数学人教版七年级上册1.2.1有理数学案.2.1有理数学案
人教版初中数学七年级上册1.2.1有理数(教案)
3.培养学生合作交流、共同探讨的学习习惯,增强数学交流与反思的能力;
4.激发学生运用数轴等工具进行直观想象,培养几何直观和空间观念;
5.引导学生通过解决实际问题,体会数学与生活的紧密联系,提高数学应用意识。
核心素养目标主要包括:
最后,我认识到教学过程中要时刻关注同学们的学习反馈,及时调整教学方法。在今后的教学中,我会更加注重个体差异,针对性地进行辅导,帮助每一位同学克服学习难点,真正掌握有理数的知识。
举例:理解+3和-3互为相反数,3和-3的绝对值都是3;掌握加减法的运算法则,如同号相加、异号相加等。
(3)有理数在数轴上的表示:掌握数轴上的点与有理数的对应关系。
举例:数轴上,点A表示的数是-2,点B表示的数是3,那么点A和点B之间的距离是5。
(4)有理数的大小比较:掌握有理数的大小比较法则,并能应用于实际问题。
难点解析:学生可能难以理解负分数在数轴上的位置,例如,如何表示-1/2。
(3)有理数的大小比较:在涉及负数和分数的大小比较时,学生可能会混淆。
难点解析:比较两个分数大小时,学生可能不清楚如何处理分子和分母的符号及大小关系。
(4)实际问题的应用:将有理数应用于解决实际问题时,学生可能难以找到问题中的数量关系。
数轴的教学也是一个挑战。虽然通过实验操作和多媒体演示,大多数同学能够理解数轴上的点与有理数的对应关系,但仍有一些同学对负分数在数轴上的位置感到困惑。我想,在接下来的课程中,可以设计一些更具针对性的练习题,让学生在解题过程中更好地把握数轴的应用。
此外,小组讨论环节让我看到了同学们的积极性和创造力。他们能够将所学的有理数知识应用到实际问题中,并提出自己的见解。但在引导讨论时,我也发现部分同学在提出问题和解决问题的过程中,逻辑思维还不够严密。为了提高同学们的思维能力,我计划在后续的教学中,多设计一些开放性问题,鼓励同学们多角度、多维度地思考问题。
人教版数学七年级上册1.2.1《有理数》教学设计
人教版数学七年级上册1.2.1《有理数》教学设计一. 教材分析人教版数学七年级上册1.2.1《有理数》是学生在小学阶段学习数的概念的基础上,进一步深入研究数的一种分类。
本节内容主要包括有理数的定义、分类及运算规则。
通过本节内容的学习,使学生了解有理数的概念,掌握有理数的分类,会进行有理数的运算。
二. 学情分析七年级的学生已经具备了初步的数学逻辑思维能力,对数的概念有一定的了解。
但学生在学习有理数时,容易与小学阶段的数的概念混淆,对有理数的分类和运算规则的理解和运用有一定的困难。
因此,在教学过程中,需要引导学生从实际问题出发,理解和掌握有理数的概念和运算规则。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.掌握有理数的运算规则,能够进行简单的有理数运算。
3.培养学生的数学逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算规则。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中理解和掌握有理数的概念和运算规则。
2.运用案例分析法,通过具体案例使学生理解和掌握有理数的分类和运算规则。
3.采用小组合作学习法,培养学生的团队合作意识和沟通能力。
六. 教学准备1.准备相关的教学案例和问题,用于引导学生学习和思考。
2.准备教学PPT,用于辅助教学。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入有理数的概念,如:“小明有3个苹果,小华有2个苹果,小明比小华多几个苹果?”引导学生思考和讨论,引出有理数的概念。
2.呈现(10分钟)呈现有理数的定义和分类,通过PPT展示有理数的图像和特点,让学生直观地理解和掌握有理数的分类。
3.操练(10分钟)让学生进行有理数的运算练习,如加、减、乘、除等,引导学生理解和掌握有理数的运算规则。
4.巩固(10分钟)通过一些实际问题,让学生运用所学的有理数知识和运算规则进行解答,巩固所学知识。
七年级数学上册(人教版)配套教学学案1.2.1有理数
全新修订版
教学设计
(学案)七年ຫໍສະໝຸດ 数学 上册老师的必备资料 家长的帮教助手 学生的课堂再现
人教版( RJ)
1/3
第一章有理数
1.2 有理数
[ 教学目标 ]
1.2.1 有理数
1. 正我有理数的概念 ,会对有理数按照一定的标准进行分类 ,培养分类能力 ;
2. 了解分类的标准与分类结果的相关性 ,初步了解“集合”的含义 ;
9 15 8
正整数集合
负整数集合
在练习 2 中 , 首先要解释集合的含义 . 练 习 2 中可补充思考 : 四个集合合并在一起是 什么集合 ?( 若降低难度可分开问 )
正分数集合
负分数集合
[ 小结 ] 到现在为止我们学过的数是有理数 ( 圆周率 π 除 ), 有理数可以按不同的标准进行分类 ,
2/3
负整数 负有理数
负分数
三. 练一练 熟能生巧 1.任意写出三个数 ,标出每个数的所属类型 ,同桌互相验证 . 2.把下列各数填入它所属于的集合的圈内 :
教师可以按整数和分数的 分类标准画出结构图 ,, 而问题 3 中的分类图可启发学生写出 .
1 2 13
15,- ,-5, ,
,0.1,-5.32,-80,123,2.333.
