2018-2019学年最新高中数学人教A版必修二第四章《 圆与方程》质量检测-精编试题
2018-2019学年高中数学第四章圆与方程章末检测试题新人教A版必修2
第四章 检测试题(时间:120分钟 满分:150分)【选题明细表】一、选择题(本大题共12小题,每小题5分,共60分)1.若方程x 2+y 2+Dx+Ey+F=0表示以(2,-4)为圆心,4为半径的圆,则F 等于(B) (A)2(B)4(C)6(D)8解析:由圆的一般方程知,此方程表示的圆的圆心为(-,-),半径为,所以-=2,-=-4,=4,得D=-4,E=8,F=4,故选B.2.空间直角坐标系Oxyz 中的点P(1,2,3)在xOy 平面内射影是Q,则点Q 的坐标为(A) (A)(1,2,0)(B)(0,0,3) (C)(1,0,3)(D)(0,2,3)解析:因为空间直角坐标系Oxyz 中,点P(1,2,3)在xOy 平面内射影是Q,所以点Q 的坐标为(1,2,0).3.圆C:(x+1)2+y 2=4与圆M:(x-2)2+(y-1)2=9的位置关系为(C) (A)内切(B)外切(C)相交(D)相离解析:圆C:(x+1)2+y 2=4的圆心C(-1,0),半径r=2;圆M:(x-2)2+(y-1)2=9的圆心M(2,1),半径R=3. 所以|CM|==,R-r=3-2=1,R+r=3+2=5.所以R-r<<R+r.所以两圆相交.故选C.4.圆x 2+y 2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是(C) (A)36(B)18(C)6(D)5解析:圆x 2+y 2-4x-4y-10=0的圆心为(2,2),半径为3,圆心到直线x+y-14=0的距离为=5>3,圆上的点到直线的最大距离与最小距离的差是2R=6.故选C.5.若直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,则k,b 的值分别为(D)(A)-,4(B),4(C)-,-4(D),-4解析:直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则直线2x+y+b=0一定过圆(x-2)2+y2=1的圆心(2,0),代入得b=-4,同时直线y=kx与直线2x+y+b=0垂直,可得-2×k=-1,解得k=,故选D.6.若方程x2+y2-x+y+m=0表示圆,则实数m的取值范围是(A)(A)m<(B)m>(C)m<0(D)m≤解析:由题意得1+1-4m>0,得m<.7.若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y=2的距离等于1,则半径r的取值范围为(A)(A)(4,6)(B)[4,6)(C)(4,6](D)[4,6]解析:结合图象可知,-1<-r<1,所以-1<5-r<1,所以4<r<6.故选A.8.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是(A)(A)(x-2)2+(y+1)2=1(B)(x-2)2+(y+1)2=4(C)(x+4)2+(y-2)2=1(D)(x+2)2+(y-1)2=1解析:设圆上任意一点坐标为(x1,y1),其与点P所连线段的中点坐标为(x,y),则即代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.故选A.9.在空间直角坐标系Oxyz中,z轴上的点M到点A(1,0,2)与点B(1,-3,-1)的距离相等,则点M的坐标是(A)(A)(0,0,-1)(B)(0,0,3)(C)(0,0,)(D)(0,0,-)解析:设z轴上的点M(0,0,z),得12+02+(z-2)2=(1-0)2+(-3-0)2+(-1-z)2解得z=-1,所求的点为(0,0,-1).10.设实数x,y满足(x-2)2+y2=3,那么的最大值是(D)(A)(B)(C)(D)解析:如图所示,设过原点的直线方程为y=kx,则与圆有交点的直线中,k max=,所以的最大值为,故选D.11.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为(A)(A)x+y-2=0(B)y-1=0(C)x-y=0 (D)x+3y-4=0解析:欲使两部分的面积之差最大,需直线与OP垂直,因为k OP=1,所以所求的直线方程为y-1=-(x-1),即x+y-2=0.12.当曲线y=1+与直线y=k(x-2)+4有两个相异交点时,实数k的取值范围是(C)(A)(0,)(B)(,](C)(,](D)(,+∞)解析:曲线y=1+是以(0,1)为圆心,2为半径的半圆(如图),直线y=k(x-2)+4是过定点(2,4)的直线.设切线PC的斜率为k0,则切线PC的方程为y=k0(x-2)+4,圆心(0,1)到直线PC的距离等于半径2,即=2,k0=.。
高中数学 第四章 圆与方程单元质量测评(含解析)新人教A版必修2-新人教A版高一必修2数学试题
第四章 单元质量测评对应学生用书P99 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.若方程x 2+y 2-x +y +m =0表示圆,则实数m 的取值X 围是( ) A .⎝ ⎛⎭⎪⎫-∞,12 B .(-∞,1)C .⎝ ⎛⎭⎪⎫12,+∞D .⎝ ⎛⎦⎥⎤-∞,12答案 A解析 由(-1)2+12-4m >0,解得m <12.2.已知圆C 1:x 2+y 2+4x -4y -3=0,动点P 在圆C 2:x 2+y 2-4x -12=0上,则△PC 1C 2面积的最大值为( )A .2 5B .4 5C .8 5D .20 答案 B解析 圆C 1:x 2+y 2+4x -4y =3,即(x +2)2+(y -2)2=11,圆心为(-2,2), C 2:x 2+y 2-4x -12=0,即(x -2)2+y 2=16,圆心为(2,0),半径为4, ∴|C 1C 2|=16+4=25, △PC 1C 2面积最大时,有PC 2⊥C 1C 2,∴△PC 1C 2的面积的最大值为12×25×4=45,故选B .3.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 D解析 圆x 2+y 2-2ax +3by =0的圆心为⎝ ⎛⎭⎪⎫a ,-32b ,则a <0,b >0.直线x +ay +b =0等价于y =-1a x -b a ,因为k =-1a >0,-ba>0,所以直线不经过第四象限.4.已知A(1,2,3),B(3,3,m),C(0,-1,0),D(2,-1,-1),则( ) A .|AB|>|CD| B .|AB|<|CD| C .|AB|≤|CD| D.|AB|≥|CD| 答案 D解析 |AB|=22+12+m -32=5+m -32,|CD|=22+02+-12=5.因为(m -3)2≥0,所以|AB|≥|CD|.5.从M(0,2,1)出发的光线,经平面xOy 反射后到达点N(2,0,2),则光线所行走的路程为( )A .3B .4C .17D .3 2 答案 C解析 点M(0,2,1)关于平面xOy 对称的点为M′(0,2,-1),光线所行走的路程为 |M′N|=2-02+0-22+2+12=17.6.直线x +3y =0绕原点按顺时针方向旋转30°所得直线与圆(x -2)2+y 2=3的位置关系是( )A .直线与圆相切B .直线与圆相交但不过圆心C .直线与圆相离D .直线过圆心 答案 A解析 直线x +3y =0的斜率为-33,倾斜角为150°,绕原点按顺时针方向旋转30°,所得直线的倾斜角为120°,斜率为-3,所以直线方程为3x +y =0.圆(x -2)2+y 2=3的圆心(2,0)到直线3x +y =0的距离d =233+1=3=r ,所以直线与圆相切. 7.已知圆C :x 2+y 2+mx -4=0上存在两点关于直线x -y +3=0对称,则实数m 的值为( )A .8B .-4C .6D .无法确定 答案 C解析 ∵圆上存在关于直线x -y +3=0对称的两点,∴x-y +3=0过圆心⎝ ⎛⎭⎪⎫-m 2,0,即-m2+3=0,解得m =6. 8.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1 B .(x -2)2+(y +2)2=1 C .(x +2)2+(y +2)2=1 D .(x -2)2+(y -2)2=1 答案 B解析 设圆C 2的圆心为(a ,b),则依题意,得 ⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,对称圆的半径长不变,所以圆C 2的半径长为1,故圆C 2的方程为(x -2)2+(y +2)2=1,选B .9.以(a ,1)为圆心,且与两条直线2x -y +4=0和2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5 B .(x +1)2+(y +1)2=5 C .(x -1)2+y 2=5 D .x 2+(y -1)2=5 答案 A解析 因为两条直线2x -y +4=0和2x -y -6=0的距离为d =|-6-4|5=25,所以所求圆的半径为r =5,所以圆心(a ,1)到直线2x -y +4=0的距离为|2a -1+4|5=|2a +3|5=5,即a =1或a =-4,又因为圆心(a ,1)到直线2x -y -6=0的距离也为5,所以a =1.所以所求的圆的标准方程为(x -1)2+(y -1)2=5,故选A .10.过直线y =2x 上一点P 作圆M :(x -3)2+(y -2)2=45的两条切线l 1,l 2,A ,B 为切点,当直线l 1,l 2关于直线y =2x 对称时,则∠APB 等于( )A .30° B.45° C.60° D.90°答案 C解析 过圆M 的圆心(3,2)向直线y =2x 作垂线,设垂足为N ,易知当点P 与点N 重合时,l 1与l 2关于y =2x 对称,此时,|MP|=|2×3-2|5=45,又圆M 的半径长为25,故sin∠MPA=12,则∠MPA=30°,故∠APB=60°. 11.已知圆C :(x -3)2+(y -4)2=1和两点A(-m ,0),B(m ,0)(m>0),若圆C 上存在点P ,使得∠APB=90°,则m 的最大值为( )A .7B .6C .5D .4 答案 B解析 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB|=2m .因为∠APB=90°,连接OP ,易知|OP|=12|AB|=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为|OC|=32+42=5,所以|OP|max =|OC|+r =6,即m 的最大值为6.12.设点M(x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN=45°,则x 0的取值X 围是( )A .[-1,1]B .⎣⎢⎡⎦⎥⎤-12,12 C .[-2,2] D .⎣⎢⎡⎦⎥⎤-22,22 答案 A解析 解法一:过M 作圆O 的两条切线MA ,MB ,切点分别为A ,B ,若在圆O 上存在点N ,使∠OMN=45°,则∠OMB≥∠OMN=45°,所以∠AMB≥90°,所以-1≤x 0≤1,故选A .解法二:过O 作OP⊥MN 于P ,则|OP|=|OM|sin45°≤1, ∴|OM|≤2, 即x 20+1≤2,∴x 20≤1,即-1≤x 0≤1,故选A .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是________.答案 (x +2)2+y 2=2解析 设圆心坐标为(a ,0)(a <0),则圆心到直线的距离等于半径,即r =|a +0|12+12=2,解得a =-2.故圆的标准方程为(x +2)2+y 2=2.14.动圆x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0的圆心的轨迹方程是________________.答案 x -2y -1=0(x≠1)解析 圆心坐标为(2m +1,m),半径长r =|m|(m≠0).令x =2m +1,y =m(m≠0),可得x -2y -1=0(x≠1),即为圆心的轨迹方程.15.若直线x +y +m =0上存在点P ,过点P 可作圆O :x 2+y 2=1的两条切线PA ,PB ,切点为A ,B ,且∠APB=60°,则实数m 的取值X 围为________.答案 [-22,2 2 ]解析 若∠APB=60°,则|OP|=2,直线x +y +m =0上存在点P ,过点P 可作圆O :x2+y 2=1的两条切线PA ,PB ,等价于直线x +y +m =0与圆x 2+y 2=4有公共点,由点到直线的距离公式可得|m|2≤2,解得m∈[-22,2 2 ].16.当且仅当a<r<b 时,圆x 2+y 2=r 2(r>0)上有两点到直线3x +4y -15=0的距离是2,则以(a ,b)为圆心,且和直线4x -3y +1=0相切的圆的方程为______________.答案 (x -1)2+(y -5)2=4解析 因为圆心(0,0)到直线3x +4y -15=0的距离d =|-15|32+42=3,结合图形可知,圆x 2+y 2=r 2(r>0)上有两点到直线3x +4y -15=0的距离为2,等价于|r -3|<2,即1<r<5,所以a =1,b =5.又点(1,5)到直线4x -3y +1=0的距离为|4×1+5×-3+1|42+-32=2,所以所求圆的方程为(x -1)2+(y -5)2=4. 三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知圆C :x 2+y 2-2y -4=0,直线l :mx -y +1-m =0. (1)判断直线l 与圆C 的位置关系;(2)若直线l 与圆C 交于不同的两点A ,B ,且|AB|=32,求直线l 的方程.解 (1)将圆C 的方程化为标准方程为x 2+(y -1)2=5,所以圆C 的圆心为C(0,1),半径r =5,圆心C(0,1)到直线l :mx -y +1-m =0的距离d =|0-1+1-m|m 2+1=|m|m 2+1<1<5,因此直线l 与圆C 相交.(2)设圆心C 到直线l 的距离为d , 则d =52-⎝⎛⎭⎪⎫3222=22. 又d =|m|m 2+1,则|m|m 2+1=22,解得m =±1,所以所求直线方程为x -y =0或x +y -2=0.18.(本小题满分12分)在空间直角坐标系Oxyz 中.(1)在z 轴上求一点P ,使得它到点A(4,5,6)与到点B(-7,3,11)的距离相等; (2)已知点M 到坐标原点的距离等于23,且它的横、纵、竖坐标相等,求该点的坐标. 解 (1)设点P 的坐标为(0,0,c), 因为|PA|=|PB|, 所以16+25+c -62=49+9+c -112,所以c =515,所以点P 的坐标为⎝ ⎛⎭⎪⎫0,0,515.(2)设点M 的坐标为(a ,a ,a), 所以a 2+a 2+a 2=23, 所以a 2=4,所以a =±2.所以点M 的坐标为M(2,2,2)或M(-2,-2,-2).19.(本小题满分12分)已知圆C :x 2+y 2+Dx +Ey +3=0关于直线x +y -1=0对称,圆心在第二象限,半径为2.(1)求圆C 的方程;(2)已知不过原点的直线l 与圆C 相切,且在x 轴、y 轴上的截距相等,求直线l 的方程.解 (1)由题意,得⎩⎪⎨⎪⎧-D 2-E2-1=0,D 2+E 2-4×32=2,解得⎩⎪⎨⎪⎧D =2,E =-4或⎩⎪⎨⎪⎧D =-4,E =2(舍去).∴圆C 的方程为x 2+y 2+2x -4y +3=0. (2)圆C :(x +1)2+(y -2)2=2,∵切线在两坐标轴上的截距相等且不为零, 设切线l :x +y =m(m≠0),∴圆心C(-1,2)到切线的距离等于半径2, 即|-1+2-m|2=2,∴m=-1或m =3. ∴所求切线方程为x +y +1=0或x +y -3=0.20.(本小题满分12分)已知点P 1(-2,3),P 2 (0,1),圆C 是以P 1P 2的中点为圆心,12|P 1P 2|为半径的圆.