初二数学勾股定理
初二数学下册勾股定理知识点及常考题型
初二数学下册勾股定理知识点及常考题型《勾股定理》知识点1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
即:a²+b²=c²要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一。
其主要应用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边; (3)利用勾股定理可以证明线段平方关系的问题。
2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a²+b²=c²,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。
运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c²=a²+b²,则△ABC是以∠C 为直角的直角三角形(若c²>a²+b²,则△ABC是以∠C为钝角的钝角三角形;若c²<a²+b²,则△ABC为锐角三角形)。
3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
《勾股定理》常考题1、用对称法求平面中最短问题如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短,求EP+BP的最短长度.解:如图,连接BD交AC于O,连接ED与AC交于点P,连接BP.已知BD⊥AC,且BO=OD,∴BP=PD,则BP+EP=ED,此时最短.∵AE=3,AD=1+3=4,由勾股定理得ED2=AE2+AD2=32+42=25=52∴ED=BP +EP=5.2、用平移法求平面中最短问题如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30 cm,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬几厘米?将台阶面展开,连接AB,如图,线段AB即为壁虎所爬的最短路线.∵BC=30×3+10×3=120(cm),AC=50 cm,在Rt△ABC中,根据勾股定理,得AB2=AC2+BC2=16 900,∴AB=130 cm.所以壁虎至少爬行130 cm.3、利用勾股定理证明线段之间的平方关系如图,∠C=90°,AM=CM,MP⊥AB于点P.求证:BP2=BC2+AP2.证明:如图,连接BM.∵PM⊥AB,∴△BMP和△AMP均为直角三角形.∴BP2+PM2=BM2,AP2+PM2=AM2.同理可得BC2+CM2=BM2.∴BP2+PM2=BC2+CM2.又∵CM=AM,∴CM2=AM2=AP2+PM2.∴BP2+PM2=BC2+AP2+PM2.∴BP2=BC2+AP2.。
初二数学手抄报内容勾股定理
初二数学手抄报内容勾股定理
《神奇的勾股定理》
嘿,同学们!你们知道吗?在初二数学的世界里,有一个超级神奇的定理,那就是勾股定理!
勾股定理就像是一把神奇的钥匙,能打开好多数学难题的大门呢!它说的是:在一个直角三角形中,两条直角边的平方和等于斜边的平方。
听起来是不是有点抽象?别急,让我给你们好好讲讲。
比如说,有一个直角三角形,两条直角边分别是3 和4,那斜边是多少呢?根据勾股定理,3 的平方是9,4 的平方是16,9 + 16 = 25,25 开平方就是5,所以斜边就是5 啦!这是不是很神奇?
有一次上数学课,老师在黑板上画了一个大大的直角三角形,然后问我们:“同学们,谁能算出这个斜边的长度呀?”大家都皱着眉头思考,我心里也在嘀咕:“这可怎么算呀?”就在这时,我的同桌小明举起了手,他自信满满地说:“老师,我知道,用勾股定理就能算出来!”老师笑着让他回答,小明不慌不忙地说:“这两条直角边分别是6 和8,6 的平方是36,8 的平方是64,36 + 64 = 100,100 开平方就是10,所以斜边是10 。
”哇,他回答得太对了,大家都忍不住给他鼓掌,我也特别佩服他,心想:“我也要像他一样厉害!”
勾股定理不仅在数学课本里有用,在我们的生活中也到处都能看到它的影子呢!比如盖房子的时候,工人叔叔要确定墙角是不是直角,就可以用勾股定理来测量。
还有测量大树的高度、计算两地之间的距离等等。
再想想,如果没有勾股定理,那我们的数学世界会变成什么样呢?就好像我们在黑暗中摸索,找不到方向。
它就像一盏明灯,照亮了我们探索数学的道路。
同学们,你们说勾股定理是不是超级神奇、超级有用?反正我觉得它太酷啦!我一定要好好学习它,用它来解决更多的难题!。
初二下学期数学勾股定理知识点总结
初二下学期数学勾股定理知识点总结
1. 勾股定理的表述:直角三角形的斜边的平方等于两直角边的平方和。
2. 勾股定理的符号表示:设直角三角形的两直角边分别为a、b,斜边为c,则勾股定理可以表示为 c² = a² + b²。
3. 斜边、直角边的关系:斜边是直角三角形的最长边,而直角边分为两个,其中一条是斜边对应的直角边,另一条是与斜边相邻的直角边。
4. 勾股数:满足勾股定理的自然数称为勾股数。
例如,3、4、5是一个勾股数组。
5. 勾股数的性质: a、b、c是勾股数,则它们之间必定存在等比关系,即 b/a、c/a、c/b是分数(不含整数的部分)。
6. 勾股定理的应用:勾股定理可以用于求解直角三角形的边长、判断三角形是否为直角三角形、证明三角形相似等。
7. 勾股定理的证明:勾股定理有多种证明方法,常用的有几何证明、代数证明和三角函数证明。
8. 勾股定理的拓展:勾股定理可以推广到多维空间的直角坐标系中,即 n维空间的勾股定理。
9. 勾股定理的应用举例:例如,可以用勾股定理计算一个直角三角形的斜边长,可以用勾股定理证明两个三角形相似,还可以用勾股定理解决一些几何问题。
总之,勾股定理是初中数学中重要的几何定理之一,了解和掌握勾股定理的相关知识点对于解决直角三角形相关的问题和理解几何性质有重要意义。
初二勾股定理逆定理公式
初二勾股定理逆定理公式1. 勾股定理勾股定理是初中数学中非常重要的定理之一,它是由古希腊数学家毕达哥拉斯(Pythagoras)提出的。
勾股定理的公式表达如下:a^2 + b^2 = c^2其中 a、b、c 分别表示直角三角形的两条直角边和斜边,满足该公式的三条边的比例关系。
2. 逆定理逆定理是勾股定理的一个重要推论,它在解决初中数学中一些几何问题时非常有用。
逆定理的公式表达如下:如果 a^2 + b^2 = c^2 成立,那么这三个数构成一个直角三角形。
逆定理的意义在于,当我们已知某个三角形的边长满足勾股定理的公式时,可以根据这个公式判断该三角形是否为直角三角形。
3. 应用示例为了更好地理解逆定理的应用,下面通过一个例子来说明。
例子:已知一个三角形的三边分别为 3、4 和 5,我们要判断这个三角形是否为直角三角形。
根据逆定理,我们可以将已知的三边长度代入勾股定理的公式中,并验证等式是否成立。
