High-efficiency metal-free organic-dye-sensitized solar cells with hierarchical
有机太阳能电池阴极界面材料
有机太阳能电池阴极界面材料
有机太阳能电池的阴极界面材料是非常重要的,它直接影响着
电池的性能和稳定性。
目前有机太阳能电池的阴极界面材料主要包
括以下几种:
1. PEDOT:PSS,聚(3,4-乙烯二氧噻吩),聚(苯乙烯磺酸)(PEDOT:PSS)是一种常用的有机太阳能电池阴极界面材料。
它具有
良好的导电性和透明性,能够有效地提高电子传输效率,同时还能
够提高光电转换效率。
2. C60/PCBM,富勒烯(C60)和苯基富勒烯(PCBM)是常用的
有机太阳能电池阴极界面材料。
它们具有良好的电子传输性能和光
吸收性能,能够有效地提高光电转换效率。
3. 银纳米线,银纳米线也被用作有机太阳能电池的阴极界面材料。
银纳米线具有优异的导电性和透明性,能够有效地提高电子传
输效率,并且具有较高的柔韧性和稳定性。
4. 铜铟镓硒(CIGS)纳米颗粒,CIGS纳米颗粒也被用作有机
太阳能电池的阴极界面材料。
它具有良好的光电性能和化学稳定性,
能够有效地提高光电转换效率。
总的来说,有机太阳能电池的阴极界面材料需要具有良好的导电性、光吸收性和化学稳定性,以提高电子传输效率和光电转换效率,从而提高整个电池的性能和稳定性。
在未来的研究中,科学家们还将不断探索新的阴极界面材料,以进一步提高有机太阳能电池的性能。
离子型超交联聚合物吸附罗丹明B
Vol. 35 No. 5功 能 高 分 子 学 报2022 年 10 月Journal of Functional Polymers461文章编号: 1008-9357(2022)05-0461-07DOI: 10.14133/ki.1008-9357.20211123001离子型超交联聚合物吸附罗丹明B王科伟, 午赵霞, 刘慧君, 郭 永, 崔晓娜, 任 斐, 贾治芳(山西大同大学化学与化工学院, 化学生物传感山西省重点实验室, 山西 大同 037009)摘 要: 为了高效吸附废水中的可溶性有机染料,以4-苯胺基苯磺酸钠和苯为单体,二甲氧基甲烷为交联剂,在无水FeCl3催化下,经过付-克反应一步合成了磺酸钠离子(―SO3Na)修饰的超交联聚合物(HCP-SO3Na)。
通过元素分析、红外光谱、N2吸/脱附分析、固态核磁共振波谱和热重分析对HCP-SO3Na的结构和热性能进行了表征。
结果表明,HCP-SO3Na是一种比表面积大、热稳定性强的无定形微孔有机聚合物,比表面积为587 m2/g,微孔面积为411 m2/g。
通过对阳离子染料罗丹明B (RhB)的吸附研究表明,―SO3Na基团的引入,可增加HCP对RhB的饱和吸附量,最大吸附量达431 mg/g,吸附符合准二级动力学模型和Langmuir 模型,且循环吸附5次之后,吸附性能无明显降低。
关键词: 超交联聚合物;离子型多孔材料;罗丹明B;染料吸附中图分类号: O631.5 文献标志码: AIonic Hypercrosslinked Polymer for Rhodamine B AdsorptionWANG Kewei, WU Zhaoxia, LIU Huijun, GUO Yong, CUI Xiaona, REN Fei, JIA Zhifang (School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, Shanxi, China)Abstract: Hypercrosslinked polymer (HCP) is a class of microporous organic polymer connected by light elements (C, H, O, and N) through covalent bonds. In order to efficiently adsorb soluble organic dyes in water treatment, here, an ionic HCP (HCP-SO3Na) was prepared through an efficient Friedel-Crafts reaction from sodium 4-(phenylamino)benzenesulfonate and benzene in the presence of formaldehyde dimethyl acetal and anhydrous FeCl3. A series of characterizing techniques such as elemental analysis, infrared spectroscopy, N2 adsorption/desorption analysis, solid-state 13C nuclear magnetic resonance spectroscopy and thermogravimetric analysis were employed to characterize the structure and thermal property of the ionic polymer. It was found that HCP-SO3Na was an amorphous microporous polymer with large specific surface area and high thermostability. The specific surface area and micropore area were 587 m2/g and 411 m2/g, respectively. The adsorption of HCP-SO3Na for the organic dye of Rhodamine B demonstrated the ―SO3Na groups distributing uniformly in the polymer could increase the saturation capacity of HCP. The maximum adsorption capacity was up to 431 mg/g. The adsorption process conformed to kinetic pseudo-second-order model and Langmuir model. HCP-SO3Na can be easily recovered and reused five times without significant loss of activity.Key words: hypercrosslinked polymer; ionic porous material; Rhodamine B; dye adsorption收稿日期: 2021-11-23基金项目: 国家自然科学基金面上项目(21975146); 山西省省筹资金资助回国留学人员科研项目(2020-134); 山西省应用基础研究计划青年项目(201801D221096); 大同市工业重点研发计划项目(2019028, 2018013)作者简介: 王科伟(1982—),男,博士,副教授,主要研究方向为有机多孔材料的设计及应用。
药物分析英语词汇
药物分析英语词汇Abbe refractometer 阿贝折射仪absorbance 吸收度absorbance ratio 吸收度比值absorption 吸收absorption curve 吸收曲线absorption spectrum 吸收光谱absorptivity 吸收系数accuracy 准确度acid-dye colorimetry 酸性染料比色法acidimetry 酸量法acid-insoluble ash 酸不溶性灰分acidity 酸度activity 活度additive 添加剂additivity 加和性adjusted retention time 调整保留时间adsorbent 吸附剂adsorption 吸附affinity chromatography 亲和色谱法aliquot (一)份alkalinity 碱度alumina 氧化铝ambient temperature 室温ammonium thiocyanate 硫氰酸铵analytical quality control(AQC)分析质量控制anhydrous substance 干燥品anionic surfactant titration 阴离子表面活性剂滴定法antibiotics-microbial test 抗生素微生物检定法antioxidant 抗氧剂appendix 附录application of sample 点样area normalization method 面积归一化法argentimetry 银量法arsenic 砷arsenic stain 砷斑ascending development 上行展开ash-free filter paper 无灰滤纸(定量滤纸)assay 含量测定assay tolerance 含量限度atmospheric pressure ionization(API) 大气压离子化attenuation 衰减back extraction 反萃取back titration 回滴法bacterial endotoxins test 细菌内毒素检查法band absorption 谱带吸收baseline correction 基线校正baseline drift 基线漂移batch, lot 批batch(lot) number 批号Benttendorff method 白田道夫(检砷)法between day (day to day, inter-day) precision 日间精密度between run (inter-run) precision 批间精密度biotransformation 生物转化bioavailability test 生物利用度试验bioequivalence test 生物等效试验biopharmaceutical analysis 体内药物分析,生物药物分析blank test 空白试验boiling range 沸程British Pharmacopeia (BP) 英国药典bromate titration 溴酸盐滴定法bromimetry 溴量法bromocresol green 溴甲酚绿bromocresol purple 溴甲酚紫bromophenol blue 溴酚蓝bromothymol blue 溴麝香草酚蓝bulk drug, pharmaceutical product 原料药buret 滴定管by-product 副产物calibration curve 校正曲线calomel electrode 甘汞电极calorimetry 量热分析capacity factor 容量因子capillary zone electrophoresis (CZE) 毛细管区带电泳capillary gas chromatography 毛细管气相色谱法carrier gas 载气cation-exchange resin 阳离子交换树脂ceri(o)metry 铈量法characteristics, description 性状check valve 单向阀chemical shift 化学位移chelate compound 鳌合物chemically bonded phase 化学键合相chemical equivalent 化学当量Chinese Pharmacopeia (ChP) 中国药典Chinese material medicine 中成药Chinese materia medica 中药学Chinese materia medica preparation 中药制剂Chinese Pharmaceutical Association (CPA) 中国药学会chiral 手性的chiral stationary phase (CSP) 手性固定相chiral separation 手性分离chirality 手性chiral carbon atom 手性碳原子chromatogram 色谱图chromatography 色谱法chromatographic column 色谱柱chromatographic condition 色谱条件chromatographic data processor 色谱数据处理机chromatographic work station 色谱工作站clarity 澄清度clathrate, inclusion compound 包合物clearance 清除率clinical pharmacy 临床药学coefficient of distribution 分配系数coefficient of variation 变异系数color change interval (指示剂)变色范围color reaction 显色反应colorimetric analysis 比色分析colorimetry 比色法column capacity 柱容量column dead volume 柱死体积column efficiency 柱效column interstitial volume 柱隙体积column outlet pressure 柱出口压column temperature 柱温column pressure 柱压column volume 柱体积column overload 柱超载column switching 柱切换committee of drug evaluation 药品审评委员会comparative test 比较试验completeness of solution 溶液的澄清度compound medicines 复方药computer-aided pharmaceutical analysis 计算机辅助药物分析concentration-time curve 浓度-时间曲线confidence interval 置信区间confidence level 置信水平confidence limit 置信限congealing point 凝点congo red 刚果红(指示剂)content uniformity 装量差异controlled trial 对照试验correlation coefficient 相关系数contrast test 对照试验counter ion 反离子(平衡离子)cresol red 甲酚红(指示剂)crucible 坩埚crude drug 生药crystal violet 结晶紫(指示剂)cuvette, cell 比色池cyanide 氰化物cyclodextrin 环糊精cylinder, graduate cylinder, measuring cylinder 量筒cylinder-plate assay 管碟测定法daughter ion (质谱)子离子dead space 死体积dead-stop titration 永停滴定法dead time 死时间decolorization 脱色decomposition point 分解点deflection 偏差deflection point 拐点degassing 脱气deionized water 去离子水deliquescence 潮解depressor substances test 降压物质检查法derivative spectrophotometry 导数分光光度法derivatization 衍生化descending development 下行展开desiccant 干燥剂detection 检查detector 检测器developer, developing reagent 展开剂developing chamber 展开室deviation 偏差dextrose 右旋糖,葡萄糖diastereoisomer 非对映异构体diazotization 重氮化2,6-dichlorindophenol titration 2,6-二氯靛酚滴定法differential scanning calorimetry (DSC) 差示扫描热量法differential spectrophotometry 差示分光光度法differential thermal analysis (DTA) 差示热分析differentiating solvent 区分性溶剂diffusion 扩散digestion 消化diphastic titration 双相滴定disintegration test 崩解试验dispersion 分散度dissolubility 溶解度dissolution test 溶出度检查distilling range 馏程distribution chromatography 分配色谱distribution coefficient 分配系数dose 剂量drug control institutions 药检机构drug quality control 药品质量控制drug release 药物释放度drug standard 药品标准drying to constant weight 干燥至恒重dual wavelength spectrophotometry 双波长分光光度法duplicate test 重复试验effective constituent 有效成分effective plate number 有效板数efficiency of column 柱效electron capture detector 电子捕获检测器electron impact ionization 电子轰击离子化electrophoresis 电泳electrospray interface 电喷雾接口electromigration injection 电迁移进样elimination 消除eluate 洗脱液elution 洗脱emission spectrochemical analysis 发射光谱分析enantiomer 对映体end absorption 末端吸收end point correction 终点校正endogenous substances 内源性物质enzyme immunoassay(EIA) 酶免疫分析enzyme drug 酶类药物enzyme induction 酶诱导enzyme inhibition 酶抑制eosin sodium 曙红钠(指示剂)epimer 差向异构体equilibrium constant 平衡常数equivalence point 等当点error in volumetric analysis 容量分析误差excitation spectrum 激发光谱exclusion chromatography 排阻色谱法expiration date 失效期external standard method 外标法extract 提取物extraction gravimetry 提取重量法extraction titration 提取容量法extrapolated method 外插法,外推法factor 系数,因数,因子feature 特征Fehling’s reaction 费林反应field disorption ionization 场解吸离子化field ionization 场致离子化filter 过滤,滤光片filtration 过滤fineness of the particles 颗粒细度flame ionization detector(FID) 火焰离子化检测器flame emission spectrum 火焰发射光谱flask 烧瓶flow cell 流通池flow injection analysis 流动注射分析flow rate 流速fluorescamine 荧胺fluorescence immunoassay(FIA) 荧光免疫分析fluorescence polarization immunoassay(FPIA) 荧光偏振免疫分析fluorescent agent 荧光剂fluorescence spectrophotometry 荧光分光光度法fluorescence detection 荧光检测器fluorimetyr 荧光分析法foreign odor 异臭foreign pigment 有色杂质formulary 处方集fraction 馏分freezing test 结冻试验funnel 漏斗fused peaks, overlapped peaks 重叠峰fused silica 熔融石英gas chromatography(GC) 气相色谱法gas-liquid chromatography(GLC) 气液色谱法gas purifier 气体净化器gel filtration chromatography 凝胶过滤色谱法gel permeation chromatography 凝胶渗透色谱法general identification test 一般鉴别试验general notices (药典)凡例general requirements (药典)通则good clinical practices(GCP) 药品临床管理规范good laboratory practices(GLP) 药品实验室管理规范good manufacturing practices(GMP) 药品生产质量管理规范good supply practices(GSP) 药品供应管理规范gradient elution 梯度洗脱grating 光栅gravimetric method 重量法Gutzeit test 古蔡(检砷)法half peak width 半峰宽[halide] disk method, wafer method, pellet method 压片法head-space concentrating injector 顶空浓缩进样器heavy metal 重金属heat conductivity 热导率height equivalent to a theoretical plate 理论塔板高度height of an effective plate 有效塔板高度high-performance liquid chromatography (HPLC) 高效液相色谱法high-performance thin-layer chromatography (HPTLC) 高效薄层色谱法hydrate 水合物hydrolysis 水解hydrophilicity 亲水性hydrophobicity 疏水性hydroscopic 吸湿的hydroxyl value 羟值hyperchromic effect 浓色效应hypochromic effect 淡色效应identification 鉴别ignition to constant weight 灼烧至恒重immobile phase 固定相immunoassay 免疫测定impurity 杂质inactivation 失活index 索引indicator 指示剂indicator electrode 指示电极inhibitor 抑制剂injecting septum 进样隔膜胶垫injection valve 进样阀instrumental analysis 仪器分析insulin assay 胰岛素生物检定法integrator 积分仪intercept 截距interface 接口interference filter 干涉滤光片intermediate 中间体internal standard substance 内标物质international unit(IU) 国际单位in vitro 体外in vivo 体内iodide 碘化物iodoform reaction 碘仿反应iodometry 碘量法ion-exchange cellulose 离子交换纤维素ion pair chromatography 离子对色谱ion suppression 离子抑制ionic strength 离子强度ion-pairing agent 离子对试剂ionization 电离,离子化ionization region 离子化区irreversible indicator 不可逆指示剂irreversible potential 不可逆电位isoabsorptive point 等吸收点isocratic elution 等溶剂组成洗脱isoelectric point 等电点isoosmotic solution 等渗溶液isotherm 等温线Karl Fischer titration 卡尔·费歇尔滴定kinematic viscosity 运动黏度Kjeldahl method for nitrogen 凯氏定氮法Kober reagent 科伯试剂Kovats retention index 科瓦茨保留指数labelled amount 标示量leading peak 前延峰least square method 最小二乘法leveling effect 均化效应licensed pharmacist 执业药师limit control 限量控制limit of detection(LOD) 检测限limit of quantitation(LOQ) 定量限limit test (杂质)限度(或限量)试验limutus amebocyte lysate(LAL) 鲎试验linearity and range 线性及范围linearity scanning 线性扫描liquid chromatograph/mass spectrometer (LC/MS) 液质联用仪litmus paper 石蕊试纸loss on drying 干燥失重low pressure gradient pump 低压梯度泵luminescence 发光lyophilization 冷冻干燥main constituent 主成分make-up gas 尾吹气maltol reaction 麦牙酚试验Marquis test 马奎斯试验mass analyzer detector 质量分析检测器mass spectrometric analysis 质谱分析mass spectrum 质谱图mean deviation 平均偏差measuring flask, volumetric flask 量瓶measuring pipet(te) 刻度吸量管medicinal herb 草药melting point 熔点melting range 熔距metabolite 代谢物metastable ion 亚稳离子methyl orange 甲基橙methyl red 甲基红micellar chromatography 胶束色谱法micellar electrokinetic capillary chromatography(MECC, MEKC) 胶束电动毛细管色谱法micelle 胶束microanalysis 微量分析microcrystal 微晶microdialysis 微透析micropacked column 微型填充柱microsome 微粒体microsyringe 微量注射器migration time 迁移时间millipore filtration 微孔过滤minimum fill 最低装量mobile phase 流动相modifier 改性剂,调节剂molecular formula 分子式monitor 检测,监测monochromator 单色器monographs 正文mortar 研钵moving belt interface 传送带接口multidimensional detection 多维检测multiple linear regression 多元线性回归multivariate calibration 多元校正natural product 天然产物Nessler glasses(tube) 奈斯勒比色管Nessler’s reagent 碱性碘化汞钾试液neutralization 中和nitrogen content 总氮量nonaqueous acid-base titration 非水酸碱滴定nonprescription drug, over the counter drugs (OTC drugs) 非处方药nonproprietary name, generic name 非专有名nonspecific impurity 一般杂质non-volatile matter 不挥发物normal phase 正相normalization 归一化法notice 凡例nujol mull method 石蜡糊法octadecylsilane chemically bonded silica 十八烷基硅烷键合硅胶octylsilane 辛(烷)基硅烷odorless 无臭official name 法定名official specifications 法定标准official test 法定试验on-column detector 柱上检测器on-column injection 柱头进样on-line degasser 在线脱气设备on the dried basis 按干燥品计opalescence 乳浊open tubular column 开管色谱柱optical activity 光学活性optical isomerism 旋光异构optical purity 光学纯度optimization function 优化函数organic volatile impurities 有机挥发性杂质orthogonal function spectrophotometry 正交函数分光光度法orthogonal test 正交试验orthophenanthroline 邻二氮菲outlier 可疑数据,逸出值overtones 倍频峰,泛频峰oxidation-reduction titration 氧化还原滴定oxygen flask combustion 氧瓶燃烧packed column 填充柱packing material 色谱柱填料palladium ion colorimetry 钯离子比色法parallel analysis 平行分析parent ion 母离子particulate matter 不溶性微粒partition coefficient 分配系数parts per million (ppm) 百万分之几pattern recognition 模式识别peak symmetry 峰不对称性peak valley 峰谷peak width at half height 半峰宽percent transmittance 透光百分率pH indicator absorbance ratio method pH指示剂吸光度比值法pharmaceutical analysis 药物分析pharmacopeia 药典pharmacy 药学phenolphthalein 酚酞photodiode array detector(DAD) 光电二极管阵列检测器photometer 光度计pipeclay triangle 泥三角pipet(te) 吸移管,精密量取planar chromatography 平板色谱法plate storage rack 薄层板贮箱polarimeter 旋光计polarimetry 旋光测定法polarity 极性polyacrylamide gel 聚丙酰胺凝胶polydextran gel 葡聚糖凝胶polystyrene gel 聚苯乙烯凝胶polystyrene film 聚苯乙烯薄膜porous polymer beads 高分子多孔小球post-column derivatization 柱后衍生化potentiometer 电位计potentiometric titration 电位滴定法precipitation form 沉淀形式precision 精密度pre-column derivatization 柱前衍生化preparation 制剂prescription drug 处方药pretreatment 预处理primary standard 基准物质principal component analysis 主成分分析programmed temperature gas chromatography 程序升温气相色谱法prototype drug 原型药物provisions for new drug approval 新药审批办法purification 纯化purity 纯度pyrogen 热原pycnometric method 比重瓶法quality control(QC) 质量控制quality evaluation 质量评价quality standard 质量标准quantitative determination 定量测定quantitative analysis 定量分析quasi-molecular ion 准分子离子racemization 消旋化radioimmunoassay 放射免疫分析法random sampling 随机抽样rational use of drug 合理用药readily carbonizable substance 易炭化物reagent sprayer 试剂喷雾器recovery 回收率reference electrode 参比电极refractive index 折光指数related substance 有关物质relative density 相对密度relative intensity 相对强度repeatability 重复性replicate determination 平行测定reproducibility 重现性residual basic hydrolysis method 剩余碱水解法residual liquid junction potential 残余液接电位residual titration 剩余滴定residue on ignition 炽灼残渣resolution 分辨率,分离度response time 响应时间retention 保留reversed phase chromatography 反相色谱法reverse osmosis 反渗透rider peak 驼峰rinse 清洗,淋洗robustness 可靠性,稳定性routine analysis 常规分析round 修约(数字)ruggedness 耐用性safety 安全性Sakaguchi test 坂口试验salt bridge 盐桥salting out 盐析sample applicator 点样器sample application 点样sample on-line pretreatment 试样在线预处理sampling 取样saponification value 皂化值saturated calomel electrode(SCE) 饱和甘汞电极selectivity 选择性separatory funnel 分液漏斗shoulder peak 肩峰signal to noise ratio 信噪比significant difference 显著性差异significant figure 有效数字significant level 显著性水平significant testing 显著性检验silanophilic interaction 亲硅羟基作用silica gel 硅胶silver chloride electrode 氯化银电极similarity 相似性simultaneous equations method 解线性方程组法size exclusion chromatography(SEC) 空间排阻色谱法sodium dodecylsulfate, SDS 十二烷基硫酸钠sodium hexanesulfonate 己烷磺酸钠sodium taurocholate 牛璜胆酸钠sodium tetraphenylborate 四苯硼钠sodium thiosulphate 硫代硫酸钠solid-phase extraction 固相萃取solubility 溶解度solvent front 溶剂前沿solvophobic interaction 疏溶剂作用specific absorbance 吸收系数specification 规格specificity 专属性specific rotation 比旋度specific weight 比重spiked 加入标准的split injection 分流进样splitless injection 无分流进样spray reagent (平板色谱中的)显色剂spreader 铺板机stability 稳定性standard color solution 标准比色液standard deviation 标准差standardization 标定standard operating procedure(SOP) 标准操作规程standard substance 标准品stationary phase coating 固定相涂布starch indicator 淀粉指示剂statistical error 统计误差sterility test 无菌试验stirring bar 搅拌棒stock solution 储备液stoichiometric point 化学计量点storage 贮藏stray light 杂散光substituent 取代基substrate 底物sulfate 硫酸盐sulphated ash 硫酸盐灰分supercritical fluid chromatography(SFC) 超临界流体色谱法support 载体(担体)suspension 悬浊液swelling degree 膨胀度symmetry factor 对称因子syringe pump 注射泵systematic error 系统误差system model 系统模型system suitability 系统适用性tablet 片剂tailing factor 拖尾因子tailing peak 拖尾峰tailing-suppressing reagent 扫尾剂test of hypothesis 假设检验test solution(TS) 试液tetrazolium colorimetry 四氮唑比色法therapeutic drug monitoring(TDM) 治疗药物监测thermal analysis 热分析法thermal conductivity detector 热导检测器thermocouple detector 热电偶检测器thermogravimetric analysis(TGA) 热重分析法thermospray interface 热喷雾接口The United States Pharmacopoeia(USP) 美国药典The Pharmacopoeia of Japan(JP) 日本药局方thin layer chromatography(TLC) 薄层色谱法thiochrome reaction 硫色素反应three-dimensional chromatogram 三维色谱图thymol 百里酚(麝香草酚)(指示剂)thymolphthalein 百里酚酞(麝香草酚酞)(指示剂)thymolsulfonphthalein ( thymol blue) 百里酚蓝(麝香草酚蓝)(指示剂)titer, titre 滴定度time-resolved fluoroimmunoassay 时间分辨荧光免疫法titrant 滴定剂titration error 滴定误差titrimetric analysis 滴定分析法tolerance 容许限toluene distillation method 甲苯蒸馏法toluidine blue 甲苯胺蓝(指示剂)total ash 总灰分total quality control(TQC) 全面质量控制traditional drugs 传统药traditional Chinese medicine 中药transfer pipet 移液管turbidance 混浊turbidimetric assay 浊度测定法turbidimetry 比浊法turbidity 浊度ultracentrifugation 超速离心ultrasonic mixer 超生混合器ultraviolet irradiation 紫外线照射undue toxicity 异常毒性uniform design 均匀设计uniformity of dosage units 含量均匀度uniformity of volume 装量均匀性(装量差异)uniformity of weight 重量均匀性(片重差异)validity 可靠性variance 方差versus …对…,…与…的关系曲线viscosity 粘度volatile oil determination apparatus 挥发油测定器volatilization 挥发法volumetric analysis 容量分析volumetric solution(VS) 滴定液vortex mixer 涡旋混合器watch glass 表面皿wave length 波长wave number 波数weighing bottle 称量瓶weighing form 称量形式weights 砝码well-closed container 密闭容器xylene cyanol blue FF 二甲苯蓝FF(指示剂)xylenol orange 二甲酚橙(指示剂)zigzag scanning 锯齿扫描zone electrophoresis 区带电泳zwitterions 两性离子zymolysis 酶解作用。