(1)若圆C 的一条切线在x 轴和y 轴上截距相等,求此切线方程;(2)若P(x ,y)是圆C 外一点,从P 向圆C 引切线PM ,M 为切点,O 为坐标原点,|PM|=|PO|,求使|PM|最小的点P 的坐标.解 (1)设圆心坐标为C(a ,b),半径为r ,依题意得 a =-2+02=-1,b =3+12=2,r =12×4+4=2.∴圆C 的方程为(x +1)2+(y -2)2=2.①若截距均为0,即圆C 的切线过原点,则可设该切线为y =kx ,即kx -y =0,则有|-k -2|k 2+1=2,解得k =2±6.此时切线方程为(2+6)x -y =0或(2-6)x -y =0. ②若截距不为0,可设切线为x +y =a 即x +y -a =0, 依题意得|-1+2-a|2=2,解得a =-1或a =3.此时切线方程为x +y +1=0或x +y -3=0.综上,所求切线方程为(2±6)x -y =0或x +y +1=0或x +y -3=0. (2)∵|PM|=|PO|,∴|PM|2=|PO|2,即(x +1)2+(y -2)2-2=x 2+y 2,整理得y =2x +34,而|PM|=|PO|=x 2+y 2=1420x 2+12x +9,当x =-122×20=-310时,|PM|取得最小值.此时点P 的坐标为⎝ ⎛⎭⎪⎫-310,35.21.(本小题满分12分)已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0. (1)求证:对任意的m∈R ,直线l 与圆C 总有两个不同的交点; (2)若圆C 与直线l 相交于A ,B 两点,求弦AB 的中点M 的轨迹方程.解 (1)证明:因为直线l :mx -y +1=0恒过定点N(0,1),且点N(0,1)在圆C :x 2+(y -2)2=5的内部,所以直线l 与圆C 总有两个不同的交点. (2)由题知C(0,2),设动点M(x ,y), 当x =0时,M(0,1);当x≠0时,由垂径定理,知MN⊥MC, 所以y -2x ·y -1x=-1,整理得x 2+⎝ ⎛⎭⎪⎫y -322=14,又(0,1)满足此方程,所以弦AB 的中点M 的轨迹方程是x 2+⎝ ⎛⎭⎪⎫y -322=14.22.(本小题满分12分)有一种大型商品,A ,B 两地均有出售且价格相同,某地居民从两地之一购得商品运回来,每千米的运费A 地是B 地的2倍,若A ,B 两地相距10千米,顾客选择A 地或B 地购买这种商品的标准是:运费和价格的总费用较低,那么不同地点的居民应如何选择购买此商品?解 以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,如图所示.设A(-5,0),则B(5,0).在坐标平面内任取一点P(x ,y),设从A 地运货到P 地的运费为2a 元/千米,则从B 地运货到P 地的运费为a 元/千米.若P 地居民选择在A 地购买此商品, 则2ax +52+y 2<ax -52+y 2,整理得⎝ ⎛⎭⎪⎫x +2532+y 2<⎝ ⎛⎭⎪⎫2032.即点P 在圆C :⎝ ⎛⎭⎪⎫x +2532+y 2=⎝ ⎛⎭⎪⎫2032的内部.也就是说,圆C 内的居民应在A 地购买,圆C 外的居民应在B 地购买,圆C 上的居民可随意选择A ,B 两地之一购买.。
高中数学人教A版必修二:第四章《圆与方程》单元试卷(2)(Word版,含解析)
第四章圆与方程单元检测(时间:120分钟,满分:150分)一、选择题(本题共12小题,每小题5分,共60分)1.直线y =x +10与曲线x 2+y 2=1的位置关系是( ). A .相交 B .相离 C .相切 D .不能确定2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ). A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=13.点P (x ,y ,z )2=,则点P 在( ).A .以点(1,1,-1)为半径的圆上B .以点(1,1,-1)为棱长的正方体内C .以点(1,1,-1)为球心,2为半径的球面上D .无法确定4.圆x 2+y 2=4与圆x 2+y 2+4x -4y +4=0关于直线l 对称,则l 的方程是( ). A .x +y =0 B .x +y -2=0 C .x -y -2=0 D .x -y +2=0 5.圆C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且只有( ). A .1条 B .2条 C .3条 D .4条6.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( ).A .-3B .3C .-3或3D .以上都不对7.过点P (2,3)向圆x 2+y 2=1作两条切线P A 、PB ,则弦AB 所在直线的方程为( ). A .2x -3y -1=0 B .2x +3y -1=0 C .3x +2y -1=0 D .3x -2y -1=08.与圆x 2+y 2-ax -2y +1=0关于直线x -y -1=0对称的圆的方程为x 2+y 2-4x +3=0,则a 等于( ).A .0B .1C .2D .39.圆x 2+(y +1)2=3绕直线kx -y -1=0旋转一周所得的几何体的表面积为( ).A .36πB .12πC .D .4π10.动圆x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0的圆心的轨迹方程是( ). A .2x -y -1=0 B .2x -y -1=0(x ≠1) C .x -2y -1=0(x ≠1) D .x -2y -1=0 11.若过定点M (-1,0)且斜率为k 的直线与圆x 2+4x +y 2-5=0在第一象限内的部分有交点,则k 的取值范围是( ).A .0k <<B .0k <<C .0k <<D .0<k <512.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若MN ≥k的取值范围是( ).A .3[,0] 4- B .(-∞,34-]∪[0,+∞)C .[33-D .2[,0]3-二、填空题(本题共4小题,,每小题4分,共16分)13.过直线l :y =2x 上一点P 作圆C :(x -8)2+(y -1)2=2的切线l 1,l 2,若l 1,l 2关于直线l 对称,则点P 到圆心C 的距离为__________.14.点P为圆x2+y2=1上的动点,则点P到直线3x-4y-10=0的距离的最小值为__________.15.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为________.16.已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C所截得的弦长为l垂直的直线的方程为________.三、解答题(本题共6小题,共74分)17.(12分)一圆和直线l:x+2y-3=0切于点P(1,1),且半径为5,求这个圆的方程.18.(12分)求平行于直线3x+3y+5=0且被圆x2+y2=20截得长为的弦所在的直线方程.19.(12分)点A(0,2)是圆x2+y2=16内的定点,B,C是这个圆上的两个动点,若BA⊥CA,求BC中点M的轨迹方程,并说明它的轨迹是什么曲线.20.(12分)圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A、B.(1)求线段AB的垂直平分线的方程;(2)求线段AB的长.21.(12分)已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m为何值时,直线和圆恒相交于两点;(2)求直线l被圆C截得的弦长最小时的方程.22.(14分)在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.答案与解析1.答案:B解析:1=>.2.答案:A解析:方法一(直接法):设圆心坐标为(0,b),1=,解得b=2,故圆的方程为x2+(y-2)2=1.方法二(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为x2+(y-2)2=1.方法三(验证法):将点(1,2)代入四个选择支,排除B,D,又由于圆心在y轴上,排除C.3.答案:C解析:根据两点间距离公式的几何意义,动点(x,y,z)满足到定点(1,1,-1)的距离恒等于2.4.答案:D解析:∵两圆圆心分别为(0,0)和(-2,2),∴中点为(-1,1),两圆圆心连线斜率为-1.∴l的斜率为1,且过点(-1,1).∴l的方程为y-1=x+1,即x-y+2=0.5.答案:B解析:⊙C1:(x+1)2+(y+1)2=4,⊙C2:(x-2)2+(y-1)2=4,124C C=<,∴只有2条公切线.∴应选B.6.答案:C解析:圆的方程可变为(x+1)2+(y-2)2=a2+7,圆心为(-1,2),1=-,解得a=±3.7.答案:B解析:圆x2+y2=1的圆心为坐标原点O,以OP为直径的圆的方程为2231324(1)()x y-+-=.显然这两个圆是相交的,由22221313124x yx y⎧+=⎪⎨(-)+(-)=⎪⎩得2x+3y-1=0,这就是弦AB所在直线的方程.8.答案:C解析:两圆的圆心分别为(,1)2aA,B(2,0),则AB的中点1(1,)42a+在直线x-y-1=0上,即111042a+--=,解得a=2,故选择C.9.答案:B解析:由题意,圆心为(0,-1),又直线kx-y-1=0恒过点(0,-1),所以旋转一周所得的几何体为球,球心即为圆心,球的半径即是圆的半径,所以S=2=12π.10.答案:C解析:圆心为(2m+1,m),r=|m|(m≠0).不妨设圆心坐标为(x,y),则x=2m+1,y=m,所以x-2y-1=0.又因为m≠0,所以x≠1.因此选择C.11.答案:A解析:圆x2+4x+y2-5=0可变形为(x+2)2+y2=9,如图所示.当x=0时,y±=,结合图形可得A,∵AMk=∴(0k∈.12.答案:A解析:圆心(3,2)到直线y=kx+3的距离d,MN≥=∴34k-≤≤.13.答案:解析:圆心C的坐标为(8,1),由题意,得PC⊥l,∴PC的长是圆心C到直线l的距离.即PC=14.答案:1解析:∵圆心到直线的距离为1025d==,∴点P到直线3x-4y-10=0的距离的最小值为d-r=2-1=1.15.答案:(x-2)2+y2=10解析:由题意,线段AB中点M(3,2),12ABk=-12ABk=-,∴线段AB中垂线所在直线方程为y-2=2(x-3).由223y xy-=(-)⎧⎨=⎩得圆心(2,0).则圆C的半径r=故圆C的方程为(x-2)2+y2=10.16.答案:x+y-3=0解析:设圆心(a,0),∴222|1|a+=-,∴a=3.∴圆心(3,0).∴所求直线方程为x+y-3=0.17.解:设圆心坐标为C(a,b),圆的方程即为(x-a)2+(y-b)2=25.∵点P(1,1)在圆上,则(1-a)2+(1-b)2=25.①又l为圆C的切线,则CP⊥l,∴121ba-=-.②联立①②解得11ab⎧=+⎪⎨=+⎪⎩或112ab⎧=-⎪⎨=-⎪⎩即所求圆的方程为(x-12+(y-1-2=25或(x-12+(y-1+2=25.18.解:设弦所在的直线方程为x+y+c=0.①则圆心(0,0)到此直线的距离为||2dc=.因为圆的半弦长、半径、弦心距恰好构成直角三角形,所以2220+=.由此解得c=±2,代入①得弦的方程为x+y+2=0或x-y-2=0.19.解:设点M(x,y),因为M是弦BC的中点,故OM⊥BC.又∵∠BAC=90°,∴|MA|=12|BC|=|MB|.∵|MB|2=|OB|2-|OM|2,∴|OB|2=|MO|2+|MA|2,即42=(x2+y2)+[(x-0)2+(y-2)2],化简为x2+y2-2y-6=0,即x 2+(y -1)2=7.∴所求轨迹为以(0,1)为半径的圆.20.解:(1)两圆方程相减,得4x -4y +1=0,即为AB 的方程.两圆圆心连线即为AB 的垂直平分线,所以AB 的垂直平分线的方程过两圆圆心,且与AB 垂直. 则AB 的垂直平分线的斜率为-1.又圆x 2+y 2-2x -5=0的圆心为(1,0),所以AB 的垂直平分线的方程为y =-(x -1),即x +y -1=0.(2)圆x 2+y 2-2x -5=0的半径、圆x 2+y 2-2x -5=0的圆心到AB 的距离、AB 长的一半三者构成一个直角三角形的三条边,圆x 2+y 2-2x -5=0可化为(x -1)2+y 2=6,所以圆心(1,0),半径,弦心距8=,由勾股定理得222||()(28AB +=,解得2AB =.21.解:(1)由(2m +1)x +(m +1)y -7m -4=0,得(2x +y -7)m +x +y -4=0.则27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩∴直线l 恒过定点A (3,1). 又∵(3-1)2+(1-2)2=5<25,∴(3,1)在圆C 的内部,故l 与C 恒有两个公共点.(2)当直线l 被圆C 截得的弦长最小时,有l ⊥AC ,由12AC k =-,得l 的方程为y -1=2(x -3),即2x -y -5=0.22.解:(1)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+,(3-.故可设C 的圆心为(3,t ),则有22223(1)t t ++-=,解得t =1.则圆C 3=所以圆C 的方程为(x -3)2+(y -1)2=9.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组:22319.x y a x y -+=⎧⎨(-)+(-)=⎩ 消去y ,得到方程2x 2+(2a -8)x +a 2-2a +1=0. 由已知可得,判别式Δ=56-16a -4a 2>0.因此1,2(82)4a x -±=,从而x 1+x 2=4-a ,212212a x x a -+=.①由于OA ⊥OB ,可得x 1x 2+y 1y 2=0.又y 1=x 1+a ,y 2=x 2+a ,所以2x 1x 2+a (x 1+x 2)+a 2=0.② 由①,②得a =-1,满足Δ>0,故a =-1.。
人教A版高中数学必修2第四章《圆与方程》测试题(含答案)
由于 ,故O在线段PM的垂直平分线上,又P在圆N上,从而 .
因为ON的斜率为3,所以 的斜率为 ,故 的方程为 .
又 ,O到 的距离为 , ,所以 的面积为 .
21.(1).由已知得过点 的圆的切线斜率的存在,
设切线方程为 ,即 .
则圆心 到直线的距离为 ,
A. B.
C. D.
5.一条光线从点 射出,经 轴反射后与圆 相切,则反射光线所在直线的斜率为()
A. 或 B. 或 C. 或 D. 或
6.已知圆 截直线 所得线段的长度是 ,则圆 与圆 的位置关系是( )
A.内切B.相交C.外切D.相离
7.已知方程 ,则 的最大值是( )
A.14- B.14+ C.9D.14
A.4B.6C. D.
12.已知直线 : 是圆 的对称轴.过点 作圆 的一条切线,切点为 ,则 ( )
A.2B. C.6D.
二、填空题
13.已知两点 ,以线段 为直径的圆的方程为________________.
14.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是_______
15.已知 为直线 上一点,过 作圆 的切线,则切线长最短时的切线方程为__________.
当 的斜率不存在, 的斜率等于0时, 与圆 不相交, 与圆 不相交.
当 、 的斜率存在且都不等于0,两条直线分别与两圆相交时,设 、 的方程分别为 ,即 .
因为 到 的距离 ,
到 的距离 ,所以 到 的距离与 到 的距离相等.
所以圆 与圆 的半径相等,所以 被圆 截得的弦长与 被圆 截得的弦长恒相等.
综上所述,过点 任作互相垂直的两条直线分别与两圆相交,所得弦长恒相等.
