2016-2017学年高中数学北师大版选修2-3学案:第3章 章末分层突破 Word版含解析
2017-2018学年高二数学北师大版选修2-1教师用书:第3
章末分层突破①x 2a 2+y 2b 2=1(a >b >0)②y 2a 2+x 2b 2=1(a >b >0)③(±a,0)(0,±b )或(0,±a ),(±b,0) ④2a ⑤2b ⑥(-c,0),(c,0)⑦2c ⑧c a ⑨x 2a 2-y 2b 2=1(a ,b >0)⑩y =±b a x ⑪y =±a bx⑫y 2=±2px (p >0)⑬x 2=±2py (p >0)⑭⎝ ⎛⎭⎪⎫±p2,0⑮y =±p2要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.如:(1)在求轨迹时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的方程,写出所求的轨迹方程;(2)涉及椭圆、双曲线上的点与两个焦点构成的三角形问题时,常用定义结合解三角形的知识来解决;(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形利用几何意义去解决.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 为椭圆上的一点,已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.【精彩点拨】 要求|PF 1||PF 2|的值,可考虑利用椭圆的定义和△PF 1F 2为直角三角形的条件,求出|PF 1|和|PF 2|的值,但Rt △PF 1F 2的直角顶点不确定,故需要分类讨论.【自主解答】 由题意知,a =3,b =2,则c 2=a 2-b 2=5,即c =5,由椭圆定义知|PF 1|+|PF 2|=6,|F 1F 2|=2 5.(1)若∠PF 2F 1为直角,则|PF 1|2=|F 1F 2|2+|PF 2|2, |PF 1|2-|PF 2|2=20,即⎩⎪⎨⎪⎧|PF 1|-|PF 2|=103,|PF 1|+|PF 2|=6,解得|PF 1|=143,|PF 2|=43.所以|PF 1||PF 2|=72. (2)若∠F 1PF 2为直角,则|F 1F 2|2=|PF 1|2+|PF 2|2.即20=|PF 1|2+(6-|PF 1|)2,解得|PF 1|=4,|PF 2|=2或|PF 1|=2,|PF 2|=4(舍去.) 所以|PF 1||PF 2|=2.1.已知点M (-3,0)、N (3,0)、B (1,0),动圆C 与直线MN 切于点B ,过点M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1)B .x 2-y 28=1(x <-1)C .x 2+y 28=1(x >0)D .x 2-y 210=1(x >1)【解析】 设PM 、PN 与⊙C 分别切于点E 、F ,如图,则|PE |=|PF |,|ME |=|MB |,|NF |=|NB |.从而|PM |-|PN |=|ME |-|NF |=|MB |-|NB |=4-2=2<|MN |,∴P 点的轨迹是以M 、N 为焦点,实轴长为2的双曲线的右支(除去右顶点).∴所求轨迹方程为x 2-y 28=1(x >1).【答案】 A和概念,并且充分理解题意,大都可以顺利求解.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-c,0),A (-a,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,求椭圆的离心率e .【精彩点拨】 求出直线AB 的方程,利用点到直线的距离,转化为离心率e 的方程求解.【自主解答】 由A (-a,0),B (0,b ),得直线AB 的斜率为k AB =b a,故AB 所在的直线方程为y -b =b ax ,即bx -ay +ab =0.又F 1(-c,0),由点到直线的距离公式可得d =|-bc +ab |a 2+b 2=b7,∴7·(a -c )=a 2+b 2.又b 2=a 2-c 2, 整理,得8c 2-14ac +5a 2=0,即8⎝ ⎛⎭⎪⎫c a 2-14c a+5=0,∴8e 2-14e +5=0. ∴e =12或e =54(舍去).综上可知,椭圆的离心率e =12.2.已知椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n2=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±152yB .y =±152xC .x =±34y D .y =±34x 【解析】 由题意,3m 2-5n 2=2m 2+3n 2,∴m 2=8n 2,令x 22m -y 23n =0,y 2=3n 22m x 2=316x 2,∴y =±34x ,即双曲线的渐近线方程是y =±34x . 【答案】 D1.直线l :f (x ,y )=0和曲线C :g (x ,y )=0的公共点坐标是方程组⎩⎪⎨⎪⎧f x ,y =0,g x ,y =0的解,l 和C 的交点的个数等于方程组不同解的个数.这样就将l 和C 的交点问题转化为代数的问题研究,对于消元后的一元二次方程,必须讨论二次项系数和判别式Δ,若能数形结合,借助图形的几何性质则较为简便,尤其在双曲线中要注意渐近线的特殊性.2.弦长公式:(1)斜率为k 的直线被圆锥曲线截得弦AB ,若A 、B 两点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|= 1+k 2·[ x 1+x 2 2-4x 1x 2]或当k 存在且不为零时,|AB |=1+1k2|y 1-y 2|,(其中x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)根据根与系数的关系求得).(2)抛物线y 2=2px (p >0)过焦点F 的弦长|AB |=x 1+x 2+p .已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B ,已知点A 的坐标为(-a,0). ①若|AB |=425,求直线l 的倾斜角;②若点Q (0,y 0)在线段AB 的垂直平分线上,且QA →·QB →=4,求y 0的值.【精彩点拨】 (1)建立关于a ,b 的方程组求出a ,b ;(2)构造新方程,综合运用两点间的距离公式、平面向量等知识求解.【自主解答】 (1)由e =ca =32,得3a 2=4c 2. 由c 2=a 2-b 2,得a =2b .由题意,知12·2a ·2b =4,即ab =2.解方程组⎩⎪⎨⎪⎧a =2b ,ab =2,得a =2,b =1.所以椭圆的方程为x 24+y 2=1.(2)由(1)知点A 的坐标是(-2,0),设点B 的坐标为(x 1,y 1),直线l 的斜率为k ,则直线l 的方程为y =k (x +2).于是A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =k x +2 ,x 24+y 2=1,消去y 并整理,得(1+4k 2)x 2+16k 2x +(16k 2-4)=0. 由-2x 1=16k 2-41+4k 2,得x 1=2-8k 21+4k 2,从而y 1=4k1+4k 2.所以|AB |=⎝⎛⎭⎪⎫-2-2-8k 21+4k 22+⎝ ⎛⎭⎪⎫4k 1+4k 22=41+k21+4k2. ①由|AB |=425,得41+k 21+4k 2=425. 整理,得32k 4-9k 2-23=0,即(k 2-1)(32k 2+23)=0, 解得k =±1.所以直线l 的倾斜角为π4或3π4.②设线段AB 的中点为M ,则点M 的坐标为⎝ ⎛⎭⎪⎫-8k 21+4k ,2k 1+4k . 以下分两种情况:a .当k =0时,点B 的坐标是(2,0),线段AB 的垂直平分线为y 轴,于是QA →=(-2,-y 0),QB →=(2,-y 0).由QA →·QB →=4,得y 0=±2 2.b .当k ≠0时,线段AB 的垂直平分线方程为 y -2k 1+4k 2=-1k ⎝ ⎛⎭⎪⎫x +8k 21+4k 2. 令x =0,解得y 0=-6k 1+4k 2.QA →=(-2,-y 0),QB →=(x 1,y 1-y 0), QA →·QB →=-2x 1-y 0(y 1-y 0)=16k 2-41+4k 2+6k 1+4k 2⎝ ⎛⎭⎪⎫4k1+4k +6k 1+4k =4 16k 4+15k 2-1 1+4k 2 2=4, 整理,得7k 2=2,故k =±147. 