-3ax+a,∵(x+1)(x2-4ax+a)的乘积中不含x2项,∴-4a+1=0,解得:a=故答案为:.先根据多项式乘以多项式法则展开,合并同类项,根据已知得出-4a+1=0,求出即可.本题考查了多项式乘以多项式法则和解一元一次方程,能根据多项式乘以多项式法则展开是解此题的关键.6.已知a(a-1)-(a2-b)=1,求的值______ .【答案】【解析】解:∵a(a-1)-(a2-b)=a2-a-a2+b=1,∴a-b=-1,则原式=(a2+b2-2ab)=(a-b)2=.故答案为:.已知等式整理求出a-b的值,原式提取公因式,再利用完全平方公式化简,将a-b的值代入计算即可求出值.此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.7.如果x2+8x+a是一个完全平方式,那么a的值是______ .【答案】16【解析】解:∵(x+4)2=x2+8x+16,∴a=16,故答案为:16根据完全平方公式的结构特征即可求出a的值.本题考查完全平方公式,解题的关键是正确理解完全平方公式的结构特征,本题属于基础题型.8.若代数式x2+mx+81是完全平方式,则m的值为______ .【答案】±18【解析】解:∵代数式x2+mx+81是完全平方式,∴①x2+mx+81=(x+9)2+(m-18)x,∴m-18=0,∴m=18;②x2+mx+81=(x-9)2+(m+18)x,∴m+18=0,∴m=-18.故答案为:±18.由代数式x2+mx+81是完全平方式,首末两项是x和9这两个数的平方,那么中间一项为加上或减去x和9积的2倍.本题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9.己知x=1+3m,y=1-9m,用含x的式子表示y为:y= ______ .【答案】-x2+2x【解析】解:∵x=1+3m,∴3m=x-1,∴y=1-9m=1-(3m)2=1-(x-1)2=1-(x2-2x+1)=-x2+2x;故答案为:-x2+2x.首先根据x=1+3m得出3m=x-1,再把要求的式子进行变形得出y=1-(3m)2,然后把3m=x-1代入进行整理即可得出答案.此题考查了幂的乘方与积的乘方,熟练掌握运算法则并对要求的式子进行变形是解题的关键.10.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;系数和为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+2ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…,则(a+b)n的展开式共有______项,系数和为______.【答案】n+1;2n【解析】解:展开式共有n+1项,系数和为2n.故答案为:n+1,2n.本题通过阅读理解寻找规律,观察可得(a+b)n(n为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b)n-1相邻两项的系数和.本题考查了完全平方公式,关键在于观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.11.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按n的次数由大到小的顺序):请依据上述规律,写出(x-)2016展开式中含x2014项的系数是______ .【答案】-4032【解析】解:(x-)2016展开式中含x2014项的系数,根据杨辉三角,就是展开式中第二项的系数,即-2016×2=-4032.故答案为-4032.首先确定x2014是展开式中第几项,根据杨辉三角即可解决问题.本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.12.因式分解:x2-2x+(x-2)=______.【答案】(x+1)(x-2)【解析】解:原式=x(x-2)+(x-2)=(x+1)(x-2).故答案是:(x+1)(x-2).通过两次提取公因式来进行因式分解.本题考查了因式分解-提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.三、计算题(本大题共3小题,共18.0分)13.(1)计算:|-2|+()-1-(π-3.14)0-;(2)计算:[xy(3x-2)-y(x2-2x)]÷x2y.【答案】解:(1)原式=2-+2-1-3,=-;(2)原式=(3x2y-2xy-x2y+2xy)÷x2y,=2x2y÷x2y,=2.【解析】本题考查了整式的除法以及实数的运算,掌握绝对值、负整数指数幂、零指数幂以及立方根的运算是解题的关键.(1)根据绝对值、负整数指数幂、零指数幂以及立方根进行计算即可;(2)先去括号再合并同类项,最后算除法.14.已知a、b、c、为△ABC的三边长,a2+5b2-4ab-2b+1=0,且△ABC为等腰三角形,求△ABC的周长.