广东省深圳市实验学校坂田校区2018-2019学年八年级上期期末测试数学试题
2018-2019学年深圳市八年级(上)数学期末模拟试卷
2018-2019学年深圳市福田区八年级(上)数学期末模拟试卷姓名时间:90分钟一、选择题(每小题只有一个选项符合题意,每小题3分,共36分)1.下列数据中不能作为直角三角形的三边长是()A.1、1、B.5、12、13 C.3、5、7 D.6、8、102.4的平方根是()A.4 B.﹣4 C.2 D.±23.在给出一组数0,π,,3.1415926,,,0.1234567891011…(自然数依次相连),其中无理数有()A.2个B.3个C.4个D.5个4.下列计算正确的是()A.=﹣4 B.=±4 C.=﹣4 D.=﹣4 5.在直角坐标系中,点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,2)B.(2,﹣1)C.(﹣1,﹣2)D.(1,﹣2)6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两个锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于任意一个内角7.如图,下列条件不能判断直线a∥b的是()A.∠1=∠4 B.∠3=∠5 C.∠2+∠5=180°D.∠2+∠4=180°8.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4 B.y=﹣2x+4 C.y=﹣3x+1 D.y=3x﹣19.已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他应该是以下哪个分数吗?()A.93 B.95 C.94 D.9610.已知点(﹣6,y1),(3,y2)都在直线y=﹣x+5 上,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较11.已知函数y=k x+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.12.甲乙两人同解方程时,甲正确解得,乙因为抄错c而得,则a+b+c的值是()A.7 B.8 C.9 D.10二、填空题(每小题3分,共12分)13.点P(3,﹣2)到x轴的距离为个单位长度.14.如图(左图),已知函数y=ax+b和y=k x的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是.15.如图(中图),已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB 为半径画弧,交x轴正半轴于点C,则点C坐标为.16.如图(右图),已知一次函数y=﹣x+1的图象与x轴、y轴分别交于A点、B点,点M 在坐标轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,则这样的点M有个.三、解答题(共52分)17.计算:(1)|﹣3|+(﹣1)0﹣+()﹣1(2)(2﹣)(2+)+(2﹣)2﹣.18.解方程组:.19.如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.20.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?21.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?22.如图,已知P为等边△ABC内的一点,且P A=5,PB=3,PC=4,将线段BP绕点P按逆时针方向旋转60°至PQ的位置.(1)求证:△ABP ≌△CBQ(2)求证:∠BPC=150°.23.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)两条直线上是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.参考答案一、选择题 C D C D D BDBAACA二、填空题 2⎩⎨⎧-=-=24y x)0,252(-716.如图,已知一次函数y=﹣x+1的图象与x 轴、y 轴分别交于A 点、B 点,点M 在坐标轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,则这样的点M 有 7 个.解:如图,共7个点. 故答案为:7.二、解答题 17.计算:(1)|﹣3|+(﹣1)0﹣+()﹣1(2)(2﹣)(2+)+(2﹣)2﹣.解:(1)原式=3+1﹣4+3=3;(2)原式=4﹣5+4﹣4+2﹣=5﹣.18.解方程组:.解:,②×2﹣①得:5y=15,y=3,把y=3代入②得:x=5,∴方程组的解为.19.如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD∥CE,∴∠C=∠ABD;又∵∠C=∠D,∴∠D=∠ABD,∴AB∥EF,∴∠A=∠F.20.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题: (1)该校抽样调查的学生人数为 50 名;抽样中考生分数的中位数所在等级是 良好 ; (2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?解:(1)8+14+18+10=50,中位数是18,位于良好里面; 故答案为:50,良好. (2)8人,×100%=16%;抽样中不及格的人数是8人.占被调查人数的百分比是16%. (3)500÷=1500,1500×=840(人).全校优良人数有840人.21.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?解:(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意得:,解得:,∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500斤,700斤鸡蛋;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了斤鸡蛋,根据题意得:,解得:300≤x≤800,总运费W=200×0.012x+140×0.015×=0.3x+2520,,∵W随x的增大而增大,∴当x=300时,W最小=2610元,∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.22.如图,已知P为等边△ABC内的一点,且PA=5,PB=3,PC=4,将线段BP绕点P按逆时针方向旋转60°至PQ的位置.(1)求证:△ABP≌△CBQ(2)求证:∠BPC=150°.证明:(1)∵BP=BQ,∠PBQ=60°,又∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠PBQ=∠ABC,∴∠ABP=∠CBQ,在△ABP和△CBQ中,,∴△ABP≌△CBQ.(2)∵△ABP≌△CBQ,∴PA=QC=4,∵BP=BQ,∠PBQ=60°,∴△PBQ是等边三角形,∴PQ=3,∠BPQ=60°,∵在△PQC中,PC2+PQ2=43+32=52=QC2,∴△PQC是直角三角形,∴∠QPC=90°,∴∠BPC=∠BPQ+∠QPC=60°+90°=150°.23.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)两条直线上是否存在点M ,使△OMC 的面积是△OAC 的面积的?若存在求出此时点M 的坐标;若不存在,说明理由.解:(1)设直线AB 的解析式是y=k x+b ,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S △OAC =×6×4=12;(3)设OA 的解析式是y=m x ,则4m=2,解得:m=,则直线的解析式是:y=x ,∵当△OMC 的面积是△OAC 的面积的时,∴当M 的横坐标是41×4=1,在y=x 中,当x=1时,y=,则M 的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M 的坐标是(1,5).则M 的坐标是:M 1(1,)或M 2(1,5).当M 的横坐标是:﹣1,在y=x 中,当x=﹣1时,y=﹣,则M 的坐标是(﹣1,﹣); 在y=﹣x+6中,x=﹣1则y=7,则M 的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,﹣)或M4(﹣1,7).。
深圳市八年级上册期末考试数学试卷含答案(共3套)
广东省深圳市2018--2019学年八年级上学期期末考试数学试卷一、选择题(本大题共12小题,共36.0分)1.-2018的相反数是()A. 2018B.C.D.2.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2014年的“双11”网上促销活动中,天猫的支付交易额突破570亿元,将570亿元用科学记数法表示为()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.下面哪个图形不能折成一个正方体()A. B.C. D.5.如图轴对称图形的是()A. B. C. D.6.若-2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A. 0B.C. 1D. 27.一组数据4,2,x,3,9的平均数为4,则这组数据的众数和中位数分别是()A. 3,2B. 2,2C. 2,3D. 2,48.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. B. C. 4 D. 59.若x2-2(k-1)x+9是完全平方式,则k的值为()A. B. C. 或3 D. 4或10.关于x的一次函数y=kx+k2+1的图象可能正确的是()A. B. C. D.11.若不等式组有2个整数解,则a的取值范围为()A. B. C. D.12.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共12.0分)13.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是______.14.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AED=______.15.如图,已知点A1的坐标为(0,1),直线1为y=x.过点A1作A1B1⊥y轴交直线1于点B1,过点B1作A2B1⊥1交y轴于点A2;过点A2作A2B2⊥y轴交直线1于点B2,过点B2作A3B2⊥1交y轴于点A3,……,则A n B n的长是______.16.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.三、计算题(本大题共1小题,共9.0分)17.(1)一季度,厨具店购进这两种电器共30台,用去了5600元,并且全部售完,问厨具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度厨具店决定采购电饭煲和电压锅共50台,且电饭煲的数量不大于电压锅的,请你通过计算判断,如何进货厨具店赚钱最多?最大利润是多少?四、解答题(本大题共6小题,共43.0分)18.计算:-(π-3.14)0+|-6|+()-2.19.解不等式组:,并把解集在数轴上表示出来.20.我校八年级的体育老师为了了解本年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如图两幅不完整的统计图(说明:每位学生只选一种自己最喜欢的一种球类),请根据这两幅图形解答下列问题:(1)在本次调查中,体育老师一共调查了多少名学生?(2)将两个不完整的统计图补充完整;(3)求出乒乓球在扇形中所占的圆心角的度数?(4)已知该校有760名学生,请你根据调查结果估计爱好足球和排球的学生共计多少人?21.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AE=3,ED=,求BC的长度.22.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.23.如图,直线y=2x-2与x轴交于点A,与y轴交于点B.点C是该直线上不同于B的点,且CA=AB.(1)写出A、B两点坐标;(2)过动点P(m,0)且垂直于x轴的直线与直线AB交于点D,若点D不在线段BC上,求m的取值范围;(3)若直线BE与直线AB所夹锐角为45°,请直接写出直线BE的函数解析式.答案和解析1.【答案】A【解析】解:-2018的相反数是2018.故选:A.只有符号不同的两个数叫做互为相反数.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【答案】B【解析】解:将570用科学记数法表示为5.70×1010.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:A、a3和a4不是同类项不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选:B.根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.4.【答案】A【解析】解:根据正方体展开图的特征,A图不能折成正方体;B、C、D图能折成正方体.故选:A.根据正方体展开图的11种特征,A图不属于正方体展开图,不能折成正方体;B、D图属于正方体展开图的“1-4-1”型,能折成正方体;C图属于正方体展开图的“3-3”型,能折成正方体.据此解答.此题考查了展开图折叠成几何体,正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.5.【答案】D【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.【答案】C【解析】解:由-2a m b4与5a n+2b2m+n可以合并成一项,得,解得,m n=20=1.故选:C.根据-2a m b4与5a n+2b2m+n可以合并成一项,可得同类项,根据同类项的定义,可得m、n的值,根据乘方,可得答案.本题考查了合并同类项,利用同类项得出m、n的值是解题关键.7.【答案】C【解析】解:∵一组数据4,2,x,3,9的平均数为4,∴(4+2+x+3+9)÷5=4,解得,x=2,∴这组数据按照从小到大排列是:2,2,3,4,9,∴这组数据的众数是2,中位数是3,故选:C.根据一组数据4,2,x,3,9的平均数为4,可以求得x的值,从而可以将这组数据按照从小到大排列起来,从而可以求得这组数据的众数和中位数.本题考查众数、中位数、算术平均数,解答本题的关键是明确题意,会求一组数据的众数和中位数.8.【答案】C【解析】解:设BN=x,由折叠的性质可得DN=AN=9-x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9-x)2,解得x=4.故线段BN的长为4.故选:C.设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.【答案】D【解析】解:∵x2-2(k-1)x+9是完全平方式,∴k-1=±3,解得:k=4或-2,故选:D.利用完全平方公式的结构特征判断即可确定出k的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.10.【答案】C【解析】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选:C.根据图象与y轴的交点直接解答即可.本题考查一次函数的图象,考查学生的分析能力和读图能力.11.【答案】B【解析】解:解x<1得x<2.则不等式组的解集是a<x<2.则整数解是1,0.则-1≤a<0.故选:B.首先解第一个不等式求得不等式组的解集,然后根据整数解的个数确定整数解,则a的范围即可求得.此题考查的是一元一次不等式组的解法.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.【答案】C【解析】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选:C.根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.13.【答案】【解析】解:∵20个球中共有2个红球,∴任意摸出一个球是红球的概率是.故答案是:.本题属于比较简单的概率计算问题,用红球总数除以袋中球的总数即可.考查了概率的公式,此题是比较简单的概率计算问题,用符合要求的球的总数除以袋子中球的个数即可.14.【答案】110°【解析】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=40°,∴∠CAB=180°-40°=140°,∵AE平分∠CAB,∴∠EAB=70°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°-70°=110°,故答案为:110°.根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.本题考查了角平分线定义和平行线性质的应用,解题时注意:两条平行线被第三条直线所截,同旁内角互补.15.【答案】2n-1【解析】解:∵点A1的坐标为(0,1),∴点B1的坐标为(1,1),A1B1=1.∵A2B1⊥1交y轴于点A2,直线1为y=x,∴△A1A2B1为等腰直角三角形,∴点A2的坐标为(0,2),点B2的坐标为(2,2),∴A2B2=2.同理,可得:A3B3=4,A4B4=8,…,∴A n B n=2n-1.故答案为:2n-1.由点A1的坐标可得出点B1的坐标,进而可得出A1B1的长,由A2B1⊥1交y轴于点A2结合直线1为y=x可得出△A1A2B1为等腰直角三角形,根据等腰直角三角形的性质可得出点A2的坐标,利用一次函数图象上点的坐标可得出点B2的坐标,进而可得出A2B2的长,同理,可得出A3B3,A4B4,…的长,再根据各线段长度的变化可找出变化规律“A n B n=2n-1”,此题得解.本题考查了一次函数图象上点的坐标特征、等腰直角三角形以及规律型:点的坐标,根据线段长度的变化找出变化规律“A n B n=2n-1”是解题的关键.16.【答案】4【解析】解:如图,在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=4,即BE取最小值为4,∴BM+MN的最小值是4.故答案为:4.从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.规律与趋势:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.17.【答案】解:(1)每件电饭锅的利润:250-200=50(元);每件电压锅的利润:200-160=40(元)设购进的电饭煲x台,则购进的电压锅(30-x)台.由题意得:200x+160(30-x)=5600解得:x=20则电压锅:30-20=10(台)总利润=50×20+40×10=1400 (元)答:橱具店在该买卖中赚了1400元.(2)设采购的电饭煲有n台,则采购的电压锅有(50-n)台由题意得:总利润z=50n+40 (50-n)=200+10n∵n≤(50-n),∴n≤当n=18时,总利润z最大,则最大的利润为200+10×18=380(元)答:采购18台电饭煲,32台电压锅时,进货厨具店赚钱最多,最大利润是380元.【解析】通过审题,表格显示了两种商品的进价和售价;(1)题目给出两种电器的总数量和进货的总花费;设其中一个电器购进x台,则另一种电器购进(30-x)台,由购进总费用可以求各种电器的数量,然后再分别乘以每种电器的利润,最后把各种电器的利润相加起来.(2)题目给出了两种的电器的和和两种电器的数量之间的关系,同时记得结合表格中的数据;可以设其中的一种电器数量为 n 台,总利润为z元,从而列出方程,根据两种电器之间的数量关系,确定取值范围,从而求出利润的最大值;主要考查:一次函数应用问题,经济利润问题;也可以用二元一次方程的思路进行解答,一定要认真分析表格中的数据信息和题目的要求;18.【答案】解:原式=2-1+6+4=11.【解析】直接利用零指数幂的性质以及负指数幂的性质以及算术平方根的定义分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】解:解不等式①得:x>-1,解不等式②得:x≤3,则不等式组的解集是:-1<x≤3,不等式组的解集在数轴上表示为:【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.【答案】解:(1)∵喜欢足球的有40人,占20%,∴一共调查了:40÷20%=200(人),(2)∵喜欢乒乓球人数为60人,∴所占百分比为:×100%=30%,∴喜欢排球的人数所占的百分比是1-20%-30%-40%=10%,∴喜欢排球的人数为:200×10%=20(人),∴喜欢篮球的人数为200×40%=80(人),由以上信息补全条形统计图得:(3)乒乓球在扇形中所占的圆心角的度数为:30%×360°=108°;(4)爱好足球和排球的学生共计:760×(20%+10%)=228(人).【解析】(1)读图可知喜欢足球的有40人,占20%,求出总人数;(2)根据总人数求出喜欢乒乓球的人数所占的百分比,得出喜欢排球的人数,再根据喜欢篮球的人数所占的百分比求出喜欢篮球的人数,从而补全统计图;(3)根据喜欢乒乓球的人数所占的百分比,即可得到乒乓球在扇形中所占的圆心角的度数;(4)根据爱好足球和排球的学生所占的百分比,即可估计爱好足球和排球的学生总数.本题考查条形统计图和扇形统计图,解题的关键是必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【答案】证明:(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD(SAS).(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°,∵△ACE≌△BCD,∴∠B=∠CAE=45°,AE=DB=3,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.∴AD=,∴AB=2+3=5.∴BC=.【解析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,利用勾股定理得出答案即可.本题考查三角形全等的判定与性质,等腰直角三角形的性质,及勾股定理的运用,掌握三角形全等的判定方法是解决问题的关键.22.【答案】解:(1)∵直线y=kx+b经过点A(-5,0),B(-1,4),,解得,∴y=x+5(2)∵若直线y=-2x-4与直线AB相交于点C,∴,解得,故点C(-3,2).∵y=-2x-4与y=x+5分别交y轴于点E和点D,∴D(0,5),E(0,-4),直线CE:y=-2x-4与直线AB及y轴围成图形的面积为:DE•|C x|=×9×3=.(3)根据图象可得x>-3.【解析】(1)利用待定系数法求一次函数解析式解答即可;(2)联立两直线解析式,解方程组即可得到点C的坐标;(3)根据图形,找出点C右边的部分的x的取值范围即可.此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.23.【答案】解:(1)对于直线y=2x-2令x=0,得到y=-2,令y=0,得到x=1,∴A(1,0),B(0,-2).(2)如图1中,作CF⊥x轴与F.∵CA=AB,∠CAF=∠OAB,∠CFA=∠AOB=90°,∴△CAF≌△BAO,∴AF=OA=1,CF=OB=2,∴F(2,0),观察图象可知m的取值范围为:m<0或m>2.(3)如图2中,作AE⊥AB,使得AE=AB,作EH⊥x轴于H,则△ABE是等腰直角三角形,∠ABE=45°.∵∠AOB=∠BAE=∠AHE=90°,∴∠OAB+∠ABO=90°,∠OAB+∠HAE=90°,∴∠ABO=∠HAE,∵AB=AE,∴△ABO≌△EAH,∴AH=OB=2,EH=OA=1,∴E(3,-1),设直线BE的解析式为y=kx+b,则有,解得,∴直线BE的解析式为y=x-2,当直线BE′⊥直线BE时,直线BE′也满足条件,直线BE′的解析式为y=-3x-2,∴满足条件的直线BE的解析式为y=x-2或y=-3x-2.【解析】(1)利用待定系数法即可解决问题;(2)如图1中,作CF⊥x轴与F.利用全等三角形的性质求出点F坐标即可判断;(3)如图2中,作AE⊥AB,使得AE=AB,作EH⊥x轴于H,则△ABE是等腰直角三角形,∠ABE=45°.利用全等三角形的性质求出点E坐标,当直线BE′⊥直线BE时,直线BE′也满足条件,求出直线BE′的解析式即可;本题考查一次函数的性质、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.广东省深圳市2018-2019学年八年级上学期末考试数学试题一、选择题(本大题共12小题,共36.0分)24.下列各组数中,可以构成直角三角形的是()A. 2,3,5B. 3,4,5C. 5,6,7D. 6,7,825.下列计算或命题:①有理数和无理数统称为实数;②=a;③的算术平方根是2;④实数和数轴上的点是一一对应的,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个26.