第三次月考
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、单项选择题(共18分)1.下列图形中,不是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,点(2,﹣1)关于原点对称的点的坐标是()A.(2,1)B.(﹣2,1)C.(﹣1,2)D.(﹣2,﹣1)3.⊙O的半径为3,点P在⊙O外,点P到圆心的距离为d,则d需要满足的条件()A.d>3B.d=3C.0<d<3D.无法确定4.将一元二次方程x2+6x+3=0化为(x+h)2=k的形式,则k的值为()A.3B.6C.9D.125.关于二次函数y=﹣(x+1)2+3的图象,下列说法错误的是()A.开口向下B.对称轴为直线x=﹣1C.当x<﹣1时,y随x的增大而增大D.当x=﹣1时,函数有最小值,最小值为y=36.如图,AB为⊙O的直径,过圆上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=22.5°,⊙O的半径为2,则BD的长为()A.1B.2C.2﹣2D.3﹣2二、填空题(共18分)7.已知x=﹣1是方程x2﹣ax+1=0的一个根,则a的值为.8.一个不透明的盒子里,装有除颜色外无其他差别的白珠子2颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.2左右,则盒子中黑珠子可能有颗.9.一个圆锥的母线长为5,侧面展开图的面积是20π,则该圆锥的底面半径为.10.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度至少为°.11.东汉时期的数学家赵爽在注解《周髀算经》时,给出的“赵爽弦图”是我国古代数学的瑰宝,如图1,四个直角三角形是全等的,且直角三角形的长直角边与短直角边之比为2:1,现连接四条线段得到图2的新的图案.若随机向该图形内掷一枚针,则针尖落在图2中阴影区域的概率为.12.如图,已知点A从原点O出发,以每秒2个单位长度的速度沿着x轴的正方向运动,经过t(t≥1.5)秒后,以O,A为顶点作菱形OABC,使点B,C都在第一象限内,且∠AOC=60°.若以点P(0,2)为圆心,PC为半径的圆恰好与菱形OABC某一条边所在的直线相切,则t的值为.三、解答题(共84分)13.(1)解方程:x2﹣4x+1=0.(2)如图,E是正方形ABCD的边DC上一点,把△ADE绕点A旋转一定角度后与△ABF重合.若四边形AECF的面积为16,求AD的长.14.如图,抛物线y=ax2+x+c与x轴交于点A(﹣1,0),且对称轴为直线x=1.求抛物线的解析式.15.已知AB是⊙O的直径,DE与⊙O相切于点D,且DE⊥BE,设BE交⊙O于点C,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,作∠ABC的平分线.(2)在图2中,找出BC边上的中点G.16.已知关于x的一元二次方程x2﹣(m+1)x+m=0.(1)求证:无论m为何值,方程总有实数根.(2)设方程的两根均为等腰△ABC的边长,且△ABC的周长为5,求m的值.17.如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连接BD.(1)若∠BAD=20°,求∠ACB的度数.(2)若BC平分∠ABD,AD=2,求AC的长.18.江西可谓物华天宝,山清水秀.寒假期间小尹打算去领略江西四大名山的风采,分别为A.明月山;B.武功山;C.庐山;D.三清山.由于时间原因,只能选择其中两个景点,于是小尹决定通过抽签的方式选择,将四张小纸条分别写上四个景点的名字,做出四个签(外表完全相同),然后从中随机抽出两张,每张签抽到的机会均等.(1)抽到“明月山”是事件,抽到“井冈山”是事件(填“不可能”或“必然”或“随机”).(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求“小尹抽到明月山和庐山”的概率.19.如图,△ABC的顶点坐标分别为A(﹣3,5),B(﹣4,2),C(2,3).(1)画出△ABC关于点O中心对称的△A1B1C1.(2)画出△ABC绕点C顺时针旋转90°后的△A2B2C,当点A旋转到A2时,求点A所经过的路径长.20.桑葚被称为“民间圣果”,其营养价值是苹果的5~6倍,是葡萄的4倍,具有降压降脂,健脾养胃等功效.今年某采摘园喜获丰收,经市场调研发现,当桑葚的售价为30元/千克时,每天可销售200千克,若单价每降价1元,销售量可增加50千克.已知该品种的桑葚成本价为15元/千克.(1)若该采摘园每天获利3500元,且尽量增加销售量,桑葚售价应降低多少元?(2)设桑葚售价降低a元,当a为何值时,该采摘园每天的利润最大.21.如图,以△ABC的边BC上一点O为圆心,OB为半径的圆,经过点A,且与边BC交于点E,D为⊙O上一点,连接AE,AD,其中∠CAE=∠ABC.(1)求证:AC是⊙O的切线.(2)若∠ADB=60°,⊙O的半径为3,求阴影部分的面积.(结果保留根号)22.函数图象在探究函数的性质时有非常重要的作用,某同学根据学习函数的经验,探究了函数y=x2﹣2|x|+1的图形和性质.(1)如表给出了部分x,y的取值:x…﹣3﹣2﹣10123…y…m10n014…则m=,n=.(2)在如图所示的平面直角坐标系中画出函数y=x2﹣2|x|+1的图象.(3)根据画出的函数图象,写出该函数的一条性质.(4)若点M(m,y1)在图象上,且y1≤1,若点N(m+k,y2)也在图象上,且满足y2≥4恒成立,请直接写出k的取值范围.23.【操作发现】如图1,在等边△ABC中,点B,C在直线MN上,E为BC边上的一点,连接AE,并把线段AE绕点E顺时针旋转60°得到线段EF,连接CF,则线段CF与BE 的数量关系是,线段CF与直线MN所夹锐角的度数是.【类比探究】如图2,在等边△ABC中,点B,C在直线MN上,若E为BC延长线上的一点,连接AE,并把线段AE绕点E顺时针旋转60°得到线段EF,连接CF,上述两个结论还成立吗?请说明理由.【拓展应用】如图3,在正方形ABCD中,点B,C在直线MN上,E为直线MN上的任意一点,连接AE,并把线段AE绕点E顺时针旋转90°得到线段EF,连接CF.(1)试探究线段BE与CF的数量关系及线段CF与直线MN所夹锐角的度数,并说明理由.(2)若正方形的边长为2,连接DF,当DF=时,求线段BE的长.参考答案一、单项选择题(共18分)1.解:A、不是中心对称图形,故此选项符合题意;B、是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项不合题意;故选:A.2.解:点(2,﹣1)关于原点对称的点的坐标是(﹣2,1),故选:B.3.解:∵点P在⊙O外,∴d>3.故选:A.4.解:方程x2+6x+3=0,移项得:x2+6x=﹣3,配方得:x2+6x+9=6,即(x+3)2=6,则k=6,故选:B.5.解:∵二次函数y=﹣(x+1)2+3,∴a=﹣1<0,函数的图象开口向下,故选项A正确,不符合题意;对称轴是直线x=﹣1,故选项B正确,不符合题意;当x<﹣1时,y随x的增大而增大,故选项C正确,不符合题意;当x=﹣1时,函数有最大值y=3,故选项D错误,符合题意;故选:D.6.解:连接OC,∵∠A=22.5°,∴∠COD=2∠A=45°,∵CD是⊙O的切线,∴∠OCD=90°,∴△OCD是等腰直角三角形,∵OC=2,∴OD=,∴BD=OD﹣OB=2﹣2,故选:C.二、填空题(共18分)7.解:由题意得:把x=﹣1代入方程x2﹣ax+1=0中,则(﹣1)2﹣a•(﹣1)+1=0,∴1+a+1=0,∴a=﹣2,故答案为:﹣2.8.解:设有黑色珠子n颗,由题意可得,,解得n=8.故估计盒子中黑珠子大约有8个.故答案为:8.9.解:设底面半径为R,则底面周长=2πR,圆锥的侧面展开图的面积=×2πR×5=20π,∴R=4.故答案为:4.10.解:紫荆花图案可以被中心发出的射线分成5个全等的部分,则旋转的角度至少为360÷5=72度,故答案为:72.11.解:如图2,设直角三角形的长直角边与短直角边分别为2x和x,则AC=x,BD=x,AB=CD,△ABD是直角三角形,则大正方形面积=AC2=5x2,△ADC面积=•x•x=x2,阴影部分的面积S=5x2﹣4×x2=3x2,∴针尖落在阴影区域的概率为=.故答案为:.12.解:∵已知A点从(0,0)点出发,以每秒2个单位长的速度沿着x轴的正方向运动,∴经过t秒后,∴OA=2t,∵四边形OABC是菱形,∴OC=2t,当⊙P与OA,即与x轴相切时,如图所示,则切点为O,此时PC=OP,过P作PE⊥OC,∴OE=CE=OC,∴OE=t,∵∠AOC=60°,∴∠POC=30°,∵A(0,2),∴PE=,∴OE==6,∴t=6.故答案为:6.三、解答题(共84分)13.解:(1)∵x2﹣4x+1=0,∴(x﹣2)2=3,∴x﹣2=±,∴x1=+2,x2=﹣+2;(2)∵把△ADE绕点A旋转一定角度后与△ABF重合,∴△ADE≌△ABF,∴S△ADE=S△ABF,∴四边形AECF的面积等于正方形的面积,∴AD2=16,∴AD=4.14.解:由已知可得:,解得,∴抛物线解析式为y=﹣x2+x+.15.解:(1)如图1,BD为所作;(2)如图2,点G为所作.16.(1)证明:∵a=1,b=﹣(m+1),c=m,∴Δ=b2﹣4ac=[﹣(m+1)]2﹣4×1×m=m2+2m+1﹣4m=m2﹣2m+1=(m﹣1)2≥0,∴无论m为何值,方程总有实数根;(2)解:∵x2﹣(m+1)x+m=0,即(x﹣1)(x﹣m)=0,解得:x1=1,x2=m.当关于x的一元二次方程x2﹣(m+1)x+m=0有两个相等的实数根时,m=1,∴△ABC的三条边长分别为1,1,3,∵1+1=2<3,∴1,1,3不能组成三角形,∴m=1不符合题意,舍去;当关于x的一元二次方程x2﹣(m+1)x+m=0有两个不相等的实数根时,m==2,∴△ABC的三条边长分别为1,2,2,∵1+2=3>2,∴1,2,2能组成三角形.∴m的值为2.17.解:(1)∵AD是⊙O的直径,∴∠ABD=90°,∵∠BAD=20°,∴∠D=90°﹣20°=70°,∴∠ACB=∠D=70°;(2)连接OC,∵BC平分∠ABD,∴∠ABC=ABD=45°,∴∠AOC=2∠ABC=90°,∵AD=2,∴AO=1,∴AC=AO=.18.解:(1)抽到“明月山”是随机事件,抽到“井冈山”是不可能事件,故答案为:随机,不可能;(2)画树状图如下:这次抽签所有等可能的结果共有12种,其中“小尹抽到明月山和庐山”的结果有2种,即AC、CA,∴“小尹抽到明月山和庐山”的概率为=.19.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C即为所求,∵AC==,∴弧长AA2==.20.解:设桑葚售价应降低x元,则每天可售出(200+50x)千克,由题意得,(30﹣15﹣x)(200+50x)=3500,解得x1=1,x2=10,∵采摘园尽量增加销售量,∴x=10,答:桑葚售价应降低10元;(2)设采摘园每天的利润为w元,根据题意得:w=(30﹣15﹣a)(200+50a)=﹣50a2+550a+3000=﹣50(a﹣)2+4512,∵﹣50<0,∴当a=时,w有最大值,最大值为4512.5,答:当a=时,该采摘园每天的利润最大.21.(1)证明:如图,连接OA,∵BE是⊙O的直径,∴∠BAE=90°,∴∠OAB+∠OAE=90°,∵OA=OB,∴∠OBA=∠OAB,∵∠CAE=∠ABC,∴∠CAE=∠OAB,∴∠CAE+∠OAE=90°,∴OA⊥AC,∵OA是⊙O的半径,∴AC是⊙O的切线;(2)解:∵∠ADB=60°,∴∠AEB=∠ADB=60°,∵OA=OE,∴△OAE为等边三角形,∴∠AOC=60°,∴AC=OA=3,∴S阴影部分=S△OAC﹣S扇形AOE=×3×3﹣=﹣π.22.解:(1)将x=﹣3,x=0分别代入函数y=x2﹣2|x|+1,得m=9﹣6+1=4,n=1,故答案为:4,1;(2)画出函数图象如图:(3)该函数的一条性质:函数图象关于y轴对称;(4)由图象得,若点M(m,y1)在图象上,且y1≤1,则﹣1≤m≤1,若点N(m+k,y2)也在图象上,且满足y2≥4恒成立,则m+k≤﹣3或m+k≥3,∴k≤﹣3﹣m或k≥3﹣m,∴k的取值范围为k≤﹣4或k≥4.23.解:【操作发现】如图1中,过点E作EK∥AC交AB于点K.∵△ABC是等边三角形,∴∠ACB=∠CAB=∠ABC=60°,AB=BC,∵EK∥AC,∴∠BEK=∠ACB=60°,∠BKE=∠CAB=60°,∴△BEK是等边三角形,∴BK=BE,∴AK=EC,∵∠AEC=∠AEF+∠FEC=∠ABC+∠EAK,∠AEF=∠ABC=60°,∴∠EAK=∠FEC,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠ECF=120°,∵BE=EK,∴CF=BE,∠FCN=60°,故答案为:CF=BE,60°;【类比探究】如图2中,结论成立.理由:过点E作EK∥AC交BA的延长线于点K.∵△ABC是等边三角形,∴∠ACB=∠CAB=∠ABC=60°,AB=BC,∵EK∥AC,∴∠BEK=∠ACB=60°,∠BKE=∠CAB=60°,∴△BEK是等边三角形,∴BK=BE,∴AK=EC,∵∠AEN=∠AEF+∠FEN=∠ABC+∠EAK,∠AEF=∠ABC=60°,∴∠EAB=∠FEN,∴∠EAK=∠FEC,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠FCE=60°,∵BE=EK,∴CF=BE;【拓展应用】(1)结论:CF=BE,线段CF与直线MN所夹锐角的度数为45°.理由:在BA上取一点K,使得BK=BE.∵四边形ABCD是正方形,∴∠ABC=90°,∵BK=BE,∴∠BKE=∠BEK=45°,∴∠AKE=135°,∵∠AEN=∠AEF+∠FEC=∠ABC+∠EAK,∠AEF=∠ABC=90°,∴∠EAB=∠FEN,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠FCE=135°,∴∠FCN=180°﹣135°=45°;(2)如图4﹣1中,过点D作DH⊥CF于点H.当点F在点H上方时,∵△DCH是等腰直角三角形,CD=2,∴CH=DH=,∵DF=,∴FH===2,∴CF=BE=3.如图4﹣2中,当点F在点H的下方时,同法可得FH=2,∴CF=BE=FH﹣CH=,综上所述,BE的长为或3.。
