椭圆及其标准方程教学设计

合集下载

椭圆及其标准方程

椭圆及其标准方程

椭圆及其标准方程(第一课时)教学设计一、椭圆及其标准方程的教材分析1. 椭圆及其标准方程在教材中的地位和作用椭圆及其标准方程是高中新教材人教A版选修2-1第二章§2.2.1的内容,主要学习椭圆的定义及其标准方程。

它是本章也是整个解析几何的重要基础知识,是高考重点考查章节。

2. 椭圆及其标准方程与教材前后的联系椭圆及其标准方程是继学习圆以后运用"曲线和方程"理论解决具体的二次曲线的又一实例。

从知识上说,它是对前面所学的运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为我们研究双曲线、抛物线这两种圆锥曲线提供了基本模式和理论基础。

3.教学重、难点剖析根据上述教材内容分析,结合新课标的要求,立足学生的认知水平,制定如下教学重、难点重点:重椭圆的定义、椭圆的标准方程、坐标化的基本思想难点:椭圆标准方程的推导与化简,坐标法的应用关键:含有两个根式的等式化简4.课时安排:两课时二、学情分析1.知识准备在知识方面,以前已有圆及其标准方程和曲线方程的学习,新知教学有很好的基础;2.能力储备在技能方面,学生已适应高中的学习,积累了一定的自主探究能力、概括能力和抽象思维能力。

3.学生情况学生求知的欲望强烈,喜欢探求真理,具有积极的情感态度。

三、教学目标分析1.知识与技能目标:(1)理解椭圆的定义。

(2)掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力。

2.过程与方法目标:(1)经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力。

(2)巩固用坐标化的方法求动点轨迹方程。

(3)对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3.情感态度价值观目标:(1)充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识(2)重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣(3)通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风(4)通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美(5)利用椭圆知识解决实际问题,使学生感受到数学的广泛应用性和知识的力量,增强学习数学的兴趣和信心四、方法与手段1.学法分析(1)合作探究式学习:引导学生分组探究,体会椭圆形成过程,总结椭圆定义。

椭圆及其标准方程(bis)

椭圆及其标准方程(bis)

椭圆及其标准方程(一)教学设计一、设计思路教材分析解析几何是数学中重要分支之一,它是数与形、代数与几何联系的典范。

平面解析几何是通过建立适当的平面坐标系科学的将几何问题转化为代数问题来解决,即运用代数的方法解决几何问题。

在必修2中学生已经初步掌握了解析几何解决问题的方法,并在平面直角坐标系中研究了直线和圆及它们的位置关系。

选修1中教材用三种重要的圆锥曲线进一步学习如何用代数法研究几何问题。

本章重点学习椭圆,通过椭圆及其标准方程的学习,让学生掌握推导这类轨迹的一般规律和化简方法。

之后用类比的方法学习其它两种圆锥曲线。

因此,本课的学习起到承前启后的作用。

学情分析知识方面:1、在必修2中学生已经学习了直线和圆的方程,初步熟悉了求曲线方程的一般方法和步骤。

2、在日常生活中学生对椭圆有一定的感性认识,但没有提升到理论层面,这是对他们的一个挑战。

3、学生虽在初中已经学习过含字母及两个根式的方程的化简方法,但是运算能力差,无法独立完成化简任务。

学生自身方面:1、我所授课的班级是幼教班,属于文科艺术类。

学生入学时成绩不理想,导致自卑心理强,学习态度不端正。

由于数学基础薄弱,对数学产生了畏惧心理,从而导致学习欲望减退。

好在经过一年多的高中学习,在教师的鼓励下,大部分学生各方面有所改善。

但是,数学的学习能力还有待提高。

2、学生多数学概念只停留表面,不重视概念的学习,所以没法做到深刻理解。

3、由于懒于动手或不敢动手,导致数学计算能力较差。

二、教学目标知识与能力经历从具体情境中抽象出椭圆模型的过程,理解椭圆的定义。

理解椭圆的焦点、焦距的定义。

方法与途径通过椭圆定义及标准方程的推导,进一步掌握求曲线标准方程的方法;培养学生数形结合、方程及化归等数学思想,从而提高学生学生解决几何问题的能力。

情感、态度与价值观在运用绳子画出椭圆而得出椭圆的定义的学习过程中,培养学生的动手能力,勇于实践的精神,帮助学生建立运动、变化的观点;亲历椭圆标准方程的获得过程,让学生感受数学的对称、简洁、和谐美,同时养成学生良好的学习习惯,培养了学生探索能力和合作意识。

椭圆及其标准方程(教学设计)

椭圆及其标准方程(教学设计)