下列各式中正确的是()A.B. C. D.27.如图,将一副直角三角板摆放,点C在EF上,AC经过点D,已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF=()A.B.C.D.28.直角坐标系中,A、B两点的横坐标相同但均不为零,则直线AB()A. 平行于x轴B. 平行于y轴C. 经过原点D. 以上都不对29.点P(a-1,-b+2)关于x轴对称与关于y轴对称的点的坐标相同,则a,b的值分别是()A. ,2B. ,C. ,1D. 1,230.如图,D3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A. B. C. D.31.正比例函数的图象如图所示,将这条直线向右平移一个单位长度,它所表示函数的解析是()A.B.C.D.32.一次函数y=-x+3的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限33.已知点A(-5,y1)、B(-2,y2)都在直线y=-x上,则y1与y2的关系是()A. B. C. D.34.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A. B. C. D.35.如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD的面积为60,则△DEC的面积为()A.B.C. 18D. 20二、填空题(本大题共4小题,共12.0分)36.数据-1,0,1,2,3的标准差为______.37.已知一次函数y=2x与y=-x+b的交点为(1,a),则方程组的解为______.38.如图,正四棱柱的底面边长为8cm,侧棱长为12cm,一只蚂蚁欲从点A出发,沿棱柱表面到点B处吃食物,那么它所爬行的最短路径是______cm.39.如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过A1点作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2019的坐标为______.三、计算题(本大题共1小题,共8.0分)40.计算:(1)(2)四、解答题(本大题共6小题,共44.0分)41.解方程组:(1)(2)42.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成如下图所示统计图:()在出口的被调查游客中,购买瓶装饮料的数量的中位数是瓶、众数是瓶、平均数是______瓶;(2)已知A、B、C三个出口的游客量比为2:2:1,用上面图表的人均购买饮料数量计算:这一天景区内若有50万游客,那么这一天购买的饮料的总数是多少?(3)若每瓶饮料要消耗0.5元处理包装的环保费用,该日需要花费多少钱处理这些饮料瓶?由此请你对游客做一点环保宣传建议.43.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品提价40%,乙商品降价10%,两种商品的单价和比原来提高了20%.问甲、乙两种商品原来的单价各是多少元?44.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.45.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,他手中持有的钱数(含备用零钱)y与售出的土豆千克数x的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是______元,降价前他每千克土豆出售的价格是______元;(2)降价后他按每千克0.8元将剩余土豆售完,这时他手中的钱(含备用零钱)是62元,求降价后的线段所表示的函数表达式并写出它的取值范围.46.如图,在直角坐标系中,点A、B分别在x轴和y轴上,△OBA是等腰直角三角形且AB=,线段PQ=1,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动.(1)求A、B两点的坐标;(2)若P运动的路程为m,△OPA的面积为S,求S与m之间的函数关系式;(3)当点P运动一周时,点Q运动的总路程为______.答案和解析1.【答案】B【解析】解:∵32+42=25,52=25.∴32+42=52.可构成直角三角形的是3、4、5.故选:B.两边的平方和等于第三边平方的三角形是直角三角形,根据此可找到答案.本题考查勾股定理的逆定理,根据勾股定理的逆定理判断出直角三角形.2.【答案】D【解析】解:①有理数和无理数统称为实数,正确;②=a,正确;③=4的算术平方根是2,正确;④实数和数轴上的点是一一对应的,正确.故选:D.直接利用实数的定义以及算术平方根的定义、立方根的性质分别分析得出答案.此题主要考查了命题与定理,正确掌握相关定义是解题关键.3.【答案】D【解析】解:A、=7,故A错误;B、=3,故B错误;C、(-)2=2,故C错误;D、-=3,故D正确;故选:D.根据二次根式的性质:=-a(a≤0)及二次根式的化简进行选择即可.本题考查了二次根式的性质与化简,注意:①定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a<0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).②性质:=|a|.4.【答案】B【解析】解:∵AB=AC,∠A=90°,∴∠ACB=45°,∵∠BCE=40°,∴∠ACE=85°,∵∠ACE=∠F+∠CDF,∠F=60°,∴∠CDF=25°,故选:B.根据∠ACE=∠F+∠CDF,求出∠ACE,∠F即可解决问题.本题考查三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.【答案】B【解析】解:直角坐标系下两个点的横坐标相同且不为零,则说明这两点到y轴的距离相等,且在y轴的同一侧,所以过这两点的直线平行于y轴.故选:B.平行于y轴的直线上的点的横坐标相同.本题考查坐标与图形的性质,关键是根据:两点的横坐标相同,到y轴的距离相等,过这两点的直线平行于y轴解答.6.【答案】D【解析】解:根据题意,分别写出点P关于x轴、y轴的对称点;关于x轴的对称点的坐标为(a-1,b-2),关于y轴对称的点的坐标(1-a,-b+2),所以有a-1=1-a,b-2=2-b,得a=1,b=2.故选:D.点P(a-1,-b+2)关于x轴对称的点的坐标为(a-1,b-2),关于y轴对称的点的坐标(1-a,-b+2),根据题意,a-1=1-a,b-2=2-b,得a=1,b=2.本题主要考查了点关于坐标轴的对称问题;关于x轴对称,横坐标不变,纵坐标变号;关于y轴对称,纵坐标不变,横坐标变号;关于原点对称,横纵坐标都变号.7.【答案】A【解析】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,故反映到图象上应选A.故选:A.先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.8.【答案】B【解析】解:设直线OP的解析式为y=kx,把P(1,-1)代入得k=-1,则直线OP的解析式为y=-x,所以该图象向右平移一个单位长度,直线与x轴的交点坐标为(1,0),则平移后得到的函数图象的解析式为y=-x+1.故选:B.先利用待定系数法确定直线OP的解析式为y=-x,则该图象向右平移一个单位长度后与x轴的交点坐标为(1,0),易得此时图象的解析式为y=-x+1.本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向右平移m个单位,则平移后直线的解析式为y=k(x-m)+b.9.【答案】C【解析】解:∵k=-1<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选:C.根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.用到的知识点为:k<0,函数图象经过二四象限,b>0,函数图象经过第一象限.10.【答案】D【解析】解:∵点A(-5,y1)、B(-2,y2)都在直线y=-x上,∴y1=,y2=1.∵>1,∴y1>y2.故选:D.利用一次函数图象上点的坐标特征可求出y1,y2的值,比较后即可得出结论(利用一次函数的单调性找出结论亦可).本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出y1,y2的值是解题的关键.11.【答案】C【解析】解:根据组数×每组7人=总人数-3人,得方程7y=x-3;根据组数×每组8人=总人数+5人,得方程。
深圳宝安区2018-2019学度初二(上)年末数学试题(含解析)
深圳宝安区2018-2019学度初二(上)年末数学试题(含解析)八年级数学2018.1说明:1、试题卷共4页,答题卡共4页。
考试时间90分钟,总分值100分。
2、请在答题卡上填涂学校、班级、姓名、学号,不得在其它地方作任何标记。
3、答案必须写在答题卡指定位置上,否那么不给分。
【一】选择题〔每题3分,共36分。
〕每题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上。
1、9的算术平方根是A 、-3B 、3C 、±3D 、 32、二元一次方程12=-y x 有许多多个解,以下四组值中不是..该方程的解是 A 、⎩⎨⎧==11y xB 、⎩⎨⎧==32y xC 、⎩⎨⎧-=-=31y xD 、⎩⎨⎧-=-=21y x3、某班抽取期中考试中6名同学的数学成绩是80,90,50,70,60,80.那么众数和中位数分别是A 、80,80B 、80,75C 、80,70D 、70,754、下面的图形中,既是轴对称图形又是中心对称图形的是A 、B 、C 、D 、5、将以下长度的三根木棒首尾顺次连接,能组成直角三角形的是A 、2、3、4B 、4、5、6 C 、5、11、12 D 、 8、15、176、在直角坐标系中,假设点P(a ,b)在第二象限中,那么点Q 〔-a ,-b 〕所在的象限是A 、第一象限B 、第二象限C 、第三象限D 、第四象限7的图象大致是8A =B 、24-=-C 、12169169=⨯=⨯D 、25223=+9、一个多边形,它的每一个外角都为60°,那么那个多边形是A 、六边形B 、八边形C 、十边形D 、十二边形10、以下说法中:① 平移和旋转都不改变图形的大小和形状,只是位置发生了变化。
② 菱形的对角线相等且互相平分。
③ 正比例函数y=kx 〔k ≠0〕的图象通过点〔0,0〕和〔1,k 〕。
④ 无限小数基本上无理数。
正确的个数是A 、1个B 、2个C 、3个D 、4个11、小强每天从家到学校上学行走的路程为900m ,某天他从家去上学时以每分30m 的速度行走了450m ,为了不迟到他加快了速度,以每分45m 的速度行走完剩下的路程,那么小强离学校的路程s 〔m 〕与他行走的时间t 〔min 〕之间的函数关系用图象表示正确的选项是12、如图 1,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图1的顶点A 开始,爬向顶点B 。
《试卷3份集锦》广东省名校2018-2019年八年级上学期期末综合测试数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,△ABC 是等边三角形,AQ=PQ ,PR⊥AB 于点R ,PS⊥AC 于点S ,PR=PS.下列结论:①点P 在∠A 的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中,正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR =PS ,∴P 在∠A 的平分线上,故①正确; 由①可知,PB =PC ,∠B =∠C ,PS =PR ,∴△BPR ≌△CPS ,∴AS =AR ,故②正确;∵AQ =PQ ,∴∠PQC =2∠PAC =60°=∠BAC ,∴PQ ∥AR ,故③正确;由③得,△PQC 是等边三角形,∴△PQS ≌△PCS ,又由②可知,④△BRP ≌△QSP ,故④也正确,∵①②③④都正确,故选D .点睛:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.2.一次函数2y x =+的图象与x 轴交点的坐标是( )A .(0,2)B .(0,-2)C .(2,0)D .(-2,0)【答案】D【分析】计算函数值为0所对应的自变量的取值即可.【详解】解:当y=0时,x+2=0,解得x=-2,所以一次函数的图象与x 轴的交点坐标为(-2,0).故选:D .【点睛】本题考查了一次函数图象与x 轴的交点:求出函数值为0时的自变量的值即可得到一次函数与x 轴的交点坐标.3.正方形的面积为6,则正方形的边长为( )A 2B 6C .2D .4 【答案】B【分析】根据正方形面积的求法即可求解.【详解】解:∵正方形的面积为6,∴正方形的边长为6.故选:B .【点睛】本题考查了算术平方根,正方形的面积,解此题的关键是求出6的算术平方根.4.若多项式1x -与多项式2x a -+的积中不含x 的一次项,则( )A .1a =B .1a =-C .2a =D .2a =-【答案】D【分析】根据题意可列式()()21x a x -+-,然后展开之后只要使含x 的一次项系数为0即可求解.【详解】解:由题意得: ()()()2221=2222x a x x x ax a x a x a -+--++-=-++-;因为多项式1x -与多项式2x a -+的积中不含x 的一次项,所以2=0a +,解得=2-a ;故选D .【点睛】本题主要考查多项式,熟练掌握多项式的概念是解题的关键.5.在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是( )A .B .C .D .【答案】B【解析】对称轴是两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后重合. 根据轴对称图形的概念,A 、C 、D 都是轴对称图形,B 不是轴对称图形,故选B6.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( ) A .5<m <6B .5<m≤6C .5≤m≤6D .6<m≤7 【答案】B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式x ﹣m <0,得:x <m ,解不等式7﹣2x≤2,得:x≥52, 因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤1.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.7.如图是我市某景点6月份内110日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温26C︒出现的频率是()A.3 B.0.5 C.0.4 D.0.3【答案】D【分析】通过折线统计图和频率的知识求解.【详解】解:由图知10天的气温按从小到大排列为:22.3,24,24,26,26,26,26.5,28,30,30,26有3个,因而26出现的频率是:3100%10⨯=0.3.故选D.【点睛】本题考查了频率的计算公式,理解公式是关键.8.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为( )A.15°B.20°C.25°D.30°【答案】B【解析】试题解析:由折叠的性质知,∠BEF=∠DEF,∠EBC′、∠BC′F都是直角,∴BE∥C′F,∴∠EFC′+∠BEF=180°,又∵∠EFC′=125°,∴∠BEF=∠DEF=55°,在Rt △ABE 中,可求得∠ABE=90°-∠AEB=20°.故选B .9.下列各式中是分式的是( )A .23xB .3aπ C .521x - D .22a b -【答案】C【分析】根据分式的定义:分母中含有字母的式子逐项判断即可.【详解】解:式子23x 、3a π、22a b -都是整式,不是分式,521x -中分母中含有字母,是分式. 故选:C .【点睛】本题考查的是分式的定义,属于应知应会题型,熟知分式的概念是解题关键.10.不等式组1{1x x >-≤的解集在数轴上可表示为( )A .B .C .D .【答案】D 【分析】先解不等式组11x x >-⎧⎨≤⎩可求得不等式组的解集是11x -<≤,再根据在数轴上表示不等式解集的方法进行表示. 【详解】解不等式组11x x >-⎧⎨≤⎩可求得: 不等式组的解集是11x -<≤,故选D.【点睛】本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.二、填空题11.已知一次函数y =kx ﹣4(k <0)的图象与两坐标轴所围成的三角形的面积等于8,则该一次函数表达式为_____.【答案】y =﹣x ﹣1【分析】先求出直线与坐标轴的交点坐标,再根据三角形的面积公式列出方程,求得k 值,即可.【详解】令x =0,则y =0﹣1=﹣1,令y=0,则kx﹣1=0,x=4k,∴直线y=kx﹣1(k<0)与坐标轴的交点坐标为A(0,﹣1)和B(4k,0),∴OA=1,OB=-4k,∵一次函数y=kx﹣1(k<0)的图象与两坐标轴所围成的三角形的面积等于8,∴144()8 2k⨯⨯-=,∴k=﹣1,∴一次函数表达式为:y=﹣x﹣1.故答案为:y=﹣x﹣1.【点睛】本题主要考查求一次函数的解析式,掌握一次函数图象与坐标轴的交点坐标求法,是解题的关键.12.一根木棒能与长为4和9的两根木棒钉成一个三角形,则这根木棒的长度x的取值范围是____________.【答案】5<x<13【分析】设这根木棒的长度为x,根据在三角形中,任意两边之和大于第三边,得x<4+9=13,任意两边之差小于第三边,得x>9-4=5,所以这根木棒的长度为5<x<13.【详解】解:这根木棒的长度x的取值范围是9-4<x<9+4,即5<x<13.故答案为5<x<13.【点睛】本题考查了三角形得三边关系.在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.13.如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为_____.【答案】y=13x+1或y=﹣3x﹣1.【分析】过C作CE⊥OB于E,则四边形CEOD是矩形,得到CE=OD,OE=CD,根据旋转的性质得到AB =BC,∠ABC=10°,根据全等三角形的性质得到BO=CE,BE=OA,求得OA=BE=3,设OD=a,得到CD=OE=|a﹣3|,根据面积公式列方程得到C(﹣6,1)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入即可得到结论.【详解】解:过C作CE⊥OB于E,则四边形CEOD是矩形,∴CE=OD,OE=CD,∵将线段AB绕点B旋转10°至BC处,∴AB=BC,∠ABC=10°,∴∠ABO+∠CBO=∠CBO+∠BCE=10°,∴∠ABO=∠BCE,∵∠AOB=∠BEC=10°,∴△ABO≌△BCO(AAS),∴BO=CE,BE=OA,∵A(﹣3,0),∴OA=BE=3,设OD=a,∴CD=OE=|a﹣3|,∵四边形ABCD的面积为36,∴12AO•OB+12(CD+OB)•OD=12×3×a+12(a﹣3+a)×a=36,∴a=±6,∴C(﹣6,1)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入得,3063k bk b-+=⎧⎨+=⎩或3069,k bk b-+=⎧⎨-+=⎩解得:131kb⎧=⎪⎨⎪=⎩或39.kb=-⎧⎨=-⎩,∴直线AB的解析式为113y x=+或y=﹣3x﹣1.故答案为113y x=+或y=﹣3x﹣1.【点睛】本题考查了坐标与图形变化﹣旋转,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出图形是解题的关键.14.已知直角三角形的两边长分别为3、1.则第三边长为________.【答案】4或7【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3的边是斜边时:第三边的长为:22437-=;②长为3、3的边都是直角边时:第三边的长为:22435;∴第三边的长为:7或4.考点:3.勾股定理;4.分类思想的应用.15.如图,直线a//b,∠1=42°,∠2=30°,则∠3=______度.【答案】1【分析】如图,利用三角形的外角,可知∠3=∠2+∠4,由平行知∠1=∠4,则∠3=∠2+∠1即可.【详解】如图,,∵a∥b,∴∠1=∠4,又∵∠3=∠2+∠4,∴∠3=∠2+∠1=30゜+42゜=1゜.故答案为:1.【点睛】本题考查角的度数问题,关键是把∠3转化为∠1与∠2有关的式子表示.16.已知()()22201920205a a -+-=,则()()20192020a a --= _________. 【答案】1【分析】令2019a x -=,2020a y -=,根据完全平方公式的变形公式,即可求解.【详解】令2019a x -=,2020a y -=,则x-y=1,∵()()22201920205a a -+-=,∴22()5x y +-=,即:225x y +=,∵222()2x y x y xy -=+-,∴2152xy =-,即:xy=1,故答案是:1.【点睛】本题主要考查通过完全平方公式进行计算,掌握完全平方公式及其变形,是解题的关键.17.正方形ABCD 的边长为4,E 为BC 边上一点,BE=3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF=AE,则BM 的长为____. 【答案】52或125 【分析】分两种情况进行分析,①当BF 如图位置时,②当BF 为BG 位置时;根据相似三角形的性质即可求得BM 的长.【详解】如图,当BF 如图位置时,∵AB=AB ,∠BAF=∠ABE=90°,AE=BF ,∴△ABE ≌△BAF (HL ),∴∠ABM=∠BAM ,∴AM=BM ,AF=BE=3,∵AB=4,BE=3,∴AE= 5=,过点M 作MS ⊥AB ,由等腰三角形的性质知,点S 是AB 的中点,BS=2,SM 是△ABE 的中位线, ∴BM=12AE=12×5=52, 当BF 为BG 位置时,易得Rt △BCG ≌Rt △ABE ,∴BG=AE=5,∠AEB=∠BGC ,∴△BHE ∽△BCG ,∴BH :BC=BE :BG ,∴BH=125.故答案是:52或125. 【点睛】 利用了全等三角形的判定和性质,等角对等边,相似三角形的判定和性质,勾股定理求解.三、解答题18.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF .(1)求证:AD 平分∠BAC .(2)写出AB+AC 与AE 之间的等量关系,并说明理由.【答案】(1)详见解析;(2)AB+AC =2AE ,理由详见解析.【分析】(1)根据相“HL ”定理得出△BDE ≌△CDF ,故可得出DE =DF ,所以AD 平分∠BAC ;(2)由(1)中△BDE ≌△CDE 可知BE =CF ,AD 平分∠BAC ,故可得出△AED ≌△AFD ,所以AE =AF ,故AB+AC =AE ﹣BE+AF+CF =AE+AE =2AE .【详解】证明:(1)∵DE ⊥AB 于E ,DF ⊥AC 于F ,∴∠E =∠DFC =90°,∴△BDE 与△CDE 均为直角三角形,∵在Rt △BDE 与Rt △CDF 中,,,BD CD BE CF =⎧⎨=⎩∴Rt △BDE ≌Rt △CDF ,∴DE =DF ,∴AD 平分∠BAC ;(2)AB+AC =2AE .理由:∵BE =CF ,AD 平分∠BAC ,∴∠EAD =∠CAD ,∵∠E =∠AFD =90°,∴∠ADE =∠ADF ,在△AED 与△AFD 中,,,,EAD CAD AD AD ADE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AED ≌△AFD ,∴AE =AF ,∴AB+AC =AE ﹣BE+AF+CF =AE+AE =2AE .【点睛】本题考查的是角平分线的性质及全等三角形的判定与性质,熟知角平分线的性质及其逆定理是解答此题的关键.19.目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3800元购进节能灯120只,这两种节能灯的进价、售价如表:(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?【答案】(1)甲、乙两种节能灯各进80只,40只;(2)该商场获利1400元【分析】(1)根据题意可以列出相应的方程组,从而可以求得甲、乙两种节能灯各进了多少只; (2)根据(1)中的答案和表格中的数据可以求得该商场获得的利润.【详解】(1)设甲种节能灯进了x 只,乙种节能灯进了y 只,依题意得:12030353800x y x y +=⎧⎨+=⎩, 解得:8040x y =⎧⎨=⎩, 答:甲、乙两种节能灯各进80只,40只;(2)由题意可得,该商场获利为:(40-30)×80+(50-35)×40=800+600=1400(元),答:该商场获利1400元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的思想解答.20.在ABC 中,80B ∠=︒,40C ∠=︒,AD 、AE 分别是ABC 的高和角平分线.