2009年湖北省武汉市新洲仓埠中学九年级数学模拟试卷及答案

合集下载

湖北武汉中考数学模拟试题五.doc

湖北武汉中考数学模拟试题五.doc

D C BA12-112-1012-100-121O212015DCBA武汉市2009—2010学年度九年级中考模拟测试题5一.单项选择题(共12小题 ,共36分) 1. —21的倒数是 A —21 B 21 C –2 D 2.2. 函数y =x 53-中自变量x 的取值范围是A x ≤0B x ≤53 C x ≤—53 D x ≤353.不等式组 ⎩⎨⎧2x+5≥32x+1<5的解集表示在数轴上正确的是4.下面计算正确的是A 2)3(-=3B 2+2=2C 2-×8- =4 D-2)2(-=2 5.关于x 的一元二次方程(m-2)x 2+x+m 2-4=0的一个根为0,则m 的值是 A ±2 B -2 C 2 D 46.一滴雨的重量是0.00025千克,用科学计数法表示为A 2.5×10-4千克B 2.5×10-3千克C -2.5×104千克 D-2.5×103千克 7.一副直角三角板如图放置:(∠ACB=∠ADB=90°),∠CAB=30°,∠BAD=45°,AB 交CD 于E, 则∠CEB 的度数是A 30°B 45°C 60°D 75°8. 一个无盖的正方体粉笔盒展开图可以是下列图形的A 只有(2)B (1)(3)C (2)(3 )D (1)(2)9.水库中放养鲤鱼8000条,鲢鱼若干。

在n 次随机捕捞中,共抓到鲤鱼320条,抓到鲢鱼400条,估计塘中原来放养了鲢鱼( )A 9000条B 9600条 C10000条 D 12000条。

10.已知,⊙O 的内接△ABC 中,AB=21,AC=20,BC 边上的高AD=15,则⊙O 的半径是EDB CA(3)(2)(1)MF EDCB A②③OA 13B 14C 15 D1611.据网上数据:2008年我国的国内生产总值为24万亿元,比上一年增长10.5%并预计2009年国内生产总值增长8%,下列说法:①2007年我国国内生产总值为%5.10124+ 万亿元。

2009年中考模拟数学试卷(九)

2009年中考模拟数学试卷(九)

ACDEA数学中考模拟试卷(九)总分:150分 时间:120分钟一、选择题:(本大题共8题,每题3分,满分24分) 1.右图是一个“众志成城,奉献爱心”的图标,图标中两圆的 位置关系是( )A .外离B .相交C .外切D .内切 2.下列事件是必然事件的是( )A .明天是晴天B .打开电视,正在播放广告C .两个负数的和是正数D .三角形三个内角的和是180° 3.如图,在△ABC 中,AB >AC ,D 、E 分别是AB 、AC 上的点,△ADE 沿线段DE 翻折,使点A 落在边BC 上,记为A ′.若四边形AD A 'E 是菱形,则下列说法正确的是( )A .DE 是△ABC 的中位线B .A A ′是BC 边上的中线 C .A A ′是BC 边上的高D .A A ′是△ABC 的角平分线4.一方有难、八方支援,截至5月26日12时,某巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为( )A .11.18×103万元 B .1.118×104万元 C .1.118×105万元 D .1.118×108万元 5.点(3,-4)在反比例函数ky x=的图象上,那么下列各点中,在此图象上的是( ) A .(3,4) B .(-2,-6) C .(-2,6) D .(-3,-4) 6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( )A .与x 轴相离、与y 轴相切B .与x 轴、y 轴都相离C .与x 轴相切、与y 轴相离D .与x 轴、y 轴都相切 7.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE , 则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠8.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1∠AOB =45°,点P 在数轴上运动,若过点P 且与OA与⊙O 有公共点,设OP =x ,则x 的取值范围是( )CC 'A 'O12A .O≤x ≤2B .2-≤x ≤2C .-1≤x ≤1D .x >2 二、填空题:(本大题共10题,每题3分,共30分)9.如图,以点O 为为旋转中心,将1∠按顺时针方向旋转110°, 得到∠2.若∠1=40°,则∠2= .10.一元二次方程2(6)5x +=的解是 . 11.如图,在△ABC 中,点D 在AC 上,DE ⊥BC ,垂足为点E , 若AD =2DC ,AB =4DE ,则sin ∠B 的值是 .12.在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的中位数是 . 13.2006年某市政府对某区一学校校舍投入资金5786万元进行改造,2008年校舍改造的投入资金是8058.9万元,若设这两年投入改造资金的年平均增长率为x ,则根据题意可列方程为 .14.如图,D 是AB 边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC 上F 处,若∠B =50°,则∠BDF __________度.15.某校初一2班举行“激情奥运”演讲比赛,共有甲、乙、丙三位选手,班主任让三位选手抽签决定演讲先后顺序,从先到后恰好是甲、乙、丙的概率是 . 16.如图,Rt A BC ''△是由Rt ABC △绕B 点顺时针旋转而得,且点A B C ',,在同一条直线上,在Rt ABC △中,若90C =∠,2BC =,4AB =,则斜边AB 旋转到A B '所扫过的扇形面积为 .17.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积 为16cm 2,则该半圆的半径为 .18.如图,在已建立直角坐标系的4×4正方形方格纸中,△ABC 是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P 、A 、B 为顶点的三角形与△ABC 相似(全等除外),则格点P 的坐标是 .金额(元) 20 30 35 50 100 学生数(人)3751510F AB DE1 2三、解答题:(本大题共10题,共96分)19.(1)计算:101()(tan 30)22π---++- (2)因式分解:2221218-+a ab b20.解方程:22123=-+--xx x21.如图,正方形ABCD 中,E 与F 分别是AD 、BC 上一点.在①AE CF =、②BE ∥DF 、③12∠=∠中,请选择其中一个条件,证明BE DF =.(1)你选择的条件是 (只需填写序号); (2)证明:22.已知一纸箱中装有5个只有颜色不同的球,其中2个白球,3个红球.(1)求从箱中随机取出一个白球的概率是多少?(2)若往装有5个球的原纸箱中,再放入x个白球和y个红球,从箱中随机取出一个白球的概率是13,求y与x的函数解析式.23.我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?24.如图1,方格纸中有一透明等腰三角形纸片,按图中裁剪线将这个纸片裁剪成三部分.请你将这三部分小纸片重新分别拼接成;(1)一个非矩形的平行四边形;(2)一个等腰梯形;(3)一个正方形.请在图2中画出拼接后的三个图形,要求每张三角形纸片的顶点与小方格顶点重合.25.如图,直线l 1的解析表达式为33y x =-+,且l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C . (1)求点D 的坐标;(2)求直线l 2的解析表达式; (3)求△ADC 的面积;(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接..写出点P 的坐标.26.如图,已知:边长为1的圆内接正方形ABCD中,P为边CD的中点,直线AP交圆于E点.(1)求弦DE的长.(2)若Q是线段BC上一动点,当BQ长为何值时,△ADP与以Q,C,P为顶点的三角形相似.E27.如图是2008北京奥运会某比赛场馆的平面图,根据距离比赛场地的远近和视角的不同,将观赛场地划分成A、B、C三个不同的票价区.其中与场地边缘MN的视角大于或等于45°,并且距场地边缘MN的距离不超过30米的区域划分为A票区,B票区如图所示,剩下的为B票区.(1)请你利用尺规作图,在观赛场地中,作出A票区所在的区域(只要求作出图形,保留作图痕迹,不要求写作法);(2)如果每个座位所占的平均面积是0.8平方米,请估算A票区有多少个座位.28.如图1,在平面直角坐标系中,二次函数)0(2>++=acbxaxy的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=31.(1)求这个二次函数的表达式.(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.数学中考模拟试卷(九)参考答案一、选择题:1.C 2.D 3.D 4.B 5.C 6.A 7.A 8.A 二、填空题: 9.40 10.65-±.34 12.50 13.25786(1)8058.9x += 14.80 15.1616.163π17.5cm 18.1P (1,4)、2P (3,4) 三、解答题:19.(1)-1 (2)()223-a b 20.021.答案不唯一,略 22.(1)52(2)y 与x 的函数解析式是12+=x y 23.2.4万人,3600万元24.略25.(1)D (1,0) (2)362y x =-(3)92 (4)(63)P ,26.(1 (2)BQ =0或3427.(1)略(2)约有1445个座位28.(1)322--=x x y (2) (2,-3)(3) 圆的半径为2171+或2171+- (4) 当P 点的坐标为⎪⎭⎫⎝⎛-415,21时,827的最大值为APG S ∆。