二茂铁染料在敏化太阳能电池的研究进展
DOI: 10.13822/ki.hxsj.2020007577j综述与进展化学试剂,2020,42(11) ,1309〜1317二茂铁染料在敏化太阳能电池的研究进展王磊、李耀龙2,陈瑜“(1.天津理工大学,化学化工学院,天津300384;2.天津大格科技有限公司,天津301700)摘要:染料敏化太阳能电池(DSSC)已成为低成本光伏最有前途的技术之一,也是作为基于传统太阳能电池的有前途的替代品,引起了相当大的研究兴趣。
目前为止,为制作高效率的染料敏化太阳能电池,许多研究学者制作出了各种各样的敏化剂。
染料敏化剂对光收集和电子注入效率都起着至关重要的作用。
染料敏化剂可分为两种:金属有机染料敏化剂和非金属染料敏化剂。
二茂铁或二茂铁衍生物可作为供电子基的有机染料敏化剂,可以提高太阳能电池的光电转化效率,受到越来越多的关注。
关键词:有机光伏;太阳能电池;染料敏化剂;二茂铁;光电转换效率中图分类号:062丨.3 文献标识码:A文章编号:0258-3283( 2020) 11 -丨309-09Progress of Ferrocene Dyes in Sensitized Solar Cells WANG Lei' ,L I Yao-long1 ?CHEN Y u*\ 1.School of Chemistry a n d C h e mical Engineering,Tianjin University of Te c h n o l o g y,Tianjin 300384,C h i n a;2.Tianjin D a g Technology C o.,Ltd.,Tianjin 301700, C h i n a) ,H u a x u e Shiji,2020,42(11) , 1309 ~ 1317Abstract:Dye-sensitized solar cells (D S S C)have b e c o m e one of the most promising technologies for low-cost photovoltaics,and as promising alternatives to traditional solar cells,have attracted considerable research interest.So f a r,m a n y researchers have prod u c e d a variety of sensitizers to produce highly efficient dye-sensitized solar cells.Dye sensitizers play a vital role in both light collection and electron injection efficiency.There are two types of dye sensitizers :metal-organic dye sensitizers and non-metallic or- ganic dye sensitizers.Ferrocene a n d ferrocene derivatives can be used as electron-donor-based organic dye sensitizers to improve the photoelectric conversion efficiency of solar cells,which is receiving increasing attention.Key w ords:organic photochemistry;solar cells;dye sensitizers;ferrocene;photoelectric conversion efficiency随着科技的进步和人民生活水平的逐渐提高,越来越多的人开始关注国家的能源发展问题,然而随之出现的能源和燃料的危机,使得人类社会需要寻找一种可以代替化石燃料的能源。
硼氮共掺杂生物质炭的制备及吸附性能研究
第42卷第6期2023年6月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.6June,2023硼氮共掺杂生物质炭的制备及吸附性能研究许㊀蒙,郭玉呈,林国强,李建保,陈拥军,骆丽杰(海南大学材料科学与工程学院,南海海洋资源利用国家重点实验室,海口㊀570228)摘要:以木棉㊁硼酸(HBO 3)㊁尿素(CO(NH 2)2)为原料,在氨气(NH 3)气氛下通过高温反应制备了硼氮共掺杂生物质炭材料,利用聚乙烯亚胺(PEI)对硼碳氮(BCN)材料进行处理,得到PEI-BCN 材料,并研究了该材料的吸附性能㊂结果表明:当反应温度为1100ħ时,制备得到的BCN 材料为多孔结构,其平均孔径为11.0nm;BCN 材料的吸附能力优于生物质炭,经PEI 改性处理后,BCN 材料的吸附性能得到大幅提高,其对有机染料孔雀石绿(MG)的吸附量高达710.0mg /g;PEI-BCN 材料的吸附与准一级吸附动力学模型吻合,其对MG 的吸附属于Langmuir 等温吸附㊂关键词:硼碳氮材料;生物质炭;木棉;聚乙烯亚胺;高温反应;吸附;孔雀石绿中图分类号:X703㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)06-2242-09Preparation and Adsorption Properties of Boron-Nitrogen Co-Doped Biochar MaterialsXU Meng ,GUO Yucheng ,LIN Guoqiang ,LI Jianbao ,CHEN Yongjun ,LUO Lijie(State Key Laboratory of Marine Resource Utilization in South China Sea,School of Materials Science and Engineering,Hainan University,Haikou 570228,China)Abstract :Boron-nitrogen co-doped biochar material was prepared by high temperature reaction under ammonia (NH 3)atmosphere,using kapok,boric acid (HBO 3),and urea (CO(NH 2)2)as raw materials.The PEI-BCN material was obtained by treating boron-carbon-nitrogen (BCN)material with polyethyleneimine (PEI),and the adsorption properties of PEI-BCN material were studied.The results show that the prepared BCN material has a porous structure with an averagepore size of 11.0nm when the reaction temperature is 1100ħ.The adsorption property of BCN material is better than that of biochar,and after PEI modification,the adsorption property of BCN material is greatly improved.The adsorption amount of organic dye malachite green (MG)by PEI-BCN material is up to 710.0mg /g,showing excellent adsorption property.The adsorption of PEI-BCN material is consistent with the pseudo-first-order adsorption kinetics model,and the adsorption of MG by PEI-BCN material belongs to Langmuir isothermal adsorption.Key words :BCN material;biochar;kapok;polythyleneimine;high temperature reaction;adsorption;malachite green 收稿日期:2023-02-16;修订日期:2023-03-08基金项目:海南省重点研发计划(ZDYF2021XDNY196)作者简介:许㊀蒙(1997 ),女,硕士研究生㊂主要从事吸附材料的研究㊂E-mail:xmm2021@通信作者:骆丽杰,博士,副教授㊂E-mail:992767@0㊀引㊀言水环境污染一直是世界多国关注的问题㊂纺织㊁金属加工㊁化肥工业㊁制革厂等行业是水体污染的主要来源[1]㊂开发水体污染物去除技术,对生态经济的可持续发展具有重要意义㊂当前水体修复的技术主要包括吸附法[2]㊁膜技术[3]㊁化学沉淀[4]㊁离子交换[5]㊁混凝[6]㊁浮选[7]和臭氧化[8],其中吸附法具有低能耗㊁低污染㊁低成本等优点,在工业废水处理等领域具有广阔的应用前景㊂目前吸附法所用材料主要包括金属氧化物[9-10]㊁过渡金属硫族化合物[11-12]㊁过渡金属碳化物[13]㊁凝胶[14-16]㊁炭类材料[17-18]等,其中生物质炭来源丰富且可实现循环使用,但其吸附性能有待提高㊂而氮化硼具有宽的能隙㊁高的抗氧化性和化学惰性,特别是B N 键具有极性,表面缺陷较多,对重金属污染物和染料污染物都表现㊀第6期许㊀蒙等:硼氮共掺杂生物质炭的制备及吸附性能研究2243出优良的吸附性能[19-21]㊂因此,硼碳氮(BCN)材料作为一种新型材料,不但具有与石墨和BN纳米材料相近的优异力学性能,还具有优异的电学性能㊁光催化性能㊁抗氧化能力[22]㊂因此,相比于C和BN,BCN纳米材料可在B原子㊁N原子和C原子处提供更多的位点,而C原子的存在还可以削弱B和N之间的电子共轭结构,从而增加对污染物的吸附量[23]㊂综上所述,从化学改性的思路出发,在生物质炭材料中引入异类原子,有望提高炭类材料的吸附性能;通过调节B㊁C和N原子的比例,有望优化BCN材料的吸附性能,可使炭类材料在污水处理方面发挥更好的作用㊂木棉纤维属于丝状纤维,具有独特的中空结构,是一种用于吸附污染物的有前途的生物质炭材料[24]㊂然而,木棉表面的蜡层抑制了亲水性着色剂和含离子的溶液进入木棉表面,需要进行预处理以改变其固有的表面性质才能进行吸附[25]㊂综上所述,本文以木棉为原料,通过高温化学反应实现B㊁N原子共掺杂来制备生物质炭材料,并利用聚乙烯亚胺(PEI)改性来提高材料的表面性能㊂以Cr3+㊁Cu2+㊁罗丹明B(RB)㊁孔雀石绿(MG)为吸附质,考察了改性前后BCN材料的吸附性能㊂通过吸附动力学分析和等温吸附曲线拟合,系统研究了BCN材料的吸附过程㊂1㊀实㊀验1.1㊀材料的制备将海南当地收集的木棉去除杂质并用去离子水洗净,干燥后放入乙醇水溶液中,并加入次氯酸钠,用乙酸将混合溶液的pH值调至4.5,于80ħ下超声进行脱脂处理,以去除木棉纤维表面的蜡质成分,然后用去离子水清洗至pH呈中性,真空干燥备用㊂向烧杯中加入硼酸㊁尿素和适量的去离子水,将烧杯放置在60ħ的水浴锅中搅拌,使硼酸㊁尿素完全溶解在去离子水中,随后将处理过的木棉浸泡在溶液中,使木棉完全吸收溶液后进行24h冷冻干燥㊂将冷冻干燥后的样品置于氧化铝瓷舟中,于高温管式气氛炉中的高温恒温区进行热处理,并密封反应系统㊂加热前,对管式炉炉管进行排空处理㊂然后在流动N2保护下,以5ħ㊃min-1的升温速率升温至1000ħ后关闭N2,通入流动NH3,继续升温至1100ħ,保温4h㊂反应结束后,将NH3关闭,在N2保护下样品随炉冷却至室温,将样品取出,记为BCN㊂将上述得到的BCN浸泡在PEI中,放置在60ħ电热恒温水浴锅中一定时间,随后取出干燥备用,记为PEI-BCN㊂为了进行比较,将海南当地收集到的木棉直接进行碳化,取出干燥备用,记为C㊂1.2㊀吸附试验将一定量的吸附剂加入配制好的无机污染物(硝酸铬㊁硝酸铜)和有机污染物(罗丹明B和孔雀石绿)溶液,在25ħ的吸附条件下模拟水流吸附循环试验㊂在不同时间下取吸附溶液(10mL),迅速置入离心机离心(5min,3600r/min)分离,取澄清的上层离心液,做好时间标记后保存待测㊂使用紫外分光光度计测试浓度,并根据式(1)计算样品的平衡吸附量Q e㊂Q e=(C0-C e)VM(1)式中:C0为初始浓度,mg㊃L-1;C e为平衡浓度,mg㊃L-1;V为溶液体积,L;M为吸附剂质量,g㊂1.3㊀结构表征采用X射线衍射仪(Rigaku Smart Lab)㊁傅里叶变换红外光谱仪(PerkinElmer Frontier)㊁X射线光电子能谱仪(Thermo ESCALAB250XI)对样品的组成㊁结构进行表征㊂采用扫描电子显微镜(Thermoscientific Verios G4UC)㊁透射电子显微镜(Talos F200X)分析样品的表面形貌㊂利用微孔物理吸附分析仪(麦克ASAP2460)研究样品的比面积和孔隙结构㊂利用有机元素分析仪(UNICUBE)分析木棉的元素组成㊂2㊀结果与讨论2.1㊀XRD和FTIR分析图1(a)为不同反应温度(1000㊁1100㊁1200ħ)下产物的XRD谱㊂从图1(a)中可以看出,26ʎ和42ʎ分2244㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷别对应BCN 材料类石墨烯结构的(002)晶面和(100)晶面[26]㊂随着温度升高,样品的结晶度提高㊂然而,根据密度理论函数[27],B N 键的能量稳定性高于其他键,所以高温不利于形成B C 键和N C 键,但有利于形成稳定的B N 键㊂由此推断反应温度过高,样品表面可能会生成氮化硼,因此反应温度选择1100ħ较适宜㊂从图1(b)中可以看出,799㊁1398cm -1处的特征吸收峰分别对应B N 键的横向振动和B N B 键的伸缩振动㊂3100㊁3500cm -1处存在的峰对应N H 键的伸缩振动和O H 键的伸缩振动,这些官能团的存在有利于后续吸附[28]㊂图1㊀不同温度下制备的BCN 样品的XRD 谱和FTIR 谱Fig.1㊀XRD patterns and FTIR spectra of BCN samples prepared at different temperatures 图2是BCN 样品经PEI 改性前后的FTIR 谱㊂图中显示BCN 的B N 键的横向振动峰和B N B 键的伸缩振动峰在790㊁1386cm -1左右,C N 键对应的峰在1660cm -1左右,而N H 键的伸缩振动峰在3150cm -1左右㊂对比BCN 样品,PEI 改性的BCN 样品(PEI-BCN)在N H 键处的峰值得到加强,这是由于PEI 接枝到BCN 样品中,使 NH 2数量增加,从而使该处的峰值得到增强;PEI 改性的BCN 样品(PEI-BCN)在1300cm -1左右的峰值有所增加,这归因于PEI 中的C N 键衍射峰增强㊂以上结果表明PEI 通过接枝方式成功对BCN 进行了改性㊂图2㊀BCN 样品改性前后的FTIR 谱Fig.2㊀FTIR spectra of BCN samples before and after modification 2.2㊀XPS 分析图3为BCN 样品的XPS 谱㊂从样品的全谱图中可以看出BCN 样品中包含了B㊁C㊁N 和O 元素㊂O 1s 峰可能归因于表面吸附的H 2O 和未反应的B O㊂高分辨率的B 1s㊁C 1s 和N 1s 光谱进一步证明了BCN 的成键特征和化学基团㊂从分峰拟合的结果来看,B 1s 特征峰在190.4㊁190.9㊁192.1eV 处的峰分别对应着B C㊁B N 和B O 键[29],C 1s 特征峰在284.7㊁285.5㊁286.7eV 处的峰分别对应着C B㊁C C 和C N 键[30],N 1s 特征峰在398.1㊁399.0㊁401.4eV 处的峰分别对应着N B㊁N C 和N H 键[31]㊂因此,可推断B㊁N 原子以成键的方式在生物质炭中实现掺杂㊂表1是经过计算后得到的BCN 的化学组成,其成分为第6期许㊀蒙等:硼氮共掺杂生物质炭的制备及吸附性能研究2245㊀B 0.41C 0.22N 0.37㊂㊀图3㊀BCN 样品的XPS 分析Fig.3㊀XPS analysis of BCN samples表1㊀BCN 样品的元素组成Table 1㊀Elemental composition of BCN samplesComposition B C N Atomic fraction /%4122372.3㊀显微结构分析图4(a)㊁(b)分别为木棉和脱脂木棉的SEM 照片㊂可以看出,木棉纤维直径均匀,表面光滑,而脱脂木棉纤维表面略显粗糙但仍保持中空结构㊂利用有机元素分析仪对脱脂木棉进行元素分析,发现本试验已经将木棉中的S㊁P 等脂肪有效去除,这可以增加木棉纤维表面的亲水性,为后续试验提供有利条件㊂图4(c)㊁(d)为BCN 样品在温度为1100ħ㊁升温速率为5ħ/min 条件下的SEM 照片㊂可以清楚地看到,BCN 样品呈多孔结构,并且还保留了木棉纤维的中空结构特征,样品的管壁表面还有许多微小的孔洞(见图4(d)中的放大图)㊂由于木棉纤维㊁HBO 3㊁CO(NH 2)2在热解过程中脱氢脱氧,产生大量的气体,在气体逸出过程中形成了多孔结构,这大大提高了材料的比表面积㊂2246㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图4㊀木棉㊁脱脂木棉和BCN 样品的SEM 照片Fig.4㊀SEM images of kapok,defatted kapok,and BCN samples 2.4㊀TEM 分析图5为BCN 样品的TEM 表征结果㊂从图5(a)的高分辨TEM(HRTEM)照片可以看出,所得样品的晶格条纹杂乱,有结构缺陷,结晶度较差,样品存在的表面缺陷较多,提供的活性位点较多,有利于材料的吸附㊂测量结果显示BCN 样品(002)晶面的间距为0.345nm,这与XRD 计算结果相对应㊂图5(b)为样品的元素分布图,可以看到元素B㊁C㊁N 分布均匀,说明样品的主要成分为BCN㊂图5㊀BCN 样品的HRTEM 照片和元素面分布Fig.5㊀HRTEM image and elemental plane distribution of BCN samples 2.5㊀氮气吸附等温线为了进一步研究材料的比表面积和孔径分布,测定了BCN 样品和PEI-BCN 样品的氮气吸附-解吸等温线,如图6所示㊂样品的等温线呈IV 型,具有明显的滞后环㊂毛细凝聚现象使等温吸附与脱附曲线错位,产生部分吸附滞后现象,说明内部孔结构复杂[32]㊂通过比表面积测试仪测得BCN 材料的比表面积为73.67m 2/g㊂图7是BCN 样品和PEI-BCN 样品的孔径分布,可以看出BCN 样品的平均孔径为11.0nm㊂经过PEI 改性后,所得PEI-BCN 样品的孔径分布范围有所增加,孔径稍有增大,平均孔径为12.6nm,属于介孔结构㊂结合SEM 结果可以得出材料内部存在大孔㊁中孔和微孔,它们之间的相互连接能够促进离子快速传输[33]㊂因此改性后的BCN 具有多级孔结构,这使得材料拥有更加丰富的活性位点,从而能够提高BCN 材料对污染物的吸附效率㊂2.6㊀吸附性能选用两种无机污染物(Cr 3+㊁Cu 2+)和两种有机污染物(罗丹明B㊁孔雀石绿)作为吸附质,对改性前后BCN 的吸附性能进行了研究,如图8所示㊂从图8可以看出,PEI-BCN 对Cu 2+㊁Cr 3+㊁RB 和MG 的吸附量均明显高于BCN,且改性后BCN 材料对孔雀石绿的吸附能力高达710.0mg /g,这是由于PEI 被成功接枝到BCN 结构中㊂PEI 具有大量氨基( NH 2),经过PEI 改性过后,BCN 对离子的配位络合作用更强,对染料的吸附增强㊂Cr 3+的吸附量大于Cu 2+,这种行为可能与Cu 2+比Cr 3+半径大有关㊂BCN 材料的孔结构以介孔为主,因此,离子半径小的金属可以更多地进入吸附剂的孔中,与吸附剂的活性位点相互作用㊂MG 是带有第6期许㊀蒙等:硼氮共掺杂生物质炭的制备及吸附性能研究2247㊀电子的阴离子染料,RB 是阳离子染料,因此PEI-BCN 对MG 的吸附能力大于RB㊂图9为MG 不同初始浓度下C㊁BCN 和PEI-BCN 的吸附性能,可以看出吸附量随着初始浓度的增大而增大㊂这是由于在吸附过程中样品内部所具有的吸附位点数量是不变的,离子的初始浓度越高越有利于离子的传质,因此随着溶液初始浓度增大,样品对离子的吸附量也会增大㊂另外,可以看到BCN 对MG 的吸附性能也明显高于生物质炭材料㊂由此可见,通过B㊁N 掺杂炭材料,可以形成B N㊁C N 等极性键,增加材料表面缺陷结构,从而提高其吸附性能[19-21]㊂图6㊀BCN 和PEI-BCN 的氮气吸附-解吸等温线Fig.6㊀Nitrogen adsorption-desorption isotherm curves of BCN andPEI-BCN 图7㊀BCN 和PEI-BCN 的孔径分布Fig.7㊀Pore size distribution of BCN andPEI-BCN 图8㊀BCN 和PEI-BCN 在Cr 3+㊁Cu 2+㊁RB 和MG 初始浓度为50mg /L 的条件下的吸附性能Fig.8㊀Adsorption properties of BCN and PEI-BCN at initial concentration of 50mg /L for Cr 3+,Cu 2+,RB andMG 图9㊀MG 不同初始浓度下C㊁BCN 和PEI-BCN 的吸附性能Fig.9㊀Adsorption properties of C,BCN and PEI-BCN at different initial concentration of MG2.7㊀等温吸附模型吸附等温线可以反映吸附过程中吸附剂与被吸附剂之间的相互作用关系,推导出吸附的具体机理㊂PEI-BCN 在25ħ下对MG 的吸附等温线如图10所示㊂Q e 值先增大,随后趋于稳定㊂这是因为当吸附浓度较低时,吸附剂的结合位点足够吸附,而随着MG 浓度的不断增加,PEI-BCN 的固有吸附位点被MG 完全占有,吸附逐渐达到饱和㊂此外,利用Langmuir 和Freundlich 等温模型对吸附过程进行了拟合,其中Langmuir 等温模型是假设吸附发生在单层表面且吸附表面均匀,吸附剂颗粒相互独立,而Freundlich 等温模型假设吸附同时发生在单层和多层㊂表2为Langmuir 和Freundlich 等温吸附模型参数㊂从表2可以看出,Langmuir 模型的常数R 2达到了0.998,这说明拟合结果符合Langmuir 吸附模型,MG 的吸附过程主要为单分子吸附㊂2248㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图10㊀Langmuir等温吸附和Freundlich等温吸附的拟合曲线Fig.10㊀Fitting curves of Langmuir isotherm adsorption and Freundlich isotherm adsorption表2㊀Langmuir等温吸附和Freundlich等温吸附模型参数Table2㊀Model parameters of Langmuir isothermal adsorption and Freundlich isothermal adsorptionLangmuir model Freundlich modelQ max/(mg㊃g-1)K L/(L㊃mg-1)R2K F/(mg㊃g-1)(L㊃mg-1)1/n n R2811.584 1.070.998374.5690.350.960㊀㊀注:Q max代表单层分子吸附剂能有效捕获的物质的量;K L和K F分别为Langmuir和Freundlich等温吸附模型的平衡吸附常数㊂2.8㊀吸附动力学图11为准一级和准二级吸附动力学拟合曲线以及ln(Q e-Q T)㊁T/Q T与时间T的关系曲线,其中Q T为T时刻的吸附量㊂表3为准一级和准二级吸附动力学模型拟合参数㊂可以看出,PEI-BCN材料对MG的吸附过程大致分为三个阶段:在初始的0~50min,PEI-BCN对MG的吸附速度快,为快吸附阶段;在50~180min,材料对MG的吸附速度较之前开始下降,为慢吸附阶段;180min后吸附速度基本不变,吸附基本达到平衡㊂从表3可以看出,准一级模型的R2值在0.999左右,高于准二级模型的R2值,说明准一级动力学模型更适合描述PEI-BCN对MG的吸附行为㊂由于所得BCN材料具有中空结构,在吸附过程中,MG离子可以快速地扩散至材料内部活性位点,从而被吸附㊂表3㊀准一级和准二级吸附动力学模型拟合参数Table3㊀Fitting parameters of pseudo-first-order and pseudo-second-order adsorption kinetics modelsMG concentration/ (mg㊃L-1)Pseudo-first-order Pseudo-second-orderQ e/(mg㊃g-1)Intercept R2Q e/(mg㊃g-1)Intercept R210160.271 6.5780.999184.1640.0570.995 20324.180 6.6550.992391.3860.0920.985 40660.867 5.8150.998833.8210.1400.996 50715.030 4.9100.999854.2710.1730.989第6期许㊀蒙等:硼氮共掺杂生物质炭的制备及吸附性能研究2249㊀图11㊀吸附试验结果Fig.11㊀Adsorption test results 3㊀结㊀论1)采用高温化学反应法利用天然木棉制备了BCN 多孔材料,其平均孔径为11.0nm,吸附性能优于生物质炭㊂2)经过PEI 改性后的PEI-BCN 材料的平均孔径为12.6nm,其吸附能力大幅增加,其中对MG 的吸附高达710.0mg /g㊂3)PEI-BCN 对MG 的吸附属于均匀表面单层分子的等温吸附㊂经过对比发现MG 的吸附动力学过程更符合准一级吸附动力学模型㊂参考文献[1]㊀ALALWAN H A,KADHOM M A,ALMINSHID A H.Removal of heavy metals from wastewater using agricultural by products[J].Journal ofWater Supply:Research and Technology-Aqua,2020,69(2):99-112.[2]㊀DAS R,VECITIS C D,SCHULZE A,et al.Recent advances in nanomaterials for water protection and monitoring [J].Chemical SocietyReviews,2017,46(22):6946-7020.[3]㊀曹国凭,赵㊀萍,李文洁.膜法水处理技术研究进展与发展趋势[J].水利科技与经济,2006,12(8):539-540+543.CAO G P,ZHAO P,LI W J.Study progress and development trend in water treatment technology of the membrane separation technology[J].Water Conservancy Science and Technology and Economy,2006,12(8):539-540+543(in Chinese).[4]㊀AMA O M,KUMAR N,ADAMS F V,et al.Efficient and cost-effective photoelectrochemical degradation of dyes in wastewater over an exfoliated graphite-MoO 3nanocomposite electrode[J].Electrocatalysis,2018,9(5):623-631.[5]㊀ISLAM M S,CHOI W S,NAM B,et al.Needle-like iron oxide@CaCO 3adsorbents for ultrafast removal of anionic and cationic heavy metal ions[J].Chemical Engineering Journal,2017,307:208-219.[6]㊀CHAKRABORTY R,ASTHANA A,SINGH A K,et al.Adsorption of heavy metal ions by various low-cost adsorbents:a review [J ].International Journal of Environmental Analytical Chemistry,2022,102(2):342-379.[7]㊀起冰翠,薛玉兰,林㊀强.浮选技术在环境综合治理中的应用[J].矿产保护与利用,1999(1):51-53.QI B C,XUE Y L,LIN Q.Applications of flotation technology to environmental comprehensive treatment[J].Conservation and Utilization ofMineral Resources,1999(1):51-53(in Chinese).[8]㊀王㊀郑,程星星,黄㊀雷,等.催化臭氧化技术在水处理中的应用研究进展[J].应用化工,2017,46(6):1214-1217+1233.WANG Z,CHENG X X,HUANG L,et al.Research application progress of catalytic ozonation technology in water treatment[J].AppliedChemical Industry,2017,46(6):1214-1217+1233(in Chinese).[9]㊀YANG Z H,MA J X,LIU F,et al.Mechanistic insight into pH-dependent adsorption and coprecipitation of chelated heavy metals by in situformed iron (oxy)hydroxides[J].Journal of Colloid and Interface Science,2022,608:864-872.[10]㊀毕玉玺,凌㊀辉,唐振平,等.磁性介孔TiO 2/氧化石墨烯复合材料的制备及其对U(Ⅵ)的吸附[J].复合材料学报,2019,36(9):2176-2186.BI Y X,LING H,TANG Z P,et al.Preparation of magnetic mesoporous TiO 2/graphene oxide composites and their adsorption for U(Ⅵ)[J].Acta Materiae Compositae Sinica,2019,36(9):2176-2186(in Chinese).2250㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷[11]㊀WANG Z Y,MI B X.Environmental applications of2D molybdenum disulfide(MoS2)nanosheets[J].Environmental Science&Technology,2017,51(15):8229-8244.[12]㊀SUN L F,XU K,GUI X F,et al.Reduction-responsive sulfur-monoterpene polysulfides in microfiber for adsorption of aqueous heavy metal[J].Journal of Water Process Engineering,2021,43:102247.[13]㊀ZHANG Y J,WANG L,ZHANG N N,et al.Adsorptive environmental applications of MXene nanomaterials:a review[J].RSC Advances,2018,8(36):19895-19905.[14]㊀ZHANG Y F,WU L,DENG H L,et al.Modified graphene oxide composite aerogels for enhanced adsorption behavior to heavy metal ions[J].Journal of Environmental Chemical Engineering,2021,9(5):106008.[15]㊀GENG B Y,XU Z Y,LIANG P,et al.Three-dimensional macroscopic aminosilylated nanocellulose aerogels as sustainable bio-adsorbents for theeffective removal of heavy metal ions[J].International Journal of Biological Macromolecules,2021,190:170-177.[16]㊀袁㊀琦,王玉珑,韩俊源,等.羧甲基纤维素钠/己二酸二酰肼水凝胶的制备及其重金属离子吸附性能研究[J].中国造纸学报,2021,36(4):38-47.YUAN Q,WANG Y L,HAN J Y,et al.Study on preparation of sodium carboxymethyl cellulose/adipic dihydrazide hydrogel and its adsorption performance for heavy metal ions[J].Transactions of China Pulp and Paper,2021,36(4):38-47(in Chinese).[17]㊀CAO Y,DHAHAD H A,HUSSEN H M,et al.Adsorption properties of two-dimensional carbon material towards the heavy metal ions[J].Journal of Molecular Liquids,2021,342:117500.[18]㊀FU Y K,QIN L,HUANG D L,et al.Chitosan functionalized activated coke for Au nanoparticles anchoring:green synthesis and catalyticactivities in hydrogenation of nitrophenols and azo dyes[J].Applied Catalysis B:Environmental,2019,255:117740.[19]㊀PAN X H,ZUO G C,SU T,et al.Polycarboxylic magnetic polydopamine sub-microspheres for effective adsorption of malachite green[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,560:106-113.[20]㊀LIU F,LI S,YU D F,et al.Template-free synthesis of oxygen-doped bundlelike porous boron nitride for highly efficient removal of heavy metalsfrom wastewater[J].ACS Sustainable Chemistry&Engineering,2018,6(12):16011-16020.[21]㊀LI S,LIU F,SU Y P,et al.Luffa sponge-derived hierarchical meso/macroporous boron nitride fibers as superior sorbents for heavy metalsequestration[J].Journal of Hazardous Materials,2019,378:120669.[22]㊀DOROZHKIN P,GOLBERG D,BANDO Y,et al.Field emission from individual B-C-N nanotube rope[J].Applied Physics Letters,2002,81(6):1083-1085.[23]㊀WEI Y C,WU P W,LUO J,et al.Synthesis of hierarchical porous BCN using ternary deep eutectic solvent as precursor and template for aerobicoxidative desulfurization[J].Microporous and Mesoporous Materials,2020,293:109788.[24]㊀BALELA M D L,INTILA N M,SALVANERA S R.Adsorptive removal of lead ions in aqueous solution by kapok-polyacrylonitrilenanocomposites[J].Materials Today:Proceedings,2019,17:672-678.[25]㊀ZHENG Y A,ZHU Y F,WANG A Q.Kapok fiber structure-oriented polyallylthiourea:efficient adsorptive reduction for Au(III)for catalyticapplication[J].Polymer,2014,55(20):5211-5217.[26]㊀SHI Y M,HAMSEN C,JIA X T,et al.Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition[J].Nano Letters,2010,10(10):4134-4139.[27]㊀NOZAKI H,ITOH ttice dynamics of BC2N[J].Physical Review B,1996,53(21):14161-14170.[28]㊀CI L J,SONG L,JIN C H,et al.Atomic layers of hybridized boron nitride and graphene domains[J].Nature Materials,2010,9(5):430-435.[29]㊀ZHANG L,HE Q,HUANG S,et al.A novel boron and nitrogen co-doped three-dimensional porous graphene sheet framework as highperformance Li-ion battery anode material[J].Inorganic Chemistry Communications,2018,96:159-164.[30]㊀SUN C L,MA F K,CAI L,et al.Metal-free ternary BCN nanosheets with synergetic effect of band gap engineering and magnetic properties[J].Scientific Reports,2017,7:6617.[31]㊀WU Z S,PARVEZ K,WINTER A,et yer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance andrate capability for micro-supercapacitors[J].Advanced Materials,2014,26(26):4552-4558.[32]㊀李昊远.氮气吸附法的致密砂岩孔隙结构分析[J].云南化工,2019,46(12):87-90+94.LI H Y.Pore structure analysis of tight sandstone by nitrogen adsorption method[J].Yunnan Chemical Technology,2019,46(12):87-90+94 (in Chinese).[33]㊀SUN J T,ZHANG Z P,JI J,et al.Removal of Cr6+from wastewater via adsorption with high-specific-surface-area nitrogen-doped hierarchicalporous carbon derived from silkworm cocoon[J].Applied Surface Science,2017,405:372-379.。
