湖南省永州市2016年中考数学试题(含解析)
2016年湖南省永州市中考数学试题及参考答案(word解析版)
2016年湖南省永州市中考数学试题及参考答案与解析一、选择题(本大题共有8小题,每小题3分,共24分,每小题只有一个正确的答案)1.12016-的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣20162.不等式组12xx-⎧⎨⎩≥<的解集在数轴上表示正确的是()A.B.C.D.3.下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.1233x x-=D.)221=-5.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.6.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8 B.甲得分的众数是8,乙得分的众数是9 C.甲得分的中位数是9,乙得分的中位数是6 D.甲得分的方差比乙得分的方差小7.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理8.抛物线y=x 2+2x+m ﹣1与x 轴有两个不同的交点,则m 的取值范围是( ) A .m <2 B .m >2 C .0<m≤2 D .m <﹣29.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD10.圆桌面(桌面中间有一个直径为0.4m 的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m ,桌面离地面1m ,若灯泡离地面3m ,则地面圆环形阴影的面积是( )A .0.324πm 2B .0.288πm 2C .1.08πm 2D .0.72πm 2 11.下列式子错误的是( )A .cos40°=sin50°B .tan15°•tan75°=1C .sin 225°+cos 225°=1D .sin60°=2sin30° 12.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=﹣1.其中正确的是( )A .①②B .①③C .②③D .①②③ 二、填空题(本大题共8小题,每小题4分,共32分)13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为 .14.在1,π2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是 . 15.已知反比例函数ky x=的图象经过点A (1,﹣2),则k= . 16.方程组2224x y x y +=⎧⎨+=⎩的解是 .17.化简:()22233442x x xx x x ++÷=-+- .18.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=度.19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为.20.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=;(2)当m=2时,d的取值范围是.三、解答题(本大题共7小题,共79分)213﹣π)0﹣|﹣3+2|22.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?25.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E 是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.26.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC?若存在,求出k的值;若不存在,请说明理由.27.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC上的一点,连接ME,ME与AD交于点O,且S△MOA=S△DOE.①求证:ME是△ABC的面径;②连接AE,求证:MD∥AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)参考答案与解析一、选择题(本大题共12小题,每小题4分,共48分)1.12016-的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣2016【知识考点】倒数;相反数.【思路分析】直接利用相反数的概念以及倒数的定义分析,进而得出答案.【解答过程】解:12016-的相反数是:12016,∵12016×2016=1,∴12016-的相反数的倒数是:2016.故选:C.【总结归纳】此题主要考查了相反数、倒数的定义,正确把握定义是解题关键.。
湖南省永州市中考数学真题试题含解析
湖南省永州市中考数学试卷一、选择题,共10小题,每小题3分,共30分1.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013 B.2014 C.2015 D.2016考点:数轴..分析:数轴上两点间的距离等于表示这两点的数的差的绝对值.解答:解:|﹣1﹣2014|=2015,故A,B两点间的距离为2015,故选:C.点评:本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(3分)(2015•永州)下列运算正确的是()A.a2•a3=a6B.(﹣a+b)(a+b)=b2﹣a2C.(a3)4=a7D.a3+a5=a8考点:平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..分析:A:根据同底数幂的乘法法则判断即可.B:平方差公式:(a+b)(a﹣b)=a2﹣b2,据此判断即可.C:根据幂的乘方的计算方法判断即可.D:根据合并同类项的方法判断即可.解答:解:∵a2•a3=a5,∴选项A不正确;∵(﹣a+b)(a+b)=b2﹣a2,∴选项B正确;∵(a3)4=a12,∴选项C不正确;∵a3+a5≠a8∴选项D不正确.故选:B.点评:(1)此题主要考查了平方差公式,要熟练掌握,应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的a和b可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(4)此题还考查了合并同类项的方法,要熟练掌握.3.(3分)(2015•永州)某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是()A.这组数据的众数是170B.这组数据的中位数是169C.这组数据的平均数是169D.若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为考点:众数;加权平均数;中位数;概率公式..分析:分别利用众数、中位数、平均数及概率的知识求解后即可判断正误;解答:解:A、数据170出现了3次,最多,故众数为170,正确,不符合题意;B、排序后位于中间位置的两数为168和170,故中位数为169,正确,不符合题意;C、平均数为(168+165+168+166+170+170+176+170)÷4=169.125,故错误,符合题意;D、从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为=,故选C.点评:本题考查了众数、加权平均数、中位数及概率公式,解题的关键是能够分别求得有关统计量,难度不大.4.(3分)(2015•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:00考点:一元一次方程的应用..分析:设开幕式当天该景区游客人数饱和的时间约为x点,结合已知条件“从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人”列出方程并解答.解答:解:设开幕式当天该景区游客人数饱和的时间约为x点,则(x﹣8)×(1000﹣600)=2000,解得x=13.即开幕式当天该景区游客人数饱和的时间约为13:00.故选:C.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.(3分)(2015•永州)一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11 B.12 C.13 D.14考点:由三视图判断几何体..分析:从俯视图可得:碟子共有3摞,结合主视图和左视图,可得每摞碟子的个数,相加可得答案.解答:解:由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个,故选:B.点评:本题考查的知识点是简单空间图形的三视图,分析出每摞碟子的个数是解答的关键.6.(3分)(2015•永州)如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()A.45°B.40°C.25°D.20°考点:圆周角定理..分析:先由圆周角定理求出∠A与∠ADB的度数,然后根据三角形外角的性质即可求出∠P的度数.解答:解:∵和所对的圆心角分别为90°和50°,∴∠A=25°,∠ADB=45°,∵∠P+∠A=∠ADB,∴∠P=∠AD B﹣∠P=45°﹣25°=20°.故选D.点评:此题考查了圆周角定理及三角形外角的性质,解题的关键是:熟记并能灵活应用圆周角定理及三角形外角的性质解题.7.(3分)(2015•永州)若不等式组恰有两个整数解,则m的取值范围是()A.A﹣1≤m<0 B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0考点:一元一次不等式组的整数解..分析:先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.解答:解:∵不等式组的解集为m﹣1<x<1,又∵不等式组恰有两个整数解,∴﹣2≤m﹣1<﹣1,解得:﹣1≤m<0恰有两个整数解,故选A.点评:本题考查了解一元一次不等式组,不等式组的解集的应用,解此题的关键是能求出关于m的不等式组,难度适中.8.(3分)(2015•永州)如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.A B2=AD•AC D.=考点:相似三角形的判定..分析:根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.解答:解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.9.(3分)(2015•永州)如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)考点:角平分线的性质..分析:根据角平分线的性质分析,作∠E的平分线,点P到AB和CD的距离相等,即可得到S△PAB=S△PCD.解答:解:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.点评:此题考查角平分线的性质,关键是根据AB=CD和三角形等底作出等高即可.10.(3分)(2015•永州)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数)B.0≤x﹣[x]<1C.[x+y]≤[x]+[y] D.[n+x]=n+[x](n为整数)考点:一元一次不等式组的应用..专题:新定义.分析:根据“定义[x]为不超过x的最大整数”进行计算.解答:解:A、∵[x]为不超过x的最大整数,∴当x是整数时,[x]=x,成立;B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x+y]≤[x]+[y]不成立,D、[n+x]=n+[x](n为整数),成立;故选:C.点评:本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年高考常考的题型.二、填空题,共8小题,每小题3分,共24分11.(3分)(2015•永州)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为0元,0用科学记数法表示为 3.65×108.考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将0用科学记数法表示为3.65×108.故答案为:3.65×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2015•永州)如图,∠1=∠2,∠A=60°,则∠ADC=120 度.考点:平行线的判定与性质..分析:由已知一对内错角相等,利用内错角相等两直线平行得到AB与DC平行,再利用两直线平行同旁内角互补,由∠A的度数即可求出∠ADC的度数.解答:解:∵∠1=∠2,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=60°,∴∠ADC=120°.故答案为:120°点评:本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.13.(3分)(2015•永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x ≥2时,y≤0.考点:待定系数法求一次函数解析式;一次函数的性质..分析:利用待定系数法把点A(0,﹣1),B(1,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式,再解不等式即可.解答:解:∵一次函数y=kx+b的图象经过两点A(0,1),B(2,0),∴,解得:这个一次函数的表达式为y=﹣x+1.解不等式﹣x+1≤0,解得x≥2.故答案为x≥2.点评:本题考查了待定系数法求一次函数解析式,解不等式,把点的坐标代入函数解析式求出解析式是解题的关键.14.(3分)(2015•永州)已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则y1<y3<y2(填y1,y2,y3).考点:反比例函数图象上点的坐标特征..分析:先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.解答:解:∵反比例函数y=(k>0)中k>0,∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣1<0,﹣1<0,∴点A(﹣1,y1)位于第三象限,∴y1<0,∴B(1,y2)和C(2,y3)位于第一象限,∴y2>0,y3>0,∵1<2,∴y2>y3,∴y1<y3<y2.故答案为:y1,y3,y2.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(3分)(2015•永州)如图,在△ABC中,已知∠1=∠2,BE=C D,AB=5,AE=2,则CE= 3 .考点:全等三角形的判定与性质..分析:由已知条件易证△ABE≌△AC D,再根据全等三角形的性质得出结论.解答:解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.点评:本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.16.(3分)(2015•永州)如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为π.考点:扇形面积的计算;坐标与图形性质;旋转的性质..分析:根据点A的坐标(﹣2,0),可得OA=2,再根据含30°的直角三角形的性质可得OB 的长,再根据性质的性质和扇形的面积公式即可求解.解答:解:∵点A的坐标(﹣2,0),∴OA=2,∵△ABO是直角三角形,∠AOB=60°,∴∠OAB=30°,∴OB=OA=1,∴边OB扫过的面积为:=π.故答案为:π.点评:本题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R为圆的半径),或S=lR,l为扇形的弧长,R为半径.17.(3分)(2015•永州)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是A′D,AF ,AE .(填A′D、A′E、A′F)考点:平移的性质;等腰三角形的性质..分析:根据三角形中线的定义,可得答案,根据三角形角平分线的定义,可得答案,三角形高线的定义,可得答案.