所以y 0=±2145.综上,y 0=±22或y 0=±2145.3.在抛物线y 2=16x 内,通过点(2,1)且在此点被平分的弦所在的直线的方程是________.【解析】 设所求直线与y 2=16x 相交于点A 、B ,且A (x 1,y 1),B (x 2,y 2),代入抛物线方程得y 21=16x 1,y 22=16x 2,两式相减,得(y 1+y 2)(y 1-y 2)=16(x 1-x 2),即y 1-y 2x 1-x 2=16y 1+y 2,得k AB =8. 设直线方程为y =8x +b ,代入点(2,1)得b =-15; 故所求直线方程为y =8x -15.【答案】 8x -y -15=0(1)直接法:建立适当的坐标系,设动点为(x ,y ),根据几何条件直接寻求x 、y 之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P (x ,y )的坐标x ,y 所满足的关系式时,借助第三个变量t ,建立t 和x ,t 和y 的关系式x =φ(t ),y =Φ(t ),再通过一些条件消掉t 就间接地找到了x 和y 所满足的方程,从而求出动点P (x ,y )所形成的曲线的普通方程,设直线y =ax +b 与双曲线3x 2-y 2=1交于A ,B 两点,且以AB 为直径的圆过原点,求P (a ,b )的轨迹方程.【精彩点拨】 求点P (a ,b )的轨迹方程,即探究a ,b 满足的关系式,通过条件“以AB 为直径的圆过原点”即可找出a ,b 满足的条件.【自主解答】 联立方程组得:⎩⎪⎨⎪⎧y =ax +b ,3x 2-y 2=1,消去y 得:(a 2-3)x 2+2abx +b 2+1=0. ∵直线与双曲线交于A ,B 两点,∴⎩⎪⎨⎪⎧a 2-3≠0,Δ>0解得:a 2<3.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-2ab a 2-3,x 1·x 2=b 2+1a 2-3.由OA →⊥OB →,得x 1x 2+y 1y 2=0.又y 1y 2=(ax 1+b )(ax 2+b )=a 2x 1x 2+ab (x 1+x 2)+b 2,∴有b 2+1a 2-3+a 2·b 2+1a 2-3-2a 2b 2a 2-3+b 2=0,化简得:a 2-2b 2=-1.故P 点的轨迹方程为:2y 2-x 2=1(x 2<3).4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y =x +2相切.(1)求a 与b ;(2)设该椭圆的左、右焦点分别为F 1和F 2,直线l 1过F 2且与x 轴垂直,动直线l 2与y 轴垂直,l 2交l 1于点P .求线段PF 1的垂直平分线与l 2的交点M 的轨迹方程,并指明曲线类型.【解】 (1)由e =ca =1-b 2a 2=33,得b a =63. 又由原点到直线y =x +2的距离等于圆的半径,得b =2,a = 3. (2)法一:由c =a 2-b 2=1,得F 1(-1,0),F 2(1,0). 设M (x ,y ),则P (1,y ).因为点M 在线段PF 1的垂直平分线上,所以|MF 1|=|MP |,得(x +1)2+y 2=(x -1)2,即y 2=-4x .所以此轨迹是抛物线.法二:因为点M 在线段PF 1的垂直平分线上,所以|MF 1|=|MP |,即M 到F 1的距离等于M 到l 1的距离.此轨迹是以F 1(-1,0)为焦点、l 1:x =1为准线的抛物线,轨迹方程为y 2=-4x .1.(1)平面几何法:平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解.(2)目标函数法:建立目标函数来解与圆锥曲线有关的最值问题是常规方法,其关键是选取适当变量建立目标函数,然后运用求函数最值的方法确定最值.(3)判别式法:对二次曲线求最值,往往由条件建立二次方程,用判别式来求最值. 2.圆锥曲线中的定值问题圆锥曲线中的定值问题的证明可以运用函数的思想方法解决.其证明过程可总结为“变量——函数——定值”,具体操作为:变量——选择适当的量为变量;函数——把要证明为定值的量表示成上述变量的函数;定值——把得到的函数解析式化简,消去变量得到定值.如图31所示,过抛物线y 2=2px 的顶点O 作两条互相垂直的弦交抛物线于A 、B 两点.图31(1)证明直线AB 过定点; (2)求△AOB 面积的最小值.【精彩点拨】 (1)利用AB ⊥x 轴发现定点再证明.(2)设直线AB 与x 轴交点M ,利用S △AOB =S △AOM +S △BOM =12|OM |(|y A |+|y B |)求解.【自主解答】 (1)证明:当直线AB 的斜率不存在时,AB ⊥x 轴,又OA ⊥OB ,∴△AOB 为等腰直角三角形,设A (x 0,y 0),则y 20=2px 0,∴x 0=2p ,直线AB 过点(2p,0).当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -a ),A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y 2=2px ,y =k x -a ,消去x 得ky 2-2py -2pak =0,则y 1y 2=-2pa .又OA ⊥OB . ∴y 1y 2=-x 1x 2.由方程组消去y ,得k 2x 2-(2k 2a +2p )x +k 2a 2=0, 则x 1·x 2=a 2.因此,a 2=2pa .∴a =2p . 故直线AB 过定点(2p,0).(2)由(1)知:AB 恒过定点M (2p,0).∴S △AOB =S △AOM +S △BOM =12|OM |(|y 1|+|y 2|)≥p (2|y 1y 2|).又y 21=2px 1,y 22=2px 2,∴(y 1y 2)2=4p 2x 1x 2.又∵y 1y 2=-x 1x 2,于是|y 1y 2|=4p 2.故S △AOB的最小值为4p 2.5.已知椭圆x 2a 2+y 2b2=1(a >b >0),B 为椭圆短轴的一个顶点,过B 点作椭圆的弦BM ,求弦长的最大值.【解】 设M (x ,y ),B (0,-b ), 则有|BM |2=x 2+(y +b )2,由x 2a 2+y 2b 2=1,得x 2=a 2b2(b 2-y 2), 代入上式得|BM |2=⎝ ⎛⎭⎪⎫1-a 2b 2y 2+2by +a 2+b 2=b 2-a 2b 2⎝ ⎛⎭⎪⎫y -b 3a 2-b 22+a 4c 2(-b ≤y ≤b ),由于a >b >0,b 2-a 2b 2<0,b 3a 2-b2>0,所以当b 3a 2-b 2≤b ,即a 2≥2b 2时,|BM |2max=a 4c2;当b 3a 2-b2>b ,即a 2<2b 2时,函数|BM |2=f (y )在上单调递增, 当y =b 时,|BM |2max =4b 2.所以当a ≥2b 时,弦长的最大值为|BM |max =a 2c;当a <2b 时,弦长的最大值为|BM |max =2b .又要考虑表示曲线的数,利用数来解形的同时,要关注用形来助数.已知P (x 0,y 0)是椭圆x 2a 2+y 2b2=1(a >b >0)上的任意一点,F 1、F 2是焦点,求证:以PF 2为直径的圆必和以椭圆长轴为直径的圆相内切.【精彩点拨】 根据椭圆的定义,结合图像中三角形中位线定理来解决问题. 【自主解答】设以PF 2为直径的圆的圆心为A (如图所示),半径为r . ∵F 1、F 2为焦点, ∴由椭圆定义知|PF 1|+|PF 2|=2a ,|PF 2|=2r , ∴|PF 1|+2r =2a ,即|PF 1|=2(a -r ). 连接OA ,由三角形中位线定理,知 |OA |=12|PF 1|=12×2(a -r )=a -r .故以PF 2为直径的圆必和以长轴为直径的圆相内切.6.曲线x 2+y 2=4与曲线x 2+y 29=1的交点个数为( )A .1B .2C .3D .4【解析】 画出图形,由图形知交点有4个.【答案】 D1.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33 B .⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223D .⎝ ⎛⎭⎪⎫-233,233【解析】 由双曲线方程可求出F 1,F 2的坐标,再求出向量MF 1→,MF 2→,然后利用向量的数量积公式求解.