农药名词英汉对照
一、农药名称与分类农药(Pesticides)天然农药 (Natural pesticides)无机农药(Inorganic pesticides)有机合成农药(Orgenosynthetic pesticides) 化学农药(Chemical pesticides)生物农药(Biological pesticides)微生物农药(Microbial pesticides)植物性农药 Botanical pesticides)广谱性农药(Broad spectrum pesticides)高毒农药(Highly toxicity pesticides)中毒农药(Middle toxicity pesticides)低毒农药(Low toxicity pesticides)残留性农药(Residual pesticides)持久性农药(Persistency pesticides)无公害农药(Non-public hazards pesticides) 仿生农药(Biomimetic pesticides)第一代农药(First-generation pesticides) 第二代农药(Second-generation pesticides) 第三代农药(Third-generation pesticides)第四代农药(Fourth-generation pesticides)限制性杀虫剂杀虫剂使用的农药(Restricted application pesticides) 水溶性农药(Water-Soluble pesticides)油溶性农药(Oil-Soluble pesticides)超高效农(Ultra high efficiency pesticides)农药名称(Pesticide Name)通用名称(Common Name)商品名称(Trade Name)化学名称(Chemical Name)缩写名称(Abbreviation Name)试验代号(code number)中文名称(Chinese Name)农药分类(Pesticide Classification)杀虫剂(Insecticides)杀虫谱(Insecticidal spectrum)广谱性杀虫剂(Broad spectrum insecticide)选择性杀虫剂(Selective insecticide)内吸性杀虫剂(Systemic insecticide)植物性杀虫剂(Plant insecticide)微生物杀虫剂(Microbial insecticide)矿物油杀虫剂(Mineral oil insecticide)无机杀虫剂(Inorganic insecticide)有机合成杀虫(Organosynthetic insecticide)有机氯杀虫剂(Organochlorine insecticide)有机磷杀虫剂(Organophosphorus insecticide)有机氮杀虫剂(Organic nitrogenous insecticide) 拟除虫菊酯类杀虫剂(Pyrethroid insecticide)胃毒剂(Stomach Poison)触杀性杀虫剂(Contact insecticide)熏蒸性杀虫剂(Fumigant insecticide)混合杀虫剂(Mixed insecticide)神经毒剂(Neurotoxin, Nerve poison)拒食剂(Antifeedants, Feeding deterrent)忌避剂(Repellent)引诱剂(Attractant)不育剂(Chemosterilant)昆虫生长调节剂(Insect grwoth regulators)昆虫内激素(Insect hormone)蜕皮激素(Moeting Hormone )保幼激素(Juvenile Hormone,J.H)脑激素(Brain hormone)昆虫信息素(Insect pheromone)聚集信息素(Aggregation pheromone)性信息素(Sex pheromone)几丁质抑制剂(chitin synthesis inhibitor) 杀藻剂(Algaecide)杀灌木剂(Brush killer)杀菌剂(Fungicide, Bacteriocide)杀菌谱(Fungicidal spectrum)杀菌活性(Fungicidal activity)广谱性杀菌剂(Broad spectrum fungicide)专效性杀菌剂(Narrow spectrum fungicide) 保护性杀菌剂(Protective fungicide)治疗性杀菌剂(Curative fungicide)内吸性杀菌剂(Systemic fungicide)非内吸性杀菌剂(Unsystemic fungicide)铲除性杀菌剂(Eradicant fungicide)无机杀菌剂(Inorganic fungicide)有机合成杀菌剂(Organosynthetic fungicide) 有机硫杀菌剂(Organic sulfur fungicide)有机磷杀菌剂(Organophosphorus fungicide)有机氯杀菌剂(Organochlorine fungicide)有机杂环杀菌剂(Organic heterocyclic fungicide)植物性杀菌剂(Botanical fungicide)病菌细胞组分合成抑制剂(Cell component of germ synthesis inhibitor) 病菌能量合成抑制剂(Germ energy synthesis inhibitor)种子处理剂(Seed treatment)种子消毒剂(Seed disinfectant)土壤消毒剂(Soil disinfectant)农用抗生素(antibiotic fungicide)效价(Titer, Titre)杀线虫剂(Nematicide)杀鼠剂(Rodenticide)无机杀鼠剂(Inorganic rodenticide)有机杀鼠剂(Organic rodenticide)植物性杀鼠剂(Botanical rodenticide)抗凝血性杀鼠剂(Anticoagulant rodenticide)急性杀鼠剂(Acute rodenticide)杀螨剂(Miticide, Acaricide)植物激素(Plant hormone)植物生长调节剂(Plant growth regulator)烃类植物生长调节剂(Hydrocarbon plant growth regulator)三唑类植物生长调节剂(Triazole plant growth regulator)有机磷类植物生长调节剂(Organophosphorous plant growth regulator) 细胞分裂素(Cytokinins)催熟剂(Ripener)保鲜剂(Antistaling agent)催芽剂(Forced germination agent)脱叶剂(Defoliant, Defoliator)生长阻滞剂(Growth retardant, Dwarfing agent)干燥剂(Desiccant)疏花疏果剂(Flower and fruit thinning agent)休眠复苏剂 (Dormancy breaker)除草剂(Herbicide, Weedkiller, Grass killer)杀草谱(Herbicidal spectrum)杀草活性(Herbicidal activity)广谱性除草剂(Broad spectrum herbicide)选择性除草剂(Selective herbicide)触杀型除草剂(Contact herbicide)激素型除草剂(Hormone type herbicide)输导型除草剂(Translocatable herbicide)灭生性除草剂(Sterilant herbicide)混合型除草剂(Mixed herbicide)生物除草剂(Biological herbicide)芽前除草剂(Pre-emergence herbicide)播前除草剂(Pre-sowing herbicide)茎叶处理剂(Stem and left treatment)除草剂解毒剂(Antidote)光合抑制剂(Photosynthesis inhibitor)有丝分裂抑制剂(Mitosis inhibitor)叶绿素抑制剂(Chlorophyll synthesis inhibitor) 无机除草剂(Inorganic herbicide)有机合成除草剂(Organosynthesis herbicide)苯甲酸类除草剂(Benzoic herbicide)苯氧羧酸类除草剂(Phenoxy herbicide)酚类除草剂(Phenolic herbicide)醚类除草剂(Diphenyl ether herbicide)酰胺类除草剂(Anilide herbicide)硝基苯胺类除草剂(Nitro aniline herbicide)脲类除草剂(Urea herbicide)磺酰脲类除草剂(sulfonylurea herbicide)咪唑啉酮类除草剂(Imidazolone herbicide)氨基及硫代氨基甲酸酯类除草剂(Carbamate and thiolcarbamate herbicide) 三氮苯类除草剂(Triazine herbicide)有机磷类除草剂(Organophosphorus herbicide)脂肪族类除草剂(Aliphatic herbicide)杂环类除草剂(Heterocyclic herbicide)超高效除草剂(Ultra-high potency herbicide)二、农药加工与剂型农药加工(Pesticide process)原药(Technical material,简称TC)原粉(Crude powder)原油(Crude oil)有效成分(Active ingredient)农药制剂 (formulation)固体制剂(solid formulation)液体制剂(Liquid formulation)气体制剂(Gas formulation)母粉(Dust bases)母液(Mother solution, Mother water)剂型(Type of formulation)粉剂(Dust)气流粉碎(Air current shiver)机械粉碎(Mechanical shiver)无飘移粉剂(Driftless dust formulation)超微粉剂(Flo-dust)追踪粉剂(Tracking powder)分散度(Dispersity, Dispersion degree)分散体系(Disperse system)可湿性粉剂(Wettable powder)可溶性粉剂(Water soluble powder)颗粒剂(Granule)水分散性颗粒剂(Water dispersible granule) 微粒剂(Micro-granule)大粒剂(Macro-granule)细粒剂(Fine granule)挤压造粒(Extrusion granulation)吸附造粒(Absorbtion granulation)包衣造粒(Coating granulation)滚动造粒(Ball up granulation)乳油(Emulsifiable concentrate)乳状液(Emulsion)浓乳剂(concentrate emulsion)水剂(Aqueous solution)油剂(Oil solution)胶体剂(colloidal agent)胶悬剂(Flowable formulation)乳膏(Emulsifiable paste)片剂(Tablet)块剂(Block)胶囊剂(Capsule agent)微胶囊剂(Microcapsule)超低容量喷雾剂(Ultra low volume agent)缓释剂(Control release formulation)物理型缓释剂(Physical type control release formulation) 化学型缓释剂(Chemical type control release formulation) 烟剂(Smoke generator)气雾剂 (Aerosol dispenser)种子包衣剂(Seed coating)水面飘浮剂(Water surface leafing agent)熏蒸剂(Fumigant)抗萎剂(Anti-wilting agent)警戒色(Warning dye, Warning color)警戒气(Warning gas)农药辅助剂(Supplementary agent)表面张力(Surface tension)表面活性剂(Surface active agent)离子型表面活性剂(Ionic surface active agent) 阴离子型表面活性剂(Anionic surfactant)阳离子型表面活性剂(Cationic surfactant)非离子型表面活性剂(Nonionic surfactant)混合型表面活性剂 (Mixture surfactant)天然表面活性剂(Inartificial surfactant)亲水亲油平衡值(Hydrophile-lipophile balance) 无机性值(Inorganic value)乳化作用(Emulsification)乳化剂(Emulsifying agent)乳化性(Emulsifiability)水包油型乳状液(Emulsion, oil in water)油包水型乳状液(Emulsion, water in oil)湿润剂(Wetting agent)接触角(Contact angle)展开剂(Spreader)扩散剂(Spreader)扩散系数(Diffusion coefficient)分散剂(Dispersing agent)渗透剂(Penetrating agent, Penetrant) 固着剂(Adhesive agent, Sticky spreade) 抑泡剂(Foam depressant)发泡剂(Foaming adjuvant)溶剂(Solvent)助溶剂(Latent solvent)增溶溶解(Solubilization)助悬剂(Help suspend agent)增效剂(Synergist)增效作用(Synergism)增效比(Synergistic specific value)稳定剂(Stabilizing agent, Stabilizer) 减活化剂(Deactivating agent)光敏剂(Photosensitizer)防氧化剂(Antioxidant)抗冻剂(Antifreezer)抗凝剂(Anticoagulant)防崩解剂(Anti-break up agent)填充剂(Solid diluent, Carrier)非活性成分(Inert ingredient)稀释剂(Diluent)稀释率(Diluent ratio)液体稀释剂(Liquid diluent)陶土(Pottery clay)高岭土(Kaoline)硅藻土(Diatom earth)粘土(Clay)皂素(Saponin)皂角(Gledilschia sinensis)纸浆废液(Paper pulp liquid waste) 茶籽饼(Tea-seed cake)拉开粉(Nekal BX)助燃剂(Combustion improver)发烟剂(Fuming agent)消燃剂(Flame inhibiting agent)三、农药使用技术、药效及毒理喷雾法(Spray, spraying)高量喷雾法(High volume spray)常量喷雾法和常规喷雾法中容量喷雾法(Middle volume spray)低容量喷雾法(Low volume spray)超低容量喷雾法(Ultra low volume spray)航空超低容量喷雾法(Aviation ultra low volume spray) 针对性喷雾(Placement spraying)飘移累积性喷雾(Incremental drift spraying)飘移性指数(Drift index)喷幅(Application width, Swsth width)有效喷幅(Effective application width)雾化(Atomization)雾化原理(Atomizing principle)雾滴的弹跳(bouncing of droplet)喷洒速度(Application speed)喷洒高度(Application height)雾锥角(Cone angle)空心雾锥(Hollow cone)实心雾锥(Solid cone)压力雾化法(Pressure atomization)旋转离心雾化法(Rotating atomization)转碟雾化法(Rotating disc atomization)静电雾化法(Electrostatic atomization)撞击雾化法(Impact atomization)液膜破裂(Liquid sheet perforation)液丝断裂(Ligament disintegration)雾滴(Spray droplet)雾滴群(Spray cloud)雾滴密度衰减(Attenuation of droplets density) 雾滴衷减系数(Attenuation coefficient)喷粉法(Dusting)撒颗粒法(Granule application)浸种浸苗法(Seed soaking and immersion shoot) 加药温汤浸种法(Modified hot water treatment) 毒土法(Incorporation, toxin soil method)毒饵法(Poison bait method)泼浇法(Pouring method)甩施法(Free-swinging application)点涂法(Point brush method)熏蒸法(Fumigation)空间熏蒸(Space fumigation)土壤熏蒸(Soil fumigation)拦种法(Seed dressing)环毒法(Poison ring)灌注法(Drench and fill method)轮换使用(Rotation application)混合使用(Combined application)混合相容性(Compatibility)点播穴施药(Pricking-in hole treatment)垄作施药(Ridge application)垄间施药(Furrow application)带(条)状施药(Band application, Stripe application) 株间施药(Crop space application)植株根部施药(Plant foot application)局部施药(Topical application)全面施药(Overall application)定向施药(Directed application)秋季施药(Autumn application)土壤处理(Soil treatment)土壤消毒(Soil disinfection)水面施药(Paddy water application, Submerged application) 混土施药法(Mixed soil application)树干注射(Trunk injection)树干涂抹(Bark treatment)叶面喷洒(Foliar application)种子消毒法(Seed diskinfection)合理用药(proper application)安全用药(Safe application)对症下药(Placement symptom application)适量用药(Proper rate of application)适时用药(Punctual application)避毒措施(Evasion toxicity measures)播前施药(Pre-sowing application)播后施药(Post-sowing application)芽前使用(Pre-emergence application)芽后使用(Post-emergence application)使用时期(Permissible period of application)衡释倍数(Dilution)药效(Efficiency)药效期(Period of efficacy)流失(Run off)渗漏(Permeability-weepage)飘移(Drift)蒸发(Evaporate)再分布作用(Redistribution)雾粒(Droplet and particle)有效面积(Biocidal area)半数致死距离(LDist50)药剂回收率(Recovery of pesticide)叶面积指数(Leaf area index, LAI)展开系数(Spreading factor)叶表面糙度(Roughness of leaf surface)生物最佳粒径(Biological optimum droplet size, BODS) 靶标(Target)作用点(Site of action, Target point)作用方式(Mode of action)光活性化(Photo activation)乙酰胆碱(Acetylcholine)乙酰胆碱酯酶(Acetylcholinesterase, AchE)乙酰胆碱受体(Acetylcholineaccepter)微粒体氧化酶(Microsome function oxidase, MFO) 靶子酶(Target enzyme)玉米酮(MBOA)酰胺水解酶(Amide hydrolytic enzyme)毒性基团(Toxic group)结合作用(Conjugation)希尔反应(Hill reaction)化学调节(Chemical regulation)干涉作用(Cross protection)表面化学治疗(Surfact chemotherapy)外部化学治疗(Crust chemotherapy)内部化学治疗(Internal chemotherapy)化学治疗指数(Chemotherapeutic index)杀菌作用(Fungicidal action)抑菌作用(Fungistatic action)阻止作用(Inhibit action)时差选择性(Difference of time selectivity)位差先择性(Position difference selectivity)形态差异选择(Morphologic difference selectivity) 生理选择性(Physiological difference selectivity) 生化选择性(Biochemical difference selectivity) 属间选择性(Inter-genera selectivity)选择性指数 (Selectivity index)毒力(Toxicity)相对毒力指数((Relative toxicity index)有效浓度(Availability concentration)半数抑制剂量(Median inhibition dose,)半数击倒时间(Median kncokdown time, KT50)半数致死时间(Median lethal time, LT50)致死中浓度(Median lethal conentration, LC50)绝对致死浓度(Absolute lethal concentration)四、农药对人畜的毒性毒性(Toxicity)农药中毒(Pesticide intoxication)致死中量(Median lethal dose, LD)50忍受极限中浓度(Median tolerance limit, TLm)最低中毒剂量(Minimal toxic level)最大安全剂量(Maximal safety dose)最高无作用剂量(Maximum non-effect level, MNL)最大耐受浓度(Maximal tolerance limit concentration, MLC) 毒效比值(Toxic effect ratio)急性毒性(Acute toxicity)急性中毒(Acute intoxication)亚急性毒性(Subacute toxicity)慢性毒性(Chronic toxicity)慢性中毒(Chronic intoxication)残留毒性(Residual toxicity)累积毒性(Cumulative toxicity)吸入毒性(Inhalation toxicity)口服毒性(Oral toxicity)经皮毒性(Dermal toxicity)生殖毒性(Reproductive toxicity)神经毒性(Neurotoxicity, Nerve toxicity)选择毒性(Selective toxicity)鱼毒(Fish-toxicity)二次毒性(Secondary hazard toxicity)二次中毒(Secondary intoxication)迟发性神经毒性(Delayed neurotoxicity) 三致性(Tri-pathogenicity)致癌性(Carcinogenicity)致畸性(Teratogenicity)致突变性(Mutagenicity)突变指数(Mutagenicity index)致肿瘤性(Oncogenicity)一般毒性试验(General toxicity test) 特殊毒性试验(Specific toxicity test) 急性毒性试验(Acute toxicity test)慢性毒性试验(Chronic toxicity test) 致癌试验(Carcinogenicity test)致畸试验(Teratogenicity test)Ames试验(Ames test)一生毒性试验(Life span toxicity test) 三代生殖试验(Tri-generation test)皮肤刺激性(Skin irritation)粘膜刺激性(Mycosis irritation)口腔给药(Oral administration)皮触给药(Dermal administration)腹腔投药(Intraperitoneal administration) 生产性中毒(Productory intoxication)非生产性中毒(Non-productory intoxication) 五、农药对生态环境的作用化学防治(Chemical control)物理防治(Physical control)生物防治(Biological control)农业防治(Agricultural control)综合防治(Integrated control)生态系统(Ecological system, Ecosystem)生态平衡(Ecological equilibrium)生态影响(Ecological effect)生态可塑性(Ecological plasticity)生物群落(Biocoenosium)农药降解(Pesticide degradation)农药归宿(Pesticide fate)生物降解(Biological degradation)生物降解指数(Biological degradation index) 非生物分解(Nonbiological degradation)微生物分解(Microbial degradation)衍生(Derivation)异构化(Isomerization)光化(Photochemical reaction)裂解(Fragmentation)轭合(Conjugate)降解曲线(Degradation curve)降解产物(Degradation product)母体化合物(Parent compound)风化(Weathering)土壤中行为(Behaviour in soil)土壤中移动(Movement in soil)地表径流(Surface runoff)淋溶性(Eluviation)农药代谢(Pesticide metabolism)代谢途径(Metabolic pathway)钝化(Deactivation)活性化(Activation)共同代谢(Co-metabolism)解毒代谢(Detoxication metabolism) 体内异物(Xenobiotics)田间小气候(Field microclimate)种群复起现象(Pest overrun)有害生物(Injurious biota)防治对象(Target organisms)杂草(Weed)一年生杂草(Annual weed)多年生杂草(Perennial weed)水田杂草(Paddy field weed)旱田杂草(Upland field weed)单子叶杂草(Monocotyledonous weed)双子叶杂草(Dicotyledon weed)深根性杂草((Deep-rooted weed)恶性杂草(Vicious weed)寄生性杂草(Parasitical weed)害虫 (Pest, Insect, Injurious)咀嚼式口器害虫(Masticatory mouth parts insect)刺吸式口器害虫(Sucking mouth parts insect)虹吸式口器害虫(Siphon mouth parts insect)舐吸式口器害虫(Rasping sucking mouth parts insect) 锉吸式口器害虫(File-sucking mouth parts insect)植食性害虫(Plant-feeding insect)地下害虫(Subterraneous insect)卫生害虫(Hygienical insect)线虫(Eelworm)螨虫(Mites)病原物(Pathogenous organism)真菌病害(Mycosis)细菌性病害(Bacteriosis, Bacterial disease) 植物病毒病(Plant virus disease)鼠类(Rodent)天敌(Natural enemy)低等动物(Lowly animal)温血动物(Warmblooded animal)药害(Phytotoxicity)急性药害(Acute phytotoxicity)慢性药害(Chronic phytotoxicity)残留药害(Residual phytotoxicity)二次药害(Secondary phytotoxicity)飘移药害(Drift hazard)混用药害(Mixed application phytotoxicity)误用药害(Mistake phytotoxicity)过量药害(Excess phytotoxicity)根部药害(Root phytotoxicity)叶面药害(Foliage phytotoxicity)敏感性药害(Susceptible crop)急性药害(Acute phytotoxicity)慢性药害(Chronic phytotoxicity)残留药害(Residual phytotoxicity)二次药害(Secondary phytotoxicity)飘移药害(Drift hazard)混用药害(Mixed application phytotoxicity) 误用药害(Mistake phytotoxicity)过量药害(Excess phytotoxicity)根部药害(Root phytotoxicity)叶面药害(Foliage phytotoxicity)敏感性作物(Susceptible crop)抗药性(Resistant)自然抗药性(Natural resistant)获得抗药性(Acquired resistant)多重抗性(Multiple resistance)单一抗性(Single resistance)交互抗性(Cross resistance)负交互抗性(Negatively cross resistance)抗性系数(Resistance factor)拮抗作用(Antagonism, Antagonistic action)异株克生作用(Allelopathy action)异株克生化合物(Allelopathy action)农药公害(Pesticide public hazards)农药污染(Pesticide contamination)直接污染(Direct contamination)土壤污染(Soil contamination, Land pollution) 大气污染(Air pollution)水质污染(Water pollution)食品污染(Food pollution)人体污染(Man pollution)二次污染(Secondary pollution)农药残留(Pesticide residual)残留性(Persistence, persistency)残留量(Residual dose)农药残留物(Pesticide residues)残效(Residual effect, Residual activity)残效期(Period of residual effect)最终残留(Terminal residue)母体残留(Parent residual)结合残留(Bound residue)可忽略残留(Negligible residue)生物浓缩(Biological concentration, Bioconcentration) 食物链(Food chain, Food web)生物浓缩系数(Biological concentration factor)生物分解指数(Biological decomposition index)残留标准(Tolerance for pesticide residue)每日允许摄入量(Acceptable daily intake, ADI)安全系数(Safety factor)最大允许残留量(Maximum residue limit, MRL)食物系数(Food factor)农药半衰期(Half-life for pesticide residue)安全间隔期(Pre-harvest interval, Pre-harvest period) 农药安全使用标准(The criterion for safe use)六、农药登记、商品质量及残留分析农药登记(Registration of pesticides)临时登记(Temporary registration)品种登记(Varietal registration)补充登记(Supplementary registration)延长登记(Prolongation registration)暂缓登记(Hesitation registration)登记有效期(Valid period of registration)农药质量标准(Quality level of pesticide)国家标准(State standard)部颁标准(Ministerial standard)企业标准(Enterprise standard)暂行规定(Tentative specify)技术指标(Technical index)农药纯品(Pesticide pure product)提纯(Clean-up)农药工作标准品(Standard sample of pesticide) 农药分析(Pesticide analysis)农药杂质(Pesticide dirt)粉粒细度(Particle size of powder and granule) 筛目(Sieve mesh)平均粒径(Mean particle size)稳定度(Stability)pH值(pH value)凝固点(Freezing point)沸点(Boiling point)闪点(Flash point)熔点(Melting point)酸度(Degree of acidity)含水量(Water content)标准硬水(Standard hard water)悬浮性(Suspensibility)悬浮率(Percentage of suspension)硬度(Hardness)结块(Node clod)絮结作用(Flocculation)结晶析出(Crystallize