天津市第一中学2022-2023学年高三上学期第三次月考数学试题(解析版)
天津一中2022-2023-1高三年级第三次月考数学试卷(答案)本试卷总分150分,考试用时120分钟。
考生务必将答案涂写在答题卡上,答在试卷上的无效。
一、选择题:本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合3{Z |Z}1A x x=∈∈-,2{Z |60}B x x x =∈--≤,则A B ⋃=( ) A .{2} B .}{2,0,2- C .{}2,1,0,1,2,3,4-- D .}{3,2,0,2,4--【详解】{A x =∈2Z |x x --{2,1,0,1,2,3,4--.,b ,c 为非零实数,则“A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【分析】根据不等式的基本性质可判定“a >b >c ”能推出“a +b >2c ”,然后利用列举法判定“a +b >2c ”不能推出“a >b >c ”,从而可得结论.【解答】解:∵a >b >c ,∴a >c ,b >c ,则a +b >2c , 即“a >b >c ”能推出“a +b >2c ”,但满足a +b >2c ,取a =4,b =﹣1,c =1,不满足a >b >c , 即“a +b >2c ”不能推出“a >b >c ”,所以“a >b >c ”是“a +b >2c ”的充分不必要条件, 故选:A .3、已知2log 0.8a =,0.12b =,sin 2.1c =,则( )A .a b c <<B .a c b <<C .c a b <<D .b<c<a 【答案】B【详解】因为22log 0.8log 10<=,0.10122>=,0sin 2.11<<, 所以a c b <<, 故选:B 4、函数2sin ()1x xf x x -=+的图象大致为 ( )A .B .C .D .【答案】A 【解析】【分析】根据函数的定义域、奇偶性以及2f π⎛⎫⎪⎝⎭的值来确定正确选项. 【详解】由题意,函数2sin ()1x xf x x -=+的定义域为R , 且22sin()sin ()()()11x x x xf x f x x x -----===--++,所以函数()f x 奇函数,其图象关于原点对称,所以排除C 、D 项,2120212f πππ-⎛⎫=> ⎪⎝⎭⎛⎫+ ⎪⎝⎭,所以排除B 项. 故选:A5、已知1F 、2F 分别为双曲线2222:1x y E a b-=的左、右焦点,点M 在E 上,1221::2:3:4F F F M F M =,则双曲线E 的渐近线方程为 ( ) A .2y x =± B .12y x =±C.y = D.y =【答案】C【解析】由题意,1F 、2F 分别为双曲线2222:1x y E a b-=的左、右焦点,点M 在E 上,且满足1221:||:2:3:4F F F M F M =,可得122F F c =,23F M c =,14F M c =, 由双曲线的定义可知21243a F M F M c c c =-=-=,即2c a =,又由b ==,所以双曲线的渐近线方程为y =.故选:C .6、设n S 是等比数列{}n a 的前n 项和,若34S =,4566a a a ++=,则96S S = ( )A .32B .1910 C .53D .196【答案】B【解析】设等比数列{}n a 的公比为q ,若1q =,则456133a a a a S ++==,矛盾. 所以,1q ≠,故()()33341345631111a q a q q a a a q S qq--++===--,则332q=, 所以,()()()63113631151112a q a q S q S qq--==+⋅=--, ()()()9311369311191114a q a q S q q S qq--==++=--, 因此,9363192194510S S S S =⋅=.故选:B . 7、直线1y kx =-被椭圆22:15x C y +=截得最长的弦为( ) A .3 B .52C .2D【答案】B【解析】联立直线1y kx =-和椭圆2215xy +=,可得22(15)100k x kx +-=,解得0x =或21015kx k =+,则弦长21015kl k =+,令215(1)k t t +=≥,则10l === 当83t =,即k =,l 取得最大值55242⨯=, 故选:B8、设函数()sin()(0)4f x x πωω=->,若12()()2f x f x -=时,12x x -的最小值为3π,则( )A .函数()f x 的周期为3πB .将函数()f x 的图像向左平移4π个单位,得到的函数为奇函数 C .当(,)63x ππ∈,()f x的值域为D .函数()f x 在区间[,]-ππ上的零点个数共有6个 【答案】D【解析】由题意,得23T π=,所以23T π=,则23T πω==,所以()sin(3)4f x x π=-选项A 不正确; 对于选项B :将函数()f x 的图像向左平移4π个单位,得到的函数是 ()sin[3()]cos344f x x x ππ=+-=为偶函数,所以选项B 错误;对于选项C :当时(,)63x ππ∈,则33444x πππ<-<,所以()f x的值域为,选项C 不正确;对于选项D :令()0,Z 123k f x x k ππ=⇒=+∈,所以当3,2,1,0,1,2k =---时,[,]x ππ∈-,所以函数()f x 在区间[,]-ππ上的零点个数共有6个,D 正确, 故选:D .9、设函数()(),01,,10,1xx mf x x x m x ⎧≤<⎪⎪=⎨-⎪-<<+⎪⎩,()()41g x f x x =--.若函数()g x 在区间()1,1-上有且仅有一个零点,则实数m 的取值范围是( )A .(]11,1,4⎡⎫--⋃+∞⎪⎢⎣⎭B .(]1,1,4⎡⎫-∞-+∞⎪⎢⎣⎭C .{}11,5⎡⎫-⋃+∞⎪⎢⎣⎭D .{}11,15⎛⎫-⋃ ⎪⎝⎭【答案】C 【详解】令()()410g x f x x =--=,则()41f x x =+,当01x ≤<时,41xx m=+,即4x mx m =+,即函数1y x =与24y mx m =+的交点问题,其中24y mx m =+恒过A 1,04⎛⎫- ⎪⎝⎭.当10x -<<时,()411x x m x -=++,即1114mx m x -+=++,即函数3111x y =-++与24y mx m =+的交点问题 分别画出函数1y ,2y ,3y 在各自区间上的图象: 当2y 与3y 相切时,有且仅有一个零点,此时()411xx m x -=++,化简得:()24510mx m x m +++=,由()2251160m m ∆=+-=得:11m =-,219m =-(舍去)当直线2y 的斜率,大于等于直线1y 的斜率时,有且仅有一个零点,把()1,1B 代入24y mx m =+中,解得:15m =,则15m ³综上,m 的取值范围是{}11,5⎡⎫-⋃+∞⎪⎢⎣⎭故选:C二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10、已知复数z 满足()2i i z -=,则5i z -=___________.【答案】3【解析】因为圆22:20(0)C x ax y a -+=>的标准方程为:()222x a y a -+=,所以圆必坐标为(,0)a ,半径为a ,由题意得:32a a += 解得:3a = ,故答案为:3.12、已知3π3sin 85α⎛⎫-= ⎪⎝⎭,则πcos 24α⎛⎫+= ⎪⎝⎭________. 【答案】725-【解析】2πcos 2cos 22cos 1488ππααα⎡⎤⎛⎫⎛⎫⎛⎫+=+=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦232cos 182ππα⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦223372sin 1218525πα⎛⎫⎛⎫=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭,故答案为:725- 13、直线l 与双曲线2222:1(0,0)x y E a b a b -=>>的一条渐近线平行,l 过抛物线2:4C y x =的焦点,交C 于A ,B 两点,若||5AB =,则E 的离心率为_______.【详解】依题意,点F 的坐标为(1,0),设直线l 的方程为1x my =+,联立方程组214x my y x=+⎧⎨=⎩,消去x 并整理得:2440y my --=,设1(A x ,1)y ,2(B x ,2)y ,则124y y m +=,124y y =-,则2212||()4(1)5AB y y m ++=,解得:12m =±,∴直线l 的方程为220x y +-=或220x y --=;直线的斜率为:2±.直线l 与双曲线2222:1(0,0)x y E a b a b -=>>的一条渐近线平行,可得2b a =,所以22224b a c a ==-,1e >,解得e =故14、已知1a >,1b >,且lg 12lg a b =-,则log 2log 4a b +的最小值为_______. 【答案】9lg2【解析】由已知,令lg 2log 2lg a m a ==,lg 4log 4lg b n b==, 所以lg 2lg a m =,lg 42lg 2lg b n n ==,代入lg 12lg a b =-得:lg 24lg 21m n+=, 因为1a >,1b >,所以lg 24lg 24log 2log 4()1()()5lg 2(lg 2lg 2)a b m nm n m n m n n m+=+⨯=++=++ 2lg 25lg 25lg 24lg 29lg 2n m≥+=+=.当且仅当4lg 2lg 2m n n m=时,即1310a b ==时等号成立. log 2log 4a b +的最小值为9lg2. 故答案为:9lg2.15、在Rt ABC 中,90C ∠=,若ABC 所在平面内的一点P 满足0PA PB PC λ++=,当1λ=时,222PA PB PC+的值为 ;当222PA PB PC+取得最小值时,λ的值为 .【答案】5;-1【解析】(1)如图5-26,以C 为坐标原点建立直角坐标系, 因为0PA PB PC λ++=,所以点P 为ABC 的重心,设BC a =,AC b =,所以(),0A b ,()0,B a ,易得,33a b P ⎛⎫⎪⎝⎭,所以222222222411499991199a b a b PA PBPC b a ++++=+5=. (2)设(,)P x y ,则(,),(,),(,)PA b x y PB x a y PC x y =--=--=--, 所以2,2,b x x a y y λλ-=⎧⎨-=⎩可得(2),(2),b x a y λλ=+⎧⎨=+⎩于是222222222||||()()||PA PB x b y x y a x y PC +-+++-=+()222222222x y bx ay a b x y +--++=+ 22222222(2)(2)2(2)2(2)2x y x y x y λλλλ+++-+-+=++()()222222222x y x y λλλλ+++=++ 2222(1)11λλλ=++=++…当1λ=-时取等号,所以222||||||PA PB PC +的最小值为1. 故答案为:5;-1.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16、如图,在平面四边形ABCD 中,对角线AC 平分BAD ∠,ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,cos cos cos 0B a C c A ++=. (1)求B ;(2)若2AB CD ==,ABC 的面积为2,求AD . 【答案】(1)34B π=;(2)4=AD .【分析】(1)利用正弦定理将边化角,再根据两角和的正弦公式及诱导公式即可得到cos B=出B;(2)由三角形面积公式求出a,再利用余弦定理求出AC,即可求出cos CAB∠,依题意cos cosCAB CAD∠=∠,最后利用余弦定理得到方程,解得即可;【详解】(1)cos cos cos0B aC c A++=,cos sin cos cos sin0B B AC A C++=,()cos sin0B B A C++=,cos sin0B B B+=,因为0Bπ<<,所以sin0B>,所以cos B=34Bπ=.(2)因为ABC的面积2S=,所以1sin22==ABCS ac B,2=,所以a=由余弦定理得AC==所以222cos2AB AC BCCABAB AC+-∠==⋅因为AC平分BAD∠,所以cos cosCAB CAD∠=∠,所以2222cosCD AC AD AC AD CAD=+-⋅⋅∠,所以24202AD AD=+-⨯28160AD AD-+=,所以4=AD.17、如图,在五面体ABCDEF中,四边形ABEF为正方形,DF⊥平面ABEF,//CD EF,2DF=,22EF CD==,2EN NC=,2BM MA=.(1)求证://MN平面ACF;(2)求直线AD与平面BCE所成角的正弦值;(3)求平面ACF与平面BCE夹角的正弦值.