湖北武汉中考数学模拟试题三

湖北武汉中考数学模拟试题三

武汉市2009—2010学年度九年级中考模拟测试题3一、选择题1、2-1的倒数是( )A 、21B 、-21C 、2D 、-22、函数y=x 21-中自变量x 的取值范围是( )A 、x ≤21B 、x ≥21C 、x <21D 、x >213、一不等式组的解集在数轴上表示如图,则此不等式组可能是( )A 、⎩⎨⎧≤--〉6362x xB 、⎩⎨⎧-≥-〈-6362x xC 、⎩⎨⎧-≥--≥6362x xD 、 ⎝⎛-≥-〈-6362x x 4、化简16的值为( )A 、4B 、-4C 、±4D 、25、已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值为( )A 、1B 、0C 、0或1D 、0或-1、6、2008年我国粮食产量达到54480万吨,这个产量数据保留两个有效数字后用科学记数法表示为()A、5.5×108吨B、54×107吨C、5.5×107吨D、5.4×108吨7、如图,AB=AB=AB=OC,则∠ACB的大小是()A、40°B、30°C、20°D、35°8、一个几何体是由若干个小正方体组成的,其主视图和左视图都是右图,则组成这个几何体需要的小正方体的个数最少是()A、7个B、6个C、5个D、4个9、某家庭搬进新居后又添置了新的电冰箱,电热水器等家用电器,为了了解用电量的大小,该家庭在6月份初连续几天观察电表的度数,电表显示的度数如下表:日期1日2日3日4日5日6日7日8日电表显示度115118122127133136140143数(度)这个家庭六月份用电度数为( )A 、105度B 、108.5度C 、120度D 、124度10、如图,已知△ABC 的外接圆⊙O 的半径为1,D 、E 分别是AB 、AC 上的点,BD=2AD ,EC=2AE ,则sin ∠BAC 的值等于线段A 、DE 的长B 、BC 的长 C 、DE 32的长D 、DE 23的长11、如图是市统计局公布的武汉市农村居民年人均收入比上年增长率的统计图,已知2006年农村居民年人均收入为6000元,根据图中的信息判断下列结论:(1)从2004年到2008年农村居民年人均收入在逐年增长;(2)农村居民人均年收入最高的是2007年;(3)2005年农村居民人均年收入为%8.616000元;(4)2008年农村居民年人均收入为6000(1+13.6%)(1+12.1%)元,其中正确的结论是( )A 、(1)(2)(3)(4)B 、只有(1)(2)(3)C 、只有(1)(4)D 、只有(2)(3)(4)12、如图△ABC ≌DEC ,公共顶点为C ,B 在DE 上,则有结论①∠ACD=∠BCE=∠ABD ②∠DAC+∠DBC=180°③△ADC ∽△BEC ④CD ⊥AB ,其中成立的是( )A 、①②③B 、只有②④C 、只有①和②D 、①②③④二、填空题13、一组数据1,2,4,5,8,x 的众数与平均数相等,那么x 的值是__________。

武汉市2008~2009学年度九年级中考模拟试卷(数学试卷)

武汉市2008~2009学年度九年级中考模拟试卷(数学试卷)

D CBA第7题图 第8题图武汉市2008~2009学年度九年级中考模拟试卷(数学试卷)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确的,请选择正确的答案填入括号内。

1.21-的倒数是( )A .2B .2-C .21D .21-2.函数13--=x y 中自变量的取值范围是( )A .31≥x B .31-≥x C .31≤x D .0≥x 3.不等式组⎩⎨⎧->≤-xx 35312的解集表示在数轴上正确的是( )4.根式2)5(--的值是( )A .-5B .5或-5C .25D .55.已知1=x 是一元二次方程02=-m x 的一个解,则方程的另一个解是( )A .1B .0C .-1D .1或-16.空中巴士340型客机重达256000千克,用科学记数法将该客机重量表示为(保留2位有效数字) ( )A .51026⨯千克 B .51056.2⨯千克 C .5106.2⨯千克 D .4106.25⨯千克7.如图,D 是线段AB 、BC 的垂直平分线的交点,若∠ADC =130°,则∠ABC 的大小是( )A .65°B .75°C .50°D .70° 8.如图,由四个棱长为“1”的立方块组成的几何体的主视图是( )A .B .C .D .A .B .P 第10题图第9题图9.某住宅小区五月份1日至6日每天用电量变化情况如拆线图的所示,那么这6天的中位数是( )A .500度B .520度C .510度D .513度10.如图,四边形ABCD 是⊙O 内接正方形,点P 是劣弧上不同于点C 的任意一点,则cos ∠BPC 是( )A .23 B .22C .41D .3211.如图是2003~2008年城镇居民家庭可支配收入的示意图(图1)和2008年家庭平均各项支出占城镇居民家庭可支配收入的比例统计图(图2),现给出下列说法: ①2003~2008年城镇居民家庭可支配收入持续上涨; ②2008年城镇居民家庭可支配收入涨幅最大,年增长率为117591175913786-;③2008年家庭平均各项支出中食物支出比教育支出大约多551元;④教育支出已成为家庭各项支出最重要的部分,预计2009年家庭平均教育支出将占城镇居民家庭可支配收入30%,若2009年城镇居民家庭收入按2008年的年平均增长率计算,那么2009年家庭平均教育支出达到%30)1175911759137861(13786⨯-+⨯元,其中正确说法有( )A .①②③④B .①②④C .①②③D .③④12.如图,在等腰△ABC 中,AB =AC ,以AB 为直径作⊙O 交BC 于D ,交AC 于E ,过D 作DF ⊥AC 于F ,有下列结论:①DE =DC ;②DF 为⊙O 的切线;③劣弧DB =劣弧DE;年份第11题图1 第11题图2④AE =2EF 。

2009年九年级第三次模拟检测数学

2009年九年级第三次模拟检测数学

2009年九年级第三次模拟检测数学试卷2009.5本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果水位下降3m记作-3m,那么水位上升4m记作A.1m B.7m C.4m D.-7m2.下列运算中,正确的是A. B.C. D.3.如果a<2,那么化简可得A.2-a B.a-2 C.-a D.a4.一个三角形的两边长分别为3和5,其周长为奇数,则这样的三角形个数有A.1个 B.2个 C.3个 D.4个5.已知⊙O的半径为r,那么,垂直平分半径的弦长是A. B. C. D.xyOPA6.如图,P是反比例函数在第一象限分支上的一动点,PA⊥x轴,随着x逐渐增大,△APO的面积将A.增大 B.减小 C.不变 D.无法确定第6题图7.如图,梯形ABCD中,AB∥CD,E是AD中点,EF∥CB交AB于F,BC=4cm,则EF的长等于DCAFBEA.1.5cm B.2cm C.2.5cm D.3cm8.如图,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB等于ABCD第7题图A.44° B.28° C.46° D.22°9.如图,数轴上两点A,B,在线段AB上任取一点,则点C到表示1的点的距离不大于2的概率是第8题图A. B. C. D.AB第9题图10.若关于x的不等式组无解,则实数a的取值范围是A.a<-3 B.a=-3 C.a>-3 D.a≥-311.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?设安排天精加工,天粗加工.为解决这个问题,所列方程组正确的是总分核分人 A . B .C .D .12.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t的大致图象为第12题图stOAstOBstOCstOD图72009年九年级第三次模拟检测数 学 试 卷2009.5卷II (非选择题,共96分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.2.答卷II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.题 号二三1920212223242526得分得分阅卷人二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.计算:=____________.14.已知,1纳米=0.000000001米,那么150纳米用科学记数法表示为米.15.四边形ABCD是菱形,∠A=60°,对角线BD的长为7cm,则此菱形的周长是 cm.16.某住宅小区五月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是.第16题图17.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,如果小华的身高为1.6米,那么路灯离地面的高度是米.18.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD在直线上按顺时针方向不滑动的每秒转动90°,转动3秒后停止,则顶点A经过的路线长为.第18题图DCBA三、解答题(本大题共8个小题;共78分)得分阅卷人19.本题8分已知;a=-3,求的值.得分阅卷人20.本题8分如图,AB为⊙O的直径,C是⊙O上一点,点D在AB的延长线上,且∠DCB=∠A.ABDOC(1)求证:CD是⊙O的切线.(2)若∠D=30°,BD=10cm,求⊙O的半径.得分阅卷人21.本题8分某研究机构为了了解本市市民对陶瓷博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了300个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图1和图2(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是岁;(2)已知被抽查的300人中有83%的人对博览会总体印象感到满意,请你求出21~30岁年龄段的满意人数,并补全图2;(3)比较21~30岁和41~50岁这两个年龄段对博览会总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数该年龄段被抽查人数100%.51~60岁7%61~65岁3%满意人数10016~20岁16%508041~50岁15%40414031~40岁20%21~30岁39%18720年龄段(岁)16~20051~6041~50 31~4021~3061~65图2图1得分阅卷人22.本题10分已知在平面直角坐标系中,抛物线l1的解析式为,将抛物线l1平移后得到抛物线l2,若抛物线l2经过点(3,-1),且对称轴为x=1.(1)求抛物线l2的解析式;(2)求抛物线l2的顶点坐标;(3)若将抛物线l2沿其对称轴继续上下平移,得到抛物线l3,设抛物线l3的顶点坐标为B,直线OB于抛物线l3的另一个交点为C,当OB=OC 时,求C点坐标.得分阅卷人23.本题10分如图1,△ABC中,AD为BC边上的的中线,则S△ABD= S△ADC.实践探究(1)在图2中,E、F分别为矩形ABCD的边AD、BC的中点,则S阴和S矩形ABCD之间满足的关系式为;图3C图1ABDEDCFBA图4图2AEDCFBAEDCFB(2)在图3中,E、F分别为平行四边形ABCD的边AD、BC的中点,则S阴和S平行四边形ABCD之间满足的关系式为;(3)在图4中,E、F分别为任意四边形ABCD的边AD、BC的中点,则S阴和S四边形ABCD之间满足的关系式为;解决问题:(4)在图5中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为20平方米,求图中四个小三角形的面积和是多少?即求S1+ S2+ S3+ S4=?ABCDEF G H 图5 S1S2S3S4得分阅卷人24.本题10分已知:如图1,△ABC是等边三角形,四边形BDEF是菱形,其中DF=DB,连结AF、CD.(1)观察图形,猜想AF与CD之间有这样的数量关系,直接写出结论,不必证明.(2)将菱形BDEF绕点B按顺时针方向旋转,使菱形BDEF的一边落在等边△ABC的内部,其余条件不变(如图2),请问(1)中的结论还成立吗?如成立,请证明;如不成立,请说明理由.(3)在第(2)问的旋转过程中,AF和CD所夹的锐角的度数是否发生变化?若变化,请说明它的度数是如何变化的;若不变,求它的度数.ABCDEFABCDEF图2图1A型利润B型利润甲店(元)200170乙店(元)160150得分阅卷人25.本题12分某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a 元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?得分阅卷人26.本题12分如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动.其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿折线O―C―B向终点B运动.当这两点中有一点到达自己的终点时,另一点也停止运动.设P从出发起运动了t秒.24OABC·PQty(1)如果点Q的速度为每秒2个单位时,①试分别写出点Q分别在OC上和在CB上时的坐标(用含t的代数式表示,不要求写出t的取值范围);②求t为何值时,PQ∥OC.(2)如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半时.①试用含t的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?有可能,求出相应的t的值和P、Q的坐标;如不可能,请说明理由.x(千米)y(升)。