解答:解:,在等腰△AB C中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是A′D,AF,AE,故答案为:A′D,A′F,A′E.点评:本题考查了平移的性质,平移不改变三角形的中线,三角形的角平分线分角相等,三角形的高线垂直于角的对边.18.(3分)(2015•永州)设a n为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则a1+a2+a3+…+a2013+a2014+a2015= 2 .考点:尾数特征..分析:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,先求出2015÷10的商和余数,再根据商和余数,即可求解.解答:解:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,1+6+1+6+5+6+1+6+1+0=33,2015÷10=201…5,33×201+(1+6+1+6+5)=6633+19=6652.故a1+a2+a3+…+a2013+a2014+a2015=2.故答案为:2.点评:考查了尾数特征,本题关键是得出正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环.三、简单题,共9小题,共76分19.(6分)(2015•永州)计算:cos30°﹣+()﹣2.考点:实数的运算;负整数指数幂;特殊角的三角函数值..专题:计算题.分析:原式第一项利用特殊角的三角函数值计算,第二项化为最简二次根式,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=﹣+4=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)(2015•永州)先化简,再求值:•(m﹣n),其中=2.考点:分式的化简求值..分析:先根据分式混合运算的法则把原式进行化简,再由=2得出m=2n,代入原式进行计算即可.解答:解:原式=•(m﹣n)=,由=2得m=2n,故原式===5.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)(2015•永州)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A 类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.考点:条形统计图;用样本估计总体;扇形统计图..分析:(1)用A类的人数除以它所占的百分比,即可得样本容量;(2)分别计算出D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,即可补全统计图;(3)用2000乘以26%,即可解答.解答:解:(1)20÷20%=100,∴本次抽样调查的样本容量为100.(2)D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,如图所示:(3)2000×26%=520(人).故若该校有2000名学生.估计观看“中国汉字听写大会”节目不喜欢的学生人数为520人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2015•永州)已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.考点:一元二次方程的解;根与系数的关系..分析:把x=﹣1代入已知方程列出关于m的新方程,通过解该方程来求m的值;然后结合根与系数的关系来求方程的另一根.解答:解:设方程的另一根为x2,则﹣1+x2=﹣1,解得x2=0.把x=﹣1代入x2+x+m2﹣2m=0,得(﹣1)2+(﹣1)+m2﹣2m=0,即m(m﹣2)=0,解得m1=0,m2=2.综上所述,m的值是0或2,方程的另一实根是0.点评:本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.23.(8分)(2015•永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E 点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.考点:全等三角形的判定与性质..专题:证明题.分析:(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.解答:(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADE=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△AB C和△EDC中,,∴△ABC≌△EDC(SAS).点评:本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.24.(10分)(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.考点:勾股定理的应用;垂径定理的应用..分析:(1)直接利用直角三角形中30°所对的边等于斜边的一半求出即可;(2)根据题意可知,图中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂径定理及勾股定理解答即可.解答:解:(1)过点A作AD⊥ON于点D,∵∠NOM=30°,AO=80m,∴AD=40m,即对学校A的噪声影响最大时卡车P与学校A的距离为40米;(2)由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=800m,∵在Rt△AOD中,∠AOB=30°,∴AD=OA=×800=400m,在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD===30m,故BC=2×30=60米,即重型运输卡车在经过BD时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即=30米/分钟,∴重型运输卡车经过BD时需要60÷30=2(分钟).答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为2分钟.点评:此题考查的是垂径定理与勾股定理在实际生活中的运用,解答此题的关键是卡车在哪段路上运行时对学校产生影响.25.(10分)(2015•永州)如图,已知△AB C内接于⊙O,且AB=AC,直径AD交BC于点E,F 是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.考点:垂径定理;勾股定理;菱形的判定..分析:(1)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据等腰三角形的性质即可证明;(2)菱形,证明△BFE≌△CDE,得到BF=DC,可知四边形BFCD是平行四边形,易证BD=CD,可证明结论;(3)设DE=x,则根据CE2=DE•AE列方程求出DE,再用勾股定理求出CD.解答:(1)证明:∵AD是直径,∴∠ABD=∠ACD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,∴△BED≌△CEF,∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∴CE2=DE•AE,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.点评:本题主要考查了圆的有关性质:垂径定理、圆周角定理,三角形全等的判定与性质,菱形的判定与性质,勾股定理,三角形相似的判定与性质,熟悉圆的有关性质是解决问题的关键.26.(10分)(2015•永州)已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,).R(1,1)是抛物线对称轴l上的一点.(1)求抛物线y=ax2+bx+c的解析式;(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.考点:二次函数综合题..专题:计算题.分析:(1)设顶点式y=a(x﹣1)2,然后把(0,)代入求出a即可;(2)根据二次函数图象上点的坐标,设P(x,(x﹣1)2),易得PM=(x﹣1)2+1,然后利用两点的距离公式计算PR,得到PR2=(x﹣1)2+[(x﹣1)2﹣1]2,接着根据完全平方公式变形可得PR2=[(x﹣1)2+1]2,则PR=(x﹣1)2+1,所以PR=PM,于是可判断点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)根据(2)的结论得到得QN=QR,PR=PM,则PQ=PR=QR=PM+QN,再证明EF为梯形PMNQ的中位线,所以EF=(QN+PM),则EF=PQ=EQ=EP,根据点与圆的位置关系得到点F在以PQ为直径的圆上,则根据圆周角定理得∠PFQ=90°,即有PF⊥QF.解答:(1)解:设抛物线解析式为y=a(x﹣1)2,把(0,)代入得a=,所以抛物线解析式为y=(x﹣1)2;(2)证明:如图1,设P(x,(x﹣1)2),则PM=(x﹣1)2+1,∵PR2=(x﹣1)2+[(x﹣1)2﹣1]2=(x﹣1)2+[(x﹣1)]4﹣(x﹣1)2+1=[(x ﹣1)]4+(x﹣1)2+1=[(x﹣1)2+1]2,∴PR=(x﹣1)2+1,∴PR=PM,即点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)证明:由(2)得QN=QR,PR=PM,∴PQ=PR=QR=PM+QN,∵EF⊥MN,QN⊥MN,PM⊥MN,而E为线段PQ的中点,∴EF为梯形PMNQ的中位线,∴EF=(QN+PM),∴EF=PQ,∴EF=EQ=EP,∴点F在以PQ为直径的圆上,∴∠PFQ=90°,∴PF⊥QF.点评:本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征和梯形的中位线性质;理解坐标与图形性质;会利用待定系数法求二次函数解析式和利用两点间的距离公式计算线段的长.要充分运用(2)的结论解决(3)中的问题.27.(10分)(2015•永州)问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.考点:圆的综合题..专题:探究型.分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN 是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.解答:解:(1)如图一,∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;(2)如图一,∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,∴MN=O P=2,∴MN的长为定值,该定值为2;(3)①如图二,∵P1是的中点,∠BOC=120°∴∠COP1=∠BOP1=60°,∠MP1N=60°.∵P1M⊥OC,P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.∵P1M=OP1•sin∠MOP1=2×sin60°=,∴MN=;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,则有∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中,sin∠MQN=,∴MN=QN•sin∠MQN,∴MN=OP•s in∠MQN=2×sin60°=2×=,∴MN是定值.(4)由(3)②得MN=OP•sin∠MQN=2sin∠MQN.当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.点评:本题主要考查了圆内接四边形的判定定理、圆周角定理、在同圆中弧与圆心角的关系、矩形的判定与性质、等边三角形的判定与性质、三角函数、角平分线的性质等知识,推出MN=OP•sin∠MQN是解决本题的关键.。
湖南省永州市2016年中考试题(数学-解析版)
一、选择题:本大题共12小题,每小题4分,共48分1.﹣的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣20162.不等式组的解集在数轴上表示正确的是()A.B.C.D.3.下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣15.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.6.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小7.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理8.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣29.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD10.圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm211.下列式子错误的是()A.cos40°=sin50° B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°12.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①② B.①③ C.②③ D.①②③二、填空题:本大题共8小题,每小题4分,共32分13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为.14.在1,π,,2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是.15.已知反比例函数y=的图象经过点A(1,﹣2),则k=.16.方程组的解是.17.化简:÷=.18.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=度.19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为.20.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=;(2)当m=2时,d的取值范围是.三、解答题:本大题共7小题,共79分21.计算:﹣(3﹣π)0﹣|﹣3+2|22.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?25.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.26.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx 与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.27.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC上的一点,连接ME,ME与AD交于点O,且S△M O A=S△D O E.①求证:ME是△ABC的面径;②连接AE,求证:MD∥AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)答案一、选择题:本大题共12小题,每小题4分,共48分1.﹣的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣2016【考点】倒数;相反数.【分析】直接利用相反数的概念以及倒数的定义分析,进而得出答案.【解答】解:﹣的相反数是:,∵×2016=1,∴﹣的相反数的倒数是:2016.故选:C.2.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:.故选A .3.下列图案中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、是轴对称图形.也是中心对称图形,故此选项正确;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项错误.故选:A .4.下列运算正确的是( )A .﹣a •a 3=a 3B .