【答案】(1)见解析;(2;(3)45【详解】(1)证明:在EF上取点P,使2EP PF=,因为2EN NC=,所以//NP FC,于是//NP平面ACF,因为2BM MA=,四边形ABEF为正方形,所以//MP AF,所以//MP平面ACF,因为MP PN P =,所以平面//MNP 平面ACF ,因为MN ⊂平面MNP ,所以//MN 平面ACF ;(2)解:因为DF ⊥平面ABEF ,所以DF FA ⊥,DF EF ⊥, 又因为四边形ABEF 为正方形,所以AF EF ⊥,所以FA 、FE 、FD 两两垂直,建立如图所示的空间直角坐标系, (2AD =-,0,2),(2EB =,0,0),(0EC =,1-,2),设平面BCE 的法向量为(m x =,y ,)x , 2020EB m x EC m y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1z =,(0m =,2,1), 所以直线AD 与平面BCE所成角的正弦值为||2||||22AD m AD m ⋅=⋅⋅ (3)解:(2FA =,0,0),(0FC =,1,2), 设平面ACF 的法向量为(n u =,v ,)w ,2020FA n u FC n v w ⎧⋅==⎪⎨⋅=+=⎪⎩,令1w =-,(0n =,2,1)-, 由(1)知平面BCE 的法向量为(0m =,2,1), 设平面ACF 与平面BCE 所成二面角的大小为θ,||33cos ||||55m n m n θ⋅===⋅⋅,4sin 5θ==.所以平面ACF 与平面BCE 所成二面角的正弦值为45. 18、已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点为12,F F ,P 为椭圆上一点,且212PF F F ⊥,12tan PF F ∠=. (1)求椭圆C 的离心率;(2)已知直线l 交椭圆C 于,A B 两点,且线段AB 的中点为11,2Q ⎛⎫- ⎪⎝⎭,若椭圆C 上存在点M ,满足234OA OB OM +=,试求椭圆C 的方程.【答案】(1)e =(2)22551164x y +=.【分析】(1)由212tan 2b a PF F c ∠==222a c b -=,建立关于e 的方程,即可得到结果; (2)设()()()112200,,,,,A x y B x yM x y ,由(1)可知224a b =,可设椭圆方程为22244x y b +=,根据234OA OB OM +=,可得120120234234x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩,设1:(1)2AB y k x =--将其与椭圆方程联立,由韦达定理和点M 满足椭圆方程,可求出2b ,进而求出结果.【详解】(1)解:因为2212tan 22b b a PF F c ac ∠==26b =,即()226a c -=, 则()261e -=,解得e =(2)设()()()112200,,,,,A x y B x y M x y ,由22234c e a ==,得2243a c =,所以222221134b a c c a =-==,所以224a b =设2222:14x y C b b+=,即22244x y b +=由于,A B 在椭圆上,则2221144x y b +=,2222244x y b +=,①由234OA OB OM +=,得120120234234x x x y y y +=⎧⎨+=⎩,即120120234234x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 由M 在椭圆上,则2220044x y b +=,即212222144232344x x y y b ⎛⎫+= ⎪++⎛⎫ ⎪⎝⎝⎭⎭, 即()()()222211121222441249464x y x x y y x y b +++++=,②将①代入②得:212124x x y y b +=,③线段AB 的中点为11,2Q ⎛⎫- ⎪⎝⎭,设1:(1)2AB y k x =--可知()22211244y k x x y b⎧=--⎪⎨⎪+=⎩ ()()22222148444410k x kk x k k b +-+++-+=212284121142k k x x k k ++==⨯⇒=+, 所以222220x x b -+-=,其中0∆>,解得212b >, 所以21222x x b ⋅=-,AB 方程为112y x =-又()2121212121111111122422b y y x x x x x x -⎛⎫⎛⎫=--=-++= ⎪⎪⎝⎭⎝⎭,④ 将④代入③得:22221422425b b b b --+⋅=⇒=, 经检验满足212b >, 所以椭圆C 的方程为22551164x y +=. 19、已知等差数列}{n a 的前n 项和为n S ,且455=S 455=S ,40342=+a a .数列}{n b 的前n 项和为n T ,满足n n b T 413=+)(*N n ∈.(1)求数列}{n a 、}{n b 的通项公式;(2)若1)23(+⋅-=n n n n n a a a b c ,求数列}{n c 的前n 项和n R ; (3)设n n n b S d =,求证:11248-=+-<∑n n k k n d . 【答案】(1)32+=n a n ,14-=n n b ;(2)51524-+=n R n n ;(2)证明见详解. 【详解】(2);(3)124n n n n n b c b b ++=, 112(3)44n n n n n n b n n c b b +-++∴==, 则12124)2(444--+=++<n n n n n n c ,122-+<n n . 设1122n n k k k S '-=+=∑, 11123422122nn k n k k n S '--=++∴==++⋯+∑ 213422222n n n S +'∴=++⋯+ 12111(1)121112422334122222221()2n n n n n n n n n S ---+++'∴=-+++⋯+=-+=--,1482n n n S -+'∴=- 综上,11248-=+-<∑n n k k n c . 20、已知函数()e cos x f x x =,()cos (0)g x a x x a =+<,曲线()y g x =在π6x =处的切线的斜率为32.(1)求实数a 的值;(2)对任意的π,02x ⎡⎤∈-⎢⎥⎣⎦,()'()0f x g x -≥恒成立,求实数t 的取值范围; (3)设方程()'()f x g x =在区间()ππ2π,2π32n n n +⎛⎫++∈ ⎪⎝⎭N 内的根从小到大依次为1x 、2x 、…、n x 、…,求证:12n n x x +->π.【答案】(1)1a =-;(2)1t ≥;(2)证明见详解.【分析】(1)由'π362g ⎛⎫= ⎪⎝⎭来求得a 的值. (2)由()'()0f x g x -≥,对x 进行分类讨论,分离常数t 以及构造函数法,结合导数求得t 的取值范围.(3)由()'()f x g x =构造函数()e cos sin 1x x x x ϕ=--,利用导数以及零点存在性定理,结合函数的单调性证得12n n x x +->π.【详解】(1)因为()cos (0)g x a x x a =+<,则()'1sin g x a x =-, 由已知可得'π131622g a ⎛⎫=-= ⎪⎝⎭,解得1a =-. (2)由(1)可知()'1sin g x x =+,对任意的π,02x ⎡⎤∈-⎢⎥⎣⎦,()'()0tf x g x -≥恒成立, 即e cos 1sin x t x x ≥+对任意的π,02x ⎡⎤∈-⎢⎥⎣⎦恒成立, 当2x π=-时,则有00≥对任意的R t ∈恒成立; 当π02x -<≤时,cos 0x >,则1sin e cos x x t x+≥, 令1sin ()e cos x x h x x +=,其中π02x -<≤, ()()2'2e cos e (cos sin )(1sin )e cos x x x x x x x h x x --+=2(1cos )(1sin )0e cos x x x x-+=≥且()'h x 不恒为零, 故函数()h x 在π,02⎛⎤- ⎥⎝⎦上单调递增,则max ()(0)1h x h ==,故1t ≥. 综上所述,1t ≥.(3)由()'()f x g x =可得e cos 1sin x x x =+,e cos 1sin 0x x x --=,令()e cos sin 1x x x x ϕ=--,则()'e (cos sin )cos x x x x x ϕ=--, 因为()ππ2π,2π32x n n n +⎛⎫∈++∈ ⎪⎝⎭N ,则sin cos 0x x >>,所以,()'0x ϕ<,所以,函数()ϕx 在()ππ2π,2π32n n n +⎛⎫++∈ ⎪⎝⎭N 上单调递减,因为π2π3ππ2πe cos 2π33n n n ϕ+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭πsin 2π13n ⎛⎫-+- ⎪⎝⎭π2π31e 12n +=π2π3e 102+≥>,π2π202n ϕ⎛⎫+=-< ⎪⎝⎭, 所以,存在唯一的()ππ2π,2π32n x n n n +⎛⎫∈++∈ ⎪⎝⎭N ,使得()0n x ϕ=, 又1ππ2(1)π,2(1)π32n x n n +⎛⎫∈++++ ⎪⎝⎭()n +∈N ,则()1ππ2π2π,2π32n x n n n ++⎛⎫-∈++∈ ⎪⎝⎭N 且()10n x ϕ+=, 所以,()()12π112πe cos 2πn x n n x x ϕ+-++-=-()1sin 2π1n x +---12π11e cos sin 1n x n n x x +-++=--112π11e cos e cos n n x x n n x x ++-++=-()112π1e e cos 0n n x x n x ++-+=-<()n x ϕ=, 因为函数()ϕx 在()ππ2π,2π32n n n +⎛⎫++∈ ⎪⎝⎭N 上单调递减, 故12n n x x +-π>,即12n n x x +->π.。
沪科版2022-2023学年七年级数学上册第三次月考测试题(附答案)
2022-2023学年七年级数学上册第三次月考测试题(附答案)一、选择题(满分40分)1.在﹣2,0,,1这四个数中,绝对值最大的数是()A.﹣2B.0C.D.12.若a,b两数在数轴上位置如图所示,则a+b是()A.负数B.正数C.0D.无法确定符号3.方程1﹣去分母得()A.1﹣2(2x﹣4)=﹣(x﹣7)B.6﹣2(2x﹣4)=﹣x﹣7C.6﹣2(2x﹣4)=﹣(x﹣7)D.以上答案均不对4.二元一次方程组的解是()A.B.C.D.5.如图,在不添加字母的情况下,可以用字母表示出来的不同线段和射线有()A.3条线段,3条射线B.6条线段,6条射线C.6条线段,4条射线D.3条线段,1条射线6.如图所示,由A到B有(1)(2)(3)三条路线,最短的路线选(1)的理由是()A.因为它是直的B.两点确定一条直线C.两点之间,线段最短D.两点之间距离的定义7.某公司去年10月份的利润为a万元,11月份比10月份减少5%,12月份比11月份增加了9%,则该公司12月份的利润为()A.(a﹣5%)(a+9%)万元B.(a﹣5%+9%)万元C.(1﹣5%+9%)a万元D.(1﹣5%)(1+9%)a万元8.如图,下列关系式中与图不符合的式子是()A.AD﹣CD=AB+BC B.AC﹣BC=AD﹣BDC.AC﹣BC=AC+BD D.AD﹣AC=BD﹣BC9.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,则甲的容积是()A.1280 cm3B.2560 cm3C.3200 cm3D.4000 cm310.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm二、填空题(共20分)11.已知代数式2x﹣y的值是2,则代数式3+2y﹣4x的值是.12.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是.13.线段AB被分为2:3:4三部分,已知第一部分和第三部分的中点间的距离是5.4cm,则线段AB的长度应为.14.若关于x,y的方程组的解是则关于x,y的方程组的解是.三、解答题(满分90分)15.解方程组:16.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.17.某中学为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),已知购买3个足球和2个篮球共需310元;购买2个足球和5个篮球共需500元.求购买一个足球、一个篮球各需多少元?18.已知方程组与方程的解相同,求a、b.19.如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有三个点时,线段总共有3条,如果线段AB上有4个点时,线段总数有6条,如果线段AB上有5个点时,线段总数共有10条,…(1)当线段AB上有6个点时,线段总数共有条;(2)当线段AB上有n个点时,线段总数共有多少条?20.放学后,小贤和小艺来到学校附近的地摊上购买一种签字笔和卡通笔记本,这种签字笔每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支签字笔、2本笔记本需花12元,小艺要买6支签字笔、1本笔记本需花费15元.(1)求笔记本的单价和单独购买一支签字笔的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,小贤还剩2元钱,小艺还剩1元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.21.提出问题:如图,图中共有多少个长方形(包括正方形)?分析问题:确定了长方形的一组邻边,就可以确定一个长方形.每一个长方形都对应线段AB上任取的一条线段和线段AC上任取的一条线段所组成的线段对,反过来,这样的一条线段对也对应了一个长方形.