2009年武汉市初三4月调考数学试题及参考答案(WORD版)

2009年武汉市初三4月调考数学试题及参考答案(WORD版)

武汉市2008一2009学年度部分学校九年级四月适应性调研测试数学试卷武汉市教育科学研究院命制2009.4.23说明:本试卷分为第I 卷和第II 卷.第I 卷为选择题,第B 卷为非选择题,全卷满分120分,测试用时120分钟.第I 卷(选择题,共36分)注意事项:1.答题前,考生务必将自己的姓名、考试科目、准考证号用2B 据笔涂写在答题卡上.2.每小题选出答案后,用2B 铅笔在答题卡上将对应的答案标号涂黑.知需改动,用橡皮擦干净后,再选涂其它答案,答在试卷上无效.3.考试结束,监考人员将本试卷和答题卡一并收回.一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案.其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1.31的相反数是 A.31- B.31 C.3 D.-3 2.函数y=13+x 的自变量x 的取值范围是 A.x 31-≥ B.x 31≥ C.x <31- D.x ≥0 3.不等式组的解集表示在数轴上正确的是4.根式2)5(-的值是A.-5.B.5或一5.C.25.D.5.5.已知x=1是一元二次方程x 2-mx+1=0的一个解,则m 的值是A.2.B.0.C.0或2.D.-2.6.空中巴士340型客机重达251000千克,用科学记数法将该客机重量表示为(保留3位有效数字)A.251x103千克B.2.51x105 千克.C.2.51810⨯千克.D.2.510 x105千克.7.如图,D 是线段AB,BC 垂直平分线的交点,若ABC ∠=50°。

,则ADC ∠的大小是A.100°.B.115°.C.130°.D.150°.8.如图,由四个棱长为"1"的立方块组成的几何体的左视图是9.某住宅小区四月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是A.30吨.B.31吨.C.32吨.D.33吨.10.如图,已知△ABC的外接圆⊙O的半径为1,D,E分别为AB,AC的中点,则sin∠BAC的值等于线段A.BC的长.B.DE的长.C.AD的长.D.AE的长.11.某市通过各种指施,不断增加主城区绿地面积,如圈,反映了该市近几年的人均绿地面积情况,根据图中信息,下列判断:①相对于两年前,人均绿地面积增加最多的是2006年;②该市人均绿地面积2002年至2004年的平均年增长率低于2006年至2008年的平均年增长率;③若按2004年至2006年的增长率规划建设,预计2010年该市人均绿地面积可以达到不低于10平方米/人的国家森林城市的标准.其中正确的是A.①②③B.只有①③.C.只有①②.D.只有①12.如图.分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和等边△ACE,F为AB 的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≅△EFA.其中正确结论的序号是A.②④.B.①③.C.②③④.D.①③④.第11卷(非选择题,共84分)注意事项:请用黑色墨水的签字笔或钢笔将答案直接答在答题纸上对应答题区城内。

湖北省武汉市新洲区2009年初中毕业九年级数学试题

湖北省武汉市新洲区2009年初中毕业九年级数学试题

某某市新洲区2009年初中毕业年级数学试题答卷时间:120分钟 满分:120分注意事项:1.答题前,考生务必将自己的某某、考试科目、某某号用2B 铅笔涂写在答题卡上.2.选择题用2B 铅笔在答题卡上将对应的答案标号涂黑.填空题和解答题做在答题卷上. 一、选择题(共12小题,每小题3分,共36分) 1.-61的倒数为 A.-6 B.61612.不等式组⎩⎨⎧>--≥-01x 1x 25的解集在数轴上表示为3.函数y=x 21-中自变量X 的取值X 围是 A.x >21 B.x <21 C.x ≥21≤214.关于X 的一元二次方程ax 2+2=0的一个根是-2,则a 的值是21 C.2 D.215.化简3×12的结果是A.36B.6C.-6D.±66.如图,将Rt △ABC (∠ACB=90°,∠ABC=30°)沿直线AD 折叠,使点B 落在E 处,E 在AC 的延长线上,则∠AEB 的度数为°°°°7.据某某市国土房产局发布的“武房指数”显示,2009年第一季度某某市商品房均价为4985元∕平方米,4985用科学计数法表示为(保留两位有效数字)·1 320 。