3^2 + 4^2 = 5^29 + 16 = 25计算结果符合等式,所以根据逆定理,我们可以得出结论,这个三角形是一个直角三角形。
4. 注意事项在应用逆定理时,需要注意以下几点:•应用逆定理时,必须满足勾股定理的公式,即 a^2 + b^2 = c^2,才能判断三角形是否为直角三角形。
•如果已知三边的长度满足 a^2 + b^2 = c^2,但等式的两边可能相差一个数的误差,这时我们可以使用近似值来验证等式是否成立。
•在进行计算时,应注意数值的精确性,尽量避免精度误差带来的影响。
5. 总结初二勾股定理逆定理公式是初中数学中重要的概念之一,在几何学习中有着广泛的应用。
逆定理可以帮助我们判断已知三边长度的三角形是否为直角三角形,为解决几何问题提供了便利。
在应用逆定理时,我们应注意勾股定理公式的条件和计算的精确性,以得出准确的结论。
希望通过本文的介绍,您对初二勾股定理逆定理公式有了更深入的理解和应用。
初二数学:勾股定理专题知识点与同步练习(含答案)
勾股定理1.勾股定理勾股定理:直角三角形的两条直角边a、b的__________等于斜边c的平方,即:a2+b2=c2.【注意】(1)应用勾股定理时,要分清直角边和斜边,尤其在记忆a2+b2=c2时,斜边只能是c.若b为斜边,则关系式是__________;若a为斜边,则关系式是b2+c2=a2.(2)如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.2.勾股定理的应用勾股定理是直角三角形的一个重要性质,它把直角三角形有一个直角的“形”的特点转化为三边“数”的关系.利用勾股定理,可以解决与直角三角形有关的计算和证明问题,还可以解决生活、生产中的一些实际问题.其主要应用如下:(1)已知直角三角形的任意两边求第三边;(2)已知直角三角形的任意一边确定另两边的关系;(3)证明包含平方(算术平方根)关系的几何问题;(4)构造方程(或方程组)计算有关线段的长度,解决生产、生活中的实际问题.一、勾股定理已知直角三角形的两边长,求第三边长,关键是先明确所求边是斜边还是直角边,再决定用勾股定理的原式还是变式.【例1】已知直角三角形的两条直角边的长分别为3和4,则第三边长为A.5 B C或5 D二、勾股定理的证明勾股定理的证明是通过拼图法或割补法完成的,探索时利用面积关系,将“形”的问题转化为“数”的问题.【例2】中国古代数学家们对勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC 中,∠ACB =90°,若AC b =,BC a =.请你利用这个图形解决下列问题:(1)试说明222a b c +=;(2)如果大正方形的面积是10,小正方形的面积是2,求()2a b +的值.三、勾股定理点的应用利用勾股定理解应用题的关键是寻找直角三角形,若不存在直角三角形,可通过添加辅助线构造出直角三角形.【例3】如图,有一只小鸟在一棵高13 m 的大树树梢上捉虫子,它的伙伴在离该树12 m ,高8 m 的一棵小树树梢上发出友好的叫声,它立刻以2 m /s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?习题1.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别是a ,b ,c .若a =5,b =12,则c 的长为 A .119 B .13 C .18D .1692.如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是 A .2kB .k +1C .k 2-1D .k 2+13.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为A .4米B .8米C .9米D .7米4.如图,一棵大树被台风刮断,若树在离地面3 m 处折断,树顶端落在离树底部4 m 处,则树折断之前高A .5 mB .7 mC .8 mD .10 m5.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为A .8B .9C .10D .116.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为 A .22B .32C .62D .827.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2 m ,宽为1.5 m ,现需要在相对的顶点间用一块木板加固,则木板的长为__________.8.若△ABC 中,∠C =90°.(1)若a =5,b =12,则c =__________; (2)若a =6,c =10,则b =__________;(3)若a ∶b =3∶4,c =10,则a =__________,b =__________.9.一个直角三角形的三边为三个连续偶数,则它的三边长分别为__________.10.如图,在东西走向的铁路上有A ,B 两站,在A ,B 的正北方向分别有C ,D 两个蔬菜基地,其中C 到A 站的距离为24千米,D 到B 站的距离为12千米.在铁路AB 上有一个蔬菜加工厂E ,蔬菜基地C ,D 到E 的距离相等,且AC =BE ,则E 站距A 站__________千米.11.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)若a ∶b =3∶4,c =75 cm ,求a 、b ; (2)若a ∶c =15∶17,b =24,求△ABC 的面积; (3)若c -a =4,b =16,求a 、c ;(4)若∠A =30°,c =24,求c 边上的高h c ; (5)若a 、b 、c 为连续整数,求a +b +c .12.已知:△ABC 中,AD 为BC 中线,求证:22222()AB AC BD AD +=+.13.折叠长方形ABCD 的一边AD ,使点D 落在BC 边的F 点处,若AB =8 cm ,BC =10 cm ,求EC 的长.14.如图,一个圆桶,底面直径为16 cm ,高为18 cm ,则一只小虫从下底部点A 爬到上底B 处,则小虫所爬的最短路径长是(π取3)A .50 cmB .40 cmC .30 cmD .20 cm15.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为A .22B .32C .62D .8216.如图,AC 是电线杆的一根拉线,测得BC =6米,∠ACB =60°,则AB 的长为A .12米B .3米C .6米D .317.如图,90ACB ∠=︒,AC BC =,BE CE ⊥,AD CE ⊥,垂足分别为E ,D ,13AC =,5BE =,则DE =__________.18.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7 m,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3 m,木板顶端向下滑动了0.9 m,则小猫在木板上爬动了__________m.19.古诗赞美荷花“竹色溪下绿,荷花镜里香”,平静的湖面上,一朵荷花亭亭玉立,露出水面10 cm,忽见它随风斜倚,花朵恰好浸入水面,仔细观察,发现荷花偏离原地40 cm(如图).请部:水深多少?20.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。