﹣(a 2)2=a 4C .x ﹣x=D .(﹣2)(+2)=﹣1【考点】二次根式的混合运算;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数的幂的乘法法则、幂的乘方、合并同类项法则,以及平方差公式即可判断.【解答】解:A 、﹣a •a 3=﹣a 4,故选项错误;B、﹣(a2)2=﹣a4,选项错误;C、x﹣x=x,选项错误;D、(﹣2)(+2)=()2﹣22=3﹣4=﹣1,选项正确.故选D.5.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据图形的三视图的知识,即可求得答案.【解答】解:该实物图的主视图为.故选B.6.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小【考点】方差;算术平均数;中位数;众数.【分析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【解答】解:A、==8,==8,故此选项正确;B、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D、∵=×=×2=0.4,=×=×8=1.6,∴<,故D正确;故选:C.7.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【考点】圆的认识;线段的性质:两点之间线段最短;垂线段最短;三角形的稳定性.【分析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.【解答】解:A、把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,正确;B、木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,故错误;C、将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,正确;D、将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确,故选B.8.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣2【考点】抛物线与x轴的交点.【分析】由抛物线与x轴有两个交点,则△=b2﹣4ac>0,从而求出m的取值范围.【解答】解:∵抛物线y=x2+2x+m﹣1与x轴有两个交点,∴△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故选A.9.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【考点】全等三角形的判定.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.10.圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm2【考点】中心投影.【分析】先根据AC⊥OB,BD⊥OB可得出△AOC∽△BOD,由相似三角形的对应边成比例可求出BD的长,进而得出BD′=0.3m,再由圆环的面积公式即可得出结论.【解答】解:如图所示:∵AC⊥OB,BD⊥OB,∴△AOC∽△BOC,∴=,即=,解得:BD=0.9m,同理可得:AC′=0.2m,则BD′=0.3m,∴S圆环形阴影=0.92π﹣0.32π=0.72π(m2).故选:D.11.下列式子错误的是()A.cos40°=sin50° B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°【考点】互余两角三角函数的关系;同角三角函数的关系;特殊角的三角函数值.【分析】根据正弦和余弦的性质以及正切、余切的性质即可作出判断.【解答】解:A、sin40°=sin(90°﹣50°)=cos50°,式子正确;B、tan15°•tan75°=tan15°•cot15°=1,式子正确;C、sin225°+cos225°=1正确;D、sin60°=,sin30°=,则sin60°=2sin30°错误.故选D.12.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①② B.①③ C.②③ D.①②③【考点】实数的运算.【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=,所以此选项正确;故选B.二、填空题:本大题共8小题,每小题4分,共32分13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为 3.9×109.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3900000000=3.9×109,故答案为:3.9×109.14.在1,π,,2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是.【考点】概率公式.【分析】首先找出大于2的数字个数,进而利用概率公式求出答案.【解答】解:∵在1,π,,2,﹣3.2这五个数中,只有π这个数大于2,∴随机取出一个数,这个数大于2的概率是:.故答案为:.15.已知反比例函数y=的图象经过点A(1,﹣2),则k=﹣2.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(1,﹣2)代入y=求出k的值即可.【解答】解:∵反比例函数y=的图象经过点A(1,﹣2),∴﹣2=,解得k=﹣2.故答案为:﹣2.16.方程组的解是.【考点】二元一次方程组的解.【分析】代入消元法求解即可.【解答】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y)+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.17.化简:÷=.【考点】分式的乘除法.【分析】将分子、分母因式分解,除法转化为乘法,再约分即可.【解答】解:原式=•=,故答案为:.18.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=35度.【考点】圆周角定理.【分析】先根据等腰三角形的性质求出∠ABO的度数,再由平行线的性质求出∠BOC的度数,根据圆周角定理即可得出结论.【解答】解:∵∠AOB=40°,OA=OB,∴∠ABO==70°.∵直径CD∥AB,∴∠BOC=∠ABO=70°,∴∠BAC=∠BOC=35°.故答案为:35.19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x 的增大而减小,则k所有可能取得的整数值为﹣1.【考点】一次函数图象与系数的关系.【分析】由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,解得:﹣<k<0.∵k为整数,∴k=﹣1.故答案为:﹣1.20.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=1;(2)当m=2时,d的取值范围是0<d<3.【考点】直线与圆的位置关系.【分析】根据直线与圆的位置关系和直线与圆的交点个数以及命题中的数据分析即可得到答案.【解答】解:(1)当d=3时,∵3>2,即d>r,∴直线与圆相离,则m=1,故答案为:1;(2)当m=2时,则圆上到直线l的距离等于1的点的个数记为2,∴直线与圆相交或相切或相离,∴0<d<3,∴d的取值范围是0<d<3,故答案为:0<d<3.三、解答题:本大题共7小题,共79分21.计算:﹣(3﹣π)0﹣|﹣3+2|【考点】实数的运算;零指数幂.【分析】直接利用立方根的性质化简再结合零指数幂的性质以及绝对值的性质化简求出答案.【解答】解:﹣(3﹣π)0﹣|﹣3+2|=2﹣1﹣1=0.22.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了50名学生,a=37.5%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为36度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由赞同的人数20,所占40%,即可求出样本容量,进而求出a的值;(2)由(1)可知抽查的人数,即可求出无所谓态度的人数,即可将条形统计图补充完整;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分数,用样本估计总体的思想计算即可.【解答】解:(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=×100%=37.5%;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人).故答案为(1)50;37.6;(3)36.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;(2)先证明△ABE是等边三角形,得出AE=AB=4,AF=EF=2,由勾股定理求出BF,由AAS证明△ADF≌△ECF,得出△ADF的面积=△ECF的面积,因此平行四边形ABCD的面积=△ABE的面积=AE•BF,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”,即可的出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.25.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.【考点】切线的判定与性质.【分析】(1)连接OC,由弦切角定理和切线的性质得出∠CBE=∠A,∠ABD=90°,由圆周角定理得出∠ACB=90°,得出∠ACO+∠BCO=90°,∠BCD=90°,由直角三角形斜边上的中线性质得出CE=BD=BE,得出∠BCE=∠CBE=∠A,证出∠ACO=∠BCE,得出∠BCE+∠BCO=90°,得出CE⊥OC,即可得出结论;(2)由勾股定理求出AB,再由三角函数得出tanA===,求出BD=AB=,即可得出CE的长.【解答】(1)证明:连接OC,如图所示:∵BD是⊙O的切线,∴∠CBE=∠A,∠ABD=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∠BCD=90°,∵E是BD中点,∴CE=BD=BE,∴∠BCE=∠CBE=∠A,∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,即∠OCE=90°,CE⊥OC,∴CE是⊙O的切线;(2)解:∵∠ACB=90°,∴AB===2,∵tanA====,∴BD=AB=,∴CE=BD=.26.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx 与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)令抛物线解析式中x=0求出y值即可得出C点的坐标,有点(﹣1,0)、(3,0)利用待定系数法即可求出抛物线的解析式;(2)将正比例函数解析式代入抛物线解析式中,找出关于x的一元二次方程,根据根与系数的关系即可得出“x A+x B=2+k,x A•x B=﹣3”,结合点O为线段AB的中点即可得出x A+x B=2+k=0,由此得出k的值,将k的值代入一元二次方程中求出x A、x B,在代入一次函数解析式中即可得出点A、B的坐标;(3)假设存在,利用三角形的面积公式以及(2)中得到的“x A+x B=2+k,x A•x B=﹣3”,即可得出关于k的一元二次方程,结合方程无解即可得出假设不成了,从而得出不存在满足题意的k值.【解答】解:(1)令抛物线y=ax2+bx﹣3中x=0,则y=﹣3,∴点C的坐标为(0,﹣3).∵抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,∴有,解得:,∴此抛物线的解析式为y=x2﹣2x﹣3.(2)将y=kx代入y=x2﹣2x﹣3中得:kx=x2﹣2x﹣3,整理得:x2﹣(2+k)x﹣3=0,∴x A+x B=2+k,x A•x B=﹣3.∵原点O为线段AB的中点,∴x A+x B=2+k=0,解得:k=﹣2.当k=﹣2时,x2﹣(2+k)x﹣3=x2﹣3=0,解得:x A=﹣,x B=.∴y A=﹣2x A=2,y B=﹣2x B=2.故当原点O为线段AB的中点时,k的值为﹣2,点A的坐标为(﹣,2),点B的坐标为(,﹣2).(3)假设存在.由(2)可知:x A+x B=2+k,x A•x B=﹣3,S△A B C=OC•|x A﹣x B|=×3×=,∴(2+k)2﹣4×(﹣3)=10,即(2+k)2+2=0.∵(2+k)2非负,无解.故假设不成了.所以不存在实数k使得△ABC的面积为.27.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC上的一点,连接ME,ME与AD交于点O,且S△M O A=S△D O E.①求证:ME是△ABC的面径;②连接AE,求证:MD∥AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)【考点】圆的综合题;等边三角形的性质.【分析】(1)根据等腰三角形三线合一即可证明,利用直角三角形30°性质,即可求出AD.(2)根据相似三角形性质面积比等于相似比的平方,即可解决问题.(3)如图三中,作MN⊥AE于N,DF⊥AE于F,先证明MN=DF,推出四边形MNFD是平行四边形即可.(4)如图四中,作MF⊥BC于F,设BM=x,BE=y,求出EM,利用不等式性质证明ME≥即可解决问题.【解答】解:(1)如图一中,∵AB=AC=BC=2,AD⊥BC,∴BD=DC,∴S△A B D=S△A D C,∴线段AD是△ABC的面径.∵∠B=60°,∴sin60°=,∴=,∴AD=.(2)如图二中,∵ME∥BC,且ME是△ABC的一条面径,∴△AME∽△ABC,=,∴=,∴ME=.(3)如图三中,作MN⊥AE于N,DF⊥AE于F.∵S△M O A=S△D O E,∴S△A E M=S△A E D,∴•AE•MN=•AE•DF,∴MN=DF,∵MN∥DF,∴四边形MNFD是平行四边形,∴DM∥AE.(4)如图四中,作MF⊥BC于F,设BM=x,BE=y,∵DM∥AE,∴=,∴=,∴xy=2,在RT△MBF中,∵∠MFB=90°,∠B=60°,BM=x,∴BF=x,MF=x,∴ME===≥,∴ME≥,∵ME是等边三角形面径,AD也是等边三角形面积径,∴等边三角形ABC的面径长l的取值范围≤l≤.。
永州历届中考数学试卷真题
永州历届中考数学试卷真题题目一:选择题(共15小题,每小题2分,满分30分)1. 若a<b<c,则a²+b²< _______。
A. a²B. c²C. a+cD. b²2. 在△ABC中,已知∠B=90°,∠A=30°,AB=3,则BC等于__________。
A. 2√3B. √3C. 3√3D. 63. 有一长方形,宽为10cm,面积为100cm²,那么长的长是_____________。
A. 20cmB. 15cmC. 10cmD. 5cm4. 计算 a=(-1/2)×1.5×3-(-3/2)×4.5。
A. -7.5B. -3.75C. 7.5D. 3.755. 已知15×13=195,则23×17=___________。
A. 320B. 391C. 392D. 4006. 下列四个除法,其商是25,被除数大小由小到大排列是___________。
A. 100÷4B. 200÷2C. 125÷5D. 75÷37. 若a:b=2:3,b:c=4:5,则a:c=_________。
A. 8:15B. 2.5:3.5C. 12:10D. 25:408. 0.8%相当于百分数___。
A. 0.008%B. 0.08%C. 8%D. 80%9. 甲乙两组同学参观博物馆,甲组比乙组少了1/5,如果甲组有24人,那么乙组有_______人。
A. 20B. 28C. 30D. 4810. 一个矩形的长宽比为3:2,如果宽是10cm,则长是_______。
A. 5cmB. 20cmC. 12cmD. 15cm11. 一块长方形的面积是32,宽度是 5/4,则其长是_________。
A. 8B. 10C. 20D. 2512. 父亲和兄弟俩三人所走的路程比为1:2:3,若父亲走了9km,那么兄弟走了_______km。
湖南省永州市中考数学试卷及答案
(3)如图③所示,在②的条件下,一只蚂蚁从 点出发沿圆锥的侧面爬行一周到达母线 上的一点,求蚂蚁爬行的最短路程.