1 32 0 ·· 1 3 20 。

·3 ·1 20 。

ABCADEC DA BAFO BHCED×103×103C ×103×1038.如图,AB 为⊙O 的直径,P 为AB 延长线上的一点,PC 切⊙O 于C,tan ∠P=43,则sin ∠A= A.53 B.52 C.55 D.105 体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么这个几何体的左视图是10.右图是某某与某某两地5月上旬的日平均气温统计图,则两地这10天日平均气温的方差大小关系为(S 21、S 22分别表示某某和某某的日平均气温的方差)A .S 21﹥S 22 21=S 2221﹤S 22﹪,增速比上年同期回落4.5个百分点,根据以上信息,得出如下结论:①2008年第一季度国内生产总值(GDP)为:65745×℅)亿元;②2008年第一季度国内生产总值(GDP)为%1.6165745亿元;③℅;④2007年第一季度的国内生产总值为65745÷℅)÷﹪+℅)亿元. 其中正确的结论是A.①②③B.①③④C.②③④D.②③12.如图,已知Rt △ABC 外切于⊙O,E 、F 、H 为切点,∠ABC=90°,直线FE 、CB 相交于D 点,连结AO 、HE 、HF ,则下列结论: ①∠EFH=45°;②∠FEH=45°+∠FAO ;③BD=AF ;④DH 2=AO ·DF. 其中正确结论的个数为二、填空题(共4小题,每小题3分,共12分)13.一组数据5,7,7,x 的中位数与平均数相等,则x 的值是. 14.观察下列等式:①4=22-02;②12=42-22;③20=62-42……依此规律,则第八个等式应为.15.如图,已知直线y=kx +b 经过A (-3,-1)和B (-4,0)B AOxyCB PAO某某 某某日期温度两点,则不等式组31x <kx +b ≤0的解集为. 16.如图,y 轴为等腰梯形ABCD 的对称轴,AD ‖BC,且D(a-1,a+4),C(a,a+1),则经过点A 、B 的反比例函数的解析式为.三、解答题(共9小题,共72分)17.(6分)解方程:X 2+2X-7=0. 18.(6分)先化简,再求值:(x x 1x 2+--1x 2x x 2++)÷x1,其中x=3-1.19.(6分)如图,已知B 、C 、E 三点在同一条直线上,AC ‖DE ,AC=CE ,∠ACD=∠B.求证:△ABC ≌△CDE.20.(7分)某公司现有甲、乙两种品牌的饮水机,其中甲品牌有A 、B 两种型号,乙品牌有C 、D 、E 三种型号,各种型号饮水机的价格如下表:甲品牌乙品牌 型号 A B C D E 价格(元)200170130120100某校计划从甲、乙两种品牌中各选购一种型号的饮水机.(1)若各种型号的饮水机被选购的可能性相同,那么E 型号饮水机被选购的概率是多少?(要求利用列表法或树形图).(2)某校购买了两种品牌的饮水机共30台,其中乙品牌只选购了E 型号,共用去资金5000元,问E 型号的饮水机买了多少台?21.(7分)已知直线L 平分∠xoy,△ABC 与△A 1B 1C 1关于直线L 对称. (1)在所给的图中作出△A 1B 1C 1的图形; (2)设A 的坐标是(3,1),则点A 1的坐标是.(3)设BC 边所在的直线解析式为y=3x-3,则B 1C 1所在的直线解析式是.22.(8分)如图,已知AB 是⊙O 的的直径,BC 是⊙O 的切线,OC ‖弦AD. (1)求证:CD 是⊙O 的切线;(2)若过点D 作DE ⊥AB 于E 交AC 于P , 试求EDPD的值.23.(10分)中百超市茶叶专柜经销一种绿茶,每千克成本为50元,市场调查发现,在一段时间内,CXyD A BO AECBD O CL AXByAD O BCE A D O BCP每天的销售量W(千克)随销售单价X(元/千克)的变化而变化,具体关系式为:W=-2x+240.设这种绿茶在这段时间内的销售利润为y(元).(1)请你测算一下,售价为多少时,一天所获利润最大?最大利润是多少?(2)如果物价部门规定这种绿茶的销售利润率不得高于60℅,要想每天获得2250元的销售利润,销售单价应定为多少元?24.(10分)如图,在△ABC 中,∠ACB=90º,BC=nAC ,CD ⊥AB 于D ,点P 为AB 边上一动点,PE ⊥AC ,PF ⊥BC ,垂足分别为E 、F. (1)若n=2,则BFCE=; (2)当n=3时,连EF 、DF,求DFE F的值; (3)当n=时,DF E F =332(直接写出结果, 不需证明).25.(12分)已知抛物线y=ax 2+bx+c 与x 轴交于A(-1,0),B(3,0),与y 轴负半轴交于C,顶点为D. (1)当OC=OB 时,求抛物线的解析式;(2)在(1)的条件下,抛物线的对称轴上是否存在点P,使△ACP 绕点P 逆时针旋转90°后,点C 恰好落在抛物线上?若存在,求旋转后△ACP 三个顶点的坐标;(3)若抛物线y=ax 2+bx+c 与y 轴的交点C 在y 轴负半轴上移动,则△ACD 与△ACB 面积之比A C BA C DS S ∆∆是否为一定值?若是定值,请求出其值;若不是定值,请说明理由.yOADBCxCAO x BDyF数学参考答案一、1—6 A C D B B C 7—12 C C A A C D 二、13.107 14.60=162-14215.-4≤x <-3 16.x y 6-=三、17.2211+-=x 2212--=x18.化简得:2)1(1+-x ,当13-=x 时,原式=-3119.略20.(1)画树形图如下:由图可知,共有6种可能的结果,而E 型号被选中的可能性有2种, ∴P (选购E )=3162=. (2)设选购E 型号的饮水机x 台(x 为正整数).则选购甲品牌(A 或B 型号)(30-x )台,由题意得 当甲品牌选A 型号时,100x +(30-x)×200=5000 解得:x=10当甲品牌选B 型号时,100x +(30-x)×170=5000, 解得:x=710(不合题意) 故E 型号的饮水机购买了10台.21.(1)图略 (2)(1,3) (3)131+=x y 22.(1)略 (2)21=ED PD 23.(1)y=(x -50)(-2x +240) =-2x 2+340x -12000 =-2(x -85)2+2450 ∴ 当x=85时,y 最大=2450(元)(2)当y=2250时,-2(x -85)2+2450=2250∴x 1=75 x 2=95ADCBDC甲乙又%605050≤-x 即x ≤80 ∴x=75 即销售单价为75元时,可获利润2250元.24. (1)21 (2)连DE ,所以==BDCDBF CE tanB 又∠ECD=∠B ∴△CED ~△BFD易证∠EDF=90° 又DF DE =tanB=31可设DE=a DE=3a 从而EF=10a ∴310310==a a DF EF (3)325.(1)322--=x x y(2)A 、C 、P 对应点的坐标为(-2,-5)(1,-4)(1,-3)或(-1,-4),(2,-3),(1,-2) (3)a ax ax y 322--=)0(>a∴A (-1,0),B (3,0),C (0,-3a ),D (1,-4a ) ∴S △ACB =a a 63421=⨯⨯ ∴S △ACD =a a a a 42211)43(213121⨯⨯-⨯++⨯⨯=a ∴616==∆∆a a S S ACB ACD 2009年初中毕业年级数学答题卷考试时间:120分钟 满分:120分 2009.5注意事项:1、答题前,考生先将自己的某某、某某在答题卷上填写清楚。

2009年九年级第二次质量预测数学(含答案)

2009年九年级第二次质量预测数学(含答案)

2009年九年级第二次质量预测 数学 参考答案及评分标准一、选择题二、填空题 7.12; 8. -3; 9. 2y x =--等(答案不唯一); 10. 5; 11. 40; 12. ①,③,⑤; 13. 30a ; 14. 67890; 15. 5. 三、解答题 16.解:原式=12+23×12…………5分 …………8分 17.解:四边形ABCD 是菱形. ……………1分 理由: ∵ CD ∥AN , CB ∥AM ,∴ 四边形ABCD 是平行四边形,且∠MDC =∠A =∠CBN ,……………4分 ∵ 点C 是∠MAN 的平分线上一点,且CF ⊥AM 于点F ,CE ⊥AN 于点E , ∴ CF =CE , ∠DFC =∠CEB =90, ∴△CFD ≌△CEB . ……………6分 ∴ CD =CB . ∴ 四边形ABCD 是菱形. ……………9分 18.解:(1)树状图或列表略, ……………3分P (张华摸到标有数字3的乒乓球)=31124=; ………4分 (2)这个游戏不公平. ………………5分 ∵ P (王强赢)=512,P (张华赢)=712, 571212<, ∴ 这个游戏不公平. ………………9分19.解:(1)如图,过C 作CE ⊥AB 于E ,则点E 即为所求;(作图痕迹略)…1分 (2)设CE =x ,则在Rt ΔAEC 和Rt ΔBEC 中,tan A =AECE,………………3分 ∴ AE =A CE tan =A x tan ≈x x 3475.0=,……………………………………4分 E CB A第19题图∵ tan B =BECE,又∠B =45,故BE =CE =x , …………… 5分 ∴ 由AE +BE =AB =42,可得方程 4234=+x x ,……………………………7分∴ 18=x >15, ………………………………………………………………8分 所以该圆形喷水池不会影响人行道的通行. …………………………………9分 20.解:(1)B 旅游点的旅游人数相对上一年增长最快的是2007年.……………1分(2)A x =554321++++=3(万人) ;B x =534233++++=3(万人) .………………3分 2A S =51[(-2)2+(-1)2+02+12+22]=2,2B S =51[02+02+(-1)2+12+02]=52.………………5分评价不唯一,合理就给分:如从2004至2008年,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动大.………………7分 (3)由题意,得 5-100x≤4, 解得x ≥100, ………………8分 100-80=20 .则A 旅游点的门票至少要提高20元. ………………9分 21.解:(1)∵ BC ⊥AC , BD ⊥AB ,∴ tan ∠ADB =tan ∠ABC =34, ∴ CD =94,OD =134, D (134,0). ………………3分(2)AB =5,当PQ ∥BD 时,△APQ ∽△ABD ,133254,135934m m m +-==+. 当PQ ⊥AD 时, △APQ 与△ADB , 1331254,1353634m m m +-==+.………………9分 22.解:设生产A 型挖掘机x 台, B 型挖掘机(100)x -台, ………………1分则 200240(100)22400200240(100)22500x x x x +-≥⎧⎨+-≤⎩,,解得37.540x ≤≤,∵ x 取非负整数, ∴ x 为38, 39, 40. ………………4分 设获利为w 万元, 由题意知(50)60(100)w m x x =++-(10)6000m x =-+, ………………6分①当100m -<即010m <<时,w 随x 的增大而减小, 38x =时,w 有最大值;②当100m ->即10m >时,w 随x 的增大而增大, 当40x =时,w 有最大值.∴当010m <<时,应生产A 型38台 B 型62台可获最大利润;当10m >时,应生产A 型40台,B 型60台可获最大利润 . ………………10分 23.解:(1)如图,过点B 作BE ⊥y 轴于点E ,作BF ⊥x 轴于点F .由已知得 BF =OE =2, OF∴ 点B 的坐标是(,2) . …………3分 (2) 如图,∵△ABD 由△AOP 旋转得到,∴ △ABD ≌△AOP , ∴ AP =AD , ∠DAB =∠P AO ,∴ ∠DAP =∠BAO =60, ∴ △ADP 是等边三角形,∴ DP =AP=…………5分 如图,过点D 作DH ⊥x 轴于点H ,延长EB 交DH 于点G ,则BG ⊥DH .在Rt △BDG 中,∠BGD =90, ∠DBG =60.∴ BG =BD •cos 6012. DG =BD •sin 60=32 .∴ OH =EGDH =72. ∴ 点D 的坐标为72). ………………7分(3)假设存在点P , 在它的运动过程中,使△OPD设点P 为(t ,0),下面分三种情况讨论: ①当t >0时,如图,BD =OP =t , DG, ∴ DH=2+2t . ∵△OPD的面积等于4,∴1(2)224t +=,解得13t =, 23t = ( 舍去) .∴ 点P 1的坐标为(3, 0 ).②当<t ≤0时,如图,BD=OP =-t , BG =t , ∴ DH =GF =2)t .∵ △OPD的面积等于4, ∴1(2)224t -+=, 解得13t =-, 2t =∴ 点P 2的坐标为(0),点P 3的坐标为(③当t ≤时,如图,BD =OP =-t , DG =∴ DH =t -2. ∵ △OPD ,∴ 1(2)2t = ,解得13t =(舍去), 23t =.∴ 点P 4的坐标为(3, 0),综上所述,点P 的坐标分别为 P 1、P 2 (、P 3 (、P 4. ……12分。