如AB上的线段A2A3和AC上的线段B1B2所组成的线段对(A2A3,B1B2)对应了一个长方形(阴影部分),反过来,阴影部分的长方形也确定了一个线段对(A2A3,B1B2).解决问题:(1)AC上的B1C与AB上的线段可以组成个线段对;(2)图中共有个长方形(包括正方形).22.鹏程中学拟组织七年级部分师生赴滁州市琅琊山进行文学采风活动.下面是活动负责人李老师和小芳同学、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们八年级师生上个星期在这个客运公司租了4辆60座和2辆45座的客车到滁州市琅琊山,一天的租金共计5600元.”小明:“我们七年级师生租用2辆60座和5辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,七年级师生到该公司租车一天,共需租金多少元?(3)小芳听了小明的话后,说:“你们七年级还有更合算的租车方案.”请直接写出这个租车方案:.23.有一片牧场原有的草量为akg,草每天都匀速地生长,这片牧场每天牧草的生长量都为mkg.若在其上放牧24头牛,则6天吃完牧草.若放牧21头牛,则8天吃完牧草.若每头牛每天吃草的量也都是相等的,设每头牛每天吃草的量为xkg.问:(1)放牧24头牛,6天所吃的牧草量用含a,m的代数式表示为kg;放牧21头牛,8天所吃的牧草量用含a,m的代数式表示为kg;(2)试用x表示a,m;(3)若放牧16头牛,则几天可以吃完牧草?参考答案一、选择题(满分40分)1.解:因为|﹣2|=2,|0|=0,||=,|1|=1,而,所以在﹣2,0,,1这四个数中,绝对值最大的数是﹣2.故选:A.2.解:由题意得:b<0<a,且|a|<|b|,∴a+b<0,∴a+b是负数,故选:A.3.解:方程两边都乘6,得6﹣2(2x﹣4)=﹣(x﹣7).故选:C.4.解:,①+②得,3x=9,解得x=3,把x=3代入①得,3+y=3,解得y=0,所以,原方程组的解是.故选:D.5.解:线段有CB,CA,CO,BA,BO,AO共6条,射线有射线CB,射线BC,射线BA,射线AB,射线AO,射线OA,共6条.故选:B.6.解:最短的路线选(1)的理由是:两点之间,线段最短.故选:C.7.解:由题意得:12月份的利润为:(1﹣5%)(1+9%)a万元,故选:D.8.解:A、AD﹣CD=AB+BC,正确,B、AC﹣BC=AD﹣BD,正确;C、AC﹣BC=AB,而AC+BD≠AB,故本选项错误;D、AD﹣AC=BD﹣BC,正确.故选:C.9.解:设甲的容积为xcm3,根据题意得:﹣=8,解得:x=3200,所以甲的容积为3200cm3.故选:C.10.解:∵点A、B、C都是直线l上的点,∴有两种情况:①如图,当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②如图,当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选:C.二、填空题(共20分)11.解:3+2y﹣4x=3﹣(4x﹣2y)=3﹣2(2x﹣y),∵2x﹣y=2,∴原式=3﹣2×2=3﹣4=﹣1.故答案为:﹣1.12.解:把x=m代入方程4x﹣3m=2,得:4m﹣3m=2,解得:m=2.故答案为:2.13.解:如图,AC:CD:BD=2:3:4,设AC=2x,则CD=3c,BD=4x,∵点M是AC的中点,点N是BD的中点∴CM=AC=x,DN=BD=2x∴MN=CM+CD+DN=6x=5.4,解得x=0.9∴AB=2x+3x+4x=9x=9×0.9=8.1(cm).故答案为:8.1cm.14.解:根据题意得:,解得:,故答案为:.三、解答题(满分90分)15.解:,由①得:x=2﹣3y③,把③代入②,得3(2﹣3y)﹣y=﹣4,解得:y=1,把y=1代入③,得x=﹣1.所以原方程组的解为.16.解:∵AD=6cm,AC=BD=4cm,∴BC=AC+BD﹣AD=2cm;∴EF=BC+(AB+CD)=2+×4=4cm.17.解:设一个足球为x元、一个篮球为y元,根据题意得,解得:,答:一个足球需要50元、一个篮球需要80元.18.解:①×7﹣②得:17x=34,解得x=2.把x=2代入①得:y=1.所以第一个方程组的解是.把x=2,y=1代入方程组得,解得:;即a、b的值分别是2.5、1.19.解:(1)∵当有3个点时,线段的总数为:=3;当有4个点时,线段的总数为:=6;当有5个点时,线段的总数为:=10;∴当有6个点时,线段的总数为:=15.(2)由(1)可看出,当线段AB上有n个点时,线段总数为:.20.解:(1)设签字笔x元/支,笔记本y元/本,依题意可得:解得:答:签字笔2元/支,笔记本3元/本;(2)合买一盒签字笔.购买前:小贤有12+2=14(元),小艺有15+1=16(元),总共30元.由于整盒购买比单只购买每支可优惠0.5元,因此,小贤和小艺可一起购买整盒签字笔,费用为15元,3本笔记本费用为9元,2件工艺品需6元,总共需30元;∴他们既能买到各自需要的文具用品,又都能购买到一个小工艺品.还多一支签字笔.21.解:(1)根据题意得,AC上的B1C与AB上的线段可以组成的线段对为:(B1C,AA1)、(B1C,AA2)、(B1C,AA3)、(B1C,AB)、(B1C,A1A2)、(B1C,A1A3)、(B1C,A1B)、(B1C,A2A3)、(B1C,A2B)、(B1C,A3B),共10个线段对.故答案为:10;(2)AC上的线段为:AB1,AB2,AC,B1B2,BC,B2C,共6条线段,结合(1)的结论,得图中的长方形(包括正方形)数量为:6×10=60.故答案为:60.22.解:(1)设平安客运公司60座和45座客车每天每辆的租金分别为x元,y元.由题意,列方程组得:,解得:,答:平安客运公司60座和45座的客车每辆每天的租金分别是1000元,800元.(2)七年级师生共需租金:2×1000+5×800=6000(元).答:按小明提出的租车方案,七年级师生到该公司租车一天,共需租金6000元.(3)设租用60座客车m辆,租用45座客车n辆,依题意得:60m+45n=2×60+5×45,整理得:4m+3n=23,∵m,n均为正整数,∴m=2,n=5,或m=5,n=1,当m=2,n=5时,所需费用为1000×2+800×5=6000(元);当m=5,n=1时,所需费用为1000×5+800×1=5800(元);∵58800<6000,∴更合算的租车方案为:租用5辆60座和1辆45座的客车,此时租车费为5800元,故答案为:租用5辆60座和1辆45座的客车.23.解:(1)放牧24头牛,6天所吃的牧草量用含a,m的代数式表示为(a+6m)kg;放牧21头牛,8天所吃的牧草量用含a,m的代数式表示为(a+8m)kg;故答案为:(a+6m);(a+8m);(2)由题意,得解得:即a=72x,m=12x;(3)设16头牛y天可以吃完牧草,根据题意,得a+ym=16xy,即72x+12xy=16xy,解得:y=18,答:若放牧16头牛,18天可以吃完牧草.。
天津南开中学2024届高三第三次月检测答案
,
4
4
而
3
(125
4 3
4
− 803 )
210.2
,
3
(126
4 3
4
− 813 )
210.9
,
4
4
由[S] 的定义,得[S] = 211 ,
所以[S] 的值是 211.
6/6
=3
2,
解得 k =
2 2
,所以直线 l1
的斜率为
2. 2
所以
P
2c , 6 5
2c 5
,△APQ
的外接圆圆心
C
−
c 5
,
0
, kCP
=
62
5 3c
c
=
2
2,
5
因为 CP ⊥ PT ,所以直线 l2 的斜率为 k2 = −
2. 4
(3)设直线 l2 的方程为 y = −
2 x + 13 2 c ,与椭圆方程联立可得:
1
−
−
1 4
2
=
15 , 4
△ABC 的面积为 3
15
,可得
1 2
bc
sin
A
=
3
15 ,即 1 bc 2
15 = 3 15 ,则 bc = 24 , 4
联立 b − c = 2 ,解得 b = 6 , c = 4 ,
由
a2
=
b2
+
c2
−
2bc cos
A
=
36
+ 16
−
26
4
−
1 4
=
64
=1504 ;
月考后的反思和总结范本(5篇)
月考后的反思和总结范本第三次月考的成绩已经出来,与上次月考成绩相比,总体上有所提升。
为了使自我今后的学生更有方向性,也为了力争在下次考试中取得更优异的成绩,现作如下总结:一、成绩浮动情景这次月考总成绩比上次月考提高了____分。
其中,数学提高了____分,英语提高了____分,可是语文下降了____分。
二、成绩浮动原因1、数学和英语一向是我的弱项,所以在平时的学习中,我都把很多的时间和精力花费在这两个科目上。
2、语文是我的强项,尤其是作文对提分产生了关键性作用。
可是最近几个月的学习中,我却自以为语文成绩好,就忽略了新知识的巩固,导致自我在基础知识方面有所落后。
三、提分经验1、最近一个月内,每次上数学课,我都认真听教师讲课。
课后也及时复习相关知识点,并按教师要求做习题集。
碰到不懂的'地方,我就向同学和教师请教,力求彻底弄懂每一个知识点,再利用习题加以强化。
四、教训这次一向被我视为强项的语文竟然成了我的拉分科目,实属不该。
所以,在以后的学习中,我必须不能因为其他科目就忽略了语文的学习。
五、解决对策1、新的学习方法帮忙我在英语和数学方面取得了提高,所以以后要坚持这些方法,再接再厉。
2、重视语文的学习,打好基础,巩固作文。
总而言之,这次考试有失有得。
今后,我必须要继续坚持有的方法,统筹各科的学习,争取在各个方面都取得更好的成绩!月考后的反思和总结范本(二)一、在教学过程中没能够很好的注重细节问题这次月考,从试卷难易程度来分析,属于中等以下的水平。
但就试卷情况来说,选择题差一点,差距最大的是材料题,特别是材料当中的涉及到比较容易混淆的东西,很多同学做错了。
关于这一点,我上课的时候并没有充分的强调,我以为我上完课之后,同学们不管多少都看一点的。
可是,事实结果大出我的以外,很多同学不注重细节问题。
隋朝三省六部制和明朝的废三省由皇帝直接通灵六部这些细节问题,对于我个人来说,我在思想上没能够很好的重视这些细节问题,只是从自己的.角度出发,认为这些细节太简单。
河北省邢台市第一中学2022-2023学年高三上学期12月月考语文试题含答案
邢台一中2022-2023学年上学期第三次月考高三年级语文试题命题人李爱芬一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成1-5题。
材料一:2021年12月,南京大学城市科学研究院副院长胡小武教授注意到,作为城市化过程中衍生的一种新现象,“断亲”似乎越来越多地发生在青年人身上。
“断亲”指的是基于血缘联结的亲戚关系逐渐淡化,一些“90后”“00后”越来越疏于与亲戚产生情感联系的一种现象。
“断亲”主要表现为“基本不走亲戚”,而非正式断绝亲戚关系。
相关调查显示,越是年纪大的人,与亲戚之间的联系越频繁,关系越密切;越是年轻人,“断亲”现象也就越普遍。
那么“断亲”背后,中国家庭亲缘关系究竟发生着怎样的变化?过去中国社会以扩大家庭为主,亲缘关系较为紧密。
由于交通信息相对闭塞,人们的社会活动空间相对有限,生产生活及情感所需的信任关系和互助资源,在很大程度上依托各种亲戚关系,因而基于血缘关系的亲戚是最可靠和稳定的社会关系。
进入现代化、开放性、高流动性的社会后,中国人的社会关系网络发生较大变化,以学缘而非血缘的同学关系、校友关系逐渐占据社会关系的重要方面。
再加上现代社会中血缘亲朋因拆迁、借贷、财产继承、家庭攀比等造成的心态失衡,亲缘之间的“利益冲突”逐渐超越“利益链接”的比重。
因此,从传统到现代社会的重大变迁中,亲戚关系式微成为一种客观社会事实。
“内卷”环境加剧。
00后的独生子女常年游走于各种课堂之中,他们从小在内卷化的教育体系内生长生活。
特别是大城市中的青少年学生,几乎从小就周旋于各类培训班,休闲生活被极大压缩,社会交往特别是走亲戚形态的交往更少。
久而久之,青少年成长过程中亲戚“不在场”或被同学所替代,致使“断亲”成为必然。
城市化与社会流动造成居住地分离。
中国开启加速城镇化进程后,有超6亿人口陆续从乡村迁移到城市,其中超过2亿人口实现跨省市居住流动。
远距离流动造成兄弟姐妹分别居住在不同城市。
人教版2022-2023学年七年级数学上册第三次月考测试题(附答案)