椭圆及其标准方程教学设计一、教学目标:1.知识与技能目标:(1)掌握椭圆定义和标准方程.(2)能用椭圆的定义解决一些简单的问题.2.过程与方法目标:(1)通过椭圆定义的归纳和标准方程的推导,培养学生发现规律、认识规律并利用规律解决实际问题的能力.(2)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等数学思想和方法3.情感态度与价值观目标:(1)通过椭圆定义的获得培养学生探索数学的兴趣.(2)通过标准方程的推导培养学生求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.二、教学重点、难点:1.重点:椭圆定义及其标准方程2.难点:椭圆标准方程的推导三、教学过程(一)认识椭圆,探求规律:1.对椭圆的感性认识.通过演示课前老师和学生共同准备的有关椭圆的实 物和图片,让学生从感性上认识椭圆.2.通过动画设计,展示椭圆的形成过程,使学生认识到椭圆是点按一定“规 律”运动的轨迹.点B 是线段AC 上一动点,分别以21,F F 为圆心,||AB 与||BC 为半径做圆,观察两圆交点N M ,的轨迹.请同学们思考:(1) 在运动中,哪些量是不变的,哪些量是变化的?(2) 能不能把不变的量用数学表达式表达出来?(3) 点N M ,(椭圆上的点)是以怎样的规律进行运动的?(4) 用这个规律能不能画出一个椭圆?(二)动手实验,亲身体会用上面所总结的规律,指导学生互相合作(主要在于动手),体验画椭圆的过程(课前准备直尺、细绳、钉子、笔、纸板),并以此了解椭圆上的点的特征.请两名同学上台画在黑板上.在本环节中并不是急于向学生交待椭圆的定义,而是设计一个实验,一来是为了给学生一个创造实验的机会,让学生体会椭圆上点的运动规律;二是通过实践,为进一步上升到理论做准备.(三)归纳定义,完善定义我们通过动画演示,实践操作,对椭圆有了一定的认识,下面由同学们归纳椭圆的定义(学生分组讨论).椭圆定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F =2c )的点的轨迹叫做椭圆在归纳椭圆定义的过程中,教师根据学生回答的情况,不断引导他们逐步加深理解并完善椭圆的定义,在引导中突出体现“和”,“常数”及“常数”的范围等关键词与相应的特征.如:总结动画演示中两圆半径之和||||||21AB MF MF =+(常数)得到椭圆上点M 到两定点距离之和为常数.通过课件分别演示当两定点间距离等于线段||AB 长度时的轨迹(为一条线段)和当两定点距离大于线段||AB 长度时的轨迹(不存在),由学生完善椭圆定义中常数的范围.F 2F 1运动 点A CB教师指出:两个定点叫椭圆的焦点,两焦点的距离叫做椭圆的焦距.(四)合理建系,推导方程由学生自主提出建立坐标系的不同方法,教师根据学生提出的“建系”方式,把学生分成若干组,分别按不同的建系的方法推导方程,进行比较,从中选择比较简洁优美的形式确定为标准方程.已知椭圆的焦距)0(,2||21>=c c F F ,椭圆上的动点M 到两定点1F ,2F 的距离之和为a 2,求椭圆的方程.(1)以两个定点1F ,2F 所在直线为x 轴,线段1F 2F 的垂直平分线为y 轴,建立平面直角坐标系.设)0(221>=c c F F ,点),(y x M 为椭圆上任意一点,则{}a MF MF M P 221=+=(称此式为几何条件), 所以得 ()()a y c x y c x 22222=++++-(实现集合条件代数化), 化简,得 )()(22222222c a a y a x c a -=+-注:这是本节的难点所在,通过课堂精心设问来突破难点:①化简含有根号的式子时,我们通常有什么方法?②对于本式是直接平方好呢还是恰当整理后再平方?学生通过实践,发现对于这个方程,直接平方不利于化简,而整理后再平方,最后能得到圆满的结果.(2)以线段1F 2F 中点为坐标原点,1F 2F 所在直线为y 轴建立平面直角坐标系,所得椭圆方程为:)()(22222222c a a y c a x a -=-+相比之下,其它的建系方式不够简洁.同学们观察右图,当B 运动到线段AC中点时,两圆半径相等,即a MF MF ==||||21,因c OF =||1,则222||MO c a =-,不妨令222b c a =-,那么(1)(2)所得的椭圆方程可化为:12222=+b y a x ,)0(>>b a (1) 12222=+bx a y ,)0(>>b a (2) (在这里教师指出:我们刚才只是从“曲线的方程”的角度推导出了符合定义的点的坐标满足的方程,我们还需要从“方程的曲线”的角度来说明以方程(1)(2)的解为坐标的点都在曲线(椭圆)上,这个问题留给学生课后完成.)我们称(1)(2)为椭圆的标准方程.对标准方程的理解:1.所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;2.在12222=+b y a x 与12222=+bx a y 这两个标准方程中,都有0>>b a 的要求,也就是说,焦点在哪个轴上,哪个对应的分式的分母就较大.(五)应用举例,小结升华.例1.用定义判断下列动点M 的轨迹是否为椭圆.(1)平面内,到)0,2(),0,2(21F F -的距离之和为6的点的轨迹.(是)(2)平面内,到)2,0(),2,0(21F F -的距离之和为4的点的轨迹.(不是)(3)平面内,到)0,2(),0,2(21F F -的距离之和为3的点的轨迹.(不是)例2.方程1322=+y a x 表示焦点在x 轴上的椭圆,则a 的取值范围为:),3(+∞例3.已知椭圆方程为191622=+y x ,则两焦点坐标为:)0,7(),0,7(- 小结: 由学生总结本节课所学习到的知识和思想方法.1.知识总结:椭圆的定义,标准方程2.思想方法总结:教师根据学生的总结做适当补充、归纳、点评。

《椭圆及其标准方程》教学设计一等奖3篇

《椭圆及其标准方程》教学设计一等奖3篇

4、《椭圆及其标准方程》教学设计一等奖一、教学内容解析1、地位与作用:本章是北师大版选修1—1的第二章《圆锥曲线与方程》,是高中数学解析几何的第二大部分。

解析几何是数学中一个重要的分支,它联系了数学中的数与形、代数与几何等最基本对象之间的联系。

在北师大版必修2中,学生已掌握了在平面直角坐标系下研究直线和圆的方法,本章教材进一步利用三种基本圆锥曲线深化代数与几何的关系。

本章教材内容的顺序是:椭圆→抛物线→双曲线→曲线与方程。

这样安排的用意是,先学圆锥曲线,再学曲线与方程,这样的顺序更有利于学生的学习,符合学生从特殊到一般,具体到抽象的认知规律。

在圆锥曲线的学习过程中,不断的渗透曲线与方程的思想,为学生理解并掌握“曲线与方程”这一概念奠定了基础。

本节是北师大版选修1—1的第二章《圆锥曲线与方程》第1节的内容,主要学习椭圆的定义、标准方程及其简单的应用,分为两课时,本节课是第1课时,主要学习椭圆的定义及其标准方程。

教材以椭圆为基础和重点说明了求方程并利用方程讨论几何性质的一般方法,然后在认知抛物线和双曲线中得到了巩固和应用,因此《椭圆及其标准方程》这一节课起到了承上启下的作用。

2、教材处理顺序教材在椭圆的定义这个内容的安排上是:先从直观上认识椭圆,再从画法中提炼出椭圆的几何特征,由此抽象概括出椭圆的定义,最后是椭圆定义的简单应用。

这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解。

教材在本节内容中只研究了中心在原点,焦点在轴上的椭圆的标准方程,让学生自己去归纳焦点在轴上的椭圆的标准方程。

这样的处理给学生提供了一次探究和交流的机会。

有利于学生对抛物线标准方程的理解,有利于学生思维能力的提高和学习兴趣的培养。

3、数学思想方法本节内容蕴含了:数形结合思想、转化化归思想等。

在推导椭圆标准方程过程中让学生体会移项再平方去根号的方法。

椭圆及其标准方程教学设计

椭圆及其标准方程教学设计

椭圆及其标准方程教学设计椭圆及其标准方程教学设计1前言:新课程改革实施以来,教学模式发生了重大的改变,由以往的“一言堂”形式向多种“开放式”教学模式进行转变,在教育观念的不断转变下,对于我们的一线老师也提出了更高的要求,新形势下,要想成为一名合格的老师,就需要不断的加强自己的业务能力,使自己能够变成一名受学生尊重和喜爱的老师,从而更好的提高学生的教学成绩。

基于以上原因,本人尝试制定出椭圆及其标准方程第一课时的教学设计如下:一,教材分析本节课是《全日制普通高中课程标准实验教科书》(选修1-1)(人民教育出版社课程教材研究所中学数学教材实验研究组编著)第二章《圆锥曲线与方程》第一节《椭圆》的第一课时。