由题意知a =2,b =1,c =3,∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0).∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上,∴x 202-y 20=1,即x 20=2+2y 20,∴2+2y 20-3+y 20<0,∴-33<y 0<33.故选A. 【答案】 A2.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B .23C.22D .1【解析】 如图所示,设P (x 0,y 0)(y 0>0),则y 20=2px 0,即x 0=y 202p.设M (x ′,y ′),由PM →=2MF →,得⎩⎪⎨⎪⎧x ′-x 0=2⎝ ⎛⎭⎪⎫p 2-x ′,y ′-y 0=2 0-y ′ ,化简可得⎩⎪⎨⎪⎧x ′=p +x 03,y ′=y3.∴直线OM 的斜率为k =y 03p +x 03=y 0p +y 202p =2p 2p 2y 0+y 0≤2p 22p 2=22(当且仅当y 0=2p 时取等号).【答案】 C3.如图32,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.图32(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.【导学号:32550097】【解】 (1)由题意,得c a =22且c +a 2c=3,解得a =2,c =1,则b =1, 所以椭圆的标准方程为x 22+y 2=1. (2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程,得 (1+2k 2)x 2-4k 2x +2(k 2-1)=0, 则x 1,2=2k 2±2 1+k 21+2k2, C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且AB = x 2-x 1 2+ y 2-y 1 2= 1+k 2x 2-x 1 2=22 1+k 21+2k2. 若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为 y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k 1+2k 2 ,从而PC =2 3k 2+1 1+k2|k | 1+2k 2. 因为PC =2AB ,所以2 3k 2+1 1+k 2|k | 1+2k 2 =42 1+k 21+2k 2, 解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.4.设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.【导学号:32550098】【解】 (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b , 又k OM =510,从而b 2a =510, 进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x5b +yb=1,点N 的坐标为⎝ ⎛⎭⎪⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝ ⎛⎭⎪⎫x 1,72,则线段NS 的中点T 的坐标为 ⎝ ⎛⎭⎪⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎨⎪⎧54b +x 125b +-14b +74b=1,72+12b x 1-52b =5,解得b =3.所以a =35,故椭圆E 的方程为x 245+y 29=1.5.如图33,设椭圆x 2a2+y 2=1(a >1).图33(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 【解】 (1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1得(1+a 2k 2)x 2+2a 2kx =0,故x 1=0,x 2=-2a 2k 1+a 2k2.因此|AM |=1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2. 由(1)知,|AP |=2a 2|k 1|1+k 211+a 2k 21, |AQ |=2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 所以(k 21-k 22)=0. 由于k 1≠k 2,k 1,k 2>0得 1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝ ⎛⎭⎪⎫1k 21+1⎝ ⎛⎭⎪⎫1k 22+1=1+a 2(a 2-2).①因为①式关于k 1,k 2的方程有解的充要条件是 1+a 2(a 2-2)>1, 所以a > 2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤ 2.由e =c a =a 2-1a ,得0<e ≤22.所求离心 率的取值范围为0<e ≤22.。
2016-2017学年高二数学北师大版选修2-3学案:1.2.1 排列与排列数公式 Word版含解析
§2排列第1课时排列与排列数公式1.理解排列、排列数的定义,掌握排列数公式及推导方法.(重点)2.能用列举法,写出一个排列问题的所有的排列.(易混点)3.能用排列数公式解决无限制条件的排列问题.(难点)[基础·初探]教材整理1排列的概念阅读教材P7~P8“练习1”以上部分,完成下列问题.1.排列一般地,从n个________元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫作从n个________元素中任意取出m个元素的一个排列.2.排列相同的条件两个排列相同,当且仅当两个排列的元素________,且元素的________也相同.【答案】 1.不同的不同的 2.完全相同排列顺序判断(正确的打“√”,错误的打“×”)(1)两个排列的元素相同,则这两个排列是相同的排列.()(2)从六名学生中选三名学生参加数学、物理、化学竞赛,共有多少种选法属于排列问题.( )(3)有十二名学生参加植树活动,要求三人一组,共有多少种分组方案属于排列问题.( )(4)从3,5,7,9中任取两个数进行指数运算,可以得到多少个幂属于排列问题.( )【解析】 (1)× 因为相同的两个排列不仅元素相同,而且元素的排列顺序相同.(2)√ 因为三名学生参赛的科目不同为不同的选法,每种选法与“顺序”有关,属于排列问题.(3)× 因为分组之后,各组与顺序无关,故不属于排列问题.(4)√ 因为任取的两个数进行指数运算,底数不同、指数不同结果不同.结果与顺序有关,故属于排列问题.【答案】 (1)× (2)√ (3)× (4)√ 教材整理2 排列数及排列数公式阅读教材P 8“练习1”以下至P 9“例1”以上部分,完成下列问题.【答案】 排列 A m n n (n -1)(n -2)…(n -m +1)n !(n -m )! n ! 11.A 24=________,A 33=________. 【解析】 A 24=4×3=12;A33=3×2×1=6. 【答案】12 62.A345!=________.【解析】A345!=4×3×25×4×3×2×1=15.【答案】15[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型](1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.【精彩点拨】判断是否为排列问题关键是选出的元素在被安排时,是否与顺序有关.若与顺序有关,就是排列问题,否则就不是排列问题.【自主解答】(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)属于排列问题.1.解决本题的关键有两点:一是“取出元素不重复”,二是“与顺序有关”.2.判断一个具体问题是否为排列问题,就看取出元素后排列是有序的还是无序的,而检验它是否有序的依据就是变换元素的“位置”(这里的“位置”应视具体问题的性质和条件来决定),看其结果是否有变化,有变化就是排列问题,无变化就不是排列问题.[再练一题]1.