25.(本小题10分)如图,在平面直角坐标系中,点 的坐标分别为 点 在 轴上.已知某二次函数的图象经过 、 、 三点,且它的对称轴为直线 点 为直线 下方的二次函数图象上的一个动点(点 与 、 不重合),过点 作 轴的平行线交 于点
A. B. C. D.
13.下列命题是真命题的是( )
A.对角线相等且互相垂直的四边形是菱形
B.平移不改变图形的形状和大小
C.对角线互相垂直的梯形是等腰梯形
D.相等的弦所对的弧相等
14.为了了解某校初三学生体育测试成绩,从中随机抽取了50名学生的体育测试成绩如下表:
成绩
(分)
15
18
19
20
21
22
7.若实数 满足 则 的值为.
8.某校初三(一)班课外活动小组为了测得学校旗杆的高度,他们在离旗杆6米的 处,用高为1.5米的仪器测得旗杆顶部 处的仰角为60°,如图所示,则旗杆的高度为米.(已知 结果精确到0.1米)
二、选择题(本大题共8个小题,每小题3分,共24分.每小题只有一个正确选项,请将正确选项的代号填涂在答题卡的答案栏内.)
9.C 10.D 11.C 12.A 13.B 14.A 15.D 16.B
三、解答题
17. 解:
= 3分
= 5分
= 6分
18.解:
= 1分
= 3分
= 4分
当 时,原式= 6分
湖南省永州市中考数学试卷
湖南省永州市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题(共12小题). (共11题;共22分)1. (2分) (2016七上·青山期中) 下列说法正确的个数有()①若干个不为0的有理数相乘,积的符号由负因数的个数决定;②两个四次多项式的和一定是四次多项式;③若a大于b,则a的倒数小于b的倒数;④若xyz<0,则的值为0或﹣4.A . 1个B . 2个C . 3个D . 4个2. (2分) (2019九上·包河月考) cos30°=()A .B .C .D .3. (2分) (2017七下·湖州期中) 某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为()A . 0.1×10﹣8sB . 0.1×10﹣9sC . 1×10﹣8sD . 1×10﹣9s4. (2分)由5个完全相同的正方体组成的立体图形如图所示,则它的俯视图是()A .B .C .D .5. (2分) (2019七上·沛县期末) 下列各式中,正确的是()A .B .C .D .6. (2分) (2019八上·新昌期中) 下列命题是假命题的是()A . 有两个角为60°的三角形是等边三角形B . 等角的补角相等C . 角平分线上的点到角两边的距离相等D . 同位角相等7. (2分) (2019九上·郑州月考) 甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表第一次第二次第三次第四次第五次第六次甲9867810乙879788对他们的训练成绩作如下分析,其中说法正确的是()A . 他们训练成绩的平均数相同B . 他们训练成绩的中位数不同C . 他们训练成绩的众数不同D . 他们训练成绩的方差不同8. (2分)如图,DE是△ABC的中位线,DE=2cm,AB+AC=14cm,则梯形DBCE的周长是()A . 13cmB . 18cmC . 10cmD . 上述答案都不对9. (2分)如图a是长方形纸条,∠DEF=25°,将纸条沿EF折叠成图b,再沿BF折叠成图c,则 CFE的度数是()A . 120°B . 110°C . 105°D . 100°10. (2分)(2017·岱岳模拟) 一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A . 10 海里/小时B . 30海里/小时C . 20 海里/小时D . 30 海里/小时11. (2分) (2017九上·莒南期末) 由二次函数y=2(x﹣3)2+1,可知()A . 其图象的开口向下B . 其图象的对称轴为直线x=﹣3C . 其最小值为1D . 当x<3时,y随x的增大而增大二、填空题:本大题共6小题,每小题3分,共18分. (共6题;共6分)12. (1分) (2017七上·柯桥期中) “早穿皮袄午穿纱”这句民谣形象地描绘了我国新疆奇妙的气温变化现象。
【初中数学】湖南省永州市2016年中考数学模拟试卷(解析版) 人教版
湖南省永州市2016年中考数学模拟试卷一、选择题(本大题共有10小题,每小题4分,共40分,每小题只有一个正确的答案,请把答案填在答题卡中对应题号的表格内)1.|﹣2|的值等于()A.2 B.﹣C.D.﹣2【考点】绝对值.【分析】直接根据绝对值的意义求解.【解答】解:|﹣2|=2.故选A.2.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于()A.18°B.36°C.45°D.54°【考点】平行线的性质.【分析】根据角平分线的定义求出∠BCD,再根据两直线平行,内错角相等可得∠B=∠BCD.【解答】解:∵CE平分∠BCD,∠DCE=18°,∴∠BCD=2∠DCE=2×18°=36°,∵AB∥CD,∴∠B=∠BCD=36°.故选B.3.不等式2x﹣3<1的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先解不等式得到x<2,用数轴表示时,不等式的解集在2的左边且不含2,于是可判断D选项正确.【解答】解:2x<4,解得x<2,用数轴表示为:.故选D.4.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.5.若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1x2的值是()A.﹣2 B.﹣3 C.2 D.3【考点】根与系数的关系.【分析】由“x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=”可得x1x2=,套入数据即可得出结论.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,∴x1x2===﹣3.故选B.6.在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据反比例函数的性质可得:函数的图象在第一三象限,由一次函数与系数的关系可得函数y=x﹣1的图象在第一三四象限,进而选出答案.【解答】解:函数中,k=1>0,故图象在第一三象限;函数y=x﹣1的图象在第一三四象限,故选:C.7.下列计算正确的是()A.a3÷a2=a3•a﹣2 B.C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;完全平方公式;负整数指数幂;二次根式的性质与化简.【分析】根据合并同类项的法则、同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a3÷a2=a3•a﹣2,计算正确,故本选项正确;B、=|a|,计算错误,故本选项错误;C、2a2+a2=3a2,计算错误,故本选项错误;D、(a﹣b)2=a2﹣2ab+b2,计算错误,故本选项错误;故选A.8.为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:169141112101681719则这组数据的中位数和极差分别是()A.13,16 B.14,11 C.12,11 D.13,11【考点】极差;中位数.【分析】根据中位数及极差的定义,结合所给数据即可作出判断.【解答】解:将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,中位数为:13;极差=19﹣8=11.故选D.9.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2<6,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3>4,能组成三角形,故此选项正确;故选:D.10.若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是()A.B.﹣C.1 D.﹣1【考点】一次函数图象上点的坐标特征.【分析】利用待定系数法代入正比例函数y=﹣x可得m的值.【解答】解:∵点A(﹣2,m)在正比例函数y=﹣x的图象上,∴m=﹣×(﹣2)=1,故选:C.二、填空题(本大题共6小题,每小题4分,共24分,请把答案填在答题卡中对应题号后的横线上)11.我国南海面积约为350万平方千米,这个数用科学记数法表示为 3.5×106平方千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将350万用科学记数法表示为:3.5×106.故答案为3.5×10612.计算: +(﹣1)﹣1+(﹣2)0=2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别进行二次根式的化简、负整数指数幂、零指数幂的运算,然后合并即可得出答案.【解答】解:原式=2﹣1+1=2.故答案为:2.人成绩的平均数为 3.1.【分析】利用加权平均数的计算方法列式计算即可得解.【解答】解:×(5×3+4×1+3×2+2×2+1×2)=×(15+4+6+4+2)=×31=3.1.所以,这10人成绩的平均数为3.1.故答案为:3.1.14.如图是某个几何体的三视图,该几何体是三棱柱.【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故答案为:三棱柱.15.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是18°.【考点】等腰三角形的性质.【分析】根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故答案为:18°.16.若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为0或﹣1.【考点】抛物线与x轴的交点.【分析】令y=0,则关于x的方程kx2+2x﹣1=0只有一个根,所以k=0或根的判别式△=0,借助于方程可以求得实数k的值.【解答】解:令y=0,则kx2+2x﹣1=0.∵关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,∴关于x的方程kx2+2x﹣1=0只有一个根.①当k=0时,2x﹣1=0,即x=,∴原方程只有一个根,∴k=0符合题意;②当k≠0时,△=4+4k=0,解得,k=﹣1.综上所述,k=0或﹣1.故答案为:0或﹣1.三、解答题(本大题共有9小题,共86分,请把解答过程或证明步骤写在答题卡中对应题号内)17.解方程:=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6+6=x+3,解得:x=3,经检验x=3是增根,原方程无解.18.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】利用等腰三角形的性质得到∠B=∠C,然后证明△ABD≌△ACE即可证得结论.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.19.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共3吨;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?【考点】条形统计图;扇形统计图.【分析】(1)根据D类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图;(2)求得C组所占的百分比,即可求得C组的垃圾总量;(3)首先求得可回收垃圾量,然后求得塑料颗粒料即可;【解答】解:(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,故B类垃圾共有50×30%=15吨,故统计表为:(2)∵C组所占的百分比为:1﹣10%﹣30%﹣54%=6%,∴有害垃圾为:50×6%=3吨;(3)(吨),答:每月回收的塑料类垃圾可以获得378吨二级原料.20.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)根据题意画出△ABC关于y轴对称的△A1B1C1即可;(2)根据题意画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中扫过的面积为扇形BCC2的面积,求出即可.【解答】解:(1)如图所示,画出△ABC关于y轴对称的△A1B1C1;(2)如图所示,画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中所扫过得面积S==.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用-方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.【考点】平行四边形的判定与性质;含30度角的直角三角形;勾股定理.【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【解答】证明:(1)在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=.又∵CE=BC,∴DF=CE,且DF∥CE,∴四边形CEDF是平行四边形;(2)解:如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=CD=2,DH=2.在▱CEDF中,CE=DF=AD=3,则EH=1.∴在Rt△DHE中,根据勾股定理知DE==.售价如表所示:(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【解答】解:(1)设商场应购进A型台灯x盏,则B型台灯为盏,根据题意得,30x+50=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.24.如图,△ABC 内接于⊙O ,∠B=60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP=AC .(1)求证:PA 是⊙O 的切线;(2)求证:AC 2=CO •CP ;(3)若PD=,求⊙O 的直径.【考点】相似三角形的判定与性质;切线的判定.【分析】(1)连结OA 、AD ,如图,利用圆周角定理得到∠CAD=90°,∠ADC=∠B=60°,则∠ACD=30°,再利用AP=AC 得到∠P=∠ACD=30°,接着根据圆周角定理得∠AOD=2∠ACD=60°,然后根据三角形内角和定理可计算出∠OAP=90°,于是根据切线的判定定理可判断AP 与⊙O 相切;(2)通过△ACO ∽△PCA ,得到=,由于AC=AP 于是得到结论;(3)连接AD ,证得△AOD 是等边三角形,得到∠OAD=60°,求得AD=PD=,得到OD=,即可得到结论.【解答】(1)证明:连结OA 、AD ,如图,∵CD 为直径,∴∠CAD=90°,∵∠ADC=∠B=60°,∴∠ACD=30°,∵AP=AC ,∴∠P=∠ACD=30°,∵∠AOD=2∠ACD=60°,∴∠OAP=180°﹣60°﹣30°=90°,∴OA ⊥PA ,∴AP 与⊙O 相切;(2)证明:∵∠P=∠ACP=∠CAO=30°,∴△ACO ∽△PCA ,∴=,∵AC=AP∴AC 2=CO .CP ;(3)解:连接AD ,∵AO=DO ,∠ADC=60°,∴△AOD 是等边三角形,∴∠OAD=60°,∴∠PAD=30°,∴∠P=∠PAD,∴AD=PD=,∴OD=,∴⊙O的直径CD=2.25.已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等.(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(﹣3,m),求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G 有公共点时,求n的取值范围.【考点】二次函数综合题;解一元一次方程;根的判别式;一次函数图象上点的坐标特征;平移的性质.【分析】(1)把x=0和x=2代入得出关于t的方程,求出t即可;(2)把A的坐标代入抛物线,即可求出m,把A的坐标代入直线,即可求出k;(3)求出点B、C间的部分图象的解析式是y=﹣(x﹣3)(x+1),得出抛物线平移后得出的图象G的解析式是y=﹣(x﹣3+n)(x+1+n),﹣n﹣1≤x≤3﹣n,直线平移后的解析式是y=4x+6+n,若两图象有一个交点时,得出方程4x+6+n=﹣(x﹣3+n)(x+1+n)有两个相等的实数解,求出判别式△=6n=0,求出的n的值与已知n>0相矛盾,得出平移后的直线与抛物线有两个公共点,设两个临界的交点为(﹣n﹣1,0),(3﹣n,0),代入直线的解析式,求出n的值,即可得出答案.【解答】(1)解:∵二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等,∴代入得:0+0+=4(t+1)+4(t+2)+,解得:t=﹣,∴y=(﹣+1)x2+2(﹣+2)x+=﹣x2+x+,∴二次函数的解析式是y=﹣x2+x+.(2)解:把A(﹣3,m)代入y=﹣x2+x+得:m=﹣×(﹣3)2﹣3+=﹣6,即A(﹣3,﹣6),代入y=kx+6得:﹣6=﹣3k+6,解得:k=4,即m=﹣6,k=4.(3)解:由题意可知,点B、C间的部分图象的解析式是y=﹣x2+x+=﹣(x2﹣2x﹣3)=﹣(x﹣3)(x+1),﹣1≤x≤3,则抛物线平移后得出的图象G的解析式是y=﹣(x﹣3+n)(x+1+n),﹣n﹣1≤x≤3﹣n,此时直线平移后的解析式是y=4x+6+n,如果平移后的直线与平移后的二次函数相切,则方程4x+6+n=﹣(x﹣3+n)(x+1+n)有两个相等的实数解,即﹣x2﹣(n+3)x﹣n2﹣=0有两个相等的实数解,判别式△=[﹣(n+3)]2﹣4×(﹣)×(﹣n2﹣)=6n=0,即n=0,∵与已知n>0相矛盾,∴平移后的直线与平移后的抛物线不相切,∴结合图象可知,如果平移后的直线与抛物线有公共点,则两个临界的交点为(﹣n﹣1,0),(3﹣n,0),则0=4(﹣n﹣1)+6+n,n=,0=4(3﹣n)+6+n,n=6,即n的取值范围是:≤n≤6.。