【答案】解:∵a2+5b2-4ab-2b+1=0,∴a2-4ab+4b2+b2-2b+1=0,∴(a-2b)2+(b-1)2=0,∴a-2b=0,b=1,∴a=2,b=1,∵等腰△ABC,∴c=2,∴△ABC的周长为5.【解析】已知等式配方后,利用非负数的性质求出a与b的值,即可确定出三角形周长.此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.15.因式分解:(1)2x(a-b)+3y(b-a)(2)x(x2-xy)-(4x2-4xy)【答案】解:(1)原式=2x(a-b)-3y(a-b)=(a-b)(2x-3y);(2)原式=x2(x-y)-4x(x-y)=x(x-y)(x-4).【解析】(1)原式变形后,提取公因式即可得到结果;(2)原式提取公因式即可得到结果.此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.四、解答题(本大题共7小题,共56.0分)16.分解因式:2m(m-n)2-8m2(n-m)【答案】解:2m(m-n)2-8m2(n-m)=2m(m-n)[(m-n)+4m]=2m(m-n)(5m-n).【解析】直接找出公因式,进而提取公因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.已知x(x-1)-(x2-y)=-6,求-xy的值.【答案】解:由x(x-1)-(x2-y)=-6,得x-y=6,原式==,把x-y=6代入得原式==18.【解析】首先把x(x-1)-(x2-y)=-6化简解得x-y=6,再把-xy通分,然后再代入可得答案.此题主要考查了因式分解的应用,关键是熟练掌握整式的乘法和完全平方公式分解因式.18.已知2x+3•3x+3=36x-2,求x的值.【答案】解:∵2x+3•3x+3=(2×3)x+3=6x+3,36x-2=(62)x-2=62x-4,∴x+3=2x-4,解得x=7.【解析】逆运用积的乘方的性质整理,然后根据指数相等列方程求解即可.本题考查了积的乘方的性质,熟记性质并灵活运用是解题的关键.19.已知在△ABC中,三边长a、b、c满足a2+8b2+c2-4b(a+c)=0,试判断△ABC的形状并加以说明.【答案】解:三角形是等腰三角形.a2+8b2+c2-4b(a+c)=0,a2+8b2+c2-4ab-4bc=0,a2-4ab+4b2+c2-4bc+4b2=0,(a-2b)2+(c-2b)2=0,则a=2b,c=2b,∴a=c,则三角形是等腰三角形.【解析】把原式根据完全平方公式进行因式分解,根据非负数的性质求出a、c的关系,判断即可.本题考查的是因式分解的应用,掌握分组分解法、公式法因式分解的一般步骤是解题的关键.20.已知△ABC的三边长为a,b,c,且满足,试判定此三角形的形状?【答案】解:∵a2+b2+c2=ab+bc+ca两边乘以2得:2a2+2b2+2c2-2ab-2bc-2ac=0即(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)=0∴(a-b)2+(b-c)2+(c-a)2=0∵偶次方总是大于或等于0,∴a-b=0,b-c=0,c-a=0∴a=b,b=c,c=a.所以这是一个等边三角形.【解析】此题主要考查利用完全平方公式因式分解,等边三角形的判定,以及非负数的性质等知识点.由a2+b2+c2=ab+bc+ca整理得,(a-b)2+(b-c)2+(c-a)2=0,由非负数的性质求得三边相等,所以这是一个等边三角形.21.已知a,b,c是△ABC的三边长,且满足a2b-ab2=bc-ac,试判断三角形的形状.【答案】解:∵a2b-ab2=bc-ac,∴a2b-ab2-bc+ac=0,∴ab(a-b)+c(a-b)=0,∴(a-b)(ab+c)=0,∴a-b=0,ab+c=0(舍去),∴a=b,∴△ABC是等腰三角形.【解析】本题通过化简已知条件得到a-b=0即a=b,得出三角形是等腰三角形.本题考查了等腰三角形的判定及因式分解的应用,对所给式子的化简是正确解答本题的关键.22.已知a,b,c是的三条边长.(1)化简.(2)若a,b,c满足,且,求的值;(3)若a,b,c满足,试判断的形状,并说明你的理由.【答案】解:(1)∵a、b、c是△ABC的三边长,∴a>0,b>0,c>0,a<b+c,a+b>c,∴原式=;(2)∵,即,∴,∴,∴;(3)∵,移项得:,即:,∴,∴△ABC是等边三角形.【解析】本题考查了三角形的性质,多项式乘多项式,完全平方公式以及绝对值与偶次方的非负性.(1)由三角形两边之和大于第三遍判断a,b,c三者的关系,从而对原式化简;(2)对左边进行展开得,再利用完全平方公式得,从而求出c的值;(3)对原式移项处理,再利用完全平方公式整理得,由绝对值和偶次方的非负性可得a,b,c的值,再根据三者关系做判断.人教版数学八年级上册第14章整式的乘法与因式分解单元测试题一、选择题(本大题共10小题,每小题4分,满分40分)1.下列运算正确的是A.a3·a3=a9B.a3+a3=a6C.a3·a3=a6D.a2·a3=a62.y m+2可以改写成A.2y mB.y m·y2C.