在学习本课之前,我们已经学习了直接和圆的相关内容,使学生对于曲线和方程的概念有了一定的了解,同时,对于利用坐标法来研究几何也有了一定的认识,对于数形结合思想也有了一定的了解,从根本上来讲,本节课也属于曲线方程的一个延伸,也是利用坐标法来研究几何图形的进一步加强,本节课的掌握情况的好坏,将直接影响后面双曲线和抛物线的学习。

对于学好圆锥曲线也有重要的意义。

椭圆这一节课体现出来的一些学习方法对于后面双曲线和抛物线的学习有一个重要的引导作用,但是本节课也难度较大,对于缺乏数形结合能力,不爱作图的学生来廛,学习起来是非常困难的,尤其是我所要教授的是一群普通高中的学生,更是难上加难的。

二,学习对象分析1.学习对象本节课重点讲解内容是椭圆,经过上一节课的学习,学生有了一些求点的轨迹问题的知识基础和能力,但是由于我们的学生作为普通高中的一名学生,在高中招走700名学生后,才进入到我们学校的学生来讲,他们的起点低,学习习惯不好,导致了我们的教学难度的加大,所以,从研究圆,跨越到椭圆,学生会存在一定学习上的障碍,教学过程中更要注意这方面的教学。

对于学生的抽象思维,分析能力都是一个较大的考验。

2.知识基础上课前,要对学生对于直线和圆的方程,以及曲线和方程部分知识点进行适当的回顾,将学生拉到利用坐标法来解决实际问题的过程中来。

椭圆及其标准方程教资面试教学设计

椭圆及其标准方程教资面试教学设计

椭圆及其标准方程教资面试教学设计全文共四篇示例,供读者参考第一篇示例:椭圆是解析几何中一种重要的曲线,它具有许多独特的性质和特点。

在高中数学课程中,椭圆的讨论通常涉及到椭圆的定义、性质、标准方程等方面的内容。

在教学中,我们不仅要让学生掌握椭圆的基本概念和相关定理,还要帮助他们理解椭圆的几何意义和应用。

因此,设计一堂关于椭圆及其标准方程的教学课程显得至关重要。

一、教学目标:1. 知识与技能:通过本节课,学生将能够掌握椭圆的基本概念、性质、标准方程等内容,并能够运用所学知识解决与椭圆相关的问题。

2. 过程与方法:通过课堂讲解、示范、练习、讨论等多种方式,激发学生学习的兴趣,培养学生的逻辑思维和数学分析能力。

3. 情感态度与价值观:通过椭圆的教学,培养学生的数学审美和求知欲,引导学生积极探究,培养其解决问题的能力和勇气。

二、教学内容与重难点:1. 椭圆的定义与性质:介绍椭圆的定义、焦点、长轴、短轴等基本概念,讨论椭圆的性质和特点。

2. 椭圆的标准方程:介绍椭圆的标准方程及其推导过程,讨论标准方程的含义和几何意义。

3. 椭圆的应用:通过实例分析,引导学生探讨椭圆在现实生活中的应用,并培养学生的应用问题解决能力。

重点:椭圆的定义、性质,椭圆的标准方程及其几何意义。

难点:椭圆的应用及相关问题的解决。

三、教学过程设计:1. 导入(5分钟)教师引入椭圆的基本概念,通过引入一个生活中的场景或问题,引起学生的兴趣和好奇心,激发学生对椭圆的学习积极性。

2. 讲解椭圆的定义与性质(15分钟)教师讲解椭圆的定义、焦点、长轴、短轴等基本概念,讨论椭圆的性质和特点,示范相关例题并引导学生思考。

3. 推导椭圆的标准方程(15分钟)教师介绍椭圆的标准方程及其推导过程,讨论标准方程的含义和几何意义,示范推导过程并引导学生自主探索。

4. 解题练习(20分钟)教师设计一些与椭圆相关的题目,引导学生独立或小组合作解题,巩固所学知识,培养学生分析和解决问题的能力。

椭圆及其标准方程一优秀教学设计精选全文完整版

 椭圆及其标准方程一优秀教学设计精选全文完整版

可编辑修改精选全文完整版教学设计(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导13分钟1.标准方程的推导.教师引导学生得出椭圆方程,由a、b的关系判定焦点在哪一个坐标轴上。

2.教师给出表格和学生一起总结椭圆的方让学生自己去推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输”为“发现”。

教师结合猜想加以引导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)F1(-c,0)、F2(c,0),这里c2=a2-b2;F1(-c,0)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与8分钟,练习12分钟例1求适合下列条件的椭圆的标准方程:1.教师引导学生得学生自己写解题过程 2.学生板演 3.学生讨论4.老师出示练习题(课件)学生做练习题(1)掌握椭圆方程a、b之间的关系 (2)掌握运用椭圆定义法、待定系数法求椭圆的标准方程。

椭圆及其标准方程优秀教学设计

椭圆及其标准方程优秀教学设计

y2 b2
1a
b
0即为所求椭圆的标准方程,它表示椭圆的焦点在 x
轴上,焦点是 F1 c,0、 F2 c,0 .这里 c2 a2 b2 . 如果使点 F1 、 F2 在 y 轴上,点 F1 、 F2 的坐标分别为 F10, c 、 F2 0,c,那么所
得方程变为
y2 a2

x2 b2
1 a
b

0 ,这个方程也是椭圆的标准方程.
2.两种标准方程的比较(引导学生归纳).
两种标准方程中都有 a b 0 , c2 a2 b2 ,因此对于方程 Ax2 By2 C ,只要
A 、 B 、 C 同号就是椭圆方程;它们的不同点是椭圆的位置不同,焦点坐标也不相同.由
坐标、几何量的表达式简单化,注意充分利用图形的对称性,使学生认识到以下的选取方 法是恰当的.
以两定点 F1 、 F2 所在直线为 x 轴,线段 F1
F2 的垂直平分线为 y 轴,建立直角坐标系(如
图).设 F1F2 2c . c 0, M x,y 为椭圆上
的任意一点,则 F1 c,0、 F2 c,0 .又设 M 与 F1 、 F2 的距离的和等于 2a .
两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.
学生开始只强调椭圆的几何特征—到两个定点 F1 、 F2 的距离的和等于常数.这时教
师在演示中再从两方面加以强调: ①将穿有铅笔的细绳拉到图板平面外,得到的不是椭圆,而是椭球形.使学生认识到
必须限制:“在平面内”;
②这里的常数为什么要大于 F1F2 ?教师边演示边提示学生注意:若常数 F1F2 ,则
理后再平方,化为 a2 c2 x2 a2 y2 a2 a2 c2 ;

椭圆及其标准方程

椭圆及其标准方程

8.1椭圆及其标准方程青海昆仑中学李庆一、概述:“椭圆及其标准方程”一节课是人教版《高中数学》第二册(上)的重要内容。

共三课时完成,本节为第一课时。

重点为椭圆的定义和标准方程,难点为椭圆标准方程的推导。

高中数学学科课程标准对椭圆的定义和标准方程达到“掌握”的层次,即在对有关概念有理性的认识,能用自己的语言进行叙述和解释,了解它们与其他知识联系的基础上,通过训练形成技能,并能作简单的应用。