高中数学人教A版必修二 第四章 圆与方程 学业分层测评24 Word版含答案
学业分层测评一、选择题1.点P在圆C1:x2+y2-8x-4y+11=0上点Q在圆C2:x2+y2+4x+2y+1=0上则|PQ|的最小值是()A.5 B.1C.35-5 D.35+5【解析】圆C1:x2+y2-8x-4y+11=0即(x-4)2+(y-2)2=9圆心为C1(42);圆C2:x2+y2+4x+2y+1=0即(x+2)2+(y+1)2=4圆心为C2(-2-1)两圆相离|PQ|的最小值为|C1C2|-(r1+r2)=35-5【答案】 C2.设两圆C1、C2都和两坐标轴相切且都过点(41)则两圆心的距离|C1C2|=()A.4 B.4 2C.8 D.8 2【解析】∵两圆与两坐标轴都相切且都经过点(41)∴两圆圆心均在第一象限且横、纵坐标相等.设两圆的圆心分别为(aa)(bb)则有(4-a)2+(1-a)2=a2(4-b)2+(1-b)2=b2即ab为方程(4-x)2+(1-x)2=x2的两个根整理得x2-10x+17=0∴a+b=10ab=17∴(a-b)2=(a+b)2-4ab=100-4×17=32∴|C1C2|=2(a-b)2=32×2=8【答案】 C3.过点P(23)向圆C:x2+y2=1上作两条切线P APB则弦AB所在的直线方程为()A.2x-3y-1=0B.2x+3y-1=0C.3x+2y-1=0D.3x-2y-1=0【解析】 弦AB 可以看作是以PC 为直径的圆与圆x 2+y 2=1的交线而以PC为直径的圆的方程为(x -1)2+⎝ ⎛⎭⎪⎫y -322=134根据两圆的公共弦的求法可得弦AB 所在的直线方程为:(x -1)2+⎝ ⎛⎭⎪⎫y -322-134-(x 2+y 2-1)=0整理可得2x +3y -1=0故选B【答案】 B二、填空题6.过两圆x 2+y 2-x -y -2=0与x 2+y 2+4x -4y -8=0的交点和点(31)的圆的方程是________.【解析】 设所求圆的方程为 (x 2+y 2-x -y -2)+λ(x 2+y 2+4x -4y -8)=0(λ≠-1)将(31)代入得λ=-25故所求圆的方程为x 2+y 2-133x +y +2=0【答案】 x 2+y 2-133x +y +2=07.两圆相交于两点A (13)和B (m -1)两圆圆心都在直线x -y +c =0上则m +c 的值为________.【解析】 由题意知线段AB 的中点在直线x -y +c =0上且k AB =41-m=-1即m =5 又点⎝ ⎛⎭⎪⎫1+m 2,1在该直线上 所以1+m 2-1+c =0所以c =-2所以m +c =3【答案】 3三、解答题8.求圆心为(21)且与已知圆x 2+y 2-3x =0的公共弦所在直线经过点(5-2)的圆的方程.【解】 设所求圆的方程为(x -2)2+(y -1)2=r 2即x 2+y 2-4x -2y +5-r 2=0①已知圆的方程为x 2+y 2-3x =0②②-①得公共弦所在直线的方程为x +2y -5+r 2=0又此直线经过点(5-2)∴5-4-5+r 2=0∴r 2=4故所求圆的方程为(x -2)2+(y -1)2=49.有相距100 km 的AB 两个批发市场商品的价格相同但在某地区居民从两地运回商品时A 地的单位距离的运费是B 地的2倍.问怎样确定AB 两批发市场的售货区域对当地居民有利?【09960144】【解】 建立以AB 所在直线为x 轴AB 中点为原点的直角坐标系则A (-500)B (500).设P (xy )由2|P A |=|PB |得x 2+y 2+5003x +2 500=0 所以在圆x 2+y 2+5003x +2 500=0内到A 地购物合算;在圆x 2+y 2+5003x +2500=0外到B 地购物合算;在圆x 2+y 2+5003x +2 500=0上到AB 两地购物一样合算.[自我挑战]10.以圆C 1:x 2+y 2+4x +1=0与圆C 2:x 2+y 2+2x +2y +1=0相交的公共弦为直径的圆的方程为( )A .(x -1)2+(y -1)2=1B .(x +1)2+(y +1)2=1C ⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45 D ⎝ ⎛⎭⎪⎫x -352+⎝ ⎛⎭⎪⎫y -652=45 【解析】 两圆方程相减得公共弦所在直线的方程为x -y =0因此所求圆的圆心的横、纵坐标相等排除CD 选项画图(图略)可知所求圆的圆心在第三象限排除A 故选B【答案】 B11.设半径为3 km 的圆形村落A 、B 两人同时从村落中心出发A 向东B 向北A 出村后不久改变前进方向斜着沿切于村落圆周的方向前进后来恰好与B 相遇设A 、B 两人的速度一定其比为3∶1问A 、B 两人在何处相遇?【解】由题意以村中心为原点正东方向为x轴的正方向正北为y轴的正方向建立直角坐标系设A、B两人的速度分别为3v km/h v km/h设A出发a h在P处改变方向又经过b h到达相遇点Q则|PQ|=3b v|OP|=3a v|OQ|=(a+b)v则P(3a v0)Q(0(a+b)v)在Rt△OPQ中由|PQ|2=|OP|2+|OQ|2得5a=4bk PQ=0-v(a+b)3a v-0∴k PQ=-34设直线PQ的方程为y=-34x+c(c>0)由PQ与圆x2+y2=9相切得|4c|42+32=3解得c=154故A、B两人相遇在正北方离村落中心154km。
2018-2019年高中数学人教A版《必修2》《第四章 圆和方程》课后练习试卷【9】含答案考点及解析
2018-2019年高中数学人教A版《必修2》《第四章圆和方程》课后练习试卷【9】含答案考点及解析班级:___________ 姓名:___________ 分数:___________ 题号一二三总分得分注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上评卷人得分一、选择题 1.某师傅需用合板制作一个工作台,工作台由主体和附属两部分组成,主体部分全封闭,附属部分是为了防止工件滑出台面而设置的三面护墙,其大致形状的三视图如图所示(单位长度:cm), 则按图中尺寸,做成的工作台用去的合板的面积为(制作过程合板的损耗和合板厚度忽略不计)( )22A.40 000 cmB.40 800 cm22 C.1600(22+)cmD.41 600 cm 【答案】D【解析】此题中应抓住“主体部分全封闭”和“附属部分是为了防止工件滑出台面而设置的三面护墙”,即主体部分是全封闭的正方体,附属部分是由三个面围成的护墙.这种题要抓住开放和封闭,以免出现错误.工作台包括两部分:全封闭的正方体(一个)+三面护墙.全封闭正方体的表面积:80×80×6=38 400,三面护墙面积20×80+20×80=3200,因此做成的工作台用去的合板的面积为41 600,故选D. 2.右图是一个几何体的三视图,根据图中数据,可得该几何体的体积是( ) A. D.B.C.【答案】B 【解析】试题分析:还原为几何体是一个球与圆柱的组合体,由三视图知球的半径为1,圆柱的底面圆半径为1,高为3,所以. 考点:以三视图为载体考查几何体(球、圆柱)的体积.3.已知四棱锥中,侧棱都相等,底面是边长为的正方形,底面中心为,以为直径的球经过侧棱中点,则该球的体积为() A.B.C.D.【答案】C 【解析】试题分析:如图,G为侧棱PB的中点,结合题意得,所以,又因为,所以,球的半径为1,其体积为。
2018-2019数学同步新课标导学人教A版必修二通用版练习:第四章 圆与方程4.1.2
第四章 4.1 4.1.2A 级 基础巩固一、选择题1.圆x 2+y 2-4x +6y =0的圆心坐标是导学号 09024937( D ) A .(2,3) B .(-2,3) C .(-2,-3)D .(2,-3)[解析] 圆的一般程化成标准方程为(x -2)2+(y +3)2=13,可知圆心坐标为(2,-3). 2.(2018·本溪市高一期中)若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为导学号 09025184( A )A .12,-4B .-12,4C .12,4D .-12,-4[解析] 由题意知直线y =kx 与2x +y +b =0垂直,且直线2x +y +b =0过圆心∴⎩⎪⎨⎪⎧k ·(-2)=-1,2×2+0+b =0,解得⎩⎪⎨⎪⎧k =12b =-4.3.(2016~2017·长沙高一检测)已知圆C 过点M (1,1),N (5,1),且圆心在直线y =x -2上,则圆C 的方程为导学号 09024939( A )A .x 2+y 2-6x -2y +6=0B .x 2+y 2+6x -2y +6=0C .x 2+y 2+6x +2y +6=0D .x 2+y 2-2x -6y +6=0[解析] 由条件知,圆心C 在线段MN 的中垂线x =3上,又在直线y =x -2上,∴圆心C (3,1),半径r =|MC |=2.方程为(x -3)2+(y -1)2=4,即x 2+y 2-6x -2y +6=0. 故选A .4.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是导学号 09024940( B )A .在圆上B .在圆外C .在圆内D .不确定[解析] 将原点坐标(0,0)代入圆的方程得(a -1)2 ∵0<a <1,∴(a -1)2>0,∴原点在圆外.导学号 09024941( C )A .-2或2B .12或32C .2或0D .-2或0[解析] 化圆的标准方程为(x -1)2+(y -2)2=5,则由圆心(1,2)到直线x -y +a =0距离为22,得|1-2+a |2=22,∴a =2或0. 6.圆x 2+y 2-2y -1=0关于直线y =x 对称的圆的方程是导学号 09024942( A ) A .(x -1)2+y 2=2 B .(x +1)2+y 2=2 C .(x -1)2+y 2=4D .(x +1)2+y 2=4[解析] 圆x 2+y 2-2y -1=0的圆心坐标为(0,1),半径r =2,圆心(0,1)关于直线y =x 对称的点的坐标为(1,0),故所求圆的方程为(x -1)2+y 2=2.二、填空题7.圆心是(-3,4),经过点M (5,1)的圆的一般方程为__x 2+y 2+6x -8y -48=0__. 导学号 09024943[解析] 只要求出圆的半径即得圆的标准方程,再展开化为一般式方程.8.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则P A 的中点M 的轨迹方程是__x 2+y 2-4x +2y +1=0__.导学号 09024944[解析] 设M (x ,y ),A (2,-1),则P (2x -2,2y +1),将P 代入圆方程得:(2x -2)2+(2y +1)2-4(2x -2)+2(2y +1)-11=0,即为:x 2+y 2-4x +2y +1=0.三、解答题9.判断方程x 2+y 2-4mx +2my +20m -20=0能否表示圆,若能表示圆,求出圆心和半径.导学号 09024945[解析] 解法一:由方程x 2+y 2-4mx +2my +20m -20=0 可知D =-4m ,E =2m ,F =20m -20∴D 2+E 2-4F =16m 2+4m 2-80m +80=20(m -2)2,因此,当m =2时,D 2+E 2-4F =0,它表示一个点,当m ≠2时,D 2+E 2-4F >0,原方程表示圆的方程,此时,圆的圆心为(2m ,-m ),半径为r =12D 2+E 2-4F =5|m -2|.解法二:原方程可化为(x -2m )2+(y +m )2=5(m -2)2,因此,当m =2时,它表示一个点当m ≠2时,原方程表示圆的方程.此时,圆的圆心为(2m ,-m ),半径为r =5|m -2|.10.求过点A (-1,0)、B (3,0)和C (0,1)的圆的方程.导学号 09024946 [解析] 解法一:设圆的方程为 x 2+y 2+Dx +Ey +F =0(*)把A 、B 、C 三点坐标代入方程(*)得 ⎩⎪⎨⎪⎧1-D +F =09+3D +F =01+E +F =0,∴⎩⎪⎨⎪⎧D =-2E =2F =-3.故所求圆的方程为x 2+y 2-2x +2y -3=0解法二:线段AB 的中垂线方程为x =1,线段AC 的中垂线方程为x +y =0由⎩⎪⎨⎪⎧x =1x +y =0,得圆心坐标为M (1,-1) 半径r =|MA |= 5∴圆的方程为(x -1)2+(y +1)2=5.B 级 素养提升一、选择题1.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过导学号 09024947( D )A .第一象限B .第二象限C .第三象限D .第四象限[解析] 圆x 2+y 2-2ax +3by =0的圆心为(a ,-32b )则a <0,b >0.直线y =-1a x -b a ,其斜率k =-1a >0,在y 轴上的截距为-ba >0,所以直线不经过第四象限,故选D .2.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面只为导学号 09024948( B )A .5 2B .10 2C .15 2D .20 2[解析] 圆x 2+y 2-2x -6y =0化成标准方程为(x -1)2+(y -3)2=10,则圆心坐标为M (1,3),半径长为10.由圆的几何性质可知:过点E 的最长弦AC 为点E 所在的直径,则|AC |=210.BD 是过点E 的最短弦,则点E 为线段BD 的中点,且AC ⊥BD ,E 为AC 与BD 的交点,则由垂径定理可是|BD |=2|BM |2-|ME |2=210-[(1-0)2+(3-1)2]=2 5.从而四边形ABCD 的面积为12|AC ||BD |=12×210×25=102.3.若点(2a ,a -1)在圆x 2+y 2-2y -5a 2=0的内部,则a 的取值范围是导学号 09024949( D )A .(-∞,45]B .(-43,43)C .(-34,+∞)D .(34,+∞)[解析] 化圆的标准方程为x 2+(y -1)2=5a 2+1,点(2a ,a -1)的圆的内部,则(2a )2+(a -1-1)2<5a 2+1,解得a >34.4.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为导学号 09024950( B )A . 5B .5C .2 5D .10[解析] 由题意,得直线l 过圆心M (-2,-1) 则-2a -b +1=0,则b =-2a +1所以(a -2)2+(b -2)2=(a -2)2+(-2a +1-2)2=5a 2+5≥5 所以(a -2)2+(b -2)2的最小值为5. 二、填空题5.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =__-2__.导学号 09024951[解析] 由题意可知直线l :x -y +2=0过圆心 ∴-1+a2+2=0,∴a =-2.6.若实数x 、y 满足x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值是导学号 09024952[解析] 关键是搞清式子x 2+y 2的意义.实数x ,y 满足方程x 2+y 2+4x -2y -4=0,所以(x ,y )为方程所表示的曲线上的动点.x 2+y 2=(x -0)2+(y -0)2,表示动点(x ,y )到原点(0,0)的距离.对方程进行配方,得(x +2)2+(y -1)2=9,它表示以C (-2,1)为圆心,3为半径的圆,而原点的圆内.连接CO 交圆于点M ,N ,由圆的几何性质可知,MO 的长即为所求的最大值.C 级 能力拔高1.设圆的方程为x 2+y 2=4,过点M (0,1)的直线l 交圆于点A 、B ,O 是坐标原点,点P 为AB 的中点,当l 绕点M 旋转时,求动点P 的轨迹方程.导学号 09024953[解析] 设点P 的坐标为(x ,y )、A (x 1,y 1)、B (x 2,y 2).因为A 、B 在圆上,所以x 21+y 21=4,x 22+y 22=4 两式相减得x 21-x 22+y 21-y 22=0所以(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0. 当x 1≠x 2时,有x 1+x 2+(y 1+y 2)·y 1-y 2x 1-x 2=0,①并且⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,y -1x =y 1-y 2x 1-x 2,②将②代入①并整理得x 2+(y -12)2=14.③当x 1=x 2时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为(0,0)也满足③. 所以点P 的轨迹方程为x 2+(y -12)2=14.2.已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆.导学号 09024954(1)求实数m 的取值范围; (2)求该圆的半径r 的取值范围; (3)求圆心C 的轨迹方程. [解析] (1)要使方程表示圆,则 4(m +3)2+4(1-4m 2)2-4(16m 4+9)>0即4m 2+24m +36+4-32m 2+64m 4-64m 4-36>0 整理得7m 2-6m -1<0,解得-17<m <1.(2)r =124(m +3)2+4(1-4m 2)2-4(16m 4+9)=-7m 2+6m +1=-7(m -37)2+167.∴0<r ≤477.(3)设圆心坐标为(x ,y ),则⎩⎪⎨⎪⎧x =m +3y =4m 2-1. 消去m 可得(x -3)2=14(y +1).∵-17<m <1,∴207<x <4.故圆心C 的轨迹方程为(x -3)2=14(y +1)(207<x <4).。