求DAE ∠的度数.【答案】∠DAE=20°【分析】先根据三角形的内角和定理得到∠BAC 的度数,再利用角平分线的定义求出∠BAE=12∠BAC ,而∠BAD=90°-∠B ,然后利用∠DAE=∠BAE-∠BAD 进行计算即可.【详解】解:在△ABC 中,∠B=80°,∠C=40°∴∠BAC=180°-∠B-∠C=180°-80°-40°=60°∵AE 是的角平分线∴∠BAE=12∠BAC=30°, ∵AD 是△ABC 的高,∴∠ADB=90°∴在△ADB 中,∠BAD=90°-∠B=90°-80°=10°∴∠DAE=∠BAE-∠BAD=30°-10°=20°.【点睛】本题考查三角形内角和定理,角平分线的定义,三角形的高线.熟练掌握相关定义,计算出角的度数是解题关键.21.在甲村至乙村的公路旁有一块山地正在开发,现有一C 处需要爆破.已知点C 与公路上的停靠站A 的距离为600米,与公路上另一停靠站B 的距离为800米,且CA CB ⊥,如图,为了安全起见,爆破点C 周围半径400米范围内不得进入,问在进行爆破时,公路AB 段是否有危险,是否需要暂时封锁?请通过计算进行说明.【答案】没有危险,因此AB 段公路不需要暂时封锁.【分析】本题需要判断点C 到AB 的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C 作CD ⊥AB 于D ,然后根据勾股定理在直角三角形ABC 中即可求出AB 的长度,然后利用三角形的公式即可求出CD ,然后和250米比较大小即可判断需要暂时封锁.【详解】解:如图,过C 作CD ⊥AB 于D ,∵BC =800米,AC =600米,∠ACB =90°, ∴22228006001000AB BC AC =+=+=米, ∵12AB•CD =12BC•AC , ∴CD =480米.∵400米<480米,∴没有危险,因此AB 段公路不需要暂时封锁.【点睛】本题考查了正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.22.综合实践如图①,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为点D E 、,2.5, 1.7AD cm DE cm ==.(1)求BE 的长;(2)将CE 所在直线旋转到ABC ∆的外部,如图②,猜想AD DE BE 、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC ∆中,,AC BC D C E =、、三点在同一直线上,并且BEC ADC BCA α∠=∠=∠=,其中α为任意钝角.猜想AD DE BE 、、之间的数量关系,并证明你的结论.【答案】 (1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE ,证明见解析.【分析】(1)本小题只要先证明ACD CBE ≅,得到AD CE =,CD BE =,再根据2.5, 1.7AD cm DE cm ==,CD CE DE =-,易求出BE 的值;(2)先证明ACD CBE ≅,得到AD CE =,CD BE =,由图②ED=EC+CD ,等量代换易得到AD DE BE 、、之间的关系;(3)本题先证明EBC DCA ∠=∠,然后运用“AAS”定理判定BEC CDA ≅,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∵90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCEAC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-=∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+(3)∵BEC ADC BCA α∠=∠=∠=∴180BCE ACD a ︒∠+∠=-180BCE BCE a ︒∠+∠=-∴ACD BCE ∠=∠在ACD 与CBE △中, ADC E a ACD BCE AC BC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.23.老师所留的作业中有这样一个分式的计算题:22511x x x +++-,甲、乙两位同学完成的过程分别如下: 甲同学: 22511x x x +++- ()()()()251111x x x x x +=++-+- 第一步()()2511x x x ++=+- 第二步()()711x x x +=+- 第三步 乙同学:22511x x x +++- ()()()()()2151111x x x x x x -+=++-+- 第一步 225x x =-++ 第二步33x =+ 第三步老师发现这两位同学的解答都有错误:(1)甲同学的解答从第______步开始出现错误;乙同学的解答从第_____步开始出现错误;(2)请重新写出完成此题的正确解答过程. 22511x x x +++- 【答案】 (1)一、二;(2)31x -. 【分析】(1)观察解答过程,找出出错步骤,并写出原因即可;(2)写出正确的解答过程即可.【详解】(1)甲同学的解答从第一步开始出现错误,错误的原因是第一个分式的变形不符合分式的基本性质,分子漏乘()1x -;乙同学的解答从第二步开始出现错误,错误的原因是与等式性质混淆,丢掉了分母.故答案为:一、二,(2)原式=2(1)5(1)(1)(1)(1)x x x x x x -+++-+- =225(1)(1)x x x x -+++- =33(1)(1)x x x ++- =31x -. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质. 24.如图,在ABC ∆中,90,5,3C AB cm BC cm ︒∠===,若点P 从点A 出发,以每秒1cm 的速度沿折线A C B A →→→运动,设运动时间为t 秒(0t >).(1)用尺规作线段AB 的垂直平分线(不写作法,保留作图痕迹);(2)若点P 恰好运动到AB 的垂直平分线上时,求t 的值.【答案】(1)见解析;(2)t 的值为258s 或192s 【分析】(1)分别以AB 为圆心,大于12AB 为半径作弧,连接两户的交点即为线段AB 的垂直平分线,(2)勾股定理求出AC 的长, 当P 在AC 上时,利用勾股定理解题,当P 在AB 上时,利用22P A P B =解题.【详解】解:(1)分别以AB 为圆心,大于12AB 为半径作弧,连接两户的交点即为线段AB 的垂直平分线,有作图痕迹;(2)如图,在Rt ACB ∆中,由勾股定理得2222534AC AB BC =-=-=,①当P 在AC 上时,1AP t =,∴14PC t =-,11P A PB =,1PB t =, 在1Rt PCB ∆中,由勾股定理得: 22211+=PC BC PB 即:()()22243t t -+=解得:258t s =; ②当P 在AB 上时,227P A P B t ==-,即:572t -=, ∴192t s = ∴t 的值为258s 或192s . 【点睛】本题考查了尺规作图--垂直平分线,勾股定理的实际应用,会根据P 的运动进行分类讨论,建立等量关系是解题关键.25.如图,在平面直角坐标系中,1,0A ,()3,3B ,()5,1C(1)画出ABC ∆关于x 轴的对称图形11AB C ∆,并写出点1B 、1C 的坐标(2)直接写出ABC ∆的面积(3)在y 轴负半轴上求一点P ,使得APB ∆的面积等于ABC ∆的面积【答案】(1)画图见解析,1(3,3)B -、1(5,1)C -;(2)5;(3)130,2P ⎛⎫- ⎪⎝⎭【分析】(1)根据关于x 轴对称的点的坐标特点,横坐标不变,纵坐标互为相反数,画图求解; (2)利用割补法求三角形面积;(3)设()0,P m -,采用割补法求△ABP 面积,从而求解.【详解】解:(1)如图:1(3,3)B -、1(5,1)C -(2)111342341225222ABC S ∆∴ABC ∆的面积为5(3)设()0,P m -,建立如图△PMB ,连接AM有图可得:ABP PMB PAM ABM S SS S ∆=-- ∴()111331(3)33222ABP S m m ∆=⨯+⨯-⨯⨯+-⨯⨯352m =-=解得:132 m=∴130,2 P⎛⎫-⎪⎝⎭【点睛】本题考查画轴对称图形,三角形的面积计算,利用数形结合思想采用割补法解题是关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如果一次函数y=-kx+8中的y 随x 的增大而增大,那么这个函数的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】先根据一次函数的增减性判断出k 的符号,再由一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y=-kx+8中,y 随x 的增大而增大,且b=8>0,∴此函数的图象经过第一、二、三象限,不经过第四象限.故选:D .【点睛】本题主要考查了一次函数图象与系数的关系,关键在于根据一次函数的增减性判断出k 的正负. 2.在223.14,0,,2,,2.010********π--(每两个1之间的0依次增加1个)中,无理数有( ) A .2个B .3个C .4个D .5个 【答案】B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14、0、227-属于有理数; 无理数有:5π-,2,2.010010001…(每两个1之间的0依次增加1个)共3个.故选:B .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.如图,直线AB :39y x =-+交y 轴于A ,交x 轴于B ,x 轴上一点(1,0)C -,D 为y 轴上一动点,把线段BD 绕B 点逆时针旋转90︒得到线段BE ,连接CE ,CD ,则当CE 长度最小时,线段CD 的长为( )A 10B 17C .5D .27【答案】B【分析】作EH ⊥x 轴于H ,通过证明△DBO ≌△BEH ,可得HE=OB ,从而确定点点E 的运动轨迹是直线3y =-,根据垂线段最短确定出点E 的位置,然后根据勾股定理求解即可.【详解】解:作EH ⊥x 轴于H ,∵∠DBE=90°,∴∠DBC+∠CBE=90°.∵∠BHE=90°,∴∠BEH+∠CBE=90°,∴∠DBC=∠BEH.在△DBO 和△BEH 中,∵∠DBC=∠BEH ,∠BOD=∠BHE ,BD=BE ,∴△DBO ≌△BEH 中,∴HE=OB ,当y=0时,039x =-+,∴x=3,∴HE=OB=3,∴点E 的运动轨迹是直线3y =-,B(3,0),∴当CE ⊥m 时,CE 最短,此时点'E 的坐标为(-1,3),∵B(-1,0),B(3,0),∴BC=4,∴BE ′,∴BD= BE ′=4,∴,∴故选B.【点睛】本题考查一次函数与坐标轴的交点,坐标与图形的变化,旋转变换、全等三角形的判定与性质,垂线段最短以及勾股定理等知识,解题的关键是确定点E 的位置.4.我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是( ).A .x 1=1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=3D .x 1=-1,x 2=-3 【答案】D【分析】将23x +作为一个整体,根据题意,即可得到23x +的值,再通过求解一元一次方程,即可得到答案.【详解】根据题意,得:231x +=或2+33x =-∴1x =-或3x =-故选:D .【点睛】本题考查了一元一次方程、一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.5.能说明命题“对于任何实数a, 都有a >-a ”是假命题的反例是()A .a=-2B .a 12=C .a=1D .a=2【答案】A【分析】先根据假命题的定义将问题转化为求四个选项中,哪个a 的值使得a a >-不成立,再根据绝对值运算即可得.【详解】由假命题的定义得:所求的反例是找这样的a 值,使得a a >-不成立A 、22(2)-==--,此项符合题意B 、111222=>-,此项不符题意 C 、111=>-,此项不符题意D 、222=>-,此项不符题意故选:A .【点睛】本题考查了命题的定义、绝对值运算,理解命题的定义,正确转为所求问题是解题关键.6.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角.③三角形的一个内角大于任何一个外角.④如果0x > ,那么20x > .A .1 个B .2 个C .3 个D .4 个【答案】A【分析】正确的命题是真命题,根据定义解答即可.【详解】①两条直线被第三条直线所截,内错角相等,是假命题;②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角,是假命题;③三角形的一个内角大于任何一个外角,是假命题;④如果0x > ,那么20x > ,是真命题,故选:A.【点睛】此题考查真命题,熟记真命题的定义,并熟练掌握平行线的性质,对顶角的性质,三角形外角性质,不等式的性质是解题的关键. 7.已知直线y =2x 与y =﹣x+b 的交点(﹣1,a ),则方程组20x y x y b -=⎧⎨+=⎩的解为( ) A .12x y =⎧⎨=⎩ B .12x y =-⎧⎨=⎩ C .12x y =⎧⎨=-⎩ D .12x y =-⎧⎨=-⎩【答案】D【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【详解】解:把(﹣1,a )代入y =2x 得a =﹣2,则直线y =2x 与y =﹣x+b 的交点为(﹣1,﹣2),则方程组20x y x y b -=⎧⎨+=⎩的解为12x y =-⎧⎨=-⎩. 故选D .【点睛】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解. 8.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图像如图所示,由图中给出的信息可知,营销人员没有销售时的收入是( )A .310元B .300元C .290元D .280元【答案】B 【解析】试题分析:观察图象,我们可知当销售量为1万时,月收入是800,当销售量为2万时,月收入是11,所以每销售1万,可多得11-800=500,即可得到结果.由图象可知,当销售量为1万时,月收入是800,当销售量为2万时,月收入是11,所以每销售1万,可多得11-800=500,因此营销人员没有销售业绩时收入是800-500=1.故选B .考点:本题考查的是一次函数的应用点评:本题需仔细观察图象,从中找寻信息,并加以分析,从而解决问题.9.如果1≤a 2221a a -+的值是( )A .6+aB .﹣6﹣aC .﹣aD .1 【答案】D【分析】根据二次根式的性质、绝对值的性质,可化简整式,根据整式的加减,可得答案.【详解】由2,得 2212121a a a a a -+-=-+-=故选D .【点睛】 本题考查了二次根式的性质与化简,掌握二次根式的性质及绝对值的意义是关键,即()2(0)00(0)a a a a a a a >⎧⎪===⎨⎪-<⎩. 10.如图,在RtΔABC 中,∠A = 90°,∠ABC 的平分线交AC 于点D ,AD = 3,BC=10,则ΔBDC 的面积是( )A .15B .12C .30D .10【答案】A【分析】作垂直辅助线构造新三角形,继而利用AAS 定理求证△ABD 与△EBD 全等,最后结合全等性质以及三角形面积公式求解本题.【详解】作DE ⊥BC ,如下图所示:∵BD 是∠ABC 的角平分线,∴∠ABD=∠EBD .又∵∠A=∠DEB=90°,BD=BD ,∴()ABD EBD AAS ≅,∴DE=DA=1.在△BDC 中,111031522BDC SBC DE =••=⨯⨯=. 故选:A .【点睛】本题考查全等三角形的判定和性质,该题辅助线的做法较为容易,有角度相等以及公共边的提示,图形构造完成后思路便会清晰,后续只需保证计算准确即可.二、填空题11.在植树活动中,八年级一班六个小组植树的棵树分别是:5,7,3,x ,6,4.已知这组数据的众数是5,则该组数据的方差是_________. 【答案】53【分析】根据众数、平均数、方差的定义进行计算即可.【详解】∵这组数据5、7、3、x 、6、4的众数是5,∴x =5,∴这组数据5、7、3、5、6、4的平均数是5735646+++++=5, ∴S 2=16[(5−5)2+(7−5)2+(3−5)2+(5−5)2+(6−5)2+(4−5)2]=53, 故答案为53. 【点睛】本题考查了众数、方差,掌握众数、平均数、方差的定义是解题的关键.12.如图,已知Rt ABC ∆的两条直角边长分别为6、8,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积为______.【答案】1【分析】先分别求出以6、8为直径的三个半圆的面积,再求出三角形ABC 的面积,阴影部分的面积是三角形ABC 的面积加以AC 为直径和以BC 为直径的两个半圆的面积再减去以AB 为直径的半圆的面积.【详解】解:由勾股定理不难得到AB=10以AC 为直径的半圆的面积:π×(6÷2)2×12=92π=4.5π, 以BC 为直径的半圆的面积:π×(8÷2)2×=8π,以AB 为直径的半圆的面积:π×(10÷2)2×12=12.5π, 三角形ABC 的面积:6×8×12=1, 阴影部分的面积:1+4.5π+8π−12.5π=1;故答案是:1.【点睛】本题考查了勾股定理的运用,解答此题的关键是,根据图形中半圆的面积、三角形的面积与阴影部分的面积的关系,找出对应部分的面积,列式解答即可.13.为了增强学生体质,某学校将“抖空竹”引阳光体育一小时活动,图1是一位同学抖空竹时的一个瞬间,小明把它抽象成图2的数学问题:已知//,80,110AB CD EAB ECD ∠=︒∠=︒,则E ∠的度数是_____.【答案】30°【分析】过E 点作EF ∥AB ,由两直线平行,同旁内角互补即可求解.【详解】解:过E 点作EF ∥AB ,如下图所示:∵EF ∥AB ,∴∠EAB+∠AEF=180°,又∠EAB=80°∴∠AEF=100°∵EF ∥AB ,AB ∥CD∴EF ∥CD∴∠CEF+∠ECD=180°,又∠ECD=110°∴∠CEF=70°∴∠AEC=∠AEF-∠CEF=100°-70°=30°.故答案为:30°.【点睛】本题考查平行线的构造及平行线的性质,关键是能想到过E 点作EF ∥AB ,再利用两直线平行同旁内角互补即可解决.14.在ABC ∆中,AB AC =,AB 的垂直平分线与AC 所在的直线相交所得到的锐角为40,则B 等于______________度.【答案】65°或25°【分析】(1)当△ABC 是锐角三角形时,根据题目条件得到∠A=50°,利用△ABC 是等腰三角形即可求解;(2)当△ABC 是钝角三角形时,同理可得即可得出结果.【详解】解:(1)当△ABC 是锐角等腰三角形时,如图1所示由题知:DE⊥AB,AD=DB,∠AED=40°∴∠A=180°-90°-40°=50°∵AB=AC∴△ABC是等腰三角形∴∠ABC=∠ACB∴∠ABC=(180°-50°)÷2=65°(2)当△ABC是钝角三角形时,如图2所示由题知:DE⊥AB,AD=DB,∠AED=40°∴∠AED+∠ADE=∠BAC∴∠BAC=90°+40°=130°∵AB=AC∴△ABC是等腰三角形∴∠ABC=∠ACB∴∠ABC=(180°-130°)÷2=25°∴∠ABC=65°或25°故答案为:65°或25°【点睛】本题主要考查的是垂直平分线以及三角形的外角性质,正确的运用这两个知识点是解题的关键.15.已知249-+是完全平方式,则m=__________.x mx【答案】±1【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】∵249x mx-+是一个完全平方式,∴m=±1.故答案为±1.【点睛】本题主要考查的是完全平方式,熟练掌握完全平方式的特点是解题的关键.16.分解因式:223a 3b -=________.【答案】3(a+b )(a-b )【分析】先提公因式,再利用平方差公式进行二次分解即可.【详解】解:3a 2-3b 2=3(a 2-b 2)=3(a+b )(a-b ).故答案为:3(a+b )(a-b ).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.17.等腰三角形有一个角为30,则它的底边与它一腰上的高所在直线相交形成的锐角等于_____度.【答案】60或15.【分析】先分情况讨论30为顶角或者底角,再根据各情况利用三角形内角和定理求解即可.【详解】解:①当等腰ABC ∆底角30ABC BAC ∠=∠=︒时如下图:过B 作BD AC ⊥垂足为D∴90D ∠=︒∵在等腰ABC ∆中,30ABC BAC ∠=∠=︒∴在Rt ABD ∆中,9060DBA BAC =︒-=︒∠∠∴此时底边与它一腰上的高所在直线相交形成的锐角等于60︒.②当等腰ABC ∆顶角=30ACB ︒∠时如下图:过B 作BD AC ⊥垂足为D。
广东省深圳市名校2018-2019学年八上数学期末质量跟踪监视试题
广东省深圳市名校2018-2019学年八上数学期末质量跟踪监视试题一、选择题1.用A ,B 两个机器人搬运化工原料,A 机器人比B 机器人每小时多搬运30kg ,A 机器人搬运900kg 所用时间与B 机器人搬运600kg 所用时间相等,设A 机器人每小时搬运xkg 化工原料,那么可列方程( ) A.900x =6003x - B.9003x +=600xC.60030x +=900xD.9003x -=600x2.现在我们规定“☆”的意义是11a b a b =+☆,根据这个规则,()3212x +=☆的解为( ) A .1x =-B .1x =C .0x =D .14x =-3.汉语言文字博大精深,丰富细腻,易于表达.比如形容时间极短的词语有“一刹那”、“眨眼间”、“弹指一挥间”等.根据唐玄奘《大唐西域记》中记载,一刹那大约是0.013秒.将0.013用科学记数法表示应为( ) A .21.310-⨯B .31.310-⨯C .31310-⨯D .31.310⨯4.下列计算结果为6a 的是 A .82a a -B .122a a ÷C .32a a ⋅D .()32a5.下列计算正确的是( ) A.235(a )a = B.()222ab a b -= C.a(a −b)=22a b -D.()222a b ab2ab a b -÷=-6.下列运算正确的是( ) A .(x+2y )2=x 2+4y 2 B .(﹣2a 3)2=4a 6 C .﹣6a 2b 5+ab 2=﹣6ab 3D .2a 2•3a 3=6a 67.下列博物馆的标识中是轴对称图形的是( )A. B.C. D.8.等腰三角形的底边和腰长分别是10和12,则底边上的高是( )A .13B .8C .D 9.如图,△ABC 中,BC=a ,AC=b ,AB=c (b <c <a ),BC 的垂直平分线DG 交∠BAC 的角平分线AD 于点D ,DE ⊥AB 于E ,DF ⊥AC 于F ,则下列结论一定成立的是( )A .()12DG a b =+ B .CF c b =- C .()12BE a b =- D .()12AE b c =+ 10.如图,把一张长方形的纸片ABCD 沿EF 折叠,若∠AED′=40°,则∠DEF 的度数为( )A.40°B.50°C.60°D.70°11.数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图所示,∠1=∠2.若∠3=25°,为了使白球反弹后能将黑球直接撞入底袋中,那么击打白球时,必须保证∠1为( )A .65°B .75°C .55°D .85°12.如图,△ACB ≌△A′CB′,∠A′CB=50°,∠ACB′=100°,则∠ACA′的度数是( )A .30°B .25°C .20°D .40°13.如图,AB ∥CD ,BE ⊥EF 于E ,∠B=25°,则∠EFD 的度数是( )A .80B .65C .45D .3014.如图,小明书上的三角形被墨迹遮挡了一部分,测得两个角的度数为32°、74°,于是他很快判断这个三角形是( )A .等边三角形B .等腰三角形C .直角三角形D .钝角三角形15.如下表,以a ,b ,c 为边构成的5个三角形中,a ,b ,c 三边存在“两边的平方和等于第三边平方的2倍”关系的三角形是( )二、填空题16.如果代数式a 2-a-1=0,那么代数式2321()1a a a a a-⋅--的值为______.17.已知a+2b =2,a ﹣2b =12,则a 2﹣4b 2=_____. 【答案】118.如图,已知长方形ABCD 中,6AD =cm ,4AB =cm ,点E 为AD 的中点.若点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BC 上由点B 向点C 运动.若AEP ∆与BPQ 全等,则点Q 的运动速度是_________cm/s.19.如图,已知AB CD ∥,直线EF 分别交AB 、CD 于点A 、C ,CH 平分ACD ∠,点G 为CD 上一点,连接HA 、HG ,HC 平分AHG?∠,若AHG=42∠︒,HGD+EAB=180∠∠︒,则ACD ∠的度数是__________。
2018-2019学年广东省深圳中学八年级(上)期末数学试卷-解析版
【解析】
解:
由①,得x≥2,
由②,得x<3,
所以不等式组的解集是:2≤x<3.