通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面学生类比椭圆的研究过程和方法,为学习双曲线、抛物线奠定基础。

二、教学目标分析:(一)知识与技能:1.观察椭圆的形成过程,探索椭圆的定义。

2.能够动手模仿实验,演绎归纳出椭圆的定义。

3.复习曲线的方程的求解方法,探索并写出椭圆的标准方程的推导过程。

4。

通过练习及例题的解决,能正确运用椭圆的定义及标准方程解题。

(二)过程与方法:1.通过观察彗星的运行轨道,感知椭圆的形状.2.通过分组动手实验的过程,发现椭圆的定义,提升探索知识的能力。

3.模仿求曲线的方程的方法,能够根据椭圆的定义,写出椭圆的标准方程的推导过程,学会对知识的迁移。

4.通过对例题和练习的解决,理解和掌握椭圆的定义及标准方程.5.通过对椭圆定义及标准方程的推导过程的总结,学会对数学定义的抽象概括.(三)情感态度与价值观:1.感受椭圆定义的探索过程,形成良好的思维品质。

2.通过椭圆标准方程的推导,形成大胆创新、敢于求异学习品质。

3.通过分组讨论,学会与人合作,并能与他人交流思维的过程和结果。

形成良好的与人合作的交往品质。

三、学习者特征分析:本节课的学习者特征分析主要是根据文理科分班的期末统考成绩和教师对学生经过一学期的教学实践而做出的:1.学生是青海昆仑中学高二年级的学生.2.班级容量较大,女生多男生少.对事物的观察认真、仔细,但动手操作实验能力较弱。

3.猜想演绎推理和归纳的能力较弱,运用已知知识探索未知知识的意识较弱。

《椭圆及其标准方程》教学设计

《椭圆及其标准方程》教学设计

3.1.1《椭圆及其标准方程》一、教学内容分析本节课是高中新课程人教A版数学选择性必修第一册第三章3.1《椭圆》的第一节《椭圆及其标准方程》.继学习圆之后,继续采用坐标法,在探究圆锥曲线集合特征的基础上,建立它们的坐标,得到方程。

从知识上说,它是对前面所学的运用坐标法研究曲线的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为我们研究双曲线、抛物线这两种圆锥曲线提供了基本模式和理论基础. 因此,这节课有承前启后的作用,是本节乃至本章的重点. 课标要求:“经历从具体情境中抽象出椭圆模型的过程,掌握椭圆的定义及标准方程.”二、三维目标(1)知识与技能:①了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程;②理解椭圆的定义,掌握椭圆的标准方程及其推导过程.(2)过程与方法:①亲身经历椭圆定义和标准方程的获取过程,掌握求曲线方程的方法和数形结合的思想;②会用运动变化的观点研究问题,提高坐标法解决几何问题的能力.(3)情感态度与价值观:①通过主动探究、合作学习,感受探索的乐趣与成功的喜悦;培养认真参与、积极交流的主体意识和乐于探索创新的科学精神.②通过椭圆知识的学习,进一步体会到数学知识的和谐美,几何图形的对称美;提高学生的审美情趣.三、学习者特征分析从生活经验储备来看:高二学生对椭圆实物实例有所了解,但只限于感性认识,缺少理性分析;从知识储备来看:已经掌握曲线和方程的关系,求曲线方程的方法和步骤,具备一定的观察能力和分析问题的能力. 学生认识了椭圆的实物,却无法像“圆”一样,定性、定量分析,产生概念;从学习心理方面来看:已具备了对几何图形的一定水平层次的想象能力,已具备一定的逻辑推理能力和分析问题的能力。

这个阶段的学生还以抽象逻辑思维为主要发展趋势,他们的思维正从属于经验性的逻辑思维向抽象思维发展,仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。

从年龄特征上来看:高二学生身体和心理正趋于成熟,骨子里有一种敢创敢拼的冲劲,对新生事物敢于发表自己的见解和观点。

《椭圆及其标准方程》教学设计

《椭圆及其标准方程》教学设计

“椭圆及其标准方程”的教学设计一、教材分析1.1、教学内容椭圆是常见的曲线,通过引言和日常生活的体验,学生对椭圆已有一定的认识. 并且学过求简单曲线方程和利用曲线方程来研究曲线几何性质的初步知识.为了使学生掌握椭圆的本质特征,得到椭圆的定义,教材介绍了一种画椭圆的方法,通过画图的过程揭示椭圆的几何特征.得到椭圆标准方程,首先要建立坐标系,曲线上同一点在不同的坐标系中的坐标不同,曲线的方程也不同,为了使方程简单,必须注意坐标系的选择恰当. 通过本节学习,学生一方面认识到椭圆与圆的区别和联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础.1.2、地位作用解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系.圆锥曲线是平面解析几何研究的主要对象.圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,是今后进一步学习数学的基础.教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题.由于教材以椭圆为重点求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用.二、学情分析本节课是学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形,具备了学习本节课所需的知识.学生学习的困难是椭圆标准方程的推导与化简,带根式的方程的化简学生感到困难,也是教学的难点,特别是由M适合的条件所列出的方程为两个根式的和等于一个非0常数的形式,化简时要进行两次平方,方程中字母超过3个,且次数高、项数多,由于初中代数学习中这方面的知识准备不够充分,所以教学中要注意引导学生分析这类方程化简的方法.三、教学目标1、经历从具体情境中抽象出椭圆模型的过程,感受数学与生活的联系;掌握椭圆的定义、标准方程及标准方程的推导过程;在化简椭圆方程的过程中提高学生的运算能力.2、经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力;学会用坐标化的方法求动点轨迹方程;四、重点难点1、教学重点:椭圆的标准方程;坐标法的基本思想.2、教学难点:椭圆标准方程的推导与化简;坐标法的应用.五、教学过程实录5.1、创设情景 提出问题1.举出日常生活当中哪些图形给我们椭圆的感觉.(如眼睛的镜框、橄榄、鸭蛋……)设计意图:椭圆在生活中很常见,学生多数会举“固定”的椭圆,让学生感受直观的椭圆,感受数学与生活的联系.2.一些“会动”的椭圆.如:天体中行星的运动轨迹.其实我们身边也存在着一些“会动”的椭圆,只是我们平时不太关注而已.我们来看这一个圆柱形透明玻璃杯,当玻璃杯正常放着时,水面的边界线是一个圆如果倾斜放着时,水面的边界线是一个椭圆生:.*现在我们来看一般情况,一个圆柱竖直放着时,用一个平面去截,当平面呈水平状态时截面图形是圆,当平面略偏离水平状态时截面图形是边界线是椭圆.5.2、动手操作 构建概念我们一起探究38P 页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm 长),两端各结一个套,图钉两个),教师准备无弹性细绳子一条(约60cm ,一端结个套,另一端是活动的,图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.在这一过程中,你能说出移动的笔尖(动点)满足的几何条件是什么?设计意图:在教师的引导下动手画图,可以促进学生形成良好的认知结构.几何画板呈现学生通过观察、思考、归纳出椭圆的定义:把平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆.其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M 时,椭圆即为点集P ={}12|2M MF MF a +=.5.3、建立椭圆标准方程5.3.1猜想椭圆的标准方程我们知道当圆柱形透明玻璃杯正常放着时,水面的边界线是一个圆,如果倾斜放着时,水面的边界线是一个椭圆,圆与椭圆有着密切的关系,把圆压扁就是椭圆一个圆按某个方向作伸缩变换可以得到椭圆,我们已经知道了圆的标准方程222x y r +=,那么椭圆的标准方程会是什么呢?(几何画板演示圆变成椭圆,同时把圆的标准方程写成22221x y r r +=)请猜猜看?我们可以用22,a b 分别来表示分母,即22221()x y a b a b+=≠ 设计意图:学生已经知道了圆的定义,圆的标准方程,对椭圆有了直观感性的认识,会把“扁的圆”叫做椭圆,运用类比推理,借由学生已有的认知来生成新知,是数学教学中常用的途径,由此我们类比猜想椭圆的标准方程. 5.3.2 推导椭圆的标准方程圆的标准方程我们是如何推导的?——建立坐标系、设点的坐标、列式、化简.师:尽可能利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴,那么可以怎样建立?——取过焦点1F 、2F 的直线为x 轴,线段1F 2F 的垂直平分线为y 轴.建立直角坐标系(如图), 我们设(,)M x y 是曲线上的任意一点,焦距122F F c =,M 与1F 、2F 两点的距离之和为常数2a ,按椭圆的定义可得P ={}12|2M MF MF a +=,2222()()2x c y x c y a ++-+=(22a c >) ①我们能否把这方程化得简单些?师生共同分析讨论,再让同学板演其他同学笔记上演算。