3. 体验分类是数学上的常用的处理问题的方法 . [ 教学重点与难点 ]
重点 :正确理解有理数的概念 .
难点 :正确理解分类的标准和按照定的标准进行分类 .
一. 知识回顾和理解
通过两节课的学习 ,我们已经将数的范围扩大了 ,那么你能写出 3 个不同类的数吗 ?.(3 名
学生板书 )
[问题 1]:我们将这三为同学所写的数做一下分类 . (如果不全 ,可以补充 ).
人教版数学七年级上册《1.2.1有理数》教学设计1
人教版数学七年级上册《1.2.1有理数》教学设计1一. 教材分析人教版数学七年级上册《1.2.1有理数》是学生在小学阶段学习数学后的第一个初中数学章节,对学生来说具有承前启后的作用。
本节内容主要介绍有理数的定义、分类、运算及其性质,为学生后续学习实数、方程、不等式等知识打下基础。
教材通过丰富的例题和练习,让学生在实际操作中掌握有理数的概念和应用。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号和运算有一定的了解。
但是,对于有理数的定义、分类和性质,学生可能还比较陌生。
因此,在教学过程中,需要引导学生从实际例子中发现有理数的概念,并通过对比、归纳等方法,让学生自主探究有理数的性质。
三. 教学目标1.了解有理数的定义、分类和性质;2.掌握有理数的加、减、乘、除运算方法;3.能够运用有理数解决实际问题;4.培养学生的逻辑思维能力和自主学习能力。
四. 教学重难点1.有理数的定义和分类;2.有理数的运算方法;3.有理数的性质;4.有理数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受到数学与生活的紧密联系;2.对比教学法:通过正反例子,让学生明确有理数的性质和特点;3.归纳教学法:引导学生自主探究有理数的性质,培养学生的归纳能力;4.实践教学法:让学生在实际操作中掌握有理数的运算方法。
六. 教学准备1.PPT课件:制作有关有理数的定义、分类、性质和运算的PPT课件;2.练习题:准备一些有关有理数的练习题,用于巩固所学知识;3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个生活实例,如温度、海拔等,引出有理数的概念,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT课件,展示有理数的定义、分类和性质,让学生对有理数有一个整体的认识。
3.操练(10分钟)让学生进行有理数的加、减、乘、除运算,巩固所学知识。
教师可适时给予解答和指导。
人教版数学七年级上册第一章有理数《1.2.1有理数》教案设计
相亲成功的5个预示信号. -回复相亲是一个帮助单身人士找到合适伴侣的途径,但是在相亲中,一方是否对另一方有兴趣并不总是那么容易辨认。
然而,有一些明显的信号表明相亲可能成功。
在本文中,我们将讨论5个相亲成功的预示信号,帮助你在相亲过程中更好地判断对方是否对你有兴趣。
首先,相亲成功的预示信号之一是积极主动的参与。
当一个人在相亲中对你表现出积极主动,例如主动提问、主动分享个人信息等,往往意味着对你有一定程度的兴趣。
这表明对方想要更多了解你,并且有意愿和你建立更深层次的联系。
相比之下,如果对方在相亲中表现得很被动,缺乏主动性,可能意味着对你的兴趣不高。
其次,对方在相亲中的表情和身体语言也可以作为相亲成功的预示信号。
人们常常无意识地通过面部表情和身体语言来表达他们的感受。
如果对方在相亲中展示出笑容、接近的姿势,例如身体稍微逼近你的方向、注视你的眼睛等,这通常是积极的信号,表明对方对你有吸引力。
然而,如果对方的面部表情呆滞、冷漠,或者身体语言松散、远离你,这可能意味着对方对你不感兴趣。
第三个相亲成功的预示信号是有共同兴趣和话题。
共同的兴趣和话题是建立深层次联系的重要基础。
如果你在相亲中发现和对方有许多共同兴趣和话题,例如相同的爱好、相似的价值观等,这表明你们有更多的共性,更容易建立起有意义的关系。
另一方面,如果你和对方在相亲中发现没有太多的共同兴趣和话题,只能勉强保持对话,这可能意味着你们之间的互动是困难和无趣的。
第四个相亲成功的预示信号是对方对你的关注和关心。
在相亲中,如果对方主动询问你的生活、工作、家庭等方面的事情,并表现出真正的关心和兴趣,这通常是一个很好的迹象。
这意味着对方愿意了解更多的你,包括你的背景和个人经历,而不仅仅是表面上的了解。
相比之下,如果对方只关注自己并且不对你展示关心,这可能表明对方对你没有太多兴趣。
最后,双方在相亲中的互动和对话是判断相亲是否成功的重要因素。
如果在相亲中,你和对方能够保持流畅、愉快的对话,并且没有沉默尴尬的时刻,这通常是一个好的迹象。
新人教版七年级数学上册 1.2.1《有理数》教学设计
新人教版七年级数学上册 1.2.1《有理数》教学设计一. 教材分析新人教版七年级数学上册1.2.1《有理数》是学生在学习了整数和分数的基础上,进一步学习有理数的知识。
本节课主要让学生了解有理数的定义,掌握有理数的分类,以及了解有理数的大小比较。
教材通过引入生活中的实例,使学生感受有理数在实际生活中的应用,提高学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了整数和分数的知识,具备了一定的数学基础。
但部分学生对于抽象的概念理解起来可能存在困难,因此需要教师在教学过程中耐心引导,帮助学生建立直观的认识。
此外,学生对于数学在实际生活中的应用有一定的兴趣,教师可以抓住这一点,激发学生的学习积极性。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.学会有理数的大小比较方法。
3.能够运用有理数解决实际生活中的问题。
4.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的大小比较方法。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与生活的紧密联系。
2.小组讨论法:引导学生分组讨论,共同探讨有理数的分类和大小比较方法。
3.实践操作法:让学生通过实际操作,加深对有理数知识的理解。
4.激励评价法:及时给予学生鼓励和评价,提高学生的学习积极性。
六. 教学准备1.教学课件:制作课件,展示有理数的定义、分类和大小比较方法。
2.教学素材:准备一些实际生活中的例子,用于引导学生学习有理数。
3.学具:准备一些卡片,上面写有不同类型的有理数,用于学生分组讨论。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如温度、海拔等,引导学生思考这些现象可以用哪种数学知识来表示。
通过讨论,让学生感受有理数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)介绍有理数的定义,让学生了解有理数的概念。
接着,展示有理数的分类,包括整数、分数和零。
通过课件和实物展示,让学生对有理数有更直观的认识。
人教版七年级上册1.2.1有理数学案
1.2有理数1.2.1有理数概念知识点提要:1.正整数、0、负整数统称为;正分数、负分数统称为;和统称为有理数。