不等式组的解集在数轴上表示为:
.
故选:A.
分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.
本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
三、计算题(本大题共1小题,共6.0分)
19.计算:
四、解答题(本大题共6小题,共48.0分)
20.解方程组:
21. 如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.
22.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:
②若△OPB是等腰三角形,请直接写出满足条件的t的值;
③若△QPB是直角三角形,请直接写出满足条件的t的值.
答案和解析
1.【答案】C
【解析】
解:A、0是有理数,所以A选项错误;
B、π不是有理数,是无理数,所以B选项错误;
C、4是有理数中的正整数,所以C选项正确;
D、 是一个无理数,所以选项D错误.
故选:C.
17.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为______°.
18. 如图,△ABC是边长为1的等边三角形,过点C的直线m平行AB,D、E分别是线段AB、直线m上的点,先按如图方式进行折叠,点A、C分别落在A′、C′处,且A′C′经过点B,DE为折痕,当C′E⊥m时, 的值为______.
2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
2018-2019学年广东省深圳实验学校坂田校区八年级(上)期末数学试卷
2018-2019学年广东省深圳实验学校坂田校区八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.4的算术平方根是()A. 2B. -2C. ±22.在π3.1416中,无理数的个数是()个.A. 2B. 4C. 5D. 63.点P(2,-5)关于x轴对称的点的坐标为()A. (-2,5)B. (2,5)C. (-2,-5)D. (2,-5)4.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()5.a+b的值为()A. -1B. 1C. 2D. 06.s2如下表所示:根据表中数据,要从中选一名成绩好又发挥稳定的运动员参赛,应该选择()A. 甲B. 乙C. 丙D. 丁7.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为()A. 65°B. 60°C. 55°D. 45°8.如图,已知:函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是()A. x>-5B. x>-2C. x>-3D. x<-29.如图,l1反映了某公司销售一种医疗器械的销售收入(万元)与销售量(台)之间的关系,l2反映了该公司销售该种医疗器械的销售成本(万元)与销售量(台)之间的关系.当销售收入大于销售成本时,该医疗器械才开始赢利.根据图象,则下列判断中错误的是()A. 当销售量为4台时,该公司赢利4万元B. 当销售量多于4台时,该公司才开始赢利C. 当销售量为2台时,该公司亏本1万元D. 当销售量为6台时,该公司赢利1万元10.如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是()A. 1.5B. 2C. 2.25D. 2.5二、填空题(本大题共6小题,共18.0分)11.x的取值范围是______.12.将直线y=3x沿x轴正方向向右平移2个单位,所得直线的解析式为y=______.13..14.已知△ABC中,有两边长分别为15和13,第三边上的高为12,则第三边长为______.15.关于x的不等式3x-2m<x-m的正整数解为1、2、3,则m取值范围是______.16.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于点D,下列四个结论:①BE=EF-CF;②∠BOC A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF,其中正确的结论是______.(填所有正确的序号)三、计算题(本大题共1小题,共6.0分)17.(1(2四、解答题(本大题共6小题,共48.0分)18.计算:(1)(×-1(2×19.某中学为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6个型号):根据以上信息,解答下列问题:(1)该班共有______名学生;(2)补全条形统计图;(3)该班学生所穿校服型号的众数为______,中位数为______;(4)如果该校预计招收新生1500名,根据样本数据,估计新生穿170型校服的学生大约有多少名?20.如图,直线l1:y1+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C,两条直线l1、l2相交于点D,连接AB.(1)求两直线l1、l2交点D的坐标;(2)求△ABD的面积.21.潮州绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等(1)求A、B两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),问该种植户共有几种租地方案?22.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“美丽三角形”,(1)如图△ABC中,AB=AC BC=2,求证:△ABC是“美丽三角形”;(2)在Rt△ABC中,∠C=90°,AC若△ABC是“美丽三角形”,求BC的长.23.如图,在平面直角坐标系中,直线l1的解析式为y=-x,直线l与l1交于点A(a,-a),与y轴交于点B(0,b),其中a,b满足(a+3)2.(1)求直线l2的解析式;(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP=S△AOB,请求出点P的坐标;(3)已知平行于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N 的下方,点Q为y轴上一动点,且△MNQ为等腰直角三角形,请求出满足条件的点Q的坐标.2018-2019学年广东省深圳实验学校坂田校区八年级(上)期末数学试卷答案和解析【答案】1. A2. A3. B4. C5. B6. A7. A8. B9. A10. B11. x≥412. y=3x-613. 293.814. 14或415. 6<m≤816. ①②③④17. 解:(1将①代入②,得:3x-(2x-3)=8,解得:x=5,将x=5代入①,得:y=7,(2)解不等式3x+4≥2x,得:x≥-4,,得:x≤3,则不等式组的解集为-4≤x≤3.解:(1)原式;(2)原式19. 50 165和170 17020. 解:(1)将A(0,6)代入y1+m得,m=6;将B(-2,0)代入y2=kx+1得,k故D点坐标为(4,3);(2)由y2x+1可知,C点坐标为(0,1),S△ABD=S△ABC+S△ACD5×5×4=15.21. 解:(1)设A、B两类蔬菜每亩平均收入分别是x元,y元.,答:A、B两类蔬菜每亩平均收入分别是3000元,3500元.(2)设用来种植A类蔬菜的面积a亩,则用来种植B类蔬菜的面积为(20-a)亩.解得:10<a≤14.∵a取整数为:11、12、13、14.∴租地方案有4种.22. (1)证明:过点A作AD⊥BC于D,∵AB=AC,AD⊥BC,∴BD=1,由勾股定理得,AD,∴AD=BC,即△ABC是“美丽三角形”;(2)解:当AC边上的中线BD等于AC时,如图2,BC,当BC边上的中线AE等于BC时,AC2=AE2-CE2,即BC2-)2=(2,解得,BC=4,综上所述,BC=3或BC=4.23. 解:(1)由(a+3)2,得a=-3,b=4,即A(-3,3),B(0,4),设l2的解析式为y=kx+b,将A,B点坐标代入函数解析式,得l2的解析式为y+4;(2)如图1,作PB∥AO,P到AO的距离等于B到AO的距离,S△AOP=S△AOB.∵PB∥AO,PB过B点(0,4),∴PB的解析式为y=-x+4或y=-x-4,又P在直线y=5上,联立PB及直线y=5,得-x+4=5或-x-4=5,解得x=-1或-9,∴P点坐标为(-1,5)或(-9,5);(3)设M点的坐标为(a,-a),N(a+4),∵点M在点N的下方,∴MN+4-(-a),如图2,当∠NMQ=90°时,即MQ∥x轴,NM=MQ a,解得a M(∴Q(0如图3,当∠MNQ=90°时,即NQ∥x轴,NM=NQ a,解得a N(∴Q(0,如图4,当∠MQN=90°时,即NM∥y轴,MQ=NQ+2=-a,解得a∴Q(0,综上所述:Q点的坐标为(000【解析】1. 解:∵2的平方为4,∴4的算术平方根为2.故选:A.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2. 解:在所列实数中,无理数有π,2个数,故选:A.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3. 解:∵点P(2,-5)关于x轴对称,∴对称点的坐标为:(2,5).故选:B.根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案.此题主要考查了关于x轴对称点的坐标性质,正确记忆坐标变化规律是解题关键.4. 解:∵点P(x-4,x+3)在平面直角坐标系的第二象限内,解得:-3<x<4,故选:C.根据点的位置得出不等式组,求出不等式组的解集,即可得出选项.本题考查了解一元一次不等式组、在数轴上表示不等式组的解集和点的坐标等知识点,能求出不等式组的解集是解此题的关键.5.①+②,得:7(a+b)=7,则a+b=1.故选:B.得到一个关于a,b的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b的值.此题主要考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.理解定义是关键.6. 解:∵丙和丁的平均数最小,∴从甲和乙中选择一人参加比赛,∵甲的方差最小,∴选择甲参赛;故选:A.首先比较平均数,平均数相同时选择方差较小的运动员参加.此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7. 解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选:A.根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.8. 解:∵函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是x>-2,故选:B.根据一次函数的图象和两函数的交点坐标即可得出答案.本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.9. 解:A、当销售量为4台时,该公司赢利0万元,错误;B、当销售量多于4台时,该公司才开始赢利,正确;C、当销售量为2台时,该公司亏本1万元,正确;D、当销售量为6台时,该公司赢利1万元,正确;故选:A.利用图象交点得出公司盈利以及公司亏损情况.此题主要考查了一次函数的应用,熟练利用数形结合得出是解题关键.10. 解:设AM=x,连接BM,MB′,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2,故选:B.连接BM,MB′,由于CB′=3,则DB′=6,在Rt△ABM和Rt△MDB′中由勾股定理求得AM的值.本题考查了翻折的性质,对应边相等,利用了勾股定理建立方程求解.11. 解:由题意,得x-4≥0,解得x≥4.故答案为:x≥4.根据被开方数是非负数,可得答案.a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12. 解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x-2)=3x-6.故答案为:y=3x-6.根据平移性质可由已知的解析式写出新的解析式.此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx 上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.×100=2.938×100=293.8.故答案为:293.8.,再代入计算即可求解.考查了立方根,关键是将变形为10014. 解:①第三边上的高在三角形内部;如图所示,AB=15,AC=13,AD=12,∵AD是高,∴△ABD、△ACD是直角三角形,∴BD,同理可求CD=5,∴BC=BD+CD=14;②第三边上的高在三角形外部;如右图所示,AB=15,AC=13,AD=12,∵AD是高,∴△ABD、△ACD是直角三角形,∴BD,同理可求CD=5,∴BC=BD-CD=9-5=4.综上所述,第三边的长度为14或4.故答案是:14或4.此题考虑两种情况:①第三边上的高在三角形内部;②第三边上的高在三角形外部,分别利用勾股定理结合图形进行计算即可.本题考查了勾股定理,解题的关键是分情况讨论.15. 解:解不等式得:x∵不等式的正整数解为1、2、3,∴3解得:6<m≤8,故答案为6<m≤8.先表示出不等式3x-2m<x-m的解集,再由正整数解为1、2、3,可得出3,解出即可.本题考查了一元一次不等式的整数解,解答本题的关键是得出关于m的不等式.16. 解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC ABC,∠OCB ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°A,∴∠BOC=180°-(∠OBC+∠OCB)A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,即BE=EF-CF.故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF•OM•OD•(AE+AF);故④正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故答案为①②③④.由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②∠BOC A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出BE=EF-CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD=m,AE+AF=n,则S△AEF,故④正确.此题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.17. (1)利用代入消元法求解可得;(2)分别求出每个不等式的解集,再依据大小小大中间找确定不等式组的解集即可得.本题考查的是解二元一次方程组和一元一次不等式组,熟知解二元一次方程组的加减消元法和代入消元法和解一元一次不等式组是解答此题的关键.18. (1)先进行二次根式的乘法运算,再利用绝对值的意义和负整数指数幂的意义计算,然后合并即可;(2)先进行二次根式的乘法运算,然后把二次根式化为最简二次根式后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19. 解:(1)该班共有的学生数为15÷30%=50(人),故答案为:50;(2)175型的人数为50×20%=10(人),则185型的人数为50-3-15-10-5-5=12,(3)该班学生所穿校服型号的众数为165和170,中位数为170;故答案为:165和170,170;(4)1500×(人),所以估计新生穿170型校服的学生大约450名.(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数;(2)求出175、185型的人数,然后补全统计图即可;(3)根据众数的定义以及中位数的定义解答;(4)总人数乘以样本中穿170型校服的学生所占比例可得.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了平均数、中位数、众数的认识.20. (1)将A(0,6)代入y1+m,即可求出m的值,将B(-2,0)代入y2=kx+1即可求出k的值,得到两函数的解析式,组成方程组解求出D的坐标;(2)由y2+1可知,C点坐标为(0,1),分别求出△ABC和△ACD的面积,相加即可.本题考查了两条直线相交或平行的问题,主要是理解一次函数图象上点的坐标特征.21. (1)根据等量关系:甲种植户总收入为12500元,乙种植户总收入为16500元,列出方程组求解即可;(2)根据总收入不低于63000元,种植A类蔬菜的面积多于种植B类蔬菜的面积列出不等式组求解即可.考查了二元一次方程组的应用和一元一次不等式组的应用,读懂统计表,能够从统计表中获得正确信息,及熟练解方程组和不等式组是解题的关键.22. (1)过点A作AD⊥BC于D,根据等腰三角形的性质求出BD,根据勾股定理求出AD,根据“美丽三角形”的定义证明;(2)分AC边上的中线BD等于AC,BC边上的中线AE等于BC两种情况,根据勾股定理计算.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.23. (1)根据非负数的性质,可得a,b,根据待定系数法,可得函数解析式;(2)根据平行线间的距离相等,可得Q到AO的距离等于B到AO的距离,根据等底等高的三角形的面积相等,可得S△AOP=S△AOB,根据解方程组,可得P点坐标;(3)根据等腰直角三角形的性质,可得关于a的方程,根据解方程,可得a,根据平行于x轴直线上点的纵坐标相等,可得答案.本题考查了一次函数综合题,解(1)的关键是利用非负数的性质得出a,b的值,又利用了待定系数法;解(2)的关键是利用等底等高的三角形的面积相等得出P在过B点且平行AO的直线上;解(3)的关键是利用等腰直角三角形的性质得出关于a的方程,要分类讨论,以防遗漏.。
深圳深圳实验学校八年级上册期末数学模拟试卷及答案
深圳深圳实验学校八年级上册期末数学模拟试卷及答案一、选择题1.下列各式从左到右的变形中,属于因式分解的是( )A .4a+4b+3=4(a+b )+3B .(a+b )(a ﹣b )=a 2﹣b 2C .10a 2b ﹣2ab =2ab (5a ﹣1)D .a 2+b 2=(a+b )2﹣2ab 2.下列叙述中错误的是( )A .能够完全重合的图形称为全等图形B .全等图形的形状和大小都相同C .所有正方形都是全等图形D .形状和大小都相同的两个图形是全等图形3.下列计算结果正确的是( )A .3x+2x =5x 2B .(﹣a 3b )2=a 6b 2C .﹣m 2•m 4=m 6D .(a 3)3=a 6 4.下列各式中,没有公因式的是( )A .3x ﹣2与6x 2﹣4xB .ab ﹣ac 与ab ﹣bcC .2(a ﹣b )2与3(b ﹣a )3D .mx ﹣my 与ny ﹣nx 5.下列变形是分解因式的是( )A .22632x y xy xy =B .22244(2)a ab b a b -+=-C .2(2)(1)32x x x x ++=++D .296(3)(3)6x x x x x --=+-- 6.下列各式从左到右的变形中,是因式分解的是( ) A .3x +2x ﹣1=5x ﹣1B .(3a +2b )(3a ﹣2b )=9a 2﹣4b 2C .x 2+x=x 2(1+1x) D .2x 2﹣8y 2=2(x +2y )(x ﹣2y ) 7.当x 分别取值12019,12018,12017,⋯,12,1,2,⋯,2017,2018,2019时,计算代数式22122x x -+的值,将所得结果相加,其和等于( ) A .1 B .20192 C .1009 D .08.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x |=2,则x =2;④同旁内角的平分线互相垂直.其中真命题的个数为( )A .1个B .2个C .3个D .4个 9.有下列长度的三条线段,能组成三角形的是( )A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm 10.在平面直角坐标系xOy 中,点A(0,a),B(b ,12-b),C(2a -3,0),0<a <b <12,若OB 平分∠AOC,且AB =BC ,则a +b 的值为( )A .9或12B .9或11C .10或11D .10或12二、填空题11.如图,把一张纸条先沿EF 折叠至图①,再沿EI 折叠至图②,把图②标上字母得到图③,若最后纸条的一边EL 与AB 重合,如果∠HIK ﹣∠GEA =12∠EFH ,则∠IEB 的度数为__.12.已知直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为___________.13.若关于x 的分式方程322x m x x -=--有正数解,则m 的取值范围是______________.14.已知∠AOB=60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过D 作直线DE ⊥OA ,垂足为点E ,且直线DE 交OB 于点F ,如图所示,若DE=4,则DF=___.15.等腰三角形中,两条边长分别为4cm 和5cm ,则此三角形的周长为 ____cm .16.