最新人教版必修二高中数学第四章 圆与方程 单元质量评估(四)及答案
单元质量评估(四)(第四章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(2016·平顶山高一检测)圆(x+2)2+y2=5关于y轴对称的圆的方程为( )A.(x-2)2+y2=5B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=5【解析】选 A.由题意知所求圆的圆心为(2,0),半径为,故所求圆的方程为(x-2)2+y2=5.2.直线l:y=k与圆C:x2+y2=1的位置关系是( )A.相交或相切B.相交或相离C.相切D.相交【解析】选 D.圆C的圆心(0,0)到直线y=k的距离d=,因为d2=<<1,所以位置关系为相交.【一题多解】选D.直线l:y=k过定点,而点在圆C:x2+y2=1内部,故直线l与圆C相交.3.(2015·广东高考)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( )A.2x-y+=0或2x-y-=0B.2x+y+=0或2x+y-=0C.2x-y+5=0或2x-y-5=0D.2x+y+5=0或2x+y-5=0【解析】选D.设所求切线方程为2x+y+c=0,依题有=,解得c=±5,所以所求的直线方程为2x+y+5=0或2x+y-5=0.4.若直线ax+by=4与圆x2+y2=4有两个不同的交点,则点P(a,b)与圆的位置关系是( )A.点P在圆外B.点P在圆上C.点P在圆内D.不能确定【解析】选 A.根据直线与圆相交得圆心到直线的距离小于半径,<2,即a2+b2>4,所以点P(a,b)在圆x2+y2=4的外部.【延伸探究】若本题条件换为“直线ax+by=4与圆x2+y2=4相切”则结论又如何呢?【解析】选B.由题意知=2,即a2+b2=4.则点P在圆上]5.(2016·成都高一检测)圆O1:x2+y2-2x=0与圆O2:x2+y2-4y=0的位置关系是( )A.外离B.相交C.外切D.内切【解析】选B.圆O1(1,0),r1=1,圆O2(0,2),r2=2,|O1O2|==<1+2,且>2-1,故两圆相交.6.(2016·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a= ( )A.-B.-C.D.2【解析】选A.圆x2+y2-2x-8y+13=0化为标准方程为:(x-1)2+(y-4)2=4,故圆心为(1,4),d==1,解得a=-.7.以点(3,-1)为圆心且与直线3x+4y=0相切的圆的方程是( )A.(x+3)2+(y-1)2=1B.(x+3)2+(y-1)2=2C.(x-3)2+(y+1)2=1D.(x-3)2+(y+1)2=2【解析】选C.由已知,r=d==1,故选C.8.空间直角坐标系中,点A(-3,4,0)和B(x,-1,6)的距离为,则x的值为( )A.2B.-8C.2或-8D.8或-2【解析】选C.由空间两点间距离公式得=,解得x=2或-8.9.(2016·南昌高一检测)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2= ( )A. B.2C.1D.3【解析】选B.依题意,圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的,即=,=1×cos45°=,所以a2=b2=1,故a2+b2=2.10.(2014·江西高考)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为( )A.πB.πC.(6-2)πD.π【解题指南】数形结合,找到圆的半径最小时的情况即可.【解析】选A.由题意得,当原点到已知直线的距离恰为圆的直径时,圆的面积最小,此时圆的半径为×=,圆的面积为S=π=.11.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是( )A.(-2,2)B.(-,)C. -,D. -,【解析】选C.易知圆心坐标是(1,0),圆的半径是1,直线l的方程是y=k(x+2),即kx-y+2k=0,根据点到直线的距离公式得<1,即k2<,解得-<k<. 12.若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为2,则实数a的值为( ) A.-1或 B.1或3C.-2或6D.0或4【解析】选 D.圆的半径r=2,圆心(a,0)到直线x-y-2=0的距离d=,由+()2=22,得a=0或a=4.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.(2016·武汉高一检测)已知圆M的圆心在直线x-y-4=0上并且经过圆x2+y2+6x-4=0与圆x2+y2+6y-28=0的交点,则圆M的标准方程为______________. 【解析】联立两圆的方程得交点坐标(-1,3)和(-6,-2);设圆心坐标(a,a-4),所以=解得a=,圆心坐标,-,r2=,方程为x-+y+=.答案: x-+y+=14.(2016·全国卷Ⅰ)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为]【解析】由圆C:x2+y2-2ay-2=0可得x2+(y-a) 2=a2+2,所以圆心C(0,a),由题意可知=,解得a2=2,所以圆C的面积为π(a2+2)=4π.答案:4π15.(2016·石家庄高一检测)集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2 =r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是________.【解题指南】根据A∩B中有且仅有一个元素,说明两圆相切,注意分外切和内切,分别求r的值.【解析】因为A∩B中有且仅有一个元素,所以两圆相切.当两圆外切时,2+r=5,即r=3;当两圆内切时,r-2=5,即r=7.所以r的值是3或7.答案:3或716.方程x2+y2+2ax-2ay=0表示的圆,①关于直线y=x对称;②关于直线x+y=0对称;③其圆心在x轴上,且过原点;④其圆心在y轴上,且过原点,其中叙述正确的是______________.【解析】将已知方程配方,得(x+a)2+(y-a)2=2a2(a≠0),圆心坐标为(-a,a),它在直线x+y=0上,所以已知圆关于直线x+y=0对称.故②正确.答案:②三、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)(2016·北京高一检测)求经过两点A(-1,4),B(3,2)且圆心C在y轴上的圆的方程.==-,【解析】因为AB的中点是(1,3),kAB所以AB的垂直平分线方程为y-3=2(x-1),即2x-y+1=0.令x=0,得y=1,即圆心C(0,1).所以所求圆的半径为|AC|==.所以所求圆的方程为x2+(y-1)2=10.18.(12分)在三棱柱ABO-A′B′O′中,∠AOB=90°,侧棱OO′⊥平面OAB,OA=OB=OO′=2.若C为线段O′A的中点,在线段BB′上求一点E,使|EC|最小. 【解析】如图所示,以三棱柱的O点为坐标原点,以OA,OB,OO′所在的直线分别为x轴、y轴、z轴建立空间直角坐标系Oxyz.由OA=OB=OO′=2,得A(2,0,0),B(0,2,0),O(0,0,0),A′(2,0,2),B′(0,2,2),O′(0,0,2).由C为线段O′A的中点得C点坐标为(1,0,1),设E点坐标为(0,2,z),根据空间两点间距离公式得|EC|==,故当z=1时,|EC|取得最小值为,此时E(0,2,1)为线段BB′的中点.19.(12分)(2016·大连高一检测)已知圆C:(x-1) 2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程.(2)当弦AB被点P平分时,写出直线l的方程.【解析】(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),因直线l过点P,C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即2x-y-2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-(x-2),即x+2y-6=0.20.(12分)已知圆O:x2+y2=1与直线l:y=kx+2.(1)当k=2时,求直线l被圆O截得的弦长.(2)当直线l与圆O相切时,求k的值.【解析】(1)当k=2时,直线l的方程为2x-y+2=0.设直线l与圆O的两个交点分别为A,B,过圆心O(0,0)作OD⊥AB于点D,则|OD|==,所以|AB|=2|AD|=2=.(2)当直线l与圆O相切时,即圆心到直线的距离等于圆的半径.所以=1,即=2,解得k=±.【一题多解】(1)当k=2时,联立方程组消去y,得5x2+8x+3=0,解得x=-1或x=-,代入y=2x+2,得y=0或y=,设直线l与圆O的两个交点分别为A,B,则A(-1,0)和B,所以|AB|==.(2)联立方程组消去y,得(1+k2)x2+4kx+3=0,当直线l与圆O相切时,即上面关于x的方程只有一个实数根.则Δ=(4k)2-4×3(1+k2)=0,即4k2-12=0,k2=3,所以k=±.21.(12分)(2016·长春高一检测)已知圆C:x2+y2-2x+4y-4=0.(1)写出圆C的标准方程,并指出圆心坐标和半径大小.(2)是否存在斜率为1的直线m,使m被圆C截得的弦为AB,且OA⊥OB(O为坐标原点).若存在,求出直线m的方程;若不存在,说明理由.【解题指南】(1)由圆的一般方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)得其圆心-,-,半径为,从而可得圆C的标准方程,此题也可以通过配方法直接得到圆C的标准方程,然后再写出其圆心坐标和半径.(2)首先根据题意设出m的方程,然后与圆的方程联立消y得关于x的一元二次方程,运用根与系数的关系得到两根的和及积的关系,然后再根据OA⊥OB不难得出关于两根和及积的方程,从而可求直线m的方程.【解析】(1)根据圆的一般方程结合已知得:D=-2,E=4,F=-4,则-=-=1,-=-=-2,==3,即圆心C的坐标为(1,-2),半径为3,所以圆C的标准方程为:(x-1)2+(y+2)2=9.(2)根据题意可设直线m:y=x+b,代入圆的方程得:2x2+2(b+1)x+b2+4b-4=0,因为直线与圆相交,所以b2+6b-9<0,x 1+x2=-b-1,x1x2=,设A(x1,y1),B(x2,y2),则y1=x1+b,y2=x2+b,由OA⊥OB得:·=-1⇒=-1⇒(x1+b)(x2+b)+x1x2=0,2x1x2+b(x1+x2)+b2=0⇒b2+3b-4=0,得b=-4或b=1,均满足b2+6b-9<0,故所求直线m存在,且方程为y=x-4或y=x+1.22.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.(1)求圆的方程.(2)设直线ax-y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围.(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4)?若存在,求出实数a的值;若不存在,请说明理由.【解析】(1)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y-29=0相切,且半径为5,所以=5,即|4m-29|=25.因为m为整数,故m=1.故所求圆的方程为(x-1)2+y2=25.(2)把直线ax-y+5=0即y=ax+5代入圆的方程,消去y整理,得(a2+1)x2+2(5a-1)x+1=0.由于直线ax-y+5=0交圆于A,B两点,故Δ=4(5a-1)2-4(a2+1)>0.即12a2-5a>0,由于a>0,解得a>,所以实数a的取值范围是. (3)假设符合条件的实数a存在,由于a≠0,则直线l的斜率为-,l的方程为y=-(x+2)+4,即x+ay+2-4a=0.由于l垂直平分弦AB,故圆心M(1,0)必在l上. 所以1+0+2-4a=0,解得a=.由于∈,故存在实数a=,使得过点P(-2,4)的直线l垂直平分弦AB.。
人教版数学高一必修2质量检测第四章圆与方程
圆与方程一、选择题(共10小题,每小题5分,共50分)1. 直线l :y =k ⎝⎛⎭⎫x +12与圆C :x 2+y 2=1的位置关系为( ) A .相交或相切 B .相交或相离 C .相切D .相交解析:选D 圆C 的圆心(0,0)到直线y =k ⎝⎛⎭⎫x +12的距离为d =⎪⎪⎪⎪12k k 2+1.因为d 2=14k 2k 2+1<14<1,所以直线与圆相交,或由直线经过定点⎝⎛⎭⎫-12,0在圆内,故相交. 2.方程x 2+y 2+x +y -m =0表示一个圆,则m 的取值范围是( ). A .m >-12B .m <-12C .m ≤-12D .m ≥-12解析:选A 由题意得1+1+4m >0.解得m >-12.3. 空间直角坐标系中,已知A (2,3,5),B (3,1,4),则A ,B 两点间的距离为( ) A .6 B. 6 C.30D.42解析:选B |AB |=(3-2)2+(1-3)2+(4-5)2= 6.4.以正方体ABCD -A 1B 1C 1D 1的棱AB 、AD 、AA 1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC 1中点坐标为( )A.⎝⎛⎭⎫12,1,1 B.⎝⎛⎭⎫1,12,1 C.⎝⎛⎭⎫1,1,12 D.⎝⎛⎭⎫12,12,1答案:C5.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切D .内切 解析:选B 化为标准方程:圆O 1:(x -1)2+y 2=1,圆O 2:x 2+(y -2)2=4,则O 1(1,0),O 2(0,2), |O 1O 2|=(1-0)2+(0-2)2=5<r 1+r 2,又r 2-r 1<5,所以两圆相交.6.自点A (-1,4)作圆(x -2)2+(y -3)2=1的切线,则切线长为( ) A. 5 B .3 C.10D .5解析:选B 点A 到圆心距离为10,切线长为l =10-1=3.7.直线3x -y +m =0与圆x 2+y 2-2x -2=0相切,则实数m 等于( ) A.3或- 3 B .-3或3 3 C .-33或 3 D .-33或3 3解析:选C圆的方程变形为(x -1)2+y 2=3,圆心(1,0)到直线的距离等于半径⇒|3+m |3+1=3⇒|3+m |=23⇒m =3或m =-33,故选C.8.圆心在x 轴上,半径长为 2,且过点(-2,1)的圆的方程为( ) A .(x +1)2+y 2=2 B .x 2+(y +2)2=2 C .(x +3)2+y 2=2D .(x +1)2+y 2=2或(x +3)2+y 2=2解析:选D 设圆心坐标为(a,0),则由题意知(a +2)2+(0-1)2=2,解得a =-1或a =-3,故圆的方程为(x +1)2+y 2=2或(x +3)2+y 2=2.9.圆C 1:(x +2)2+(y -m )2=9与圆C 2:(x -m )2+(y +1)2=4外切,则m 的值为( ) A .2 B .-5 C .2或-5D .不确定解析:选C 圆C 1:(x +2)2+(y -m )2=9的圆心为(-2,m ),半径长为3,圆C 2:(x -m )2+(y +1)2=4的圆心为(m ,-1),半径长为2.依题意有(-2-m )2+(m +1)2=3+2,即m 2+3m -10=0,解得m =2或m =-5.10.