2.有理数可按正、负性质分类,也可按整数和分数分类:(1)按定义分类:(2)按性质符号分类:经典例题:例1下列说法正确的是()A、整数包括正整数和负整数B、分数包括正分数和负分数C、正有理数和负有理数组成有理数集合D、0既是正整数也是负整数例2在有理数中,下面四句话中正确句子的个数是()(1)有最小的正整数;(2)没有最大的的负整数;(3)有最小的有理数A、0个B、1个C、2个D、3个例3所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合.请把下列各数填入相应的集合中:-2,3.2,0,,,3负数集合:{___________};整数集合:{__________}.例4 将下列一组数有选择的填入相应集合的圈内:巩固训练:1.下列几种说法中,正确的是()A、0是最小的数B、最大的负有理数是-1C、任何有理数的绝对值都是正数D、平方等于本身的数只有0和12.下列说法正确的个数是()①.一个有理数不是整数就是分数;②.一个有理数不是正数就是负数;③.一个整数不是正的,就是负的;④.一个分数不是正的,就是负的.A、1B、2C、3D、43. 统称有理数.4.将下列各数填在相应的集合里.自然数集合{…};整数集合{…};正分数集合{…};非正数集合{…};有理数集合{…};5.下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数和负分数C.正有理数和负有理数组成全体有理数D.一个数不是正数就是负数6.分别写出一个符合下列条件的有理数:是负数但不是整数;是整数但不是负数;是分数但不是正数。
7.下列说法正确的是( )。
A .非负数包括零和整数B .正整数包括自然数和零C .零是最小的整数D .整数和分数统称为有理数8.关于0的说法正确的是( )①是整数,也是有理数;②不是正数,也不是负数;③不是整数,是有理数;④是整数,不是自然数.A .① ④B .② ③C .① ②D .① ③9.按一定规律排列的一列数依次为:54,21,114,72,…,按此规律,这列数 中的第10个数与第16个数的积是 .10.观察下面一列数:-1,2,-3,4,-5,6,…,将这列数排成下列形式: 按照上述规律排下去,那么第10行从左边起第4个数是` ;第12行中 间一个数比第10行从左边起第4个数大多少?11. 观察下面一列数:1, -2, 3, -4, 5, -6, 7, -8, 9,...(1)请写出这数中的第100个数和第2021个数:(2)在前2021个数中,正数和负数分别有多少个?(3)2021和-2021是否都在这列数中,若在,请分别指出它们是第几个数?若不在,请说明理由。
数学:1.2.1《有理数》学案(人教版七年级上)
教师教案教学是教师的教与学生的学的统一,提高教学效率不但要保证教师教的效率,更要保证学生学的效率。
在教学过程中,建立和谐、民主、平等的师生关系,是十分重要的。
教师要随时了解学生的对所讲内容的掌握情况,同时更应注意学生的情绪变化和反应。
及时与学生沟通,采取积极评价,使学生体验到尊重、信任、宽容、友爱的教育情感。
特别对于基础差的学生,教师要更加关心和体贴他们。
要根据学生的个性的差异,寻找他们的闪光点,及时进行表扬,让他们有较多的锻炼机会,给他们获得成功的体验,使他们意识到只要自己的努力,学习成绩就会提高,同时要培养他们的自信心,让他们热爱数学,学习数学。
只有这样,才能使教师的教与学生的学有机地结合起来,才能确保课堂教学效率的提高。
数学:1.2.1《有理数》学案(人教版七年级上)【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类【导学指导】一、温故知新1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)__________________________________________二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为类,分别是:引导归纳:统称为整数,统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳2、正数集合与负数集合所有的正数组成集合,所有的负数组成集合【课堂练习】1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内:15, -1, -5,2,813, 0.1, -5.32, -80, 123, 2.333;正整数集合负整数集合正分数集合负分数集合【要点归纳】:有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数【拓展训练】1、下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数c .-2000既是负数,也是整数,但不是有理数 D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号【总结反思】:。
数学:1.2.1《有理数》学案(人教版七年级上)
数学:1.2.1《有理数》学案(人教版七年级上)【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类 【导学指导】一、温故知新1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)__________________________________________ 二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类; 该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为 类,分别是:引导归纳:统称为整数, 统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类? 师生共同交流、归纳 2、正数集合与负数集合所有的正数组成 集合,所有的负数组成 集合【课堂练习】1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内: 15, -91, -5, 152, 813, 0.1, -5.32, -80, 123, 2.333;正整数集合负整数集合正分数集合 负分数集合【要点归纳】: 有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数【拓展训练】1、下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数c .-2000既是负数,也是整数,但不是有理数 D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号【总结反思】:。
人教版七年级数学上册:1.2.1《有理数》教学设计2
人教版七年级数学上册:1.2.1《有理数》教学设计2一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的一部分,主要介绍了有理数的概念、分类和运算。