(y m)2D.y m+y23.若(x-1)0=1,则A.x≥1B.x≤1C.x≠1D.x≠04.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2abD.(a+b)(a-b)=a2-b25.下列因式分解正确的是A.12a2b-8ac+4a=4a(3ab-2c)B.-4x2+1=(1+2x)(1-2x)C.4b2+4b-1=(2b-1)2D.a2+ab+b2=(a+b)26.下列式子可以运用平方差公式运算的有①(a+b)(-b+a);②(-a+b)(a-b);③(a+b)(-a-b);④(a-b)(-a-b).A.1个B.2个C.3个D.4个7.(15x2y-10xy2)÷(-5xy)的结果是A.-3x+2yB.3x-2yC.-3x+2D.-3x-28.将下列多项式分解因式,结果中不含因式x-1的是A.x2-1B.x(x-2)+(2-x)C.x2-2x+1D.x2+2x+19.已知a+b=5,ab=3,则a2+b2等于A.25B.22C.19D.1310.如果x2+x+1=0,那么x2016+x2015+x2014+…+x3+x2+x的值为A.3B.2C.1D.0二、填空题(本大题共4小题,每小题5分,满分20分)11.多项式9x2+1加上一个单项式后,成为一个整式的完全平方式,那么加上的单项式可以是6x(答案不唯一).(填上一个你认为正确的即可)12.已知x2+2x+4=5,则4x2+8x-3=1.13.若关于x的二次三项式x2+ax+是完全平方式,则a的值是±1.14.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列.如图,观察下面的杨辉三角:11 112 1133 11464 115101051(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…按照前面的规律,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.三、解答题(本大题共5小题,满分60分)15.(10分)计算:(x-2)(x+6)-(6x4-4x3-2x2)÷(-2x2).解:原式=x2+4x-12-(-3x2+2x+1)=x2+4x-12+3x2-2x-1=4x2+2x-13.16.(12分)观察下列各式:(x2-1)÷(x-1)=x+1;(x3-1)÷(x-1)=x2+x+1;(x4-1)÷(x-1)=x3+x2+x+1;(x5-1)÷(x-1)=x4+x3+x2+x+1;(1)猜想:(x7-1)÷(x-1)=x6+x5+x4+x3+x2+x+1;(27-1)÷(2-1)=26+25+24+23+22+2+1.(2)根据(1)猜想的结论,计算:1+2+22+23+24+25+26+27.解:(2)原式=(28-1)÷(2-1)=28-1=255.17.(12分)仔细阅读下面的例题:【例题】已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n,∴解得n=-7,m=-21.∴另一个因式为(x-7),m的值为-21.仿照以上方法解答问题:已知二次三项式3x2+5x-m有一个因式是(3x-1),求另一个因式以及m的值.解:设另一个因式为(x+n),得3x2+5x-m=(3x-1)(x+n),则3x2+5x-m=3x2+(3n-1)x-n,∴解得n=2,m=2.∴另一个因式为(x+2),m的值为2.18.(12分)若x满足(9-x)(x-4)=4,求(4-x)2+(x-9)2的值.解:设9-x=a,x-4=b,则(9-x)(x-4)=ab=4,a+b=(9-x)+(x-4)=5,∴(9-x)2+(x-4)2=a2+b2=(a+b)2-2ab=52-2×4=17.请仿照上面的方法求解问题:(1)若x满足(5-x)(x-2)=2,求(5-x)2+(x-2)2的值;(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF,DF为边作正方形,求阴影部分的面积.解:(1)设5-x=a,x-2=b,则(5-x)(x-2)=ab=2,a+b=(5-x)+(x-2)=3,∴(5-x)2+(x-2)2=a2+b2=(a+b)2-2ab=32-2×2=5.(2)∵正方形ABCD的边长为x,AE=1,CF=3,∴MF=DE=x-1,DF=x-3,∴(x-1)·(x-3)=48,∴(x-1)-(x-3)=2,∴阴影部分的面积=FM2-DF2=(x-1)2-(x-3)2.设(x-1)=a,(x-3)=b,则(x-1)(x-3)=ab=48,a-b=(x-1)-(x-3)=2,∴a=8,b=6,a+b=14,∴(x-1)2-(x-3)2=a2-b2=(a+b)(a-b)=14×2=28.即阴影部分的面积是28.19.(14分)发现任意五个连续整数的平方和是5的倍数.【验证】(1)(-1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个数为n,写出它们的平方和,并说明是5的倍数.