椭圆及其标准方程》教学设计

椭圆及其标准方程》教学设计

椭圆及其标准方程》教学设计一、教学目标:1、知识与技能目标(1)掌握椭圆的定义及焦点、焦距的概念,能正确推导椭圆的标准方程.(2)掌握求椭圆标准方程的定义法和待定系数法.2、过程与方法目标(1)经历椭圆的形成过程,培养学生运动变化的观点,训练学生的动手的能力、合作学习能力和运用所学知识解决实际问题的能力.(2)通过联系曲线方程的求法,推导椭圆的标准方程,培养学生运用类比、分类讨论、数形结合思想解决问题的能力.3、情感态度与价值观目标(1)通过小组合作,培养学生的协作、友爱精神,体验成功的快乐.(2)激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.二、重点、难点:重点:掌握椭圆的定义及标准方程,理解坐标法的基本思想;难点:椭圆标准方程的推导与化简.三、教学方法:探究式教学法,即教师通过问题诱导f启发讨论f探索结果,引导学生直观观察f归纳抽象f总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.四、教具准备:多媒体课件和自制教具:绘图板、图钉、细绳.五、教学设计情景引入学习探究(一)材料2:地球围绕着太阳旋转;材料3:“嫦娥三号”升空录像.引入课题:椭圆及其标准方程.动手实验:(1)取一定长的细绳,把它的两个端点固定在黑板的同一点处,套上铅笔,拉紧绳子,旋转一周,会得到什么图形?(2)把绳子的两个端点拉开一段距离,再套上铅笔旋转,又会得到什么图形?(3)继续拉远两个端点的距离,直到把绳子拉直,又会得到什么图形?(4)动画演示椭圆的形成过程.师:引导学生观察:椭圆在实际生活中是很常见师:引导学生观察动画,地球运行轨道是椭圆;问“嫦娥三号”的运行轨道是什么?生:常娥三号着陆先是按椭圆轨道运行,再直线着陆.师:板书课题.请学生拿出课前准备的硬纸板、细线、铅笔实验(1)教师演示,学生观察思考.实验(2)、(3),各小组学生利用手中工具在图板上进行实验,一起合作画椭圆.利用学生熟知的地理规律:地球围绕太阳转引入,让学生感到亲切自然;通过“嫦娥三号”的升空录像,让学生感受现实,激发学生的兴趣,培养爱国思想.通过做实验,让学生动手实践,体验椭圆的形成过程,加深对椭圆定义的理解将学生分为四人一组,通过分组讨论、研究,增强学生的合作意识.学习探究(二)【学情预设】学生可能会建系如下几种情况:方案一:把匚、F2建在X轴上,以FF的中点为原点;12方案二:把匚、F2建在X轴上,以匚为原点;方案三:把匚、F2建在x轴上,以F原点;2方案四:把匚、F2建在X轴上,以.F2与x轴的左交点为原点;方案五:把匚、F2建在x轴上,以FF与x轴的右交点为原点;12经过比较确定方案一.下面我们来建立椭圆的方程建系:以F,F所在的直线为x轴,以12线段F]F2的垂直平分线为y轴建立直角坐标系xOy.设点:设点M(x,y)是椭圆上的任意一点,点M到F,F的距离和为2a,焦距12为2c(c〉0),则.(—c,0),F2(C,0)列式:由定义:|M「1+叫=2a,即(2)如何设点?(3)怎样列式?⑷如何化简?建立椭圆的方程是本节课的难点,为降低难度,让学生回顾求曲线方程的步骤,以已有的知识来探求新的知识,温故知新,教师再加以正确的引导,新知会自然形成.生:回顾求曲线方程的步骤:⑴建系,⑵设点,⑶列式,⑷化简.师:引导学生按求曲线方程的步骤建立椭圆的方程.生:思考,回答:(1)怎样建立适当的坐标系生:分析化简的方法,在J(x+c)2+y2+J(x-c)2+y2=2a练习本上完成化简.化简:整理,得(a2一c2)x2+a2y2=a2(a2一c2)•.•a〉0,c〉0,2a〉2c a2(a2—c2)>0.方程的两边都除以a2(a2—c2),得教学环节教学过程师生互动设计思想学习探究(二)OF=OF=c12则|MO|=、.;a2-c2,令b=\;'a2-c2,则b2=a2-c2,那么方程变为:=1(a>b>0).多媒体展示动画:将椭圆的焦点放在y轴上结论:当焦点在y轴是时,椭圆的方程为:y2x2—+一=1(a>b>0).a2b2多媒体展示图表:让学生对照图形、方程理解记忆.师:请同学们在图中找出长度等于a,c的线段,则师:引导学生推出椭圆的标准方程.师:指出其焦点在x轴上,坐标为F](―c,0),F2(C,0)生:观察图像,识记方程.活动过程:点拨-----板演-----点评师:若焦点放在y轴上,方程又怎样?生:小组讨论椭圆的方程,相互交流、补充,得出结论.生:分析方程、图形,识记椭圆的标准方程.师:引导学生如何根据方程判断焦点的位置?实践体验1、你能判断下列椭圆的焦点位置生:根据所学椭圆的标吗?并写出焦点坐标.⑵25x2+16y2=400.准方程,思考后回答.师生共同矫正.生:总结如何判断焦点的位置?椭圆的标准方程的导出,放手给学生有很大的难度,这里采取有意义的接受学习的方式,教师对照图形,加以引导,让学生明白方程中字母的几何意义,对方程的理解有很大的作用.展示动画,通过类比的方法,让学生对照焦点在x轴的情形,写出焦点在y轴上时,椭圆的标准方程.通过图表便于对比,加深学生对两个方程及几何意义的认识.尝试练习,加深对方程及几何意义的理解.六、板书设计:七、布置作业:。