2022-2023学年七年级数学上册第三次月考测试题(附答案)一、选择题(共30分)1.﹣5的绝对值是()A.B.5C.﹣5D.﹣2.在﹣,﹣,0,,0.2中,最小的是()A.﹣B.﹣C.0D.3.下列方程为一元一次方程的是()A.y=3B.x+2y=3C.x2=﹣2x D.+y=24.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到5100000册.把5100000用科学记数法表示为()A.0.51×108B.5.1×106C.5.1×107D.51×1065.如图所示,下列判断正确的是()A.a+b>0B.a+b<0C.ab>0D.|b|<|a|6.已知代数式6x﹣12与4+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.27.如果2x3n y m+4与﹣3y2n x9是同类项,那么m、n的值分别为()A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=2 8.下面计算正确的是()A.3x2﹣x2=3B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=09.下列解方程去分母正确的是()A.由﹣1=,得2x﹣1=3﹣3xB.由﹣=﹣1,得2(x﹣2)﹣3x﹣2=﹣4C.由=﹣﹣y,得3y+3=2y﹣3y﹣1﹣6yD.由﹣1=,得12x﹣15=5y+2010.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+2y2,阴影部分即为被墨迹弄污的部分,那么被墨汁遮住的项应是()A.﹣xy﹣y2B.7xy﹣4y2C.7xy D.﹣xy+y2二、填空题(共18分)11.计算(﹣81)÷×÷(﹣4)结果为.12.若|1+y|+(x﹣1)2=0,则(xy)2021=.13.已知a2+2a=10,则代数式2a2+4a﹣1的值为.14.有一个两位数,十位上的数字为a,个位上的数字比十位上的数字大5,用代数式表示这个两位数是,并当a=4时,这个两位数是.15.一家商店某种裤子按成本价提高50%后标价,又以八折以后出卖,结果每条裤子获利10元,则是这条裤子的成本是.16.观察一列单项式:3x2,﹣5x3,7x,﹣9x2,11x3,﹣13x,15x2,﹣17x3,19x,……,则第2020个单项式是.三、解答题(共计72分)17.若(2a﹣1)2+|2a+b|=0,且|c﹣1|=2,求a2(b+c)的值.18.有理数运算题:①﹣23÷8﹣×(﹣2)2②(﹣1)2020﹣(0.5﹣1)××[3﹣(﹣3)2]19.解方程题:①﹣=1②﹣1=2+20.化简求值题:(1)2x2﹣[x2+2(x2﹣3x﹣1)﹣(x2﹣1﹣2x],其中x=;(2)﹣a﹣2(a﹣b2)﹣3(a+b2),其中a=﹣2,b=2021.21.探索规律题:将连续的偶数2,4,6,8,…排成如下表:(1)若将十字框上下左右移动,可框住五个数,设中间的数为x,用代数式表示十字框中的五个数的和.(2)若将十字框上下左右移动,可框住五个数的和能等于2020吗?如能,写出这五位数,如不能,说明理由.22.方程应用题:某车间有技工85人,生产甲、乙两种零件,平均每人每天能生产甲种零件16个或乙种零件10个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?23.方程应用题今年疫情过后,一商店在某一时间以每件80元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?24.方程应用题:某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2000元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利250元,销售一台C种电视机可获利300元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?参考答案一、选择题(共30分)1.解:﹣5的绝对值是5,故选:B.2.解:∵,∴,即在﹣,﹣,0,,0.2中,最小的是.故选:A.3.解:A、方程y=3符合一元一次方程的定义,故本选项符合题意;B、方程x+2y=3含有两个未知数,不是一元一次方程,故本选项不符合题意;C、方程x2=﹣2x中未知数的最高次数是2,不是一元一次方程,故本选项不合题意;D、+y=2是分式方程,故本选项不符合题意.故选:A.4.解:5100000=5.1×106,故选:B.5.解:由图可知,b<0,a>0|.A、∵b<0,a>0,且|a|<|b|,根据有理数的加法法则,得出a+b<0,错误;B、正确;C、∵b<0,a>0,∴ab<0,错误;D、根据绝对值的定义,得出|a|<|b|,错误.故选:B.6.解:根据题意,得:6x﹣12+4+2x=0,移项,得:6x+2x=12﹣4,合并同类项,得:8x=8,系数化为1,得:x=1.故选:C.7.解:∵2x3n y m+4与﹣3y2n x9是同类项,∴,解得.故选:B.8.解:A、3x2﹣x2=2x2≠3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与x不可相加,故C错误;D、﹣0.25ab+ba=0,故D正确.故选:D.9.解:A.由﹣1=,得x﹣3=1﹣x,故选项A不符合题意;B.由﹣=﹣1,得2(x﹣2)﹣(3x﹣2)=﹣4,故选项B不符合题意;C.由=﹣﹣y,得3y+3=2y﹣3y+1﹣6y,故选项C不符合题意;D.由﹣1=,得12x﹣15=5x+20,故选项D符合题意.故选:D.10.解:∵(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+3xy﹣y2+x2﹣4xy+y2=﹣x2﹣xy+y2;∴阴影部分=﹣x2﹣xy+y2﹣(﹣x2+2y2)=﹣x2﹣xy+y2+x2﹣2y2=﹣xy﹣y2;故答案为:D.二、填空题(共18分)11.解:(﹣81)÷×÷(﹣4)=(﹣81)×××(﹣)=4.故答案为:4.12.解:∵|1+y|+(x﹣1)2=0,而|1+y|≥0,(x﹣1)2≥0,∴1+y=0,x﹣1=0,解得x=1,y=﹣1,∴(xy)2021=﹣1.故答案为:﹣1.13.解:原式=2(a2+2a)﹣1,把a2+2a=10代入,得原式=2×10﹣1=19,故答案为:19.14.解:十位上的数字为a,个位上的数字比十位上的数字大5,则个位数是a+5,则这个数是10a+(a+5)=11a+5.当a=4时,个位上的数是9,则这个数是49.故答案为11a+5;49.15.解:设这种裤子的成本是x元,由题意得:(1+50%)x×80%﹣x=10,解得:x=50,故答案为:50元.16.解:系数依次为3,﹣5,7,﹣9,11,…,(﹣1)n+12n+1,x的指数依次是2,3,1,2,3,1,可见三个单项式一个循环,故可得第2020个单项式的系数为(﹣1)2020+1×2×2020+1=﹣4041,2020÷3=673……1,则第2020个单项式的次数为:1,则第2020个单项式是﹣4041x.故答案为:﹣4041x.三、解答题(共计72分)17.解:∵(2a﹣1)2+|2a+b|=0,(2a﹣1)2≥0,|2a+b|≥0,∴2a﹣1=0,2a+b=0,∴a=,b=﹣1,∵|c﹣1|=2,∴c﹣1=±2,∴c=3或﹣1,当a=,b=﹣1,c=3时,a2(b+c)==,当a=,b=﹣1,c=﹣1时,a2(b+c)==.综上所述,a2(b+c)的值为或.18.解:①﹣23÷8﹣×(﹣2)2=﹣8÷8﹣×4=﹣1﹣1=﹣2;②(﹣1)2020﹣(0.5﹣1)××[3﹣(﹣3)2]=1+××(3﹣9)=1+××(﹣6)=1﹣1=0.19.解:①﹣=1,3(5x+1)﹣2(2x﹣1)=6,去括号,得15x+3﹣4x+2=6,移项,得15x﹣4x=6﹣3﹣2,合并同类项,得11x=1,系数化成1,得x=;②﹣1=2+,去分母,得2(x+1)﹣4=8+(2﹣x),去括号,得2x+2﹣4=8+2﹣x,移项,得2x+x=8+2﹣2+4,合并同类项,得3x=12,系数化成1,得x=4.20.解:(1)2x2﹣[x2+2(x2﹣3x﹣1)﹣(x2﹣1﹣2x]=2x2﹣(x2+2x2﹣6x﹣2﹣x2+1+2x)=2x2﹣x2﹣2x2+6x+2+x2﹣1﹣2x=4x+1,当x=时,原式=4×+1=2+1=3;(2)﹣a﹣2(a﹣b2)﹣3(a+b2)=﹣a﹣2a+b2﹣a﹣b2=﹣4a,当a=﹣2,b=2021时,原式=﹣4×(﹣2)=8.21.解:(1)十字框中的五个数的和:x+(x﹣10)+(x+10)+(x﹣2)(x+2)=5x;(2)由题意得:5x=2020,解得a=404,故框住的5个数是402、406、404、394、414.22.解:设分配x人生产甲种零件,则分配(85﹣x)人生产乙种零件,根据题意得=,解得x=25,∴85﹣25=60(人),答:应分配25人生产甲种零件,60人生产乙种零件.23.解:设盈利的一件的进价为x元,亏损的一件的进价为y元,根据题意得x+25%x=80,y﹣25%y=80,解得x=64,y=,80×2<64+,且80×2﹣(64+)=﹣(元),答:卖这两件衣服总的是亏损,亏损了元.24.解:(1)设购进A种电视机x台,C种电视机y台,若同时购进A种、B种电视机,则1500x+2000(50﹣x)=90000,解得x=20,所以50﹣20=30(台);若同时购进A种、C种电视机,则1500x+2500(50﹣x)=90000,解得x=35,所以50﹣35=15(台);若同时购进B种、C种电视机,则2000x+2500(50﹣x)=90000,解得x=70,不符合题意,舍去,答:有两种方案:方案一:购进A种电视机20台,B种电视机30台;方案二:购进A 种电视机35台,C种电视机15台.(2)选择方案一可获利:150×20+250×30=10500(元);选择方案二可获利:150×35+300×15=9750(元),10500元>9750元,答:选择方案一,即购进购进A种电视机20台,B种电视机30台.。
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案) (2)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题;共45分.1.下列各数中,比﹣2小的数是()A.0B.﹣C.|﹣6|D.﹣42.把图1的正方体切下一个角,按图2放置,则切下的几何体的主视图是()A.B.C.D.3.下列命题是真命题的是()A.内错角相等B.同一平面内,过一点有且只有一条直线与已知直线平行C.相等的角是对顶角D.同一平面内,过一点有且只有一条直线与已知直线垂直4.“科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如表,其中有两个数据被遮盖,下列关于成绩的统计量中,与被遮盖的数据无关的是()视力 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0人数33691210■■A.中位数,众数B.中位数,方差C.平均数,方差D.平均数,众数5.小宇妈妈上午在某水果超市买了16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了25%,小宇妈妈又买了16.5 元钱的葡萄,结果恰好比早上多了0.5 千克.若设早上葡萄的价格是x元/千克,则可列方程()A.B.C.D.6.如果多项式x2﹣mx+9是一个完全平方式,那么m的值为()A.﹣3B.﹣6C.±3D.±67.如图,在等腰直角△ABC中,∠ACB=90°,D为△ABC内一点,将线段CD绕点C逆时针旋转90°后得到CE,连接BE,若∠DAB=15°,则∠ABE是()A.75°B.78°C.80°D.92°8.一次函数y=kx+b的图象经过点A(2,3),每当x增加1个单位时,y增加3个单位,则此函数表达式是()A.y=x+3B.y=2x﹣3C.y=3x﹣3D.y=4x﹣49.如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D为AC边上一个动点,以BD 为边在BD的上方作正方形BDEF,当AE取得最小值时,BD的长为()A.2B.4C.1D.8﹣2二、填空题;共30分10.将450000这个数用科学记数法表示为.11.分解因式:4x3﹣4x=.12.如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.13.如图,Rt△ABC的两直角边AC=8cm,BC=6cm,D为AC上一点,将△ABC折叠,使点A与点B重合,折痕为DE,则CD的长为cm.14.同学们学习了线段的黄金分割之后,曾老师提出了一个新的定义:点C是线段AB上一点,若==k n,则称点C为线段AB的“近A,n阶黄金分割点”.例如:若==k2,则称点C为线段AB的“近A,2阶黄金分割点”;若==k3,则称点C为线段AB的“近A,3阶黄金分割点”.若点C为线段AB的“近A,6阶黄金分割点”时,k6=.15.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为.二、解答题;共75分16.在数轴上把下列各数表示出来,并用小于符号从小到大排列出来﹣2,0,|﹣4|,0.5,﹣5,﹣(﹣3).17.先化简,再求值:(1﹣)÷,其中x=.18.某产品的商标如图所示,O是线段AC、DB的交点,且AC=BD,AB=DC,小华认为图中的两个三角形全等,他的思考过程是:∵AC=DB,∠AOB=∠DOC,AB=DC,∴△ABO≌△DCO你认为小华的思考过程对吗?如果正确,指出他用的是判别三角形全等的哪个条件;如果不正确,写出你的思考过程.19.今年猪肉价格受非洲猪瘟疫情影响,有较大幅度的上升,为了解某地区养殖户受非洲猪瘟疫情感染受灾情况,现从该地区建档的养殖户中随机抽取了部分养殖户进行了调查(把调查结果分为四个等级:A级:非常严重;B级:严重;C级:一般;D级:没有感染),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查的养殖户的总户数是;把图2条形统计图补充完整.(2)若该地区建档的养殖户有1500户,求非常严重与严重的养殖户一共有多少户?(3)某调研单位想从5户建档养殖户(分别记为a,b,c,d,e)中随机选取两户,进一步跟踪监测病毒传播情况,请用列表或画树状图的方法求出选中养殖户e的概率.20.如图,在四边形ABCD中,∠B=90°,DE∥AB,交BC于E,交AC于F,DE=BC,∠CDE=∠ACB=30°.(1)求证:△FCD是等腰三角形;(2)若AB=3.5cm,求CD的长.21.阅读下列两则材料,回答问题材料一:我们将(+)与(﹣)称为一对“对偶式”,因为==a﹣b所以构造“对偶式“相乘可以将(+)与(﹣)中的“”去掉例如:已知=2,求的值.=23﹣x﹣(17﹣x)=6∴=2,∴=3材料二:如图,点A(x1,y1),点B(x2,y2),以AB为斜边作Rt△ABC,则C(x2,y1),AC=|x1﹣x2|,BC=|y1﹣y2|,所以AB=;反之,可将代数式的值看作点A(x1,y1)到点B(x2,y2)的距离,例如:,∴可将的值看作点(x,y)到点(﹣1,1)的距离.(1)利用材料一,解关于x的方程:=2,其中x≤17;(2)利用材料二,求代数式的最小值,并求出此时x与y的关系式,写出x的取值范围.22.如图,AB是⊙O的直径,弦EF⊥AB于点C,点D是AB延长线上一点,∠A=30°,∠D=30°.(1)求证:FD是⊙O的切线;(2)取BE的中点M,连接MF,若⊙O的半径为2,求MF的长.23.