如图在△ABC 中,BC =8,AB 、AC 的垂直平分线与BC 分别交于E 、F 两点,则△AEF 的周长为____________.17.如图,Rt △ABC 的斜边AB 的中垂线MN 与AC 交于点M ,∠A=15°,BM=2,则△AMB 的面积为______.18.如图,在Rt ABC 中,90C ∠=︒,30A ∠=︒,6AB =,BD 是ABC 的角平分线,点P ,点N 分别是BD ,AC 边上的动点,点M 在BC 上,且1BM =,则PM PN +的最小值为___________.19.计算:201(1)3π-⎛⎫+-= ⎪⎝⎭____________. 20.如图,已知AB=AC ,∠A=36°,AB 的中垂线MN 交AC 于点D,交AB 于点M ,CE 平分∠ACB ,交BD 于点E.下列结论:①BD 是∠ABC 的角平分线;②ΔBCD 是等腰三角形;③BE=CD ;④ΔAMD ≌ΔBCD ;⑤图中的等腰三角形有5个.其中正确的结论是___.(填序号)三、解答题21.如图所示,△ABC 中,AB =AC ,E 在AC 上,D 在BA 的延长线上,且AD =AE ,连接DE .求证:DE ⊥BC .22.如图,在ABC ∆和DEF ∆中,B 、E 、C 、F 在同一直线上,下面有四个条件:①AB DE =;②AC DF =;③//AB DE ;④BE CF =.请你从中选三个作为题设,余下的一个作为结论,写出一个真命题,并加以证明.解:我写的真命题是:已知:____________________________________________;求证:___________.(注:不能只填序号)证明如下:23.已知ABC ,80ABC ∠=︒,点E 在BC 边上,点D 是射线AB 上的 一个动点,将ABD △沿DE 折叠,使点B 落在点B '处,(1)如图1,若125ADB '∠=︒,求CEB '∠的度数;(2)如图2,试探究ADB '∠与CEB '∠的数量关系,并说明理由;(3)连接CB ',当//CB AB '时,直接写出CB E ∠'与ADB '∠的数量关系为 .24.先化简:2222421121m m m m m m m ---÷+--+,其中m 从0,1,2中选一个恰当的数求值. 25.先化简221211111a a a a a a ⎛⎫-+-+÷ ⎪++-⎝⎭,再选择一恰当的a 的值代入求值. 26.如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,延长AE 交BC 的延长线于点F .(1)求证:△DAE ≌△CFE ;(2)若AB =BC +AD ,求证:BE ⊥AF .27.如图,在ABC 中,点D 为BC 上一点,过点D 作DE AB ⊥于点,E DF AC ⊥于点F .连接EF .(1)若,3,5BAD DAC DE AC ∠=∠==,求ADC 的面积;(2)若DF AF =,求证:2AE DE EF +=.28.先化简,再求值:2221a a b a b--+,其中6a =,02b =. 29.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E, ∠A=35°, ∠D=50°,求∠ACD 的度数.30.(1)如图,ABC 中,点D 、E 在边BC 上,AD 平分BAC ∠,AE BC ⊥,35B ∠=︒,65C =︒∠,求DAE ∠的度数;(2)如图,若把(1)中的条件“AE BC ⊥”变成“F 为DA 延长线上一点,FE BC ⊥”,其它条件不变,求DFE ∠的度数;(3)若把(1)中的条件“AE BC ⊥”变成“F 为AD 延长线上一点,FE BC ⊥”,其它条件不变,请画出相应的图形,并求出DFE ∠的度数;(4)结合上述三个问题的解决过程,你能得到什么结论?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.【详解】解:A.4a+4b+3=4(a+b)+3,没把一个多项式转化成几个整式积的形式,故本选项不合题意;B.(a+b)(a﹣b)=a2﹣b2,为乘法运算,故本选项不合题意;C.10a2b﹣2ab=2ab(5a﹣1),属于因式分解,故本选项符合题意;D.a2+b2=(a+b)2﹣2ab,没把一个多项式转化成几个整式积的形式,故本选项不合题意.故选:C.【点睛】本题考查因式分解的意义,解题关键是熟练掌握把多项式转化成几个整式积的形式.2.C解析:C【解析】解:A.能够重合的图形称为全等图形,说法正确,故本选项错误;B.全等图形的形状和大小都相同,说法正确,故本选项错误;C.所有正方形不一定都是全等图形,说法错误,故本选项正确;D.形状和大小都相同的两个图形是全等图形,说法正确,故本选项错误;故选C.3.B解析:B【解析】【分析】根据合并同类项法则、积的乘方、同底数幂的乘法、幂的乘方分别计算,逐项判断即可求解.【详解】解:A、3x+2x=5x,故原题计算错误;B、(﹣a3b)2=a6b2,故原题计算正确;C、﹣m2•m4=﹣m6,故原题计算错误;D、(a3)3=a9,故原题计算错误.故选:B.【点睛】本题考查了合并同类项、积的乘方、同底数幂的乘法、幂的乘方等知识,熟知相关运算法则是解题关键.4.B解析:B【解析】【分析】根据公因式的定义逐一分析即可.【详解】解:A、6x2﹣4x=2x(3x﹣2),3x﹣2与6x2﹣4x有公因式(3x﹣2),故本选项不符合题意;B、ab﹣ac=a(b﹣c)与ab﹣bc=b(a﹣c)没有公因式,故本选项符合题意;C、2(a﹣b)2与3(b﹣a)3有公因式(a﹣b)2,故本选项不符合题意;D、mx﹣my=m(x﹣y),ny﹣nx=﹣n(x﹣y),mx﹣my与ny﹣nx有公因式(x﹣y),故本选项不符合题意.故选:B.【点睛】本题考查了公因式,熟悉因式分解是解题的关键.5.B解析:B【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】C和D不是积的形式,应排除;A中,不是对多项式的变形,应排除.故选B.【点睛】考查了因式分解的定义,关键在于能否正确应用分解因式的定义来判断.6.D解析:D【解析】A. 没把一个多项式转化成几个整式积的形式,故A错误;B. 是整式的乘法,故B错误;C. 没把一个多项式转化成几个整式积的形式,故C错误;D. 把一个多项式转化成几个整式积的形式,故D正确;故选D.7.D解析:D【解析】【分析】先把x=n和1x=n代入代数式,并对代数式化简求值,得到它们的和为0,然后把x=1代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.【详解】解:设22x-1f(x)=2x+2,将x=n和1x=n代入代数式,222222221()-11n-1n-11-nnf(n)f()===01n2n+22n+22n+22()+2n+++,∴111f()+f()+f()+f(2)+f(2018)+f(2019)=0 201920182…+?+,则原式=221-1f(1)==02+2,故选:D.【点睛】本题考查的是代数式的求值,本题的x的取值较多,并且除x=1外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为0,原式即为x=1代入代数式后的值.8.B解析:B【解析】【分析】根据四边形内角和、直角三角形性质和绝对值性质判断即可;【详解】解:①四边形的内角和和外角和都是360°,∴四边形的内角和等于外角和,是真命题;②有两个角互余的三角形是直角三角形,是真命题;③若|x|=2,则x=±2,本说法是假命题;④两直线平行时,同旁内角的平分线互相垂直,本说法是假命题;故选:B.【点睛】本题主要考查了四边形的内角和、直角三角形两锐角互余、绝对值的性质和平行线的知识点,准确分析是解题的关键.9.A解析:A【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A、2+3>4,能围成三角形;B、1+2<4,所以不能围成三角形;C、1+2=3,不能围成三角形;D、2+3<6,所以不能围成三角形;故选:A.【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.B解析:B【解析】【分析】由OB平分∠AOC可知,B点的横坐标和纵坐标数值相同,再根据AB=BC分情况讨论即可.【详解】∵OB平分∠AOC∴B点的横坐标和纵坐标数值相同即b=12-b解得,b=6因为AB=BC可分情况讨论,若OA=OC,如图所示则△OAB≌△OCBa=2a-3解得,a=3此时,0<a<b<12,故a+b=3+6=9②若OA>OC,如图所示过点B分别作x轴,y轴的垂线,垂足分别为点D,点E 因为B点的横纵坐标数值相同,所以BD=BE∵AB=BC,∴Rt△ADB≌Rt△CEB∴AD=CE∴a-6=6-(2a-3)解得,a=5此时,不满足OA>OC,故此种情况不存在③若OC>OA,如图所示,过点B分别作x轴,y轴的垂线,垂足分别为点D,点E 因为B点的横纵坐标数值相同,所以BD=BE∵AB=BC,∴Rt△ADB≌Rt△CEB∴AD=CE6-a=2a-3-6解得,a=5此时,0<a<b<12,故a+b=5+6=11综上,a+b=9或11【点睛】本题考查角平分线的性质和代数式的应用.二、填空题11.50°【解析】【分析】设∠IEB=x,∠EFH=y,由折叠的性质及平行线的性质得出x+y=90°①,由题意得出4x+y=240°②,由①、②组成方程组,解方程组即可得出答案.【详解】解:设解析:50°【解析】【分析】设∠IEB=x,∠EFH=y,由折叠的性质及平行线的性质得出x+y=90°①,由题意得出4x+y =240°②,由①、②组成方程组,解方程组即可得出答案.【详解】解:设∠IEB=x,∠EFH=y,由折叠可知∠GEI=∠IEB=x,∵IK∥BE,∴∠HIK=∠HJB,∵HJ∥GE,∴∠HJB=∠GEB=2x,由图①可知∠AEF+∠EFC=180°,∠AEF=∠GEF,∵AB∥CD,∴∠EFC=∠JEF=y,∴2x+y+y=180°,即x+y=90°①,∵∠HIK﹣∠GEA=12∠EFH,∴2x﹣[360°﹣2(2x+y)]=12y,整理得4x+y=240°②,由①②可得90 4240x yx y+=︒⎧⎨+=︒⎩,解得5040xy=︒⎧⎨=︒⎩,∴∠IEB=50°.故答案为:50°.【点睛】本题主要考查了与平行线有关的折叠问题,准确根据题意列出方程组是解题的关键.12.40°【解析】【分析】如图,过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质和三角形的内角和定理即可求得答案.【详解】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,解析:40°【解析】【分析】如图,过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质和三角形的内角和定理即可求得答案.【详解】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=180°-90°-30°=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°.故答案为:40°.本题以三角板为载体,主要考查了平行线的性质和三角形的内角和定理,正确添加辅助线、熟练掌握平行线的性质是解题的关键.13.且【解析】【分析】分式方程去分母转化为整式方程,由分式方程有正数解,即可确定出m 的范围.【详解】解:去分母得:x-3(x-2)=m ,解得:x=,∵分式方程有一正数解,∴>0,且≠2,解析:m 6<且m 2≠【解析】【分析】分式方程去分母转化为整式方程,由分式方程有正数解,即可确定出m 的范围.【详解】解:去分母得:x -3(x -2)=m ,解得:x =62m -, ∵分式方程有一正数解, ∴62m ->0,且62m -≠2, 解得:m <6且m ≠2,故答案为:m <6且m ≠2.【点睛】此题考查了分式方程的解,始终注意分母不为0这个条件.14.8【解析】【分析】根据角平分线求出,在的中易求和的长,同理在求出的长,即可得出答案.【详解】,OC 是∠AOB 的平分线在中,故答案为:8.【点睛】本题考查角平分线的解析:8【解析】【分析】根据角平分线求出30EOD FOD ∠=∠=︒,在30的Rt EOD 中易求OD 和OE 的长,同理在Rt EOF 求出EF 的长,即可得出答案.【详解】60AOB ∠=︒,OC 是∠AOB 的平分线30EOD FOD ∴∠=∠=︒在Rt EOD 中,30,4EOD DE ∠=︒=8,OD OE ∴===在Rt EOF 中,60EOF OE ∠=︒=,30,EFO OF ∴∠=︒=12EF ∴=1248DF EF DE ∴=-=-=故答案为:8.【点睛】本题考查角平分线的定义、含30的直角三角形的解法,掌握30直角三角形的特征是解题关键.15.13或14【解析】【分析】分是腰长和是腰长两种情况,再根据等腰三角形的定义可得出此三角形的三边长,然后根据三角形的周长公式即可得.【详解】由题意,分以下两种情况:(1)当是腰长时,此三角解析:13或14【解析】分4cm 是腰长和5cm 是腰长两种情况,再根据等腰三角形的定义可得出此三角形的三边长,然后根据三角形的周长公式即可得.【详解】由题意,分以下两种情况:(1)当4cm 是腰长时,此三角形的三边长分别为4,4,5cm cm cm ,满足三角形的三边关系定理,能组成三角形,则此三角形的周长为44513()cm ++=;(2)当5cm 是腰长时,此三角形的三边长分别为4,5,5cm cm cm ,满足三角形的三边关系定理,能组成三角形,则此三角形的周长为45514()cm ++=;综上,此三角形的周长为13cm 或14cm ,故答案为:13或14.【点睛】本题考查了等腰三角形的定义,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.16.8【解析】【分析】根据线段的垂直平分线的性质得到EA=EB ,FA=FC ,根据三角形的周长公式计算即可.【详解】∵AB 的中垂线交BC 于E ,AC 的中垂线交BC 于F ,∴EA=EB,FA=FC ,解析:8【解析】【分析】根据线段的垂直平分线的性质得到EA=EB ,FA=FC ,根据三角形的周长公式计算即可.【详解】∵AB 的中垂线交BC 于E ,AC 的中垂线交BC 于F ,∴EA=EB ,FA=FC ,则△AEF 的周长=AE+EF+AF=BE+EF+FC=BC=8,故答案为:8.【点睛】本题主要考查了线段的垂直平分线的性质.线段的垂直平分线上的点到线段的两个端点的距离相等.17.1【分析】【详解】解:∵Rt△ABC 的斜边AB 的中垂线MN 与AC 交于点M ,∠A=15°,BM=2, ∴AM=BM=2,∠ABM=∠A=15°,∴∠BMC=∠A+∠ABM=30°,解析:1【解析】【分析】【详解】解:∵Rt △ABC 的斜边AB 的中垂线MN 与AC 交于点M ,∠A=15°,BM=2,∴AM=BM=2,∠ABM=∠A=15°,∴∠BMC=∠A+∠ABM=30°,∴BC=12BM=12×2=1, ∴S △AMB =12AM•BC=12×2×1=1. 故答案为:1.考点:1.线段垂直平分线的性质2.等腰三角形的判定与性质18..【解析】【分析】作点关于的对称点,连接,则,,当,,在同一直线上,且时,的最小值等于垂线段的长,利用含角的直角三角形的性质,即可得到的最小值.【详解】解:如图所示,作点关于的对称点,连接 解析:52. 【解析】【分析】作点M 关于BD 的对称点M ',连接PM ',则PM PM '=,1BM BM ,当N ,P ,M '在同一直线上,且M N AC 时,PN PM 的最小值等于垂线段M N '的长,利用含30角的直角三角形的性质,即可得到PM PN +的最小值.【详解】 解:如图所示,作点M 关于BD 的对称点M ',连接PM ',则PM PM '=,1BM BM ,PN PM PN PM ,当N ,P ,M '在同一直线上,且M N AC 时,PN PM 的最小值等于垂线段M N '的长,此时,Rt △AM N 中,30A ∠=︒, 115(61)222M N AM , PM PN ∴+的最小值为52, 故答案为:52.【点睛】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.19.10【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.解析:10【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.20.①②③⑤【解析】【分析】首先由AB 的中垂线MD 交AC 于点D 、交AB 于点M ,求得△ABD 是等腰三角形,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC与∠C的度数,则可求得所有角的度数,解析:①②③⑤【解析】【分析】首先由AB的中垂线MD交AC于点D、交AB于点M,求得△ABD是等腰三角形,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC与∠C的度数,则可求得所有角的度数,进而得出BD是∠ABC的角平分线,可得△BCD也是等腰三角形,BE=CE,ΔBCD是等腰三角形,ΔAMD为直角三角形,故这两个三角形不可能全等,由角的度数即可得图中的等腰三角形.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°又∵CE平分∠ACB,∴∠DCE=∠BCE=36°又∵AB的中垂线MN交AC于点D,交AB于点M,∴∠AMD=∠BMD=90°,AD=BD,∴∠ABD=∠BAD=36°,∠ADB=108°,又∵∠ADB=∠ACB+∠DBC=108°∴∠DBC=36°∠ABD=∠DBC,∴BD是∠ABC的角平分线,故①结论正确.∠BDC=72°=∠ACB,∴ΔBCD是等腰三角形,故②结论正确.∵∠DBC=∠ECB=36°∴△BEC为等腰三角形,∴BE=CE又∵∠BDC=∠CED=72°∴△DCE为等腰三角形,∴CD=CE∴BE=CD故③结论正确.∵ΔBCD是等腰三角形,ΔAMD为直角三角形∴这两个三角形不可能全等,故④结论错误.图中△ABC、△ADB、△BCD、△BEC、△DCE都为等腰三角形,故⑤结论正确.故本题正确的结论是①②③⑤.【点睛】此题主要考查等腰三角形的性质,熟练掌握,再利用等角转换,即可解题.三、解答题21.见解析.【解析】【分析】过A作AM⊥BC于M,根据等腰三角形三线合一的性质得出∠BAC=2∠BAM,由三角形外角的性质及等边对等角的性质得出∠BAC=2∠D,则∠BAM=∠D,根据平行线的判定得出DE∥AM,进而得到DE⊥BC.【详解】证明:如图,过A作AM⊥BC于M,∵AB=AC,∴∠BAC=2∠BAM,∵AD=AE,∴∠D=∠AED,∴∠BAC=∠D+∠AED=2∠D,∴∠BAC=2∠BAM=2∠D,∴∠BAM=∠D,∴DE∥AM,∵AM⊥BC,∴DE⊥BC.【点睛】考查了等腰三角形的性质,三角形外角的性质,平行线的判定等知识,难度适中.准确作出辅助线是解题的关键.22.已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:AB∥DE.证明见解析.或已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AB∥DE,BE=CF.求证:AC=DF.证明见解析.【解析】【分析】由BE=CF⇒BC=EF,所以,由①②④,可用SSS⇒△ABC≌△DEF⇒∠ABC=∠DEF⇒ AB∥DE;由①③④,可用SAS ⇒△ABC ≌△DEF ⇒AC=DF ;由于不存在ASS 的证明全等三角形的方法,故由其它三个条件不能得到1或4.【详解】解:将①②④作为题设,③作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AC=DF ,BE=CF . 求证:AB ∥DE .证明:在△ABC 和△DEF 中,∵BE=CF ,∴BC=EF.又∵AB=DE ,AC=DF ,∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF .∴ AB ∥DE.将①③④作为题设,②作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AB ∥DE ,BE=CF . 求证:AC=DF .证明:∵AB ∥DE,∴∠ABC=∠DEF.在△ABC 和△DEF 中∵BE=CF ,∴BC=EF.又∵AB=DE ,∠ABC=∠DEF ,∴△ABC ≌△DEF (SAS ),∴AC=DF .【点睛】本题考查命题与定理、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.23.(1)35CEB '∠=︒;(2)20ADB CEB ''∠=∠-︒,理由见解析;(3)①当点D 在边AB 上时,80CB E ADB ''∠=∠-︒,②当点D 在AB 的延长线上时,80CB E ADB ''∠+∠=︒;【解析】【分析】(1)利用四边形内角和求出∠BEB′的值,进而可求出CEB '∠的度数;(2)方法类似(1);(3)分两种情形:如图1-1中,当点D 线段AB 上时,结论:∠CB′E +80°=∠ADB′;如图2中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.分别利用平行线的性质证明即可.【详解】解:(1)如图1中由翻折的性质可知,∠DBE=∠DB′E=80°,∵∠ADB′=125°,∴∠BDB′=180°-125°=55°,∵∠BEB′+∠BDB′+∠DBE+∠DB′E=360°,∴∠BEB′=360°-55°-80°-80°=145°,∴∠CEB′=180°-145°=35°.(2)结论:∠ADB′=∠CEB′-20°.理由:如图2中,∵80ABC ∠=︒,∴B′=CBD=180°-80°=100°,∵∠ADB′+∠BEB′=360°-2×100°=160°,∴∠ADB′=160°-∠BEB′,∵∠BEB′=180°-∠CEB′,∴∠ADB′=∠CEB′-20°.