2006—2019永州市中考数学试卷含详细解答(历年真题)
2019年湖南省永州市中考数学试卷一、选择题(每小题4分,本大题共10个小题,每个小题只有一个正确选项,请将正确的选项涂填到答题卡上.每小题4分,共40分)1.(4分)2-的绝对值为( )A .12-B .12C .2-D .22.(4分)改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是( )A .B .C .D .3.(4分)2019年“五一”假期期间,我市共接待国内、外游客140.42万人次,实现旅游综合收入8.94亿元,则“旅游综合收入”用科学记数法表示正确的是( )A .61.404210⨯B .514.04210⨯C .88.9410⨯D .90.89410⨯4.(4分)某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是( )A .B .C .D .5.(4分)下列运算正确的是( )A .235a a a +=B .325()a a =C .222()a b a b =D 6.(4分)现有一组数据:1,4,3,2,4,x .若该组数据的中位数是3,则x 的值为( )A .1B .2C .3D .47.(4分)下列说法正确的是( )A .有两边和一角分别相等的两个三角形全等B .有一组对边平行,且对角线相等的四边形是矩形C .如果一个角的补角等于它本身,那么这个角等于45︒D .点到直线的距离就是该点到该直线的垂线段的长度8.(4分)如图,四边形ABCD 的对角线相交于点O ,且点O 是BD 的中点,若5AB AD ==,8BD =,ABD CDB ∠=∠,则四边形ABCD 的面积为( )A .40B .24C .20D .159.(4分)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比::::2:3:4:3:3a b c d e =(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为( )A .甲B .乙C .丙D .丁10.(4分)若关于x 的不等式组26040x m x m -+<⎧⎨->⎩有解,则在其解集中,整数的个数不可能是( )A .1B .2C .3D .4二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内.每小题4分,共32分)11.(4分)分解因式:221x x ++= .12.(4分)方程211x x=-的解为x = .13.(4x 取值范围是 .14.(4分)下表是甲、乙两名同学近五次数学测试(满分均为100分)的成绩统计表:根据上表数据,成绩较好且比较稳定的同学是 .15.(4分)已知60AOB ∠=︒,OC 是AOB ∠的平分线,点D 为OC 上一点,过D 作直线DE OA ⊥,垂足为点E ,且直线DE 交OB 于点F ,如图所示.若2DE =,则DF = .16.(4分)如图,已知点F 是ABC ∆的重心,连接BF 并延长,交AC 于点E ,连接CF 并延长,交AB 于点D ,过点F 作//FG BC ,交AC 于点G .设三角形EFG ,四边形FBCG 的面积分别为1S ,2S ,则12:S S = .17.(4分)如图,直线4y x =-与双曲线3y x=交于A ,B 两点,过B 作直线BC y ⊥轴,垂足为C ,则以OA 为直径的圆与直线BC 的交点坐标是 .18.(4分)我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和;图二是二项和的乘方()n a b +的展开式(按b 的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将15()s x +的展开式按x 的升幂排列得:1521501215()s x a a x a x a x +=+++⋯+. 依上述规律,解决下列问题:(1)若1s =,则2a = ;(2)若2s =,则01215a a a a +++⋯+= .三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程.共78分)19.(8分)计算:2019(1)sin 60(3)-+︒--.20.(8分)先化简,再求值:22111a a a a a a a ---+-,其中2a =. 21.(8分)为了测量某山(如图所示)的高度,甲在山顶A 测得C 处的俯角为45︒,D 处的俯角为30︒,乙在山下测得C ,D 之间的距离为400米.已知B ,C ,D 在同一水平面的同一直线上,求山高AB . 1.414≈ 1.732)22.(10分)在一段长为1000的笔直道路AB 上,甲、乙两名运动员均从A 点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A 点的距离y (米)与其出发的时间x (分钟)的函数图象如图所示,乙的速度是150米分钟,且当乙到达B 点后立即按原速返回.(1)当x为何值时,两人第一次相遇?(2)当两人第二次相遇时,求甲的总路程.23.(10分)如图,已知O是ABC∆的外接圆,且BC为O的直径,在劣弧AC上取一点D,使CD AB∆,连接CE.=,将ADC∆沿AD对折,得到ADE(1)求证:CE是O的切线;(2)若CE=,劣弧CD的弧长为π,求O的半径.24.(10分)如图,已知抛物线经过两点(3,0)A-,(0,3)B,且其对称轴为直线1x=-.(1)求此抛物线的解析式;(2)若点P是抛物线上点A与点B之间的动点(不包括点A,点)B,求PAB∆的面积的最大值,并求出此时点P的坐标.25.(12分)某种机器使用若干年后即被淘汰,该机器有一易损零件,为调查该易损零件的使用情况,随机抽取了100台已被淘汰的这种机器,经统计:每台机器在使用期内更换的该易损零件数均只有8,9,10,11这四种情况,并整理了这100台机器在使用期内更换的该易损零件数,绘制成如图所示不完整的条形统计图.(1)请补全该条形统计图;(2)某公司计划购买一台这种机器以及若干个该易损零件,用上述100台机器更换的该易损零件数的频率代替一台机器更换的该易损零件数发生的概率.①求这台机器在使用期内共更换了9个该易损零件的概率;②若在购买机器的同时购买该易损零件,则每个200元;若在使用过程中,因备用该易损零件不足,再购买,则每个500元.请你帮该公司用花在该易损零件上的费用的加权平均数进行决策:购买机器的同时应购买几个该易损零件,可使公司的花费最少?26.(12分)(1)如图1,在平行四边形ABCD中,30AD=,将平行AAB=,8∠=︒,6四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)(2)若将一边长为1的正方形按如图21-所示的矩形,-所示剪开,恰好能拼成如图22则m的值是多少?(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图31-所示的方式剪开,分成四部分,重新拼成如图32-所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.2019年湖南省永州市中考数学试卷参考答案与试题解析一、选择题(每小题4分,本大题共10个小题,每个小题只有一个正确选项,请将正确的选项涂填到答题卡上.每小题4分,共40分)1.(4分)2-的绝对值为( )A .12-B .12C .2-D .2【解答】解:2-的绝对值为:2.故选:D .2.(4分)改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是( )A .B .C .D .【解答】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .3.(4分)2019年“五一”假期期间,我市共接待国内、外游客140.42万人次,实现旅游综合收入8.94亿元,则“旅游综合收入”用科学记数法表示正确的是( )A .61.404210⨯B .514.04210⨯C .88.9410⨯D .90.89410⨯【解答】解:将8.94亿用科学记数法表示为88.9410⨯,故选:C .4.(4分)某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是( )A .B .C .D .【解答】解:观察图形可知,这块西瓜的三视图是.故选:B .5.(4分)下列运算正确的是( )A .235a a a +=B .325()a a =C .222()a b a b =D 【解答】解:A 、原式不能合并,不符合题意;B 、原式6a =,不符合题意;C 、原式22a b =,符合题意;D 、原式不能合并,不符合题意,故选:C .6.(4分)现有一组数据:1,4,3,2,4,x .若该组数据的中位数是3,则x 的值为( )A .1B .2C .3D .4【解答】解:数据1,4,3,2,4,x 中共有6个数,该组数据的中位数是3,332x += 解得3x =.故选:C .7.(4分)下列说法正确的是( )A .有两边和一角分别相等的两个三角形全等B .有一组对边平行,且对角线相等的四边形是矩形C .如果一个角的补角等于它本身,那么这个角等于45︒D .点到直线的距离就是该点到该直线的垂线段的长度【解答】解:A .有两边和一角分别相等的两个三角形全等;不正确; B .有一组对边平行,且对角线相等的四边形是矩形;不正确;C .如果一个角的补角等于它本身,那么这个角等于45︒;不正确;D .点到直线的距离就是该点到该直线的垂线段的长度;正确;故选:D .8.(4分)如图,四边形ABCD 的对角线相交于点O ,且点O 是BD 的中点,若5AB AD ==,8BD =,ABD CDB ∠=∠,则四边形ABCD 的面积为( )A .40B .24C .20D .15 【解答】解:AB AD =,点O 是BD 的中点,AC BD ∴⊥,BAO DAO ∠=∠,ABD CDB ∠=∠,//AB CD ∴,BAC ACD ∴∠=∠,DAC ACD ∴∠=∠,AD CD ∴=,AB CD ∴=,∴四边形ABCD 是菱形,5AB =,142BO BD ==, 3AO ∴=, 26AC AO ∴==,∴四边形ABCD的面积168242=⨯⨯=,故选:B.9.(4分)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比::::2:3:4:3:3a b c d e=(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁【解答】解:甲、乙、丙、丁各基地的产量之比等于4:5:4:2,设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,各基地之间的距离之比::::2:3:4:3:3a b c d e=,设2a y=千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,①设在甲处建总仓库,则运费最少为:(524323)28x y x y x y z xyz⨯+⨯+⨯=;②设在乙处建总仓库,5a d y+=,7b c y+=,a db c∴+<+,则运费最少为:(424325)30x y x y x y z xyz⨯+⨯+⨯=;③设在丙处建总仓库,则运费最少为:(435324)35x y x y x y z xyz⨯+⨯+⨯=;④设在丁处建总仓库,则运费最少为:(435544)53x y x y x y z xyz⨯+⨯+⨯=;由以上可得建在甲处最合适,故选:A.10.(4分)若关于x 的不等式组26040x m x m -+<⎧⎨->⎩有解,则在其解集中,整数的个数不可能是( ) A .1B .2C .3D .4【解答】解:解不等式260x m -+<,得:62mx -<, 解不等式40x m ->,得:4m x >, 不等式组有解,∴642m m-<, 解得4m <,如果2m =,则不等式组的解集为122m <<,整数解为1x =,有1个; 如果0m =,则不等式组的解集为03m <<,整数解为1x =,2,有2个;如果1m =-,则不等式组的解集为1742m -<<,整数解为0x =,1,2,3,有4个;故选:C .二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内.每小题4分,共32分)11.(4分)分解因式:221x x ++= 2(1)x + . 【解答】解:2221(1)x x x ++=+. 故答案为:2(1)x +. 12.(4分)方程211x x=-的解为x = 1- . 【解答】解:去分母得:21x x =-, 解得:1x =-,经检验1x =-是分式方程的解, 故答案为:1-13.(4x 取值范围是 1x ….【解答】解:代数式10x ∴-…, 解得:1x …. 故答案为:1x ….14.(4分)下表是甲、乙两名同学近五次数学测试(满分均为100分)的成绩统计表:根据上表数据,成绩较好且比较稳定的同学是 乙 .【解答】解:甲同学的平均数是:1(9088929491)915++++=(分),甲同学的方差是:222221[(9091)(8891)(9291)(9491)(9191)]45-+-+-+-+-=,乙同学的平均数是:1(9091939492)925++++=(分),乙同学的方差是:222221[(9092)(9192)(9392)(9492)(9292)]25-+-+-+-+-=,2242S S =>=乙甲,方差小的为乙,∴成绩较好且比较稳定的同学是乙.故答案为:乙.15.(4分)已知60AOB ∠=︒,OC 是AOB ∠的平分线,点D 为OC 上一点,过D 作直线DE OA ⊥,垂足为点E ,且直线DE 交OB 于点F ,如图所示.若2DE =,则DF = 4 .【解答】解:过点D 作DM OB ⊥,垂足为M ,如图所示. OC 是AOB ∠的平分线,2DM DE ∴==.在Rt OEF ∆中,90OEF ∠=︒,60EOF ∠=︒, 30OFE ∴∠=︒,即30DFM ∠=︒.在Rt DMF ∆中,90DMF ∠=︒,30DFM ∠=︒,24DF DM ∴==.故答案为:4.16.(4分)如图,已知点F 是ABC ∆的重心,连接BF 并延长,交AC 于点E ,连接CF 并延长,交AB 于点D ,过点F 作//FG BC ,交AC 于点G .设三角形EFG ,四边形FBCG 的面积分别为1S ,2S ,则12:S S =18.【解答】解:点F 是ABC ∆的重心,2BF EF ∴=,3BE EF ∴=, //FG BC , EFG EBC ∴∆∆∽,∴13EF BE =,2111()39EBCS S ∆==,121:8S S ∴=;故答案为:18.17.(4分)如图,直线4y x =-与双曲线3y x=交于A ,B 两点,过B 作直线BC y ⊥轴,垂足为C ,则以OA 为直径的圆与直线BC 的交点坐标是 (1,1)-和(2,1) .