初二数学--勾股定理复习
初二数学 勾股定理复习一、知识点: 1、勾股定理:直角三角形两直角边的平方和等于斜边的平方。
数学式子:∠C=900⇒222a b c +=2、神秘的数组(勾股定理的逆定理):如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 数学式子:222a b c +=⇒∠C=900满足a 2+b 2=c 2三个数a 、b 、c 叫做勾股数。
要点回顾【知识点 1】 勾股定理内容: 〖基础回顾〗1、 在Rt △ABC 中, a ,b ,c 分别是三条边,∠C =90°,已知,a b 则c = ; 已知,a c 则b = 。
2、在Rt △ABC 中, a ,b ,c 分别是三条边,∠B =90°,已知a =6,b =10,则c= 。
3、在ABC Rt ∆中,,4,3cm b cm a == 则=c 。
4、在Rt △ABC 中,已知两边长分别是6和8,则其面积为 。
【知识点 2】 勾股数 回忆常见的勾股数 〖基础回顾〗1、下列各组数中,不能作为直角三角形三边长度的是( ) A .72425a b c === B . 1.52 2.5a b c === C .111345a b c === D .15817a b c === 2、、判断a 、b 、c 是否是勾股数。
(1)a=7,b=24,c=25 (2)a=5,b=13,c=12 (3)a=4,b=5,c=6 ⑷Aa【知识点 3】定理与逆定理的应用 〖基础回顾〗1、三角形的三边长为ab c b a 2)(22+=+,则这个三角形是 。
2、已知a 、b 、c 为三个正整数,如果a +b +c =12,那么以a 、b 、c 为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是______.3、在△ABC 中, AB=15,AD=12,BD=9,AC=13,求△ABC 的周长和面积。
初二数学勾股定理
课题勾股定理教学目标1、运用勾股定理进行简单的计算;2、能将实际问题转化为直角三角形的数学模型,并能应用勾股定理解决简单的实际问题。
重点、难点重点:将实际问题转化为直角三角形模型和勾股定理。
难点:如何用勾股定理解决实际问题。
考点及考试要求1、运用勾股定理进行计算;2、应用勾股定理解决实际问题。
教学内容【知识点预习】勾股定理:勾股定理逆定理:【典型例题分析】一.勾股定理与面积公式结合.例1 如图在Rt△ABC中,已知∠C=900, CD是AB边上的高,AB=3.5,AC=2.8,求CD的长.二. 勾股定理与完全平方公式结合.例2 已知Rt△ABC中,两直角边的和为14cm,斜边长为10cm,求这个直角三角形的面积?练习:已知一个直角三角形的斜边长为cm, 两直角边的差为cm,求此三角形的面积.点评:完全平方公式( a±b )2=a2+b2±2ab 中a±b (两数的和或差)看作整体①,a2+b2 (两数的平方和)看作整体②,ab (两数的积)看作整体③;①②③中已知任两个的值,可求出第三个的值; 或可用任意两个表示第三个。
当a,b分别表示直角三角形的两直角边时,整体①与两直角边有关,a±b为两直角边的和或差,整体②与斜边有关,a2+b2为斜边的平方,整体③则与面积有关,ab为面积的2倍.例3 一个三角形较大的角是另两个角之和,其最长边为41,面积为180,则另两边长为多少?三.勾股定理及其逆定理的变式活用.例4 △ABC中,∠A,∠B,∠C的对边分别为a,b,c且a+c=2b,c-a = b,试判断△ABC的形状.四.综合性例5 如图,点D是Rt△ABC 的斜边上的一点,DE⊥BC于E,DF⊥AC于F,若AF=15,BE=10,求四边形DECF的面积?【巩固练习】1、三角形三个角的度数之比为1:2:3,它的最大边长等于16cm,则最小边长是_________cm.2、AD是Rt△ABC斜边上的高,已知AB=5cm,BD=3cm ,那么BC=_________cm.3、在ΔABC中,AD是∠BAC的平分线,DM⊥AB于M,DN⊥AC于N,连接MN,则等腰三角形有_________个,直角三角形有_________个.4、在RTΔABC中, ∠B=90°,AD为BC边中线,DE⊥AC于E,则:AB2+EC2______AE2 .5、在直角三角形中,两锐角的平分线相交成钝角的度数是_________ .边长是10厘米, 则两直角边长是_________.6、小明把一根70cm长的木棒放到一个长、宽、高分别为30cm、40cm、50cm的木箱中,他能放进去吗?答:_______________(填“能”、或“不能”)7、有一个圆柱,它的高等于12厘米,底面半径等于3厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A 点相对的B点处的食物,沿圆柱侧面爬行的最短路程是________(π取3)8、在△ABC中,AB=15,AC=13,高AD=12,则三角形的周长是()(A)42 (B)32 (C)42或32 (D)37或33.9、已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为().(A)80cm (B)30cm (C)90cm (D120cm.10、直角三角形两直角边长分别为6cm和8cm,则连接这两条直角边中点的线段长为()(A)10cm (B)3cm (C)4cm (D)5cm11、在直角三角形中,斜边与较小直角边的和、差分别为8、2,则较长直角边长为()(A)5 (B)4 (C)3 (D)211、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()(A)2cm (B)3cm (C)4cm (D)5cm12、满足下列条件的△ABC,不是直角三角形的是()A、 b2=a2-c2B、∠C=∠A-∠BC、∠A∶∠B∶∠C=3∶4∶5D、a∶b∶c=12∶13∶5三、证明题13、直角三角形中,两直角边长为a、b,斜边长为c,斜边上的高为h,求证:四、简答题14.如图四边形ABCD是实验中学的一块空地的平面图,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m现计划在空地上植上草地绿化环境,若每平方米的草皮需150元;问需投入资金多少元?五、应用题15、印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题。