判断下列问题是否是排列问题.(1)从1到10十个自然数中任取两个数组成直角坐标平面内的点的坐标,可得多少个不同的点的坐标?(2)从10名同学中任抽两名同学去学校开座谈会,有多少种不同的抽取方法?(3)某商场有四个大门,若从一个门进去,购买物品后再从另一个门出来,不同的出入方式共有多少种?【解】(1)由于取出的两个数组成点的坐标与哪一个数作横坐标,哪一个数作纵坐标的顺序有关,所以这是一个排列问题.(2)因为从10名同学中抽取两人去学校开座谈会的方式不用考虑两人的顺序,所以这不是排列问题.(3)因为从一门进,从另一门出是有顺序的,所以是排列问题.综上,(1)、(3)是排列问题,(2)不是排列问题.(1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数?(2)写出从4个元素a,b,c,d中任取3个元素的所有排列.【精彩点拨】(1)直接列举数字.(2)先画树形图,再结合树形图写出.【自主解答】(1)所有两位数是12,21,13,31,14,41,23,32,24,42,34,43,共有12个不同的两位数.(2)由题意作树形图,如图.故所有的排列为:abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb,共有24个.在排列个数不多的情况下,树形图是一种比较有效的表示方式.在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,在每一类中再按余下的元素在前面元素不变的情况下确定第二个元素,再按此元素分类,依次进行,直到完成一个排列,这样能不重不漏,然后按树形图写出排列.[再练一题]2.(1)北京、广州、南京、天津4个城市相互通航,应该有________种机票.【导学号:62690007】(2)A,B,C,D四名同学排成一排照相,要求自左向右,A不排第一,B不排第四,共有________种不同的排列方法.【解析】(1)列出每一个起点和终点情况,如图所示.故符合题意的机票种类有:北京→广州,北京→南京,北京→天津,广州→南京、广州→天津、广州→北京,南京→天津,南京→北京,南京→广州,天津→北京,天津→广州,天津→南京,共12种.(2)因为A不排第一,排第一位的情况有3类(可从B,C,D中任选一人排),而此时兼顾分析B的排法,列树形图如图.所以符合题意的所有排列是:BADC,BACD,BCAD,BCDA,BDAC,BDCA,CABD,CBAD,CBDA,CDBA,DABC,DBAC,DBCA,DCBA共14种.【答案】(1)12(2)14[探究共研型]探究1从这4个数字中选出2个或3个分别能构成多少个无重复数字的两位数或三位数?【提示】从这4个数字中选出2个能构成A24=4×3=12个无重复数字的两位数;若选出3个能构成A34=4×3×2=24个无重复数字的三位数.探究2由探究1知A24=4×3=12,A34=4×3×2=24,你能否得出A2n的意义和A2n的值?【提示】A2n的意义:假定有排好顺序的2个空位,从n个元素a1,a2,…,a n中任取2个元素去填空,一个空位填一个元素,每一种填法就得到一个排列;反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数A2n.由分步乘法计数原理知完成上述填空共有n(n-1)种填法,所以A2n=n(n-1).探究3你能写出A m n的值吗?有什么特征?若m=n呢?【提示】A m n=n(n-1)(n-2)…(n-m+1)(m,n∈N+,m≤n).(1)公式特征:第一个因数是n,后面每一个因数比它前面一个少1,最后一个因数是n-m+1,共有m个因数;(2)全排列:当n=m时,即n个不同元素全部取出的一个排列.全排列数:A n n=n(n-1)(n-2)·…2·1=n!(叫作n的阶乘).另外,我们规定0!=1.所以A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!=AnnA n-mn-m.(1)计算:A 59+A 49A 610-A 510;(2)证明:A m n +1-A m n =m A m -1n .【精彩点拨】 第(1)题可直接运用排列数公式,也可采用阶乘式;第(2)题首先分析各项的关系,利用A m n =n !(n -m )!进行变形推导.【自主解答】 (1)法一:A 59+A 49A 610-A 510=5A 49+A 4950A 49-10A 49=5+150-10=320. 法二:A 59+A 49A 610-A 510=9!4!+9!5!10!4!-10!5!=5×9!+9!5×10!-10!=6×9!4×10!=320. (2)∵A m n +1-A mn =(n +1)!(n +1-m )!-n !(n -m )!=n !(n -m )!·⎝ ⎛⎭⎪⎫n +1n +1-m -1 =n !(n -m )!·mn +1-m=m ·n !(n +1-m )!=m A m -1n , ∴A m n +1-A m n =m A m -1n.排列数的计算方法1.排列数的计算主要是利用排列数的乘积公式进行,应用时注意:连续正整数的积可以写成某个排列数,其中最大的是排列元素的总个数,而正整数(因式)的个数是选取元素的个数,这是排列数公式的逆用.2.应用排列数公式的阶乘形式时,一般写出它们的式子后,再提取公因式,然后计算,这样往往会减少运算量.[再练一题]3.求3A x 8=4A x -19中的x .【解】 原方程3A x 8=4A x -19可化为3×8!(8-x )!=4×9!(10-x )!,即3×8!(8-x )!=4×9×8!(10-x )(9-x )(8-x )!,化简,得x 2-19x +78=0,解得x 1=6,x 2=13. 由题意知⎩⎪⎨⎪⎧x ≤8,x -1≤9,解得x ≤8.所以原方程的解为x =6.[构建·体系]1.从1,2,3,4四个数字中,任选两个数做加、减、乘、除运算,分别计算它们的结果,在这些问题中,有几种运算可以看作排列问题( )A .1B .2C .3D .4【解析】 因为加法和乘法满足交换律,所以选出两个数做加法和乘法时,结果与两数字位置无关,故不是排列问题.而减法、除法与两数字的位置有关,故是排列问题.【答案】 B2.4×5×6×…×(n-1)×n等于()A.A4n B.A n-4nC.n!-4! D.A n-3n【解析】4×5×6×…×(n-1)×n中共有n-4+1=n-3个因式,最大数为n,最小数为4,故4×5×6×…×(n-1)×n=A n-3.n【答案】 D3.5本不同的课外读物分给5位同学,每人一本,则不同的分配方法有________种.【解析】利用排列的概念可知不同的分配方法有A55=120种.【答案】1204.A66-6A55+5A44=________. 【导学号:62690008】【解析】原式=A66-A66+A55=A55=5×4×3×2×1=120.【答案】1205.将玫瑰花、月季花、莲花各一束分别送给甲、乙、丙三人,每人一束,共有多少种不同的分法?请将它们列出来.【解】按分步乘法计数原理的步骤:第一步,分给甲,有3种分法;第二步,分给乙,有2种分法;第三步,分给丙,有1种分法.故共有3×2×1=6种不同的分法.列出这6种分法,如下:我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列问题属于排列问题的是()①从10个人中选2人分别去种树和扫地;②从10个人中选2人去扫地;③从班上30名男生中选出5人组成一个篮球队;④从数字5,6,7,8中任取两个不同的数作log a b 中的底数与真数. A .①④ B .①② C .④D .①③④【解析】 根据排列的概念知①④是排列问题. 【答案】 A2.从2,3,5,7四个数中任选两个分别相除,则得到的结果有( ) A .6个 B .10个 C .12个D .16个【解析】 符合题意的商有A 24=4×3=12.【答案】 C3.某段铁路所有车站共发行132种普通车票,那么这段铁路共有的车站数是( )A .8B .12C .16D .24【解析】 设车站数为n ,则A 2n =132,n (n -1)=132,∴n =12. 【答案】 B4.(2016·宝鸡高二检测)下列各式中与排列数A m n 相等的是( ) A.n !(n -m +1)!B .n (n -1)(n -2)…(n -m ) C.n A m n -1n -m +1D .A 1n A m -1n -1【解析】A m n =n !(n -m )!,而A 1n A m -1n -1=n ×(n -1)!(n -m )!=n !