本节课的内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,但是对于有理数的概念和运算可能还比较陌生。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出有理数的概念,并通过具体的例题和练习来让学生理解和掌握有理数的运算方法。
三. 教学目标1.了解有理数的概念和分类。
2.掌握有理数的加、减、乘、除运算方法。
3.能够运用有理数解决实际问题。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算方法。
五. 教学方法1.情境教学法:通过实际问题引导学生抽象出有理数的概念。
2.例题教学法:通过具体的例题讲解和练习让学生掌握有理数的运算方法。
3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和团队精神。
六. 教学准备1.教学PPT:制作详细的PPT,内容包括有理数的概念、分类和运算方法。
2.例题和练习题:准备一些有代表性的例题和练习题,用于讲解和巩固知识点。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入有理数的概念,例如:“小明的零花钱有3元,小红给了小明2元,请问小明现在有多少元?”引导学生思考和讨论,从而引出有理数的概念。
2.呈现(15分钟)通过PPT展示有理数的定义、分类和运算方法。
用简洁明了的语言解释有理数的概念,并用图示和实例展示有理数的分类。
接着讲解有理数的加、减、乘、除运算方法,并通过具体的例题进行演示。
3.操练(10分钟)让学生分组进行练习,每组选择一道例题进行讲解和讨论。
学生在讲解过程中,教师进行指导和点评。
然后,让学生独立完成一些练习题,教师巡回辅导。
4.巩固(5分钟)选取一些典型的练习题,让学生上台板书并进行讲解。
人教版七年级上册数学1.2.1 有理数人教版七年级上册数学1.2.1 有理数教案1
1.2有理数1.2.1有理数1.理解有理数的概念,掌握有理数的分类方法;(重点)2.会把所给的有理数填入相应的集合;(难点)3.经历对有理数进行分类探索的过程,初步感受分类讨论的数学思想.(重点)一、情境导入某天毛毛看报纸,见到下面一段内容:冬季的一天,某地的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而同一天北京的气温-3℃~7℃,这里出现了哪些数?我们到目前为止学过了哪些数?你能试着将它们进行分类吗?今天我们要把大家学过的数进行分类命名.二、合作探究探究点一:有理数的有关概念下列各数:-45,1,8.6,-7,0,56,-423,+101,-0.05,-9中,( )A.只有1,-7,+101,-9是整数B.其中有三个数是正整数C.非负数有1,8.6,+101,0D.只有-45,-445,-0.05是负分数解析:根据有理数的有关概念,整数包括:1,-7,0,+101,-9,故选项A错误;正整数只有两个,即1和+101,故选项B错误;非负数包括有1,8.6,+101,0,56,故选项C错误;负分数包括-45,-423,-0.05,故选项D正确.故选D.方法总结:当有理数只含有单个符号时,带负号的数即为负数.然后再区分是整数还是分数.探究点二:有理数的分类把下列各数填入相应的集合内.-10,8,-712,334,-10%,3101,2,0,3.14,-67,37,0.618,-1,0.3080080008…正数集合{ …};负数集合{ …};整数集合{ …};分数集合{ …}.解析:要将各数填入相应的集合里,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.在填入相应的集合时,要注意每个有理数,身兼不同的身份,所以解答时不要顾此失彼.解:正数集合{8,334,3101,2,3.14,37,0.618,0.3080080008… …}; 负数集合{-10,-712,-10%,-67,-1 …};整数集合{-10,8,2,0,-67,-1 …};分数集合{-712,334,-10%,3101,3.14,37,0.618,0.3080080008… …}. 方法总结:在填数时要注意以下两种方法:(1)逐个考察给出的每一个数,看它是什么数,是否属于某一集合;(2)逐个填写相应集合,从给出的数中找出属于这个集合的数,避免出现漏数的现象.三、板书设计 1.有理数的概念(1)整数:正整数、零和负整数统称整数.(2)有理数:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.2.有理数的分类 ①按定义分类为: ②按性质分类为:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数本节课是有理数分类的教学,要给学生较大的思维空间,促进学生积极主动地参加学习活动,亲自体验知识的形成过程.避免教师直接分类带来学习的枯燥性.要有意识地突出“分类讨论”数学思想的渗透,明确分类标准不同,分类的结果也不相同,且分类结果应是无遗漏、无重复的.。
人教版七年级上册数学学案:1.2.1有理数
课题 1.2.1有理数第几课学习过程内容补充自主学习(15分钟)学习目标1.掌握有理数的概念。
2.能熟练的把有理数进行分类。
重点难点理解有理数的概念,把有理数正确的分类。
课前准备知识链接自主探究自主预习:通过两节课的学习,我们已经将数的范围扩大了,我们是否可以把上述数分为两类?如果可以,应分为哪两类?正整数、0、负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数合作探究(15分钟)展示反馈1、_________________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩整数有理数0____________________⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正数________有理数2.把下列各数填入它所属于的集合的圈内:15, -91, -5,152,813-, 0.1, -5.32, -80, 123, 2.333点拔归纳正整数集合负整数集合正分数集合负分数集合训练达标(15分钟)拓展延伸1.把下列给数填在相应的大括号里:-4,0.001,0,-1.7,15,23+.正数集合{…},负数集合{…},正整数集合{…},分数集合{…}2..下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?+7, -5,217 ,61-, 79, 0, 0.67,321-, +5.诊断评价下列说法中正确的是().A.正整数、负整数统称整数B.正分数、负分数统称分数C.0既可以是正整数,也可以是负整数D.0既不是整数,也不是分数反思。
1.2.1有理数教学设计人教版七年级数学上册
教学设计
不是,因为它们都是无限不循环小数
总结:只有有限小数和无限循环小数才能化成分数,无限不循环小数不能化成分数,例如:π
2.探究新知
新知讲解:有理数的概念
(1)正整数, 0 ,负整数统称为整数;
正分数,负分数统称为分数。
(2)正有理数,负有理数统称为有理数。
那么我们怎样对它们分类呢?