若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为2 2.则实数a 的值为( ) A .-1或 3 B .1或3 C .-2或6D .0或4解析:选D 圆心(a,0)到直线x -y =2的距离d =|a -2|2,则(2)2+(|a -2|2)2=22,解得a =0或4.二、填空题(共4小题,每小题5分,共20分)11.在如图所示的长方体ABCD -A 1B 1C 1D 1中,已知A 1(a,0,c ),C (0,b,0),则点B 1的坐标为________.解析:由题中图可知,点B 1的横坐标和竖坐标与点A 1的横坐标和竖坐标相同,点B 1的纵坐标与点C 的纵坐标相同,∴B 1(a ,b ,c ).答案:(a ,b ,c )12.(2012·北京高考)直线y =x 被圆x 2+(y -2)2=4截得的弦长为________.解析:如图所示,|CO |=2,圆心C (0,2)到直线y =x 的距离|CM |=|0-2|2=2,所以弦长为2|OM |=24-2=2 2.答案:2 213.设A 为圆(x -2)2+(y -2)2=1上一动点,则A 到直线x -y -5=0的最大距离为________. 解析:圆心到直线的距离d =|2-2-5|2=522,则A 到直线x -y -5=0的最大距离为522+1.答案:522+114.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________. 解析:设P (x ,y ),由条件知PM ⊥PN ,且PM ,PN 的斜率肯定存在,故k PM ·k PN =-1, 即y -0x +2·y -0x -2=-1,x 2+y 2=4. 又当P 、M 、N 三点共线时,不能构成三角形,所以x ≠±2, 即所求轨迹方程为x 2+y 2=4(x ≠±2). 答案:x 2+y 2=4(x ≠±2)三、解答题(共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)求圆心在直线x -3y =0上,且与y 轴相切,在x 轴上截得的弦长为42的圆的方程.解:设圆的方程为(x -a )2+(y -b )2=r 2, 由题意可得⎩⎪⎨⎪⎧ a -3b =0,|a |=r ,b 2+8=r 2,解得⎩⎪⎨⎪⎧ a =3,b =1,r =3或⎩⎪⎨⎪⎧a =-3,b =-1,r =3,所以圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.16.(本小题满分12分)已知正方体的棱长为a ,过B 1作B 1E ⊥BD 1于点E ,求A 、E 两点之间的距离.解:建立如图所示的空间直角坐标系,根据题意,可得A (a,0,0)、B (a ,a,0)、D 1(0,0,a )、B 1(a ,a ,a ). 过点E 作EF ⊥BD 于F ,如图所示, 则在Rt △BB 1D 1中,|BB 1|=a ,|BD 1|=3a ,|B 1D 1|=2a , 所以|B 1E |=a ·2a 3a=6a3,所以在Rt △BEB 1中,|BE |=33a . 由Rt △BEF ∽Rt △BD 1D , 得|BF |=23a ,|EF |=a 3, 所以点F 的坐标为(2a 3,2a3,0),则点E 的坐标为(2a 3,2a 3,a3).由两点间的距离公式,得 |AE |=(a -2a 3)2+(0-2a 3)2+(0-a 3)2=63a ,所以A 、E 两点之间的距离是63a . 17.(本小题满分12分)一座圆拱桥,当水面在如图所示位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?解:以圆拱顶点为原点,以过圆拱顶点的竖直直线为y 轴,建立如图所示的平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B ,则由已知可得A (6,-2),设圆的半径长为r ,则C (0,-r ),即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10,所以圆的方程为x 2+(y +10)2=100.当水面下降1米后,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得2x 0=251,即当水面下降1米后,水面宽251米.18.(本小题满分14分)(2012·淮安高二检测)已知圆M 的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线l 上,过P 点作圆M 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,试求点P 的坐标;(2)若P 点的坐标为(2,1),过P 作直线与圆M 交于C ,D 两点,当CD =2时,求直线CD 的方程.解:(1)设P (2m ,m ),由题可知MP =2,所以(2m )2+(m -2)2=4,解得m =0或m =45,故所求点P 的坐标为P (0,0)或P ⎝⎛⎭⎫85,45.(2)由题意易知k 存在,设直线CD 的方程为y -1=k (x -2),由题知圆心M 到直线CD 的距离为22,所以22=|-2k -1|1+k 2,解得k =-1或k =-17,故所求直线CD 的方程为:x +y -3=0或x +7y -9=0.。
高中数学必修2:第四章-圆与方程测试(含解析)
第四章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是()A.相离B.相交C.外切D.内切解析将圆x2+y2-6x-8y+9=0,化为标准方程得(x-3)2+(y-4)2=16.∴两圆的圆心距(0-3)2+(0-4)2=5,又r1+r2=5,∴两圆外切.答案 C2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为()A.3x-y-5=0 B.3x+y-7=0C.x+3y-5=0 D.x-3y+1=0解析依题意知所求直线通过圆心(1,-2),由直线的两点式方程,得y+2 1+2=x-12-1,即3x-y-5=0.答案 A3.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为() A.1,-1 B.2,-2C .1D .-1解析 圆x 2+y 2-2x =0的圆心C (1,0),半径为1,依题意得|1+a +0+1|(1+a )2+1=1,即|a +2|=(a +1)2+1,平方整理得a =-1.答案 D4.经过圆x 2+y 2=10上一点M (2,6)的切线方程是( ) A .x +6y -10=0 B.6x -2y +10=0 C .x -6y +10=0D .2x +6y -10=0解析 ∵点M (2,6)在圆x 2+y 2=10上,k OM =62, ∴过点M 的切线的斜率为k =-63. 故切线方程为y -6=-63(x -2). 即2x +6y -10=0. 答案 D5.垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( ) A .x +y -2=0 B .x +y +1=0 C .x +y -1=0D .x +y +2=0解析 由题意可设所求的直线方程为y =-x +k ,则由|k |2=1,得k =±2.由切点在第一象限知,k = 2.故所求的直线方程y =-x +2,即x +y -2=0.答案 A6.关于空间直角坐标系O -xyz 中的一点P (1,2,3)有下列说法: ①点P 到坐标原点的距离为13; ②OP 的中点坐标为⎝⎛⎭⎪⎫12,1,32;③与点P关于x轴对称的点的坐标为(-1,-2,-3);④与点P关于坐标原点对称的点的坐标为(1,2,-3);⑤与点P关于坐标平面xOy对称的点的坐标为(1,2,-3).其中正确的个数是()A.2 B.3C.4 D.5解析点P到坐标原点的距离为12+22+32=14,故①错;②正确;点P关于x轴对称的点的坐标为(1,-2,-3),故③错;点P关于坐标原点对称的点的坐标为(-1,-2,-3),故④错;⑤正确.答案 A7.已知点M(a,b)在圆O:x2+y2=1处,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定解析∵点M(a,b)在圆x2+y2=1外,∴a2+b2>1,又圆心(0,0)到直线ax+by=1的距离d=1a2+b2<1=r,∴直线与圆相交.答案 B8.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是()A.4 B.3C.2 D.1解析两圆的方程配方得,O1:(x+2)2+(y-2)2=1,O2:(x-2)2+(y-5)2=16,圆心O1(-2,2),O2(2,5),半径r1=1,r2=4,∴|O1O2|=(2+2)2+(5-2)2=5,r1+r2=5.∴|O1O2|=r1+r2,∴两圆外切,故有3条公切线.答案 B9.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是()A.2x-y=0 B.2x-y-2=0C.x+2y-3=0 D.x-2y+3=0解析依题意知直线l过圆心(1,2),斜率k=2,∴l的方程为y-2=2(x-1),即2x-y=0.答案 A10.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为()A.9π B.πC.2π D.由m的值而定解析∵x2+y2-(4m+2)x-2my+4m2+4m+1=0,∴[x-(2m+1)]2+(y-m)2=m2.∴圆心(2m+1,m),半径r=|m|.依题意知2m+1+m-4=0,∴m=1.∴圆的面积S=π×12=π.答案 B11.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)的连结线段PQ的中点的轨迹方程是()A.(x+3)2+y2=4 B.(x-3)2+y2=1C.(2x-3)2+4y2=1 D.(2x+3)2+4y2=1解析 设P (x 1,y 1),Q (3,0),设线段PQ 中点M 的坐标为(x ,y ), 则x =x 1+32,y =y 12,∴x 1=2x -3,y 1=2y . 又点P (x 1,y 1)在圆x 2+y 2=1上, ∴(2x -3)2+4y 2=1.故线段PQ 中点的轨迹方程为(2x -3)2+4y 2=1. 答案 C12.曲线y =1+4-x 2与直线y =k (x -2)+4有两个交点,则实数k 的取值范围是( )A .(0,512) B .(512,+∞) C .(13,34]D .(512,34] 解析 如图所示,曲线y =1+4-x 2变形为x 2+(y -1)2=4(y ≥1), 直线y =k (x -2)+4过定点(2,4), 当直线l 与半圆相切时,有 |-2k +4-1|k 2+1=2,解得k =512. 当直线l 过点(-2,1)时,k =34. 因此,k 的取值范围是512<k ≤34. 答案 D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.圆x 2+y 2=1上的点到直线3x +4y -25=0的距离最小值为____________.解析 圆心(0,0)到直线3x +4y -25=0的距离为5, ∴所求的最小值为4. 答案 414.圆心为(1,1)且与直线x +y =4相切的圆的方程是________. 解析 r =|1+1-4|2=2,所以圆的方程为(x -1)2+(y -1)2=2.答案 (x -1)2+(y -1)2=215.方程x 2+y 2+2ax -2ay =0表示的圆,①关于直线y =x 对称;②关于直线x +y =0对称;③其圆心在x 轴上,且过原点;④其圆心在y 轴上,且过原点,其中叙述正确的是__________.解析 已知方程配方,得(x +a )2+(y -a )2=2a 2(a ≠0),圆心坐标为(-a ,a ),它在直线x +y =0上,∴已知圆关于直线x +y =0对称.故②正确.答案 ②16.直线x -2y -3=0与圆(x -2)2+(y +3)2=9相交于A ,B 两点,则△AOB (O 为坐标原点)的面积为________.解析 圆心坐标(2,-3),半径r =3,圆心到直线x -2y -3=0的距离d =5,弦长|AB |=2r 2-d 2=4.又原点(0,0)到AB 所在直线的距离h =35,所以△AOB 的面积为S =12×4×35=655.答案 655三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程. 解 解法1:连接OP ,则OP ⊥BC ,设P (x ,y ),当x ≠0时,k OP ·k AP =-1,即y x ·yx -4=-1.即x2+y2-4x=0.①当x=0时,P点坐标为(0,0)是方程①的解,∴BC中点P的轨迹方程为x2+y2-4x=0(在已知圆内).解法2:由解法1知OP⊥AP,取OA中点M,则M(2,0),|PM|=12|OA|=2,由圆的定义,知P点轨迹方程是以M(2,0)为圆心,2为半径的圆.故所求的轨迹方程为(x-2)2+y2=4(在已知圆内).18.(12分)已知圆M:x2+y2-2mx+4y+m2-1=0与圆N:x2+y2+2x+2y-2=0相交于A,B两点,且这两点平分圆N的圆周,求圆M的圆心坐标.解由圆M与圆N的方程易知两圆的圆心分别为M(m,-2),N(-1,-1).两圆的方程相减得直线AB的方程为2(m+1)x-2y-m2-1=0.∵A,B两点平分圆N的圆周,∴AB为圆N的直径,∴AB过点N(-1,-1).∴2(m+1)×(-1)-2×(-1)-m2-1=0.解得m=-1.故圆M的圆心M(-1,-2).19.(12分)点M在圆心为C1的方程x2+y2+6x-2y+1=0上,点N在圆心为C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.解把圆的方程都化成标准形式,得(x+3)2+(y-1)2=9,(x+1)2+(y+2)2=4.如图所示,C 1的坐标是(-3,1),半径长是3;C 2的坐标是(-1,-2),半径长是2.所以,|C 1C 2|=(-3+1)2+(1+2)2=13.因此,|MN |的最大值是13+5.20.(12分)已知圆C :x 2+y 2+2x -4y +3=0,从圆C 外一点P 向圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求|PM |的最小值.解 如图:PM 为圆C 的切线,则CM ⊥PM ,∴△PMC 为直角三角形,∴|PM |2=|PC |2-|MC |2.设P (x ,y ),C (-1,2),|MC |= 2. ∵|PM |=|PO |,∴x 2+y 2=(x +1)2+(y -2)2-2.化简得点P 的轨迹方程为2x -4y +3=0.求|PM |的最小值,即求|PO |的最小值,即求原点O 到直线2x -4y +3=0的距离,代入点到直线的距离公式可求得|PM |最小值为3510.21.(12分)已知圆C :x 2+y 2-4x -14y +45=0及点Q (-2,3), (1)若点P (m ,m +1)在圆C 上,求PQ 的斜率;(2)若点M 是圆C 上任意一点,求|MQ |的最大值、最小值;(3)若N (a ,b )满足关系:a 2+b 2-4a -14b +45=0,求出t =b -3a +2的最大值.解 圆C :x 2+y 2-4x -14y +45=0可化为(x -2)2+(y -7)2=8. (1)点P (m ,m +1)在圆C 上,所以m 2+(m +1)2-4m -14(m +1)+45=0,解得m =4,故点P (4,5).所以PQ 的斜率是k PQ =5-34+2=13;(2)如图,点M 是圆C 上任意一点,Q (-2,3)在圆外, 所以|MQ |的最大值、最小值分别是 |QC |+r ,|QC |-r . 易求|QC |=42,r =22, 所以|MQ |max =62,|MQ |min =2 2.(3)点N 在圆C :x 2+y 2-4x -14y +45=0上,t =b -3a +2表示的是定点Q (-2,3)与圆上的动点N 连线l 的斜率. 设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 当直线和圆相切时,d =r ,即|2k -7+2k +3|k 2+1=22,解得k =2±3.所以t =b -3a +2的最大值为2+ 3.22.(12分)已知曲线C :x 2+y 2+2kx +(4k +10)y +10k +20=0,其中k ≠-1. (1)求证:曲线C 表示圆,并且这些圆心都在同一条直线上; (2)证明曲线C 过定点;(3)若曲线C 与x 轴相切,求k 的值.解 (1)证明:原方程可化为(x +k )2+(y +2k +5)2=5(k +1)2. ∵k ≠-1,∴5(k +1)2>0.故方程表示圆心为(-k ,-2k -5),半径为5|k +1|的圆.设圆心的坐标为(x ,y ),则⎩⎨⎧x =-k ,y =-2k -5.消去k ,得2x -y -5=0.∴这些圆的圆心都在直线2x -y -5=0上. (2)证明:将原方程变形为(2x +4y +10)k +(x 2+y 2+10y +20)=0, ∵上式对于任意k ≠-1恒成立,∴⎩⎨⎧2x +4y +10=0,x 2+y 2+10y +20=0.解得⎩⎨⎧x =1,y =-3.∴曲线C 过定点(1,-3). (3)∵圆C 与x 轴相切,∴圆心(-k ,-2k -5)到x 轴的距离等于半径. 即|-2k -5|=5|k +1|.两边平方,得(2k +5)2=5(k +1)2. ∴k =5±3 5.。