separator-out) 沉淀(Settlings)分层(Demixion, creaming)比重(Specific weight)假比重(Apparent specific gravity) 松密度(Bulk density)比表面积(Specific area)静止角(Angle of repose)水中崩解性(Disintegrability in water)贮藏试验(Storage test)热贮藏试验(Heat storage test)冷贮藏试验(Cold storage test)化学分析(Chemical analysis)定性分析(Qualitative analysis)定量分析(Qantitative analysis)酸碱滴定法(Acid-base titration method)重量分析法(Gravimetry)容量分析法(Volumetry)非水溶液滴定法(Nonaqueous titration method)氧化还原滴定法(Oxidation-reduction titration method) 碘量法(Iodimetry)溴化法(Brominaton method)银量法(Argentometric titration)重氮化法(Diazonium method)气相色谱法(Gas chromatography)高效液相色谱法(High efficiency liquid chromatography)薄层色谱法(Thin-layer chromatography)薄层色谱扫描法(Thin-layer chromatographic scan-method) 分光光度法(Spectrophotometry)红外光谱法(Infra-red spectrometry)含水量测定(Water content determination)粉粒细度测定(Particle size determination)酸度测定(Acidity test)乳状液稳定性测定(Emulsionstability test)湿润性测定(Wettable properties test)粉剂流动性测定(Dust fluidity test)粉粒细度测定(Particle size determination)酸度测定(Acidity test)乳状液稳定性测定(Emulsionstability test)湿润性测定(Wettable properties test)粉剂流动性测定(Dust fluidity test)悬浮率测定(Suspensibility test)苯不溶物测定(Nonsolubility matter to benzne test)闪点测定(Flash point test)熔点测定(Melting point test)溶解度测定(Solubility test)粘度测定(Degree of Visosity test)农药残留分析(Pesticide residual analysis)多组分残留分析(Multi-residue analysis)残留分析前处理(Pro-determine treatment of residue analysis) 提取(Extract, Extraction)提取剂(Extracting agent)组织捣碎(Histological mash)液-液分配(Liquid-Liquid distribution)净化(Decontamination, clean-up)浓缩(Enrichment)回收率(Percent recovery, Recovery)检出界限(Detectable limit, Limit of detection)灵敏度(Sensibilty)精密度(Preciosity)准确度(Accuracy)残留动态(Residual dynamic state)残留动态曲线(Residual dynamic state curve)七、农药生物测定与田间试验农药生物测定与田间试验(Pesticide bioassay)胃毒毒力测定(Stomach toxicity determine)触杀毒力测定(Contact toxicity determine)内吸毒力测定(Systemic toxicity determine)熏蒸毒力测定(Fumigation toxicity determine)杀菌剂毒力测定(Fungitoxicity determine)琼脂扩散法(Agar diffusion method)琼脂衡释法(Agar dilution method)孢子萌发试验(Spore germination test)除草剂生物测定(Herbicide bioassay)鱼毒测定(Fish toxicity determine)农药筛选试验(Pesticidal screening test)残留农药生物测定(Residual pesticide bioassay)农药代谢的生物测定(Pesticide metabolic product bioassay) 致死中量测定(Median lethal dosage determine)农药蓄积性试验(Pesticide accumulatity test)蓄积系数(Accumulation coefficient)田间药效试验(Field efficacy test)田间小区试验(field plot test)田间大面积试验(Field extensive test)农药残留试验(Pesticide residue test)单因子试验(One factor test)多因子试验(Multiple factor test)对比试验(Pairing test)对照处理(Check treatment)空白处理(Blank treatment)药害试验(Phytotoxity test)盆栽试验(Pot experiment, pot incubation test) 定位试验(Location test)采样(Harvest sample)主观样本(Subjective sample)客观样本(Objective sample)死亡率(Percentage dead, Mortality rate)校正死亡率(Adjusted percentage dead)发病率(Disease incidence, Incidence of disease) 病情指数(Status of disease index)植株减退率(Plant diminish rate)鲜重减退率(Fresh weight diminish rate)八、农药商品经营农药商品经营(Commercial pesticide operate)统购统销(United purchasing and marketing)贮存(Storage)露天贮存(Open storage)简易棚贮存(simple shed storage)仓库贮存(Store house storage)地下室贮存(Subterraneous storage)堆码方式(Mode of stacking)农药商品包装(Commodity casing of pesticide)包装标志(Packing identifying marks)商品合格证(Commodity certification)商品说明书(Commodity descriptive)农药商品运输(Commodity pesticide conveyance)公路运输(Highway transportation)铁路运输(Railway transportation)水路运输(Waterway transportation)航空运输(Aerial transportation)植物医院(Plant hospital)出厂价格(Factory price)零售价格(Retail price)最后有效期(Termination date of quality guarantee term) 九、农药合成及其它农药合成(Pesticide synthesis)农药筛选(Pesticide screening)合成路线(Synthetic route)仿生合成(Mimetism synthesis)相转移催化合成(Phase transfer catalyze synthesis)定向合成(Orienting synthesis)转位重排(Index rearrangement reaction)一步法合成(One-step synthesis)多步法合成(Multi-step synthesis)农药中间体(Pesticide intermediate)工艺流程(Process flow)农药分子设计(Pesticide molecular design)农药分子的改造与修饰(Remaking and modify of the pesticide)。
氧化铜的光反射率
氧化铜的光反射率引言氧化铜是一种重要的无机化合物,具有广泛的应用领域。
其在光学领域中的特性是研究的重点之一。
本文将深入探讨氧化铜的光反射率及其相关性质。
氧化铜简介氧化铜(CuO)是由铜和氧两种元素组成的无机化合物。
它具有黑色或棕色固体的外观,是一种半导体材料。
氧化铜在自然界中以矿物刚玉石(tenorite)的形式存在,也可以通过人工合成得到。
光反射率概述光反射率是指光线照射到物体表面后被反射回来的比例。
对于不同材料而言,其光反射率各不相同,这与材料的组成、结构以及表面特性等因素密切相关。
氧化铜的光学性质光吸收特性氧化铜对可见光和近红外光具有较强的吸收能力。
它在蓝色和紫色波长范围内吸收最强,而在红色和近红外波长范围内吸收较弱。
这种吸收特性使得氧化铜在某些光学应用中具有独特的优势。
光散射特性除了吸收,氧化铜还表现出一定程度的光散射能力。
光线在氧化铜表面遇到不均匀性时,会发生散射现象,使得光线以不同的角度和方向反射出去。
这种散射能力对于一些应用中的光学效果具有重要影响。
光透过特性相比于光吸收和光散射,氧化铜的透过能力相对较弱。
大部分可见光和近红外光都会被氧化铜吸收或散射,很少有光线透过其表面。
测量氧化铜的光反射率测量材料的光反射率是了解其光学性质的重要手段之一。
下面介绍几种常用的测量方法:反射率测量仪反射率测量仪是一种专门用于测量材料反射率的仪器。
它通过照射光线到样品表面,然后测量反射回来的光线强度,从而计算出反射率。
该方法简单、精确,适用于不同类型的材料。
分光反射法分光反射法是一种基于分光技术的测量方法。
它通过将入射光分解成不同波长的光谱,并测量每个波长下的反射率。
通过绘制反射率与波长之间的关系曲线,可以得到材料在整个可见光和近红外范围内的反射率信息。
椭偏仪测量法椭偏仪是一种可以测量材料对特定极化方向上入射光的反射能力的仪器。
通过调节椭偏仪中入射光线和检测器之间的角度,可以得到不同极化方向下的反射率数据。
罗科尔油品系列--船舶用油说明书
detail in the design and manufacture of products.In the early part of the 20th century the great ships of the oceans were rightly acclaimed as the engineering achievement of the time. ROCOL provided the specialised lubricants that redefined the performance and reliability of much of the mechanical equipment essential to keeping theselong term lubrication and meet the ever increasing needs of today’s easily identifiable range of high performance lubricants, which haveA high performance viscous wire rope lubricant. Lubricates and protects in demanding applications and aggressive environments. Its unique formulation results in a long life tenacious grease ideally suited to marine applications. Temperature range –40˚C toSEALANTS & PIPE JOINTINGMedium to OILSEAL GASSEALPIPESEAL SUPER GRAPHITEDMANGANESEbe carried LIQUID RED PJC PJC PJCSteam Water Air GasLiquid pet gases Mineral oils Petrol Paraffin White spirit Alcohol Domestic work Operating Temp–50˚C to 200˚C –20˚C to 125˚C –50˚C to 250˚C up to 250˚C up to 450˚C up to 600˚C Pressureup to 2000psitest pressure 0.2 barup to 400psiup to 150psiup to 1400psiup to 2800psi(dependant on joint fitting)Part CodeUnit Size28042300gPart CodeUnit Size28022300gPart CodeUnit Size28032300gPart CodeUnit Size30022375gPart CodeUnit Size30042400gPart CodeUnit Size30051375gThe ROCOL range of jointing products have been formulated to provide effective sealing of joints across a wide range of applications, reducing leaks and improving efficiency.GASSEALOff white non-setting jointing compound with good adhesion and gap filling properties.Gasseal is unaffected by vibration but can be easily released. Use on all threaded and face joints on pipe work carrying natural gas, LPG, air, oils, aliphatic solvents and water.GASSEAL has been independently tested by BSi to BS EN 751-2: 1997 part 2 class B.PIPESEAL LIQUIDA clean and easy to use alternative to PTFE tape. A white sealant containing finely dispersed PTFE which form flexible pressure tight seals on threaded pipes, lubricates during assembly, resists vibration and temperature changes. Suitable for use in a wide range of applications including air, water, gas, oils and commonly used industrial solvents.OILSEALWhite thixotropic liquid that sets hard to form a pressure tight seal. Resistant to oil and unaffected by vibration. Use to seal threaded and face joints that are subjected to mineral oils, white spirit and paraffin. Also suitable for liquid petroleum gases.GRAPHITED PJCGrey jointing compound - dries slowly and retains some flexibility, enabling easy dismantling of joints and removal for reapplication prior to reassembly. Use for applications involving high and low pressure air, steam, water and gas.MANGANESE PJCSoft dark grey jointing compound. Very hard setting and resistant to high temperatures and pressures. Use for high pressure steam, water, gas and alcohol.SUPER RED PJCHard setting red jointing compound. Resistant to high pressure yet allows for expansion,contraction and vibration. Use for sealing threaded and face connections for use with LPG, paraffin, white spirit, alcohol and oils.***********************************only FDA ingredients and meet the requirements of the NSF H1 registrationPart CodeUnit Size15710AerosolPart CodeUnit Size1511015116500ml 5LPart CodeUnit Size34035AerosolPart CodeUnit Size34235AerosolPart CodeUnit Size34295AerosolPart CodeUnit Size34141AerosolFOODLUBE SPRAYHigh performance versatile lubricant spray - use for all round light-to-medium lubrication of most moving parts including small bearings and slides. Temperature range –20˚C to +110˚C.FOODLUBE SUGAR DISSOLVING FLUIDRapidly dissolves and removes sugar and fondant build up from all surfaces. Effectively minimises further sugar and fondant residues whilst providing a durable light lubricating film. Available in bulk or a convenient trigger spray. Temperature range +5˚C to +95˚C.PRECISION SILICONE SPRAYA light lubricating film with wide temperature stability. Suitable for use as an anti-stick agent and for the lubrication of slides, bearings and conveyors. Temperature range –50˚C to +200˚C.DRY PTFE SPRAYA low friction, non-stick lubricant. For the lubrication of cams, open bearings, and chutes on packaging equipment. Temperature range –200˚C to +270˚C.BELT DRESSING SPRAYA non-toxic colourless fluid designed for the conditioning treatment of all types of drive and conveyor belts. It adheres strongly to any belt material giving instant grip andpreventing slippage, whilst preventing build up of dirt and grease. Temperature range +5˚C to +100˚C.FOAM CLEANER SPRAYUniversal fast acting foaming cleaner cuts through grease, grime and dirt. Free from chlorinated solvents. NSF A1 Registered.ELECTRA CLEAN SPRAYA high performance cleaner suitable for electrical components and equipment, including contacts, switches, motors and windings. In addition to a high level of cleaning efficiency ELECTRA CLEAN SPRAY will evaporate completely leaving no residue to affect conductivity. Do not use on live or energised equipment. NSF K2 Registered.FOODLUBE MULTI-LUBEA multi-purpose penetrating lubricant designed to provide extended lubrication intervals.Fortified with PTFE it provides effective lubrication in all areas, particularly for chains,bearings and slides. Temperature range –50˚C to +180˚C.FOODLUBE SPRAY GREASEFood grade multipurpose EP grease fortified with PTFE. Non-toxic lubricant designed for the effective lubrication of slides, bushes, pins and bearings. Temperature range: –500˚C to +1600˚C. NSF H1 Registered.INDUSTRIAL CLEANER RAPID DRY SPRAYMulti-purpose, fast drying, degreaser that leaves no residue. A specially formulated blend of degreasing solvents designed to remove grease, oil and general workshop grime rapidly from a wide range of surfaces. Ideal for use where a fast drying non-chlorinated solvent cleaner is required, particularly if a clean residue free surface is essential. NSF K1Registered.Part CodeUnit Size34066AerosolPart CodeUnit Size1512015126500ml 5LPart CodeUnit Size15030400mlPart CodeUnit Size34131300mlTAPPING FLUIDSLIDEWAY OILCUTTING FLUIDTest slide taken from a standard cutting fluid showing heavy bacterial infection.Bacteria Test Slide 1Bacteria feeding on Slideway Oil and Tapping Fluid.Same machine using the TRI-Logic system has significantly reduced bacterial growth.Bacteria Test Slide 2RTDEmulsifies and fortifies the EPperformance of the cutting fluid.VG68Actively reinforces the anti-microbial properties of the cutting fluid.METALWORKING FLUIDMaximum life cutting fluid.PUMPSLIDEWAY OIL TANKSUMPPUMPSLIDEWAY OIL TANKSUMPANTI-MICROBIAL TRANSFEREMULSIFIESCUTTING FLUID SELECTION CHARTC U T T I N GM I L D S T E E LM E D I U M C A R B O N S T E E LH I G H C A R B O N S T E E LS T A I N L E S S S T E E LN I C K E L A L L O Y ST I T A N I U MA L U M I N I U MY E L L O W M E T A L SC A S T I R O NM A G N E S I U MP L A S T I C S******************************************************************************************************************************************************************************************************************************************************************~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~********************************************************************************************U L T R A C U T 250 P L U S U L T R A C U T 250H W U L T R A C U T 255U L T R A C U T 255H W U L T R A C U T 260U L T R A C U T 280 P L U S U L T R A C U T 280A U L T R A C U T 370 P L U S U L T R A C U T 390 H U L T R A C U T 320U L T R A C U T 620U L T R A G R I N D 430U L T R A G R I N D P R E M I U M U L T R A G R I N D C A R B I D ET R I -L o g i c M LT R I -L o g i c E P T R I -L o g i c A L X T R I -L o g i c B F S O L U B L E O I L - R E J E C T S T R A M P O I LS E M I -S Y N T H E T I C E M U L S I F I E S T R A M P O I LS Y N T H E T I C F L U I DS E M I -S Y N T H E T I C C H L O R I N E F R E E***O P T I M U M P E R F O R M A N C E**V E R Y G O O D P E R F O R M A N C E*G O O D P E R F O R M A N C E ~N O T N O R M A L L Y R E C O M M E N D E DG R I N D I N GL I G H T / M E D I U M D U T YM E D I U M / H E A V Y D U T YT U N G S T E N C A R B I D E~~~~~~~~~~~~~~~~~~~~~***~***~***~***~*****~******~************~********************T R I -L o g i c F E ***~***~~~~********************T R I -L o g i c A L ~~~~~~Part Code Unit Size 520241LLAYOUT INKSLAYOUT INK SPRAY & FLUID (BLUE/WHITE)Rapid drying metal marking inks - which will not crack or flake and are resistant to washing off by water mix cutting fluids. Use for marking out of all metals prior to machining. White for dark surfaces; blue for bright surfaces.Part CodeUnit Size57015 (Blue)57025 (White)57034 (Blue)57044 (White)Aerosol Aerosol 1L 1LSPATTER RELEASEDesigned to prevent the adhesion of molten weld spatter.SPATTER RELEASE SPRAYNon-silicone, heat resistant barrier film. Non corrosive and will not interfere with weld formation. Easily cleaned with a cloth and does not affect subsequent galvanising or painting operations.SPATTER RELEASE FLUID OIL FREEWater based spatter release where oil containing products cannot be permitted. Does not affect any subsequent galvanising or painting operations and components can be painted without cleaningWELDMATE SPATTER OFF SPRAYWater based spatter release where oil containing products cannot be permitted. Does not affect any subsequent galvanising or paint operations. Components can be painted after wipe-down with a cloth.FLAWFINDER CRACK DETECTIONNon-destructive inspection system designed to provide a fastreliable method for visual detection of cracks or flaws not normally visible to the naked eye.FLAWFINDER CLEANER SPRAYUse to clean areas for inspection and to remove excess penetrant.FLAWFINDER DYE PENETRANT SPRAYHigh sensitivity dye for detecting cracks and flaws under normal light.FLAWFINDER DEVELOPER SPRAYA fine white powder film which gives precise definition to the faults highlighted by the dye penetrant.Part CodeUnit Size66080AerosolPart CodeUnit Size6607066096500ml 5LPart CodeUnit Size66145AerosolPart CodeUnit Size63125AerosolPart CodeUnit Size63151AerosolPart CodeUnit Size63135AerosolMOULD RELEASE PRODUCTSPart CodeUnit Size72015AerosolPart CodeUnit Size72021AerosolPart CodeUnit Size72035AerosolMould release agents offering high performance, economy andversatility in the release of all types of plastic and synthetic rubbers in injection and compression mouldings.PR SILICONE RELEASE SPRAYWet film silicone release agent. Suitable for blow, flow, injection and compression moulding operations. Suitable up to 200˚C.MOULD RELEASE SPRAYNon-silicone dry film PTFE release agent. Designed for all plastics and rubbers and for moulding parts that will be over printed or painted. Particularly suited for high speed production. Suitable up to 270˚C.RS7 SPRAYWet film, non-silicone release agent. Particularly suitable for delicate or intricate plastic components. Suitable up to 150˚C.maintenance. Use on assemblies such as bearings onto motor and drive shafts, bushes andROCOL LUBRICANTS AROUND THE WORLD SISTER COMPANIES:MEXICOITW POLY MEX SA de CV TEL: (5255) 5360 9009BRAZILITW CHEMICALPRODUCTS LTDATEL: 55 11 4785 2600FRANCEITW PRODUITSCHIMIQUESTEL: +33 1 40 80 32 32SOUTH AFRICAROCOL LUBRICANTSTEL: 00 27 11 462 1730DENMARKITW CHEMICAL PRODUCTSSCANDINAVIA APSTEL: +45 8682 6444FAR EASTROCOL FAR EAST LIMITED TEL: (852) 2413 5803KOREAROCOL KOREA LIMITEDTEL: +82 31 708 5952NEW ZEALANDITW POLYMERS & FLUIDSTEL: (64) 9 256 2122AUSTRALIAITW POLYMERS & FLUIDSTEL: (61) 2 9757 8800ROCOL LUBRICANTSCustomer Service Tel: +44 (0) 113 232 2700 INTERNATIONAL PARTNER DISTRIBUTORSROCOL LUBRICANTSCustomer Service Tel: +44 (0) 113 232 2700ALL OTHER COUNTRIESBS EN ISO 9001 Certificate No. FM 12448OHSAS 18001 Certificate No. OHS 78173BS EN ISO 14001。
三联吡啶的合成及其金属配合物研究进展
三联吡啶的合成及其金属配合物研究进展1刖言配位化学早期是在无机化学基础上发展起来的一门边沿学科,如今,配位化学在有机 化学与无机化学的交叉领域受到化学家门广泛的关注。
有机-金属配合物在气体分离、选择 性催化、药物运输和生物成像等方面都有潜在的应用前景,因此日益成为化学研究的热点 领域[1-4]。
多联吡啶金属配合物在现代配位化学中占据着不可或缺的位置,常见的多联吡 啶配体包括2,2'-二联吡啶(bpy )和2,2':6'2'-三联吡啶(tpy )(Fig. 1),Hosseini 就把bpy 称为“最广泛应用的配体” [5],与其类似的具有三配位点的tpy 的合成及其金属配合物的 研究同样是化学家们研究的热点[6-8]。
Fig 1.三联吡啶的三个吡啶环形成一个大的共轭体系,具有很强的 (7给电子能力,配合物中存在金属到配体的d 一 n *反馈成键作用,因而能与大多数金属离子均形成稳定结构的配 合物。
然而,三联吡啶金属络合物的特殊的氧化还原和光物理性质受其取代基电子效应的 影响。
因此,通过引入不同的取代基,三联吡啶金属络合物可用于荧光发光装置以及光电 开关等光化学领域[9-10]。
在临床医学和生物化学领域中,不管是有色金属的测定还是作 为DNA 的螯合试剂,三联吡啶衍生物都具有非常广泛的应用前景 [11-12]。
2三联吡啶的合成研究进展正因为三联吡啶在许多领域都具有潜在的应用价值,所以对其合成方法的研究十分重 要。
三联吡啶的合成由来已久,早在 1932年,Morgan 就首次用吡啶在FeCR 存在下反应合成分离出了三联吡啶,并发现了三联吡啶与Fe ( II )的配合物[13]。
目前,合成三联吡啶terpyridine tpy的方法主要有成环法和交叉偶联法两种。