让我们一起学习——1.2.1有理数.
方法1.按照定义分类:
问题:还有其它的分类方法吗?
方法2:按照正负性分类
师生活动
教师展示问题图片,学生集体回答.师生对有理数进行分类.
3.典例精析
例1:判断表中各数分别是哪一类型的数,在相应的空格中划√
4.知识运用:
2.所有正数组成正数集合,所有负数组成负数集合。
把下面的有理数填入它属于的集合范围内。
―18,22
7
, 3.141 5,0,2 011,
3
-
5
,―0.124847 ,300%,π
变式1:所有整数组成整数集合,所有负数组成负数集合。
把下面的有理数填入它属于的集合范围内。
―18,22
7
, 3.141 5,0,2 011,
3
-
5
,―0.124847 ,300%,π
【学习任务五】归纳总结
回顾本节课所学知识,你有什么收获?
你还有什么疑问?
课后作业:
1.书P7练习2,P14复习巩固1
2.查阅相关资料,写出有关“分数和小数的关系”数学小作文。
备注:教学设计应至少含教学目标、教学内容、教学过程等三个部分,如有其它内容,可自行补充增加。
人教版七年级上数学:1.2.1《有理数》学案(附模拟试卷含答案)
数学:1.2.1《有理数》学案(人教版七年级上)【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类【导学指导】一、温故知新1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)__________________________________________二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为类,分别是:引导归纳:统称为整数,统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳2、正数集合与负数集合所有的正数组成集合,所有的负数组成集合【课堂练习】1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内:15, -1, -5,2,813, 0.1, -5.32, -80, 123, 2.333;正整数集合 负整数集合正分数集合 负分数集合【要点归纳】: 有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数【拓展训练】1、下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数c .-2000既是负数,也是整数,但不是有理数 D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C,D 是线段 AB 上两点,若 CB=4cm,DB=7cm,且 D 是 AC 的中点,则 AB 的长等于()A.6cmB.7cmC.10cmD.11cm2.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cmB.3cmC.6cmD.7cm3.在同一平面上,若∠BOA=60.3°,∠BOC=20°30′,则∠AOC的度数是( )A.80.6°B.40°C.80.8°或39.8°D.80.6°或40°4.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为283,则满足条件的x不同值最多有( )A.6个B.5个C.4个D.3个5.在如图的2017年11月份的月历表中,任意框出表中竖列上三个相邻的数,下面列出的这三个数的和①24,②35,③51,④72,其中不可能的是( )A.①②B.②④C.②③D.②③④6.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程6010628m m+=-①;6010628m m+=+②;1086062n n-+=③;1086062n n+-=④中,其中正确的有()A.①③B.②④C.①④D.②③7.下列运算中正确的是()A.x+x=2x2B.(x4)2= x8C.x3.x2=x6D.(-2x) 2=-4x28.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是()A .96B .86C .68D .529.把正方形按如图所示的规律拼图案,其中第①个图案中有1个正方形,第②个图案中有5个正方形,第③个图案中有9个正方形…按此规律排列下去,则第⑧个图案中正方形的个数为( )A .25B .29C .33D .3710.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2009次后,点B ( )A .不对应任何数B .对应的数是2007C .对应的数是2008D .对应的数是2009 11.小明做了以下4道计算题:①(-1)2010=2010;②0-(-1)=-l ;③-+=-;④÷(-)=-1. 其中做对的共有A .1道B .2道C .3道D .4道 12.计算:534--⨯的结果是( ) A.17- B.7-C.8-D.32-二、填空题13.一个人从A 点出发向北偏东30°方向走到B 点,再从B 点出发向南偏东15°方向走到C 点,此时C 点正好在A 点的北偏东70°的方向上,那么∠ACB 的度数是___________. 14.计算:12°20'×4=______________.15.如图,小红将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm ,则可列方程为_____.16.当x=__________时,代数式6x+l 与-2x-13的值互为相反数.17.去括号合并:(3)3(3)a b a b --+=_________.18.观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)19.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 20.比较大小,4-______3(用“>”,“<”或“=”填空). 三、解答题21.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t 秒后OM 恰好平分∠BOC ,则t= (直接写结果)(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC 平分∠MON ?