高中数学第四章圆与方程4.1圆的方程4.1.1圆的标准方程检测新人教A版必修2(2021年整理)
2018-2019学年高中数学第四章圆与方程4.1 圆的方程4.1.1 圆的标准方程检测新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第四章圆与方程4.1 圆的方程4.1.1 圆的标准方程检测新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第四章圆与方程4.1 圆的方程4.1.1 圆的标准方程检测新人教A版必修2的全部内容。
4.1.1 圆的标准方程[A级基础巩固]一、选择题1.已知圆(x-2)2+(y+8)2=(-3)2,下列说法正确的是( )A.圆心是(2,-8),半径长为-3B.圆心是(-2,8),半径长为3C.圆心是(2,-8),半径长为3D.圆心是(-2,8),半径长为-3解析:由圆的标准方程(x-a)2+(y-b)2=r2,知圆心是(2,-8),半径长不可能是负数,故为3.答案:C2.圆x2+y2=1的圆心到直线3x+4y-25=0的距离是()A.5 B.3 C.4 D.2解析:圆x2+y2=1的圆心为(0,0),所以d=错误!=5。
答案:A3.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是( )A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.a=±1解析:若点(1,1)在圆的内部,则(1-a)2+(1+a)2<4,化简得a2〈1,因此-1<a<1,故选A。
答案:A4.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是( )A.2 B.1+错误!C.2+错误!D.1+2错误!解析:圆(x-1)2+(y-1)2=1的圆心为(1,1),圆心到直线x-y=2的距离为错误!=2,圆心到直线的距离加上半径就是圆上的点到直线的最大距离,即最大距离为1+错误!.答案:B5.圆的标准方程为(x-5)2+(y-6)2=a2(a>0).若点M(6,9)在圆上,则a的值为() A。
人教A版高中必修二试题第四章圆与方程单元质量评估
高中数学学习材料(灿若寒星精心整理制作)温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元质量评估(四)第四章(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·成都高一检测)若方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a,b,c的值依次为( )A.2,4,4B.-2,4,4C.2,-4,4D.2,-4,-42.(2013·潍坊高一检测)已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为( )A.x2+y2-2x-3=0B.x2+y2+4x=0C.x2+y2+2x-3=0D.x2+y2-4x=03.(2012·陕西高考)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则( )A. l 与C 相交B. l 与C 相切C. l 与C 相离D.以上三个选项均有可能 4.过坐标原点且与x 2+y 2-4x+2y+52=0相切的直线的方程为( )A.y=-3x 或y=13xB.y=-3x 或y=13-xC.y=3x 或y=13-x D.y=3x 或y=13x5.若直线ax+by=4与圆x 2+y 2=4有两个不同的交点,则点P(a,b)与圆的位置关系是( )A.点P 在圆外B.点P 在圆上C.点P 在圆内D.不能确定 6.圆O 1:x 2+y 2-2x=0和圆O 2:x 2+y 2-4y=0的位置关系是( ) A.相离 B.相交 C.外切 D.内切 7.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为( ) A.1或-1 B.2或-2 C.1 D.-18.(2013·广州高一检测)经过圆x 2+2x+y 2=0的圆心C,且与直线x+y=0垂直的直线方程是( )A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=09.(2013·长春高一检测)已知圆C :(x-a)2+(y-2)2=4(a>0)及直线l :x-y+3=0,当直线l 被圆C 截得的弦长为,则a=( )B.211 10.以正方体ABCD -A 1B 1C 1D 1的棱AB,AD,AA 1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC 1中点坐标为( )A.(12,1,1) B.(1,12,1)C.(1,1,12) D.(12,12,1)11.若直线y=x-b与圆(x-2)2+y2=1有两个不同的公共点,则实数b的取值范围为( )]C.(-∞∪,+∞) )12.(2013·山东高考)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为( )A.2x+y-3=0B.2x-y-3=0C.4x-y-3=0D.4x+y-3=0二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2012·江西高考)过直线x+y-上的点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是.14.若A(4,-7,1),B(6,2,z),|AB|=11,则z= .15.已知圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为.16.(2013·深圳高一检测)曲线与直线y=k(x-1)+5有两个不同的交点时,实数k的取值范围是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2013·新课标全国卷Ⅱ)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为在y轴上截得线段长为(1)求圆心P 的轨迹方程.(2)若点P 到直线y=x 的距离为2,求圆P 的方程. 18.(12分)已知点P(-2,-3)和以Q 为圆心的圆(x-m+1)2+(y-3m)2=4. (1)求证:圆心Q 在过点P 的定直线上. (2)当m 为何值时,以PQ 为直径的圆过原点?19.(12分)(2013·潮州高一检测)已知圆O :x 2+y 2=1与直线l :y=kx+2. (1)当k=2时,求直线l 被圆O 截得的弦长. (2)当直线l 与圆O 相切时,求k 的值.20.(12分)棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 是AB 的中点,F 是BB 1的中点,G 是AB 1的中点,试建立适当的坐标系,并确定E,F,G 三点的坐标.21.(12分)已知M 为圆C :x 2+y 2-4x-14y+45=0上任意一点,且点Q(-2,3). (1)若点P(a,a+1)在圆C 上,求线段PQ 的长及直线PQ 的斜率. (2)求|MQ|的最大值和最小值. (3)若M(m,n),求n 3m 2-+的最大值和最小值. 22.(12分)(能力挑战题)在直角坐标系xOy 中,以O 为圆心的圆与直线y=4相切.(1)求圆O 的方程.(2)圆O 与x 轴相交于A,B 两点,圆内的动点P(x 0,y 0)满足|PO|2=|PA|·|PB|,求2200x y +的取值范围.答案解析1.【解析】选B.由题意,圆的方程为(x-2)2+(y-2)2=4,即x2+y2-4x-4y+4=0,因此2a=-4,b=4,c=4,故a=-2,b=c=4.2.【解析】选D.设圆心坐标为(a,0)(a>0),=2,所以a=2,所以圆的方程为(x-2)2+y2=4,化为一般方程为x2+y2-4x=0.3.【解析】选A.圆C的方程是(x-2)2+y2=4,所以点P到圆心C(2,0)的距离是d=1<2,所以点P在圆C内部,所以直线l与圆C相交.【一题多解】将点P的坐标代入圆的方程,得32+02-4×3=9-12=-3<0,所以点P(3,0)在圆内,所以过点P的直线l与圆C相交.4.【解析】选A.设过坐标原点的直线为y=kx,与圆x2+y2-4x+2y+52=0相切,则圆心(2,-1)到直线的距离等于半径2,即2=,解得k=13或k=-3,即切线方程为y=13x或y=-3x.5.【解析】选 A.根据直线与圆相交得圆心到直线的距离小于半径<2,即a2+b2>4,所以点P(a,b)在圆x2+y2=4的外部.【举一反三】若本题条件换为“直线ax+by=4与圆x2+y2=4相切”则结论又如何呢?【解析】选B.=2,即a2+b2=4.则点P在圆上.6.【解析】选B.圆O1的圆心O1(1,0),半径r1=1,圆O2的圆心O2(0,2),半径r2=2,故两圆的圆心距|O1O2,而r2-r1=1,r1+r2=3,则有r2-r1<|O1O2|<r1+r2,故两圆相交.7.【解析】选D.因为圆的方程为(x-1)2+y2=1,所以圆心为(1,0),半径r=1.=1得a=-1.8.【解析】选C.圆的标准方程为(x+1)2+y2=1,因此圆心为C(-1,0).又因为所求直线与直线x+y=0垂直,所以所求直线的斜率为k=1,又因为所求直线过点(-1,0),所以所求直线方程为y=x+1.9.【解析】选C.因为圆心到直线l的距离为,又因为d22=r2,所以-1.10.【解析】选C.如图所示:设C1C的中点为M,则M在xOy平面上的射影为C,坐标为(1,1,0),在z轴上的射影为(0,0,12),所以M点坐标为(1,1,12),故选C.11.【解析】选D.因为直线与圆有两个不同的交点, 所以2b2-<1,解得22. 12.【解析】选 A.结合图象可知,A(1,1)是一个切点,根据切线的特点可知过点A,B 的直线与过点(3,1),(1,0)的直线互相垂直,则k AB =11031---=-2,所以直线AB 的方程为y-1=-2(x-1),即2x+y-3=0.13.【解题指南】利用已知关系,求得OP 的长,然后联立方程组求得点P 坐标. 【解析】设P(x,y),则由已知可得PO(O 为原点)与切线的夹角为30°,则|PO|=2,由22x y 4,x y 22,⎧+=⎪⎨+=⎪⎩可得x 2,y 2.⎧=⎪⎨=⎪⎩ 答案:2,214.【解析】222(64)(27)(z 1)-+++-得(z-1)2=36,所以z=7或-5. 答案:7或-515.【解题指南】先分析两条对角线的关系,再考虑面积.【解析】圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1,根据题意最短弦BD 和最长弦(即圆的直径)AC 垂直,故最短弦的长为2225146-=所以四边形ABCD 的面积为12×|AC|×|BD|=12×10×46=206答案:616.【解析】由y=2+232x x +-(y ≥2), 得(x-1)2+(y-2)2=4(y ≥2).如图,表示以C(1,2)为圆心,r=2的半圆.直线y=k(x-1)+5恒过定点P(1,5), 当直线过A(-1,2)或B(3,2)时, 可得k 1=32或k 2=32-, 21k+=2,解得k=5±, 结合图形可得k 的取值范围为[35,22--)∪(53,22].答案:[35,22--)∪(53,22]17.【解题指南】(1)设出点P 的坐标与圆的半径,利用弦长、弦心距、半径之间的关系求得点P 的轨迹方程.(2)利用已知条件求得点P 的坐标,从而求出半径,写出圆的方程. 【解析】(1)设P(x,y),圆P 的半径为r. 由题设y 2+2=r 2,x 2+3=r 2.从而y 2+2=x 2+3. 故点P 的轨迹方程为y 2-x 2=1.(2)点P到直线y=x的距离2 =,得|x-y|=1,联立22y x1x y1⎧-=⎪⎨-=⎪⎩,,解得P(0,-1)或P(0,1).所以,解得r2=3,所以所求圆的方程为x2+(y+1)2=3或x2+(y-1)2=3.18.【解析】(1)因为圆心Q的坐标为(m-1,3m),令x m1,y3m,=-⎧⎨=⎩消去m,得y=3x+3.所以圆心在定直线y=3x+3上,直线过P(-2,-3).(2)以PQ为直径的圆过原点,则OP⊥OQ.所以32·3mm1-=-1,所以m=211,即当m=211时,以PQ为直径的圆过原点.19.【解析】(1)当k=2时,直线l的方程为2x-y+2=0. 设直线l与圆O的两个交点分别为A,B,过圆心O(0,0)作OD⊥AB于点D,则=,所以|AB|=2|AD|=5=.(2)当直线l与圆O相切时,即圆心到直线的距离等于圆的半径.解得k=【一题多解】(1)当k=2时,联立方程组22y2x2,x y1,=+⎧⎨+=⎩消去y,得5x2+8x+3=0,解得x=-1或x=35-,代入y=2x+2,得y=0或y=45, 设直线l 与圆O 的两个交点分别为A,B, 则A(-1,0)和B(3455-,),所以=. (2)联立方程组22y kx 2,x y 1=+⎧⎨+=⎩,消去y,得(1+k 2)x 2+4kx+3=0,当直线l 与圆O 相切时,即上面关于x 的方程只有一个实数根. 由Δ=(4k)2-4×3(1+k 2)=0,即4k 2-12=0,k 2=3,所以k=20.【解析】以D 为坐标原点,分别以射线DA,DC,DD 1的方向为正方向,以线段DA,DC,DD 1的长为单位长,建立空间直角坐标系Dxyz,E 点在平面xDy 中,且EA=12, 所以点E 的坐标为(1,12,0),又B 和B 1点的坐标分别为(1,1,0),(1,1,1), 所以点F 的坐标为(1,1,12), 同理可得G 点的坐标为(1,12,12). 21.【解析】(1)由点P(a,a+1)在圆C 上,可得a 2+(a+1)2-4a-14(a+1)+45=0,所以a=4,P(4,5).所以=k PQ =351243-=--. (2)由圆C :x 2+y 2-4x-14y+45=0可得(x-2)2+(y-7)2=8.所以圆心C 坐标为(2,7),半径r=可得=,因此|MQ|max==|MQ|min==(3)可知n 3m 2-+表示直线MQ 的斜率, 设直线MQ 的方程为:y-3=k(x+2),即kx-y+2k+3=0,则n 3m 2-+=k. 由直线MQ 与圆C 有交点,≤可得2k 2≤≤+, 所以n 3m 2-+的最大值为2,最小值为2. 22.【解析】(1)由题意知,圆O 的半径r 等于原点O 到直线=4的距离, 即=2,所以圆的方程为x 2+y 2=4. (2)不妨设A(x 1,0),B(x 2,0),x 1<x 2,由x 2=4,得A(-2,0),B(2,0),由|PO|2=|PA|·|PB|,=2200x y +,整理得2200x y -=2,所以令t=2200x y +=202y +2=2(20y +1),因为点P(x 0,y 0)在圆O 内,所以22002200x y 4,x y 2,⎧+<⎪⎨-=⎪⎩由此得0≤20y <1, 所以2≤2(20y +1)<4,所以t ∈[2,4),所以(2200x y +)∈[2,4).关闭Word 文档返回原板块。
2018-2019年高中数学人教A版《必修2》《第四章 圆和方程》综合测试试卷【1】含答案考点及解析