【解答】解:由43y xy x =-⎧⎪⎨=⎪⎩求得13x y =⎧⎨=⎩或31x y =⎧⎨=⎩,(1,3)A ∴,(3,1)B ,OA ∴设OA 的中点为P ,以AB 为直径的P 与直线BC 的交点为M 、N , 过P 点作PD x ⊥轴于D ,交BC 于E ,连接PN ,P 是OA 的中点,1(2P ∴,3)2,32PD ∴=, BC y ⊥轴,垂足为C , //BC x ∴轴, PD BC ∴⊥,31122PE ∴=-=,在Rt PEN ∆中,32EM EN ===, (1,1)M ∴-,(2,1)N .∴以OA 为直径的圆与直线BC 的交点坐标是(1,1)-和(2,1),故答案为(1,1)-和(2,1).18.(4分)我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和;图二是二项和的乘方()n a b +的展开式(按b 的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将15()s x +的展开式按x 的升幂排列得:1521501215()s x a a x a x a x +=+++⋯+. 依上述规律,解决下列问题: (1)若1s =,则2a = 105 ;(2)若2s =,则01215a a a a +++⋯+= .【解答】解:(1)由图2知:1()a b +的第三项系数为0,2()a b +的第三项的系数为:1, 3()a b +的第三项的系数为:312=+, 4()a b +的第三项的系数为:6123=++,⋯∴发现3(1)x +的第三项系数为:312=+;4(1)x +的第三项系数为6123=++; 5(1)x +的第三项系数为101234=+++;不难发现(1)n x +的第三项系数为123(2)(1)n n +++⋯+-+-, 1s ∴=,则212314105a =+++⋯+=.故答案为:105;(2)1521501215()s x a a x a x a x +=+++⋯+. 当1x =时,151501215(21)3a a a a +++⋯+=+=, 故答案为:153.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程.共78分)19.(8分)计算:2019(1)sin 60(3)-+︒--.【解答】解:2019(1)sin 60(3)-︒--13=-+ 133=-++ 5=20.(8分)先化简,再求值:22111a a aa a a a ---+-,其中2a =.【解答】解:22111a a aa a a a ---+-(1)(1)(1)11a a a aa a a a +-=--+-11a a =-- 11a aa --=- 11a =--, 当2a =时,原式1121=-=--. 21.(8分)为了测量某山(如图所示)的高度,甲在山顶A 测得C 处的俯角为45︒,D 处的俯角为30︒,乙在山下测得C ,D 之间的距离为400米.已知B ,C ,D 在同一水平面的同一直线上,求山高AB . 1.414≈ 1.732)【解答】解:设AB x =,由题意可知:45ACB ∠=︒,30ADB ∠=︒, AB BC x ∴==,400BD BC CD x ∴=+=+,在Rt ADB ∆中, tan30ABBD∴︒=, ∴400xx =+,解得:546.4x =≈,∴山高AB 为546.4米22.(10分)在一段长为1000的笔直道路AB 上,甲、乙两名运动员均从A 点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A 点的距离y (米)与其出发的时间x (分钟)的函数图象如图所示,乙的速度是150米分钟,且当乙到达B 点后立即按原速返回. (1)当x 为何值时,两人第一次相遇? (2)当两人第二次相遇时,求甲的总路程.【解答】解:(1)甲的速度为:1004250÷=米/分钟, 令30250150()60x x =+, 解得,0.75x =,答:当x 为0.75分钟时,两人第一次相遇; (2)当5x =时, 乙行驶的路程为:30150(5)825100060⨯+=<, ∴甲乙第二次相遇的时间为:100082575515025016-+=+(分钟), 则当两人第二次相遇时,甲行驶的总路程为:71000(55)2501109.37516+-⨯=(米), 答:当两人第二次相遇时,甲行驶的总路程是1109.375米.23.(10分)如图,已知O 是ABC ∆的外接圆,且BC 为O 的直径,在劣弧AC 上取一点D ,使CD AB =,将ADC ∆沿AD 对折,得到ADE ∆,连接CE . (1)求证:CE 是O 的切线;(2)若CE =,劣弧CD 的弧长为π,求O 的半径.【解答】解:(1)CD AB =,CAD BCA EAD α∴∠=∠==∠,设:DCA DEA β∠=∠=,DCE DEC γ∠=∠=,则ACE ∆中,根据三角形内角和为180︒,222180αβγ∴++=︒, 90αβγ∴++=︒, CE ∴是O 的切线;(2)过点A 作AM BC ⊥,延长AD 交CE 于点N , 则DN CE ⊥,∴四边形AMCN 为矩形,设:AB CD x ==,则CE ,则12CN CE x AM ==,而AB x =,则sin ABM ∠=60ABM ∴∠=︒, OAB ∴∆为等边三角形,即60AOB ∠=︒,602360CD AB r ππ︒==⨯=︒, 解得:3r =, 故圆的半径为3.24.(10分)如图,已知抛物线经过两点(3,0)A -,(0,3)B ,且其对称轴为直线1x =-. (1)求此抛物线的解析式;(2)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点)B ,求PAB ∆的面积的最大值,并求出此时点P 的坐标.【解答】解:(1)抛物线对称轴是直线1x =-且经过点(3,0)A - 由抛物线的对称性可知:抛物线还经过点(1,0) 设抛物线的解析式为12()()(0)y a x x x x a =--≠ 即:(1)(3)y a x x =-+ 把(0,3)B 代入得:33a =- 1a ∴=-∴抛物线的解析式为:223y x x =--+.(2)设直线AB 的解析式为y kx b =+,(3,0)A -,(0,3)B ,∴303k b b -+=⎧⎨=⎩,∴直线AB 为3y x =+,作PQ x ⊥轴于Q ,交直线AB 于M , 设2(,23)P x x x --+,则(,3)M x x +,2223(3)3PM x x x x x ∴=--+-+=--, 2213327(3)3()2228S x x x ∴=--⨯=-++. 当32x =-时,278S =最大,23315()2()3224y =---⨯-+=,PAB ∴∆的面积的最大值为278,此时点P 的坐标为3(2-,15)425.(12分)某种机器使用若干年后即被淘汰,该机器有一易损零件,为调查该易损零件的使用情况,随机抽取了100台已被淘汰的这种机器,经统计:每台机器在使用期内更换的该易损零件数均只有8,9,10,11这四种情况,并整理了这100台机器在使用期内更换的该易损零件数,绘制成如图所示不完整的条形统计图. (1)请补全该条形统计图;(2)某公司计划购买一台这种机器以及若干个该易损零件,用上述100台机器更换的该易损零件数的频率代替一台机器更换的该易损零件数发生的概率. ①求这台机器在使用期内共更换了9个该易损零件的概率;②若在购买机器的同时购买该易损零件,则每个200元;若在使用过程中,因备用该易损零件不足,再购买,则每个500元.请你帮该公司用花在该易损零件上的费用的加权平均数进行决策:购买机器的同时应购买几个该易损零件,可使公司的花费最少?【解答】解:(1)10020502010---=,补全的条形统计图如图所示: (2)①这台机器在使用期内共更换了9个该易损零件的概率为:501205010202P ==+++;②购买机器的同时购买8个该易损零件20020%50080%440⨯+⨯=元, 购买机器的同时购买9个该易损零件20050%50050%350⨯+⨯=元, 购买机器的同时购买10个该易损零件20010%50090%470⨯+⨯=元,购买机器的同时购买11个该易损零件20020%50080%440⨯+⨯=元, 因此,购买机器的同时应购买9个该易损零件,可使公司的花费最少.26.(12分)(1)如图1,在平行四边形ABCD 中,30A ∠=︒,6AB =,8AD =,将平行四边形ABCD 分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)(2)若将一边长为1的正方形按如图21-所示剪开,恰好能拼成如图22-所示的矩形,则m 的值是多少?(3)四边形ABCD 是一个长为7,宽为5的矩形(面积为35),若把它按如图31-所示的方式剪开,分成四部分,重新拼成如图32-所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.【解答】解:(1)如图所示:(2)依题意有 111mm m-=+,解得1m =2m =,经检验,1m =故m (3)73724≠+, ∴直角三角形的斜边与直角梯形的斜腰不在一条直线上,故重新拼成的图形的面积会增加.2018年湖南省永州市中考数学试卷一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分)1.(4分)2018-的相反数是( ) A .2018B .2018-C .12018D .12018-2.(4分)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是( )A .B .C .D .3.(4分)函数13y x =-中自变量x 的取值范围是( ) A .3x … B .3x < C .3x ≠ D .3x =4.(4分)如图几何体的主视图是( )A .B .C .D .5.(4分)下列运算正确的是( ) A .23523m m m +=B .236m m m =C .33()m m -=-D .33()mn mn =6.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A .45,48B .44,45C .45,51D .52,537.(4分)下列命题是真命题的是( ) A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .任意多边形的内角和为360︒D .三角形的中位线平行于第三边,并且等于第三边的一半8.(4分)如图,在ABC ∆中,点D 是边AB 上的一点,ADC ACB ∠=∠,2AD =,6BD =,则边AC 的长为( )A .2B .4C .6D .89.(4分)在同一平面直角坐标系中,反比例函数(0)b y b x=≠与二次函数2(0)y ax bx a =+≠的图象大致是( )A .B .C .D .10.(4分)甲从商贩A 处购买了若干斤西瓜,又从商贩B 处购买了若干斤西瓜.A 、B 两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A 、B 两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为( ) A .商贩A 的单价大于商贩B 的单价B .商贩A 的单价等于商贩B 的单价C .商版A 的单价小于商贩B 的单价D .赔钱与商贩A 、商贩B 的单价无关二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)截止2017年年底,我国60岁以上老龄人口达 2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为 .12.(4分)因式分解:21x -= .13.(4分)一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC ∠= .14.(4分)化简:221(1)121x x x x x ++÷=--+ .15.(4分)在一个不透明的盒子中装有n 个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n 的值大约是 .16.(4分)如图,在平面直角坐标系中,已知点(1,1)A ,以点O 为旋转中心,将点A 逆时针旋转到点B 的位置,则AB 的长为 .17.(4分)对于任意大于0的实数x 、y ,满足:222log ()log log x y x y =+,若2log 21=,则2log 16= .18.(4分)现有A 、B 两个大型储油罐,它们相距2km ,计划修建一条笔直的输油管道,使得A 、B 两个储油罐到输油管道所在直线的距离都为0.5km ,输油管道所在直线符合上述要求的设计方案有 种.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.(8分)计算:1260|1--︒+-.20.(8分)解不等式组2(1)12112x x x -+<+⎧⎪⎨->-⎪⎩,并把解集在数轴上表示出来.21.(8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.22.(10分)如图,在ABCCAB∠=︒,以线段AB为边向外作等边∠=︒,30ACB∆中,90∆,点E是线段AB的中点,连接CE并延长交线段AD于点F.ABD(1)求证:四边形BCFD为平行四边形;(2)若6AB=,求平行四边形BCFD的面积.23.(10分)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和妈妈的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.24.(10分)如图,线段AB为O的直径,点C,E在O上,BC CE=,CD AB⊥,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF BF=;(2)若4cos5ABE∠=,在AB的延长线上取一点M,使4BM=,O的半径为6.求证:直线CM是O的切线.25.(12分)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点(0,3)E.(1)求抛物线的表达式;(2)已知点(0,3)F-,在抛物线的对称轴上是否存在一点G,使得EG FG+最小,如果存在,求出点G的坐标;如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求PON∆的面积.26.(12分)如图1,在ABC∆中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若4CI=,3HI=,92AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC CP=,将矩形EFGH沿BP的方向向右平移,当点∆重叠部分的形状是三角形还是四边G刚好落在CP上时,试判断移动后的矩形与CBP形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形∆'的周长.'''分别与线段DG、DB相交于点M、N,求MNG ''',正方形DF G IDF G I2018年湖南省永州市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分)1.(4分)2018-的相反数是( ) A .2018B .2018-C .12018D .12018-【解答】解:2018-的相反数是2018. 故选:A .2.(4分)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,故此选项错误;B 、是轴对称图形,故此选项错误;C 、不是轴对称图形,故此选项正确;D 、是轴对称图形,故此选项错误;故选:C . 3.(4分)函数13y x =-中自变量x 的取值范围是( ) A .3x … B .3x < C .3x ≠ D .3x =【解答】解:根据题意得:30x -≠, 解得:3x ≠. 故选:C .4.(4分)如图几何体的主视图是( )A .B .C .D .【解答】解:由图可得,几何体的主视图是:故选:B .5.(4分)下列运算正确的是( ) A .23523m m m +=B .236m m m =C .33()m m -=-D .33()mn mn =【解答】解:A 、2m 与32m 不是同类项,不能合并,此选项错误;B 、235m m m =,此选项错误;C 、33()m m -=-,此选项正确;D 、333()mn m n =,此选项错误;故选:C .6.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A .45,48B .44,45C .45,51D .52,53【解答】解:数据从小到大排列为:44,45,45,51,52,54, 所以这组数据的众数为45,中位数为1(4551)482+=.故选:A .7.(4分)下列命题是真命题的是( ) A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .任意多边形的内角和为360︒D .三角形的中位线平行于第三边,并且等于第三边的一半【解答】解:A 、对角线相等的平行四边形是矩形,所以A 选项为假命题;B 、对角线互相垂直的平行四边形是菱形,所以B 选项为假命题;C 、任意多边形的外角和为360︒,所以C 选项为假命题;D 、三角形的中位线平行于第三边且等于第三边的一半,所以D 选项为真命题.故选:D .8.(4分)如图,在ABC ∆中,点D 是边AB 上的一点,ADC ACB ∠=∠,2AD =,6BD =,则边AC 的长为( )A .2B .4C .6D .8【解答】解:A A ∠=∠,ADC ACB ∠=∠, ADC ACB ∴∆∆∽,∴AC ADAB AC=, 22816AC AD AB ∴==⨯=, 0AC >, 4AC ∴=,故选:B .9.(4分)在同一平面直角坐标系中,反比例函数(0)by b x=≠与二次函数2(0)y ax bx a =+≠的图象大致是( )A .B .C .D .【解答】解:A 、抛物线2y ax bx =+开口方向向上,则0a >,对称轴位于y 轴的右侧,则a 、b 异号,即0b <.所以反比例函数by x=的图象位于第二、四象限,故本选项错误; B 、抛物线2y ax bx =+开口方向向上,则0a >,对称轴位于y 轴的左侧,则a 、b 同号,即0b >.所以反比例函数by x=的图象位于第一、三象限,故本选项错误; C 、抛物线2y ax bx =+开口方向向下,则0a <,对称轴位于y 轴的右侧,则a 、b 异号,即0b >.所以反比例函数by x=的图象位于第一、三象限,故本选项错误; D 、抛物线2y ax bx =+开口方向向下,则0a <,对称轴位于y 轴的右侧,则a 、b 异号,。