请说明理由; (3)在(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.22.一个角的补角比它的余角的3倍少20︒,求这个角的度数.23.如图在长方形ABCD 中,AB=12cm ,BC=8cm ,点P 从A 点出发,沿A→B→C→D 路线运动,到D 点停止;点Q 从D 点出发,沿D→C→B→A 运动,到A 点停止.若点P 、点Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,用x (秒)表示运动时间. (1)求点P 和点Q 相遇时的x 值.(2)连接PQ ,当PQ 平分矩形ABCD 的面积时,求运动时间x 值.(3)若点P 、点Q 运动到6秒时同时改变速度,点P 的速度变为每秒3cm ,点Q 的速度为每秒1cm ,求在整个运动过程中,点P 、点Q 在运动路线上相距路程为20cm 时运动时间x 值.24.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?25.已知代数式A=2x 2+5xy ﹣7y ﹣3,B=x 2﹣xy+2.(1)求3A ﹣(2A+3B )的值;(2)若A ﹣2B 的值与x 的取值无关,求y 的值. 26.已知A=22x +3xy-2x-l ,B= -2x +xy-l . (1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值. 27.计算:(1)(3)74--+-- (2) 211()(6)5()32-⨯-+÷-28.计算:(1) 16÷(﹣2)3﹣(18-)×(﹣4) (2) 221211()[2(3)]233---÷⨯-+-【参考答案】*** 一、选择题 1.C 2.D 3.C 4.B 5.B 6.A 7.B 8.C 9.B 10.C 11.B 12.A 二、填空题 13.95˚ 14.49°20' 15.4x=5(x-4) 16.17.-10 SKIPIF 1 < 0 解析:-10b18.(2n+1) SKIPIF 1 < 0 −4×n SKIPIF 1 < 0 =4n+1. 解析:(2n+1) 2−4×n 2=4n+1.19.120.<;三、解答题21.(1)5;(2)5秒时OC平分∠MON,理由详见解析;(3)详见解析. 22.35°23.(1)x=323;(2)4 或20;(3)4或14.524.这本名著共有216页.25.(1)﹣x2+8xy﹣7y﹣9;(2)y=026.(1) 15xy-6x-9 ;(2)25.27.(1)6;(2)22.28.(1)﹣212;(2)52.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.在一些商场、饭店或写字楼中,常常能看到一种三翼式旋转门在圆柱体的空间內旋转.旋转门的三片旋转翼把空间等分成三个部分,如图是从上面俯视旋转门的平面图,两片旋转翼之间的角度是( )A.100°B.120°C.135°D.150°2.如图所示,两个直角∠AOB ,∠COD 有公共顶点O ,下列结论:(1)∠AOC =∠BOD ;(2)∠AOC +∠BOD =90°;(3)若OC 平分∠AOB ,则OB 平分∠COD ;(4)∠AOD 的平分线与∠COB 的平分线是同一条射线.其中正确的个数是( )A.1B.2C.3D.43.如图是某年的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和不可能为下列数中的( )A .81B .90C .108D .2164.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A.3229x x -=+ B.3(2)29x x -=+ C.2932x x+=- D.3(2)2(9)x x -=+5.如图,点O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 1A 2B 1,…,依此规律,则点A 2017的坐标是( )A .(0,21008)B .(21008,21008)C .(21009,0)D .(21009,-21009)6.当x 分别取-2019、-2018、-2017、…、-2、-1、0、1、12、13、…、12017、12018、12019时,分别计算分式2211x x -+的值,再将所得结果相加,其和等于( )A .-1B .1C .0D .20197.下列根据等式的性质变形正确的是( ) A.若3x+2=2x ﹣2,则x =0 B.若12x =2,则x =1 C.若x =3,则x 2=3x D.若213x +﹣1=x ,则2x+1﹣1=3x 8.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,“?”的值为( )A .55B .56C .63D .649.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个. A .2 B .3 C .4 D .510.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示为( ) A.895710⨯B.995.710⨯C.109.5710⨯D.100.95710⨯11.国庆长假期间,以生态休闲为特色的德阳市近郊游备受青睐.假期各主要景点人气爆棚,据市旅游局统计,本次长假共实现旅游收入5610万元.将这一数据用科学记数法表示为( ) A.75.6110⨯B.80.56110⨯C.656.110⨯D.85.6110⨯12.甲从点A 出发沿北偏东35°方向走到点B ,乙从点A 出发沿南偏西20°方向走到点C ,则∠BAC 等于 ( ) A.15°B.55°C.125°D.165°二、填空题13.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC+∠DOB =_____.14.已知∠AOB=3∠BOC,射线0D 平分∠AOC,若∠BOD=30°,则∠BOC 的度数为________.15.某通信公司的移动电话计费标准每分钟降低a 元后,再下调了20%,现在收费标准是每分钟b 元,则原来收费标准每分钟是_____元.16.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是_____.17.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数1 2 3 4 … n 正三角形个数 4 7 10 13 … a n18.