初二数学 勾股定理
勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°BD2=CD∙AD⇒AB2=ADAC∙CD⊥AB AB2=BC∙BD6、常用关系式由三角形面积公式可得:AB∙CD=AC∙BC一、基础达标:1. 下列说法正确的是()A.若 a、b、c是△ABC的三边,则a2+b2=c2;B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;C.若 a、b、c是Rt△ABC的三边,,则a2+b2=c2;D.若 a、b、c是Rt△ABC的三边,,则a2+b2=c2.3.如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜边长是()A、2kB、k+1C、k2-1D、k2+14. 已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121 B.120 C.90 D.不能确定6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为() A.42 B.32 C.42 或 32 D.37 或 338、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为()A:3 B:4 C:5 D:79.若△ABC中,AB=25cm,AC=26cm高AD=24,则BC的长为()A.17 B.3 C.17或3 D.以上都不对11.斜边的边长为cm17,一条直角边长为cm8的直角三角形的面积是.12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt△ABC中,斜边AB=4,则AB2+BC2+AC2=_____.。
初二数学--勾股定理讲义
初二数学 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c ,那么一定有222c b a =+勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在R t△AB C中,∠C=90°①若a=5,b=12,则c=___________; ②若a =15,c=25,则b =___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c =10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nﻩB 、n+1ﻩC 、n2-1ﻩD 、1n 2+(3)在R t△A BC 中,a,b,c为三边长,则下列关系中正确的是( )A.222a b c += B . 222a cb +=C. 222c b a += D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25ﻩﻩB 、14ﻩC 、7ﻩ ﻩD 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
八年级勾股定理难不难学呀知识点
八年级勾股定理难不难学呀知识点勾股定理是初中数学内容中的重要部分之一,也是一个较为基础的知识点。
对于一些初学者来说,勾股定理的推导和应用可能会让他们感到困难。
那么,八年级勾股定理难不难学,下面就来看看它的知识点。
一、勾股定理的定义勾股定理也叫毕达哥拉斯定理,它是由公元前6世纪希腊数学家毕达哥拉斯提出的。
勾股定理的定义是:对于一个直角三角形,其两条直角边的平方和等于斜边的平方。
公式就是:a²+b²=c²(其中a、b为直角边,c为斜边)二、求解直角三角形的基本步骤1. 确定已知条件首先要确定直角三角形中已知的边长,如斜边和一条直角边,或是两条直角边之一以及斜边等等。
2. 整理已知条件将已知条件整理出来,代入勾股定理中的公式,进行计算。
3. 计算未知边长将未知边长代入公式中,计算得到答案。
三、勾股定理的应用1. 求解直角三角形通过勾股定理,可以快速求解直角三角形中的未知边长,实现对直角三角形的求解。
2. 计算斜线长度斜线长度的计算也可以通过勾股定理来实现。
在平面几何和立体几何中,我们常常需要计算斜线长度,勾股定理为我们提供了可靠的数学工具。
3. 应用于其他几何学问题无论是在二维还是三维几何学中,都可以用勾股定理进行应用。
比如在建筑工程中,勾股定理可以用来计算房子的斜角线长度;在天文学中,勾股定理可以用来测量恒星距离等。
总之,勾股定理是初中数学不可缺少的一部分。
对于初学者来说,掌握其知识点并进行多次实际计算练习,是非常重要的。
其实勾股定理并不难学,只要掌握好基本步骤和应用方法,它就会成为你数学学习中的得力助手。
初二数学第1单元 勾股定理
初二数学 第1单元 勾股定理 姓名 知识点1勾股定理: 直角三角形两直角边的平方和等于斜边的平方.如果用a ,b 和c 分别表示直角三角形的两直角边和斜边,那么a 2+b 2=c 2 .知识点2 勾股定理的逆定理: 如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形 .满足a 2+b 2=c 2的三个正整数 称为勾股数.例1 如图,在△ABC 中,∠ACB=90°,AB=50cm ,BC=30cm ,CD ⊥AB ,垂足D ,求CD 的长. 解:在Rt △ABC 中,AB=50,BC=30,AC 2=AB 2-BC 2 ∴AC=223050-=40∴S △ABC=21AC ×BC=21×40×30=600 ∵CD ⊥AB∴CD=245060022=⨯=∆AB S ABC ∴CD=24cm例 2 如图,在正方形ABCD 中, F 为DC 的中点, E 为BC 上一点, 且EC =41BC,求证: ∠EFA = 90︒ 证明:设正方形ABCD 的边长为4a ,则EC = a ,BE = 3a ,CF = DF = 2a ,在Rt △ABE 中()()AE AB BE a a a 2222224325=+=+=,在Rt △ADF 中()()AF AD DF a a a 2222224220=+=+=,在Rt △ECF 中()EF FC EC a a a 22222225=+=+=,由上述结果可得AE AF EF 222=+,由勾股定理逆定理可知△AEF 为Rt △, 且AE 是最大边, 即∠AFE = 90︒.B例3 如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?解:设伸入油桶中的长度为x 米,则应求最长时和最短时的值.(1)x 2=1.52+22,x 2=6.25,x=2.5,所以最长是2.5+0.5=3米.(2)x=1.5,最短是1.5+0.5=2米.答:这根铁棒的长应在2~3米之间(包含2米、3米).练习:1. 如图,在△ABC 中,∠ACB=90°,AC+BC=14cm ,AB=10cm ,求△ABB 的面积.解:∵AC+BC=14,即a+b=14∴(a+b )2=142,即a 2+2ab+b 2=196∵ AB=10,即c=10∴a 2+b 2=c 2=102=100∴100+2ab=196∴ab=48∴S △ABC=21AC ·BC=21ab=21×48=24cm 22. 如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠, 使它恰好落在斜边AB 上,且与AE 重合,求CD 的长.解:由题意可得Rt △ACD ≌Rt △AED ,BD=BC-CD=8-CD∴CD=ED ,AE=AC=6在Rt △ACB 中,AB 2=AC 2+BC 2=62+82=102∴AB=10∴BE=AB-AE=10-6=4在Rt △BDE 中,BD 2=DE 2+BE 2,即(8-CD )2=CD 2+42∴CD=3∴CD 的长为3cm.BB A D E。