2016年湖南省永州市中考数学试卷及答案-(word整理版)
2016年湖南省永州市中考数学试卷-(word整理版)一、选择题:本大题共12小题,每小题4分,共48分1.﹣的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣20162.不等式组的解集在数轴上表示正确的是()A.B.C.D.3.下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣15.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.6.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9 则下列说法中错误的是()A.甲、乙得分的平均数都是8 B.甲得分的众数是8,乙得分的众数是9 C.甲得分的中位数是9,乙得分的中位数是6 D.甲得分的方差比乙得分的方差小7.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理8.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣29.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD10.圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm211.下列式子错误的是()A.cos40°=sin50°B.tan15°•tan75°=1 C.sin225°+cos225°=1 D.sin60°=2sin30°实例:新运算log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①② B.①③ C.②③ D.①②③二、填空题:本大题共8小题,每小题4分,共32分13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为.14.在1,π,,2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是.15.已知反比例函数y=的图象经过点A(1,﹣2),则k=.16.方程组的解是.17.化简:÷=.18.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=度.19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x 的增大而减小,则k所有可能取得的整数值为.20.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=;(2)当m=2时,d的取值范围是.三、解答题:本大题共7小题,共79分21.计算:﹣(3﹣π)0﹣|﹣3+2|22.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC 的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?25.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.26.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx 与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.27.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC上的一点,连接ME,ME与AD交于点O,且S△M OA=S△DOE.①求证:ME是△ABC的面径;②连接AE,求证:MD∥AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)2016年湖南省永州市中考数学试卷答案1.C.2.A.3.A.4.D.5.B.6.C.7.B.8.A.9.D.10D.11.D.12.B.13. 3.9×109.14..15.﹣2.16..17..18.35.19.﹣1.20.0<d<3.21.解:﹣(3﹣π)0﹣|﹣3+2|=2﹣1﹣1=0.22.解:(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=×100%=37.5%;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人).故答案为(1)50;37.6;(3)36.23.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.24.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.25.(1)证明:连接OC,如图所示:∵BD是⊙O的切线,∴∠CBE=∠A,∠ABD=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∠BCD=90°,∵E是BD中点,∴CE=BD=BE,∴∠BCE=∠CBE=∠A,∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,即∠OCE=90°,CE⊥OC,∴CE是⊙O的切线;(2)解:∵∠ACB=90°,∴AB===2,∵tanA====,∴BD=AB=,∴CE=BD=.26.解:(1)令抛物线y=ax2+bx﹣3中x=0,则y=﹣3,∴点C的坐标为(0,﹣3).∵抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,∴有,解得:,∴此抛物线的解析式为y=x2﹣2x﹣3.(2)将y=kx代入y=x2﹣2x﹣3中得:kx=x2﹣2x﹣3,整理得:x2﹣(2+k)x﹣3=0,∴x A+x B=2+k,x A•x B=﹣3.∵原点O为线段AB的中点,∴x A+x B=2+k=0,解得:k=﹣2.当k=﹣2时,x2﹣(2+k)x﹣3=x2﹣3=0,解得:x A=﹣,x B=.∴y A=﹣2x A=2,y B=﹣2x B=2.故当原点O为线段AB的中点时,k的值为﹣2,点A的坐标为(﹣,2),点B的坐标为(,﹣2).(3)假设存在.由(2)可知:x A+x B=2+k,x A•x B=﹣3,S△AB C=OC•|x A﹣x B|=×3×=,∴(2+k)2﹣4×(﹣3)=10,即(2+k)2+2=0.∵(2+k)2非负,无解.故假设不成了.所以不存在实数k使得△ABC的面积为.27.解:(1)如图一中,∵AB=AC=BC=2,AD⊥BC,∴BD=DC,∴S△AB D=S△ADC,∴线段AD是△ABC的面径.∵∠B=60°,∴sin60°=,∴=,∴AD=.(2)如图二中,∵ME∥BC,且ME是△ABC的一条面径,∴△AME∽△ABC,=,∴=,∴ME=.(3)如图三中,作MN⊥AE于N,DF⊥AE于F.∵S△M OA=S△DOE,∴S△AEM=S△AED,∴•AE•MN=•AE•DF,∴MN=DF,∵MN∥DF,∴四边形MNFD是平行四边形,∴DM∥AE.(4)如图四中,作MF⊥BC于F,设BM=x,BE=y,∵DM∥AE,∴=,∴=,∴xy=2,在RT△MBF中,∵∠MFB=90°,∠B=60°,BM=x,∴BF=x,MF=x,∴ME===≥,∴ME≥,∵ME是等边三角形面径,AD也是等边三角形面积径,。
湖南省永州市中考数学试卷
湖南省永州市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)对于非零有理数a:0+a=a,1×a=a,1+a=a,0×a=a,a×0=a,a÷1=a,0÷a=a,a÷0=a,a1=a,a÷a=1中总是成立的有()A . 5个B . 6个C . 7个D . 8个2. (2分)下来运算中正确的是()A .B . ()2=C .D .3. (2分) (2016八上·海南期中) 下列实数中,无理数是()A .B . 0C .D . ﹣3.144. (2分)两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是().A . 外离B . 内切C . 相交D . 外切5. (2分) (2019九上·长春期末) 如图,在平面直角坐标系中,一次函数的图象分别与x轴、y 轴交于A、B两点,与函数的图象交于点C.若点A为线段BC的中点,则k的值为()A . 1B .C . 2D . 36. (2分)(2017·河北模拟) 如图是一个正方体的表面展开图,把展开图折叠成正方体后,与标号为1的顶点重合的是()A . 标号为2的顶点B . 标号为3的顶点C . 标号为4的顶点D . 标号为5的顶点二、填空题 (共10题;共11分)7. (1分) (2017七上·乐清月考) 设a、b互为相反数,c、d互为倒数,则 =________8. (1分)计算:2 ﹣ =________.9. (2分)当 ________时,分式有意义;当 =2时,分式无意义,则=________.10. (1分)地球到月球的距离约为380000公里,将数380000用科学记数法表示为________公里.11. (1分)如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m<360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为________12. (1分)(2019·岐山模拟) 如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是________.13. (1分)(2019·海门模拟) 如图,⊙O的半径为1cm,正六边形内接于⊙O,则图中阴影部分面积为________.14. (1分)若△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.15. (1分)若等腰梯形的周长为80cm,中位线长与腰长相等,高为12cm,则它的面积为________ cm2 .16. (1分)计算:(x2﹣4xy)÷x=________。
2016年湖南省永州市中考数学试卷及答案
(3)是否存在实数 k 使得△ABC 的面积为
?若存在,求出 k 的值;若不存
在,请说明理由.
27.(12 分)问题探究: 1.新知学习 若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”, 其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是 圆的“面径”). 2.解决问题
∴AE=AB=4,
∵BF⊥AE,
∴AF=EF=2,
∴BF=
=
=2 ,
∵AD∥BC, ∴∠D=∠ECF,∠DAF=∠E, 在△ADF 和△ECF 中,
,
∴△ADF≌△ECF(AAS), ∴△ADF 的面积=△ECF 的面积, ∴平行四边形 ABCD 的面积=△ABE 的面积= AE•BF= ×4×2 =4 .
∴AB=
=
=2 ,
∵tanA= = = = ,
∴BD= AB= ,
∴CE= BD= .
26、解:(1)令抛物线 y=ax2+bx﹣3 中 x=0,则 y=﹣3, ∴点 C 的坐标为(0,﹣3). ∵抛物线 y=ax2+bx﹣3 经过(﹣1,0),(3,0)两点,
∴有
,解得:
,
∴此抛物线的解析式为 y=x2﹣2x﹣3. (2)将 y=kx 代入 y=x2﹣2x﹣3 中得:kx=x2﹣2x﹣3, 整理得:x2﹣(2+k)x﹣3=0, ∴xA+xB=2+k,xA•xB=﹣3. ∵原点 O 为线段 AB 的中点, ∴xA+xB=2+k=0, 解得:k=﹣2.
D.①②③
二、填空题:本大题共 8 小题,每小题 4 分,共 32 分 13.(4 分)涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十
湖南省永州市2016年中考数学试题(附解析)
2016年中考真题精品解析 数学(湖南永州卷)一、选择题:本大题共12小题,每小题4分,共48分1.﹣20161的相反数的倒数是( ) A .1 B .﹣1 C .2016 D .﹣2016【答案】C .【解析】 试题分析:根据相反数的概念可知﹣20161的相反数是20161;根据倒数的定义可得﹣20161的相反数的倒数是2016.故答案选C . 考点:相反数;倒数.2.不等式组的解集在数轴上表示正确的是( )A .B .C .D .【答案】A .【解析】 试题分析:把这两个不等式的解集在数轴上表示即可得.不等式组的解集为:.故答案选A .考点:在数轴上表示不等式组的解集.3.下列图案中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】A .【解析】试题分析:根据轴对称图形与中心对称图形的概念可得:选项A 是轴对称图形.也是中心对称图形,此选项正确;选项B 是轴对称图形,不是中心对称图形,此选项错误;选项C ,是轴对称图形,不是中心对称图形,此选项错误;选项D,是轴对称图形,不是中心对称图形,此选项错误.故答案选A.考点:轴对称图形与中心对称图形的概念.4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣1【答案】D.考点:整式的运算.5.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.【答案】B.【解析】试题分析:该实物图的主视图为,故答案选B.考点:简单几何体的三视图.6.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小【答案】C.考点:算术平均数;中位数;众数;方差.7.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【答案】B.【解析】试题分析:选项A,把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,正确;选项B,木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,错误;选项C,将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,正确;选项D,将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确,故答案选B.考点:线段的性质;垂线段最短;圆的认识;三角形的稳定性.8.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣2【答案】A.