已知1mn m n =--,则()()11m n ++的值为________.19.计算2﹣(﹣3)的结果为_____.20.如果,那么____.三、解答题21.如图,C ,D 为线段AB 上的两点,M ,N 分别是线段AC ,BD 的中点.(1)如果CD=5cm ,MN=8cm ,求AB 的长;(2)如果AB=a ,MN=b ,求CD 的长.22.已知:点C ,D 是直线AB 上的两动点,且点C 在点D 左侧,点M ,N 分别是线段AC 、BD 的中点.(1)如图,点C 、D 在线段AB 上.①若AC=10,CD=4,DB=6,求线段MN 的长;②若AB=20,CD=4,求线段MN 的长;(2)点C 、D 在直线AB 上,AB=m ,CD=n ,且m >n ,请直接写出线段MN 的长(用含有m ,n 的代数式表示).23.中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二、个人所得税纳税税率如下表所示:(1)若甲、乙两人的每月工资收入额分别为4500元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为85元,则丙每月的工资收入额应为多少?24.昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.25.先化简,再求值:4a 2b+ab 2-4(ab 2+a 2b ),其中|a+1|+(b-2)2=026.计算:(1)()()()332122-⨯-+-÷(2)201813121234⎛⎫-+-+-⨯ ⎪⎝⎭(3)先化简,再求值:221131a 2a b a b 4323⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中3a 2=,1b 2=-. 27.已知|x+1|+(y+2)2=0,求x+y 的值.28.712311263-+【参考答案】***一、选择题1.B2.C3.D4.B5.B6.A7.C8.C9.B10.C11.A12.D二、填空题13.180°14.15°或30°.15.(a+ SKIPIF 1 < 0 b ).解析:(a+54b ). 16.17.3n+1.18.2;19.520.-13或-3三、解答题21.(1)线段AB 的长为11cm ;(2)2b ﹣a .22.(1)①12;②12;(2)2m n +. 23.(1)甲每月应缴纳的个人所得税为30元;乙每月应缴纳的个人所得税145元;(2)丙每月的工资收入额应为5400元.24.甲车速度为106千米/时,乙车速度为86千米/时.25.26.() 12-;()24-;(3)54-. 27.﹣3.28.1312。
人教版七年级数学上册1.2.1《有理数》教案
三、教学难点与重点
1.教学重点
-有理数的定义:强调有理数包括整数和分数,让学生理解整数和分数都属于有理数的范畴。
-有理数的数轴表示:培养学生通过数轴直观地认识有理数,理解数轴上的点与有理数的一一对应关系。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们学习了有理数的相关知识。回顾整个教学过程,我觉得有几个地方值得反思和改进。
(1)同号相加:两个正数或两个负数相加,取相同符号,并把绝对值相加。
(2)异号相加:一个正数与一个负数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(3)加减混合运算:根据运算顺序,先计算括号内的加减法,再计算括号外的加减法。
二、核心素养目标
1.培养学生的数感:通过有理数的认识,使学生在数轴上理解和表示有理数,增强对数的大小的敏感度,提高数感。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数的基本概念。有理数是可以表示为两个整数之比的数,包括整数和分数。它是数学运算的基础,广泛应用于日常生活和科学技术中。
2.案例分析:接下来,我们来看一个具体的案例。以购物找零为例,讲解有理数在实际中的应用,以及如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调有理数的分类和加减法法则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
人教版数学七年级上册精品教学设计《1.2.1 有理数》
人教版数学七年级上册精品教学设计《1.2.1 有理数》一. 教材分析《1.2.1 有理数》是人教版数学七年级上册的第一节内容,主要介绍了有理数的定义、分类及运算规则。
这一节内容是整个初中数学的基础,对于学生来说,理解掌握有理数的概念和运算是学好后续内容的前提。
因此,在教学设计中,我们需要通过多种方式让学生深刻理解有理数的概念,并熟练掌握有理数的运算方法。
二. 学情分析七年级的学生刚接触初中数学,对于有理数的概念和运算可能感到陌生。
因此,在教学过程中,我们需要关注学生的学习情况,根据学生的反应适时调整教学节奏和方法,以保证教学效果。
同时,由于学生刚从小学升入初中,学习习惯和思维方式可能还停留在小学阶段,因此在教学设计中,我们需要注重培养学生的学习习惯和思维方式,帮助他们顺利过渡到初中阶段的学习。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.掌握有理数的运算规则,能够熟练进行有理数的加、减、乘、除运算。
3.培养学生的学习习惯和思维方式,提高学生的数学素养。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算规则。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与生活的紧密联系。
2.游戏教学法:设计有趣的数学游戏,让学生在游戏中理解和掌握有理数的运算规则。
3.小组合作学习:学生进行小组讨论和合作,培养学生的团队协作能力和沟通能力。
4.引导发现法:引导学生发现数学规律,培养学生的自主学习能力。
六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示。
2.教学素材:准备相关的生活实例和数学游戏,用于教学和实践。
3.练习题:设计有针对性的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入有理数的概念,如温度、海拔等,让学生感受数学与生活的紧密联系。
2.呈现(10分钟)讲解有理数的定义和分类,通过课件展示,让学生直观地理解有理数的概念。