2009年中考数学复习模拟测试试卷(共5套含答案)-3.doc

2009年中考数学复习模拟测试试卷(共5套含答案)-3.doc

2009年中考复习模拟测试试卷(一)试卷总分:150分 考试时间:120分钟班级 姓名 学号 得分一、填空题:本大题共14小题,每小题3分,共42分,不需要写出解答过程,请把最后结果填在题中横线上. 1= .2.已知一元二次方程230x px ++=的一个根为-3,则p = .3中,最简二次根式的是 .4.已知nn 的最小值是 .5.如图,用等腰直角三角板画45AOB ∠=︒,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22度,则三角板的斜边与射线OA 的夹角α为 .6.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率为 .7.如图,以O 为圆心的两个同心圆,大圆的弦AB 交小圆于C 、D ,若AB =3cm ,CD =2cm ,那么AC = cm . 8.过O 内点M 的最长弦长为10cm ,最短弦长为8cm ,那么OM 的长为 cm . 9.抛物线2242y x x =---的顶点坐标是 .10.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?设每轮传染中平均一人传染了x 个人,根据题意,可列方程为 . 11.已知:2x =-,则代数式246x x --= . 12.如图,已知AB 是O 的弦,P 是AB 上一点,若AB =10cm ,PB =4cm ,OP =5cm ,则O 的半径等于 cm . 13.已知扇形的圆心角为60度,面积为π,O 与扇形的弧经过这条弧的端点的两条半径都相切,则O 半径等于 cm .14.已知一个圆锥的高为10cm ,它的侧面展开图是半圆,则它的全面积为 .二、选择题:本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请你将正确的选项的代号填入题后的括号内. 22第5题 第7题 第12题CB第13题A .0.15B .πC .-4D .22716.已知如图1所示的四张牌,若将其中的一张牌旋转180度后得到图2,则旋转的牌是( )17.如图,函数2y ax a =-与函数ay x=在同一坐标系内的图象大致为( )A .B .C .D .18.右边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是( )① ② ③ ④ ⑤ A .①⑤ B .②④ C .③⑤ D .②⑤三、解答题:本大题共10小题,共92分.解答题应写出文字说明、证明过程或演算步骤. (19~20题,第19题10分,第20题10分,共20分) 19.计算:(1) (2)(a --20.解下列方程:(1)2410x x +-=; (2)2210x x --=(用配方法);图1图2A .B .C .D .(21~22题,第21题6分,第22题6分,共12分) 21.先化简,再求值:2211x x x -++-,其中1x =.22.如图,在ABC △中,D 是BC 边的中点,F E ,分别是AD 及其延长线上的点,CF BE ∥. (1)求证:BDE CDF △≌△.(2)请连结BF CE ,,试判断四边形BECF 是何种特殊四边形,并说明理由.(23~24题,第23题8分,第24题10分,共18分)23.为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.(1)按此计划,该公司平均每天应生产帐篷 顶;(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工...人.的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?24.如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地. (1)怎样围才能使矩形场地的面积为750m 2?(2)能否使所围矩形场地的面积为810m 2,为什么?(25~26题,第25题7分,第26题8分,共15分) 25.已知关于x 的不等式ax +3>0(其中a ≠0).(1)当a =-2时,求此不等式的解,并在数轴上表示此不等式的解集;(3分)(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数-10、-9、-8、-7、-6、-5、-4、-3、-2、-1,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a ,求使该不等式没有..正整数解的概率.(4分)第21题图26.如图,在平面直角坐标系中,Rt △OAB 的直角边OA 在x 轴的正半轴上,点B 在第象限,将△OAB 绕点O 按逆时针方向旋转至△OA ′B ′,使点B 的对应点B ′落在y 轴的正半轴上,已知OB=2,︒=∠30BOA (1)求点B 和点A ′的坐标;(2)求经过点B 和点B ′的直线所对应的一次函数解析式,并判断点A 是否在直线BB ′上。

中考数学模拟试题 (二) 答案(数学)doc

中考数学模拟试题  (二) 答案(数学)doc

2009年中考数学模拟试题参考答案及评分意见(二)一、选择题(每小题4分,共40分)1~5:A D D C A 6~10:C B B D C二、填空题(每小题5分,共20分)11.32 12.x 1= 0,x 2=4 13.90 14.a 81三、(本题共 2 小题,每小题 8 分,满分 16 分)15.解:原式=21)(2)2)21a a a a a ++-⋅-+(( ………3分 =42+a ………………………………5分 当12-=a 时,原式=()4122+-⨯………6分 =222+………8分16.FAB ADE ∆≅∆………2分矩形ABCD ∴90B ∠= DC=AB AD ∥BC ∴AFB DAE ∠=∠………4分 DE ⊥AG ∴90=∠=∠B AED ………5分DC DE = ∴AB DE =………7分 ∴)(AAS FAB ADE ∆≅∆………8分四、(本题共 2 小题,每小题 8 分,满分 16 分)17.解: 令0y =,得2230x x --=,解方程,得13x =,21x =-. ………2分∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,.………4分∴二次函数图象向右平移1个单位后经过坐标原点.………6分平移后所得图象与x 轴的另一个交点坐标为(40),………8分 18.解:设CD=x 米,则在Rt ∆ADC 和Rt ∆BDC 中 ………1分由∠A =︒30 ∠B =︒45得 AD=3x BD=x ………4分 3x +x=2000 ………6分x ≈741 答:飞机高度大约为741米。