《椭圆及其标准方程》教学设计(精选3篇)

《椭圆及其标准方程》教学设计(精选3篇)

《椭圆及其标准方程》教学设计(精选3篇)《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础学问。

这一节课是在《直线和圆的方程》的基础上,将讨论曲线的方法拓展到椭圆,又是连续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好预备。

它的学习方法对整个这一章具有导向和引领作用,所以椭圆是同学学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。

二、学情分析高中二班级同学正值身心进展的鼎盛时期,思维活跃,又有了相应学问基础,所以他们乐于探究、敢于探究。

但高中生的规律思维力量尚属阅历型,运算力量不是很强,有待于训练。

基于上述分析,我实行的是“创设问题情景-----自主探究讨论-----结论应用巩固”的一种讨论性教学方法,教学中采纳激发爱好、主动参加、乐观体验、自主探究的学习,形成师生互动的教学氛围。

使同学真正成为课堂的主体。

三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的有用性;2、进行分组试验,让同学亲自动手,体验学问的发生过程,并培育团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、把握标准方程及其推导。

2、过程与方法目标:注意数形结合,把握解析法讨论几何问题的一般方法,注意探究力量的培育。

3、情感、态度和价值观目标:(1)探究方法激发同学的求知欲,培育深厚的学习爱好。

(2)进行数学美育的渗透,用哲学的观点指导学习。

五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。

教学难点:标准方程的推导。

四、说教学过程(一)、创设情景,导入新课。

(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。

2、提问:同学们在日常生活中都见过哪些带有椭圆外形的物体?对同学的回答进行筛选,并利用微机放映几个例子的图片。

设计意图:通过观看影音资料,一方面使同学简洁了解椭圆的实际应用,另一方面产生问题意识,对讨论椭圆产生心理期盼。

椭圆及其标准方程教案

椭圆及其标准方程教案

椭圆及其标准方程教案•相关推荐椭圆及其标准方程教案(精选5篇)作为一位杰出的教职工,通常需要用到教案来辅助教学,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

那么应当如何写教案呢?以下是小编为大家整理的椭圆及其标准方程教案(精选5篇),仅供参考,希望能够帮助到大家。

椭圆及其标准方程教案1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程。

(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力。

(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神。

教学重点:椭圆的定义和椭圆的标准方程。

教学难点:椭圆标准方程的推导。

教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力。

教具准备:多媒体课件和自制教具:绘图板、图钉、细绳。

教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片。

(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程。

提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆。

《椭圆及其标准方程》教学设计

《椭圆及其标准方程》教学设计
《椭圆及其标准方程》教学设计
一.教材分析
本节课是学生在必修阶段学习"平面解析几何初步"的基础,《圆锥曲线与方程》的第一节课,主要学习椭圆的定义和标准方程。
它是将研究曲线的方法由圆拓展到椭圆,是本章也是整个解析几何部分的重要基础知识。从知识上说,是继续学习椭圆的几何性质的基础;从方法上说,它为我们研究双曲线、抛物线这两种圆锥曲线提供了基本模式和理论基础.
三.教学目标
根据教学大纲的要求和学生的认知心理,确定本节的教学目标如下:
知识与技能:了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程;使学生理解椭圆的定义,掌握椭圆的标准方程及其推导过程.
过程与方法:亲身经历椭圆定义和标准方程的获取过程,学会运用运动变化的观点研究问题.
②在方程的推导过程中碰到了无理方程的化简, 是学生的难点.先让他们分组讨论,相互交流自己过程,最后投影仪展示。
③由教师讲解令 ,是为了简化推导过程和最后得到的方程形式整洁、简洁,要让学生认真领会.
④由学生和老师一块总结椭圆两种标准方程的异同点,加深对方程形式的认识。
⑤为了对所学知识进行及时反馈,采用表格形式对两种方程对比,从而达到深化知识理解,构建知识网络的目的.
九.教学设计意图及说明:
1、借助多媒体生动、直观的演示,使学生明确学习椭圆的重要性和必要性。
2、展示日常生活中常见的实例,让学生从具体情境中抽象出椭圆模型.
3、通过学生自己动手实验,归纳出椭圆的概念.
4、变方法的传授过程为问题的解决过程,引导学生自主探讨椭圆标准方程的推导.
从学生情况看,对于椭圆的定义的理解,学生往往忽略 "常数"的限定,教学中可以提出问题"常数为什么要大于两定点的距离?"让学生分析,最后动画展示这两种特殊情况,加深对定义的理解。

《椭圆及其标准方程》优秀教学设计

《椭圆及其标准方程》优秀教学设计

§2.1.1椭圆及其标准方程一、教学背景分析(一)教材地位分析:《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.(二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略.(三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍.二、教学目标设计:(一)知识目标:掌握椭圆的定义、标准方程及其几何图形;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法.(二)能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、合作学习能力和运用知识解决实际问题的能力.(三)情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神.三、教学重点、难点:(一)教学重点:①.了解椭圆的实际背景,经历从具体情景中抽象出椭圆的过程,理解椭圆标准方程的推导与化简;②.掌握椭圆的定义、标准方程及其几何图形;③椭圆标准方程的形式与图形、焦点坐标的对应关系;④根据条件求椭圆的标准方程。

(二)教学难点:①椭圆标准方程的推导与化简;②应用标准方程的形式与图形、焦点坐标对应关系解题。

椭圆及其标准方程教学设计

椭圆及其标准方程教学设计

椭圆及其标准方程(一)教学设计1 教学分析1.1 教材内容分析高中数学教学以发展学生数学学科核心素养为导向, 创设合适的教学情境, 启发学生思考, 引导学生会用数学的眼光观察世界, 会用数学的思维思考世界, 会用数学的语言表达世界。