(n -m )!,∴A1n A m-1=A m n.n-1【答案】 D5.不等式A2n-1-n<7的解集为()A.{n|-1<n<5} B.{1,2,3,4}C.{3,4} D.{4}【解析】由A2n-1-n<7,得(n-1)(n-2)-n<7,即-1<n<5,又因为n∈N +且n-1≥2,所以n=3,4.故选C.【答案】 C二、填空题6.集合P={x|x=A m4,m∈N+},则集合P中共有______个元素.【解析】因为m∈N+,且m≤4,所以P中的元素为A14=4,A24=12,A34=A44=24,即集合P中有3个元素.【答案】 37.从甲、乙、丙三人中选两人站成一排的所有站法为________.(填序号)①甲乙,乙甲,甲丙,丙甲;②甲乙丙,乙丙甲;③甲乙,甲丙,乙甲,乙丙,丙甲,丙乙;④甲乙,甲丙,乙丙.【解析】这是一个排列问题,与顺序有关,任意两人对应的是两种站法,故③正确.【答案】③8.如果A m n=15×14×13×12×11×10,那么n=________,m=________.【导学号:62690009】【解析】15×14×13×12×11×10=A615,故n=15,m=6.【答案】15 6三、解答题9.下列问题中哪些是排列问题?(1)5名学生中抽2名学生开会; (2)5名学生中选2名做正、副组长; (3)从2,3,5,7,11中任取两个数相乘; (4)从2,3,5,7,11中任取两个数相除; (5)6位同学互通一次电话; (6)6位同学互通一封信; (7)以圆上的10个点为端点作弦;(8)以圆上的10个点中的某点为起点,作过另一点的射线.【解】 (2)(4)(6)(8)都与顺序有关,属于排列;其他问题则不是排列.10.证明:A k n +k A k -1n =A kn +1.【解】 左边=n !(n -k )!+k n !(n -k +1)!=n ! [(n -k +1)+k ](n -k +1)!=(n +1)n !(n -k +1)!=(n +1)!(n -k +1)!,右边=A k n +1=(n +1)!(n -k +1)!,所以A k n +k A k -1n =A k n +1.[能力提升]1.若S =A 11+A 22+A 33+A 44+…+A 100100,则S 的个位数字是( )A .8B .5C .3D .0【解析】 因为当n ≥5时,A n n 的个位数是0,故S 的个位数取决于前四个排列数,又A 11+A 22+A 33+A 44=33.【答案】 C2.若a ∈N +,且a <20,则(27-a )(28-a )…(34-a )等于( )A.A827-a B.A27-a34-aC.A734-a D.A834-a【解析】A834-a=(27-a)(28-a)…(34-a).【答案】 D3.有4名司机,4名售票员要分配到4辆汽车上,使每辆汽车上有一名司机和一名售票员,则可能的分配方法有________种.【解析】司机、售票员各有A44种安排方法,由分步乘法计数原理知共有A44A44种不同的安排方法.【答案】5764.沪宁铁路线上有六个大站:上海、苏州、无锡、常州、镇江、南京,铁路部门应为沪宁线上的这六个大站准备(这六个大站间)多少种不同的火车票?【解】对于两个大站A和B,从A到B的火车票与从B到A的火车票不同,因为每张车票对应于一个起点站和一个终点站.因此,每张火车票对应于从6个不同元素(大站)中取出2个元素(起点站和终点站)的一种排列.所以问题归结为从6个不同元素中取出2个不同元素的排列数A26=6×5=30.故一共需要为这六个大站准备30种不同的火车票.。
高中数学(北师大版)选修2-2教案:第3章 拓展资料:导数中的思想方法
导数中的思想方法在《导数》一章里,隐含着很多数学思想方法,思想是从数学内容中提炼出来的数学知识的精髓,是将知识转化为能力的桥梁,也是解决问题的思维策略,有着广泛的应用.所以挖掘和总结出这些数学思想方法,对我们巩固《导数》有很大的帮助。
下面就《导数》一章里的数学思想方法总结如下:一、方程思想与待定系数法方程思想在《导数》中到处可见,与它同时出现的是待定系数法。
在确定函数的表达式或求函数表达式的系数等方面都可以根据方程的思想,通过待定系数法来实现.【例1】 已知函数f (x )=ax 3+bx 2-3x 在x =±1处取得极值.(1)讨论f (1)和f (-1)是函数f (x )的极大值还是极小值;(2)过点A (0,16)作曲线y =f (x )的切线,求此切线方程.剖析:(1)分析x =±1处的极值情况,关键是分析x =±1左右f '(x )的符号.(2)要分清点A (0,16)是否在曲线上.解:(1)f '(x )=3ax 2+2bx -3,依题意,f '(1)=f '(-1)=0,即⎩⎨⎧=--=-+.0323,0323b a b a 解得a =1,b =0.∴f (x )=x 3-3x ,f '(x )=3x 2-3=3(x +1)(x -1).令f '(x )=0,得x =-1,x =1.若x ∈(-∞,-1)∪(1,+∞),则f '(x )>0,故f (x )在(-∞,-1)上是增函数,f (x )在(1,+∞)上是增函数.若x ∈(-1,1),则f '(x )<0,故f (x )在(-1,1)上是减函数.所以f (-1)=2是极大值,f (1)=-2是极小值.(2)曲线y =x 3-3x ,点A (0,16)不在曲线上,设切点M (x 0,y 0),则y 0=x 03-3x .∵f '(x 0)=3x 02-3,∴切线方程为y -y 0=3(x 02-1)(x -x 0).代入A (0,16)得16-x 03+3x 0=3(x 02-1)(0-x 0).解得x 0=-2,∴M (-2,-2),切线方程为9x -y +16=0.评述:过已知点求切线,当点不在曲线上时,求切点的坐标成了解题的关键.二、转化思想等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。
数学北师大版选修2-3本章整合学案: 第三章统计案例
本章整合知识建构综合应用专题一确定回归直线方程的策略准确确定回归直线方程,有利于进一步加强数学应用意识,培养运用所学知识解决实际问题的能力,正确地求出回归直线方程是本节的重点,现介绍求回归直线方程的三种方法. 一、利用回归直线过定点确定回归直线方程回归直线方程y=a+bx 经过样本的中心(x,y)点,(x,y)称为样本点的中心,回归直线一定过此点.A.y=0.5x-1B.y=xC.y=2x+0.3D.y=x+1 答案:B二、利用公式求a,b ,确定回归直线方程 利用公式求回归直线方程时应注意以下几点:①求b 时利用公式b=2111)())((∑∑==---ni ini i x xy y x x,先求出x =n 1(x 1+x 2+x 3+…+x n ),y =n1(y 1+y 2+ y 3+…+y n ).再由a=y -b x 求a 的值,并写出回归直线方程.②线性回归方程中的截距a 和斜率b 都是通过样本估计而来,存在着误差,这种误差可能导致预报结果的偏差.③回归直线方程y=a+bx 中的b 表示x 每增加1个单位时y 的变化量,而a 表示y 不随x 的变化而变化的量.④可以利用回归直线方程y=a+bx 预报在x 取某一个值时y 的估计值.(2)求化学成绩y 对数学成绩x 的回归直线方程. 解:(1)散点图略. (2) x =51×(88+76+73+66+63)=73.2,y =51×(78+65+71+64+61)=67.8. 所以b=251151)())((∑∑==---i i i ix xy y x x≈0.625.a=y -b x =67.8-0.625×73.2=22.05.所以y 对x 的回归直线方程为y=0.625x+22.05.三、先判定相关性,再求回归直线方程利用样本相关系数r 来判断两个变量之间是否有线性相关关系时,可以依据若|r|>0.75,我们认为有很强的线性相关关系,可以求回归直线方程,并可用求得的回归直线方程来预报变量的取值;若|r|<0.75,则认为两个变量之间的线性相关关系并不强,这时求回归直线方程没有太大的实际价值.(1)y 与x 是否具有相关关系;(2)如果y 与x 具有线性相关关系,求回归直线方程. 解:(1)由已知表格中的数据,求得x =71,y =72.3,r=2101121011)()())((∑∑∑===----i i n i ii i y y x xy y x x≈0.78.由于0.78>0.75,所以y 与x 之间具有很强的线性相关关系. (2)y 与x 具有线性相关关系,设回归直线方程为: y=a+bx,则有b=∑∑==---1012101)())((i ii i ix xy y x x=1.22,a=y -b x =72.3-1.22×71=-14.32.