3.操练(10分钟)设计数学游戏,让学生在游戏中理解和掌握有理数的运算规则。
人教版七年级数学上册 第一章:有理数_1.2.1:有理数 学案设计(含答案)
初中七年级数学上册第一章:有理数——1.2.1:有理数一:知识点讲解知识点一:有理数的概念有理数:整数和分数统称为有理数。
✧ 整数:正整数、0、负整数统称为整数。
例如:2、3、0、﹣5、﹣7;✧ 分数:正分数、负分数统称为分数。
例如:32、0.1、﹣0.5、25-、﹣150.25; 0和正整数都是自然数。
任何一个有理数都可以写成m n 的形式,而且只有当m 、n 同时满足: ✧ m 、n 是互质的整数;✧ 0≠m 、1≠m 时,mn 才表示一个分数。
分数都能化为小数,但小数不都能化为分数。
只有有限小数和无限循环小数才能化为分数,因此分数包括有限小数和无限循环小数,当不包括无限不循环小数。
例如:π、3.212 212 221…(每两个1之间2的个数逐次增加)不能化为分数。
例1:下列说法正确的是( D )A. 正有理数和负有理数统称为有理数B. 非负整数就是指0、正整数和所有分数C. 正整数和负整数统称为整数D. 整数和分数统称为有理数知识点二:有理数的分类按有理数的定义:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0按有理数的性质符号:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0例2:把下列各数分别填入相应的大括号里:﹣2.5、3.14、﹣2、﹢72、6.0 -、0.618、722、0、﹣0.101、π1) 正数集合: 3.14,﹢72,0.618,722,π ;2) 非负整数集合: ﹢72,0 ;3) 整数集合: ﹣2,﹢72,0 ;4) 负分数集合: ﹣2.5,6.0-,﹣0.101 。
二:知识点复习知识点一:有理数的概念 1. 在下列各数:65-、﹢1、6.7、﹣14、0、227、﹣5、25%中,属于整数的有( C) A. 2个 B. 3个 C. 4个 D. 5个2. 已知下列各数:﹣2、﹢3.5、0、32-、﹣0.7、11,其中负分数有( B )A. 1个B. 2个C. 3个D. 4个3. 在﹣1、32、0.618、0、﹣5%、2017、0.5中,整数有 3 个,分数有 4 个。
人教版七年级数学上册1.2.1《有理数》教学设计
人教版义务教育课程教科书七年级上册1.2.1有理数一、教材分析1、地位作用:本课教材所处位置,是小学所学算术范围的第一次扩充,是算术到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
2、教学目标及目标分析:【教学目标】:理解有理数的意义、把给出的有理数按要求分类,说出数0在有理数分类中的作用。
【目标分析】:通过有理数的分类,树立对数分类讨论的观点并发展正确地进行分类的能力。
3、教学重、难点教学重点:正确理解有理数的概念.。
教学难点:正确理解分类的标准和按照定的标准进行分类。
突破难点的方法:以设置问题、创设情境为主线,通过师生互相交流和协商的方式展开教学,而在拓展延伸部分以学生的主动探究为主。
二、教学准备:多媒体课件三、教学过程问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?引出课题。
思考,回答并在草稿纸上写出整数和分数来分,或按正数和负数来分,可以先不去纠正遗漏0的问题,在后面分类是在解决.二、自主探究合作交流建构新知活动1:1.在以上各数中,哪些是在小学里学过的数?它们可以分为哪几类?2.在小学里学过的数中,有没有哪类数在上面没有出现?请举例说明.3.用计算器计算下列各分数的值,说明所有分数都可以化作什么数?4.由前面的结论,小学里学的数可以分为哪几类?5.引入负数后,整数除了小学学的整数外,还包含其它的整数吗?6.分数除了小学学的分数外,还包含其它的分数吗?正整数:+10,18,29,+75,110,305,1,2,3,…零: 0负整数:-52,-67, -1,-2,…正分数:1.1,12.91,12.96,182.5,负分数:-7.5,活动2:探究有理数的分类(一)由刚才的演示可知:1.有理数可分为哪两类数?2.整数可分为哪几类?3.分数可分为哪几类?观察思考讨论学生思考后表述自己的见解。
通过举例,得出有理数,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1 有理数
一.素读检测
1.正整数、零、负整数统称为(),正分数和负分数统称为(),
()和()统称为有理数。
2.小学学过的π是()。
3.把下列小数化为分数,分数化为小数。
0.1= -0.5= 5.23= = = =
二.问题思考
1.一般地,有理数有以下两种分类:(1)按定义分类;(2)按正负分类,你能根据你的理解对有理数做出分类吗?试一试吧!(注意0的归属)
2.请说出π与
3.1415926的区别。
3.尝试写出几个不是有理数的数,总结一下有理数分类时容易错的地方。
4.有没有最大的有理数?有没有最小的有理数?
5.你知道什么是非负数、非正数、非负整数、非正整数吗?它们有最大值还是最小值吗?
三.当堂检测
1.在下表适当的空格里填上“√”号
2.下列数中既是分数,又是正数的是()
A.+5 B.-5C.0 D.
3.下列说法正确的是()
A.正整数和负正数统称整数B.0既不是正数,也不是负数
C.0只表示没有D.正数和负数统称为有理数
4. 下列说法不正确的是()
A.-3.14既是负数,分数,也是有理数
B.0既不是正数,也不是负数,但是整数
C.-2000既是负数,也是整数,但不是有理数
D.0是正数和负数的分界
5. 0.3,-0.10,-,π,0.1010010001……,-3.14中有理数的个数为()A.1 B.2 C.3 D.4
四.巩固拓展
1. 最小的正整数是(),最大的负整数是(),最小的非负数是(),最小的非负整数是(),最小的自然数是(),最大的非正数是()。
2. 张老师出了一道“谈谈你对零的认识”的题,同学们给出了以下几种答案:(1)零是正数(2)零是自然数(3)零是有理数(4)零是整数(5)零是非负数(6)0℃表示没有温度。
其中正确的个数为( )
A.3 B.4 C.5 D.6
3.若规定一种机器零件的长度cm为合格产品,
(1)那么工人生产这种零件的长度在什么范围内是合格的?
(2)从张师傅生产的零件中抽取10个零件进行质检,结果如下:5cm,5.3cm,5.2cm,5.1cm,4.7cm,4.9cm,5.55cm,5.2cm,4.55cm,张师傅生产零件合格率是多少?。