2018-2019年高中数学人教A版《必修2》《第四章圆和方程》综合测试试卷【1】含答案考点及解析班级:___________ 姓名:___________ 分数:___________ 题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题 1.如图,正方体中,点为线段上一动点,点为底面内(含边界)一动点,为的中点,点构成的点集是一个空间几何体,则该几何体为() A.棱柱B.棱锥 C.棱台D.球【答案】A 【解析】试题分析:先固定点位置,点在底面的边界上运动时,连接,则的中点就在的中位线上运动,如图中,当在底面内部运动时,就在内部运动;且∥,与相似,的面积是的面积一半;当点运动到时,同理可知点轨迹是内部及边界,且∥,与相似,的面积是的面积一半,所以∥,≌,则构成的点集是一个空间几何体是棱柱,故选A.考点:对空间图形的认识. 2.圆关于直线成轴对称图形,则的取值范围是( )A.B.C.D.【答案】B 【解析】2222试题分析:根据圆的一般方程中D+E-4F>0得(-2)+6-4´5a>0解得a<2,圆关于直线对称可知圆心(1,-3)在直线上,所以-3=1+2b的b=-2,故a-b<4.考点:圆的一般方程,圆的对称性. 3.三棱锥的四个顶点都在体积为的球的表面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为( ) A.7B.7.5C.8D.9 【答案】C 【解析】试题分析:由求得球的半径为,由求得底面ABC所在的小圆的半径,则球心O到底面ABC所在小圆的圆心H的距离。
当点P在底面ABC的投影与C重合时,该三棱锥的高最大,求得最大值为。
故选C。
考点:棱柱、棱锥、棱台的体积;球内接多面体.点评:本题考查了由球的体积求半径,由圆的面积求半径,以及勾股定理的应用,是基础题. 4.设m、n是两条不同的直线,、β是两个不同的平面,则下列命题中正确的是A.若m∥n,m∥,则n∥B.若⊥β,m∥,则m⊥βC.若⊥β,m⊥β,则m∥ D.若m⊥n,m⊥,n⊥β,则⊥β【答案】D【解析】试题分析:A.若m∥n,m∥,则n∥或者 n ;B.若⊥β,m∥,则m与β可能平行,可能相交,也可能在平面内。
2018-2019学年高中数学必修二人教A版练习:4.章 检测试题 Word版含解析
第四章检测试题(时间:120分钟满分:150分)【选题明细表】一、选择题(本大题共12小题,每小题5分,共60分)1.若方程x2+y2+Dx+Ey+F=0表示以(2,-4)为圆心,4为半径的圆,则F等于( B )(A)2 (B)4 (C)6 (D)8解析:由圆的一般方程知,此方程表示的圆的圆心为(-,-),半径为,所以-=2,-=-4,=4,得D=-4,E=8,F=4,故选B.2.空间直角坐标系Oxyz中的点P(1,2,3)在xOy平面内射影是Q,则点Q的坐标为( A )(A)(1,2,0) (B)(0,0,3)(C)(1,0,3) (D)(0,2,3)解析:因为空间直角坐标系Oxyz中,点P(1,2,3)在xOy平面内射影是Q,所以点Q 的坐标为(1,2,0).3.圆C:(x+1)2+y2=4与圆M:(x-2)2+(y-1)2=9的位置关系为( C )(A)内切(B)外切(C)相交(D)相离解析:圆C:(x+1)2+y2=4的圆心C(-1,0),半径r=2;圆M:(x-2)2+(y-1)2=9的圆心M(2,1),半径R=3.所以|CM|==,R-r=3-2=1,R+r=3+2=5.所以R-r<<R+r.所以两圆相交.故选C.4.圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )(A)36 (B)18 (C)6 (D)5解析:圆x2+y2-4x-4y-10=0的圆心为(2,2),半径为3,圆心到直线x+y-14=0的距离为=5>3,圆上的点到直线的最大距离与最小距离的差是2R=6.故选C.5.若直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则k,b的值分别为( D )(A)-,4 (B),4(C)-,-4 (D),-4解析:直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则直线2x+y+b=0一定过圆(x-2)2+y2=1的圆心(2,0),代入得b=-4,同时直线y=kx与直线2x+y+b=0垂直,可得-2×k=-1,解得k=,故选D.6.若方程x2+y2-x+y+m=0表示圆,则实数m的取值范围是( A )(A)m<(B)m>(C)m<0 (D)m≤解析:由题意得1+1-4m>0,得m<.7.若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y=2的距离等于1,则半径r的取值范围为( A )(A)(4,6) (B)[4,6)(C)(4,6] (D)[4,6]解析:结合图象可知,-1<-r<1,所以-1<5-r<1,所以4<r<6.故选A.8.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是( A )(A)(x-2)2+(y+1)2=1(B)(x-2)2+(y+1)2=4(C)(x+4)2+(y-2)2=1(D)(x+2)2+(y-1)2=1解析:设圆上任意一点坐标为(x1,y1),其与点P所连线段的中点坐标为(x,y),则即代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.故选A.9.在空间直角坐标系Oxyz中,z轴上的点M到点A(1,0,2)与点B(1,-3,-1)的距离相等,则点M的坐标是( A )(A)(0,0,-1) (B)(0,0,3)(C)(0,0,) (D)(0,0,-)解析:设z轴上的点M(0,0,z),得12+02+(z-2)2=(1-0)2+(-3-0)2+(-1-z)2解得z=-1,所求的点为(0,0,-1).10.设实数x,y满足(x-2)2+y2=3,那么的最大值是( D )(A)(B) (C) (D)解析:如图所示,设过原点的直线方程为y=kx,则与圆有交点的直线中,k max=,所以的最大值为,故选D.11.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( A )(A)x+y-2=0 (B)y-1=0(C)x-y=0 (D)x+3y-4=0解析:欲使两部分的面积之差最大,需直线与OP垂直,因为k OP=1,所以所求的直线方程为y-1=-(x-1),即x+y-2=0.12.当曲线y=1+与直线y=k(x-2)+4有两个相异交点时,实数k的取值范围是( C )(A)(0,) (B)(,](C)(,] (D)(,+∞)解析:曲线y=1+是以(0,1)为圆心,2为半径的半圆(如图),直线y=k(x-2)+4是过定点(2,4)的直线.设切线PC的斜率为k0,则切线PC的方程为y=k0(x-2)+4,圆心(0,1)到直线PC的距离等于半径2,即=2,k0=.直线PA的斜率为k1=.所以<k≤.故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.空间两点A(2,5,4),B(-2,3,5)之间的距离等于.解析:|AB|==.答案:14.若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是.解析:设圆的方程为(x-a)2+(y-b)2=r2,因为圆C经过点(0,0)和点(4,0),所以a=2,又圆与直线y=1相切,可得1-b=r,故圆的方程为(x-2)2+(y-b)2=(1-b)2,将(0,0)代入解得b=-,r=,所以圆的方程为(x-2)2+(y+)2=.答案:(x-2)2+(y+)2=15.由直线y=x+1上的点向圆(x-3)2+(y+2)2=1引切线,则切线长的最小值为.解析:若使切线长最小,则直线上的点到圆心的距离d最小,又d min==3,此时切线长为=.答案:16.过两圆x2+y2-2y-4=0与x2+y2-4x+2y=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程是.解析:设圆的方程为x2+y2-4x+2y+λ(x2+y2-2y-4)=0,则(1+λ)x2-4x+(1+λ)y2+(2-2λ)y-4λ=0,把圆心(,)代入l:2x+4y-1=0的方程,可得λ=,所以所求圆的方程为x2-y2-3x+y-1=0.答案:x2-y2-3x+y-1=0三、解答题(本大题共5小题,共70分)17.(本小题满分14分)已知圆M:(x-1)2+(y-1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2,求直线l的方程.解:(1)当直线l斜率存在时,设直线l的方程为y-3=k(x-2),即kx-y+3-2k=0.作示意图如图,MC⊥AB于C.在Rt△MBC中,|BC|=|AB|=,|MB|=2,故|MC|==1,由点到直线的距离公式得=1,解得k=.故直线l的方程为3x-4y+6=0.(2)当直线l的斜率不存在时,其方程为x=2,且|AB|=2,所以符合题意.综上所述,直线l的方程为3x-4y+6=0或x=2.18.(本小题满分14分)如图所示,已知四棱锥P-ABCD的底面是边长为4的正方形,PD⊥平面ABCD,PD=4,M为PB的中点,N在线段AB上,求当|MN|最短时,N点所处的位置.解:建立如图所示的空间直角坐标系,则A(4,0,0),B(4,4,0),P(0,0,4).因为M点为PB的中点,所以M(2,2,2).又N在线段AB上,所以N(4,b,0)(0≤b≤4).所以|MN|=.所以当b=2时|MN|min==4.此时N为AB的中点,所以当N为AB的中点时|MN|最短.19.(本小题满分14分)已知圆C:(x-1)2+(y-2)2=2,点P(2,-1),过P点作圆C的切线PA,PB,A,B为切点.(1)求PA,PB所在直线的方程;(2)求切线长|PA|;(3)求直线AB的方程.解:(1)设切线的方程为y+1=k(x-2),即kx-y-2k-1=0,又C(1,2),半径r=,由点到直线的距离公式得:=,解得,k=7或k=-1.故所求切线PA,PB的方程分别是x+y-1=0和7x-y-15=0.(2)在Rt△APC中,|AC|=r=,|PC|==,所以|PA|===2.(3)设A(x1,y1),B(x2,y2),则(x1-1)2+(y1-2)2=2,(x2-1)2+(y2-2)2=2.因为k CA·k AP=-1,即·=-1,所以(y1-2)(y1+1)=-(x1-1)(x1-2),变形得(y1-2)(y1-2+3)=-(x1-1)(x1-1-1),(y1-2)2+3(y1-2)=-(x1-1)2+(x1-1),(x1-1)2+(y1-2)2+3(y1-2)-(x1-1)=0.因为(x1-1)2+(y1-2)2=2,所以上式可化简为x1-3y1+3=0.同理可得:x2-3y2+3=0.因为A,B两点的坐标都满足方程x-3y+3=0,所以直线AB的方程是x-3y+3=0.20.(本小题满分14分)已知圆C:x2+y2+4x-4ay+4a2+1=0,直线l:ax+y+2a=0.(1)当a=时,直线l与圆C相交于A,B两点,求弦AB的长;(2)若a>0且直线l与圆C相切,求圆C关于直线l的对称圆C′的方程.解:(1)因为圆C:(x+2)2+(y-2a)2=()2,又a=,所以圆心C为(-2,3),直线l:3x+2y+6=0,圆心C到直线l的距离d==,所以|AB|=2=.(2)将y=-ax-2a代入圆C的方程化简得(1+a2)x2+4(1+2a2)x+16a2+1=0(*),所以Δ=[4(1+2a2)]2-4(1+a2)(16a2+1)=4(3-a2)=0,因为a>0,所以a=,所以方程(*)的解为x=-,所以切点坐标为(-,),根据圆关于切线对称的性质可知切点为CC′的中点,故圆心C′的坐标为(-5,),所以圆C′的方程为(x+5)2+(y-)2=3.21.(本小题满分14分)已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使以l被圆截得的弦AB 为直径的圆过原点?若存在,求出直线l的方程;若不存在,说明理由.解:假设存在斜率为1的直线l,满足题意,且OA⊥OB.设直线l的方程是y=x+b,其与圆C的交点A,B的坐标分别为A(x1,y1),B(x2,y2),则·=-1,即x1x2+y1y2=0.①由消去y得:2x2+2(b+1)x+b2+4b-4=0,所以x1+x2=-(b+1),x1x2=(b2+4b-4),②y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2=(b2+4b-4)-b2-b+b2=(b2+2b-4).③把②③式代入①式,得b2+3b-4=0,解得b=1或b=-4,且b=1或b=-4都使得Δ=4(b+1)2-8(b2+4b-4)>0成立,故存在直线l满足题意,其方程为y=x+1或y=x-4.。
2018-2019学年高中数学 第四章 圆与方程 测评B(含解析)新人教A版必修2
第四章测评B(高考体验卷)(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定解析:∵点M(a,b)在圆x2+y2=1外,∴点M(a,b)到圆心(0,0)的距离要大于半径,即a2+b2>1,而圆心(0,0)到直线ax+by=1的距离为d=<1,∴直线与圆相交.答案:B2.垂直于直线y=x+1且与圆x2+y2=1相切于第Ⅰ象限的直线方程是()A.x+y-=0B.x+y+1=0C.x+y-1=0D.x+y+=0解析:由于所求切线垂直于直线y=x+1,可设所求切线方程为x+y+m=0.由圆心到切线的距离等于半径得=1,解得m=±.又由于与圆相切于第Ⅰ象限,则m=-.答案:A3设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为() A.6 B.4 C.3 D.2解析:∵由圆(x-3)2+(y+1)2=4知,圆心的坐标为(3,-1),半径r=2,∴圆心到直线x=-3的距离d=|3-(-3)|=6.∴|PQ|min=d-r=6-2=4,故选B.答案:B4已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,则a=()解析:由题意知点P(2,2)在圆(x-1)2+y2=5上,设切线的斜率为k,则k·=-1,解得k=-,直线ax-y+1=0的斜率为a,其与切线垂直,所以-a=-1,解得a=2,故选C.答案:C5.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0解析:直线过圆心(0,3),与直线x+y+1=0垂直,故其斜率k=1.所以直线的方程为y-3=1×(x-0),即x-y+3=0.故选D.答案:D6已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.-2B.-4C.-6D.-8解析:圆的方程可化为(x+1)2+(y-1)2=2-a,因此圆心为(-1,1),半径r=.圆心到直线x+y+2=0的距离d=,又弦长为4,因此由勾股定理可得()2+=()2,解得a=-4.故选B.答案:B7.过点P(-,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A. B.C. D.解析:如图所示,直线l1,l2过点P分别与圆O相切于点A、点B.连接OP,OA,在Rt△OAP中,|OP|=2,|OA|=1,所以∠OPA=,同理∠OPB=.所以∠APB=.所以直线l1的倾斜角为,显然直线l2的倾斜角为0,所以直线l的倾斜角的取值范围是.故直线l的倾斜角范围为.答案:D8.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB=90°,则m的最大值为()解析:因为A(-m,0),B(m,0)(m>0),所以使∠APB=90°的点P在以线段AB为直径的圆上,该圆的圆心为O(0,0),半径为m.而圆C的圆心为C(3,4),半径为1.由题意知点P在圆C上,故两圆有公共点.所以两圆的位置关系为外切、相交或内切,故m-1≤|CO|≤m+1,即m-1≤5≤m+1,解得4≤m≤6.所以m的最大值为6.故选B.答案:B9.过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()A.2x+y-3=0B.2x-y-3=0C.4x-y-3=0D.4x+y-3=0解析:该切线方程为y=k(x-3)+1,即kx-y-3k+1=0,由圆心到直线距离为=1,得k=0或,切线方程分别与圆方程联立,求得切点坐标分别为(1,1),,故所求直线的方程为2x+y-3=0.故选A.答案:A10.过点(,0)引直线l与曲线y=相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于()A. B.- C.± D.-解析:曲线y=的图象如图所示:若直线l与曲线相交于A,B两点,则直线l的斜率k<0,设l:y=k(x-),则点O到l的距离d=.又S△AOB=|AB|·d=×2·d=,当且仅当d2=时,S△AOB取得最大值.所以,∴k2=,∴k=-.故选B.答案:B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11已知圆O:x2+y2=5,直线l:x cos θ+y sin θ=1.设圆O上到直线l的距离等于1的点的个数为k,则k=.解析:由题意圆心到该直线的距离为1,而圆半径为>2,故圆上有4个点到该直线的距离为1.