【延伸】(3)任意三个连续整数的平方和被3除的余数是几呢?请写出理由.解:(1)(-1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(-1)2+02+12+22+32的结果是5的3倍.(2)设五个连续整数的中间一个数为n,则其余的4个整数分别是n-2,n-1,n+1,n+2,它们的平方和为(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又∵n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数.(3)设三个连续整数的中间一个数为n,则其余的2个整数是n-1,n+1,它们的平方和为(n-1)2+n2+(n+1)2=n2-2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.人教版八年级数学上册第14章整式的乘法与因式分解单元测试题一、选择题1.下列各式由左边到右边的变形为因式分解的是( )A.a2-b2+1=(a+b)(a-b)+1B.m2-4m+4=(m-2)2C.(x+3)(x-3)=x2-9D.t2+3t-16=(t+4)(t-4)+3t2.分解因式:x3-x,结果为( )(第10题图)A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1) 4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n 5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 2 6.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .1 7、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考题单元试卷:第14章整式的乘法与因式分解(1)一、选择题(共22小题)1. 计算a2⋅a4的结果是()A.a8B.a6C.2a6D.2a82. 计算a3⋅a2的结果是()A.2a5B.a5C.a6D.a93. 计算(a2)3的结果是()A.a5B.a6C.a8D.3a24. 计算a3⋅a2的结果是()A.a5B.a6C.a3+a2D.3a25. x2⋅x3=()A.x5B.x6C.x8D.x96. 计算x2⋅x3的结果为()A.2x2B.x5C.2x3D.x67. 计算:m6⋅m3的结果()A.m18B.m9C.m3D.m28. 下列计算正确的是()A.2a+5a=7aB.2x−x=1C.3+a=3aD.x2⋅x3=x69. 下列计算结果正确的是())−2=4 D.(−2)0=−1A.2a3+a3=3a6B.(−a)2⋅a3=−a6C.(−1210. 下列运算正确的是()A.2a+3b=5abB.5a−2a=3aC.a2⋅a3=a6D.(a+b)2=a2+b211. 下列计算正确的是()A.|−2|=−2B.a 2⋅a 3=a 6C.(−3)−2=19D.√12=3√212. 计算(−a 3)2的结果是( ) A.−a 5 B.a 5 C.−a 6 D.a 613. 下列运算正确的是( ) A.(12)−1=−12 B.6×107=6000000 C.(2a)2=2a 2 D.a 3⋅a 2=a 514. 下列运算正确的是( ) A.a ⋅a 3=a 3 B.2(a −b)=2a −b C.(a 3)2=a 5D.a 2−2a 2=−a 215. 计算(a 2)3的结果是( ) A.3a 2 B.a 5C.a 6D.a 316. 下列运算正确的是( ) A.3a 2−2a 2=1 B.(a 2)3=a 5C.a 2⋅a 4=a 6D.(3a)2=6a 217. 计算(−3x)2的结果是( ) A.6x 2 B.−6x 2C.9x 2D.−9x 218. 计算(−xy 3)2的结果是( ) A.x 2y 6 B.−x 2y 6C.x 2y 9D.−x 2y 919. 计算(a 2b)3的结果是( ) A.a 6b 3 B.a 2b 3C.a 5b 3D.a 6b20. 计算(−a 3)2的结果是( ) A.a 5 B.−a 5C.a 6D.−a 621. 下列运算正确的是( ) A.a 2⋅a 3=a 6B.−2(a −b)=−2a −2bC.2x2+3x2=5x4D.(−12)−2=422. 在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②-①得6S−S=610−1,即5S=610−1,所以S=610−15,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+...+a2014的值?你的答案是()A.a2014−1a−1B.a2015−1a−1C.a2014−1aD.a2014−1二、填空题(共7小题)23. a2⋅a3=________.24. 