所以y关于x的回归直线方程为y=1.22x-14.32.专题二可线性化的回归分析一、曲线线性化的意义曲线的线性化是曲线拟合的重要手段之一,对于某些非线性的资料可以通过简单的变量替换使之线性化,这样就可以按最小二乘法原理求出变换后变量的线性回归方程,在实际工作中常利用该线性回归方程绘制资料的标准工作曲线,同时根据需要可将此线性回归方程还原成曲线回归方程,实现对曲线的拟合.二、常用的非线性函数(一)指数函数y=ae bx (1)对(1)式的两边取对数,得lny=lna+bx当b>0时,y随着x的增大而增大;当b<0时,y随着x的增大而减小.当以lny和x绘制的散点图呈直线趋势时,可考虑采用指数函数来描述y与x间的非线性关系,lna和b分别为截距与斜率.更一般的指数函数是y=ae bx+k,式中的k为一常量,往往未知,应用时可试用不同的值.(二)对数函数y=a+blnx(x>0)当b>0时,y随着x的增大而增大,先快后慢;当b<0时,y随着x的增大而减小,先快后慢,当以y和lnx绘制的散点图呈直线趋势时,可考虑采用对数函数描述y与x间的非线性关系,式中a和b分别为截距与斜率.更一般的对数函数是y=a+bln(x+k),式中的k为一常量,往往未知.(三)幂函数y=ax b(a>0,x>0)(2)当b>0时,y随着x的增大而增大;b<0时,y随着x的增大而减小.对(2)式的两边取对数,得lny=lna+blnx,当以lny和lnx绘制的散点图呈直线趋势时,可考虑采用对数函数描述y与x间的非线性关系,式中lna和b分别为截距与斜率.更一般的幂函数是y=ax b+k,式中的k为一常量,往往未知.以上三种模型是我们在日常生活中常遇到的曲线模型,掌握这三种模型,有利于我们研究更多的曲线拟合与回归分析的问题.三、利用线性回归拟合曲线的一般步骤(一)绘制散点图一般根据资料性质结合专业知识便可确定资料的曲线类型,不能确定时,可在方格坐标纸上绘制散点图,根据散点的分布,选择接近的、合适的曲线类型.(二)进行变量替换y′=f(y),x′=g(x)使变换后的两个变量呈线性相关关系.(三)按最小二乘法原理求线性回归方程及进行方差分析.(四)将线性化方程转换为关于原始变量x,y的回归方程.【例1】经过调查得到8个厂家同种类型的产品年新增加投资额和年利润额的数据资料,如表(1)所示.表(1) 八个厂家年新增投资额与年利润额数据资料的增大Y也有明显的增加的趋势,因此两者之间存在着相关关系,但是这种相关关系与其用一条直线来描述倒不如用曲线描述更加合适,因此Y 与x 之间更加倾向于被认为是一种非线性关系.回归方程也需要用一些非线性函数来刻画,比如图(2) 年新增加投资额与年利润额数据的散点图图3 经过对数变换后的散点图Y=β0·e β1·x ; ① 或者Y=β0+β1·x 2 ②等等.图(3)给出的是变量lnY 与变量x 的散点图,从中可以看出这些点基本上是围绕一条直线波动,说明变量lnY 与x 之间近似是一种线性关系,从而也印证了回归方程取①形式的合理性.同时,图(3)也提示我们一种求解回归方程①的思路,即通过求解变量lnY 对x 的线性回归方程即可得到相应的①式所表示的Y 和x 的回归方程,即在图(3)中的回归直线同图(2)中的曲线(Ⅱ)是一致的.具体来说,首先对样本数据(x i ,Y i ),i=1,2,…,n 作对数变换 Z i =lnY i ,i=1,2,…,n ; ③ 然后利用最小二乘法求出变量Z 对x 的回归方程 Z=a 0+a 1·x ; ④即图(3)中的直线方程,则相应的形如①式的Y 对x 的回归方程是 Y=e z =e a0·e a1x ; ⑤ 即β0=e a0,β1=a 1.利用表(1)中给出的数据,可以得到lnY 对x 的线性回归方程是 Z=1.314+0.100x由此可得Y 对x 的回归方程是 Y=3.720 5·e 0.100x; ⑥如果采用形如②式的抛物线型回归方程,容易看出,令ω=x 2,②式就是表示了变量Y 对ω的线性回归方程:Y=β0+β1·ω; ⑦ 所以,对样本数据做变换ωi =x i 2(i=1,2,…,n ),利用(ωi ,Y i )(i=1,2,…,n )求解出⑦中的系数估计值β0、β1代入②式即得到Y 对x 的回归方程. 对表(1)中的数据计算结果为Y=4.413+0.057x 2; ⑧ 专题三独立性检验的基本方法判断结论成立的可能性的一般步骤:(1)假设两个分类变量X 和Y 没有关系; (2)给定一个显著水平,查表给出临界值;(3)计算χ2=;))()()(()(2d b d c b a c a bc ad n ++++-(4)若χ2大于临界值,则认为x 与y 有关系,否则没有充分的理由说明这个结论不成立随机抽取189名员工进行调查,所得数据如下表所示:对于人力资源部的研究项目,根据上述数据能得出什么结论?分析:首先由已知条件确定a ,b ,c ,d ,n 的数值,再利用公式求出χ2的观测值,最后与临界值比较再下结论. 解:由题目中表的数据可知:a=54,b=40,c=32,d=63,a+b=94,c+d=95,a+c=86,b+d=103,n=189.代入公式得χ2=103869594)32406354(1892⨯⨯⨯⨯-+⨯≈10.759.因为10.759>6.635,所以有99%的把握认为员工“工作积极”与“积极支持企业改革”是有关的,可以认为企业的全体员工对待企业改革态度和工作积极性是有关的. 【例2】在一次恶劣气候的飞行航程中调查男女乘客晕机的情况如下表所示,根据此资料您是χ2=57323455)8312624(892⨯⨯⨯⨯-⨯⨯≈3.689.因为3.689>2.706,所以有90%的把握认为此次飞行中晕机与否跟男女性别有关. 几点注意:(1)在列联表中注意各项的对应及有关值的确定,避免混乱. (2)若要判断X 与Y 有关时,先假设X 与Y 无关.(3)把计算出的χ2的值与相关的临界值作比较,确定出“X 与Y 有关系”的把握.科海观潮 相关与相关系数一、什么是相关事物总是相互联系的,它们之间的关系多种多样,分析起来,大概有以下几种情况:(1)一种是因果关系,即一种现象是另一种现象的因,而另一种现象则是果.例如学习的努力程度是学习成绩好坏的因(至少是部分的因);在一定刺激强度范围内,刺激强度经常是反应强度的因等.(2)第二种是共变关系,即表面看来有联系的两种事物都与第三种现象有关,这时两种事物之间的关系,便是共变关系.例如春天出生的婴儿与春天栽种的小树,就其高度而言,表面上看来都在增长,好像有关,其实,这二者都是受时间因素影响在发生变化,在它们本身之间并没有直接的关系.(3)第三种是相关关系,即两类现象在发展变化的方向与大小方面存在一定的关系,但不能确定这两类现象之间哪个是因,哪个是果;也有理由认为这两者并不同时受第三因素的影响,即不存在共变关系.具有相关关系的两种现象之间,关系是复杂的,甚至可能包含有暂时尚未认识的因果关系及其共变关系在内.例如,同一组学生的语文成绩与数学成绩的关系,即属于相关关系.统计学中所讲的相关是指具有相关关系的不同现象之间的关系程度.相关的情况有以下三种:一是两列变量变动方向相同,即一列变量变动时,另一列变量亦同时发生或大或小与前一列变量同方向的变动,这称为正相关.如身高与体重的关系,一般讲身长越长体重就越重.第二种相关情况是负相关,这时两列变量中若有一列变量变动时,另一列变量呈或大或小,但与前一列变量指向相反的变动.例如初学打字时练习次数越多,出现错误的量就越少等.第三处相关情况是零相关,即两列变量之间无关系.这种情况下,一列变量变动时,另一列变量作无规律的变动.如学习成绩优劣与身高之间的关系,就属零相关,即无相关关系,二者都是独立的随机变量.二、相关系数相关系数是两列变量间相关程度的数字表现形式,或者说是表示相关程度的指标,作为样本间相互关系程度的统计特征数,常用r表示,作为总体参数,一般用ρ表示,并且是指线性相关而言.相关系数的取值介于-1.00至+1.00之间,常用小数形式表示.它只是一个比率,不代表相关的百分数,更不是相关量的相等单位的度量.相关系数的正负号,表示相关方向,正值表示正相关,负值表示负相关.相关系数取值的大小表示相关的程度.相关系数为0时,称零相关即毫无相关,为1.00时,表示完全正相关,相关系数为-1.00时,为完全负相关.这二者都是完全相关.如果相关系数的绝对值在1.00与0之间不同时,则表示关系程度不同.接近1.00端一般为相关程度密切,接近0端一般为关系不够密切.(注意:若是非线性相关关系,而且直线相关计算r 值可能很小,但不能说两变量关系不密切)关于这一点如何判定,尚需考虑计算相关系数时样本数目的多少.如果样本数目较少,受取样偶然因素的影响较大,很有可能本来无关的两类事物,却计算出较大的相关系数来.例如欲研究身高与学习有无关系,如果只选3、5个人,很可能遇到身材愈高学习愈好这一类偶然现象,这时虽然计算出的相关系数可能接近1.00,但实际上这两类现象之间并无关系.究竟如何综合考虑样本数目大小,相关系数取值大小而判定相关是否密切这一问题,一般要经过统计检验后方能确定.相关系数不是等距的度量值,因此在比较相关程度时,只能说绝对值大者比绝对值小者相关更密切一些,如只能说相关系数r=0.50的两列数值比相关系数r=0.25的两列数值之间的关系程度更密切,而绝不能说前二者的密切程度是后二者密切程度的两倍.也不能说相关系数从0.25到0.50与从0.50到0.75所提高的程度一样多.存在相关关系,即相关系数取值较大的两类事物之间,不一定存在因果关系,这一点要从事物的本质方面进行分析,绝不可简单化.计算相关系数一般要求成对的数据,即若干个体中每个个体要有两种不同的观测值.例如每个学生(智力相同者)的算术和语文成绩;每个人的视反应和听反应时;每个学生的智力分数与学习成绩等等.任意两个个体之间的观测值不能求相关.计算相关的成对数据的数目,一般以30以上为宜.。