答案:412.若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是.解析:圆心在直线x=2上,所以切点坐标为(2,1).设圆心坐标为(2,t),由题意,可得4+t2=(1-t)2,所以t=-,半径r2=.所以圆C的方程为(x-2)2+.答案:(x-2)2+13.过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为.解析:如图,当AB所在直线与AC垂直时弦BD最短,AC=,CB=r=2,∴BA=,∴BD=2.答案:214.平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截得的弦长为. 解析:圆(x-2)2+(y+1)2=4的圆心为C(2,-1),半径r=2,圆心C到直线x+2y-3=0的距离为d=, 所求弦长l=2=2.答案:15.已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC⊥BC,则实数a 的值为.解析:由题意,得圆心C的坐标为(-1,2),半径r=3.因为AC⊥BC,所以圆心C到直线x-y+a=0的距离d=r=,即|-3+a|=3,所以a=0或a=6.答案:0或6三、解答题(本大题共4小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(6分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.解:(1)由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,由题意,=1,解得k=0或-,故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心在直线y=2x-4上,所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.设点M(x,y),因为MA=2MO,所以=2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤CD≤2+1,即1≤≤3.由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤.所以点C的横坐标a的取值范围为.17.(6分)已知圆C:x2+y2+2x-4y+1=0.(1)若圆C的切线在x轴,y轴上截距相等,求此切线方程;(2)从圆C外一点P(x0,y0)向圆引切线PM,M为切点,O为原点,若|PM|=|PO|,求使取最小值时P 点的坐标.解:圆C:x2+y2+2x-4y+1=0,其圆心C(-1,2),半径r=2.(1)若切线过原点,设为y=kx(k≠0),则=2,∴k=0(舍)或k=.若切线不过原点,设为x+y=a,则=2,∴a=1±2,∴切线方程为y=x或x+y-1+2=0或x+y-1-2=0.(2)由|PM|=|PO|,得,∴2x0-4y0+1=0.由的几何意义知其最小值为.此时设l:y-0=-2(x-2),即y=-2x+4,将其与2x-4y+1=0联立求出此时P.18.(6分)已知圆C的方程:x2+y2-2x-4y+m=0,其中m<5.(1)若圆C与直线l:x+2y-4=0相交于M,N两点,且|MN|=,求m的值;(2)在(1)条件下,是否存在直线l:x-2y+c=0,使得圆上有四点到直线l的距离为?若存在,求出c的范围;若不存在,说明理由.解:(1)圆C的方程化为(x-1)2+(y-2)2=5-m,圆心C(1,2),半径r=,则圆心C(1,2)到直线l:x+2y-4=0的距离为d=.由于|MN|=,则|MN|=,有r2=d2+,∴5-m=,得m=4.(2)假设存在直线l:x-2y+c=0,使得圆上有四点到直线l的距离为,由于圆心C(1,2),半径r=1,则圆心C(1,2)到直线l:x-2y+c=0的距离为d=,解得4-<c<2+.19.(7分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O 和A到该圆上任意一点的距离均不少于80 m.经测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?解:解法一:(1)如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系xOy.由条件知A(0,60),C(170,0),直线BC的斜率k BC=-tan∠BCO=-.又因为AB⊥BC,所以直线AB的斜率k AB=.设点B的坐标为(a,b),则k BC==-,k AB=.解得a=80,b=120.所以BC==150.因此新桥BC的长是150 m.(2)设保护区的边界圆M的半径为r m,OM=d m(0≤d≤60).由条件知,直线BC的方程为y=-(x-170),即4x+3y-680=0.由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即r=.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得10≤d≤35.故当d=10时,r=最大,即圆面积最大.所以当OM=10 m时,圆形保护区的面积最大.解法二:(1)如图,延长OA,CB交于点F.因为tan∠FCO=,所以sin∠FCO=,cos∠FCO=.因为OA=60,OC=170,所以OF=OC tan∠FCO=,CF=,从而AF=OF-OA=.因为OA⊥OC,所以cos∠AFB=sin∠FCO=.又因为AB⊥BC,所以BF=AF cos∠AFB=,从而BC=CF-BF=150.因此新桥BC的长是150 m.(2)设保护区的边界圆M与BC的切点为D,连接MD,则MD⊥BC,且MD是圆M的半径,并设MD=r m,OM=d m(0≤d≤60).因为OA⊥OC,所以sin∠CFO=cos∠FCO.故由(1)知sin∠CFO=,所以r=.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得10≤d≤35.故当d=10时,r=最大,即圆面积最大.所以当OM=10 m时,圆形保护区的面积最大.。
2019-2020学年高中数学人教A版必修2作业:章末质量检测第四章 圆与方程 含解析
(2)当|MN|=2 时,求直线l的方程.
解析:(1)设圆A的半径为r,
∵圆A与直线l1:x+2y+7=0相切,
∴r= =2 ,
∴圆A的方程为(x+1)2+(y-2)2=20.
(2)当直线l与x轴垂直时,
则直线l的方程x=-2,
此时有|MN|=2 ,即x=-2符合题意.
当直线l与x轴不垂直时,设直线l的斜率为k,
则kAD= ,同理kAE=- ,
则u∈(-∞,- ]∪[ ,+∞).故选B.
答案:B
11.若M={(x,y)|x2+y2≤4)},N={(x,y)|(x-1)2+(y-1)2≤r2,r>0},且M∩N=N,则r的取值范围是()
A.(0, -1] B.(0,1]
C.(0,2- ] D.[0,2]
解析:∵M∩N=N,∴(x-1)2+(y-1)2=r2在x2+y2=4的内部.
∴d≤2-r,即 ≤2-r,∴0<r≤2- .
答案:C
12.若过点A(0,-1)的直线l与圆x2+(y-3)2=4的圆心的距离为d,则d的取值范围为()
A.[0,4] B.[0,3]
C.[0,2] D.[0,1]
解析:圆x2+(y-3)2=4的圆心坐标为(0,3),半径为2,点A(0,-1)在圆外,则当直线l经过圆心时,d最小,当直线l垂直于点A与圆心的连线时,d最大,即d的最小值为0,最大值为 =4,所以d∈[0,4].
答案:D
6.关于空间直角坐标系O-xyz中的一点P(1,2,3)有下列说法:
①OP的中点坐标为 ;
②点P关于x轴对称的点的坐标为(-1,-2,-3);
③点P关于坐标原点对称的点的坐标为(1,2,-3);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆与方程
一、选择题(共10小题,每小题5分,共50分)
1.直线l :y =k ⎝
⎛⎭⎪⎫
x +12与圆C :x 2+y 2=1的位置关系为( )
A .相交或相切
B .相交或相离
C .相切
D .相交
解析:选D 圆C 的圆心(0,0)到直线y =k ⎝ ⎛⎭⎪⎫
x +12的距离为d =
⎪⎪⎪⎪
⎪⎪
12k k 2
+1
.因为d 2
=14k 2k 2+1<14<1,所以直线与圆相交,或由直线经过定点⎝ ⎛⎭
⎪⎫
-12,0在圆内,故相交.
2.方程x 2+y 2+x +y -m =0表示一个圆,则m 的取值范围是( ).
A .m>-12
B .m<-1
2
C .m ≤-1
2
D .m ≥-1
2
解析:选A 由题意得1+1+4m>0.解得m>-1
2
.
3.空间直角坐标系中,已知A(2,3,5),B(3,1,4),则A ,B 两点间的距离为( )
A .6 B. 6 C.30
D.42 解析:选 B |AB|=
3-2
2
1-3
2
4-5
2
=
6.
4.以正方体ABCD -A 1B 1C 1D 1的棱AB 、AD 、AA 1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC 1中点坐标为( )
A.⎝ ⎛⎭⎪⎫12,1,1
B.⎝ ⎛⎭⎪⎫1,1
2,1
C.⎝
⎛⎭⎪⎫1,1,12
D.⎝ ⎛⎭
⎪⎫
12,12,1 答案:C
5.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( )
A .相离
B .相交
C .外切
D .内切
解析:选B 化为标准方程:圆O 1:(x -1)2+y 2=1, 圆O 2:x 2+(y -2)2=4,则O 1(1,0),O 2(0,2), |O 1O 2|=
1-0
2
0-2
2
=5<r 1+r 2,又r 2-r 1<
5,所以两圆相交.
6.自点A(-1,4)作圆(x -2)2+(y -3)2=1的切线,则切线长为( )
A. 5 B .3 C.10
D .5
解析:选B 点A 到圆心距离为10,切线长为l =10-1=3.
7.直线3x -y +m =0与圆x 2+y 2-2x -2=0相切,则实数m 等于( )
A.3或- 3 B .-3或3 3 C .-33或 3
D .-33或3 3
解析:选C 圆的方程变形为(x -1)2+y 2=3,圆心(1,0)到直线的距离等于半径⇒|3+m|3+1=3⇒|3+m|=23⇒m =3或m
=-33,故选C.
8.圆心在x 轴上,半径长为2,且过点(-2,1)的圆的方程为( )
A .(x +1)2+y 2=2
B .x 2+(y +2)2=2
C .(x +3)2+y 2=2
D .(x +1)2+y 2=2或(x +3)2+y 2=2 解析:选D 设圆心坐标为(a,0),则由题意知
a +2
2
0-12
=2,解得a =-1或a =-3,
故圆的方程为(x +1)2+y 2=2或(x +3)2+y 2=2.
9.圆C 1:(x +2)2+(y -m)2=9与圆C 2:(x -m)2+(y +1)2
=4外切,则m 的值为( )
A .2
B .-5
C .2或-5
D .不确定
解析:选C 圆C 1:(x +2)2+(y -m)2=9的圆心为(-2,m),半径长为3,圆C 2:(x -m)2+(y +1)2=4的圆心为(m ,-1),半径长为2.依题意有
2-m
2
m +1
2
=3+2,即m 2+3m -
10=0,解得m =2或m =-5.
10.若直线x -y =2被圆(x -a)2+y 2=4所截得的弦长为2 2.则实数a 的值为( )
A .-1或 3
B .1或3
C .-2或6
D .0或4
解析:选D 圆心(a,0)到直线x -y =2的距离d =|a -2|
2,则
(2)2
+(|a -2|2
)2
=22,
解得a =0或4.
二、填空题(共4小题,每小题5分,共20分)
11.在如图所示的长方体ABCD -A 1B 1C 1D 1中,已知A 1(a,0,c),C(0,b,0),则点B 1的坐标为________.
解析:由题中图可知,点B 1的横坐标和竖坐标与点A 1的横坐标和竖坐标相同,点B 1的纵坐标与点C 的纵坐标相同,∴B 1(a ,b ,c).
答案:(a ,b ,c)
12.(2012·北京高考)直线y =x 被圆x 2+(y -2)2=4截得的弦长为________.
解析:如图所示,|CO|=2,圆心C(0,2)到直线y =x 的距离|CM|=|0-2|
2
=2,所以弦长为2|OM|=24-2=2 2.
答案:2 2
13.设A 为圆(x -2)2+(y -2)2=1上一动点,则A 到直线x -y -5=0的最大距离为________.
解析:圆心到直线的距离d =|2-2-5|2=52
2,则A 到直线x
-y -5=0的最大距离为52
2
+1.
答案:522
+1
14.已知M(-2,0),N(2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________.
解析:设P(x ,y),由条件知PM ⊥PN ,且PM ,PN 的斜率肯定存在,故k PM ·k PN =-1,
即y -0x +2·y -0x -2
=-1,x 2+y 2=4. 又当P 、M 、N 三点共线时,不能构成三角形,所以x ≠±2, 即所求轨迹方程为x 2+y 2=4(x ≠±2). 答案:x 2+y 2=4(x ≠±2)
三、解答题(共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤)
15.(本小题满分12分)求圆心在直线x -3y =0上,且与y 轴相切,在x 轴上截得的弦长为42的圆的方程.
解:设圆的方程为(x -a)2+(y -b)2=r 2, 由题意可得⎩⎪⎨⎪
⎧
a -3
b =0,|a|=r ,
b 2+8=r 2,
解得⎩⎪⎨⎪
⎧
a =3,
b =1,
r =3
或⎩⎪⎨⎪
⎧
a =-3,
b =-1,r =3,
所以圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.
16.(本小题满分12分)已知正方体的棱长为a ,过B 1作B 1E ⊥BD 1于点E ,求A 、E 两点之间的距离.
解:建立如图所示的空间直角坐标系, 根据题意,可得A(a,0,0)、B(a ,a,0)、D 1(0,0,a)、B 1(a ,a ,a).
过点E 作EF ⊥BD 于F ,如图所示, 则在Rt △BB 1D 1中,
|BB 1|=a ,|BD 1|=3a ,|B 1D 1|=2a , 所以|B 1E|=a ·2a 3a =6a 3,
所以在Rt △BEB 1中,|BE|=3
3a.
由Rt △BEF ∽Rt △BD 1D , 得|BF|=23a ,|EF|=a
3,
所以点F 的坐标为(2a 3,2a
3,0),
则点E 的坐标为(2a 3,2a 3,a
3).
由两点间的距离公式,得 |AE|=
a -
2a 3
2
0-
2a 32
0-
a 3
2
=
63
a , 所以A 、E 两点之间的距离是
63
a. 17.(本小题满分12分)一座圆拱桥,当水面在如图所示位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?
解:以圆拱顶点为原点,以过圆拱顶点的竖直直线为y 轴,建立如图所示的平面直角坐标系.
设圆心为C ,水面所在弦的端点为A ,B ,则由已知可得A(6,-2),
设圆的半径长为r ,则C(0,-r),即圆的方程为x 2+(y +r)2=r 2.将点A 的坐标代入上述方程可得r =10,所以圆的方程为x 2+(y +10)2=100.
当水面下降1米后,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得2x 0=251,即当水面下降1米后,水面宽251米.
18.(本小题满分14分)(2012·淮安高二检测)已知圆M 的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线l 上,过P 点作圆M 的切线PA ,PB ,切点为A ,B.
(1)若∠APB =60°,试求点P 的坐标;
(2)若P 点的坐标为(2,1),过P 作直线与圆M 交于C ,D 两点,当CD =2时,求直线CD 的方程.
解:(1)设P(2m ,m),由题可知MP =2,所以(2m)2+(m -2)2
=4,解得m =0或m =4
5,故所求点P 的坐标为P(0,0)或P ⎝ ⎛⎭
⎪⎫85,45.
(2)由题意易知k 存在,设直线CD 的方程为y -1=k(x -2),由题
知圆心M 到直线CD 的距离为
22,所以22=|-2k -1|1+k
2,解得k =-1或k =-1
7,故所求直线CD 的方程为:x +y -3=0或x +7y -
9=0.。