要以数学学科知识为载体, 让学生掌握处理新问题的基本思想和方法并获得基本活动经验。

椭圆及其标准方程是圆锥曲线的起始课, 主要内容是研究椭圆的定义及其标准方程, 属于概念性知识。

从知识上讲, 本节是在必修课程《数学2》中直线和圆的基础上, 对解析法的又一次实际运用, 同时也是进一步研究椭圆几何性质的基础;从方法上讲, 为进一步研究双曲线、抛物线提供了基本模式和理论基础;从教材编排上讲, 三种圆锥曲线独编为一章, 体现椭圆的重要地位。

解析几何的意义主要表现在数形结合的思想上.在研究椭圆定义和方程的过程中, 几何直观观察和代数严格推导相互结合, 同时要借助圆作类比, 用类比的思想为学生的思维搭桥铺路.因此本节课内容起到了承上启下的重要作用, 是本章和本节的重点.1.2 学情分析学生已有认知基础: 学生已经学习了圆的概念及其方程, 还有曲线与方程, 初步认识了解析几何课程的特征, 即是一门借助坐标法研究几何的学科, 并且已经初步体验到了数形结合的基本思想;学生有动手体验和探究的兴趣, 有一定的观察分析和逻辑推理的能力;学生有建立圆的概念和方程的经历。

达成目标所需认知基础: 解析法的数形结合思想和解析法的步骤.已有基础与需要基础之间的差异:关于椭圆概念的获得, 学生容易通过几何图形发现轨迹上的点的特征。

但学生不容易形成概念体系并用精准的语言描述。

在概括椭圆的定义时, 需要教师作适当的启发, 然后再用数学语言进行精确的描述。

推导椭圆标准方程时会遇到两个困难, 首先是坐标系如何建立才能使椭圆方程更简单, 需要类比圆的方程的建立方法, 根据椭圆的对称性建立直角坐标系。

其次是如何化简方程使其最简洁, 学生已有的知识与能力不能完全胜任独立解决的要求, 需要教师作适当的讲解。

椭圆及其标准方程教学设计共3篇 椭圆的标准方程教学设计

椭圆及其标准方程教学设计共3篇 椭圆的标准方程教学设计

椭圆及其标准方程教学设计共3篇椭圆的标准方程教学设计下面是分享的椭圆及其标准方程教学设计共3篇椭圆的标准方程教学设计,供大家品鉴。

椭圆及其标准方程教学设计共1《椭圆及其标准方程》教学设计山西省太原师范学院附属中学薛翠萍一、教学内容解析椭圆的定义是一种发生性定义,教学内容属概念性知识,是通过描述椭圆形成过程进行定义的作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点圆锥曲线是平面解析几何研究的主要对象圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础学习过程启发学生能够发现问题和提出问题,善于思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力二、教学目标设置:1.知识与技能目标(1)学生能掌握椭圆的定义明确焦点、焦距的概念.(2)学生能推导并掌握椭圆的标准方程.(3)学生在学习过程中进一步感受曲线方程的概念,体会建立曲线方程的基本方法,运用数形结合的数学思想方法解决问题.2.过程与方法目标:(1)学生通过经历椭圆形成的情境感知椭圆的定义并亲自参与归纳.培养学生发现规律、认识规律的能力.(2)学生类比圆的方程的推导过程尝试推导椭圆标准方程,培养学生利用已知方法解决实际问题的能力.(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等价转化等数学思想方法.3.情感态度与价值观目标:(1)通过椭圆定义的获得让学生感知数学知识与实际生活的密切联系培养学生探索数学知识的兴趣并感受数学美的熏陶.(2)通过标准方程的推导培养学生观察,运算能力和求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、学生学情分析1.能力分析①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱.2.认知分析①学生已初步熟悉求曲线方程的基本步骤,②学生已经掌握直线和圆的方程,对曲线的方程的概念有一定的了解,③学生已经初步掌握研究直线和圆的基本方法.3.情感分析学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.四、教学策略分析教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“创设情境——总结概括——启发引导——探究完善——实际应用” 的过程,发现新的知识,又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质.课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:1.引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义.2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性.这两种方法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性.在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量.五、教学过程:(一)复习引入1.说一说你对生活中椭圆的认识.伴随图片展示使同学们感到椭圆就在我们身边.意图:(1)、从学生所关心的实际问题引入,使学生了解数学来源于实际.(2)、使学生更直观、形象地了解后面要学的内容;2.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上同一定点,套上笔拉紧绳子,移动笔尖画出的轨迹是圆.再将这一条定长的细绳的两端固定在画图板上的两定点,当绳长大于两点间的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆随后动画呈现.意图:(1)通过画图给学生提供一个动手操作、合作学习的机会;调动学生学习的积极性(2)多媒体演示向学生说明椭圆的具体画法,更直观形象.(二)讲解新课由学生画图及教师演示椭圆的形成过程,引导学生归纳定义.1 椭圆定义:平面内与两个定点的距离之和等于常数2a的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距练习1:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离之和等于8,则P点的轨迹是练习2:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离之和等于6,则P点的轨迹是通过两个练习思考:椭圆定义需要注意什么(2a大于意图:让学生通过练习反思画图,归纳定义,理解定义,突破了重点.(1)、当2a|F1F2|时,是椭圆;(2)、当2a=|F1F2|时,是线段;(3)、当2a)2.根据定义推导椭圆标准方程:要求(1)学生在画板上建立适当的坐标系,(2)根据定义推导椭圆的标准方程.同时引导学生类比圆回顾解析几何研究问题的特点及求轨迹方程步骤意图:让学生自己去建系推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输简洁美”为“发现简洁美”.教师结合猜想加以引导.化简无理方程为难点通过发现问题解决问题突破难点.正确推导过程如下:解:取过焦点设则,又设M与距离之和等于()(常数)为椭圆上的任意一点,椭圆的焦距是().的直线为轴,线段的垂直平分线为轴,,化简,得由定义义)令代入,得,,(学生通过自己画图建系的过程找到的几何意,两边同除得此即为椭圆的一个标准方程它所表示的椭圆的焦点在轴上,焦点是程学生思考:若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在轴上(选取方式不同,调换轴)焦点则变成,中心在坐标原点的椭圆方,只要将方程中的调换,即可得,也是椭圆的标准方程请学生观察归纳两个方程的特征,从而区别焦点在不同坐标轴上的椭圆标方程;过程中要渗透数学对称美教学.理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在个轴上即看与这两个标准方程中,都有分母的大小的要求,因而焦点在哪3.精心设计课堂练习使学生在实际应用中进一步巩固知识,运用知识突破重难点:(1)判断下列方程是否表上椭圆,若是,求出的值① ;②;③;④意图:学生感悟椭圆标准方程的结构特点.(2)椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为)A.5B.6 C.4D.10意图:学生理解椭圆定义与标准方程关系.(3)椭圆的焦点坐标是()A.(±5,0)B.(0,±5) C.(0,±12)意图:学生感悟椭圆标准方程中焦点位置以及a,b,c的关系.(4)化简方程:意图:培养学生运用知识解决问题的能力..(±12,0) (D椭圆及其标准方程教学设计共2椭圆及其标准方程教学反思椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。