2.1成环法成环法中最常用的反应是Kr? hnke 缩合反应( Scheme 1)[14],首先2-乙酰基吡啶溴化得到化合物2, 2与吡啶反应生成吡啶溴盐3, 3与a 3■不饱和酮4进行Michael加成反应得到二酮5,在醋酸铵存在下进而关环得到三联吡啶。
共敏化有机染料分子对敏化太阳能电池短路电流密度的影响
共敏化有机染料分子对敏化太阳能电池短路电流密度的影响刘芹; 阚玉和【期刊名称】《《淮阴师范学院学报(自然科学版)》》【年(卷),期】2019(018)004【总页数】5页(P333-337)【关键词】染料敏化太阳能电池; 共敏化; 密度泛函理论; 短路电流密度【作者】刘芹; 阚玉和【作者单位】淮阴师范学院化学化工学院江苏淮安 223300【正文语种】中文【中图分类】O640 引言随着全球经济的快速发展,化石能源的消耗不断增加,大量化石燃料的使用导致大气中二氧化碳浓度急剧上升,能源危机和环境污染问题日益严重.为了实现“低碳生活”,清洁无污染可再生能源的开发利用成为科研工作者研究热点.1991年瑞士洛桑联邦理工Grätzel课题组用吡啶钌配合物染料敏化TiO2纳米薄膜制得的染料敏化太阳能电池(DSCs)的光电转化效率超过7%[ 1],目前有机染料敏化太阳能电池的最高光电转化效率已超过13%[ 2].由于成本低、轻巧、柔性、环境污染小且易于加工等优点,有机染料敏化太阳能电池引起了人们的极大关注,有望成为替代传统硅基太阳能电池[ 3].染料敏化太阳能电池主要由氟锡掺杂的导电基底、染料敏化剂、半导体材料(如TiO2)、氧化还原电解质及对电极组成.作为DSCs的重要组成部分,染料敏化剂的光吸收性质对DSCs光电转化效率(PCE)影响很大.单一染料的光谱响应范围较窄,为提升染料敏化太阳能电池的光电转换效率,共敏化剂被用于拓宽光的吸收范围[ 4-5].最近,Freitag等通过三苯胺型染料分子D35和XY1(图1)共敏化,在AM 1.5G光照条件下获得PCE达11.3%,远高于单一染料的光电转换效率[6].量子化学计算有助于揭示共敏化剂的电子结构和光捕获效率的内在关系[ 7-8].本文利用密度泛函理论(DFT)研究了单一染料分子D35和XY1的电子结构,通过含时密度泛函理论(TD-DFT)计算分析电子结构与吸收光谱性质的关系.在此基础上, 改变并修饰染料D35的给体部分设计了染料分子1-6(如图1),计算预测了吸收光谱性质与最大理论短路电流密度,为高效染料敏化太阳能电池的理性设计和实验提供理论依据.图1 染料分子D35、XY1及衍生设计的染料分子1-61 计算方法采用密度泛函理论B3LYP/6-31G*方法对所研究分子进行结构优化,在同样计算水平下进行频率分析确认所得结构为稳定点.为了节约计算消耗,实验合成的染料分子D35、XY1以及1-6分子中长的烷基链用甲基取代,研究表明此策略不会影响染料分子电子结构的分析.在含时密度泛函理论(TD-DFT)[9]框架下,采用CAM-B3LYP/6-31G*方法线性响应极化连续溶剂化模型(LR-PCM) [10]计算在乙腈溶剂下的电子吸收光谱.连续介质(PCM)模型乙腈为溶剂化效应.为与实验结果对比,光谱拟合时D35和染料分子1-6的半高峰宽为0.7 eV,XY1的半高峰宽为0.5 eV.所有的计算均采用Gaussian09软件包.跃迁密度矩阵以及态密度和投影态密度使用Multiwfn程序[11]绘制.为与实验结果对比,本文计算中TiO2 薄膜厚度为8 μm,染料分子D35和新设计的染料的分子浓度为0.08 mmol/L,XY1染料的分子浓度为0.02 mmol/L.根据实验光谱数据,AM 1.5G标准太阳光子通量谱范围采用350-700 nm,基于文献[12-13]中方法得到最大短路电流密度JSC.2 结果与讨论2.1 前线轨道与态密度分布图2 计算得到的染料分子的前线轨道图图3 D35和XY1态密度和投影态密度在B3LYP/6-31G*水平下,计算得到的染料分子D35和XY1的前线分子轨道如图2所示.从图2可以看到,D35和XY1分子的最高占据轨道(HOMO)电子密度主要定域在给体芳胺基团,而最低未占据轨道(LUMO)定域在噻吩或苯并噻二唑和双噻吩芳环的π共轭桥以及氰基丙烯酸脂基团受体部分.为更清楚地讨论染料分子的各个前线轨道的组成,将染料分子D35分为给体D,π共轭桥B和受体A共3个片段;XY1分子分为给体D,共轭桥B,Acceptor1和Acceptor2共4个片段.图3为两个染料分子的态密度和投影态密度图,通过Hirshfeld方法定量分析各部分对分子前线轨道的贡献表明,光敏剂D35的HOMO 轨道中Donor片段的贡献占88%,Bridge和Acceptor片段的贡献分别为7%和4%,而LUMO轨道中Bridge和Acceptor片段的贡献分别为37%和47%,Donor 部分仅占14%.分子XY1的HOMO轨道中Donor片段的贡献最大为79%,Bridge,Acceptor1和Acceptor2片段的贡献值分别为10%,8%和2%,而LUMO轨道中Bridge,Acceptor1和Acceptor2片段的贡献较大分别为21%,34%和41%,Donor部分仅占4%.结果表明,两种敏化分子中的Donor片段对HOMO 轨道贡献均超过80%,而改变π桥和受体片段将对LUMO轨道产生较大影响.2.2 电子吸收光谱通过CAM-B3LYP/6-31G*长程校正含时密度泛函理论方法, 计算拟合得到D35和XY1分子在气相中的电子吸收光谱如图4所示.计算得到理论光谱与实验光谱的吻合较好,因此可以在计算光谱上对实验进行光谱指认, 以考察实验光谱上的强吸收峰对应的跃迁特征.由图4和表1可知,光敏剂D35表1 计算的染料分子各个吸收峰对应的激发态的最大吸收波长(λmax),振子强度(f)和跃迁贡献染料分子激发态λmaxf跃迁贡献D35S0→S1422 (445)a1.29H→L (76%)b XY1S0→S1516 (552)a2.03H→L (51%);H-1→L (26%)1S0→S14381.23H→L (91%) 2S0→S14011.25H→L (60%)3S0→S14131.35H→L (73%) 4S0→S14381.49H→L (73%)5S0→S14491.47H→L (75%) 6S0→S14291.50H→L (74%)注: a表示实验值[14-15];bH、L分别表示HOMO、LUMO.在422 nm有1个吸收峰,对应基态(S0)到第一单重激发态(S1)的跃迁,主要由HOMO→LUMO跃迁贡献.光敏剂XY1在516 nm处有较强吸收,对应激发态S0→S1跃迁,主要由HOMO→LUMO (51%)、HOMO-1→LUMO (26%)的跃迁贡献.敏化剂D35和XY1共敏化,不论是光谱吸收范围和吸收强度均得到提升,从而在可见光范围内获得更高的光捕获效率.然而,计算和实验结果都可明显看出,D35的吸收强度明显低于XY1的吸收强度.因此,我们试图通过修饰D35染料的分子结构来增强其吸收峰强度和光捕获效率,提升电池的光电转换效率.考虑将三苯胺给体替换分别为香豆素(1)以及含咔唑(2)和芴基衍生物(3)(结构如图1),在π共轭桥中苯上修饰推拉电子基团设计了分子体系4-6,通过计算拟合吸收光谱与D35吸收强度相比,筛选出光捕获效率更好的分子并预测其短路电流密度.图4 计算拟合的D35和XY1 电子吸收光谱与光捕获效率LHE 图5 计算拟合染料分子4-6的吸收光谱(实线)和LHE曲线(虚线)对比表1计算结果可以看出,修饰给体部分设计的3种染料分子1-3振子强度变化不大,而修饰苯环π共轭桥的体系4-6振子强度相对D35均有提高.计算模拟的染料分子4-6与D35的电子吸收光谱对比如图5所示. 染料分子4-6在450 nm附近的吸收峰都明显地比D35具有较强的摩尔吸光系数.其中,染料分子5的吸收最大吸收波长最长,比D35红移30 nm.进一步计算比较最大理论短路电流Jsc,染料分子5(17.93 mA/cm2)比D35(16.82 mA/cm2)提高了1.11 mA/cm2.结合表1及图6的自然跃迁轨道(NTO)分析表明,设计的几种染料分子在450 nm附近的最大吸收与D35分子类似,都来自于S0→S1跃迁,空穴轨道由给体及π共轭桥贡献,电子轨道由π共轭桥和受体片段贡献.2.3 共敏化电子吸收光谱为评估共敏化后吸收光谱及光电转换效率,染料分子5与XY1按1:1权重后拟合的电子吸收光谱示于图7,计算的共敏化条件下最大短路电流密度为19.94 mA/cm2,可以预期新设计的染料分子5与XY1作为共敏化剂将获得比D35更高的光电转换效率.图6 D35与染料分子5的S1态自然跃迁轨道图7 染料分子5与XY1的归一化光谱、共敏化后权重光谱3 结论基于文献实验报道,针对共敏化剂中D35分子吸收光谱最大吸收强度相对较弱的问题,对D35分子给体和π共轭桥进行化学修饰,设计了染料分子1-6,通过含时密度泛函理论方法评估了结构对电子吸收光谱和短路电流密度的影响.计算结果表明,共轭桥苯环上用烷氧基取代后的染料分子5具有较大的光谱红移,且光捕获效率显著增加,最大短路电流密度高于D35和其他设计的染料分子,染料分子5与XY1的权重光谱得到共敏化条件下理论最大短路电流密度达19.94 mA/cm2.因此,染料分子5可替代D35更适合用于共敏化染料. 本文结果可为设计更加高效的有机共敏化剂提供理论依据.参考文献:【相关文献】[1] O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353: 737-742.[2] Mathew S,Yella A,Gao P,et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nature Chemistry,2010,6(3):242-247.[3] 何俊杰,陈舒欣,王婷婷,等. 有机染料敏化剂分子设计新进展[J]. 有机化学,2012,(3):472-485.[4] Han L,Islam A,Chen H,et al. High-efficiency dye-sensitized solar cell with a novelco-adsorbent[J]. Energy & Environmental Science,2012,5(3):6057-6060.[5] Xie Y,Tang Y,Wu W,et al. Porphyrin cosensitization for a photovoltaic efficiency: a record for non-ruthenium solar cells based on iodine electrolyte[J]. Journal of the American Chemical Society,2015,137(44):14055-14058.[6] Freitag M,Teuscher J,Saygili Y,et al. Dye-sensitized solar cells for efficient power generation under ambient lighting[J]. Nature Photonics,2017,11(6):372-378.[7] 杨丽娜,吕苗,李泽生. 共敏化有机染料分子电子结构和光学性能的理论研究[J]. 中国科学: 化学,2015,45(12):1254-1262.[8] Bayliss S L,Cole J M,Waddell P G,et al. Predicting Solar-Cell Dyes for Cosensitization[J]. The Journal of Physical Chemistry C,2014,118(26):14082-14090. [9] Casida M E,Jamorski C,Casida K C,et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold[J]. The Journal of Chemical Physics,1998,108(11):4439-4449.[10] Barone V,Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model[J]. The Journal of Physical Chemistry A,1998,102(11):1995-2001.[11] Lu T,Chen F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry,2012,33(5):580-592.[12] Zhang J Z,Zhang J,Li H B,et al. Modulation on charge recombination and light harvesting toward high-performance benzothiadiazole-based sensitizers in dye-sensitized solar cells: A theoretical investigation[J]. Journal of Power Sources,2014,267:300-308.[13] Hou L M, Wen Z,Li Y X,et al. Molecular Design of Indolizine Derivative as Sensitizers for Organic Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica,2015,31(8):1504-1512.[14] Hagberg D P,Jiang X,Gabrielsson E,et al. Symmetric and unsymmetric donor functionalization. comparing structural and spectral benefits of chromophores for dye-sensitized solar cells[J]. Journal of Materials Chemistry,2009,19(39):7232-7238. [15] Zhang X,Xu Y,Giordano F,et al. Molecular Engineering of Potent Sensitizers for Harvesting in Thin-Film Solid-State Dye-Sensitized Solar Cells[J]. Journal of the American Chemical Society,2016,138(34):10742-10745.。
染料敏化太阳能电池用敏化剂[1]
:( 1 ) 染 料 分 子
的电子最低未占据轨道 ( LUMO ) 的能量应该高于 半 且需有良好的轨道重叠以利 导体导带边缘的能 量, 于电子的注 入;( 2 ) 染 料 分 子 需 要 牢 固 吸 附 于 半 导 这样染料 激 发 生 成 的 电 子 可 以 有 效 注 入 体的表面, 到半导体的 导 带 中;( 3 ) 染 料 分 子 应 该 具 有 比 电 解 这样染 质中的氧化还原电 对 更 正 的 氧 化 还 原 电 势, 料分子能够很快得到来自还原态的电解质的电子而 重生;( 4 ) 染 料 在 长 期 光 照 下 具 有 良 好 的 化 学 稳 定 能够完成 10 次循 环 反 应;( 5 ) 染 料 的 氧 化 态 和 性, 激发态要有 较 高 的 稳 定 性;( 6 ) 理 想 的 染 料 在 整 个 太阳光光谱 范 围 内 都 应 该 有 较 强 的 吸 收; ( 7 ) 染 料 分子能溶解于与半 导 体 共 存 的 溶 剂, 这样有利于在 TiO 2 表面形成非聚集 的 单 分 子 染 料 层 。 经 过 20 多 现已开发 的 光 敏 染 料 主 要 有 金 属 配 合 物 年的研究, 染料和纯有机染 料 两 大 类
图1 Fig. 1 DSSC 结构和运行示意图 [5 ] Structure and operation principle of DSSC
[ 5]
*
纯有机染料主要 包 括 多 烯 类 、 香 豆 素 类、 咔 唑 类、 吲 哚类 、 芴类 、 三苯胺类等染料 。 3. 1 3. 1. 1 金属配合物染料 钌多吡啶基配合物染料 在染 料 敏 化 太 阳 能 电 池 研 究 方 面, 羧酸多吡啶 钌系列敏化剂是现 在 应 用 最 多 的 一 类 染 料 敏 化 剂, 它具有非常高的化 学 稳 定 性 、 突出的氧化还原性和 良好的可见光谱响 应 特 性, 较好地符合了高性能光 敏染料的特征 。 作 为 光 敏 化 剂, 羧酸多吡啶钌系列 敏化剂一直保持着染料敏化太阳能电池中的最高能 量转换 记 录 。 1991 年 Grtzel 等 在 Nature 上 发 表 了 以一个三核联吡啶 钌 染 料 为 敏 化 剂
外文翻译(湿氧化金属阳极有机太阳能电池效率的提高)
湿氧化金属阳极有机太阳能电池效率的提高摘要:本文研究了提高有机太阳能电池金属阳极转换效率的办法,通过对过氧化氢和臭氧水的处理,金属阳极的工作性能和表面粗糙度呈现多样化因此会影响有机太阳能电池的填充因子和光电流大小。
将过氧化氢按1:70的比例稀释后,有机太阳电池的能量转换效率从0.34%增加到0.81%.对臭氧进行6秒的水处理,有机太阳能电池的转换效率从0.34%增加到0.99%.关键词:太阳能电池,电极,效率I、引言有机薄膜太阳能电池具有重量轻,能大面积制备,低成本,柔性衬底适于卷动处理等潜在优势。
OPV的发展起始于具有低带电流和转换效率的单层同质结结构。
然后,为了提高效率性能,对电子亲异质界面即:双分子层结构,散装异质界面(BHJ),P-I-N式结构作了研究。
大多数的有机设备利用氧化铟锡(ITO)作为阳极电极,然而最近发现它有很多缺陷,比如较昂贵,需要复杂的安装设备,污染环境,化学性质不稳定。
它与占据最高分子轨道的有机电子供体材料不匹配,如铜酞菁(CuPc)。
因此我们需要探索更加适合有机光伏电池的阳极材料。
在本文中,将银(Ag)的单受体异质结作为有机光伏电池的阳极,为了提高阳极与有机层的欧姆接触,将银阳极用过氧化氢和臭氧水来处理。
此外,还研究了银阳极对有机光伏电池薄膜表面粗糙度和透光率的影响。
II、实验在这个器件制备中,首先将玻璃衬底按步骤清洗,先在有机溶剂非电离溶液中清洗,然后用高纯度的氮气吹干。
在沉积Ag阳极之前,用射频磁导计在100瓦的功率下用氧等离子体处理玻璃衬底5分钟来增强附着性能。
然后在3 × 10-6托的压强环境下,用热蒸镀的方法在玻璃衬底上镀15nm厚的Ag薄膜。
然后将样品分别放在过氧化氢溶液和臭氧水中处理,将浓度为40%的过氧化氢溶液分别稀释为1:100,1:70和1:50并分别处理镀有Ag层的玻璃衬底。
对于臭氧水处理,每分钟将100cc去离子水和35 ppm臭氧气体混合来处理样品。
具有荧光的金属有机框架
具有荧光的金属有机框架摘要:金属-有机骨架材料(Metal-Organic Frameworks,英文简称MOFs)是一种新型的多孔晶体材料。
由于制备方式多样,配体及中心金属离子可调控,造就了金属有机骨架广泛的应用前景:如催化、选择性吸附、气体储存、药物缓释、荧光传感和磁性材料等领域。
近年来它已成为一个热门的研究领域。
通过简单快速的三乙胺超声扩散法制备以不同稀土金属作为中心离子的多种金属有机骨架材料,通过中心离子和配体的调控,证明了超声法是一种适用范围很广的MOF材料制备方法。
通过对超声频率的调控,发现产物形貌以及XRD强度都有着相应的改变,以此为基础分析超声法制备金属有机骨架晶体的形成过程。
关键词:金属-有机骨架;超声;荧光传感。
金属-有机骨架(Metal-Organic Frameworks,英文缩写MOFs)1,2材料是近年来得到迅速发展的一类新型多孔晶体材料,这类多孔材料以过渡金属和多官能团有机配体为基本构件组装而成。
与传统有机和无机多孔材料(如沸石和多孔碳材料等)相比,纳米孔洞金属-有机骨架材料具有密度小、比表面积高、制备条件温和等特点,更为重要的是,通过设计具有不同结构和功能的有机配体以及使用众多过渡金属离子,可以方便地对金属-有机骨架材料进行结构剪裁,从而达到对这类多孔材料的性质进行有效调控。
近年来,科研工作者们将分子,设计和晶体工程充分应用于纳米孔洞金属-有机骨架材料的设计并取得了巨大的成功。
目前人们已经开发出Langmuir比表面积超过10000 m2/g的金属-有机骨架材料(如MOF-210 的 Langmuir 比表面积 10400 m2/g, BET 比表面积 6240 m2/g3,这几乎是结构稳定固体多孔材料的极限值,是其他任何一种传统多孔材料所无法比拟的。
由于在气体存储吸附和选择性分离、催化分子传感4-9等诸多领域具有广阔的应用前景,自上世纪90年代以来,此类材料的设计及其应用迅速成为无机化学、材料科学、物理化学等领域科学家们的研究热点10-14。
(完整版)光伏行业英文词汇
光伏行业英文词汇Cell 电池Crystalline silicon 晶体硅 Photovoltaic 光伏 bulk properties 体特性at ambient temperature 在室温下wavelength 波长absorption coefficient 吸收系数 electron-hole pairs 电子空穴对 photon 光子 density 密度defect 缺陷surface 表面electrode 电极p -type for hole extraction p型空穴型n -type for electron extraction n 型电子型majority carriers 多数载流子minority carriers 少数载流子surface recombination velocity(SRV ) 表面复合速率back surface field (BSF ) 背场at the heavily doped regions重掺杂区saturation current density Jo饱和电流密度thickness 厚度 contact resistance 接触电阻concentration 浓度boron 硼Gettering techniques 吸杂nonhomogeneous 非均匀的 solubility 溶解度selective contacts 选择性接触insulator 绝缘体oxygen 氧气hydrogen 氢气Plasma enhanced chemical vapor deposition PECVDInterface 界面The limiting efficiency 极限效率reflection 反射 light- trapping 光陷 intrinsic material 本征材料 bifacial cells 双面电池 monocrystalline 单晶 float zone material FZ -Si Czochralski silicon Cz -Si industrial cells 工业电池 a high concentration o f of oxygen 高浓度氧Block or ribbon 块或硅带 Crystal defects 晶体缺陷 grain boundaries 晶界dislocation 位错 solar cell fabrication 太阳能电池制造impurity 杂质P gettering effect 磷吸杂效果Spin -on 旋涂supersaturation 过饱和 dead layer 死层electrically inactive phosphorus非电活性磷interstitial 空隙the eutectic temperature 共融温度 boron -doped substrate 掺硼基体passivated emitter and rearlocally diffused cells PERL 电池losses 损失the front surface 前表面metallization t echniques techniques 金属化技术metal grids 金属栅线laboratory cells 实验室电池the metal lines 金属线selective emitter 选择性发射极 photolithographic 光刻gradient 斜度precipitate 沉淀物localized contacts 局部接触point contacts点接触 passivated emitter rear totallydiffused PERTsolder 焊接 bare silicon 裸硅片 high refraction index 高折射系数 reflectance 反射 encapsulation 封装antireflection coating ARC 减反射层 an optically thin dielectric layer 光学薄电介层interference effects 干涉效应 texturing 制绒 alkaline solutions 碱溶液 etch 刻蚀/腐蚀 anisotropically 各向异性地 plane 晶面 pyramids 金字塔 a few microns 几微米etching time and temperature 腐蚀时间和温度manufacturing process 制造工艺 process flow 工艺流程 high yield 高产量 starting material 原材料 solar grade 太阳级 a pseudo -square shape 单晶型状 saw damage removal 去除损伤层 fracture 裂纹acid solutions 酸溶液 immerse 沉浸 tank 槽 texturization 制绒 microscopic pyramids 极小的金字塔 size 尺寸大小 hinder the formation of the contacts 阻碍电极的形成 the concentration ,the temperature and the agitation of the solution 溶液的浓度,温度和搅拌 the duration of the bath 溶液维持时间 alcohol 酒精 improve 改进增加 homogeneity 同质性 wettability 润湿性phosphorus diffusion 磷扩散eliminate adsorbed metallic impurities 消除吸附的金属杂质 quartz furnaces 石英炉 quartz boats 石英舟 quartz tube 石英炉管bubbling nitrogen through liquid POCL3 小氮belt furnaces 链式炉 back contact cell 背电极电池 reverse voltage 反向电压 reverse current 反向电流 amorphous glass of phospho -silicates 非晶玻璃 diluted HF 稀释HF 溶液 junction isolation 结绝缘 coin -stacked 堆放barrel -type reactors 桶状反应腔 fluorine 氟fluorine compound 氟化物 simultaneously 同时地 high throughput 高产出 ARC deposition 减反层沉积 Titanium dioxide TiO2 Refraction index 折射系数 Encapsulated cell 封装电池Atmospheric pressure chemicalvapor deposition APCVD Sprayed from a nozzle 喷嘴喷雾 Hydrolyze 水解 Spin -on 旋涂 Front contact print 正电极印刷 The front metallization 前面金属化 Low contact resistance to silicon 低接触电阻 Low bulk resistivity 低体电阻率 Low line width with high aspect ratio 低线宽高比Good mechanical adhesion 好机械粘贴solderability 可焊性 screen printing 丝网印刷 comblike pattern 梳妆图案finger 指条 bus bars 主栅线 viscous 粘的 solvent 溶剂back contact print 背电极印刷 both silver and aluminum 银铝 form ohmic contact 形成欧姆接触 warp 弯曲cofiring of metal contacts 电极共烧organic components of the paste 浆料有机成分 burn off 烧掉 sinter 烧结 perforate 穿透testing and sorting 测试分选 I-V curve I-V 曲线 Module 组件 Inhomogeneous 不均匀的 Gallium 镓 Degradation 衰减 A small segregation c oefficient coefficient 小分凝系数 Asymmetric 不对称的 High resolution 高分辨率 Base resistivity 基体电阻率 The process flow 工艺流程Antireflection coating 减反射层 Cross section of a solar cell 太阳能电池横截面 Dissipation 损耗 Light -generated current 光生电流 Incident photons 入射光子 The ideal short circuit flow 理想短路电路 The depletion region 耗尽区 Quantum efficiency 量子效率 Blue response 蓝光效应 Spectral response 光谱响应 Light -generated carriers 光生载流子Forward bias 正向偏压 Simulation 模拟 Equilibrium 平衡Superposition 重合The fourth quadrant 第四象限 The saturation current 饱和电流Io Fill factor 填充因子FF Graphically 用图象表示 The maximum theoretical FF 理论上 Empirically 经验主义的 Normalized Voc 规范化Voc The ideality factor n -factor 理想因子Terrestrial solar cells 地球上的电池At a temperature of 25C 25度下 Under AM1.5 conditions 在AM1.5环境下Efficiency is defined as ×× 定义为Fraction 分数Parasitic resistances 寄生电阻 Series resistance 串联电阻 Shunt resistance 并联电阻 The circuit diagram 电路图 Be sensitive to temperature 易受温度影响 The band gap of a semiconductor 半导体能隙 The intrinsic carrierconcentration 本征载流子的浓度Reduce the optical losses 减少光损 Deuterated silicon nitride 含重氢氮化硅 Buried contact solar cells BCSC Porous silicon PS 多孔硅 Electrochemical etching 电化学腐蚀 Screen printed SP 丝网印刷 A sheet resistance of 45-50 ohm/sq 45到50方块电阻The reverse saturation current density Job 反向饱和电流密度 Destructive interference 相消干涉 Surface texting Inverted pyramid 倒金字塔Four point probe 四探针Saw damage etch Alkaline 碱的 Cut groove 开槽 Conduction band 导带 Valence band 价带 B and O simultaneously in silicon 硼氧共存 Iodine/methanol solution 碘酒/甲醇溶液 Rheology 流变学 Spin -on dopants 旋涂掺杂 Spray -on dopants 喷涂掺杂 The metallic impurities 金属杂质 One slot for two wafers 一个槽两片Throughput 产量 A standard POCL3 diffusion 标准POCL3扩散Back -to -back diffusion 背靠背扩散Heterojunction w ith with intrinsic thin -layer HIT 电池 Refine 提炼Dye sensitized solar cell 染料敏化太阳电池Organic thin film solar cell 有机薄膜电池 Infra red 红外光 Unltra violet 紫外光 Parasitic resistance 寄生电阻 Theoretical efficiency 理论效率 Busbar 主栅线 Kerf loss 锯齿损失 Electric charge 电荷 Covalent bonds 共价键The coefficient of thermal expansion (CTE) 热膨胀系数 Bump 鼓泡 Alignment 基准 Fiducial mark 基准符号 Squeegee 橡胶带Isotropic plasma texturing 各向等离子制绒Block-cast multicrystalline silicon 整铸多晶硅 Parasitic junction removal 寄生结的去除 Iodine ethanol 碘酒 Deionised water 去离子水 Viscosity 粘性 Mesh screen 网孔 Emulsion 乳胶 Properties of light 光特性 Electromagnetic radiation 电磁辐射The visible light 可见光 The wavelength ,denoted by R 用R 表示波长 An inverse relationship between ……and ……given by the equation :相反关系,可用方程表示 Spectral irradiance 分光照度……is shown in the figure below. Directly convert electricity into sunlight 直接将电转换成光 Raise an electron to a higher energy state 电子升入更高能级 External circuit 外电路 Meta-stable 亚稳态Light-generated current 光生电流Sweep apart by the electric field Quantum efficiency 量子效率 The fourth quadrant 第四象限 The spectrum of the incident light 入射光谱The AM1.5 spectrum The FF is defined as the ratio of ……to …… Graphically 如图所示 Screen-printed solar cells 丝网印刷电池Phosphorous diffusion 磷扩散 A simple homongeneous d iffusion diffusion 均匀扩散Blue response 蓝光相应Shallow emitter 浅结 Commercial production 商业生产 Surface texturing to reduce reflection 表面制绒 Etch pyramids on the wafer surface with a chemical solution Crystal orientation Titanium dioxide TiO2PasteInorganic 无机的 Glass 玻璃料 DopantComposition Particle size Distribution Etch SiNx Contact path Sintering aid Adhesion 黏合性 Ag powderMorphology 形态Crystallinity Glass effect on Ag/Si interface Reference cell OrganicResin 树脂 Carrier 载体Rheology 流变性Printability 印刷性Aspect ratio 高宽比 Functional group Molecular weight Additives 添加剂 Surfactant 表面活性剂Thixotropic agent 触变剂Plasticizer 可塑剂Solvent 溶剂 Boiling point Vapor pressure 蒸汽压 Solubility 溶解性 Surface tension 表面张力 SolderabilityViscosity 黏性 Solids content Fineness of grind ,研磨细度 Dried thickness Fired thickness Drying profile Peak firing temp 300 mesh screen Emulsion thickness 乳胶厚度 Storage Shelf life 保存期限 Thinning 稀释Eliminate Al bead formation 消除铝珠Low bowing Wet depositPattern design: 100um*74 太阳电池 solar cell单晶硅太阳电池single crystalline silicon solar cell 多晶硅太阳电池 so multi crystalline silicon solar cell非晶硅太阳电池 amorphous silicon solar cell薄膜太能能电池 Thin-film solar cell 多结太阳电池 multijunction solar cell 化合物半导体太阳电池compound semiconductor solar cell 用化合物半导体材料制成的太阳电池用化合物半导体材料制成的太阳电池 带硅太阳电池silicon ribbon solar cell光电子 photo-electron短路电流 short-circuit current (Isc) 开路电压 open-circuit voltage (V oc) 最大功率 maximum power (Pm)最大功率点 maximum power point最佳工作点电压 optimum operating voltage (Vn)最佳工作点电流 optimum operating current (In)填充因子 fill factor(curve factor)曲线修正系数 curve correction coefficient太阳电池温度 solar cell temperature串联电阻 series resistance并联电阻 shunt resistance转换效率cell efficiency暗电流 dark current暗特性曲线 dark characteristic curve光谱响应 spectral response(spectral sensitivity)太阳电池组件 module(solar cell module)隔离二极管 blocking diode旁路二极管 bypass (shunt) diode组件的电池额定工作温度NOCT(nominal operating cell temperature)短路电流的温度系数 temperature coefficients of Isc开路电压的温度系数 temperature coefficients of Vcoefficients of Vococ峰值功率的温度系数 temperature coefficients of Pm组件效率 Module efficiency峰瓦 watts peak额定功率 rated power额定电压 rated voltage额定电流 rated current太阳能光伏系统 solar photovoltaic (PV) system并网太阳能光伏发电系统 Grid-Connected PV system独立太阳能光伏发电系统Stand alone PV system太阳能控制器solar controller逆变器 inverter孤岛效应 islanding逆变器变换效率 inverter efficiency方阵(太阳电池方阵) array (solar cell array)子方阵sub-array (solar cell sub-array) 充电控制器 charge controller直流/直流电压变换器 DC/DC converter(inverter)直流/交流电压变换器 DC/AC converter(inverter)电网 grid太阳跟踪控制器 sun-tracking ontroller 并网接口 utility interface光伏系统有功功率 active power of PV power station光伏系统无功功率reactive power of PV power station光伏系统功率因数 power factor of PV power station公共连接点 point of common coupling 接线盒 junction box发电量 power generation输出功率 output power交流电 Alternating current断路器Circuit breaker汇流箱 Combiner box配电箱Distribution box电能表Supply meter变压器Transformer太阳能光伏建筑一体化Building-integrated PV (BIPV)辐射 radiation太阳辐照度 Solar radiation散射辐照(散射太阳辐照)量 diffuse irradiation(diffuse insolation)直射辐照 direct irradiation (direct insolation)总辐射度(太阳辐照度) global irradiance (solar global irradiance)辐射计 radiometer方位角 Azimuth angle倾斜角 Tilt angle太阳常数 solar constant大气质量 (AM) air mass太阳高度角 solar elevation angle标准太阳电池 standard solar cell (reference solar cell)太阳模拟器 solar simulator太阳电池的标准测试条件为:环境温度25±25±22℃,用标准测量的光源辐照度为1000W/m2 并且有标准的太阳光谱辐照度分布。