(3)如图1-1中,当点D 线段AB 上时,结论:∠CB′E+80°=∠ADB′理由:连接CB′.∵CB′//AB ,∴∠ADB′=∠CB′D ,由翻折可知,∠B=∠DB′E=80°,∴∠CB′E+80°=∠CB′D=∠ADB′.如图2-1中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.由:连接CB′.∵CB′//AD ,∴∠ADB′+∠DB′C=180°,∵∠ABC=80°,∴∠DBE=∠DB′E=100°,∴∠CB′E+100°+∠ADB′=180°,∴∠CB′E+∠ADB′=80°.综上所述,∠CB'E 与∠ADB'的数量关系为∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°. 故答案为:∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°.【点睛】本题考查翻折变换,多边形内角和定理,平行线的性质,以及分类讨论等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.21m +,2 【解析】【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把0m =代入计算即可求出值.【详解】 解:2222421121m m m m m m m ---÷+--+ 222(2)(1)1(1)(1)2m m m m m m m --=-⋅++-- 21m =+ 因为m+10≠ ,m-10≠,m-20≠所以m 1≠- ,m 1≠,m 2≠当0m =时,原式2=.【点睛】此题考查了解分式方程,以及分式的化简求值,熟练掌握运算法则是解本题的关键.25.1a a -;a =0时,原式=0 【解析】【分析】根据分式的运算法则即可求出答案.【详解】解:原式=(11a ++11a a -+)•11a a +- =1a a +•11a a +- =1a a - ∵2101010a a a +≠⎧⎪-≠⎨⎪-≠⎩, ∴a ≠±1,∴把a =0代入得:原式=0.【点睛】本题考查了分式的运算,解题的关键是运用分式的运算法则,本题属于基础题型.26.(1)见解析;(2)见解析【解析】【分析】(1)根据AD ∥BC 可知∠ADC=∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ; (2)由(1)知△ADE ≌△FCE ,得到AE=EF ,AD=CF ,由于AB=BC+AD ,等量代换得到AB=BC+CF ,即AB=BF ,证得△ABE ≌△FBE ,即可得到结论.【详解】证明:(1)∵AD ∥BC (已知),∴∠ADC =∠ECF (两直线平行,内错角相等),∵E 是CD 的中点(已知),∴DE =EC (中点的定义).∵在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)由(1)知△ADE ≌△FCE ,∴AE =EF ,AD =CF ,∵AB =BC +AD ,∴AB =BC +CF ,即AB =BF ,在△ABE 与△FBE 中,AB BF AE EF BE BE =⎧⎪=⎨⎪=⎩, ∴△ABE ≌△FBE (SSS ),∴∠AEB =∠FEB =90°,∴BE ⊥AF .【点睛】主要考查了平行线的性质,全等三角形的判定与性质,等腰三角形的“三线合一”的性质.27.(1)152;(2)证明见解析. 【解析】【分析】(1)由题意易得AD 为BAC ∠的角平分线,DEDF =,然后根据三角形面积计算公式可求解;(2)延长EA 到点G ,使AG DE =,连接FG ,则有360AED EDF DFA FAE∠+∠+∠+∠=︒,进而得到EDF GAF∠=∠,故EDF GAF∆∆≌,然后根据全等三角形的性质及等腰三角形可进行求解.【详解】(1)解:BAD DAC∠=∠∴AD为BAC∠的角平分线,DE AB DF AC⊥⊥∴DE DF=∴11115532222ADCS AC DF AC DE∆=⨯=⨯=⨯⨯=;(2)证明:延长EA到点G,使AG DE=,连接FG,在四边形AEDF中,360AED EDF DFA FAE∠+∠+∠+∠=︒,90AED∠=︒,90DAF∠=︒,∴180EDF FAE∠+∠=︒,180GAF FAE∠+∠=︒,∴EDF GAF∠=∠,在EDF∆和GAF∆中,DE AGDF AFEDF GAF=⎧⎪=⎨⎪∠=∠⎩,∴EDF GAF∆∆≌,∴,13EF GF=∠=∠,1290∠+∠=︒,∴3290∠+∠=︒,∴90EFG∠=︒,∴GAF∆是等腰三角形,∴2EG EF=,,EG EA AG AG DE=+=,∴EG AE DE=+,∴2AE DE EF+=.【点睛】本题主要考查等腰三角形的性质与判定及全等三角形的判定与性质,关键是根据全等三角形的判定与性质及直角三角形的性质得到角、线段的等量关系,然后利用等腰三角形的性质求解即可.28.1a b -,15【解析】【分析】对原式分母平方差公式变形后通分、约分化简原式,再代值求解即可.【详解】解:原式2()()()()a ab a b a b a b a b -=-+-+-, 1()()a b a b a b a b+==+--, 当6a =,021b ==时,原式11615==-. 【点睛】 本题考查了分式的化简求值、异分母的分式加减法,借助平方差公式变形找最简公分母是解答的关键.29.83°.【解析】试题分析:由DF ⊥AB ,在Rt △BDF 中可求得∠B ;再由∠ACD=∠A+∠B 可求得. 试题解析:∵DF ⊥AB ,∴∠B+∠D=90°,∴∠B=90°-∠D=90°-42°=48°,∴∠ACD=∠A+∠B=35°+48°=83°.30.(1)15DAE ∠=︒;(2)15DFE ∠=︒(3)15DFE ∠=︒;(4)见解析【解析】【分析】(1)关键角平分线的性质和三角形内角和的性质求角度;(2)作AH BC ⊥于H ,由(1)的结论和平行的性质得到DFE DAH ∠=∠; (3)作AH BC ⊥于H ,由(1)的结论和平行的性质得到DFE DAH ∠=∠.【详解】解:(1)180180356580BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 平分BAC ∠,∴40BAD BAC ∠=∠=︒,∵AE BC ⊥,∴90AEB =︒∠, ∴9055BAE B ∠=︒-∠=︒,∴554015DAE BAE BAD ∠=∠∠=︒-︒=︒-;(2)作AH BC ⊥于H ,如图,有(1)得15DAH ∠=︒,∵FE BC ⊥.∴//AH EF ,∴15DFE DAH ∠=∠=︒;(3)作AH BC ⊥于H ,如图,有(1)得15DAH ∠=︒,∵FE BC ⊥,∴//AH EF ,∴15DFE DAH ∠=∠=︒;(4)结合上述三个问题的解决过程,得到BAC ∠的角平分线与角平分线上的点作BC 的垂线的夹角中的锐角为15°.【点睛】本题考查角平分线的性质、三角形内角和、平行线的性质,解题的关键是能够举一反三,通过第一小问的结论能够想到构造辅助线来解决后面的问题.。
广东省深圳市2019届数学八上期末试卷
广东省深圳市2019届数学八上期末试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.已知x 为整数,且222218339x x x x ++++--为整数,则符合条件的x 有( ) A .2个B .3个C .4个D .5个2.如果代数式x 有意义,则实数x 的取值范围是( ) A.x≥﹣3B.x≠0C.x≥﹣3且x≠0D.x≥3 3.已知a =2﹣2,b =(π﹣2)0,c =(﹣1)3,则a ,b ,c 的大小关系为( )A.c <b <aB.b <a <cC.c <a <bD.a <c <b 4.下列各式中,从左到右的变形是因式分解的是( )A .x 2 + 2 x + 3 = (x + 1)2 + 2B .(x + y )(x - y ) = x 2 - y 2C .x 2 - y 2 = (x - y )2D .2 x + 2 y = 2(x + y )5.下列多项式中,不能进行因式分解的是( )A .﹣a 2+b 2B .﹣a 2﹣b 2C .a 3﹣3a 2+2aD .a 2﹣2ab+b 2﹣16.下面计算正确的是( )A .()235a a =B .246a a a ⋅=C .624a a a -=D .336a a a +=7.如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°,则BD 与AB 的关系( )A.BD=ABB.BD=ABC.BD=ABD.BD=AB8.已知等腰三角形的一个角为72度,则其顶角为( )A .36°B .72C .48D .36°或72°9.窗花是我国传统民间艺术,下列窗花中,是轴对称图形的为( )A. B. C. D.10.在△ABC 与△DEF 中,∠A =∠D ,AB =DE ,则不能使△ABC ≌△DEF 成立的条件是( )A .∠B =∠E B .∠C =∠F C .BC =EFD .AC =DF11.如图,OP 平分∠BOA ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是( )A.PC=PDB.OC=ODC.OC=OPD.∠CPO=∠DPO12.如图,AB=AC,D,E分别是AB,AC上的点,下列条件不能判断△ABE≌△ACD的是()A.∠B=∠C B.BE=CD C.AD=AE D.BD=CE13.一个多边形切去一个角后,形成的另一个多边形的内角和为540︒,那么原多边形的边数为()A.4 B.4或5 C.5或6 D.4或5或614.三角形内有一点到三角形三边的距离相等,则这个点一定是三角形的()A.三条高的交点 B.三条角平分线的交点C.三边中线的交点 D.三边垂直平分线的交点15.如图,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,则∠BOC的度数是()A.113°B.134°C.136°D.144°二、填空题16.规定11a ba b⋅=-,若2(2)x xx⋅+=,则x为_____.17.若多项式9x2﹣2(m+1)xy+4y2是一个完全平方式,则m=_____.18.如图,在△ABC中,∠ACB=90°,BD是△ABC的一条角平分线,DE⊥AB,垂足E,BC=6,AE=2,则AB=_____.19.在四边形ABCD中,如果∠A+∠C=190°,∠ABC的外角∠ABE的度数为110°,那么∠D的度数为______.20.如图,在△ABC中,AB=AC,AB的垂直平分线DE交AB于点D,交AC于点E,若△ABC与△EBC的周长分别是22、14,则AC的长是________.三、解答题21.化简或解方程:(1)化简:231839m m +--(2)先化简再求值:2222ab b a b a a a ⎛⎫---÷ ⎪⎝⎭,其中11a b ==(3)解分式方程:3122x x x =-+-. 22.已知m ,n 为正整数,且()63535m x x x nx +=+,则m n +的值是多少?23.如图:在正方形网格上有一个△ABC .(1)作出△ABC 关于直线MN 的对称图形;(2)若网格上最小正方形的边长为1,求△ABC 的面积.24.如图,AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC 。
广东省深圳市深圳中学2018--2019八年级上学期期末考试
广东省深圳市深圳中学2018--2019八年级上学期期末考试一、选择题(本大题共12小题,共36.0分)1.-2018的相反数是()A. 2018B.C.D.2.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2014年的“双11”网上促销活动中,天猫的支付交易额突破570亿元,将570亿元用科学记数法表示为()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.下面哪个图形不能折成一个正方体()A. B.C. D.5.如图轴对称图形的是()A. B. C. D.6.若-2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A. 0B.C. 1D. 27.一组数据4,2,x,3,9的平均数为4,则这组数据的众数和中位数分别是()A. 3,2B. 2,2C. 2,3D. 2,48.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. B. C. 4 D. 59.若x2-2(k-1)x+9是完全平方式,则k的值为()A. B. C. 或3 D. 4或10.关于x的一次函数y=kx+k2+1的图象可能正确的是()A. B. C. D.11.若不等式组<>有2个整数解,则a的取值范围为()A. B. C. D.12.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共12.0分)13.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是______.14.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AED=______.15.如图,已知点A1的坐标为(0,1),直线1为y=x.过点A1作A1B1⊥y轴交直线1于点B1,过点B1作A2B1⊥1交y轴于点A2;过点A2作A2B2⊥y轴交直线1于点B2,过点B2作A3B2⊥1交y轴于点A3,……,则A n B n的长是______.16.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.三、计算题(本大题共1小题,共9.0分)17.具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度厨具店决定采购电饭煲和电压锅共50台,且电饭煲的数量不大于电压锅的,请你通过计算判断,如何进货厨具店赚钱最多?最大利润是多少?四、解答题(本大题共6小题,共43.0分)18.计算:-(π-3.14)0+|-6|+()-2.19.解不等式组:>,并把解集在数轴上表示出来.20.我校八年级的体育老师为了了解本年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如图两幅不完整的统计图(说明:每位学生只选一种自己最喜欢的一种球类),请根据这两幅图形解答下列问题:(1)在本次调查中,体育老师一共调查了多少名学生?(2)将两个不完整的统计图补充完整;(3)求出乒乓球在扇形中所占的圆心角的度数?(4)已知该校有760名学生,请你根据调查结果估计爱好足球和排球的学生共计多少人?21.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AE=3,ED=,求BC的长度.22.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.23.如图,直线y=2x-2与x轴交于点A,与y轴交于点B.点C是该直线上不同于B的点,且CA=AB.(1)写出A、B两点坐标;(2)过动点P(m,0)且垂直于x轴的直线与直线AB交于点D,若点D不在线段BC 上,求m的取值范围;(3)若直线BE与直线AB所夹锐角为45°,请直接写出直线BE的函数解析式.答案和解析【解析】解:-2018的相反数是2018.故选:A.只有符号不同的两个数叫做互为相反数.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【答案】B【解析】解:将570用科学记数法表示为5.70×1010.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:A、a3和a4不是同类项不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选:B.根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.【解析】解:根据正方体展开图的特征,A图不能折成正方体;B、C、D图能折成正方体.故选:A.根据正方体展开图的11种特征,A图不属于正方体展开图,不能折成正方体;B、D图属于正方体展开图的“1-4-1”型,能折成正方体;C图属于正方体展开图的“3-3”型,能折成正方体.据此解答.此题考查了展开图折叠成几何体,正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.5.【答案】D【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.【答案】C【解析】解:由-2a m b4与5a n+2b2m+n可以合并成一项,得,解得,m n=20=1.故选:C.根据-2a m b4与5a n+2b2m+n可以合并成一项,可得同类项,根据同类项的定义,可得m、n的值,根据乘方,可得答案.本题考查了合并同类项,利用同类项得出m、n的值是解题关键.7.【答案】C【解析】解:∵一组数据4,2,x,3,9的平均数为4,∴(4+2+x+3+9)÷5=4,解得,x=2,∴这组数据按照从小到大排列是:2,2,3,4,9,∴这组数据的众数是2,中位数是3,故选:C.根据一组数据4,2,x,3,9的平均数为4,可以求得x的值,从而可以将这组数据按照从小到大排列起来,从而可以求得这组数据的众数和中位数.本题考查众数、中位数、算术平均数,解答本题的关键是明确题意,会求一组数据的众数和中位数.8.【答案】C【解析】解:设BN=x,由折叠的性质可得DN=AN=9-x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9-x)2,解得x=4.故线段BN的长为4.故选:C.设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.【答案】D【解析】解:∵x2-2(k-1)x+9是完全平方式,∴k-1=±3,解得:k=4或-2,故选:D.利用完全平方公式的结构特征判断即可确定出k的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.10.【答案】C【解析】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选:C.根据图象与y轴的交点直接解答即可.本题考查一次函数的图象,考查学生的分析能力和读图能力.11.【答案】B【解析】解:解x<1得x<2.则不等式组的解集是a<x<2.则整数解是1,0.则-1≤a<0.故选:B.首先解第一个不等式求得不等式组的解集,然后根据整数解的个数确定整数解,则a的范围即可求得.此题考查的是一元一次不等式组的解法.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.【答案】C【解析】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选:C.根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH 垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.13.【答案】【解析】解:∵20个球中共有2个红球,∴任意摸出一个球是红球的概率是.故答案是:.本题属于比较简单的概率计算问题,用红球总数除以袋中球的总数即可.考查了概率的公式,此题是比较简单的概率计算问题,用符合要求的球的总数除以袋子中球的个数即可.14.【答案】110°【解析】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=40°,∴∠CAB=180°-40°=140°,∵AE平分∠CAB,∴∠EAB=70°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°-70°=110°,故答案为:110°.根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.本题考查了角平分线定义和平行线性质的应用,解题时注意:两条平行线被第三条直线所截,同旁内角互补.15.【答案】2n-1【解析】解:∵点A1的坐标为(0,1),∴点B1的坐标为(1,1),A1B1=1.∵A2B1⊥1交y轴于点A2,直线1为y=x,∴△A1A2B1为等腰直角三角形,∴点A2的坐标为(0,2),点B2的坐标为(2,2),∴A2B2=2.同理,可得:A3B3=4,A4B4=8,…,∴A n B n=2n-1.故答案为:2n-1.由点A1的坐标可得出点B1的坐标,进而可得出A1B1的长,由A2B1⊥1交y轴于点A2结合直线1为y=x可得出△A1A2B1为等腰直角三角形,根据等腰直角三角形的性质可得出点A2的坐标,利用一次函数图象上点的坐标可得出点B2的坐标,进而可得出A2B2的长,同理,可得出A3B3,A4B4,…的长,再根据各线段长度的变化可找出变化规律“A n B n=2n-1”,此题得解.本题考查了一次函数图象上点的坐标特征、等腰直角三角形以及规律型:点的坐标,根据线段长度的变化找出变化规律“A n B n=2n-1”是解题的关键.16.【答案】4【解析】解:如图,在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=4,即BE取最小值为4,∴BM+MN的最小值是4.故答案为:4.从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.规律与趋势:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.17.