椭圆及其标准方程优秀教学设计

椭圆及其标准方程优秀教学设计

椭圆及其标准方程【教学目标】一、知识目标:1.使学生理解椭圆的定义,掌握椭圆的标准方程及其推导。

2.学会椭圆及其标准方程的初步应用。

二、过程与方法目标:1.亲历知识的建构过程,培养学生归纳、推理能力,提高提出问题、分析和解决问题的能力。

2.体验探究数学问题的方法,提高学生的数学思维能力。

三、情感与态度目标:1.通过欣赏现实生活中和椭圆有关的图形,感受到数学在现实生活中的广泛应用,产生对数学的亲近感。

2.体验数学发现和创造的历程,感悟“数学美”,激发学习热情,初步形成正确的数学观,创新意识和科学精神。

【教学重难点】1.重点:(1)椭圆定义的形成过程。

(2)椭圆标准方程的推导过程。

2.难点:(1)椭圆定义和椭圆标准方程的联系(2)比较复杂的根式化简问题。

【教学过程】一、揭示概念背景,创设问题情境法国著名数学教育家G。

绍盖说:“一堆没有亲身体验或视觉形象所支持的概念定义不能开发智力,只能关闭思路。

”为了使同学们能够很好地完成本节课的探究任务,在课前,我让同学们利用课余时间搜集日常生活中的椭圆图形,并在上课开始分组进行展示。

这样做的目的是培养同学们搜集信息,处理信息的能力,能够使他们意识到数学来源于生活,必将为生活服务。

在课前展示的过程中同学们不仅体验到发现的乐趣,分享的惊喜而且必将激发对本节课内容的深入思考。

学生用事先准备好的工具画出椭圆的图形,这个亲手的实践活动至少包含两方面的重要意义。

第一、准备工具既要动手又要动脑,如何选择合适的材料来做这个工具,这就打破了教室的局限,向社会延伸,从而有效的开拓了学生发展的活动空间。

第二、在动手描画的过程中增强了学生对椭圆图形的感受力,并为学生独立抽象出椭圆的定义创设了条件(即为学生从感性认识上升到理性认识铺设了脚手架)。

随着活动空间的不断开放,学生的思维空间和想象空间也相应的得到了拓展,在这个过程中,同学们将进入到本节课的核心阶段:独立给出椭圆的定义并独立推导椭圆的标准方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
嵩县一高343课堂教学设计
课题名称
椭圆及其标准方程
科目
数学
教学对象
207班学生
课时
第一课时
设计者
宋海阳
单位
嵩县一高
授课时间
5月22日上午
一、教学目标设定
知识与技能目标:准确理解椭圆的定义,掌握椭圆的标准方程及其推导.
过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力.
评价
对象
评价方式
评价内容
评价结果
学生
全班学生集体评价
【达标自测】部分
学生
自评
【轻松过关】部分
学生
小组评定
【小试身手】部分
学生
老师评价
【能力提升】部分
十、教学反思与总结:
2.认知分析
①学生已初步熟悉求曲线方程的基本步骤,
②学生已经掌握直线和圆的方程,对曲线的方程的概念有一定的了解,
③学生已经初步掌握研究直线和圆的基本方法.
3.情感分析
学生具有积极的学习态度,强烈的探究欲望,能主动Leabharlann 与研究.五、教学策略选择与分析
课堂教学中让学生经历“创设情境——动手操作——启发引导——总结概括——小组合作——展示成果”的过程,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:
焦点在y轴上,两个焦点分别是F1(0,-c),F2(0,c)的椭圆.
注:
七、课堂教学过程结构设计(是设计方案的关键所在,该部分要说明教学的环节(课堂导入、自主学习、合作学习、探究学习等)及所需的资源支持、具体的活动要求及其设计意图等)
教学
环节
教学内容
教师活动
学生活动
设计意图
情境引入
观看天体运行的轨道图片
探究学习
思考:(1)椭圆的定义需要注意什么?
(2)2a与|F1F2|的不同大小关系,决定的图形分别是什么?
提出问题,引导学生结合自己画图的过程思考
同桌讨论解决问题
理解椭圆定义的关键点,培养学生的发散思维
合作学习
根据定义推导椭圆的标准方程
讲解思路过程,注意事项
小组合作写出推导过程
掌握椭圆的标准方程及推导方法;培养学生战胜困难的意志品质
知识应用
5道练习题
引导,提示,点评
抢答,板演
巩固训练本节的主要内容,会解决问题
知识总结
分享本节课学习的主要内容
提问
小结
培养学生的概括能力
八、形成性检测
目标
层次
检测形式
检测内容
基础
抢答
椭圆的定义和标准方程的形式
规范
板演
求椭圆的标准方程
能力
讨论
运用椭圆的定义或待定系数法求椭圆的标准方程
九、教学评价设计:(向学生展示他们将被如何评价(来自教师和小组其他成员的评价)
渗透科学源于生活,圆锥曲线在生产和技术中有着广泛的应用
动手操作
让学生自己动手画圆和椭圆
引导学生如何画圆和椭圆
同桌合作动手画圆和椭圆
培养学生动手、观察的能力,帮助学生理解归纳椭圆的定义
自主学习
根据自己画椭圆的过程,归纳椭圆的定义
设置问题,点拨引导学生归纳椭圆的定义
主动回答问题,理解归纳出椭圆的定义
培养学生自主学习的意识和归纳概括能力
三、教学重点和难点
项目
内容
解决措施
教学
重点
椭圆的定义及椭圆的标准方程
学生动手画椭圆并归纳出椭圆的定义,设置问题,理解椭圆定义的关键点
教学
难点
推导椭圆的标准方程
老师引导讲解思路和注意事项,学生小组合作写出推导过程并展示
四、学情分析
1.能力分析
①学生已初步掌握用坐标法研究直线和圆的方程,
②对含有两个根式方程的化简能力薄弱.
椭圆的定义是一种发生性定义,教学内容属概念性知识,是通过描述椭圆形成过程进行定义的 作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点 同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点
通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础
1.引导发现法:让学生自己动手画椭圆,启发学生归纳、概括椭圆定义.
2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性.
在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量.
六、板书设计
情感、态度与价值观目标:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美.通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学作风.
二、教学内容分析
圆锥曲线是平面解析几何研究的主要对象 圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步学习的基础 教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位
椭圆及其标准方程
一椭圆的定义:
平面内与两个定点F1,F2的距离之和等于常数2a(2a>|F1F2|)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
P={P||PF1|+|PF2|=2a}
二椭圆的标准方程:
焦点在x轴上,两个焦点分别是F1(-c,0),F2(c,0)的椭圆;
相关文档
最新文档