工业设计常用工艺词汇中英文对照
工业设计常用工艺词汇中英文比照整理:工业设计课吕健安目录一、表面处理技术英文词汇 (1)二、表面处理不良英文词汇 (2)三、工业设计英文词汇 (2)四、模具制造和五金加工英文词汇 (4)五、模具塑胶缺陷英语词汇 (5)六、模具、塑胶原料英语词汇 (6)七、常用印刷工艺英语词汇 (6)一、表面处理技术英文词汇1. 高亮光hi-glossy2. 亚光honed(石材);matte(瓷砖);Dull3. 亮光glossy;shine4. 半光(亚光)semi dull5. 全消光full dull6. 亚光黑色Matte black7. 变色color changing8. 拉丝Brushed9. 金属拉丝brushed metal10. 光面Smooth surface11. 喷油spray12. 电镀electroplate13. 喷砂处理sand blast14. 金属喷镀法metallikon15. 真空涂膜metallizing16. 表面蚀刻etching17. 阳极氧化处理anodizing18. 蚀纹erode grain19. 抛光polishing20. 磨砂玻璃frosted glass;depolished glass 21. 磨砂milled(表面的磨砂效果)22. 磨砂铜brushed brass23. 磨砂面纯银效果silver brushed finish24. 倒角chamfer25. 圆角round corner26. 轮廓contour27. 样板,仿形copy28. 设计,方案design29. 表面,外观face30. 利边sharp edge31. 金属氧化Metal oxide s32. 着色处理color coated treatment33. 丝印silk-screen34. 菲林film35. 工艺technics36. 外观appearance; Exterior; appearance; face37. 水转印water transfer printing38. 水转印膜water transfer printing film39. 纹理Textures40. 木纹wood grain41. UV油UV oil42. 铬chrome43. 镀铬chromate treatment;chrome-plating;chroming;Chromium-plating44. 镀三价铬(枪色) Plating of trivalent chromium45. 枪色rifle color coating;Gun color46. 深色dark color47. 浅色light color48. 激光雕刻Laser engraving49. 双面激光雕刻double-sided laser engraving50. 背面back51. 装饰ornamental;decorate;Decorative52. 透亮红色Transparent red53. 镜片lens;Optic54. 模内抛光Mold polishing55. 印刷printing56. 印刷油墨printing ink57. 丝网screen mesh58. 丝网印刷screen printing59. 移印tempo printing;pad printing60. 丝网印版screen printing forme61. 漏印through printing62. 印刷网框screen printing frame63. 丝网类型type of screen, type of mesh64. 涂饰Coating65. 烫金Hot Stamping66. 烫金膜Hot Stamping foil67. 印刷油墨Printing Ink二、表面处理不良英文词汇1. 飞油、喷油过多over spray2. 喷油不足、起牙边under spray3. 喷油表面不匀整uneven spray4. 喷油不良poor spray5. 喷油表面刮花scratch painting6. 喷油表面粘尘dust painting7. 外来油污foreign paint8. 喷油反底(露底色)paint insufficient coverage9. 喷油擦花paint abraded10. 喷油拖花painting smear11. 漏喷油missing painting12. 甩油/起皮painting peel off13. 橙皮油orange peel14. 聚油paint accumulation15. 叻架积油lacquer accumulation16. 喷油表面起泡bubble paint17. 补油不良poor re-paint18. 喷油水渍water stain mark19. 喷油颜色不配对paint color mismatch20. 喷油颜色分歧错误称paint color misalignment21. 喷油颜色有差别paint color deviation22. 喷油哑色paint color dull23. 喷油颜色有光泽paint color shine24. 喷油表面不光滑rough surface on coating25. 油料深色dark paint26. 漆油喷涂不良poor paint27. 油漆外层不良poor coating 28. 喷油完成不良poor finishing29. 磨擦甩油color migration30. 涂油painting31. 喷油spraying32. 丝印不良poor silk screen printing33. 印油过多over print34. 印油不足under printing35. 印刷不良poor printing36. 热烫不良poor hot stamp37. 热烫过多over stamp38. 热烫不足under stamp39. 移印位置不精确tempo paint dislocate40. 移印油过多over tempo41. 移印油不足under tempo42. 移印不良poor tempo43. 移印刮花tempo scratching44. 移印不完整、缺油incomplete tempo painting45. 移印不清晰、朦tempo illegible46. 移印颜色不同tempo painting mismatch47. 移印套色偏移tempo painting off set48. 漏移印missing tempo49. 移印移位tempo off position50. 油漆不干paint damped51. 喷错油spraying wrong52. 电镀不良poor electro-plating53. 电镀过多over plating54. 电镀变黄electro-plating yellow55. 电镀脱落electro-plating peel off56. 电镀擦花electro-plating abraded57. 电镀彩虹色electro-plating rainbow58. 电镀阴阳色electro-plating shadow59. 电镀发黑electro-plating black60. 氧化oxidation三、工业设计英文词汇1. 设计Design2. 现代设计Modern Design3. 工艺美术设计Craft Design4. 工业设计Industrial Design5. 产品设计Product Design6. 包装设计Packaging Design7. 结构设计Structure Design8. 概念设计Concept Design9. 改型设计Model Change10. 工艺设计Technological Design11. 成套化设计Set Design12. 超小型设计Compact type13. 袖珍型设计Pocketable Type14. 便携型设计Portable type15. 系列化设计Series Design16. 组合式设计Unit Design17. 仿生设计Bionics Design18. 结构设计Structure Design19. 图形设计Graphic Design20. 视觉设计Visual Design21. 形式设计Form Design22. 工艺设计Technological Design23. 改型设计Model Change24. 照明设计Illumination Design25. 视觉传达设计Visual Communication Design26. 字体设计Lettering design27. 二维设计Two-dimension Design28. 三维设计Three-dimension Design29. 设计语言Design Language30. 设计条件Design Condition31. 装饰、装潢Decoration32. 设计方法论Design Methodology33. 设计语言Design Language34. 设计条件Design Condition35. 设计过程Design Process36. 设计调查Design Survey37. 功能分析Functional Analysis38. 生命周期Life Cycle39. 外观饰面Facing40. 设计美学Design Aesthetics41. 人类工程学Human Engineering 42. 造型艺术Plastic Arts43. 机械美Beauty of Machine44. 功能美Functional Beauty45. 材料美Beauty of Material46. 平衡Balance47. 对称Symmetry48. 协调Harmony49. 对比Contrast50. 类似Similarity51. 比例Proportion52. 黄金分割Golden Section53. 变形Deformation54. 表现Expression55. 构成Composition56. 纹样Pattern57. 形态Form58. 设计素描Design Sketch59. 制造原形Prototype60. 模型Model61. 仿真模型Finished Model62. 实体模型Solid Model63. 石膏模型Plaster Model64. 计算机三维动画Computer Three Dimensional Animation65. 图形和背景Figure and ground66. 产品开发Product Development67. 产品改型Model Change68. 产品测试Product Testing69. 产品成本Product Cost70. 促销Sales Promotion71. 产品形象Product identity72. 形象策略Image Strategy73. 设计策略Design Policy74. 艺术总监Art Director75. 明度Valve76. 彩度Chroma77. 色相Hue78. 色温Color temperature79. 有彩色Chromatic color80. 无彩色Achromatic colors81. 明色Light color82. 暗色Dark color83. 图形符号Graphic symbol84. 符号论Semiotic85. 视觉符号Visual sign86. 符号Sign87. 宣扬Propaganda88. 广告Advertising89. 企业形象Corporate identity90. 企业标准色Company color91. 标签Label92. 包装Pack93. 包装Package94. 工业包装Industrial packing95. 博览会Exposition96. 商品书目Catalogue97. 广告支配Advertising planning98. 广告效果Advertising Effect99. 象征/符号Symbol100. 象征标记Symbol mark101. 版面设计Layout102. 广告摄影Advertising photography 103. 设计费Design Fee设计法规和标准(英)104. 工业产权Industrial Property 105. 学问产权Intellectual Property 106. 注册商标Registered Trade Mark 107. 专利Patent108. 独创专利Patent for Invention 109. 外观设计专利Patent for Design 110. 好用新型Utility Model设计思潮和流派(英)111. 古典主义Classicism112. 现实主义Realism113. 新艺术运动Art Nouveau114. 流线型风格Streamlined Forms 115. 国际风格International Style116. 功能主义Functionalism117. 包豪斯Bauhaus118. 现代主义Modernism119. 极少主义Minimalism120. 概念主义Conceptualism121. 超级写实主义Super Realism四、模具和五金加工英文词汇1. 模具Mold2. 模芯Mold core3. 压模Pressing dies4. 注塑模injection mould5. 凹凸模punch-cum-blanking die6. 嵌入式凹模inserted die7. 定模和动模fixed half and moving half8. 模具分型线mould split line9. 干脆脱模in-line-of-draw10. 嵌件insert11. 硬件hardware12. 型腔impression13. 电铸electroform;Electro-deposition14. 电镀Galvanized;Electroplate15. 铸造Foundry16. 锻造forge17. 粗砂rough sand18. 脱模Mold release19. 化学电镀chemical plating20. 电化学加工electrochemical machining21. 铸造Casting22. 切削加工Cutting23. 挤出成型Squeezing24. 木材工艺Woodcraft25. 喷涂成型Spray Up26. 铸塑成型Casting27. 压缩成型Compression Molding Pressing28. 注射injection29. 轮廓contour30. 使弯曲curve31. 扭曲distort32. 切断,夹住clip33. 冷挤压cold hobbing34. (使)变形,扭曲distort35. 轮廓profile36. 冲孔punch37. 斜角Bevel38. 凹槽Groove39. 边框Frame Front40. 逆时针Counter Clockwise41. 垂直的Perpendicular42. 螺丝Screw43. 规格Specification44. 粗糙的Rough45. 锥形taper; cone46. 首选的Preferred47. 阴影线Hatching48. 表面Surface49. 中心,圆心Center(CEN)50. 角度Angle51. 有角的angular52. 凹穴depression53. 微小环节,详情detail54. 边缘edge55. 制图drawing56. 特色,特征feature57. 裂口,间隙gap58. 图解的graphic59. 六角形的,六角的hexagonal60. 智能的intelligent61. 安装installation62. 结合线joint line63. 未加工的raw64. 凹槽,凹座,凹进处recess65. 凹入的re-entrant66. 阴影的shaded67. 槽slot 68. 毛坯,坯料stock69. 高度Height70. 硬度Hardness71. 布氏硬度值Brinell Hardness Number72. 强度strength73. 减,减去subtract74. 螺纹thread75. 处理treatment76. 侧视图side view;side elevation77. 正视图front view78. 断面图、截面图、剖视图sectional view79. 初步的,预备的preliminary80. 注塑件molding81. 毛刺burr82. 板金工Sheet metal Work83. 光滑度Glossiness;gloss finish84. 外观Surface;Appearance85. 颜色标准Color standard86. 尺寸过大Over dimension87. 尺寸过小Under dimension88. 缩影Sink marks五、塑胶产品缺陷英语词汇1. 橘皮状表皮皱摺surface roughening2. 刮伤/划痕scratch3. 疤痕scar4. 凹陷riding5. 斑点mottle6. 压痕indentation7. 刮伤flaw8. 流痕flow mark9. 毛边galling10. 光滑glazing11. 裂纹fissure12. 褪色fading13. 变形deformation14. 色斑color mottle15. 腐蚀corrosion16. 毛边burr17. 泛白blushing18. 色差aberration19. 光泽gloss20. 表面白斑White patches on surface21. 银纹Silver marks / silver streak22. 水纹Splay mark23. 翘曲Warp age /warped24. 收缩Shrinkage/shrink25. 颜色差异Off color六、模具、塑胶材料英语词汇1. 材料Material2. 原材料raw material3. 材料规划Material Planning4. 材料评价Material Appraisal5. 加工材料Processing Materials6. 铝aluminum7. 电化铝Alumite8. 颜料Artist Color9. 黄铜brass10. 铸铝Casting aluminum11. 铸钢Casting steel12. 陶瓷制品ceramic13. 橡胶rubber14. 黑色金属Ferrous Metal15. 有色金属Nonferrous Metal16. 有机材料Organic Materials17. 金属材料Metal Materials18. 无机材料Inorganic Materials19. 复合材料Composite Materials20. 自然材料Natural Materials21. 塑料Plastics22. 通用塑料Wide Plastics23. 工程塑料Engineering Plastics24. 热塑性树脂Thermoplastic Resin25. 烫金膜Hot Stamping foil26. 涂料,油漆Paints 27. 玻璃Glass28. 搪瓷、珐琅Enamel29. ABS树脂Acrylonitrile Butadiene Styrene Resin30. 硅树脂Silicone Resin31. 聚氨酯树脂Polyurethane Resin32. 著色剂colorant33. 调色color matching34. 色母料color master batch35. 塑胶plastic36. 热熔性塑胶thermosetting plastic37. 聚氯乙烯PVC polyvinylchloride38. 聚乙烯PE polythene39. 聚氨基甲酸酯PU polyurethane40. 聚丙烯PP polypropylene41. 聚碳酸酯PC polycarbonate42. 聚甲基丙烯酸甲酯PMMA Polymethyl methacrylate,43. 工程塑胶engineering plastics44. 压克力acrylic45. 颜料Pigment46. 染料Dye七、常用印刷英语词汇常见印刷工艺和材料英语词汇1. 表面处理coating,finishing2. 光胶gloss lamination3. 亚胶matte lamination4. 植毛flocking5. 菲林film6. 边着色painted edge7. 烫金foil stamping8. 压纹line embossed9. 击凸embossing10. 吸塑油blister varnish11. 隐性油invisible UV12. 局部UV spot UV13. 丝印silk screen14. 金粉glittering15. 珍宝油bronzing varnish16. 环保吸塑ENV heat-seal17. 环保磨光ENV calendering18. 特別UV special UV coating19. 亚油matte varnish20. 水油AQU varnish21. 印油press varnish22. UV UV varnish23. 夜光油glowing dark24. 出版Output25. 排版Impose the layout26. 骑马订saddle stitching27. 加光(M.F.) machine finish28. 胶装notch binding29. 胶粘装订glue binding30. 折页folding31. 配页assemble32. 插页insert33. 折叠式插页folded insert34. 烫背back baking35. 压槽knocking out the groove36. 裁切cutting37. 刷胶brush glue38. 覆膜laminating39. 压光calendering40. 套烫register gilt41. 凹凸印embossing42. 擦金bronzing43. 模切die cutting44. 封皮cover45. 扉页fly page46. 书壳book case47. 样品,样本Specimen48. 盒box49. 天地盒lid and base box50. 商标Logo51. 手册Manual;enchiridion52. 特种纸Fancy paper53. 铜版纸Gloss art paper (80gsm -157gsm) 54. 原色牛皮bleached Kraft paper55. 白色牛皮kraft paper56. 布纹纸Arlin57. 双灰板Grey board (350gsm -3500gsm) or Chipboard58. 瓦楞纸Flute or corrugate59. 胶贴纸Sticker (85gsm) including removable sticker and permanent sticker60. 单粉咭C1S art paper (170gsm) or C1S art board (190gsm -450gsm)61. 书写纸Wood free paper (60gsm -120gsm) wood free board(>120gsm62. 粉灰咭CCNB board (230gsm -500gsm)常见印刷缺陷英语词汇63. 无胶水No glue64. 有阴影Shadowing65. 胶水痕迹Glue mark66. 折叠裂开Cracked folds67. 上光不良Poor coating68. 太软Over softness69. 爆线Seam broken70. 水渍Water mark71. 盒开口Glue end flap open72. 墨色Ink color73. 油墨浓度Ink density74. 印刷不良Poor printing75. 样品有缺陷Defect sample76. 印错,印刷错误Misprint77. 纸毛(linty) Linting78. 色偏(颜色变更) Color shift79. 溅墨misting常见印刷机械英语词汇80. 印刷机printing press81. 双面单色印刷机perfecting press82. 双面多色印刷机multicolour perfecting press83. 多色印刷机multi-colour printing press84. 双色印刷机two-colour printing press85. 单色印刷机single-colour printing press86. 圆压圆印刷机rotary printing press87. 往复转印刷机reversible printing press88. 二回转印刷机two-revolution printing press89. 一回转印刷机single-revolution printing press90. 停回转印刷机stop-cylinder printing press91. 圆压平印刷机(或称平台印刷机flat-bed cylinder press92. 平压平印刷机platen press93. 卷筒纸印刷机roll-fed printing press94. 单张纸印刷机sheet-fed printing press95. 丝网印刷机screen-process printing press96. 凹版印刷机intaglio printing press97. 平版印刷机planographic press98. 凸版印刷机relief printing press99. 印刷速度printing speed100. 印刷过程printing process。
药物分析常用英语词汇
药物分析专业英语词汇表Aabsorbance吸收度absorbanceratio吸收度比值absorption吸收absorptioncurve吸收曲线absorptioncoefficient吸收系数accuratevalue准确值Acid—dyecolormcty酸性染料比色法acidimcty酸量法acidity酸度activity活度adjustedretentiontime调整保留时间absorbent吸收剂absorption吸附alkalinity碱度alumina氧化铝,矾土ambienttemperature室温ammoniumthiocyanate硫氰酸铵analyticalqualitycontrol分析质量控制anhydroussubstance 干燥品antioxidant抗氧剂applicationofsample点样areanormalizationmethod面积归一法arsenic砷arsenicsport砷斑assay含量测定assaytolerance含量限度attenuation衰减acidburette酸式滴定管alkaliburette碱式滴定管amortar研钵Bbackextraction反萃取bandabsorption谱带吸收batch批batchnumber批号Benttendorlfmethod白田道夫法betweendayprecision日间密度精biotransformation生物转化blanktest空白试验boilingrange沸程BritishPharmacopeia英国药典bromatetitration溴酸盐滴定法brominemethod溴量法bromothymolblue溴麝香酚蓝bulkdrug原料药by—product副产物breaker烧杯buretteglassbeadnozzle滴定管brownacidburette棕色酸式滴定管Ccalibrationcurve校正曲线calomelelectrode甘汞电极calorimetry量热分析capacityfactor容量因子capillarygaschromatography毛细管气相色谱法carriergas载气characteristicsdescription性状chelatecompound螯合物chemicalequivalent化学当量Chinesepharmacopeia中国药典Chinesematerialmedicine中成药Chinesematerialmidicalpreparation中药制剂chiral手性的chiralcarbonatom手性碳原子chromatogram色谱图chromatography色谱法chromatographiccolumn色谱柱chromatographiccondition色谱条件clarity澄清度coefficientofdistribution分配系数coefficientofvariation变异系数colorchangeinterval变色范围colorreaction显色反应colormetry比色法columnefficiency柱效columntemperature柱温comparativetest比较试验completenessofsolution溶液的澄清度conjugate缀合物concentration—timecurve浓度时间曲线confidenceinterval置信区间confidencelevel置信水平controlledtrial对照试验correlationcoefficient相关系数contrasttest对照试验congealingpoint凝点contentunifarmity装量差异controlledtrial对照试验correlationcoefficient相关系数contrasttest对照试验counterion反离子cresalred甲酚红cuvettecell比色池cyanide氰化物casserolesmall勺皿Ddead—stoptitration永定滴定法deadtime死时间deflection偏差deflectionpoint拐点degassing脱气deionizedwater去离子水deliquescence潮解depressorsubstancestest降压物质检查法desiccant干燥剂detection检查developingreagent展开剂developingchamber展开室deviation偏差dextrose右旋糖diastereoisomer非对映异构体diazotization重氮化differentialthermalanalysis差示热分析法differentialscanningcalorimetry差示扫描热法Gutzeit古蔡daytodayprecision日间精密度dissolution溶出度directinjection直接进样2,6-dichlorindophenoltitration2,6-二氯靛酚滴定法digestion消化diphastictitration双向滴定disintegrationtest崩解试验dispersion分散度dissolubility溶解度dissolutiontest溶解度检查distillingrange滴程distributionchromatography分配色谱dose剂量drugqualitycontrol药品质量控制dryingtoconstantweight干燥至恒重duplicatetest重复试验diskmethodwatermethod压片法Eeffectiveconstituent有效成分effectiveplatenumber有效板数effectiveofcolumn柱效electrophoresis电泳elimination消除eluate洗脱液elution洗脱enamtiomer对映体endabsorption末端吸收endogenoussubstances内源性物质enzymedrug酶类药物enzymeinduction酶诱导enzymeinhibition酶抑制epimer差向异构体equilibriumconstant平衡常数errorinvolumetricanalysis容量分析误差exclusionchromatography排阻色谱法expirationdate失效期externalstandardmethod外标法extract提取物extrationgravimetry提取重量法extractiontitration提取容量法extrapolatedmethod外插法Erlenmeyerflask锥形瓶evaporatingdishsmall蒸发皿elongatedbulb胖肚electronicbalanceMettlerAL204MettlerAL204电子天平Ffactor系数fehling’sreaction斐林实验filter过滤finenessoftheparticles颗粒细度flowrate流速fluorescentagent荧光剂fluorescencespectrophotometry荧光分光光度法fluorescencedetection荧光检测器fluorescenceanalysis荧光分析法foreignpigment有色杂质formulary处方集free游离freezingtest冻结试验fusedsilica熔融石英filterpaper滤纸Ggaschromatography气相色谱法gas-liquidchromatography气液色谱法gaspurifier气体净化器Generalidentificationtest一般鉴别试验generalnotices凡例Generalrequirements(药典)通则goodclinicalpractices药品临床管理规范goodlaboratorypractices药品实验室管理规范goodmanufacturingpractices(GMP)药品生产质量管理规范goodsupplypractices(GSP)药品供应管理规范gradientelution梯度洗脱grating光栅gravimetricmethod重量法Gutzeittest古蔡(检砷)法glassfunnellongstem玻璃漏斗gradcylinder量筒glassrod玻棒graduatedpipettes刻度吸管GC气相色谱Hheavymetal重金属halfpeakwidth平峰宽heatconductivity热导率heightequivalenttoatheoreticalplate理论塔板高度heightofaneffectiveplate有效塔板高度high-performanceliquidchromatography(HPLC)高效液相色谱法high-performancethin-layerchromatography(HPTLC)高效薄层色谱法hydrate水合物hydrolysis水解hydrophilicity亲水性hydrophobicity疏水性hydroxylvalue羟值hyperchromiceffect浓色效应hypochromiceffect淡色效应HHS-typeconstanttemperaturewaterbathHHS型恒温水锅HPLC高效液相色谱法Iidentification鉴别ignitiontoconstantweight灼烧至恒重immobilephase固定相immunoassay免疫测定impurity杂质inactivation失活index索引indicatorelectrode指示电极indicator指示剂inhibitor抑制剂injectingseptum进样隔膜胶垫instrumentalanalysis仪器分析injectionvalue进样阀insulinassay胰岛素生物检测法integrator积分仪intercept截距interface接口internalstandardsubstance内标物质Internationalunit国际单位invitro体外invivo体内iodide碘化物iodoformreation碘仿反应iodometry碘量法ionpairchromatography离子对色谱ionsuppression离子抑制ionsuppression离子抑制ionicstrength离子强度ion-pairingagent离子对试剂ionization电离isoabsorptivepoint等吸收点isocraticelution等溶剂组成洗脱isoelectricpoint等电点isoosmoticsolution等渗溶液irreversibleindicator不可逆指示剂irreversiblepotential不可逆电位KKarlFischertitration卡尔-费舍尔滴定Kjeldahlmethodfornitrogen凯氏定氮法Koberreagent 