【答案】解:(1)每件电饭锅的利润:250-200=50(元);每件电压锅的利润:200-160=40(元)设购进的电饭煲x台,则购进的电压锅(30-x)台.由题意得:200x+160(30-x)=5600解得:x=20则电压锅:30-20=10(台)总利润=50×20+40×10=1400 (元)答:橱具店在该买卖中赚了1400元.(2)设采购的电饭煲有n台,则采购的电压锅有(50-n)台由题意得:总利润z=50n+40 (50-n)=200+10n∵n≤(50-n),∴n≤当n=18时,总利润z最大,则最大的利润为200+10×18=380(元)答:采购18台电饭煲,32台电压锅时,进货厨具店赚钱最多,最大利润是380元.【解析】通过审题,表格显示了两种商品的进价和售价;(1)题目给出两种电器的总数量和进货的总花费;设其中一个电器购进x台,则另一种电器购进(30-x)台,由购进总费用可以求各种电器的数量,然后再分别乘以每种电器的利润,最后把各种电器的利润相加起来.(2)题目给出了两种的电器的和和两种电器的数量之间的关系,同时记得结合表格中的数据;可以设其中的一种电器数量为 n 台,总利润为z元,从而列出方程,根据两种电器之间的数量关系,确定取值范围,从而求出利润的最大值;主要考查:一次函数应用问题,经济利润问题;也可以用二元一次方程的思路进行解答,一定要认真分析表格中的数据信息和题目的要求;18.【答案】解:原式=2-1+6+4=11.【解析】直接利用零指数幂的性质以及负指数幂的性质以及算术平方根的定义分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】解:>①②解不等式①得:x>-1,解不等式②得:x≤3,则不等式组的解集是:-1<x≤3,不等式组的解集在数轴上表示为:【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.【答案】解:(1)∵喜欢足球的有40人,占20%,∴一共调查了:40÷20%=200(人),(2)∵喜欢乒乓球人数为60人,∴所占百分比为:×100%=30%,∴喜欢排球的人数所占的百分比是1-20%-30%-40%=10%,∴喜欢排球的人数为:200×10%=20(人),∴喜欢篮球的人数为200×40%=80(人),由以上信息补全条形统计图得:(3)乒乓球在扇形中所占的圆心角的度数为:30%×360°=108°;(4)爱好足球和排球的学生共计:760×(20%+10%)=228(人).【解析】(1)读图可知喜欢足球的有40人,占20%,求出总人数;(2)根据总人数求出喜欢乒乓球的人数所占的百分比,得出喜欢排球的人数,再根据喜欢篮球的人数所占的百分比求出喜欢篮球的人数,从而补全统计图;(3)根据喜欢乒乓球的人数所占的百分比,即可得到乒乓球在扇形中所占的圆心角的度数;(4)根据爱好足球和排球的学生所占的百分比,即可估计爱好足球和排球的学生总数.本题考查条形统计图和扇形统计图,解题的关键是必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【答案】证明:(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD(SAS).(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°,∵△ACE≌△BCD,∴∠B=∠CAE=45°,AE=DB=3,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.∴AD=,∴AB=2+3=5.∴BC=.【解析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,利用勾股定理得出答案即可.本题考查三角形全等的判定与性质,等腰直角三角形的性质,及勾股定理的运用,掌握三角形全等的判定方法是解决问题的关键.22.【答案】解:(1)∵直线y=kx+b经过点A(-5,0),B(-1,4),,解得,∴y=x+5(2)∵若直线y=-2x-4与直线AB相交于点C,∴ ,解得,故点C(-3,2).∵y=-2x-4与y=x+5分别交y轴于点E和点D,∴D(0,5),E(0,-4),直线CE:y=-2x-4与直线AB及y轴围成图形的面积为:DE•|C x|=×9×3=.(3)根据图象可得x>-3.【解析】(1)利用待定系数法求一次函数解析式解答即可;(2)联立两直线解析式,解方程组即可得到点C的坐标;(3)根据图形,找出点C右边的部分的x的取值范围即可.此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.23.【答案】解:(1)对于直线y=2x-2令x=0,得到y=-2,令y=0,得到x=1,∴A(1,0),B(0,-2).(2)如图1中,作CF⊥x轴与F.∵CA=AB,∠CAF=∠OAB,∠CFA=∠AOB=90°,∴△CAF≌△BAO,∴AF=OA=1,CF=OB=2,∴F(2,0),观察图象可知m的取值范围为:m<0或m>2.(3)如图2中,作AE⊥AB,使得AE=AB,作EH⊥x轴于H,则△ABE是等腰直角三角形,∠ABE=45°.∵∠AOB=∠BAE=∠AHE=90°,∴∠OAB+∠ABO=90°,∠OAB+∠HAE=90°,∴∠ABO=∠HAE,∵AB=AE,∴△ABO≌△EAH,∴AH=OB=2,EH=OA=1,∴E(3,-1),设直线BE的解析式为y=kx+b,则有,解得,∴直线BE的解析式为y=x-2,当直线BE′⊥直线BE时,直线BE′也满足条件,直线BE′的解析式为y=-3x-2,∴满足条件的直线BE的解析式为y=x-2或y=-3x-2.【解析】(1)利用待定系数法即可解决问题;(2)如图1中,作CF⊥x轴与F.利用全等三角形的性质求出点F坐标即可判断;(3)如图2中,作AE⊥AB,使得AE=AB,作EH⊥x轴于H,则△ABE是等腰直角三角形,∠ABE=45°.利用全等三角形的性质求出点E坐标,当直线BE′⊥直线BE 时,直线BE′也满足条件,求出直线BE′的解析式即可;本题考查一次函数的性质、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。
深圳市八年级上学期数学期末考试试卷
深圳市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在下列实数中,无理数是()A . 0B .C .D . 62. (2分) (2017七下·临沧期末) 下列命题中的假命题是()A . 同位角一定相等B . 平移不改变图形的形状和大小C . 无理数是无限不循环小数D . 点M(a,﹣a)可能在第二象限3. (2分)(2018·台湾) 已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a为一数,求a 的值为何?()A . ﹣12B . ﹣4C . 4D . 124. (2分) (2019八上·西安月考) 下列各组数中,以a,b,c为边长的三角形不是直角三角形的是()A . a=3,b=4,c=5B . a=4,b=5,c=6C . a=6,b=8,c=10D . a=5,b=12,c=135. (2分) (2019·恩施) 某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A . 88.5B . 86.5C . 90D . 90.56. (2分) (2016九上·宜城期中) 一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .7. (2分) (2018八上·兰州期末) 用图像法解二元一次方程组时,小英所画图像如图所示,则方程组的解为()A .B .C .D .8. (2分) (2015七下·宜兴期中) 如图,∠B+∠C+∠D+∠E﹣∠A等于()A . 360°B . 300°C . 180°D . 240°9. (2分)(2019·郊区模拟) 某家具生产厂生产桌椅,已知每块板材可做桌子1张或椅子3把,现计划用100块这种板材生产一批桌椅(不考虑板材的损耗),设用x块板材做桌子,用y块板材做椅子,使得恰好配套(一张桌子两把椅子),则下列方程组正确是()A .B .C .D .10. (2分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止。
┃精选3套试卷┃2018届深圳市八年级上学期期末联考数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.计算4的结果是( )A .2±B .2C .2-D .4【答案】B【分析】根据算术平方根的概念,求4的算术平方根即可.【详解】解:4=2故选:B .【点睛】本题考查算术平方根,掌握概念正确理解题意是解题关键.2.如图,已知∠ACB =∠DBC ,添加以下条件,不能判定△ABC ≌△DCB 的是()A .∠ABC =∠DCB B .∠ABD =∠DCAC .AC =DBD .AB =DC【答案】D【分析】根据全等三角形的判定定理 逐个判断即可.【详解】A 、∵在△ABC 和△DCB 中ABC DCBBC CB ACB DBC∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD+∠DBC =∠ACD+∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCBBC CB ACB DBC∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .3.下列手机APP 图案中,属于轴对称的是( )A .B .C .D .【答案】B【分析】根据轴对称的定义即可判断.【详解】A 不是轴对称图形,B 是轴对称图形,C 不是轴对称图形,D 不是轴对称图形,故选B.【点睛】此题主要考查轴对称图形的定义,解题的关键是熟知轴对称图形的定义.425 )A .±5B .5C .5D 5【答案】C 25,再根据平方根定义求出即可. 255,5的平方根是5255故选C .【点睛】本题考查了对平方根和算术平方根的应用,主要考查学生对平方根和算术平方根的定义的理解能力和计算能力,难度不大.5.叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为( )A .0.5×10﹣4B .5×10﹣4C .5×10﹣5D .50×10﹣3【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.00005=5510-⨯,故选C.6.下列长度的线段中,不能构成直角三角形的是( )A .9,12,15B .14,48,50C D .1,2【答案】C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【详解】解:A. 92+122=152,故是直角三角形,不符合题意; B. 142+482=502,故是直角三角形,不符合题意;C. 222+≠,故不是直角三角形,符合题意;D. 22212+=,故是直角三角形,不符合题意.故选:C .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.下列二次根式中,最简二次根式的是( )A B C D 【答案】C【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A A 选项错误;B ,被开方数为小数,不是最简二次根式;故B 选项错误;C C 选项正确;D D 选项错误;考点:最简二次根式.8.下列式子,表示4的平方根的是( )AB .42CD .【答案】D【分析】根据平方根的表示方法判断即可.【详解】解:表示4的平方根的是,故选D .【点睛】本题考查了实数的平方根,熟知定义和表示方法是解此题的关键.9.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将()2101,()21011换算成十进制数应为: ()21021011202124015=⨯+⨯+⨯=++=;()32102101112021212802111=⨯+⨯+⨯+⨯=+++=.按此方式,将二进制()21001换算成十进制数和将十进制数13转化为二进制的结果分别为( ) A .9,()21101B .9, ()21110C .17,()21101D .17,()21110【答案】A【分析】首先理解十进制的含义,然后结合有理数混合运算法则及顺序进一步计算即可.【详解】将二进制()21001换算成十进制数如下: ()3210210011202021280019=⨯+⨯+⨯+⨯=+++=;将十进制数13转化为二进制数如下:1326÷=……1,623÷=……0,321÷=……1,∴将十进制数13转化为二进制数后得()21101,故选:A.【点睛】本题主要考查了有理数运算,根据题意准确理解十进制与二进制的关系是解题关键.10.若分式22x x +-的值为0,则x 的值是( ) A .2- B .2 C .2± D .任意实数【分析】根据分式的值为零的条件:分子=0且分母≠0,列出方程和不等式即可求出x 的值. 【详解】解:∵分式22x x +-的值为0 ∴2020x x +=⎧⎨-≠⎩ 解得:2x =-故选A .【点睛】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0,是解决此题的关键.二、填空题11.若10m =5,10n =4,则102m+n ﹣1=_____.【答案】1【分析】直接利用同底数幂的乘除运算法则将原式变形得出答案.【详解】解:∵1m =5,1n =4,∴21210(10)1010+-=⨯÷m n m n=25×4÷1=1,故答案为:1.【点睛】本题考查了同底数幂的乘除运算法则,熟练掌握运算法则是解题的关键.12.如图,直线AB CD ∥,BE 平分ABC ∠,交CD 于点D ,30CDB ∠=︒,那么C ∠的度数为________.【答案】120°【分析】由AB CD ∥,BE 平分ABC ∠,得∠CBD=∠ABD=30°,进而即可得到答案.【详解】∵AB CD ∥,∴∠ABD=30CDB ∠=︒,∵BE 平分ABC ∠,∴∠CBD=∠ABD=30°,∴C ∠=180°-30°-30°=120°.故答案是:120°.【点睛】本题主要考查平行线的性质与角平分线的定义以及三角形内角和定理,掌握“双平等腰”模型,是解题的关键.13.如图, 在平面直角坐标系中, 一次函数y=x+32的图象与x 轴交于点A, 与y 轴交于点B, 点P 在线段AB 上, PC ⊥x 轴于点C, 则△PCO 周长的最小值为_____【答案】323+【解析】先根据一次函数列出PCO ∆周长的式子,再根据垂线公理找到使周长最小时点P 的位置,然后结合一次函数的性质、等腰直角三角形的性质求解即可.【详解】由题意,可设点P 的坐标为(,32)(0)a a a +<,32OC a PC a ∴=-=+PCO ∴∆周长为3232OC PC OP a a OP OP ++=-+++=+则求PCO ∆周长的最小值即为求OP 的最小值如图,过点O 作⊥OD AB由垂线公理得,OP 的最小值为OD ,即此时点P 与点D 重合由直线32y x =+的解析式得,(32,0),(0,32)A B -,则32OA OB ==BAO ∴∆是等腰直角三角形,45BAO ∠=︒DAO ∴∆是等腰直角三角形,22,32OD AD OD AD OA =+==解得3OD =则PCO ∆周长的最小值为3232323OP OD +=+=+故答案为:323+.【点睛】本题考查了一次函数的几何应用、等腰直角三角形的判定与性质、垂线公理等知识点,依据题意列出PCO ∆周长的式子,从而找到使其最小的点P 位置是解题关键.14.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,若CB =6,那么DE+DB=_________.【答案】1【分析】据角平分线上的点到角的两边的距离相等可得CD DE =,然后求出BD DE BC +=.【详解】解:90C ∠=︒,AD 是BAC ∠的平分线,DE AB ⊥,CD DE ∴=,DE DB DB CD BC ∴+=+=,6BC =,6DE DB ∴+=.故答案为:1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.15.在实数范围内,把多项式239x -因式分解的结果是________. 【答案】(333x x【分析】首先提取公因式3,得到23(3)x -,再对多项式因式利用平方差公式进行分解,即可得到答案.【详解】239x -=23(3)x - =3(3)(3)x x 故答案是:3(3)(3)x x【点睛】本题考查了对一个多项式在实数范围内进行因式分解.能够把提取公因式后的多项式因式写成平方差公式的形式是解此题的关键.16.一组数据4,1-,2-,4,3-,4,4-,4中,出现次数最多的数是4,其频率是__________.【答案】0.5【分析】根据频率=某数出现的次数÷数字总数,4在这组数据中出现了4次,这组数据总共有8个数字,代入公式即可求解.【详解】解:4÷8=0.5故答案为:0.5【点睛】本题主要考查的是频率的计算,正确的掌握频率的计算公式,将相应的数据代入是解本题的关键.17.如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB 的度数为____________.【答案】20°或40°或70°或100°【详解】解:在Rt△ABC中,∠C=90°,∠A=40°,分四种情况讨论:①当AB=BP1时,∠BAP1=∠BP1A=40°;②当AB=AP3时,∠ABP3=∠AP3B=12∠BAC=12×40°=20°;③当AB=AP4时,∠ABP4=∠AP4B=12×(180°﹣40°)=70°;④当AP2=BP2时,∠BAP2=∠ABP2,∴∠AP2B=180°﹣40°×2=100°;综上所述:∴∠APB的度数为:20°、40°、70°、100°.故答案为20°或40°或70°或100°.三、解答题18.如图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.【答案】见解析【解析】试题分析:根据轴对称图形的性质,不同的对称轴,可以有不同的对称图形,所以可以称找出不同的对称轴,再思考如何画对称图形.试题解析:如图所示,19.已知22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,请化简后在–4≤x≤4范围内选一个你喜欢的整数值求出对应值. 【答案】21(2)x -; 当x=1时,原式=1. 【分析】先计算括号内的部分,再将除法转化为乘法,得出结果,再【详解】解:原式=22(2)(2)(1)[](2)(2)4x x x x x x x x x x+------÷ =2224(2)4x x x x x x x --+-⋅- = 24(2)4x x x x x --⋅- =21(2)x -, ∵–4≤x≤4且为整数,∴x=±4,±3,±2,±1,0,又根据题目和计算过程中x≠0,2,4,当x=1时,原式=1.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式化简的运算法则,同时注意x 不能取的值. 20.我县电力部门实行两种电费计价方法,方法一是使用峰谷电:每天8:00至22:00用电每千瓦时收费0.56元(峰电价);22:00到次日8:00,每千瓦时收费0.28元(谷电价),方法二是不使用峰谷电:每千瓦时均收费0.53元(1)如果小林家使用峰谷电后,上月付费95.2元,比不使用峰谷电少付费10.8元,则上月使用峰电和谷电各是多少千瓦时?(2)如果小林家上月总用电量140千瓦时,那么当峰电用量为多少时,使用峰谷电比较合算.【答案】(1)上月使用“峰电”和“谷电”各140千瓦时、60千瓦时;(2)当“峰电“用量不超过1千瓦时,使用“峰谷电”比较合算.【分析】(1)设该家庭上月使用峰电x 千瓦时,谷电y 千瓦时,根据“电费95.2元”,比不使用“峰谷”的电费少付费10.8元作为相等关系列方程组,求解即可;(2)设“峰电“用量为z 千瓦时时,根据不等式关系:使用“峰谷电”的电费≤不使用“峰谷电”的电费,列出不等式计算即可求解.【详解】解:(1)设该家庭上月使用“峰电”x 千瓦时,“谷电”y 千瓦时,则总用电量为(x+y )千瓦时.由题意得()0.560.2895.20.5395.210.8x y x y +=⎧⎨+=+⎩, 解得14060x y =⎧⎨=⎩, 答:上月使用“峰电”和“谷电”各140千瓦时、60千瓦时;(2)设当“峰电“用量为z 千瓦时时,使用“峰谷电”比较合算,依题意有0.56z+0.28(140-z )≤140×0.53,解得z≤1.答:当“峰电“用量不超过1千瓦时,使用“峰谷电”比较合算.【点睛】本题主要考查了二元一次方程组的应用和一元一次不等式的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量(不等)关系,列出方程组,再求解.21.已知120MAN ∠=︒,AC 平分MAN ∠,点,B D 分别在,AN AM 上.(1)如图1,若CD AM ⊥于点D ,CB AN ⊥于点B .①利用等腰三角形“三线合一”,将ADC ∆补成一个等边三角形,可得,AC AD 的数量关系为________. ②请问:AC 是否等于AB AD +呢?如果是,请予以证明.(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,请予以证明;若不成立,请说明理由.【答案】(1)①12AD AC =(或2AC AD =),理由见解析;②AD AB AC +=,理由见解析;(2)仍成立,理由见解析【分析】(1)①由题意利用角平分线的性质以及含30角的直角三角形性质进行分析即可;②根据题意利用①的结论进行等量代换求解即可;(2)根据题意过点C 分别作,AM AN 的垂线,垂足分别为,E F ,进而利用全等三角形判定得出()CED CFB AAS ∆≅∆,以此进行分析即可.