初二数学勾股定理及其逆定理
勾股定理中考要求例题精讲1.勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么222a b c +=.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾——最短的边、股——较长的直角边、 弦——斜边。
CAB cba如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。
4.勾股数:满足222a b c +=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
模块一 勾股定理的逆定理【例1】 如果三角形的三边长a b c 、、满足222a b c +=,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.【答案】直角,逆定理【例2】 分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)【答案】(1)(2)(3)【例3】 下列线段不能组成直角三角形的是( ).A .a =6,b =8,c =10B .3,2,1===c b aC .43,1,45===c b a D .6,3,2===c b a【答案】D【巩固】在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形【答案】B .【巩固】下列由线段a 、b 、c 组成的三角形,不是直角三角形的是( )A .=345a b c ==,,B .45133a b c ===,, C .91215a b c ===,,D.2a b c ==,,【答案】D .【例4】 已知ABC △的三边长分别为5,13,12,则ABC △的面积为( )A .30B .60C .78D .不能确定【解析】∵22251213+=,∴三角形为直角三角形,∵长为5,12的边为直角边,∴三角形的面积= 12×5×12=30.【答案】A .【巩固】如图,已知正方形ABED 与正方形BCFE ,现从A ,B ,C ,D ,E ,F 六个点中任取三个点,使得这三个点能作为直角三角形的三个顶点,则这样的直角三角形共有( )FECBDAA .10B .12C .14D .16【解析】可得到14个直角三角形,分别为ABE △、ADE △、ABD 、△BED 、△BCE CFE 、、△△BCF BEF 、、△△ACF ADF ACD CDF AEC DBF 、、、、、△△△△△△【答案】C .FECBDA【例5】 在ABC △中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________; ②若a 2+b 2=c 2,则∠c 为____________; ③若a 2+b 2<c 2,则∠c 为____________.【答案】①锐角;②直角;③钝角【例6】 若ABC △中,()()2b a b a c -+=,则B ∠=____________; 【答案】90︒【例7】 如图,正方形网格中,每个小正方形的边长为1,则网格上的ABC △是______三角形.【答案】直角【例8】 下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).A .1∶1∶2B .1∶3∶4C .9∶25∶26D .25∶144∶169【答案】C【例9】 已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).A .一定是等边三角形B .一定是等腰三角形C .一定是直角三角形D .形状无法确定【答案】C【例10】 若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以22a a a -+、、为边的三角形的面积为______.【解析】97a >>,∴a =8 【答案】24.【例11】 ABC △的两边a b ,分别为512,,另一边c 为奇数,且a b c ++是3的倍数,则c 应为______,此三角形为______.【答案】13,直角三角形【例12】 如图,ABC △中,90C ∠=︒,330AC B =∠=︒,,点P 是BC 边上的动点,则AP 长不可能是( ) A .3.5 B .4.2 C .5.8 D .7P BC A【解析】利用垂线段最短分析AP 最小不能小于3;利用含30︒角的直角三角形的性质得出AB =6,可知AP最大不能大于6.此题可解.【答案】D .【巩固】在ABC △中,∠A :∠B :∠C =l :2:3,CD ⊥AB 于点D .若BC =2,则AD 等于A .1 BC .3 D.【答案】C【例13】 如图,在△ABC 中,已知AB =AC =2a ,∠ABC =15°,CD 是腰AB 上的高,求CD 的长.DCBA【解析】过点C 作CD ⊥AB 于D ,根据等腰三角形的性质,三角形的内角与外角的关系得到∠DAC =30°.在直角△ACD 中,根据30°角所对的直角边等于斜边的一半解得CD 的长.【答案】a【巩固】如图,在Rt ABC △中,已知,90ACB ∠=︒,15B ∠=︒,AB 边的垂直平分线交AB 于E ,交BC 于D ,且13BD =,则AC 的长是 .EDBCA【答案】6.5cm【例14】 如图所示,已知∠1=∠2,AD =BD =4,CE ⊥AD ,2CE =AC ,那么CD 的长是( )21EBDCA【解析】在Rt AEC △中,由于2CE =AC ,可以得到∠1=∠2=30°,又4AD BD ==,得到230B ∠=∠=︒,从而求出90ACD ∠=︒,然后由直角三角形的性质求出CD .