如图,在平面直角坐标系中,二次函数y=x2﹣mx﹣n的图象与坐标轴交于A、B、C 三点,其中A点的坐标为(0,﹣8)、点B的坐标是(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)若点D的坐标是(0,﹣4),点F为该二次函数在第四象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF.设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请求出点E的坐标.参考答案一、选择题;共45分.1.解:因为﹣4<﹣2<﹣<0<|﹣6|,故选:D.2.解:三棱锥的主视图为B选项中的图形,故选:B.3.解:A、内错角不一定相等,原命题是假命题,故此选项不合题意;B、同一平面内,过直线外一点有且只有一条直线与已知直线平行,原命题是假命题,故此选项不合题意;C、相等的角不一定是对顶角,原命题是假命题,故此选项不合题意;D、同一平面内,过一点有且只有一条直线与已知直线垂直,原命题是真命题,故此选项符合题意;故选:D.4.解:由表格数据可知,成绩为4.9、5.0的人数为50﹣(3+3+6+9+12+10)=7(人),视力为4.7出现次数最多,因此视力的众数是4.7,视力从小到大排列后处在第25、26位的两个数都是4.7,因此中位数是4.7,因此中位数和众数与被遮盖的数据无关,故选:A.5.解:设早上葡萄的价格是x元/千克,根据题意可得:,故选:B.6.解:∵x2﹣mx+9是一个完全平方式,∴m=±6.故选:D.7.解:在等腰直角△ABC中,∠ACB=90°,∴AC=BC,∠CBA=∠CAB=45°,∵∠DAB=15°,∴∠CAD=30°,∵将线段CD绕点C逆时针旋转90°后得到CE,∴CE=CD,∠DCE=∠ACB=90°,∴∠BCE=∠ACD,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE=30°,∴∠ABE=∠ABC+∠CBE=75°,故选:A.8.解;由题意可知一次函数y=kx+b的图象也经过点(3,6),∴,解得∴此函数表达式是y=3x﹣3,故选:C.9.解:过点E作EH⊥AC于H,如图:∵四边形DEFB是正方形,∴∠BDE=90°=∠C,DE=BD,∴∠EDA+∠BDC=90°,∠BDC+∠DBC=90°,∴∠DBC=∠EDA,且DE=BD,∠DHE=∠C=90°,∴△BDC≌△DEH(AAS),∴EH=CD,DH=BC=4,∴AH=AC﹣DH﹣CD=8﹣4﹣CD=4﹣CD,∵AE2=AH2+EH2=(4﹣CD)2+CD2=2(CD﹣2)2+8,∵2>0,∴当CD=2时,AE2最小,AE也最小,此时BD===2,故选:A.二、填空题;共30分10.解:450000=4.5×105.故答案为:4.5×105.11.解:原式=4x(x2﹣1)=4x(x+1)(x﹣1),故答案为:4x(x+1)(x﹣1)12.解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.13.解:设CD=x,则BD=8﹣x,∵△BDE是△ADE沿直线DE翻折而成,∴AD=BD=8﹣x,∵△BCD是直角三角形,∴BC2=BD2﹣CD2,即62=(8﹣x)2﹣x2,解得x=.故答案为:.14.解:∵点C为线段AB的“近A,6阶黄金分割点”,∴==k6,∴BC=k6AC,∵点C是线段AB上一点,∴AB=BC+AC=k6AC+AC,∵=k6,∴=k6,整理得:k62+k6﹣=0,解得:k=﹣或k=,经检验,k=﹣或k=是原方程的解,但k=﹣<0(舍去),∴k=,故答案为:k=.15.解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:由平行四边形面积公式得:BC×AE=CD×AF=15,求出AE=,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=,同理DF=3>5,即F在DC的延长线上(如上图),∴CE=6+,CF=3+5,即CE+CF=11+,②如图:∵AB=5,AE=,在△ABE中,由勾股定理得:BE=,同理DF=3,由①知:CE=6﹣,CF=3﹣5,∴CE+CF=1+,故答案为:11+或1+.二、解答题;共75分16.解:在数轴上表示下列各数如图所示:∴﹣5<﹣2<0<0.5<﹣(﹣3)<|﹣4|.17.解:(1﹣)÷===x+1,当x=时,原式=+1.18.解:小华的思考不正确,因为AC和BD不是这两个三角形的边;正确的解答是:连接BC,在△ABC和△DBC中,,∴△ABC≌△DBC(SSS);∴∠A=∠D,在△AOB和△DOC中,∵,∴△AOB≌△DOC(AAS).19.解:(1)21÷35%=60户,60﹣9﹣21﹣9=21户,故答案为:60,补全条形统计图如图所示:(2)1500×=750户,答:若该地区建档的养殖户有1500户中非常严重与严重的养殖户一共有750户;(3)用表格表示所有可能出现的情况如下:共有20种不同的情况,其中选中e的有8种,∴P(选中e)==,20.(1)证明:∵DE∥AB,∠B=90°,∴∠DEC=90°,∴∠DCE=90°﹣∠CDE=60°,∴∠DCF=∠DCE﹣∠ACB=30°,∴∠CDE=∠DCF,∴DF=CF,∴△FCD是等腰三角形;(2)解:在△ACB和△CDE中,,∴△ACB≌△CDE,∴AC=CD,在Rt△ABC中,∠B=90°,∠ACB=30°,AB=3.5,∴AC=2AB=7,∴CD=7.21.解:(1)∵(﹣)(+)=33﹣x﹣(17﹣x)=16,=2,∴+=8,∴=5,=3,∴x=8;(2)∵=+,∴代数式可看作点(x,y)到点(﹣1,1)的距离与点(x,y)到点(2,﹣3)的距离之和,当点(x,y)在过点(﹣1,1)和点(2,﹣3)的线段上时,代数式取得最小值,即点(﹣1,1)到点(2,﹣3)的距离,∵的最小值为=5,设过点(﹣1,1)和点(2,﹣3)的直线解析式为y=kx+b,则,解得:,∴y=﹣x﹣(﹣1≤x≤2),即原代数式的最小值为5,此时y=﹣x﹣(﹣1≤x≤2).22.解:(1)连接OE,OF,如图1所示:∵EF⊥AB,AB是⊙O的直径,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°.∴OF⊥FD.∴FD为⊙O的切线;(2)连接OM.如图2所示:∵O是AB中点,M是BE中点,∴OM∥AE.∴∠MOB=∠A=30°.∵OM过圆心,M是BE中点,∴OM⊥BE.∴,.∵∠DOF=60°,∴∠MOF=90°.∴MF===.23.解:(1)∵二次函数y=x2﹣mx﹣n的图象过A(0,﹣8)、点B(﹣4,0),∴,∴n=8,m=1,∴二次函数的表达式为y=x2﹣x﹣8,令y=0,则x2﹣x﹣8=0,解得:x1=﹣4,x2=8,∴点C的坐标为(8,0);(2)设F(t,t2﹣t﹣8),①连接OF,FD,∵四边形CDEF为平行四边形,∴S▱CDEF=2S△CDF,∵S△CDF=S四边形CFDO﹣S△OCD=4•t+(﹣t2+t+8)﹣=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∴S的最大值为50;②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向下平移4个单位得到点D,∴点F向左平移8个单位,再向下平移4个单位得到点E,即E(t﹣8,t2﹣t﹣12),∵E(t﹣8,t2﹣t﹣12)在抛物线上,∴(t﹣8)2﹣(t﹣8)﹣8=t2﹣t﹣12,解得t=7,∴t﹣8=﹣1,t2﹣t﹣12=﹣,∴E(﹣1,﹣).。
三年级下册语文-第三次月考(五、六单元)-含参考答案
统编三语下第三次月考(考试范围:第五、六单元)一、根据拼音写词语。
(11分)1.文文在yōu xián()地chéng zuò()diàn tī()准备回家。
2.小húli()开心地对我说:“qiǎo kèlì()真的的很美味。
”3.雨后,树桩旁边长出了许多mógu(),像一把把小伞。
4.我们把碎féi zào()放到wǎn lǐ(),加水融化后,用竹笔套管在cháng láng()上吹泡泡,一个个泡泡jiāo xiǎo()、tòu míng(),非常漂亮。
二、用“√”标出加点字的正确读音。
(4分)鳄.鱼(èé)剃.头(tītì)山巅.(diān dān)道歉.(qiàn qiān)厘.米(líní)飞溅.(jiàn jàn)仇.人(chóu cóu)习惯.(guān guàn)三、在括号内填上合适的词语。
(4分)()的星空()的声音()的饭菜()的花儿十()书一()画一()树一()虫子四、辨字组词。
(6分)墨()浪()拨()黑()粮()拔()付()乘()倍()对()剩()陪()五、词语大本营。
(9分)1.照样子写词语。
(3分)颤巍巍(ABB式):、、2.按要求完成练习。
(4分)(1)写出两个同“越剪越短”结构相同的词语:、。
(2分)(2)用“耿耿于怀”写一句话:。
(2分)3.一个人有特点了,总得有个美称,例如“小问号”“小书虫”,给自己起两个美称吧。
(2分)六、按要求完成句子。
(8分)1.那一个个轻清脆丽的小球,像一串美丽的梦。
(缩写句子)2.难道那个孩子不是另一个我吗?(改为肯定句)3.虽然..以前没有干过这一行,可.我好像有剃头的天分。
(用加点的词语写句子)4.我真希望变成一棵树,这样就没人在你玩的时候叫你吃饭了。
苏科版2022-2023学年七年级数学上册第三次月考测试题(附答案)
2022-2023学年七年级数学上册第三次月考测试题(附答案)一、选择题(共计30分)1.在下列数:﹣2.5,,0,﹣1.121121112……,0.2,﹣π中,无理数有()A.1个B.2个C.3个D.4个2.如图,四个有理数在数轴上的对应点分别为M,P,N,Q.若点M,N表示的有理数互为相反数,则图中表示绝对值最大的数的点是()A.点Q B.点N C.点M D.点P3.下列图形中,哪一个是四棱锥的侧面展开图?()A.B.C.D.4.根据等式性质,下列变形正确的是()A.由2x﹣3=1,得2x=3﹣1B.若mx=my,则x=yC.由=4,得3x+2x=4D.若=,则x=y5.下列说法中,正确的是()A.正数和负数统称为有理数B.互为相反数的两个数之和为零C.单项式﹣2的次数是2次D.多项式3x2+x﹣1是三次三项式6.《九章算术》中记录了一个问题:“以绳测井,若将绳三折测之,绳多四尺,绳多一尺,问绳长井深各几何?”其题意是:用绳子测量水井深度,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?若设绳长为x尺,则下列符合题意的方程是()A.x﹣4=x﹣1B.3(x+4)=4(x+1)C.x+4=x+1D.3x+4=4x+17.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.8.若方程﹣8=﹣的解与关于x的方程4x﹣(3a+1)=6x+2a﹣1的解相同,则代数式a﹣的值为()A.B.C.D.9.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依次类推,则a2021的值为().A.﹣1010B.﹣1011C.﹣2020D.﹣202110.如图所示,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边()上.A.AB B.BC C.CD D.DA二、填空题(共计24分)11.关于x的方程(2m﹣6)x|m﹣2|﹣2=0是一元一次方程,则m=.12.x=2关于x的一元一次方程ax﹣2=b的解,则3b﹣6a+2的值是.13.一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于5,则a+b+c =.14.如图,用正方形制作的“七巧板”拼成了一只小猫,若小猫头部(图中涂色部分)的面积是16cm2,则原正方形的边长为cm.15.实数a、b在数轴上的位置如图所示,则化简|a﹣b|﹣|b|的结果为.16.商场销售某品牌冰箱,若按标价的八折销售,每件可获利200元,其利润率为10%,若按标价的九折销售,每件可获利元.17.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是cm2.18.数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O 的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,A n.(n≥3,n是整数)处,那么线段A n A的长度为(n≥3,n是整数).三、解答题(共66分)19.计算与化简:(1);(2)﹣22+3×(﹣1)2021﹣9÷(﹣3);(3)4(m2+n)+2(n﹣2m2);(4)5ab2﹣[a2b+2(a2b﹣3ab2)].20.解方程:(1)2x ﹣3=﹣5(x ﹣2) (2)﹣1=21.(1)已知A =2x 2﹣3x ﹣1,B =3x 2+mx +2.3A ﹣2B 与x 无关,求m 的值. (2)方程2﹣3(x +1)=0的解与关于x 的方程﹣3k ﹣2=2x 的解互为倒数,求k的值;22.(1)请在网格中画出如图所示的几何体的主视图、左视图和俯视图; (2)已知每个小正方体的棱长为1cm ,则该几何体的表面积是 .23.2022年元旦期间,某商场打出促销广告,如表所示.优惠条件 一次性购物不超过200元一次性购物超过200元,但不超过500元 一次性购物超过500元优惠办法没有优惠全部按九折优惠其中500元仍按九折优惠,超过500元部分按八折优惠小明妈妈两次购物分别用了154元和530元.(1)小明妈妈这两次购物时,所购物品的原价分别为多少?(2)若小明妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.24.如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A 的边长是2米,(1)若设图中最大正方形B 的边长是x 米,请用含x 的代数式表示出正方形F 、E 和C 的边长分别为 , , ;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MN 和PQ ,MQ 与PN ).