科伯试剂Kovatsretentionindex科瓦茨保留指数Llabelledamount标示量leadingpeak前延峰levelingeffect均化效应licensedpharmacist执业药师limitcontrol限量控制limitofdetection检测限limitofquantitation定量限limittest杂质限度试验lossondrying干燥失重lowpressuregradientpump氧压梯度泵linearityandrange线性及范围linearityscanning线性扫描luminescence发光litmuspaper石蕊试纸lyophilization冷冻干燥Mmainconstituent主成分make-upgas尾吹气maltolreaction麦芽酚试验Marquistest马奎斯试验massanalyzerdetector质量分析检测器massspectrometricanalysis质谱分析massspectrum质谱图meandeviation平均偏差meltingpoint熔点meltingrange熔距metabolite代谢物metastableion亚稳离子micellarchromatography胶束色谱法microanalysis微量分析microcrystal微晶microdialysis微透析migrationtime迁移时间Milliporefiltration微孔过滤mobilephase流动相molecularformula分子式monitor检测monochromator单色器monographs正文Nnaturalproduct天然产物Nessler’sreagent碱性碘化汞试液neutralization中和nitrogencontent总氮量nonaqueousacid-basetitration非水酸碱滴定nonprescriptiondrug,overthecounterdrugs非处方药nonspecificimpurity一般杂质non-volatilematter不挥发物normalphase正相normalization归一化法Nesslercolorcomparisontube纳氏比色管Onotice凡例octadecylsilanebondedsilicagel十八烷基硅烷键合硅胶odorless辛基硅烷odorless无臭officialname法定名officialtest法定试验on-columndetector柱上检测器on-columninjection柱头进样onthedriedbasis按干燥品计opalescence乳浊opticalactivity光学活性opticalisomerism旋光异构opticalpurity光学纯度organicvolatileimpurities有机挥发性杂质orthogonaltest正交试验orthophenanthroline邻二氮菲outlier可疑数据overtones倍频封oxidation-reductiontitration氧化还原滴定oxygenflaskcombustion氧瓶燃烧Ppackedcolumn填充柱packingmaterial色谱柱填料palladiumioncolorimetry钯离子比色法parention母离子particulatematter不溶性微粒partitioncoefficient分配系数patternrecognition(ppm)百万分之几peaksymmetry峰不对称性peakvalley峰谷peakwidthathalfheight半峰宽percenttransmittance透光百分率pHindicatorabsorbanceratiomethodpH指示剂吸光度比值法pharmaceuticalanalysis药物分析pharmacopeia药典pharmacy药学photometer光度计polarimetry旋光测定法polarity极性polydextrangel葡聚糖凝胶potentiometer电位计potentiometrictitration电位滴定法precipitationform沉淀形式precision精密度preparation制剂prescriptiondrug处方药pretreatment预处理primarystandard基准物质principalcomponentanalysis主成分分析prototypedrug原型药物purification纯化purity纯度pyrogen热原pycnometermethod比重瓶法plasticwashbottle洗瓶platformbalance天平pipette移液管pyknowmeterflasks容量瓶Qqualitycontrol质量控制qualityevaluation质量评价qualitystandard质量标准quantitativedetermination定量测定quantitativeanalysis定量分析quasi-molecularion准分子离子Rracemization消旋化randomsampling随机抽样rationaluseofdrug合理用药readilycarbonizablesubstance易炭化物质reagentsprayer试剂喷雾剂recovery回收率referenceelectrode参比电极relatedsubstance相关物质relativedensity相对密度relativeintensity相对强度repeatability重复性replicatedetermination平行测定reproducibility重现性residualbasichydrolysismethod剩余碱水解法residualliquidjunctionpotential残余液接电位residualtitration剩余滴定residuceonignition炽灼残渣resolution分辨率responsetime响应时间retention保留reversedphasechromatography反相色谱法reverseosmosis反渗透rinse淋洗robustness可靠性round修约reagentbottles试剂瓶roundbottomflask圆底烧瓶rubbersuctionbulb洗耳球Ssafety安全性Sakaguchitest坂口试验saltbridge盐桥saltingout盐析sampleapplicator点样器sampleapplication点样sampling取样saponificationvalue皂化值saturatedcalomelelectrode饱和甘汞电极selectivity选择性significantdifference显着性水平significanttesting显着性检验silicaget硅胶silverchlorideelectrode氯化银电极similarity相似性sodiumdodecylsulfate十二基酸钠solid-phaseextraction固相萃取solubility溶解度specificabsorbance吸收系数specification规格specificity专属性specificrotation比旋度specificweight比重spiked加入标准的splitinjection分流进样sprayreagent显色剂stability稳定性standardcolorsolution标准比色液standarddeviation标准差standardization标定standardsubstance标准品statisticalerror统计误差sterilitytest无菌试验stocksolution储备液stoichiometricpoint化学计量点storage贮藏straylight杂散光substrate底物substituent取代基sulfate硫酸盐sulphatedash硫酸盐灰分support载体suspension旋浊度swellingdegree膨胀度symmetryfactor对称因子systematicerror系统误差separatingfunnel分液漏斗stopcock玻璃活塞scissors剪刀spiritlamp酒精灯silicagelGthinlayer硅胶G薄层板Ttable片剂tailingfactor拖尾因子tailingpeak拖尾峰testsolution试液thermalanalysis热分析法thermalconductivitydetector热导检测器thermogravimetricanalysis热重分析法TheUnitedStatesPharmacopoeia美国药典ThePharmacopoeiaofJapan日本药局方thinlayerchromatography薄层色谱thiochromereaction硫色素反应thymol百里酚thymolphthalein百里酚酞titer滴定度three-dimensionalchromatogram三维色谱图titrant滴定剂titrationerror滴定误差titrimetricanalysis滴定分析法tolerance容许限totalash总灰分totalqualitycontrol全面质量控制traditionaldrugs传统药traditionalChinesemedicine中药turbidance浑浊turbidimetricassay浊度测定法turbidimetry比浊度turbidity浊度Uultracentrifugation超速离心ultravioletirradiation紫外线照射unduetoxicity异常毒性uniformdesign均匀设计uniformityofdosageunits含量均匀度uniformityofvolume装量均匀性uniformityofweight重量均匀性Vvalidity可靠性variance方差viscosity粘度volatileoildeterminationapparatus挥发油测定器volatilization挥发性volumetricanalysis容量分析volumetricsolution滴定液volumetricflasks比重瓶Wwavelength波长wavenumber波数weighingbottle称量瓶weighingform称量形式well-closedcontainer密闭容器whiteboard白瓷板XxylenecyanolblueFF二甲苯蓝FFxylenolorange二甲酚橙ZZigzagscanning锯齿扫描zwitterions两性离子Zymolysis酶解作用zoneelectrophoresis区带电泳。
光催化析氢协同生产高附加值产品文献英文
光催化析氢协同生产高附加值产品文献英文In recent years, the combination of photocatalysis and hydrogenolysis has been widely used in the production of high-value-added products. Photocatalysis is a process in which light energy is used to activate a catalyst to promote the reaction of a substrate. Hydrogenolysis is a process in which hydrogen is used to cleave a substrate into two or more products. The combination of these two processes can be used to produce high-value-added products. The combination of photocatalysis and hydrogenolysis has been used to produce a variety of high-value-added products, such as pharmaceuticals, fragrances, and flavors. Photocatalysis can be used to activate a catalyst to promote the reaction of a substrate, while hydrogenolysis can be used to cleave the substrate into two or more products. This combination of processes can be used to produce high-value-added products with high efficiency and selectivity.In addition, the combination of photocatalysis and hydrogenolysis can be used to produce high-value-added products with low environmental impact. Photocatalysis is a clean and efficient process that does not produce any hazardous by-products. Hydrogenolysis is also a clean process that does not produce any hazardous by-products. The combination of these two processes can be used to produce high-value-added products with low environmental impact.The combination of photocatalysis and hydrogenolysis has been widely used in the production of high-value-added products. This combination of processes can be used to produce high-value-added products with high efficiency and selectivity, and with low environmental impact. This makes it an attractive option for the production of high-value-added products.。
复旦研发出基于金属硒化物的太阳电池高效电极
式 医疗设 备提供帮助 ,下一步仍需证明其在活体 生物 内也 能 良好运转 。当葡萄糖燃 料电池与超低功耗 的电子设 备相
《电 源 技 术 应 用 》2 2 - 期 01 # 第7
金属铂的卓越 电催化性 能 ,目前的高性能染 料敏 化太 阳电
米尺度上接触 ,才可以在 电化学 中使用 。
I 的科学家利 用碳纳米管 巨大 的比表面积和 良好 的 WS
导 电性等特性 ,采用特殊 的生产工艺造 出了基 于碳 纳米管 的含硫 电极 。他 们用一种简单 的涂层方法 ,使垂直排列 的
碳纳米管直 接在金属基板 ,如铝 、镍 、不 锈钢上面成长 ,
’
镀有金属 铂的导 电玻璃 作为对 电极 。但 由于铂 的储量低 、价格高 ,极 大地限制 了染料敏化太 阳电池 的大 规模 生产和应用 。因此 ,研发低成 本 、高效 的非铂对 电极
一
集 成 电路 、太 阳能 电池 、场发 射 源 、能量 耗散 纤维 等领
被应用 在锂硫 电池中 ,可 以获得 高达9 o 0 毫安时/ 的质量 克 比容量 。 用硫做 电池的阴极 比以前使用 的电极有明显的优点 :
一
寸类似 ,可支持 U B S 接线 的任何设 备充 电。这对 Llp t n iiui l a
S s m 和燃料电池技术都是一个巨大进 步。 yt s e
尺寸与一款较厚 的智能手机接 近 ,燃料盒尺寸与 打火 机尺
医疗和仿生 学等相关 领域 。但 萨派斯卡 也强调 ,将葡 萄糖 驱动 的植入式 医疗设 备引入市场 ,仍需 要一个漫 长的科研
和摸索过程 。
德 国研 发 出硫 纳 米森 林 电极 创 电池 质量 比容量 纪录
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
High-efficiency metal-free organic-dye-sensitized solar cells with hierarchical ZnO photoelectrode †Hsin-Ming Cheng and Wen-Feng Hsieh *Received 31st July 2009,Accepted 10th December 2009First published as an Advance Article on the web 22nd January 2010DOI:10.1039/b915725eSelf-assembled ZnO secondary nanoparticles have been fabricated as an effective photoelectrode for dye-sensitized solar cells (DSCs).The hierarchical architecture,which manifested the significant light-scattering,can provide more photon harvesting.In addition,dye-molecule adsorption was sufficient due to enough internal surface area provided by the primary single nanocrystallites.Two indoline dyes,coded D149and D205,were used as the sensitizers of ZnO DSCs with the optimal energy conversion efficiencies of 4.95%and 5.34%,respectively,under AM 1.5full sunlight illumination (100mW cm À2).The enhancement of the open-circuit photovoltage (V oc )and the short-circuit photocurrent density (J sc )for D205-sensitized ZnO DSCs was ascribed to the effective suppression of electron recombination by extending the alkyl chain on the terminal rhodanine moiety from ethyl to octyl.Further evidence is obtained from the electrochemical impedance spectroscopy (EIS)which exhibits a longer electron lifetime for D205-sensitized ZnO DSC in comparison with the D149-sensitized one.I.IntroductionDye-sensitized solar cells (DSCs)with power conversion effi-ciencies exceeding 11%have been exhibited and remain one of the most promising candidates,as they possess advantages of being flexible,inexpensive,and easier to manufacture than other thin film solar cells.1In DSCs,the photoelectrodes are very important features,which include mesoporous wide-bandgap oxide semiconductor films with not only enormous internal surface area but also rapid electron injection from the lowest unoccupied molecular orbitals (LUMO)of dye molecules into the conduction band of the metal oxides.The highest solar-to-electric conversion efficiency of 11%has been achieved with films that consist of 20nm TiO 2nanocrystallites sensitized byruthenium-based dyes.1ZnO is a versatile semiconductor having recently been reported as an alternative for DSCs because ZnO offers a large direct band gap of 3.37eV,which is similar to TiO 2.In addition,ZnO has very high electron mobility for its relatively small electron effective mass as compared to TiO 2.2ZnO can also be tailored to various nanostructures,such as nanorods/nano-wires,3nanotubes,4nanoflowers,5nanosheets,6tetrapod-like nanopowders,7and polydispersive ZnO aggregates.8The nano-structured ZnO can significantly enhance DSC performance by not only offering a large surface area for dye adsorption,but also direct transport pathways for photoexcited electrons.ZnO nano-architectures provide promising designs for improving the performance of the photoelectrodes in DSCs.Utilizing sensitized dye with a high absorption coefficient is another key issue to improve the light harvesting of DSCs.Numerous metal-free organic dyes with high absorption coeffi-cients have recently been reported to act as good sensitizers for TiO 2.Ruthenium complex dyes are not suitable for environ-mentally-friendly photovoltaic devices because they do not meet the low cost and mass production requirements needed for potentially wide applications.In particular,indoline dyes have been reported to show a highest power conversion efficiency ofDepartment of Photonics &Institute of Electro-Optical Engineering,National Chiao Tung University,Hsinchu,300,Taiwan.E-mail:wfhsieh@.tw;Fax:+886-3-5716631;Tel:+886-3-5712121ext.56316†Electronic supplementary information (ESI)available:Micrographs;SEM and TEM images;X-ray diffraction profiles;wavelength distribution of incident monochromatic photon to current conversion efficiency spectra.See DOI:10.1039/b915725ePAPER /ees |Energy &Environmental ScienceD o w n l o a d e d b y N a t i o n a l C h i a o T u n g U n i v e r s i t y o n 30 N o v e m b e r 2010P u b l i s h e d o n 30 M a r c h 2010 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 915725Eover 9.0%using volatile electrolytes 9and an efficiency of 7.2%using nonvolatile ionic-liquid electrolytes 10among organic dyes.The indoline dyes that exhibit remarkable performance as DSCs are relatively inexpensive due to the simple preparation proce-dures.11Recently,an indoline dye (D149)has also been utilized in ZnO nanosheets 6b and tetrapod-like ZnO nanopowders,7b and achieved the DSC performances of 4.2%and 4.9%,respectively.Accordingly,a systematic study of the characterization in indo-line-sensitized ZnO DSCs is important for both further dye molecular engineering and for photovoltaic application points of view.In the present work,we reported that the photoanode films composed by self-assembled ZnO secondary nanoparticles provides effective light scattering within the photoelectrode films of DSCs while retaining the desired specific surface area for dye-molecule adsorption.Two indoline dyes,coded D149and D205,were used as the sensitizers of DSCs.The effect of thickness on DSC performance will be discussed.The maximum energy conversion efficiencies of 4.95%and 5.34%were achieved on a 27m m-thick ZnO photoelectrode film under AM 1.5solar radiation for D149and D205,respectively.The comparison of the electron transport property of ZnO photoelectrodes with different dyes will also be discussed based on the electrochemical impedance spectroscopy (EIS).II.ExperimentsPreparation of ZnO colloidals and screen-printing pastes The ZnO colloidal solution was produced from zinc acetate dihydrate (99.5%Zn(OAc)2,Riedel-deHaen)in diethylene glycol (99%DEG,TEDIA),similar to what we presented exhaustively before.12The as-synthesized solution was placed in a centrifuge operating at 8000rpm for 30min.After centrifugation,the precipitation of ZnO colloids was then redispersed in ethanol via high-speed stirring for 30min.The excess DEG solvent was then removed by a second centrifugation.The ZnO paste for screen-printing was prepared typically by mixing resultant ZnO colloids,ethyl cellulose (EC)and terpineol (anhydrous,#86480,Fluka);the detailed procedure is as follows.EC (5–15mPas,#46070,Fluka)and EC (30–70mPas,#46080,Fluka)were individually dissolved in ethanol to yield 10wt%solutions.Then 12g EC (5–15)and 12g EC (30–70)were added to a round bottomed rotavap flask containing 12g ZnO colloids and 25g terpineol.The mixture paste was dispersed in an ultrasonic bath and a rotary-evaporator (BUCHI V850)was used to remove the residual ethanol and water in the mixture.The final formulations of the ZnO pastes were made with a three-roll mill (EXAKT E50).Cell fabrication and characterizationThe DSCs consisted of many parts sandwiched together.The photoanodes were prepared by screen-printing the 0.28cm 2ZnO films with various thicknesses (18,21,27,and 32m m)on fluorine-doped tin oxide (FTO)substrates (Nippon Sheet Glass Co.Ltd.,10U /,,3mm thickness).The photoelectrodes were then grad-ually heated under an O 2flow at 350 C for 30min to remove the organic materials in the paste.After cooling to room tempera-ture,the ZnO photoelectrodes were immersed into a solutionmade of 0.3mM D149or D205organic sensitizer (Chemicrea Inc.)with 0.6mM chenodeoxycholic acid (CDCA,Sigma-Aldrich)in an acetonitrile/tert -butyl alcohol mixture (v/v ¼1:1)at 65 C for 1h.The counter electrodes were also made of NSG FTO glass on which the nanocrystalline Pt catalysts were deposited by decomposing from H 2PtCl 6at 400 C for 20min.The internal space of the ZnO photoelectrodes and counter electrodes was separated by a 60m m thick hot-melting spacer (Surlyn,DuPont),and was filled through a hole with volatile electrolytes which composed of 0.5M 1,2-dimethyl-3-propyli-midazolium iodide (PMII),0.03M I 2(Sigma-Aldrich),and 0.5M tert -butylpyridine (TBP,Sigma-Aldrich)in acetonitrile.InstrumentationThe morphology and dimension of ZnO nanoparticles were characterized using a JEOL-6500field emission scanning elec-tron microscope (FESEM)operated at 5kV.The advanced ZnO nanostructures were analyzed using JEOL JEM-2100F field emission transmission electron microscope (FETEM)operated at 200kV.For photocurrent–voltage (J–V)characteristics and electrochemical impedance spectroscopy (EIS)measurements,a white light source (Yamashita Denso,YSS-100A)was used to give an irradiance of 100mW cm À2(the equivalent of one sun at AM 1.5)on the surface of the solar cells,and the data were collected by an electrochemical analyzer (Autolab,PGSTAT30).The light power was calibrated with a set of neutral density filters and detected by a silicon photodiode (BS-520,Bunko Keiki).The action spectra of the incident monochromatic photon to current conversion efficiency (IPCE)for solar cells were measured as a function of wavelength from 400to 900nm using a specially designed IPCE system (C À995,PV-measurement Inc.)for DSCs.The optical absorbance was carried out with a Hitachi U-2800UV-VIS spectrophotometer.III.Results and discussionHierarchical packing of the secondary ZnO nanoparticles was formed in the condensation reactions of the sol–gel process,which was modified from the previous reports.13The spherical shape of the secondary ZnO nanoparticles was recognized as an agglomeration of many primary single crystallites ranging from 6to 12nm,as shown in Fig.1(a)and 1(b).The similar ZnO architectures have been elucidated as random lasers formed in the cavities by multiple scattering between ZnO primary parti-cles.14The laser action could emerge for the efficient amplifica-tion along the closed loop light-scattering paths within a secondary ZnO nanoparticle.Recently,Cao et al.8demon-strated that the aggregation of ZnO nanocrystallites performed was an effective approach to generate light scattering within the photoelectrode film of DSCs without using any other scattering layers.In addition,dye-molecule adsorption was sufficient due to enough internal surface area provided by the primary nano-crystallites and a maximum energy conversion efficiency of 5.4%has been achieved with utilization of ruthenium complex