【答案】2【例15】 如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.D CBA【答案】CD =9【巩固】如图所示,在ABC △中,::3:4:5AB BC CA =,且周长为36,点P 从点A 开始沿AB 边向B 点以每秒1cm 的速度移动;点Q从点B 沿BC 边向点C 以每秒2cm的速度移动,如果同时出发,则过3秒时,BPQ △的面积为( )2cm .Q【解析】设AB 为3x ,BC 为4x ,AC 为5x ,∵周长为36,AB +BC +AC =36,∴3x +4x +5x =36得x =3∴AB =9,BC =12,AC =15 ∵222AB BC AC +=,∴ABC △是直角三角形过3秒时,936236BP BQ =-==⨯=,∴()2119361822PBQ S BP BQ cm =⨯=⨯-⨯=△.【答案】182cm【例16】 如图,在ABC △中,CD AB ⊥于D ,9435AC BC DB ===,,. (1)求CD AD ,的值;(2)判断ABC △的形状,并说明理由.ABDC【答案】(1)∵CD ⊥AB 且CB =3,BD =95,故△CDB 为直角三角形,∴在Rt CDB △中,22229123()55CD CB BD =-=-=,在Rt CAD △中,222212164()55AD AC CD =-=-=.(2)ABC △直角三角形.∵AD =165,BD =95,∴AB =AD +BD =165+95=5, ∴222222435AC BC AB +=+==,∴根据勾股定理的逆定理,ABC △为直角三角形.【例17】 已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.【解析】连接AC ,∴5AC ,又∵222AC CD AD +=,∴90ACD ∠=︒ 【答案】.51+【例18】 如图所示,在四边形ABCD 中,已知:AB :BC :CD :DA =2:2:3:1,且∠B =90°,求∠DAB的度数.D BA【解析】连接AC .D CBA设DA =k ,则AB =2k ,BC =2k ,CD =3k .∵∠B =90°,AB :BC =2:2,∴∠BAC =45°,222222448AC AB BC k k k =+=+=, ∵()22238k k k -=,∴∠DAC =90°, ∴∠DAB =∠BAC +∠DAC =135°.【答案】135【例19】 如图,已知CA ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD .(1)试猜想线段CE 与DE 的大小与位置关系,并说明你的结论; (2)若AC =5,BD =12,求CE 的长.CDBE A【答案】(2)由(1)可知AC =5,AE =BD =12,∴CE =13【巩固】如图所示的一块地,已知AD =4m ,CD =3m ,AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.DCBA【解析】连接AC .∵AD =4m ,CD =3m ,AD ⊥DC∴AC =5m ∴△ACB 为直角三角形 ∴S △ACB = 12×AC ×BC = 12×5×12=30m 2, ∴这块地的面积=S △ACB -S △ACD =30-6=24m 2.【答案】24【例20】 阅读理解题:(1)如图所示,在ABC △中,AD 是BC 边上的中线,且12AD BC =.求证:90BAC ∠=︒(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.(3)直接运用这个结论解答下列题目:一个三角形一边长为2,这边上的中线长为1,另两边之 和为1DCBADCBA【答案】(1)∵BD=CD,AD=12BC,∴AD=BD=DC,∴∠B=∠BAD,∠C=∠CAD,∵∠B+∠BAD+∠CAD+∠C=180°,∴∠BAD+∠CAD=90°,即∠BAC=90°.为题目信息,不用解答.(2)根据题意用语言表述为:如果三角形斜边上的中线等于斜边的一半,那么这个三角形是直角三角形.(3)因为一个三角形一边长为2,这边上的中线长为1,所以这个三角形为直角三角形,又∵13AB AC+=+∴()2423AB AC+=+,222423AB AB AC AC+⨯+=+, 即22423AB AC BC⨯+=+,3AB AC⨯=∴直角三角形的面积可得3.【例21】已知:如图,在正方形ABCD中,F为DC的中点,E为CB的四等分点且CE=CB41,求证:AF⊥FE.【答案】连结AE,设正方形的边长为4a,计算得出AF,EF AE,的长,由222AF EF AE+=得结论【例22】已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;BCDNAM MA NDCB【解析】(1)根据含30°角的直角三角形的性质进行证明;(2)作CE⊥AM、CF⊥AN于E、F.根据角平分线的性质,得CE=CF,根据等角的补角相等,得∠CDE=∠ABC,再根据AAS得到△CDE≌△CBF,则DE=BF.在(1)的基础上,知AE+AF=AC,进而证明AD+AB=AC仍成立.BCD NAM F E M ANDCB【答案】(1)∵AC 平分∠MAN ,∴∠CAD =∠CAB =60°.又∠ABC =∠ADC =90°,∴11,22AD AC AB AC ==,∴AB +AD =AC .(2)结论仍成立.理由如下:作CE ⊥AM 、CF ⊥AN 于E 、F .∵AC 平分∠MAN ,∴CE =CF .∵∠ABC +∠ADC =180°,∴∠CDE =∠ABC ,∴△CDE ≌△CBF ,∴DE =BF .∵∠MAN =120°,由(1),知AE +AF =AC .∴AD +AB =AC .【例23】 在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?【答案】南偏东30︒。
初二数学勾股定理的知识点
初二数学勾股定理的知识点
初二数学勾股定理的知识点
1.勾股定理的内容:
如果直角三角形的两直角边分别是a、b,斜边为c,那么
a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾最短的边、股较长的直角边、弦斜边。
勾股定理又叫毕达哥拉斯定理
2.勾股定理的逆定理:
如果三角形中两边的'平方和等于第三边的平方,那么这个三角形是直角三角形。
即
3.勾股数:
满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5;5、12、13;7、24、25;8、15、17。
4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用
例题精讲:
例1:若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为
解析:可知三边长度为3,4,5,因此周长为12
(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为
解析:可知三边长度为6,8,10,则周长为24
例2:已知直角三角形的两边长分别为3、4,求第三边长.