计算:a×a=________.25. 计算;x2⋅x5的结果等于________.26. 计算:a⋅a2=________.27. 计算:m2⋅m3=________.28. 计算:a2⋅a3=________.29. 计算a⋅a6的结果等于________.三、解答题(共1小题)30. 阅读材料:求1+2+22+23+24+...+22013的值.解:设S=1+2+22+23+24+...+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+...+22013+22014,将下式减去上式得2S−S=22014−1,即S=22014−1,即1+2+22+23+24+...+22013=22014−1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+...+3n(其中n为正整数).参考答案与试题解析一、选择题(共22小题)1.【答案】B【考点】同底数幂的乘法【解析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m⋅a n=a m+n 计算即可.【解答】解:a2⋅a4=a2+4=a6.故选B.2.【答案】B【考点】同底数幂的乘法【解析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即可求得答案.【解答】解:a3⋅a2=a5.故选B.3.【答案】B【考点】幂的乘方与积的乘方【解析】根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.【解答】解:(a2)3=a6.故选B.4.【答案】A【考点】同底数幂的乘法【解析】根据同底数幂相乘,底数不变指数相加进行计算即可得解.【解答】a3⋅a2=a3+2=a5.5.【答案】A同底数幂的乘法【解析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m⋅a n=a m+n 计算即可.【解答】解:x2⋅x3=x2+3=x5.故选:A.6.【答案】B【考点】同底数幂的乘法【解析】根据同底数幂的乘法底数不变指数相加,可得答案.【解答】解:原式=x2+3=x5.故选:B.7.【答案】B【考点】同底数幂的乘法【解析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.【解答】解:m6⋅m3=m9.故选:B.8.【答案】A【考点】同底数幂的乘法合并同类项【解析】根据合并同类项、同底数幂的运算法则计算.【解答】解:A、符合合并同类项法则,故本选项正确;B、2x−x=x≠1,故本选项错误;C、3和a不是同类项,故本选项错误;D、x2⋅x3≠x6=x5,故本选项错误.故选:A.9.【答案】C零指数幂零指数幂、负整数指数幂合并同类项幂的乘方与积的乘方同底数幂的乘法【解析】根据同底数幂的乘法的性质,负整数指数幂,零指数幂,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】A、2a3+a3=3a3,故错误;B、(−a)2⋅a3=a5,故错误;C、正确;D、(−2)0=1,故错误;10.【答案】B【考点】完全平方公式同底数幂的乘法合并同类项【解析】根据同类项、同底数幂的乘法和完全平方公式计算即可.【解答】解:A,2a与3b不能合并,错误;B,5a−2a=3a,正确;C,a2⋅a3=a5,错误;D,(a+b)2=a2+2ab+b2,错误;故选B.11.【答案】C【考点】同底数幂的乘法绝对值算术平方根负整数指数幂【解析】分别根据绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则对各选项进行逐一计算即可.【解答】解:A、原式=2≠−2,故本选项错误;B、原式=a5≠a6,故本选项错误;C、原式=1,故本选项正确;9D、原式=2√3≠3√2,故本选项错误.故选C.12.【答案】D【考点】幂的乘方与积的乘方【解析】根据幂的乘方计算即可.【解答】(−a3)2=a6,13.【答案】D【考点】幂的乘方与积的乘方科学记数法--原数同底数幂的乘法负整数指数幂【解析】A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n 位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.【解答】)−1=2,解:∵(12∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3⋅a2=a5,∴选项D正确.故选:D.14.【答案】D【考点】合并同类项去括号与添括号同底数幂的乘法幂的乘方与积的乘方【解析】根据同底数幂的乘法、幂的乘方和同类项进行计算.【解答】A、a⋅a3=a4,错误;B、2(a−b)=2a−2b,错误;C、(a3)2=a6,错误;D、a2−2a2=−a2,正确;15.【答案】C【考点】幂的乘方与积的乘方【解析】根据幂的乘方计算即可.