(若计算出700米、732米也可算正确)8分五、(每小题10分,共20分)19.解:(1)21,1,23 ………………………………………………………………6分 (2)4m ……………………………………………………………………10分 20.解:(1)52………………………………………………………………4分 (2)107(图略,只要方法正确即可)……………………………………10分 六、(12分)21.(1)3 30 ………………………………………………………………4分(2)22.5 ………………………………………………………………………6分(3)当 0 ≤ x ≤1时,设y = kx 当4 ≤x ≤6时,设 y=kx+b ,则k ·1= 15 ⎩⎨⎧=+=+06304b k b k k=15 k = -15y=15x b = 90当 y = 12时 ∴ y = -15x + 90x =1215当 y = 12时 x = 0.8 ………………9分 12 =-15x + 90x =5.2………………………12分 答:小明出发后48分钟或5小时12分钟时离家12千米.七、(12分)22.(1)证明:∵OC=DC, ∠OCD=60°, ∴△COD 是等边三角形………………………3分(2)解:当α=150°,即∠BOC=150°时,△AOD 是直角三角形.………………4分 ∵△BOC ≌△ADC, ∴∠ADC=∠BOC=150°.又∵△COD 是等边三角形,∴∠ODC=60°, ∴∠ADO=90°即△AOD 是直角三角形.…………………………… ………………………6分(3)解:根据题意知:∠COD=60°①要使OA=AD,需∠AOD=∠ADO∵∠AOD=190°-α,∠ADO=α-60°,∴190°-α=α-60°∴α=125°. ………………………………………8分 ②要使OA=OD,需∠OAD=∠ADO,∵190°-α+2(α-60°)=180°,∴α=110°. ………………………………………………………………10分 ③要使OD=AD,需∠OAD=∠AOD, ∴190°-α=50°∴α=140°.综上所述:当α的度数为125°、或110°、或140°时,△AOD 是等腰三角形…12分八、(14分)23.(1)直线AB 解析式为:y=33-x+3. ……………(3分) (2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2OD CD OB ⨯+=x x 3632+-. ……………5分 由题意:x x 3632+- =334,解得4,221==x x (舍去)…………7分 ∴ C(2,33) ……………………………………………………8分 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S …5分 由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33.…………7分 ∴ AD=1,OD =2.∴C (2,33).………………………………8分 (3)(求出每一个坐标给3分,本小题满分6分) 当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BPO =∠BAO=30°,BP=3OB=3∴1P (3,3).……3分②若△BPO ∽△OBA ,则∠BOP =∠BAO=30°,BP=33OB=1 ∴2P (1,3). …………3分当∠OPB =Rt ∠时③ 过点O 作OP ⊥AB 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23 ∵ 在Rt △P MO 中,∠OPM =30°,∴ OM =21OP =43;PM =3OM =433.∴3P (43,433). ……3分 方法二:设P(x ,33-x+3),得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OM PM =x x 333+- ,tan ∠ABO=OBOA =3 ∴33-x+3=3x ,解得x =43.此时,3P (43,433).……3分 ④若△POB ∽△OBA(如图),则∠OBP=∠BAO =30°,∠POM =30°. ∴ PM =33OM =43. ∴ 4P (43,43)(由对称性也可得到点4P 的坐标).…………3分 当∠BOP =Rt ∠时,点P 在x 轴上,不符合要求.综合得,符合条件的点有四个,分别是:1P (3,33),2P (1,3),3P (43,433),4P (43,43).。

2009年数学中考模拟试题九试题试卷

2009年数学中考模拟试题九试题试卷

2009年数学中考模拟试题九(满分:120分,考试时间:100分钟)亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷由卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分组成,三大题,共6页,2.答题前,请将你的姓名、准考证号和学校填写在答题卷指定的位置,并将准考证号、考试科目用2B 铅笔涂在“答题卡”上;3.答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把“答题卡”上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不得答在试卷上;4.因本次考试采用网上阅卷,务必请同学用大于0.5mm 以上的水笔、签字笔或黑色墨水的钢笔在答题卷规定范围内答题,不得用其他颜色的笔或圆珠笔答题。

预祝你取得优异成绩!卷 Ⅰ一、仔细选一选(本题有10个小题,每小题3分,共30分) 1.2008年3月5日上午9时,十一届全国人大一次会议开幕, 温家宝总理在政府工作报告中指出,全国财政用于教育支出五 年累计达2.43万亿元,用科学记数法表示为( )元A 2.43×1010B 2.43×1011C 2.43×1012D 2.43×1013 2. 如图所示是由几个小立方块所搭成的几何体,那么 这个几何体的主视图是( )3. 我区5A .27,28 B .27.5,28 C .28,27 D .26.5,274. 如图所示,等腰梯形ABCD 中,AD BC BD DC ∥,⊥,点E 是BC 边的中点,ED AB ∥,则BCD 等于( )A .30B .60C .70D 5. 如图所示,有5张写有数字的卡片(如图1所示), 它们的背面都相同,现将它们背面朝上(如图2所示),从中翻开任意一张是数字2的概率是( ) A .15B .23 C .25D .12A .B .C .D .第2题E 第4题2 3 5题6. 已知关于x 的方程m x +2=2(m —x )的解满足|x -21|-1=0,则m 的值是 ( ) A .10或52 B .10或-52 C -10或52 D .-10或52- 7. 在Rt △ABC 中,∠C =90º,b =35c ,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则sinB 的值是( )(A )35 (B )45 (C )34 (D )438. 如图所示,ABC △的顶点坐标分别为(43)A --,,(03)B -,,(21)C -,,如将B 点向右平移2个单位后再向上平移4个单位到达1B 点,若设ABC △的面积为1S ,1AB C △的面积为2S ,则12S S ,的大小关系为( ) A .12S S > B .12S S = C .12S S < D .不能确定9. 如图(1),将一块正方形木板用虚线划分成36个全等的小正方形,然后,按其中的实线切成七块形状不完全相同的小木片,制成一副七巧板.用这副七巧板拼成图(2)的图案,则图(2)中阴影部分的面积是整个图案面积的( )A .18 B .14 C .17 D 10.如图所示,已知直线l 的解析式是434-=x y ,并且与x轴、y 轴分别交于A 、B 两点。

2009年中考模拟试卷数学试题卷-2

2009年中考模拟试卷数学试题卷-2

2009年中考模拟试卷 数学试题卷考生须知:1. 本试卷分试题卷和答题卷两部分。

满分120分,考试时间100分钟。

2. 答题时,应该在答题卷指定位置内写明校名,姓名,班级,学号。

3. 所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

4. 考试结束后,上交试题卷和答题卷。

一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在 答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1.计算(-3)3的结果是( ) A 、9B 、-9C 、27D 、-272.去年5月12日,我国四川省汶川县发生了强烈地震,灾情牵动着所有中国人民的心,为此,我校开展了“再小的力量也是一种支持”的募捐活动,全校师生共捐献善款元,将这个数据保留两个有效数字并用科学记数法表示为……………………( ▲ ) A 、33×104B 、×105C 、32×104D 、×1053.下列式子正确的是( ▲ )6÷x 3=x 2 B.(-3)0=1 C.4m2-=241mD.(a 2)4=a 64.下列不等式组的解集,在数轴上表示为如图所示的是 ( ▲ )A.1020x x ->⎧⎨+≤⎩ B.1020x x -≤⎧⎨+<⎩C.1020x x +≥⎧⎨-<⎩ D.1020x x +>⎧⎨-≤⎩5. 如图,在△ABC 中,∠C=90°,AC=8cm, AB 的垂直平分线MN 交AC 于D ,连结BD ,若53cos =∠BDC ,BC的长是( ▲ )A .4cmB .6cmC .8cmD .10cm 6.二次函数y =x 2-3x+6的顶点坐标是( ▲ )ABC DM N(第5题图)A.(-3,6)B.(3,6)C.315(,)24-D.315(,)247.如图,△ABC 与△DEF 是位似图形位似比为3:4,已知AB =6,则DE 为……( ▲ ) A 、4 B 、4.5 C 、6 D 、88.如图,冰淇淋蛋筒下部呈圆锥形,则蛋筒圆锥部分包装纸的面积(接缝忽略不计)是( ▲ ) A 、20㎝2B 、40㎝2C 、20π㎝2D 、40π㎝29.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小王掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ▲ )A. 118B.112C.19D.1610、如果在正八边形硬纸板上剪下一个三角形(如图①中的阴影部分),那么图②,图③,图④中的阴影部分,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影部分,依次进行的变换不可行...的是( ▲ )A.平移、对称、旋转 B.平移、旋转、对称 C.平移、旋转、旋转D.旋转、对称、旋转二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)第8题图第7题图图①图②图③图④要注意认真看清题目的条件和要求填写的内容, 尽量完整地填写答案.11.写出一个..你熟悉的中心对称的几何图形名称,它是 . 12.估计与的大小关系是5.0_____215 (填“>”“<”“=”) 13. 已知A 、B 、C 、D 点的坐标如图所示, E 是图中两条虚线的交点, 若△ABC 和△ADE 相似, 则E 点的坐标是___________________.14. 如图是一张简易活动餐桌,现测得OA=OB=30cm , OC=OD=50cm ,现要求桌面离地面的高度为40cm ,那么 两条桌腿的张角∠COD 的大小应为 度.15.一次函数y=-x+1与反比例函数y=-x2,x 与y 的对应值如下表: x -3 -2 -1 1 2 3 y=-x+1 432-1-2y=-x2 32 1 2 -2 -1 -32 方程-x+1=-x 2的解为___________;不等式-x+1>-x2的解集为____________.16. 假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到. 现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数. 那么刻的数是36的钥匙所对应的原来房间应该是 号.三、完整解一解 (本题有8个小题, 其中17、18、19题每题4每题8分, 6分,20、21、22每题8分, 23、24题每题12分,共66分)17.(本题6分)说出日常生活现象中的数学原理:18.(本题6分)如图,已知一条公路MN附近有4个村庄A、B、C、D,按要求作图:(1)找出一个建生活垃圾临时收集站的地点P,使四个村庄去扔垃圾时的总路程最小;(2)画出一条生活垃圾临时收集站到公路的最近运输路线;(3)在公路上找到一个最合适的公交停靠站Q;19.(本题6分)如图,已知△ABC中,∠C=900,D为AB上一点,且AC=AD,试探究∠A与∠DCB的关系,并说明理由.ABDCM NA B20.(本题8分)已知A 地在B 地的正南方3千米处,甲、乙两人分别从A 、B 两地向正北方向匀速直行,他们和B 地的距离S (千米)与所用的时间t (小时)的函数关系的图象如图所示,写出尽可能多的结论。