解析:第一种情况:当直角边为3和4时,则斜边为5
第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7
例3:一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()
A.斜边长为25
B.三角形周长为25
C.斜边长为5
D.三角形面积为20
解析:根据勾股定理,可知斜边长度为5,选择C。
八下数学勾股定理
勾股定理是一个基本的几何定理,它指出直角三角形的两条直角边的平方和等于斜边的平方。
如果直角三角形的直角边长度分别为a 和b,斜边长度为c,那么勾股定理可以表示为:a^2 + b^2 = c^2。
勾股定理的应用非常广泛,它可以用于解决各种与直角三角形相关的问题。
例如,如果已知直角三角形的一边和另两边的关系,可以使用勾股定理来求出其他两边。
勾股定理的逆定理是:如果一个三角形的三边满足a^2 + b^2 = c^2,那么这个三角形是直角三角形。
这个逆定理常常用于判断一个三角形是否为直角三角形。
勾股定理和勾股定理的逆定理都是非常重要的数学定理,它们在几何学、三角学、代数学等领域都有广泛的应用。
在中国,勾股定理也被称作商高定理,并且早在周朝时期就已被提出。
在世界范围内,勾股定理也是被广泛接受和应用的数学定理之一,至今已有500多种证明方法。
初二数学勾股定理的简单应用
初二数学勾股定理的简单应用数学是一门非常重要的学科,在我们的日常生活中,数学无处不在。
而勾股定理则是数学中的一个重要理论。
在初二数学课程中,我们需要学习如何应用勾股定理来解决一些简单的问题。
下面,我将介绍勾股定理的基本原理以及其在初二数学中的简单应用。
一、勾股定理的基本原理勾股定理,又称毕达哥拉斯定理,是指直角三角形的两条直角边的平方和等于斜边的平方。
用数学符号表示为:a^2+b^2=c^2。
其中a、b分别表示直角三角形的两条直角边,c表示斜边。
这是一个非常重要的数学公式,它是很多数学问题的基础。
二、勾股定理在初二数学中的简单应用1. 求斜边当我们已知一个直角三角形的两条直角边的长度时,我们可以用勾股定理求出斜边的长度。
具体方法是,将已知的两条直角边的平方和相加,再开平方根即可。
2. 判断一个三角形是否为直角三角形如果一个三角形的三条边的长度满足勾股定理,那么它就是一个直角三角形。
如果三角形不是直角三角形,那么它的三条边的长度就不满足勾股定理。
3. 求两点间的距离我们可以将两点看作平面直角坐标系中的两个坐标点,然后用勾股定理求出这两个点之间的距离。
具体方法是,将两个点的坐标差的平方和相加,再开平方根即可。
4. 确定角度当我们已知直角三角形的两条直角边的长度时,我们可以用勾股定理求出斜边与某一直角边的夹角的正弦、余弦和正切值。
具体方法是,对于正弦、余弦和正切,分别用一个已知边的长度除以斜边的长度即可。
总结:初学勾股定理时,应该首先掌握它的基本原理,例如勾股定理公式的含义和用法。
随后,需要了解勾股定理在初二数学中的简单应用,比如求斜边、判断一个三角形是否为直角三角形、求两点间的距离和确定角度等。
只有掌握了勾股定理的基本原理,并能熟练应用其简单的应用,才能在以后的学习和应用中更加轻松自如。
初二数学 第十二讲 勾股定理
暑假数学思维训练初二数学 第十二讲 勾股定理【勾股定理概述】中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识。
其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。
这个原理是大禹在治水的时候就总结出来的呵。
”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。
所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。
如图所示,我们图1 直角三角形用勾(a )和股(b )分别表示直角三角形得到两条直角边,用弦(c )来表示斜边,则可得:222弦股勾=+,亦即:222c b a =+勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。
其实,我国古代人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。
如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。
其中所说的勾3股4弦5,正是勾股定理的一个应用特例(222543=+)。
所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。
书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。
”把这段话列成算式,即为: 22股勾弦+=,亦即:22b a c +=。
【勾股定理的证明】中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
初二数学勾股定理知识点及习题
初二数学勾股定理知识点及习题第一章勾股定理题勾股定理是指直角三角形的两直角边的平方和等于斜边的平方,即$a^2+b^2=c^2$。
常见的勾股数有:$(3,4,5)$,$(6,8,10)$,$(5,12,13)$,$(8,15,17)$,$(7,24,25)$。
这个定理一定要记在心中。
考点一:勾股定理的直接应用例1:正方形的面积是2,它的对角线长为多少?答案为$\sqrt{2}$。
例2:如图,由直角三角形ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为多少?答案为$128$。
考点二:求第三条边的长例1:若直角三角形ABC中,$\angle C=90^\circ$且$c=37,a=12$,则$b=35$。
例2:已知两线段的长为6cm和8cm,当第三条线段取时,这三条线段能组成一个直角三角形。
提示:所给的两条边长不一定都为直角边。
例3:若一个直角三角形的三边分别为$a,b,c$,且$a=144,b=25$,则$c=169$。
考点三:与高、面积有关例1:两个直角边分别是3和4的直角三角形斜边上的高是多少?答案为$3$。
例2:等腰三角形的底边为10cm,周长为36cm,则它的面积是$48$ $cm^2$。
勾股定理的逆定理是:如果三角形的三边长$a,b,c$满足$a^2+b^2=c^2$,那么这个三角形是直角三角形。
判断步骤:(1)比较$a,b,c$大小,找最长边;(2)计算两条短边的平方和,看是否与最长边的平方相等。
例1:木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面合格。
例2:试判断:三边长分别是$a-b,a+b,2ab(a>b)$的三角形是否为直角三角形?答案为是。
一、选择题1、把直角三角形的两直角边均扩大到原来的2倍,则斜边扩大到原来的几倍?答案为2.2、等腰$\triangle ABC$的底边$BC$为16,底边上的高$AD$为6,则腰长$AB$的长为12.3、将一根24cm的筷子,置于底面直径为15cm,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度为$h$,则$h$的取值范围为$[1,17]$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕达哥拉斯
在国外,相传勾股定理 是公元前500多年时古 希腊数学家毕达哥拉斯 首先发现的。因此又称 此定理为“毕达哥拉斯 定理”。法国和比利时 称它为“驴桥定理”, 埃及称它为“埃及三角 形”等。但他们发现的 时间都比我国要迟得多。
• 1876年4月1日,伽菲尔 德在《新英格兰教育日 志》上发表了他对勾股 定理的这一证法。
做一做
如图3-84,在等腰三角形ABC中,已知
AB=AC=13cm,BC=10cm.