2016-2017学年高二数学北师大版选修2-3学案:1.2.2 排列的应用 Word版含解析
第2课时排列的应用1.进一步加深对排列概念的理解.(重点)2.掌握几种有限制条件的排列问题的处理方法,能应用排列数公式解决简单的实际问题.(难点)[基础·初探]教材整理排列的综合应用阅读教材P10“例2”“例3”“例4”部分,完成下列问题.1.解简单的排列应用题的基本思想2.解简单的排列应用题,首先必须认真分析题意,看能否把问题归结为排列问题,即是否有顺序.如果是的话,再进一步分析,这里n个不同的元素指的是什么,以及从n个不同的元素中任取m个元素的每一种排列对应的是什么事情,然后才能运用排列数公式求解.1.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为________.【解析】从2,4中取一个数作为个位数字,有2种取法;再从其余四个数中取出三个数排在前三位,有A34种排法.由分步乘法计数原理知,这样的四位偶数共有2×A34=48个.【答案】482.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的活动.若其中甲、乙两名志愿者不能从事翻译活动,则选派方案共有________种.【解析】翻译活动是特殊位置优先考虑,有4种选法(除甲、乙外),其余活动共有A35种选法,由分步乘法计数原理知共有4×A35=240种选派方案.【答案】240[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型](1)1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?【精彩点拨】(1)从5本不同的书中选出3本分别送给3名同学,各人得到的书不同,属于求排列数问题;(2)给每人的书均可以从5种不同的书中任选1本,各人得到哪本书相互之间没有联系,要用分步乘法计数原理进行计算.【自主解答】(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取3个元素的一个排列,因此不同送法的种数是A35=5×4×3=60,所以共有60种不同的送法.(2)由于有5种不同的书,送给每个同学的每本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是5×5×5=125,所以共有125种不同的送法.1.没有限制的排列问题,即对所排列的元素或所排列的位置没有特别的限制,这一类问题相对简单,分清元素和位置即可.2.对于不属于排列的计数问题,注意利用计数原理求解.[再练一题]1.(1)将3张电影票分给10人中的3人,每人1张,共有________种不同的分法.(2)从班委会5名成员中选出3名,分别担任班级学习委员,文娱委员与体育委员,不同的选法共有______种.【解析】(1)问题相当于从10张电影票中选出3张排列起来,这是一个排列问题.故不同分法的种数为A310=10×9×8=720.(2)从班委会5名成员中选出3名,分别担任班级学习委员,文娱委员与体育委员,应有A35=5×4×3=60.【答案】(1)720(2)6074人,女学生2人,在下列情况下,各有多少种不同站法?(1)老师甲必须站在中间或两端;(2)2名女生必须相邻而站;(3)4名男生互不相邻;(4)若4名男生身高都不等,按从高到低的顺序站.【精彩点拨】 解决此类问题的方法主要按“优先”原则,即优先排特殊元素或优先考虑特殊位子,若一个位子安排的元素影响另一个位子的元素个数时,应分类讨论.【自主解答】 (1)先考虑甲有A 13种站法,再考虑其余6人全排,故不同站法总数为:A 13A 66=2 160(种).(2)2名女生站在一起有站法A 22种,视为一种元素与其余5人全排,有A 66种排法,所以有不同站法A 22·A 66=1 440(种).(3)先站老师和女生,有站法A 33种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,则插入方法A 44种,所以共有不同站法A 33·A 44=144(种).(4)7人全排列中,4名男生不考虑身高顺序的站法有A 44种,而由高到低有从左到右和从右到左的不同,所以共有不同站法2·A 77A 44=420(种).解决排队问题时应注意的问题1.对于相邻问题可以采用捆绑的方法,将相邻的元素作为一个整体进行排列,但是要注意这个整体内部也要进行排列.2.对于不相邻问题可以采用插空的方法,先排没有限制条件的元素,再将不相邻的元素以插空的方式进行排列.3.对于顺序给定的元素的排列问题只需考虑其余元素的排列即可.4.“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.[再练一题]2.3名男生,4名女生,按照不同的要求站成一排,求不同的排队方案有多少种.(1)甲不站中间,也不站两端;(2)甲、乙两人必须站两端.【解】(1)分两步,首先考虑两端及中间位置,从除甲外的6人中选3人排列,有A36种站法,然后再排其他位置,有A44种站法,所以共有A36·A44=2 880种不同站法.(2)甲、乙为特殊元素,先将他们排在两头位置,有A22种站法,其余5人全排列,有A55种站法.故共有A22·A55=240种不同站法.[探究共研型]探究1多少个不同的偶数?【提示】偶数的个位数字一定能被2整除.先从2,4中任取一个数字排在个位,共2种不同的排列,再从剩余数字中任取一个数字排在十位,共4种排法,故从1,2,3,4,5中任取两个数字,能组成2×4=8(种)不同的偶数.探究2在一个三位数中,身居百位的数字x能是0吗?如果在0~9这十个数字中任取不同的三个数字组成一个三位数,如何排才能使百位数字不为0?【提示】在一个三位数中,百位数字不能为0,在具体排数时,从元素0的角度出发,可先将0排在十位或个位的一个位置,其余数字可排百位、个位(或十位)位置;从“位置”角度出发可先从1~9这9个数字中任取一个数字排百位,然后再从剩余9个数字中任取两个数字排十位与个位位置.探究3如何从26,17,31,48,19中找出大于25的数?【提示】先找出十位数字比2大的数,再找出十位数字是2,个位数字比5大的数即可.用0,1,2,3,4,5这六个数字可以组成多少个无重复数字的(1)六位奇数?(2)个位数字不是5的六位数?【精彩点拨】这是一道有限制条件的排列问题,每一问均应优先考虑限制条件,遵循特殊元素或特殊位置优先安排的原则.另外,还可以用间接法求解.【自主解答】(1)法一:从特殊位置入手(直接法)分三步完成,第一步先填个位,有A13种填法,第二步再填十万位,有A14种填法,第三步填其他位,有A44种填法,故共有A13A14A44=288(个)六位奇数.法二:从特殊元素入手(直接法)0不在两端有A14种排法,从1,3,5中任选一个排在个位有A13种排法,其他各位上用剩下的元素做全排列有A44种排法,故共有A14A13A44=288(个)六位奇数.法三:排除法6个数字的全排列有A66个,0,2,4在个位上的六位数为3A55个,1,3,5在个位上,0在十万位上的六位数有3A44个,故满足条件的六位奇数共有A66-3A55-3A44=288(个).(2)法一:排除法0在十万位的六位数或5在个位的六位数都有A55个,0在十万位且5在个位的六位数有A44个.故符合题意的六位数共有A66-2A55+A44=504(个).