2009年中考数学复习模拟测试试卷(共5套含答案)-2.doc

2009年中考数学复习模拟测试试卷(共5套含答案)-2.doc

A BCDEO(第5题图) 2121-2009年中考复习模拟测试试卷(二) 试卷总分:150分 考试时间:120分钟班级 姓名 学号 得分二、选择题(每题3分,27分) 1.2-的倒数是A . 2B .C . 2-D . 2.2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43 681 000 000元人民币.这笔款额用科学记数法表示(保留三个有效数字)正确的是A . 1110437.0⨯ B . 10104.4⨯ C . 101037.4⨯ D . 9107.43⨯ 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是4.对于反比例函数xk y 2=(0≠k ),下列说法不正确...的是A . 它的图象分布在第一、三象限B . 点(k,k )在它的图象上C . 它的图象是中心对称图形D . y 随x 的增大而增大5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD的延长线于点E ,则下列式子不成立...的是 A . DE DA = B . CE BD = C . 90=∠EAC ° D . E ABC ∠=∠26.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A . 0B . -1C . 1D . 27.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到 达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图 象大致是正方体 长方体 圆柱 圆锥 A B C D ABDC(第7题图) A BC DE. F.P .·8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的 一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸 帽(接缝处不重叠),那么这个圆锥的高为A .3cmB .4cmC .21cmD .62cm9. 如图,某电信公司提供了A B ,两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则以下说法错误..的是( ) A .若通话时间少于120分,则A 方案比B 方案便宜20元B .若通话时间超过200分,则B 方案比A 方案便宜12元C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分一、填空题(每题4分,共40分)10.在抗震救灾过程中,共产党员充分发挥了先锋模范作用,截止5月28日17时,全国党员已缴纳特殊党费26.84亿元,用科学记数法表示为 元(结果保留两个有效数字). 11.函数y =中,自变量x 的取值范围是 . 12.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).13.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm .14.如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是 元.15.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 .16.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则S =2cm.17.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是 .(图1) (图2)60%(第9题)5=RDOCB A 第12题图 O B A 第13题图 5cm A DC E F GB 第16题图 第15题图一共花了170元 第14题图18.下列各图中, 不是正方体的展开图(填序号).19.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322A D BC ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n 个菱形n n n AB C D 的边n AD 的长是 . 三、解答题(共83分) 20.(5分)20)21(8)21(3--+-+-21.(951-调,匀称的美感,现将同学们在教学活动中,折叠黄金矩形的方法归纳出以下作图步骤(如图所示): 第一步:作一个任意正方形ABCD ;第二步:分别取AD BC ,的中点M N ,,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ; 第四步:过B 作EF AD ⊥交AD 的延长线于F , 请你根据以上作法,证明矩形DCEF 为黄金矩形,(可取2AB =)1D B 3第19题图A C 2B 2C 3D 3 B 1D 2C 1①② ③④ 第18题ABCDEFMN (第21题图)22.(本题满分8分)2008年北京奥运会吉祥物是“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”,现将5张分别写有这五个吉祥物名称的卡片(卡片的形状,大小一样,质地相同,如图所示)放入一个不透明的盒子内搅匀. (1)小虹从盒子中任取一张卡片,取到“欢欢”的概率是多少? (2)小虹从盒子中先随机取出一张卡片(不放回盒子),然后再从盒子中取出第二张卡片,请你用列表法或树形图法表示出小虹两次取到卡片的所有可能情况,并求出两次取到的卡片恰好是“贝贝”、“晶晶”(不考虑先后顺序)的概率. 23.(本题满分9分)已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x . (1)求实数m 的取值范围;(4分)(2)当22120x x -=时,求m 的值.(6分) (友情提示:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠两根,则有12b x x a +=-,12c x x a=)(第22题图)24.(本题满分9分)如图,AB 为O 的直径,PQ 切O 于T ,AC PQ ⊥于C ,交O 于D .(1)求证:AT 平分BAC ∠;(5分)(2)若2AD =,TC =O 的半径.(5分)25.(9分)已知:如图,Rt △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m)-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长;(2)当m 、p 满足什么关系时,△AOB 的面积最大.(第23题图)26.(本题满分12分)如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交AB 的延长线于点E ,连结AD 、BD . (1)求证:∠ADB =∠E ;(3分)(2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由.(3分) (3)当AB =5,BC =6时,求⊙O 的半径.(4分) 27.(本题满分14分)如图,在等腰梯形ABCD 中,已知AD ∥BC ,AB =DC ,AD =2,BC =4,延长BC 到E ,使CE =AD .(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说明理由.EC A(第26题图)F EDCBA (第27题图)2009年中考复习模拟测试试卷(二)参考答案 一、选择题1—9 D C B D B A B C D 二、填空题 10.92.710⨯11.3x ≤且1x ≠12.C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 13.414.14515.1216.1cm 或7cm 17.12 18.③19.1n -⎝⎭三、解答题20.原式=42213-++=2221.证明:在正方形ABCD 中,取2AB = N 为BC 的中点,112NC BC ∴== 在Rt DNC △中,2222125ND NC CD ++=又NE ND =,51CE NE NC ∴=-=,12CE CD ∴=. 故矩形DCEF 为黄金矩形. 22.解:(1)1()5P =取到欢欢; (2树形图如下:贝晶 欢 迎 妮晶 贝 欢 迎 妮 欢贝 晶 迎 妮迎贝 晶 欢 妮妮贝 晶 欢 迎由表(图)可知:21()2010P ==两次取到“贝贝”,“晶晶”. 说明:以上“贝、晶、欢、迎、妮”分别代表“贝贝、晶晶、欢欢、迎迎、妮妮”,用其它代号作答正确的相应给分,列表或画树形图两者取其一即可.23.解:(1)由题意有22(21)40m m ∆=--≥, 解得14m ≤. 即实数m 的取值范围是14m ≤. (2)由22120x x -=得1212()()0x x x x +-=.若120x x +=,即(21)0m --=,解得12m =. 1124>,12m ∴=不合题意,舍去. 若120x x -=,即12x x = 0∴∆=,由(1)知14m =. 故当22120x x -=时,14m =. 24.(1)证明:连接OT ,PQ 切O 于T ,OT PQ ∴⊥.又AC PQ ⊥,OT AC ∴∥TAC ATO ∴∠=∠又OT OA =ATO OAT ∴∠=∠.OAT TAC ∴∠=∠,即AT 平分BAC ∠.(2)解:过点O 作OM AC ⊥于M ,12ADAM MD ∴===.又90OTC ACT OMC ∠=∠=∠=∴四边形OTCM 为矩形. 3OM TC ∴==∴在Rt AOM △中,222AO OM AM +==.即O 的半径为2.26.(1)在△ABC 中,∵AB =AC ,∴∠ABC =∠C . ∵DE ∥BC ,∴∠ABC =∠E , ∴∠E =∠C . 又∵∠ADB =∠C , ∴∠ADB =∠E . (2)当点D 是弧BC 的中点时,DE 是⊙O 的切线.理由是:当点D 是弧BC 的中点时,则有AD ⊥BC ,且AD 过圆心O . 又∵DE ∥BC ,∴ AD ⊥ED . ∴ DE 是⊙O 的切线(3)连结BO 、AO ,并延长AO 交BC 于点F , 则AF ⊥BC ,且BF =21BC =3.又∵AB =5,∴AF =4. 设⊙O 的半径为r ,在Rt △OBF 中,OF =4-r ,OB =r ,BF =3,∴ r 2=32+(4-r )2解得r =825, ∴⊙O 的半径是825. 27.(1)△CDA ≌△DCE ,△BAD ≌△DCE ; ① △CDA ≌△DCE 的理由是:∵AD ∥BC , ∴∠CDA =∠DCE . 又∵DA =CE ,CD =DC , ∴△CDA ≌△DCE . 或 ② △BAD ≌△DCE 的理由是:∵AD ∥BC ,∴∠CDA =∠DCE .又∵四边形ABCD 是等腰梯形,∴∠BAD=∠CDA,∴∠BAD =∠DCE.又∵AB=CD,AD=CE,∴△BAD≌△DCE.(2)当等腰梯形ABCD的高DF=3时,对角线AC与BD互相垂直.理由是:设AC与BD的交点为点G,∵四边形ABCD是等腰梯形,∴AC=DB.又∵AD=CE,AD∥BC,∴四边形ACED是平行四边形,∴AC=DE,AC∥DE.∴DB=DE.则BF=FE,又∵BE=BC+CE=BC+AD=4+2=6,∴BF=FE=3.∵DF=3,∴∠BDF=∠DBF=45°,∠EDF=∠DEF=45°,∴∠BDE=∠BDF+∠EDF=90°,又∵AC∥DE∴∠BGC=∠BDE=90°,即AC⊥BD.(说明:由DF=BF=FE得∠BDE=90°,同样给满分.)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年湖北省武汉市新洲仓埠中学九年级数学模拟试卷2009.5一、选择题(共12小题,每小题3分,共36分) 1、下列各组数中,互为相反数的是( ) A2与21B 21)(-与1C -1与2)1(- D2与|-2| 2、不等式组2314x x -⎧⎨--⎩>≥的解集在数轴上表示应是( ).(A) (B) (C) (D)3、已知x=-1是一元二次方程x 2+mx-5=0的一个解,则方程的另一个解是( ).(A)1 (B)-5 (C)5 (D)-4) A .2 B .±2C .±4D .45. 函数y=x中自变量x 的取值范围是( ) (A )x ≤12且x ≠0 (B )x>-12且x ≠0 (C )x ≠0 (D )x<12且x ≠0 6. 今年3月5日,温家宝总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了西部地区和部分中部地区农村义务教育阶段约52400000名学生的学杂费。