(1)你能算出BC边上的高AD的长吗?
证明:因为在等B=AC,BC=10cm
所以 BD=DC=5cm(
)
即,在Rt△ADC中 AD2=132-52=144. (
图3-84
)
所以AD=12.
妈 妈 爱 一 些花 花草草 ,所以 几乎每 次一进 家,就 总感觉 多了一 些花, 我最喜 欢 那 闲 雅 清 淡的花 。 不 知 什 么 时, 家里有 了一盆 兰花, 肥沃的 土壤精 心呵护 着 这 盆 兰 花 ,那长 长的绿 绿的叶 子就像 一位貌 美如花 的少女 ,闭月 羞花。 有的头 顶 上 还 插 着 一朵小 黄花, 漂亮极 了。 利 剑 一 般的 叶子, 有墨绿 色的, 深深地 蕴 藏着兰 花浓厚 的香气 ;有青 绿色的 ,轻描 淡写出 兰花的 生机勃 勃;有 嫩黄色 的, 散 发 着 小 兰 花童真 未还的 稚气; 还有那 枯黄色 的,虽 已枯黄 却风韵 犹存, 还含着 芬 芳清香 的气息 。 它的叶 子是那 样细长 ,像女 人一样 爱打扮 ,兰花 的叶子 多, 却 不 密 集 , 而是清 清楚楚 ,有条 有理地 分开来 ,绽放 出不一 样的美 丽。 兰 花 是 娇 小 的 , 是娇嫩 的,是 无私奉 献的。 淡淡的 黄色安 在花瓣 上,向 四边展 开,望 见 了 令 人 心 旷神怡 ,内心 中有种 说不出 的喜悦 感。那 清香的 来源当 然来自 花蕊, 雄 蕊 和 雌 蕊 还有长 长细细 的小根 。 远 远 望 去 ,如 果有很 多盆摆 在一起 的话, 绿 色 的 叶 子 就像是 绿色的 天空, 黄黄的 小花就 像是暗 夜天空 中闪烁 不停明 亮的小 星 星 。 兰 花 是一种 让人赏 心悦目 的花, 每次不 高兴了 ,一回 家,一 望到兰 花,就 马 上 转 悲 为 喜,格 外开心 。 兰 花 绽 放 出美 丽,供 人们欣 赏,让 人们兴 奋,这
直角三角形两直角边a,b的平方和,等于 斜边c的平方.
a2 + b2 = c2.
c
a
b
股4
弦5
勾3
我国是最早了解勾股定 理的国家之一。早在三千多 年前,周朝数学家商高就提 出,将一根直尺折成一个直 角,如果勾等于三,股等于 四,那么弦就等于五,即 “勾三、股四、弦五”,它 被记载于我国古代著名的数 学著作《周髀算经》中.
3. 是否对于所有的直角三角形,它的三边之间都有这 样的特殊关系呢?即任作Rt△ABC,∠C=90°,若 BC=a,AC=b,AB=c,是否都有a2+b2=c2成立呢?
对比两个图形,你能验证出
什么结论吗?
b
a
a
b
a
c
cb
a
ca
bc
c
a
bc
b
a
b
a
b
提示:图中的两个大正方形面积相等吗?
结论
直角三角形的性质定理:
• 1881年,伽菲尔德就任 美国第20任总统。后来, 人们为了纪念他对勾股 定理直观、简捷、易懂、 明了的证明,就把这一 证法称为“总统证法”。
勾 股
在中国古代,人们把弯曲成直角的手臂的上半部分称为 "勾",下半部分称为"股"。我国古代学者把直角三角形 较短的直角边称为“勾”,较长的直角边称为“股”, 斜边称为“弦”.
所以AD的高为12cm.
(2)ABC的面积是多少呢?
解:因为在三角形ACB中,
面积=底×高÷2, 即10×12÷2=60. 所以 ABC的面积是60cm2.
图3-84
1.你能不能只用图3-83(乙)来证明勾股定理吗?
总统证法
a
c
图3-83(乙)
b
2.你能用总统证法来证明勾股定理吗?
cb a
作业:
不 正 如 无 私 奉献
1.2 勾股定理
探究
1.在方格纸上画一个顶点都在格点上的直角三角形 ABC,使两直角边分别为3cm和4cm,如图3-79 所示,试量出它的斜边c的长度.
A
我量的为 cm.
c=? b=4
B
a=3
C
2.再分别以这个直角三角形的三边为为边长向外作 正方形,得到三个大小不同的正方形,如图所示, 那么这三个正方形的面积有什么关系呢?
勾股定理
如果直角三角形两直角边分别为a,b,斜边
为c,那么 a2 + b2 = c2
即直角三角形两直角边的平方和等于斜边的平方.
a2 + b2 =c2 c2 - b2 =a2 c2 - a2 =b2
勾a
股
弦
c
b
试一试:
1、求下列2个三角形中的第三条边的长。
c=? b=2
a=1
c=17
a=15
b=?