【解答】(a2)3=a6,16.【答案】C【考点】幂的乘方与积的乘方合并同类项同底数幂的乘法【解析】根据同类项、幂的乘方、同底数幂的乘法计算即可.【解答】解:A、3a2−2a2=a2,错误;B、(a2)3=a6,错误;C、a2⋅a4=a6,正确;D、(3a)2=9a2,错误;故选C.17.【答案】C【考点】幂的乘方与积的乘方【解析】根据积的乘方进行计算即可.【解答】解:(−3x)2=9x2,故选C.18.【答案】A【考点】幂的乘方与积的乘方【解析】根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出计算(−xy3)2的结果是多少即可.【解答】解:(−xy3)2=(−x)2•(y3)2=x2y6,即计算(−xy3)2的结果是x2y6.故选A.19.【答案】A【考点】幂的乘方与积的乘方【解析】根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出(a2b)3的结果是多少即可.【解答】解:(a2b)3=(a2)3⋅b3=a6b3即计算(a2b)3的结果是a6b3.故选:A.20.【答案】C【考点】幂的乘方与积的乘方【解析】根据幂的乘方和积的乘方的运算法则求解.【解答】(−a3)2=a6.21.【答案】D【考点】同底数幂的乘法合并同类项去括号与添括号负整数指数幂【解析】根据同底数幂的乘法,单项式乘以多项式法则,合并同类项法则,负整数指数幂分别求出每个式子的值,再判断即可.解:A、结果是a5,故本选项错误;B、结果是−2a+2b,故本选项错误;C、结果是5x2,故本选项错误;D、结果是4,故本选项正确;故选:D.22.【答案】B【考点】同底数幂的乘法有理数的乘方【解析】设S=1+a+a2+a3+a4+...+a2014,得出aS=a+a2+a3+a4+...+a2014+ a2015,相减即可得出答案.【解答】解:设S=1+a+a2+a3+a4+...+a2014,①则aS=a+a2+a3+a4+...+a2014+a2015,②,②-①得:(a−1)S=a2015−1,∴S=a2015−1,a−1,即1+a+a2+a3+a4+...+a2014=a2015−1a−1故选:B.二、填空题(共7小题)23.【答案】a5【考点】同底数幂的乘法【解析】根据同底数幂的乘法,即可解答.【解答】解:a2⋅a3=a5,故答案为:a5.24.【答案】a2【考点】同底数幂的乘法【解析】根据同底数幂的乘法计算即可.【解答】解:a×a=a2.故答案为:a2.25.x7【考点】同底数幂的乘法【解析】根据同底数幂的乘法,可得答案.【解答】解:x2⋅x5=x2+5=x7,故答案为:x7.26.【答案】a3【考点】同底数幂的乘法【解析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m⋅a n=a m+n计算即可.【解答】解:a⋅a2=a1+2=a3.故答案为:a3.27.【答案】m5【考点】同底数幂的乘法【解析】根据同底数幂相乘,底数不变指数相加进行计算即可得解.【解答】m2⋅m3=m2+3=m5.28.【答案】a5【考点】同底数幂的乘法【解析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:根据同底数幂的乘法的运算法则得,a2⋅a3=a2+3=a5.故答案为:a5.29.【答案】a7【考点】同底数幂的乘法利用同底数幂的法则计算即可得到结果.【解答】a⋅a6=a7.三、解答题(共1小题)30.【答案】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得:2S=2+22+23+24+...+210+211,将下式减去上式得:2S−S=211−1,即S=211−1,则1+2+22+23+24+...+210=211−1;(2)设S=1+3+32+33+34+...+3n①,两边同时乘以3得:3S=3+32+33+34+...+3n+3n+1②,(3n+1−1),②−①得:3S−S=3n+1−1,即S=12(3n+1−1).则1+3+32+33+34+...+3n=12【考点】规律型:数字的变化类有理数的混合运算【解析】(1)设S=1+2+22+23+24+...+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)同理即可得到所求式子的值.【解答】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得:2S=2+22+23+24+...+210+211,将下式减去上式得:2S−S=211−1,即S=211−1,则1+2+22+23+24+...+210=211−1;(2)设S=1+3+32+33+34+...+3n①,两边同时乘以3得:3S=3+32+33+34+...+3n+3n+1②,(3n+1−1),②−①得:3S−S=3n+1−1,即S=12(3n+1−1).则1+3+32+33+34+...+3n=12。