请根据这个等量关系,求出x 的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.如果两队从同一点开始,沿相反的方向同时施工4天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?25.已知:如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A在数轴上表示的数是﹣8,点C在数轴上表示的数是18.若线段AB以每秒6个单位长度的速度向右匀速运动,同时线段CD以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒.(1)当点B与点C相遇时,点A、点D在数轴上表示的数分别为、;(2)当t为何值时,点B刚好与线段CD的中点重合;(3)当运动到BC=8(单位长度)时,求出此时点B在数轴上表示的数.参考答案一、选择题(共计30分)1.解:在实数:﹣2.5,,0,﹣1.121121112……,0.2,﹣π中,无理数有﹣1.121121112……,﹣π,无理数共2个.故选:B.2.解:由数轴知,M<P<N<Q,∵M=﹣N,∴Q的绝对值最大,故选:A.3.解:四棱锥的侧面展开图是四个三角形.故选:C.4.解:A.由2x﹣3=1,得2x=3+1,所以A选项不符合题意;B.若mx=my,当m≠0时,x=y,所以B选项不符合题意;C.由=4,得3x+2x=24,所以C选项不符合题意;D.若=,则x=y,所以D选项符合题意.故选:D.5.解:A:正数和负数统称为有理数是错误的,应该是:整数分数统称为有理数,故A选项不合题意;B:互为相反数的两个数之和为零,故B选项符合题意;C:单项式﹣2的次数是0次,故C选项不符合题意;D:多项式3x2+x﹣1是二次三项式,故D选项不符合题意.故选:B.6.解:假设绳长为x尺,根据题意,可列方程为x﹣4=x﹣1.故选:A.7.解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选:C.8.解:解方程,去分母,得2(x﹣4)﹣48=﹣3(x+2),去括号,得2x﹣8﹣48=﹣3x﹣6,移项,合并同类项,得5x=50,系数化为1,得x=10,∵两方程同解,将x=10代入到4x﹣(3a+1)=6x+2a﹣1中,可得40﹣(3a+1)=60+2a﹣1,解得a=﹣4,∴.故选:A.9.解:∵a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,…所以,当n是奇数时,,n是偶数时,,∴.故选:A.10.解:设甲的速度为x,正方形的边长为a,他们需要t秒第2020次相遇,则乙的速度为4x,依题意,得:(2020﹣1)×4a+2a=xt+4xt,解得:t=,∴xt=a=1615.6a,又∵1615.6a=404×4a﹣0.4a,∴它们第2020次相遇在边AB上.故选:A.二、填空题(共计24分)11.解:由题意得:|m﹣2|=1,且2m﹣6≠0,解得:m=1,故答案为:1.12.解:将x=2代入一元一次方程ax﹣2=b,得2a﹣b=2∵3b﹣6a+2=3(b﹣2a)+2,∴﹣3(2a﹣b)+2=﹣3×2+2=﹣4.即3b﹣6a+2=﹣4.故答案为:﹣4.13.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“2”与“b”相对,“3”与“c”相对,“a”与“﹣1”相对,∵相对的两个面上的数字之和等于5,∴b=3,c=2,a=6,∴a+b+c=6+3+2=11.故答案为:11.14.解:设阴影部分小正方形边长为xcm,由题意得,2x2=16,解得x=2,∴原正方形的对角线为4×=8(cm),即原正方形的边长为8cm,故答案为:8.15.解:由数轴可知,a﹣b<0,b>0,∴|a﹣b|﹣|b|=﹣(a﹣b)﹣b=﹣a.故答案为:﹣a.16.解:设该品牌冰箱的标价为x元,根据题意,该品牌冰箱的进价为200÷20%=2000元,则有80%x﹣2000=200,解得x=2750,所以90%x﹣2000=90%×2750﹣2000=475元,即按标价的九折销售,每件可获利475元.故答案为:475.17.解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故答案为:6π.18.解:由于OA=4,所以第一次跳动到OA的中点A1处时,OA1=OA=×4=2,同理第二次从A1点跳动到A2处,离原点的()2×4处,同理跳动n次后,离原点的长度为()n×4=,故线段A n A的长度为4﹣(n≥3,n是整数).故答案为:4﹣.三、解答题(共66分)19.解:(1)原式=﹣+﹣﹣=(﹣+)+(﹣﹣)=1﹣1=0.(2)原式=﹣4+3×(﹣1)﹣(﹣3)=﹣4﹣3+3=﹣4.(3)原式=4m2+4n+2n﹣4m2=6n.(4)原式=5ab2﹣(a2b+2a2b﹣6ab2)=5ab2﹣(3a2b﹣6ab2)=5ab2﹣3a2b+6ab2=11ab2﹣3a2b.20.解:(1)去括号得:2x﹣3=﹣5x+10,移项合并得:7x=13,解得:x=;(2)去分母得:3x+3﹣6=4+6x,移项合并得:3x=﹣7,解得:x=﹣.21.解;(1)∵A=2x2﹣3x﹣1,B=3x2+mx+2,∴3A﹣2B=3(2x2﹣3x﹣1)﹣2(3x2+mx+2)=(﹣9﹣2m)x﹣7,∵3A﹣2B与x无关,∴﹣9﹣2m=0,解得:,(2)解方程2﹣3(x+1)=0得:2﹣3x﹣3=0,x=﹣,∵方程2﹣3(x+1)=0的解与关于x的方程的解互为倒数,∴关于x的方程的解为x=﹣3,∴,解得:k=1.22.解:(1)如图所示:;(2)∵每个小正方体的棱长为1cm,∴每个小正方形的面积为1cm2,∴该几何体的表面积是(4+3+4)×2=22cm2,故答案为:22cm2.23.解:(1)∵第一次付了154元<200×90%=180元,∴第一次购物不享受优惠,即所购物品的原价为154元;②∵第二次付了530元>500×90%=450元,∴第二次购物享受了500元按9折优惠,超过部分8折优惠.设小明妈妈第二次所购物品的原价为x元,根据题意得:90%×500+(x﹣500)×80%=530,得x=600.答:小明妈妈两次购物时,所购物品的原价分别为154元、600元;(2)她将这两次购物合为一次购买更节省,理由如下:500×90%+(600+154﹣500)×80%=653.2(元),又154+530=684(元),∵653.2<684,∴她将这两次购物合为一次购买更节省.24.解:(1)由图形及题意可得,正方形F的边长为:(x﹣2)米,正方形E的边长为:x﹣2﹣2=x﹣4(米),正方形C的边长为:x﹣4﹣2=x﹣6(米),故答案为:x﹣2,x﹣4,x﹣6;(2)(2)根据题意可知MN=PQ,则有x+(x﹣2)=x﹣4+2(x﹣6),解得x=14,∴x的值为14;(3)把这项工程看作单位“1”,则由题意可知甲工程队的工作效率为,乙工程队的工作效率为,设还要y天完成,则有()×4+y=1,解得y=5,答:还要5天完成任务.25.解:∵AB=2(单位长度),点A在数轴上表示的数是﹣8,∴B点表示的数是﹣8+2=﹣6.又∵线段CD=4(单位长度),点C在数轴上表示的数是18,∴点D表示的数是22.(1)根据题意得:(6+2)t=|﹣6﹣18|=24,即8t=24,解得t=3.则点A表示的数是﹣8+6×3=10,点D在数轴上表示的数是22﹣2×3=16.故答案为:10、16;(2)C、D的中点所表示的数是20,依题意得:(6+2)t=20﹣(﹣6),解得t=.答:当t为时,点B刚好与线段CD的中点重合;(3)①当点B在点C的左侧时,依题意得:(6+2)t+8=24,解得t=2,此时点B在数轴上所表示的数是﹣8+6×2=4;②当点B在点C的右侧时,依题意得:(6+2)t=24+8,解得t=4,此时点B在数轴上所表示的数是﹣8+6×4=16.综上所述,点B在数轴上所表示的数是4或16.。
五年级下册三次月考的得与失作文
五年级下册三次月考嘅得同失喺知识海洋嘅浩瀚航行中,三次月考行汹涌澎湃嘅波涛,冲刷住我嘅心灵,留下得失交织嘅印记。
一叶轻舟,扬帆启航犹记第一次月考,我满载希望同忐忑踏上考场。
题海翻滚,我如一叶轻舟,喺急流中奋力前行。
时而顺风顺水,时而暗礁丛生。
但凭住坚忍同执住,我一路过关斩将,最终收获晒优异嘅成绩。
横兼程,荆棘丛生第二次月考,考题却如暴风骤雨般袭嚟。
面对陌生嘅题型,我顿时心慌意乱,仿佛迷失喺迷雾之中。
迷茫同彷徨,如荆棘一般紧紧缠绕住我。
最终,我跌落谷底,成绩一落千丈。
浴火重生,涅槃新生第三次月考,我痛定思痛,下定决心要重振旗鼓。
黑夜入面,我挑灯夜战,查找错题,弥补知识漏洞。
白昼入面,我向老师求教,请教方法,汲取经验。
终于,喺时间嘅洗礼下,我浴火重生,涅槃新生。
三次月考,等我尝到晒成功嘅喜悦,都经历晒失败嘅苦涩。
得失之间,等我领悟到:拼搏唔止,方可以扬帆远航成功从嚟唔系唾手可得,要嘅唔懈嘅拼搏同努力。
面对困难,得迎难而上,唔轻言放弃,先至可以抵达成功嘅彼岸。
知错可以改,方可以凤凰涅槃失败并唔可怕,重要嘅系可以正视错误,及时改正。
从失败中汲取教训,方可以浴火重生,涅槃新生。
反思总会结,方可以精益求精每一次考试都系一次自我检验。
通过反思总会结,找出自己嘅优势同唔足,先至可以有针对性噉提高,精益求精,唔断超越自我。
三次月考,我收获嘅唔仅仅系分数,更系一种成长嘅心态。
得失交织,等我成长为一个更加坚强、更加自信、更加有韧性嘅自己。
我将继续扬帆起航,喺知识嘅海洋中乘风破浪,勇往直前。
七年级地理第三次月考卷(考试卷+答案)【测试范围:人教版七年级上册前三章】A4版
七年级地理上册第三次月考(人教版)(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:七年级上册前三章5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共25小题,每小题2分,共50分。
在每小题给出的四个选项中,只有一项符合题目要求。
2022年7月29日,克利伯环球帆船赛11支船队航行4万余海里返回出发地伦敦,中国“青岛号”船队夺得总冠军。
下图示意此次环球帆船赛航线。
读图,完成下面小题。
1.中国“青岛号”船队夺冠当天()A.伦敦昼长夜短B.开普敦正值夏季C.青岛柳絮纷飞D.西雅图风雪交加2.此次环球航行()A.途经七大洲和四大洋B.两次横跨太平洋C.各段航向均自西向东D.三次跨越大西洋3.此次环球航行可以证明()①地球是个球体②陆地是连续的③海洋是连续的④海陆不断变迁A.①②B.①③C.②④D.③④长津湖战役是抗美援朝战争的一次反击作战,这次战役为最终到来的停战谈判奠定了胜利基础。
读长津湖地区示意图,完成下面小题。
4.长津湖的经纬度位置大约为()A.40°30'N,127°12'E B.40°30'S,127°12'WC.40°07'N,124°23'E D.40°30'N,127°12'W5.长津湖位于()A.北半球和西半球B.北半球和东半球C.南半球和西半球D.南半球和东半球寒食节是中国历史上的重要传统节日,在清明节前一至两天(每年4月4日前后),至今已有2600多年的历史。
(部编版)四年级下册语文第三次月考试卷【基础为准,含答案】
刺骨
的石顶
高高
的寒冷
高傲
的动物
八、选词填空(6 分) 寻找 寻觅
①那只燕子在( )安身之处。 ②他在仔细( )他丢失的铅笔盒
光亮 亮光 光彩 光芒 1.一刹那间,太阳发出了夺目的( ),它旁边的云也有了( )。 2.太阳在黑云背后放射的( ),给黑云镶了一道发光的金边,这 时候连我自己也变成( )的了。 九、选择下列句子运用的描写手法。(4 分) A.景物描写 B.动作描写 C.语言描写 D.心理描写 1.她不采,总是喊:“哥,这儿有一穗!”( ) 2.被风一吹,那花都往一个方向倾覆而去,露出金黄的稻草来。 () 3.青铜望着那个人,心里觉得有点儿对不住他。( ) 4.他笑了笑,掉头朝那个人追了过去。( ) 十、按要求写句子(10 分) 1.恐龙的体表长出了羽毛。(扩句)
七、词语搭配,连线(3 分)
1.(刺骨)的寒冷 2.(高高)的石顶 3.(高傲)的动物
八、选词填空(6 分)
题号
1
2
答案
①寻觅②寻找
亮光光彩光芒光亮
九、选择(4 分)
1.C2.A3.D4B
十、按要求写句子(10 分)
1.恐龙的体表长出了美丽的羽毛。 2.我们班这次非拿到全年级第一不可! 3.这么远,箭射不到。 4.海边的一对渔民父子把琥珀挖了出来。 5.读了这个故事,我感动得流泪了。
四年级语文第三次月考试卷
一、看拼音写词语(8 分)
chóu zǐ
lú huā
fèn biàn
kuò dà
(
)(
)(
)(
)
zī tài
tàn cè
shǎn shuò
bā kāi
(
)(
)(
五年级下册三次月考的得与失作文
五年级下册三次月考的得与失作文“哎呀,这三次月考可真是让我又爱又恨呀!”我坐在书桌前,对着旁边的好朋友嘟囔着。
记得第一次月考的时候,那可真是紧张呀!考试前一天晚上,我躺在床上翻来覆去睡不着,心里一直想着明天的考试。
第二天早上,我早早起来,背着书包来到学校。
教室里静悄悄的,大家都在认真复习。
我也赶紧拿出书来,再看一眼那些还不太熟悉的知识点。
“嘿,别紧张啦,肯定没问题的!”同桌拍了拍我的肩膀说。
“哎呀,我能不紧张嘛,万一考不好咋办呀!”我皱着眉头说。
考试铃声响起,我深吸一口气,开始答题。
一开始还挺顺利的,可是做到后面几道题的时候,我就傻眼了,怎么这么难呀!我急得抓耳挠腮,脑袋里一片混乱。
“哎呀,这道题到底选啥呀!”我心里暗暗叫苦。
好不容易考完了,我感觉整个人都要虚脱了。
成绩出来后,我一看,哎呀,果然不太理想。
我心里那个失落呀,就像被泼了一盆冷水。
第二次月考,我可是吸取了教训,早早开始复习。
每天晚上做完作业,我就开始复习知识点,做练习题。
那段时间,我感觉自己就像一个学习机器,不停地转呀转。
“你最近也太努力了吧!”好朋友惊讶地说。
“哼,我这次一定要考好!”我咬着牙说。