这个数据保留两个有效数字用科学记数法表示为( )。

A 、5.24³107 B 、5.2³107 C 、5.2³108 D 、52³1067.如图,将正△ABC 沿过点A 的直线L 翻折得到△ADE,连接BD ,CD ,则∠BDC=( )DBBDOAA.30° B.60° C.25° D.15°8. 为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果;下列调查数据中最值得关注的是( ) A .平均数 B .中位数 C .众数 D .方差9.下列四个图形中,每个小正方形都标上了颜色. 若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是-------( ) 10. 已知:D 是半圆O 的直径AB 上的一点,OD=31OA,CD ⊥AB,狐AC=狐CF ,AF 交CD 于E ,连OE ,则tan∠DOE=( ) A.22 C. 223 D.111. 如图,是某市统计局公布的近五年农村居民人均收入每年比上年增长率的统计图。

下面说法:①、2005年居民人均收入低于2004年;②、农村居民人均收入比上年增长率低于9%2006年;④、农村居民人均收入在这五年中是 A.1个 B.2个C.3个D.4个12如图,在正方形ABCD 中,AB=4,E 为CD 上一动点,AE 交BD 于F ,过F 作F H ⊥AE 于H ,过H 作G H ⊥BD 于G ,下列有四个结论:⑴AF=FH,⑵∠HAE=45,°⑶BD=2FG ,⑷⊿CEH 的周长为定值,其中正确的结论有( )A .⑴⑵⑶ B .⑴⑵⑷C .⑴⑶⑷D .⑴⑵⑶⑷二、填空题(共4小题,每小题3分,共12分)13、数据6,8,8,x 的众数有两个,则这组数据的中位数是 .14.一次函数b k b kx y ,(+=都是常数)的图象过点(2,1)P -,与x 轴相交于A (-3,0),则根据图象可得关于x 的不等式组102kx b x ≤+<-的解集为___________.15111111 (2612)=== =___________. A . B . C . D . 问题图16、如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x 轴、y 轴分别交于点A 和点B ,且OA =OB =1。

这条曲线是函数xy 21=的图像在第一象限的一个分支,点P 是这条曲线上任意一点,它的坐标是(a 、b ),由点P 向x 轴、y 轴所作的垂线PM 、PN ,垂足是M 、N ,直线AB 分别交PM 、PN 于点E 、F 。

则AF ²BE =___________ 三、解答下列各题(共9小题,共72分) 17、(本题6分)解方程:x 2-2x = 1; 18、(本题6分)先化简,再求值:11339932+-+÷--x x x x x ,其中2=x 19、(本题6分)如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1=AG ,2=BF ,︒=∠90GEF ,求GF20、(本题7分)端午节吃粽子是中华民族的传统习俗.五月初五早晨,妈妈为洋洋准备了四只粽子:一只香肠馅,一只红枣馅,两只什锦馅,四只粽子除内部馅料不同外,其他均一切相同.洋洋喜欢吃什锦馅的粽子.(1)请你用树状图或列表法为洋洋预测一下吃两只粽子刚好都是什锦馅的概率;(2)在吃粽子之前,洋洋准备用如图所示的转盘进行吃粽子的模拟试验(此转盘被等分成四个扇形区域,指针的位置是固定的,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置.若指针指向两个扇形的交线时,重新转动转盘),规定:连续转动两次转盘表示随机吃两只粽子,从而估计吃两只粽子刚好都是什锦馅的概率.你认为这样模拟正确吗?试说明理由.21、(本题7分),已知:⊿ABC 在直角坐标系中,A (-4,4),B(-4,0),C(-2,0)(1)将⊿ABC 沿直线x=-1翻折得到⊿DEF ,画出⊿DEF ,并写出点D 的坐标_________.(2)将⊿ABC 绕原点O 顺时针旋转90°得到⊿PMN ,画出⊿PMN ,并写出点P 的坐标_____.(3)求⊿DEF 与⊿PMN 重叠部分的面积。

22. 如图,BC 是半圆O 的直径,割线EDB 交半圆O 于D ,A 是半圆O 上一点,AD=DC ,EC=3,BD=2.5,tan ∠DCE=52 (1)求证:EC 是⊙O 的切线;(2)求AB 的长.23. 为了落实国务院指示精神,最近,区政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.第20题图 第19题A D CB FGE市场调查发现,该产品的销售价为25(元/千克)时,每天销售量为30(千克),当产品的销售价涨价1元时每天销售量会减少2千克;设每天销售量y(千克),销售价x(元/千克).设这种产品每天的销售利润为w (元). (1)求y与x及w与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得不低于168元的销售利润,销售价的范围为多少?24.在正方形ABCD 中,E 是CD 边上的一动点,AE 的中垂线分别交A D 、AE 、B C 、AB 延长线于F 、H 、G 、P ,⑴当时,直接写出结论HGFH=_________, ⑵当CD=n DE (n >1)时,求HGFH, ⑶当E 在DC 的延长线上时(0<n <1),请画出图形并直接写出结论HGFH=_________FDCBAP B A PFD BA25. 如图,已知抛物线与x 轴交于点(20)A ,,(40)B ,,与y 轴交于点(08)C ,. (1)求抛物线的解析式及其顶点D 的坐标;(2)设直线CD 交x 轴于点E .在线段OB 的垂直平分线上是否存在点P ,使得点P 到直线CD 的距离等于点P 到原点O 的距离?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)点M 是直线CD 上的一动点,BM 交抛物线于N, 是否存在点N 是线段BM 的中点,如果存在,求出点N 的坐标;如果不存在,请说明理由;13. 7; 14. -3≤x <-2; 15. 190; 16.217.x=-118.原式=1)x(x 1+=61; 19. 3;20. (1)61,(2)不能,因为转盘进行吃粽子的模拟试验是可以放回事件,而此时是不放回事件21. (1)点D 的坐标为(2,4), (2)点P 的坐标(4,4), (3)3122.(1).略(2)连AC 交BD 于F ,由(1)得,BC=32可证△ADF ∽△BCF ,∴DF AD CF BC ==23. 设DF=2x ,则CF=3x .由CF-DF=CD ,得9x-4x=5,x=1,∴DF=2,CF=3,∴BF=12. 由相交弦定理得AF=13DF BF CF =, ∴. 23. (1)y=80-2x;W=-2x 2+120x-1600;(2)x=30元时,每天的销售利润最大,最大利润是200元 (3)令w=168,即-2x 2+120x-1600∴x=26,x=34;又因为W=-2x 2+120x-1600的图象开口向下且物价部门规定这种产品的销售价不得高于28元/千克,所以26≤x ≤28时该农户每天获得不低于168元的销售利润24. (1)过H 作HQ ∥AB 交AD 于M,交BC 于N;∴HG FH =HN MH =11321+;(2)类比(1)HG FH =1-2n 1;(3)类比(1)HG FH =1-2n 125. (1)设抛物线解析式为(2)(4)y a x x =+-,把(08)C ,代入得1a =-. 228y x x ∴=-++2(1)9x =--+, 顶点(19)D ,(2)假设满足条件的点P 存在,依题意设(2)P t ,,由(08)(19)C D ,,,求得直线CD 的解析式为8y x =+, 它与x 轴的夹角为45,设OB 的中垂线交CD 于H ,则(210)H ,. 则10PH t =-,点P 到CD的距离为d PH t ==-.又PO =t =-.平方并整理得:220920t t +-=10t =-±∴存在满足条件的点P ,P 的坐标为(210-±,.(3)设M 的坐标为(x,x+8), 依题意则N 的坐标为(24x +,28x +),代入抛物线解析式得方程x 2+6x -16=0,∴x=-8,x=2; ∴N 的坐标为(-2,0)、 (3,5)。

相关文档
最新文档