cis -[RuL 2(NCS)2](L ¼4,40-dicarboxy-2,20-bipyridine),N3dye.Herein,the broad distribution of secondary nanoparticle sizes,with diameters in the range of 200–500nm,was controlled to provide the wide range absorption of visible sun light within theD o w n l o a d e d b y N a t i o n a l C h i a o T u n g U n i v e r s i t y o n 30 N o v e m b e r 2010P u b l i s h e d o n 30 M a r c h 2010 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 915725Epreferable packing of the ZnO photoelectrode.Fig.1(c)shows a schematic of the multiple scattering of light within the hierar-chical ZnO photoelectrode,and that therefore the light-traveling distance can be significantly prolonged.Fig.1(d)also shows the corresponding optical absorption spectra of ZnO photo-electrodes with various film thicknesses.The absorption peak at 375nm,which could be particularly identifiable from the 2m m film,mainly results from the intrinsic exciton absorption of ZnO.However,the absorption at wavelengths of around 400–650nm is enhanced dramatically with increasing the thickness of the ZnO photoelectrodes from 2m m to 12m m.The ZnO films with thicknesses above 10m m provide light localization through significant light scattering from the highly disordered structure.The results explain the light-scattering capability of the films with different thicknesses and the formation of optical confinement through the aggregated ZnO films,which could provide more photon absorption in the visible region by the dye molecules.The molecular structures of the indoline-based organic dyes employed in this study are depicted in Fig.2(a).The double rhodanic acid was used as an anchor moiety for both D149and D205.The D205sensitizer was designed by introducing an octylsubstitute onto the terminal rhodanine ring to replace the ethyl group of D149.Fig.2(b)shows the light absorption spectra of D149and D205in tert -butyl alcohol/acetonitrile (1/1)and on the 4m m-thick ZnO photoelectrodes,respectively.The absorption spectra of D149and D205in solution are almost identical,revealing that the indoline dye D205has almost the same molecular coefficient value (68700M À1cm À1at 526nm)as D149in tert -butyl alcohol/acetonitrile (1/1).11b The absorption spectra of D149and D205on the ZnO photoelectrodes have the broadened peaks and a blue-shift of the main absorption peak centered around 516nm that indicate these indoline dyes have a moderate interaction between dye molecules on the ZnO surface.The red-shift of absorption peaks at low wavelength for indoline dyes on ZnO could be related to the influence of the thickness effect on the photoelectrode (see Fig.1(d)).The blue-shift,from 530nm (indoline dyes in the solution)to 516nm (indoline dyes on ZnO films),of the main absorption peak could be addressed as a hypsochromic shift due to H-aggregation.The observation is different from the previous reports concerning the indoline dye on TiO 2.9b ,10,11The origin is mainly attributed to the formation of a bidentate complex between the carboxylate and the polar zinc oxide surface.15However,further investigationonFig.1(a and b)The FESEM and TEM images for the self-assembled ZnO secondary nanoparticles,respectively.(c)The schematic multiple scattering of light within the hierarchical ZnO photoelectrode composed by self-assembled ZnO secondary nanoparticles.(d)The corresponding optical absorption spectra of ZnO photoelectrodes with various film thicknesses,from 2m m to 12mm.Fig.2(a)Molecular structures of indoline D149and D205dyes.(b)Absorption spectra of D149and D205dyes in tert -butyl alcohol/aceto-nitrile (1/1)solution and on the 4m m-thick ZnO photoelectrodes,respectively.D o w n l o a d e d b y N a t i o n a l C h i a o T u n g U n i v e r s i t y o n 30 N o v e m b e r 2010P u b l i s h e d o n 30 M a r c h 2010 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 915725Ethe interactions of dye aggregation are presently being analyzed to lead to better understanding of the dynamics of DSCs.In order to improve the DSC performance,optimization of the thickness of the ZnO photoelectrode is necessary because the photovoltaic characteristics exhibit significant variation depending on the thickness.Fig.3shows the variations in the photovoltaic characteristics of DSCs depending on the thickness of the indoline dye-sensitized hierarchical ZnO photoelectrode. The open-circuit photovoltage(V oc)decreased linearly with the increase in ZnOfilm thickness(Fig.3a).Increasing the thickness leads to increasing the non-excited area,which lowers V oc further after averaging the electron density in the non-excited area.On the contrary,the short-circuit photocurrent density(J sc)for DSCs using both indoline dyes increases monotonically with increasing ZnOfilm thickness(Fig.3b),as a result of enlarged dye loading.In addition,V oc and J sc for D205-sensitized ZnO DSCs are higher than D149-sensitized ones.This observation can be ascribed to the effective suppression of electron recom-bination between I3Àand electrons injected in the photo-electrodes by extending the alkyl chain on the terminal rhodanine moiety from ethyl to octyl.16Further examination will be later described via the electron transport analysis.Thefill factor(FF) for D205-sensitized ZnO DSCs is slightly lower than that of D149-sensitized ZnO DSCs,which is rationalized in terms of the series resistance of the DSC:the higher J sc values end up with lower FF values.Although V oc decreases with the ZnOfilm thickness,this loss of V oc is compensated by a gain in J sc and consequently the maximum energy conversion efficiencies(h)of 4.95%and5.34%were achieved for D149-and D205-sensitized ZnO DSCs,respectively,with a27m m-thick ZnO photoelectrode film under AM1.5solar radiation.It should be noted that the influence of the thickness effect on the performance of DSCs utilizing secondary ZnO nanoparticles is relatively small in comparison with utilizing tetrapod-like ZnO nanoparticles in our previous report.7b A possible explanation for this is ascribed to the sufficient light-harvesting capability of these hierarchical ZnO architectures when even quite thin photoelectrodes are applied.Fig.4(a)shows the detailed comparison of photocurrent–voltage(J–V)characteristics for solar cells constructed using 27m m-thick ZnO photoelectrodefilms and these two different indoline dyes under AM 1.5full sunlight illumination (100mW cmÀ2)and in the dark.For D205uptake,the spectrum reveals V oc¼653mV,J sc¼12.17mA cmÀ2,FF,¼0.67,and h¼5.34%.For comparison,the spectrum of D149uptake reveals V oc ¼641mV,J sc¼10.94mA cmÀ2,FF¼0.7,and h¼4.95%.The curves of dark current also indicated that D205-sensitized ZnO DSC has a slightly lower onset potential for the reduction of I3Àthan D149-sensitized ZnO DSC.The lower dark current could also be rationalized in terms of a negative shift in the conduction band edge of ZnO caused by the adsorption of D205dye. Fig.4(b)displays the wavelength distribution of the incident monochromatic photon to current conversion efficiency(IPCE) spectra of DSCs.Because of the UV cut-off effect caused by the thick glass substrate,the spectra at under400nm are deterio-rated.However,the photocurrents at the peak at approximately 367nm can still be detected and is due to direct lightharvesting Fig.3Relationship between photovoltaic characteristics and photo-electrode thickness of ZnO DSCs.Red circles and blue squares representD149-and D205-sensitized DSCs,respectively.(a)Open-circuit photo-voltage,V oc;(b)Short-circuit photocurrent density,J sc;(c)Fill factor,FF;and(d)photopower energy conversion efficiency,h.The solid linesare plotted to guide theeyes.Fig.4Photovoltaic characteristics of DSCs with27m m-thick ZnOphotoelectrodes and two different indoline dyes:(a)photocurrent–voltage(J–V)curves for D149-and D205-sensitized DSCs with AM1.5illumination and in the dark,respectively.(b)photocurrent action spectraof D149-and D205-sensitized DSCs,respectively.DownloadedbyNationalChiaoTungUniversityon3November21Publishedon3March21onhttp://pubs.rsc.org|doi:1.139/B915725Eby the ZnO semiconductor.The IPCE obtained for the D205-sensitized ZnO DSC is higher than that of the D149-sensitized one in the visible-wavelength (400–700nm)region.The evidence of the improvement in the IPCE further confirms the higher J sc for the D205-sensitized ZnO DSC as compared with the D149-sensitized ZnO DSC.The superior performance for D205dye uptake is attributed to extending the length of the alkyl chain on the indoline sensitizer.In general,the current density for DSCs is determined by the initial number of photogenerated carriers,the electron injection efficiency from dye molecules to semi-conductor,and the recombination rate between the injected electrons and oxidized dye or redox species in the electrolyte.Based on the assumption of the same injection efficiency and dye loading for the given ZnO DSCs systems,it is reasonable that the photocurrent density may be directly affected by the variation in the electron recombination rate.The amphiphilic nature of D205may assist the formation of a self-assembled dye monolayer that prevents the recapture of the photoinjected electrons by the triiodide ions within the electrolyte,consequently resulting in a higher V oc and J sc .10The effects of the different dyes on the electron transport of the interfaces in the DSCs can be further investigated with aid of the electrochemical impedance spectroscopy (EIS)study.Adequate physical models and equivalent circuits have been proposed and widely applied to analyze the electron transport in photo-electrodes and recombination between the photoelectrode and electrolyte interface in the DSC.17The Nyquist plots of the impedance data for D149-,and D205-sensitized ZnO DSCs were performed by applying a 10mV ac signal over the frequency range of 10À2–105Hz under illumination at the applied bias of V oc ,as shown in Fig.5.The Nyquist plots in Fig.5(a)show the radius of the middle semicircle,which belongs to D205-sensitized ZnO DSCs,is larger than D149-sensitized ZnO DSCs,indicating that the electron recombination resistance is enlarged from D149to D205.In addition,from the Bode phase plot in Fig.5(b),the mid-frequency peak apparently shifts to a lower frequency,corresponding to an increase of the electron lifetime (s )for D205-sensitized ZnO DSCs.The electron lifetime can also be extracted from the angular frequency (u min )at the mid-frequency peak in the Bode phase plot using s ¼1/u min ,and was derived to be 12.8and 15.3ms for D149-and D205-sensitized ZnO DSCs,respec-tively.The increase in electron lifetime supports more effective suppression of the back reaction of the injected electrons with the I 3Àin the electrolyte by means of extending the length of alkyl chain on the indoline sensitizer,which leads to the improvement in the photocurrent and photovoltage and to the substantial enhancement of the device efficiency.The low-and high-frequency peaks observed in the Bode plots correspond to triiodide diffusion in the electrolyte and charge transfer at the counter electrode,respectively.There are no significant changes of low-and high-frequency peaks observed in the Bode plots implying that no unexpected reaction had occurred within the electrolyte and the counter electrode through the octyl substi-tution of indoline dye.Comparative experiments reported on metal-free indoline dyes emphasize the importance of improving the photovoltaic performance by suitable molecular engineering.The unambig-uous enhancement of photopower-conversion efficiency was achieved by extending the length of alkyl chain on the indolinesensitizer with the hierarchical photoelectrode composed by aggregated ZnO secondary nanoparticles.Although the effi-ciency of ZnO DSC cannot compete with TiO 2DSC systems presently,we hope these investigations could shed light on the development of organic sensitizers and can be used in the ZnO nanostructure optimization for the proposed solar cell applica-tions.IV.ConclusionIn summary,self-assembled ZnO secondary nanoparticles have been demonstrated as an effective photoelectrode within DSCs which retain the desired specific surface area for dye-molecule adsorption and sufficient light-harvesting from prolonged light traveling.D149and D205indoline dyes were used as the sensi-tizers of ZnO DSCs.The optimized energy conversion efficien-cies of 4.95%and 5.34%were achieved on 27m m-thick ZnO photoelectrode films under AM 1.5solar radiation,for D149and D205,respectively.The enhancement of V oc and J sc for D205-sensitized ZnO DSCs is ascribed to the effective suppression of electron recombination by extending the alkyl chain on the terminal rhodanine moiety from ethyl to octyl.The results of the comparison of the electron transport property is further confirmed by the electrochemical impedance spectroscopy (EIS)that demonstrates electron lifetimes of 12.8and 15.3ms for D149-and D205-sensitized ZnO DSCs,respectively.Thus,the hybrid system of hierarchical ZnO architecture and metal-free indoline sensitizer represents an alternative candidate with regard to high-performanceDSCs.Fig.5Impedance spectra:(a)Nyquist plots,and (b)Bode phase plots of D149-and D205-sensitized DSCs performed under illumination at the applied bias of V oc .D o w n l o a d e d b y N a t i o n a l C h i a o T u n g U n i v e r s i t y o n 30 N o v e m b e r 2010P u b l i s h e d o n 30 M a r c h 2010 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 915725EAcknowledgementsAuthors acknowledge PVTC/ITRI for facilities support and financial support from the National Science Council (NSC)of Taiwan (Project No.NSC-96-2628-M-009-001-MY3)and from MCL/ITRI (Project No.8301XSY4X1).Notes and references1(a )M.Gr €a tzel,Inorg.Chem.,2005,44,6841;(b )M.K.Nazeeruddin,F.DeAngelis,S.Fantacci,A.Selloni,G.Viscardi,P.Liska,S.Ito,B.Takeru and M.Gr €a tzel,J.Am.Chem.Soc.,2005,127,16835;(c )L.Moreira Gonc ¸alves,V.de Zea Bermudez,H.Aguilar Ribeiro and A.M.Mendes,Energy Environ.Sci.,2008,1,655.2(a )G.Oskam,Z.S.Hu,R.L.Penn,N.Pesika and P.C.Searson,Phys.Rev.E:Stat.,Nonlinear,Soft Matter Phys.,2002,66,011403;(b )€U.€Ozg €u r,Y.I.Alivov,C.Liu,A.Teke,M.A.Reshchikov,S.Do g an,V.Avrutin,S.J.Cho and H.Morkoc ¸,J.Appl.Phys.,2005,98,041301;(c )S.J.Pearton,D.P.Norton,K.Ip,Y.W.Heo and T.Steiner,Prog.Mater.Sci.,2005,50,293.3(a )w,L.E.Greene,J.C.Johnson,R.Saykally and P.D.Yang,Nat.Mater.,2005,4,455;(b )J.B.Baxter and E.S.Aydil,Appl.Phys.Lett.,2005,86,053114;(c )A.Du Pasquier,H.Chen and Y.Lu,Appl.Phys.Lett.,2006,89,253513;(d )H.M.Cheng,W.H.Chiu,C.H.Lee,S.Y.Tsai and W.F.Hsieh,J.Phys.Chem.C ,2008,112,16359;(e )I.Gonzalez-Valls and M.Lira-Cantu,Energy Environ.Sci.,2009,2,19.4(a )A.B.F.Martinson,J.W.Elam,J.T.Hupp and M.J.Pellin,NanoLett.,2007,7,2183;(b ) A. B. F.Martinson,M.S.G oes,F.Fabregat-Santiago,J.Bisquert,M.J.Pellin and J.T.Hupp,J.Phys.Chem.A ,2009,113,4015.5C.Y.Jiang,X.W.Sun,G.Q.Lo,D.L.Kwong and J.X.Wang,Appl.Phys.Lett.,2007,90,263501.6(a )E.Hosono,S.Fujihara,I.Honma and H.Zhou,Adv.Mater.,2005,17,2091;(b )E.Hosono,Y.Mitsui and H.Zhou,Dalton Trans.,2008,5439.7(a )Y.F.Hsu,Y.Y.Xi,C.T.Yip,A.B.Djuri s i c and W.C.Chan,J.Appl.Phys.,2008,103,083114;(b )W.H.Chiu, C.H.Lee,H.M.Cheng,H.F.Lin,S.C.Liao,J.M.Wu and W.F.Hsieh,Energy Environ.Sci.,2009,2,694;(c )W.Chen,H.Zhang,I.M.Hsing and S.Yang,mun.,2009,11,1057.8(a )T.P.Chou,Q.Zhang,G.E.Fryxell and G.Cao,Adv.Mater.,2007,19,2588;(b )Q.Zhang,T.P.Chou,B.Russo,S.A.Jenekhe and G.Cao,Angew.Chem.,Int.Ed.,2008,47,2402.9(a )S.Ito,S.M.Zakeeruddin,R.Humphry-Baker,P.Liska,R.Charvet,te,M.K.Nazeeruddin,P.P e chy,M.Takata,H.Miura,S.Uchida and M.Gr €a tzel,Adv.Mater.,2006,18,1202;(b )S.Ito,H.Miura,S.Uchida,M.Takata,K.Sumioka,P.Liska,te,P.P e chy and M.Gr €a tzel,mun.,2008,5194.10D.Kuang,S.Uchida,R.Humphry-Baker,S.M.Zakeeruddin and M.Gr €a tzel,Angew.Chem.,Int.Ed.,2008,47,1923.11(a )T.Horiuchi,H.Miura and S.Uchida,mun.,2003,3036;(b )T.Horiuchi,H.Miura,K.Sumioka and S.Uchida,J.Am.Chem.Soc.,2004,126,12218.12(a )H.M.Cheng,H.C.Hsu,S.L.Chen,W.T.Wu,C.C.Kao,L.J.Lin and W.F.Hsieh,J.Cryst.Growth ,2005,277,192;(b )H.M.Cheng,K.F.Lin,H.C.Hsu,C.J.Lin,L.J.Lin and W.F.Hsieh,J.Phys.Chem.B ,2005,109,18385.13(a )D.Jezequel,J.Guenot,N.Jouini and F.Fievet,Mater.Sci.Forum ,1994,152–153,339;(b ) E.W.Seelig, B.Tang,A.Yamilov,H.Cao and R.P.H.Chang,Mater.Chem.Phys.,2003,80,257.14H.Cao,Y.G.Zhao,S.T.Ho,E.W.Seelig,Q.H.Wang and R.P.H.Chang,Phys.Rev.Lett.,1999,82,2278.15T.Dentani,Y.Kubota,K.Funabiki,J.Jin,T.Yoshida,H.Minoura,H.Miura and M.Matsui,New J.Chem.,2009,33,93.16J.E.Kroeze,N.Hirata,S.Koops,Md.K.Nazeeruddin,L.Schmidt-Mende,M.Gr €a tzel and J.R.Durrant,J.Am.Chem.Soc.,2006,128,16376.17(a )J.Bisquert,J.Phys.Chem.B ,2002,106,325;(b )J.Bisquert,Phys.Chem.Chem.Phys.,2003,5,5360;(c )J.Bisquert, A.Zaban,M.Greenshtein and I.Mora-Ser o,J.Am.Chem.Soc.,2004,126,13550;(d )Q.Wang,J.E.Moser and M.Gr €a tzel,J.Phys.Chem.B ,2005,109,14945;(e )Q.Wang,S.Ito,M.Gr €a tzel,F.Fabregat-Santiago,I.Mora-Ser o,J.Bisquert,T.Bessho and H.Imai,J.Phys.Chem.B ,2006,110,25210;(f )M.Adachi,M.Sakamoto,J.Jiu,Y.Ogata and S.Isoda,J.Phys.Chem.B ,2006,110,13872.D o w n l o a d e d b y N a t i o n a l C h i a o T u n g U n i v e r s i t y o n 30 N o v e m b e r 2010P u b l i s h e d o n 30 M a r c h 2010 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 915725E。