【解析】试题分析:由题意知抛物线y=x2+2x+m﹣1与x轴有两个交点,所以△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故答案选A.考点:抛物线与x轴的交点.9.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【答案】D.考点:全等三角形的判定.10.圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm2【答案】D.试题分析:先根据AC ⊥OB ,BD ⊥OB 可得出△AOC ∽△BOD ,由相似三角形的对应边成比例可求出BD 的长,进而得出BD ′=0.3m ,再由圆环的面积公式即可得出结论. 如图,已知AC ⊥OB ,BD ⊥OB ,可得△AOC ∽△BOC ,根据相似三角形的性质可得BDBD AC OB OA 6.032,==即,解得BD=0.9m ,同理可得:AC ′=0.2m ,则BD ′=0.3m ,所以S 圆环形阴影=0.92π﹣0.32π=0.72πm 2.故答案选D .考点:中心投影.11.下列式子错误的是( )A .cos40°=sin50°B .tan15°•tan75°=1C .sin 225°+cos 225°=1D .sin60°=2sin30°【答案】D .考点:互余两角三角函数的关系;同角三角函数的关系;特殊角的三角函数值. 12.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 2=﹣1.其中正确的是( )A .①②B .①③C .②③D .①②③【解析】试题分析:根据表格中的规律可得:①因为24=16,此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=21,所以此选项正确;故答案选B . 考点:实数的运算.二、填空题:本大题共8小题,每小题4分,共32分13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为 .【答案】3.9×109.考点:科学记数法.14.在1,π,,2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是 . 【答案】51.【解析】试题分析:在1,π,3,2,﹣3.2这五个数中,只有π这个数大于2,所以随机取出一个数,这个数大于2的概率是51.考点:概率公式.15.已知反比例函数y=的图象经过点A (1,﹣2),则k= .【答案】﹣2.【解析】试题分析:由反比例函数y=xk 的图象经过点A (1,﹣2)可得k=1×(-2)=﹣2.考点:反比例函数图象上点的坐标特征.16.方程组的解是 .【答案】x=2,y=0.【解析】试题分析:由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y )+y=4,解得:y=0,将y=0代入①,得:x=2,方程组的解为x=2,y=0.考点:二元一次方程组的解法.17.化简:÷= . 【答案】x 1.【解析】试题分析:原式=xx x x x x 1)3()2()2(322=+-⋅-+. 考点:分式的化简.18.如图,在⊙O 中,A ,B 是圆上的两点,已知∠AOB=40°,直径CD ∥AB ,连接AC ,则∠BAC= 度.【答案】35.考点:圆周角定理.19.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 .【答案】﹣1.【解析】试题分析:根据题意可得2k+3>0,k <0,解得﹣23<k <0.因k 为整数,所以k=﹣1. 考点:一次函数图象与系数的关系.20.如图,给定一个半径长为2的圆,圆心O 到水平直线l 的距离为d ,即OM=d .我们把圆上到直线l 的距离等于1的点的个数记为m .如d=0时,l 为经过圆心O 的一条直线,此时圆上有四个到直线l 的距离等于1的点,即m=4,由此可知:(1)当d=3时,m= ;(2)当m=2时,d 的取值范围是 .【答案】(1)1;(2)0<d <3.考点:直线与圆的位置关系.三、解答题:本大题共7小题,共79分21.计算:﹣(3﹣π)0﹣|﹣3+2|【答案】0.【解析】试题分析:根据立方根的性质、零指数幂的性质、绝对值的性质化简后再合并即可求出答案.试题解析:原式=2﹣1﹣1=0.考点:实数的运算.22.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.【答案】(1)50,37.5%;(2)详见解析;(3)36°;(4)1800.【解析】试题分析:(1)由赞同的人数除以赞同的人数所占的百分比,即可求出样本容量,再求出无所谓态度的人数,进而求出a的值;(2)由(1)可知无所谓态度的人数,将条形统计图补充完整即可;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分比,用样本估计总体的思想计算即可.则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800人.考点:条形统计图;扇形统计图;用样本估计总体.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.4.【答案】(1)详见解析;(2)3∴AB=BE ,∴BE=CD ;(2)解:∵AB=BE ,∠BEA=60°,∴△ABE 是等边三角形,∴AE=AB=4,∵BF ⊥AE ,∴AF=EF=2,∴BF=32242222=-=-AF AB ,∵AD ∥BC ,∴∠D=∠ECF ,∠DAF=∠E ,在△ADF 和△ECF 中,,∴△ADF ≌△ECF (AAS ),∴△ADF 的面积=△ECF 的面积,∴平行四边形ABCD 的面积=△ABE 的面积=21AE •BF=21×4×23=43. 考点:全等三角形的判定与性质;平行四边形的性质.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【答案】(1)10%;(2)第一次降价后至少要售出该种商品23件.【解析】试题分析:(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)2”,列出方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m 件,则第二次降价后售出该种商品件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”表示出总利润,再根据总利润不少于3210元,即可的出关于m的一元一次不等式,解不等式即可得出结论.试题解析:(1)设该种商品每次降价的百分率为x%,考点:一元二次方程的应用;一元一次不等式的应用.25.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.【答案】(1)详见解析;(2)25.【解析】试题分析:(1)连接OC ,根据弦切角定理和切线的性质可得∠CBE=∠A ,∠ABD=90°,根据圆周角定理可得∠ACB=90°,即可得∠ACO+∠BCO=90°,∠BCD=90°,再由直角三角形斜边上的中线性质得出CE=21BD=BE ,根据等腰三角形的性质可得∠BCE=∠CBE=∠A ,即可证出∠ACO=∠BCE ,所以∠BCE+∠BCO=90°,即CE ⊥OC ,所以CE 是⊙O 的切线;(2)由勾股定理求出AB 的长,再由三角函数得出tanA=42==AC BC AB BD =21,求出∵OA=OC ,∴∠ACO=∠A ,∴∠ACO=∠BCE ,∴∠BCE+∠BCO=90°,即∠OCE=90°,CE ⊥OC ,考点:切线的判定与性质.26.已知抛物线y=ax 2+bx ﹣3经过(﹣1,0),(3,0)两点,与y 轴交于点C ,直线y=kx 与抛物线交于A ,B 两点.(1)写出点C 的坐标并求出此抛物线的解析式;(2)当原点O 为线段AB 的中点时,求k 的值及A ,B 两点的坐标;(3)是否存在实数k 使得△ABC 的面积为2103?若存在,求出k 的值;若不存在,请说明理由.【答案】(1)y=x 2﹣2x ﹣3;(2)当原点O 为线段AB 的中点时,k 的值为﹣2,点A 的坐标为(﹣3,23),点B 的坐标为(3,﹣23).(3)不存在,理由详见解析.【解析】试题分析:(1)令x=0求出y 值即可得出C 点的坐标,又有点(﹣1,0)、(3,0),利用待定系数法求抛物线的解析式即可;(2)将正比例函数解析式代入抛物线解析式中,找出关于x 的一元二次方程,根据根与∵抛物线y=ax 2+bx ﹣3经过(﹣1,0),(3,0)两点,∴有⎩⎨⎧-+=--=339030b a b a ,解得:⎩⎨⎧-==21b a , ∴此抛物线的解析式为y=x 2﹣2x ﹣3.(2)将y=kx 代入y=x 2﹣2x ﹣3中得:kx=x 2﹣2x ﹣3,整理得:x 2﹣(2+k )x ﹣3=0,∴x A +x B =2+k ,x A •x B =﹣3.∵原点O 为线段AB 的中点,∴x A +x B =2+k=0,解得: k=﹣2.当k=﹣2时,x 2﹣(2+k )x ﹣3=x 2﹣3=0,解得:x A =﹣3,x B =3.∴y A =﹣2x A =23,y B =﹣2x B =23.考点:二次函数综合题.27.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC 上的一点,连接ME,ME与AD交于点O,且S△MOA=S△DOE.①求证:ME是△ABC的面径;②连接AE,求证:MD∥AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)【答案】(1)AD=3;(2)ME=2;(3)详见解析;(3)2≤l≤3.【解析】试题分析:(1)根据等腰三角形三线合一即可证明,利用直角三角形30°性质,即可求出AD .(2)根据相似三角形性质面积比等于相似比的平方,即可解决问题.(3)如图三中,作MN ⊥AE 于N ,DF ⊥AE 于F ,先证明MN=DF ,推出四边形MNFD 是平行四边形即可.(4)如图四中,作MF ⊥BC 于F ,设BM=x ,BE=y ,求出EM ,利用不等式性质证明ME≥即可解决问题.试题解析:(1)如图一中,(2)如图二中,∵ME ∥BC ,且ME 是△ABC 的一条面径,∴△AME ∽△ABC ,ABC AME S S ∆∆=21,∴21=BC ME , ∴ME=2.∴DM ∥AE .(4)如图四中,作MF ⊥BC 于F ,设BM=x ,BE=y ,∵DM ∥AE , ∴BEBD BA BM =, ∴yx 12=,考点:三角形的综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13 .涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省 元.请将 3900000000 用科学记数法表示为 . 14 .在 1 , π , .
建设的 “ 一号工程 ” ,也是国务院重点推进的重大工程,其中灌区工程总投资约
, 2 , ﹣ 3.2 这五个数中随机取出一个数,则取出的这个数大于
照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为
A . 0.324 π m 2 B . 0.288 π m 2 C . 1.08 π m 2 D . 0.72 π m 2 11 .下列式子错误的是( )
A . cos40 ° =sin50 ° B . tan15 °• tan75 ° =1 C . sin 2 25 ° +cos 2 25 ° =1 D . sin60 ° =2sin30 ° 12 .我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例: 指数运 算 新运算 2 1 =2 log 2 2=1 2 2 =4 log 2 4=2 2 3 =8 log 2 8=3 … … 3 1 =3 log 3 3=1 3 2 =9 log 3 9=2 3 3 =27 log 3 27=3 … …
B .木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了 直线上各点连接的所有线段中,垂线段最短 C .将自行车的车架设计为三角形形状是运用了 D .将车轮设计为圆形是运用了 ” 的原理 “ 三角形的稳定性 ” 的原理
“ 圆的旋转对称性 ” 的原理 m 的取值范围是( )
8 .抛物线 y=x 2 +2x+m ﹣ 1 与 x 轴有两个不同的交点,则 A. m< 2 B. m> 2 C. 0< m≤2 D. m< ﹣2
9 .如图,点 D , E 分别在线段 AB , AC 上, CD 与 BE 相交于 O 点,已知 AB=AC ,现添 加以下的哪个条件仍不能判定 △ ABE ≌△ ACD ( )
A . ∠ B= ∠ C B . AD=AE C . BD=CE D . BE=CD 10 .圆桌面(桌面中间有一个直径为 1.2m ,桌面离地面 1m ,若灯泡离地面 0.4m 的圆洞)正上方的灯泡(看作一个点)发出的光线 3m ,则地面圆环形阴影的面积是( )
A.
B. )
C.
D.
4 .下列运算正确的是(
A . ﹣ a • a 3 =a 3 B . ﹣ ( a 2 ) 2 =a 4 C . x ﹣
x=
D. (
﹣2) (
+2 ) = ﹣ 1 该实物图的主视图为( )
5 .如图,将两个形状和大小都相同的杯子叠放在一起,则
A.
B.
C.
D.
6 .在 “ 爱我永州 ” 中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下: 甲: 8 、 7 、 9 、 8 、 8 乙: 7 、 9 、 6 、 9 、 9
22 .二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育 二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非 常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合 两幅统计图,回答下列问题: ( 1 )在这次问卷调查中一共抽取了 ( 2 )请补全条形统计图; ( 3 )持 “ 不赞同 ” 态度的学生人数的百分比所占扇形的圆心角为 ( 4 )若该校有 3000 名学生,请你估计该校学生对父母生育二孩持 种态度的人数之和. 度; “ 赞同 ” 和 “ 非常赞同 ” 两 名学生, a= % ;
根据上表规律,某同学写出了三个式子: 确的是( )
① log 2 16=4 , ② log 5 25=5 , ③ log 2
= ﹣ 1 .其中正
A . ①② B . ①③ C . ②③ D . ①②③ 二、填空题:本大题共 8 小题,每小题 4 分,共 32 分 “ 十二五 ” 期间水利 39 亿
19 .已知一次函数 的增大而减小,则
y=kx+2k+3 的图象与 y 轴的交点在 y 轴的正半轴上,且函数值 k 所有可能取得的整数值为 .
y随 x
20 .如图,给定一个半径长为 此时圆上有四个到直线
2 的圆,圆心 O 到水平直线 l 的距离为 d ,即 OM=d .我们 m .如 d=0 时, l 为经过圆心 O 的一条直线,
则下列说法中错误的是(
) 8 9 6
A .甲、乙得分的平均数都是 B .甲得分的众数是 C .甲得分的中位数是
8 ,乙得分的众数是
9 ,乙得分的中位数是
D .甲得分的方差比乙得分的方差小 7 .对下列生活现象的解释其数学原理运用错误的是( A .把一条弯曲的道路改成直道可以缩短路程是运用了 ) “ 两点之间线段最短 ” 的原理 “ 直线外一点与
2 的概率是
15 .已知反比例函数
y=
的图象经过点 A ( 1 , ﹣ 2 ) ,则 k= .
16 .方程组
的解是 .
17 .化简:
÷
= .
18 .如图,在 ⊙ O 中, A , B 是圆上的两点,已知 ∠ AOB=40 ° ,直径 CD ∥ AB ,连接 AC ,则 ∠ BAC= 度.
2016 年湖南省永州市中考数学试卷
一、选择题:本大题共 12 小题,每小题 4 分,共 48 分
1. ﹣
的相反数的倒数是( )
A . 1 B . ﹣ 1 C . 2016 D . ﹣ 2016
2 .不等式组
的解集在数轴上表示正确的是(
)
A.
B.
C.
D. )
3 .下列图案中既是轴对称图形又是中心对称图形的是(
把圆上到直线 l 的距离等于 1 的点的个数记为
l 的距离等于 1 的点,即 m=4 ,由此可知:
( 1 )当 d=3 时, m= ; ( 2 )当 m=2 时, d 的取值范围是 .
三、解答题:本大题共 7 小题,共 79 分
21 .计算:
﹣ ( 3 ﹣π ) 0 ﹣ | ﹣ 3+2|