这次考试的时候,我明显感觉从容多了。
遇到难题也不慌张,认真思考。
考完后,我心里还挺有底的。
成绩出来,果然比上次进步了不少,我高兴得差点跳起来。
到了第三次月考,我信心满满。
觉得自己肯定能再进步一些。
可是,谁知道这次的题目特别难,尤其是数学,好多题我都没见过。
“哎呀,这题也太难了吧!”我小声嘀咕着。
考完后,我心里特别没底。
成绩出来,虽然没有退步,但也没有进步多少。
这三次月考,有得有失呀!我得到了经验,知道了要好好复习,要保持冷静。
也失去了一些玩耍的时间。
但我知道,这都是为了以后能更好呀!我相信,只要我继续努力,以后一定会越来越好的!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 考试号 608070001 608070041 608070101 608070061 608070181 608070021 608070261 608070121 608070161 608070081 608070361 608070221 608070201 608070301 608070241 608070141 608070281 608070441 608070321 608070421 608070381 608070341 608070541 608070401 608070561 608070521 608070681 608070741 608070601 608070481 608070501 608070581 608070621 608070721 608070461 608070701 608070641 608070661 608070801 608070841 608070761 608071029 608070781 608070821 608071030 608070881 608070921 608070961 608070981 姓名 李立栋 刘思佳 胡思璇 高静雨 周璐颖 王泽 王光健 李颖 周诗影 路思远 王旭 王文宇 郭晓骞 何海露 李大众 李芷怡 孙一帆 李子含 崔晓倩 吕鑫雨 张浩然 刘裕康 李苏鑫 李嘉楠 王璇 崔云翼 田文静 李智欣 周旭 刘茂畅 束立东 丁庆祺 檀杭 刘茂学 辛梦瑶 魏嘉雯 王璐瑶 苑龙珠 李慧茹 吕书坦 孔润泽 周鹏 张田慧 王明轩 郭金亮 路慧 赵丽华 张玉 刘朝龙 政治 56 58 58 56 54 56 56 58 56 56 58 58 51 56 57 52 56 58 48 56 55 50 56 54 55 45 56 58 56 50 56 52 56 58 34 54 48 44 50 52 38 33 35 46 48 38 51 51 38 语文 81 75 75 78 74 67 80 75 80 66 67 73 73 77 74 61 63 75 74 75 63 64 72 61 75 64 68 71 69 71 72 73 69 62 61 66 73 75 65 61 68 56 66 60 62 60 62 61 58 数学 94 97 92 94 97 95 91 87 87 97 80 78 89 74 89 81 86 75 74 79 85 88 77 81 67 74 74 73 76 75 59 52 57 67 81 54 61 58 53 41 50 63 24 46 56 51 36 30 35 英语 85.5 88.5 92.5 86.5 84.5 83.5 84 84.5 87 84 82.5 76 78.5 81.5 61.5 76.5 76 73.5 72 71 65.5 65 68.5 75 78 63 64.5 63.5 52 64 61 59.5 56.5 55.5 59.5 55 71 65.5 54 55 37 34.5 47 28.5 37.5 25.5 31 47 45.5 物理 51 52 48 40 51 43 44 43 32 38 44 43 39 37 44 52 40 39 43 34 49 48 33 33 39 48 44 35 34 38 31 42 42 34 42 32 18 31 29 34 22 35 27 28 25 41 35 22 27 化学 46 41 40 44 39 45 33 27 33 33 33 34 28 33 33 35 34 34 31 33 34 38 37 39 26 36 30 23 30 28 30 28 33 26 35 34 19 21 23 21 27 22 29 25 22 21 20 15 19 历史 44 42 45 46 40 44 40 43 41 36 45 44 43 42 41 40 39 36 46 37 31 29 36 34 32 38 31 33 37 27 39 41 28 36 23 39 35 22 26 23 27 24 36 29 12 18 19 16 19 总分 457.5 453.5 450.5 444.5 439.5 433.5 428 417.5 416 410 409.5 406 401.5 400.5 399.5 397.5 394 390.5 388 385 382.5 382 379.5 377 372 368 367.5 356.5 354 353 348 347.5 341.5 338.5 335ቤተ መጻሕፍቲ ባይዱ5 334 325 316.5 300 287 269 267.5 264 262.5 262.5 254.5 254 242 241.5 名次 20 26 36 46 71 94 119 178 186 214 218 229 254 262 271 284 299 318 336 359 373 375 395 411 436 462 463 522 532 540 561 563 591 608 620 630 674 705 772 810 856 862 875 882 882 914 917 954 960 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
九年级第一次月考名单
班级 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 考试号 608070861 608071033 608070901 608071024 608070941 608071001 608071031 608071034 608071036 608071026 608071037 608071035 608071032 608071023 608071027 608071028 608071021 608071039 608071040 608071022 608071038 608071025 姓名 翟明鑫 王甜甜 邵新慧 何梦圆 刘心怡 王欣卉 王建琳 李昌豪 袁本瑞 张宇初 马海燕 邵学童 肖丙玄 高中驰 陈恒 杜雅茹 胡以钰 田长胜 牛国庆 李子文 张珂荣 林为民 政治 29 44 43 28 28 19 48 14 29 47 31 30 33 30 52 19 44 12 14 14 12 0 语文 67 59 56 51 61 66 57 54 47 54 55 53 65 59 43 43 57 48 35 42 51 6 数学 40 53 23 42 40 47 13 47 53 19 43 37 13 20 10 48 6 15 12 3 0 0 英语 26.5 16.5 49 21 26.5 21.5 37.5 28.5 15.5 29 17.5 18 29 19 26 16 28 26 40.5 13.5 17 9 物理 26 14 18 27 13 20 8 16 17 9 13 11 9 9 12 16 10 8 6 4 2 0 化学 18 19 15 25 18 13 9 20 18 12 10 18 3 20 12 12 10 8 7 11 5 1 历史 14 14 14 15 9 8 21 11 10 18 17 11 26 17 18 15 10 9 8 12 2 0 总分 220.5 219.5 218 209 195.5 194.5 193.5 190.5 189.5 188 186.5 178 178 174 173 169 165 126 122.5 99.5 89 16 名次 1021 1025 1030 1056 1104 1108 1109 1117 1119 1123 1132 1167 1167 1176 1181 1193 1207 1295 1298 1336 1343 1372 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
九年级第一次月考名单
班级 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 考试号 608070002 608070022 608070042 608070062 608070162 608070202 608070082 608070102 608070182 608070302 608070122 608070222 608070342 608070242 608070142 608070262 608070502 608070282 608070422 608070382 608070362 608070442 608070462 608070402 608070562 608070722 608070582 608070622 608070522 608070662 608070482 608070542 608070702 608070742 608070802 608070602 608070682 608070842 608070762 608070642 608070882 608070862 608070822 608070782 608070942 608070982 608070902 608070962 姓名 谢玉钏 何召翔 刘智伟 杨昌锡 李韵唯 王超凡 刘翔宇 单玉苹 赵先彤 马世骜 商运昊 张春生 郭欣雨 于晓凡 王万启 马寒 李晨阳 李程程 刘新宇 王子涵 张珂鑫 刘 灿 韦婷婷 李婉婷 寻雨姣 贾晨曦 隋宇轩 李昌凯 刘慧茹 周广金 王良慧 刘楠 柳若涵 郭建伟 王旭东 刘传浩 赵倩慧 郭静宇 胡文龙 王荷鑫 信志鹏 杨奉臣 刘佳怡 刘思琦 蔚承志 戴潇华 刘文慧 马奥运 政治 54 57 51 56 58 58 58 56 56 58 56 54 54 58 56 56 54 58 58 52 56 56 54 51 54 56 58 51 54 60 51 58 56 56 52 51 41 50 50 50 38 46 43 42 42 41 45 49 52 语文 85 78 82 80 76 75 68 77 66 70 71 75 73 75 77 61 66 73 69 74 75 68 81 63 68 72 73 67 62 71 64 59 67 60 66 70 61 61 62 62 69 50 57 55 64 67 69 61 53 数学 97 98 93 92 92 86 92 85 95 82 90 89 79 75 73 79 86 76 81 79 66 73 60 74 81 57 70 61 74 52 64 75 63 68 65 59 72 59 79 59 55 76 45 43 47 56 43 49 36 英语 81 87.5 84.5 86.5 83.5 85 77 80 70 73 73 73.5 75 81.5 83 82.5 72.5 68.5 61.5 70 77 66 68 78.5 73 76 59 60.5 64.5 79 56.5 39.5 65 47.5 64 42 53 68.5 50.5 57.5 72 44 35 62 47.5 30.5 55.5 49 54 物理 56 54 47 46 48 50 48 44 53 52 44 41 44 42 43 47 46 41 43 46 41 47 43 39 34 41 31 43 39 30 41 39 25 33 31 35 39 29 23 34 24 35 45 29 30 23 20 19 23 化学 47 46 41 41 38 41 43 39 42 42 40 34 37 33 31 38 27 34 38 35 28 32 32 34 25 27 30 30 29 25 28 40 24 27 19 36 27 27 23 20 24 22 25 26 21 25 12 20 17 历史 47 45 45 42 46 37 39 43 32 35 38 36 40 37 38 37 45 39 37 26 36 36 39 35 29 34 40 41 31 36 40 34 31 39 31 31 30 26 33 30 26 28 34 24 22 30 22 19 27 总分 467 465.5 443.5 443.5 441.5 432 425 424 414 412 412 402.5 402 401.5 401 400.5 396.5 389.5 387.5 382 379 378 377 374.5 364 363 361 353.5 353.5 353 344.5 344.5 331 330.5 328 324 323 320.5 320.5 312.5 308 301 284 281 273.5 272.5 266.5 266 262 名次 9 10 49 49 60 99 133 139 194 201 201 246 251 254 258 262 289 322 338 375 397 404 411 425 486 490 497 534 534 540 573 573 648 650 663 677 682 687 687 720 744 769 821 832 844 848 866 870 886 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49