【详解】解:(1)①12AD AC =(或2AC AD =) AC 平分,120MAN MAN ∠∠=︒,60CAD ∴∠=︒,又90ADC ∠=︒,30ACD ∴∠=︒利用等腰三角形“三线合一”,将ADC ∆补成一个等边三角形,可知12AD AC = ②AD AB AC += 证明:由①知,12AD AC =同理,AC 平分,120MAN MAN ∠∠=︒,60CAB ∴∠=︒,又90ABC ∠=︒,30ACB ∴∠=︒,12AB AC = AD AB AC ∴+=(2)仍成立证明:过点C 分别作,AM AN 的垂线,垂足分别为,E FAC 平分,MAN ∠CE CF ∴=,180,180ABC ADC ADC CDE ∠+∠=︒∠+∠=︒CDE ABC ∴∠=∠又90CED CFB ∠=∠=︒()CED CFB AAS ∴∆≅∆ED FB ∴=AD AB AE ED AF FB AE AF ∴+=-++=+由(1)中②知AE AF AC +=AD AB AC ∴+=.【点睛】本题考查等腰三角形性质以及全等三角形判定,熟练掌握角平分线的性质以及含30角的直角三角形性质和全等三角形判定定理是解题的关键.22.计算或因式分解:(121()32-+-; (2)因式分解:(2)(4)1x x --+;(3)计算:232652(2)5(10)(2)x y xy x y x y xy xy •÷-+-÷.【答案】(1)3;(2)()23x -;(3)32x --【分析】(1)根据立方根的定义、算术平方根的定义和绝对值的定义计算即可;(2)先根据多项式乘多项式法则去括号,然后利用完全平方公式因式分解即可;(3)根据幂的运算性质、单项式乘单项式法则、单项式除以单项式法则、多项式除以单项式法则计算即可.【详解】解:(121()32-+- =1313()322+⨯-+ =113()22+-+=3(2)(2)(4)1x x --+=2681x x -++=269x x -+=()23x -(3)232652(2)5(10)(2)x y xy x y x y xy xy •÷-+-÷=2563685(10)(2)x y xy x y x •÷-+-=655740(10)(2)x y x y x ÷-+-=42x x -+-=32x --【点睛】此题考查的是实数的混合运算、因式分解和整式的乘除法,掌握立方根的定义、算术平方根的定义、绝对值的定义、多项式乘多项式法则、利用完全平方公式因式分解、幂的运算性质、单项式乘单项式法则、单项式除以单项式法则、多项式除以单项式法则是解决此题的关键.23.计算(每小题4分,共16分)(1)(((201220130222-+-- (2)已知22360a a +-=.求代数式3(21)(21)(21)a a a a +-+-的值.(1)先化简,再求值22211111m m m m m m -+-⎛⎫÷-- ⎪-+⎝⎭,其中m . (4)解分式方程:31221x x=--+1.【答案】(1)1;(2)7;(1;(4)116 【分析】(1)根据幂的乘方、平方差公式、去绝对值解决即可.(2)根据整式乘法法则,将原式变形成2a 2+1a+1,再将22360a a +-=变形成2a 2+1a=6,代入计算即可.(1)根据分式的基本性质,先将原式化简成1m,将m 的值代入计算即可. (4)根据等式和分式的基本性质,将分式方程化简成整式方程求解即可.【详解】(1)(((201220130222+--,((2012222212⎡⎤=++-⨯-⎣⎦; ()(2012121=-,21=+,=1.(2)解:原式=6a 2+1a-(4a 2-1)=6a 2+1a-4a 2+1=2a 2+1a+1∵2a 2+1a-6=0∴2a 2+1a=6原式=6+1=7(1)21(1)(1)(1)1)(1)1m m m m m m m --+--=÷+-+()原式(11•1(1)m m m m m -+=+- 1m= 3133m m =∴= (4)313,221x x =-+-- 方程两边都乘以()21x -得:()3261x ,=-+-解得:116x =, 检验:当116x 时,2(x ﹣1)≠0, 所以116x 是原方程的解, 即原方程的解为116x . 【点睛】本题考查了幂的乘方、平方差公式、整式运算法则、分式的化简求值及解分式方程,解决本题的关键是熟练掌握整式和分式的运算法则,等式的基本性质.24.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数是多少;(3)本次调查学生参加户外活动时间的众数是多少,中位数是多少;(4)本次调查学生参加户外活动的平均时间是否符合要求?【答案】(1)频数分布直方图如图所示;见解析;(2)在扇形统计图中的圆心角度数为144°;(3)1小时,1小时;(4)平均活动时间符合要求.【分析】(1)先根据条形统计图和扇形统计图的数据,由活动时间为0.5小时的数据求出参加活动的总人数,然后求出户外活动时间为1.5小时的人数;(2)先根据户外活动时间为1小时的人数,求出其占总人数的百分比,然后算出其在扇形统计图中的圆心角度数;(3)根据中位数和众数的概念,求解即可.(4)根据平均时间=总时间÷总人数,求出平均时间与1小时进行比较,然后判断是否符合要求;【详解】(1)调查总人数为:10÷20%=50(人),户外活动时间为1.5小时的人数为:50×24%=12(人),频数分布直方图如右图所示;(2)户外活动时间为1小时的人数占总人数的百分比为:2050×100%=40%, 在扇形统计图中的圆心角度数为:40%×360°=144°.(3)将50人的户外活动时间按照从小到大的顺序排列, 可知第25和第26人的户外运动时间都为1小时,故本次户外活动时间的中位数为1小时;由频数分布直方图可知,户外活动时间为1小时的人数最多,故本次户外活动时间的众数为1小时. (4)户外活动的平均时间为:150×(10×0.5+20×1+12×1.5+8×2)=1.18(小时), ∵1.18>1,∴平均活动时间符合要求.【点睛】本题考查的是统计图,熟练掌握直方图和扇形统计图是解题的关键.25.如图,EA EB =,ED EC =,AEB DEC ∠=∠(1)求证:AD BC =;(2)连接DC ,求证:ADE CDE BCD ∠=∠+∠.【答案】 (1)证明见解析;(2)证明见解析.【分析】(1)由AEB DEC ∠=∠,则∠AED=∠BEC ,即可证明△ADE ≌△BCE ,即可得到AD=BC ; (2)连接DC ,由(1)得ADE BCE ∠=∠,EC ED =,则CDE DCE ∠=∠,再根据BCE DCE BCD ∠=∠+∠,即可得到答案.【详解】(1)证明:∵AEB DEC ∠=∠∴AED BEC ∠=∠在ADE ∆和BCE ∆中,∵EA EB AED BEC ED EC =⎧⎪∠=∠⎨⎪=⎩∴ADE ∆≌BCE ∆(SAS ),∴AD BC =;(2) 如图,连接DC ,由ADE ∆≌BCE ∆,得ADE BCE ∠=∠,∵EC ED =,∴CDE DCE ∠=∠,∵BCE DCE BCD ∠=∠+∠,∴ADE CDE BCD ∠=∠+∠.【点睛】本题考查了全等三角形的判定与性质,以及等腰三角形性质,正确找出三角形全等的条件是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( )A .诚B .信C .友D .善 【答案】D【分析】根据轴对称图形的概念逐一进行分析即可得.【详解】A.不是轴对称图形,故不符合题意;B.不是轴对称图形,故不符合题意;C.不是轴对称图形,故不符合题意;D.是轴对称图形,符合题意,故选D.【点睛】本题考查了轴对称图形的识别,熟知“平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形”是解题的关键.2.已知(x+y)2 = 1,(x -y)2=49,则xy 的值为( )A .12B .-12C .5D .-5【答案】B【分析】根据完全平方公式把2()x y +和2()x y -展开,然后相减即可求出xy 的值. 【详解】由题意知:222()21x y x xy y +=++=①, 222()249x y x xy y -=-+=②,①-②得:()222222149x xy y x xy y++--+=-, ∴22222248x xy y x xy y ++-+-=-,即448xy =-,∴12xy =-,故选:B .【点睛】本题考查了完全平方公式,灵活运用完全平方公式,熟记公式的结构特征是解题的关键.3.如图,AB AF ⊥,EF AF ⊥,BE 与AF 交于点C ,点D 是BC 的中点,2AEB B ∠=∠.若8BC =,EF =AF 的长是( )A 6B 7C .3D .5【答案】C 【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论.【详解】∵AB ⊥AF ,∴∠FAB=90°,∵点D 是BC 的中点,∴AD=BD=12BC=4, ∴∠DAB=∠B ,∴∠ADE=∠B+∠BAD=2∠B ,∵∠AEB=2∠B ,∴∠AED=∠ADE ,∴AE=AD ,∴AE=AD=4,∵7,EF ⊥AF ,∴()222247AE EF -=-=3,故选:C .【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.4.若点()1,a y ,()21,a y +在直线2y kx =+上,且12y y >,则该直线经过象限是( ) A .一、二、三B .一、二、四C .二、三、四D .一、三、四【答案】B【分析】根据两个点的横坐标、纵坐标的大小关系,得出y 随x 的增大而减小,进而得出k 的取值范围,再根据k 、b 的符号,确定图象所过的象限即可.【详解】解:∵a <a+1,且y1>y2,∴y 随x 的增大而减小,因此k<0,当k<0,b=2>0时,一次函数的图象过一、二、四象限,故选:B.【点睛】本题考查一次函数的图象和性质,掌握一次函数的增减性是正确解答的前提.5.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选B.【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.6.下列多项式能用平方差公式分解因式的是()A.﹣x2+y2 B.﹣x2﹣y2 C.x2﹣2xy+y2 D.x2+y2【答案】A【解析】试题分析:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.根据平方差公式的特点可得到只有A可以运用平方差公式分解,考点:因式分解-运用公式法.7.如果把分式232x x y -中的x ,y 都扩大3倍,那么分式的值( ) A .扩大3倍B .不变C .缩小3倍D .扩大9倍【答案】B【分析】根据分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变,可得答案. 【详解】()23322332333232x x x x y x y x y⨯⋅==⨯-⨯--. 故选:B .【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.8.不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是( ) A .4B .5C .6D .7【答案】B【分析】先求出不等式组的解集,再求出不等式组的非负整数解,即可得出答案. 【详解】解:37202912x x +≥⎧⎨-<⎩①② ∵解不等式①得:53x -解不等式②得:x <5,∴不等式组的解集为553x -< ∴不等式组的非负整数解为0,1,2,3,4,共5个,故选:B .【点睛】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能求出不等式组的解集是解此题的关键. 9.下列实数中,无理数是( )A .3.14B .2.12122 CD .227 【答案】C【解析】根据无理数的三种形式,结合选项找出无理数的选项.【详解】3.14和2.12122和227都是分数,是有理数;【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.10.下列各组数,能够作为直角三角形的三边长的是( )A .2,3,4B .4,5,7C .0.5,1.2,1.3D .12,36,39【答案】C【解析】试题分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.解:A 、32+22≠42,不能构成直角三角形,故选项错误;B 、42+52≠72,不能构成直角三角形,故选项错误;C 、0.52+1.22=1.32,能构成直角三角形,故选项正确;D 、122+362≠392,不能构成直角三角形,故选项错误.故选C .考点:勾股定理的逆定理.二、填空题11.如图,20,30,50A B C ︒︒︒∠=∠=∠=,则ADB ∠的度数为_____________;【答案】100°【分析】根据三角形的外角性质计算即可.【详解】解:∠BEA 是△ACE 的外角,∴∠BEA=∠A+∠C=70°,∠BDA 是△BDE 的外角,∴∠BDA=∠BEA+∠B=100°,故答案为:100°.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键. 12.如图,在△ABC 中,∠A=36°,AB =AC ,BD 是∠ABC 的角分线.若在边AB 上截取BE =BC ,连接DE ,则图中共有_________个等腰三角形.【答案】1.【解析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【详解】∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=12∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°−∠DBC−∠C=180°−36°−72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°−36°)÷2=72°,∴∠ADE=∠BED−∠A=72°−36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有1个.故答案为1.考点:等腰三角形的判定13.x 减去y 大于-4,用不等式表示为______.【答案】x-y >-4【分析】x 减去y 即为x-y ,据此列不等式.【详解】解:根据题意,则不等式为:4x y ->-;故答案为:4x y ->-.【点睛】本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为______.【答案】(32,3). 【解析】解:作N 关于OA 的对称点N′,连接N′M 交OA 于P ,则此时,PM+PN 最小,∵OA 垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M 是ON 的中点,∴N′M ⊥ON ,∵点N (3,0),∴ON=3,∵点M 是ON 的中点,∴OM=1.5,∴PM=32,∴P (32,32).故答案为:(32,32).点睛:本题考查了轴对称﹣最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P 的位置.15.因式分解:16x 2﹣25=______.【答案】(4x+5)(4x ﹣5)【分析】直接使用平方差公式进行因式分解即可.【详解】解:由题意可知:2221625(4)5(45)(45)xx x x ,故答案为:(45)(45)x x .【点睛】本题考查了使用乘法公式进行因式分解,熟练掌握乘法公式是解决本题的关键.16.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果AB =10,EF =2,那么AH 等于【答案】6【解析】试题分析:由全等可知:AH =DE ,AE =AH +HE ,由直角三角形可得:222AE DE AB +=,代入可得.考点:全等三角形的对应边相等,直角三角形的勾股定理,正方形的边长相等17.将长方形纸片ABCD 沿EF 折叠,如图所示,若∠1=48°,则∠AEF =_____度.【答案】114°【分析】根据折叠性质求出∠2和∠3,根据平行线性质求出∠AEF +∠2=180°,代入求出即可.【详解】根据折叠性质得出∠2=∠3=12(180°-∠1)=12×(180°-48°)=66°, ∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AEF +∠2=180°,∴∠AEF =114°,故答案为:114°.【点睛】本题考查了矩形性质,平行线性质,折叠性质的应用,关键是求出∠2的度数和得出∠AEF+∠2=180°.三、解答题18.如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.【答案】(1)详见解析;(2)图详见解析,点P的坐标为(0,1),PC+PB'的最小值为25.【分析】(1)根据点A的坐标找到坐标原点并建立坐标系,然后分别找到A、B、C关于y轴的对称点A'、B'、C' ,连接A'B'、B'C' 、A'C'即可;(2)直接利用轴对称求最短路线的方法、利用待定系数法求一次函数的解析式以及勾股定理得出答案.【详解】解:(1)根据点A的坐标找到坐标原点并建立坐标系,然后分别找到A、B、C关于y轴的对称点A'、B'、C' ,连接A'B'、B'C' 、A'C',如图所示:△A'B'C'即为所求;(2)如图所示:BC与y轴交于点P,根据对称的性质可得PB= PB'∴PC+PB'=PC+PB=BC,根据两点之间线段最短,此时PC+PB'最小,且最小值即为BC的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年度第一学期期末测试八年级数学试题卷
一、选择题
1.4的算术平方根是
A.2
B.2-
C.2±
D.2
2.在1416.32733
22
3,,,π,-中,无理数的个数是_____个 A.3 B.4 C.5 D.6
3.点P(2,-5)关于x 轴对称的点的坐标为
A.(-2,5)
B.(2,5)
C.(-2,-5)
D.(2,-5)
4.如果点P ()34+-x x ,在平面直角坐标系的第二象限内,那么x 的取值范围在数轴上可表示为
5.如果方程组⎩⎨⎧=+=54ay bx x 的解与方程组⎩
⎨⎧=+=23ay bx y 的解相同,则b a +的值为 A.-1 B.2 C.1 D.0
6.甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数a 与方差2s 如下表所示:
根据表中数据,要从中选一名成绩好又发挥稳定的运动员参赛,应该选择
A.甲
B.乙
C.丙
D.丁
7.如图所示,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于2
1AC 的长为半
径画弧,两弧相交于点M 、N,作直线MN,交BC 于点D,连接AD,则∠BAD 的度数为
A.65°
B.60°
C.55°
D.45°
8.如图,已知:函数b x y +=3和3-=ax y 的图象交于点P(-2,-5),则根据图象可得不等式33-+ax b x >的解集是
A.5->x
B.2->x
C.3->x
D.2-<x
9.如图,1l 反映了某公司销售一种医疗器械的销售收入(万元)与销售量(台)之间的关系,2l 反映了该公司销售该种医疗器械的销售成本(万元)与销售量(台)之间的关系.当销售收入大于销售成本时,该医疗器械才开始赢利.根据图象,则下列判断中错误的是
A.当销售量为4台时,该公司赢利4万元
B.当销售量多于4台时,该公司才开始赢利
C.当销售量为2台时,该公司亏本1万元
D.当销售量为6台时,该公司赢利1万元
10.如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的'B 处,点A 对应点为,'A 且BC=3,则AM 的长是
A.1.5
B.2
C.2.25
D.2.5
二、填空题
11.代数式4-x 中x 的取值范围是_________.
12.将直线x y 3=沿x 轴正方向向右平移2个单位,所得直线的解析式为_________.
13.若,,329.66.253938.236.2533==则=325360000________.
14.已知△ABC 中,有两边长分别为15和13,第三边上的高为12,则第三边长为_______.
15.关于x 的不等式m x m x --<23的正整数解为1、2、3,则m 取值范围是_________.
16.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,过点O 作EF ∥BC 交AB 于点E,交AC 于点F,过点O 作OD ⊥AC 于点D,下列四个结论:①BE=EF-CF ;②∠BOC=90°+
21∠A ;③点O 到△ABC 各边的距离相等;④设OD=m ,AE+AF=,n 则,△mn S AEF 2
1=
其中正确的结论是(填所有正确答案的序号)______________.
三、解答题
17.(1)解方程组:⎩⎨⎧=--=8332y x x y (2)解不等式组⎪⎩⎪⎨⎧≥--+≥+1435
2243x x x x
18.计算: (1)()1
212362-⎪⎭
⎫ ⎝⎛--+⨯- (2)356812-⨯+ 19.实验学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调査,并根据调査结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6个型号):
根据以上信息,解答下列问题:
(1)该班共有_______名学生;。