法二:直接法十万位数字的排法因个位上排0与不排0而有所不同.因此需分两类:第一类:当个位排0时,符合条件的六位数有A55个.第二类:当个位不排0时,符合条件的六位数有A14A14A44个.故共有符合题意的六位数A55+A14A14A44=504(个).解排数字问题常见的解题方法1.“两优先排法”:特殊元素优先排列,特殊位置优先填充.如“0”不排“首位”.2.“分类讨论法”:按照某一标准将排列分成几类,然后按照分类加法计数原理进行,要注意以下两点:一是分类标准必须恰当;二是分类过程要做到不重不漏.3.“排除法”:全排列数减去不符合条件的排列数.4.“位置分析法”:按位置逐步讨论,把要求数字的每个数位排好.[再练一题]3.用0,1,2,3,4,5这六个数取不同的数字组数.(1)能组成多少个无重复数字且为5的倍数的五位数?(2)能组成多少个无重复数字且比1 325大的四位数?(3)若所有的六位数按从小到大的顺序组成一个数列{a n},则240 135是第几项.【解】(1)符合要求的五位数可分为两类:第一类,个位上的数字是0的五位数,有A45个;第二类,个位上的数字是5的五位数,有A14·A34个.故满足条件的五位数的个数共有A45+A14·A34=216(个).(2)符合要求的比1 325大的四位数可分为三类:第一类,形如2□□□,3□□□,4□□□,5□□□,共A14·A35个;第二类,形如14□□,15□□,共有A12·A24个;第三类,形如134□,135□,共有A12·A13个.由分类加法计数原理知,无重复数字且比1 325大的四位数共有:A14·A35+A12·A24+A12·A13=270(个).(3)由于是六位数,首位数字不能为0,首位数字为1有A55个数,首位数字为2,万位上为0,1,3中的一个有3A44个数,∴240 135的项数是A55+3A44+1=193,即240 135是数列的第193项.[构建·体系]1.6名学生排成两排,每排3人,则不同的排法种数为()A.36B.120C.720D.240【解析】由于6人排两排,没有什么特殊要求的元素,故排法种数为A66=720.【答案】 C2.要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1 440种B.960种C.720种D.480种【解析】从5名志愿者中选2人排在两端有A25种排法,2位老人的排法有A22种,其余3人和老人排有A44种排法,共有A25A22A44=960种不同的排法.【答案】 B3.用1,2,3,4,5,6,7这7个数字排列组成一个七位数,要求在其偶数位上必须是偶数,奇数位上必须是奇数,则这样的七位数有________个.【导学号:62690010】【解析】先排奇数位有A44种,再排偶数位有A33种,故共有A44A33=144个.【答案】1444.(2016·莆田高二检测)两家夫妇各带一个小孩一起去公园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为________.【解析】分3步进行分析,①先安排两位爸爸,必须一首一尾,有A22=2种排法,②两个小孩一定要排在一起,将其看成一个元素,考虑其顺序有A22=2种排法,③将两个小孩看作一个元素与两位妈妈进行全排列,有A33=6种排法.则共有2×2×6=24种排法.【答案】245.从6名短跑运动员中选出4人参加4×100 m接力赛,甲不能跑第一棒和第四棒,问共有多少种参赛方案?【解】法一:从运动员(元素)的角度考虑,优先考虑甲,分成以下两类:第1类,甲不参赛,有A45种参赛方案;第2类,甲参赛,可优先将甲安排在第二棒或第三棒,有2种方法,然后安排其他3棒,有A35种方法,此时有2A35种参赛方案.由分类加法计数原理可知,甲不能跑第一棒和第四棒的参赛方案共有A45+2A35=240种.法二:从位置(元素)的角度考虑,优先考虑第一棒和第四棒,则这两棒可以从除甲之外的5人中选2人,有A25种方法;其余两棒从剩余4人中选,有A24种方法.由分步乘法计数原理可知,甲不能跑第一棒和第四棒的参赛方案共有A25A24=240种.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.某电影要在5所大学里轮流放映,则不同的轮流放映方法有()A.25种B.55种C.A55种D.53种【解析】其不同的轮映方法相当于将5所大学全排列,即A55.2.某天上午要排语文,数学,体育,计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有()A.6种B.9种C.18种D.24种【解析】先排体育有A13种,再排其他的三科有A33种,共有3×6=18(种).【答案】 C3.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有()A.34种B.48种C.96种D.144种【解析】先排除A,B,C外的三个程序,有A33种不同排法,再排程序A,有A12种排法,最后插空排入B,C,有A14·A22种排法,所以共有A33·A12·A14·A22=96种不同的编排方法.【答案】 C4.生产过程有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两名工人中安排1人,第四道工序只能从甲、丙两名工人中安排1人,则不同的安排方案共有() A.24种B.36种C.48种D.72种【解析】分类完成:第1类,若甲在第一道工序,则丙必在第四道工序,其余两道工序无限制,有A24种排法;第2类,若甲不在第一道工序(此时乙一定在第一道工序),则第四道工序有2种排法,其余两道工序有A24种排法,有2A24种排法.由分类加法计数原理,共有A24+2A24=36种不同的安排方案.5.(2016·韶关检测)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有()A.288个B.240个C.144个D.126个【解析】第1类,个位数字是2,首位可排3,4,5之一,有A13种排法,排其余数字有A34种排法,所以有A13A34个数;第2类,个位数字是4,有A13A34个数;第3类,个位数字是0,首位可排2,3,4,5之一,有A14种排法,排其余数字有A34种排法,所以有A14A34个数.由分类加法计数原理,可得共有2A13A34+A14A34=240个数.【答案】 B二、填空题6.从0,1,2,3这四个数中选三个不同的数作为函数f(x)=ax2+bx+c中的参数a,b,c,可组成不同的二次函数共有________个.【解析】若得到二次函数,则a≠0,a有A13种选择,故二次函数有A13A23=3×3×2=18(个).【答案】187.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.【解析】先分组后用分配法求解,5张参观券分为4组,其中2个连号的有4种分法,每一种分法中的排列方法有A44种,因此共有不同的分法4A44=4×24=96(种).【答案】968.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1,2相邻,这样的六位数的个数是________. 【导学号:62690011】【解析】可分为三步来完成这件事:第一步:先将3,5进行排列,共有A22种排法;第二步:再将4,6插空排列,共有2A22种排法;第三步:将1,2放入3,5,4,6形成的空中,共有A15种排法.由分步乘法计数原理得,共有A222A22A15=40种不同的排法.【答案】40三、解答题9.喜羊羊家族的四位成员与灰太狼、红太狼进行谈判,通过谈判他们握手言和,准备一起照合影照(排成一排).(1)要求喜羊羊家族的四位成员必须相邻,有多少种排法?(2)要求灰太狼、红太狼不相邻,有多少种排法?【解】(1)把喜羊羊家族的四位成员看成一个元素,排法为A33.又因为四位成员交换顺序产生不同排列,所以共有A33·A44=144种排法.(2)第一步,将喜羊羊家族的四位成员排好,有A44种排法;第二步,让灰太狼、红太狼插入四人形成的空(包括两端),有A25种排法,共有A44·A25=480种排法.10.(2016·上饶二模)有红、蓝、黄、绿四种颜色的球各6个,每种颜色的6个球分别标有数字1,2,3,4,5,6,从中任取3个标号不同的球,求颜色互不相同且所标数字互不相邻的取法种数.【解】所标数字互不相邻的方法有135,136,146,246,共4种方法.3个颜色互不相同有4A33=4×3×2×1=24种,所以这3个颜色互不相同且所标数字互不相邻的取法种数有4×24=96种.[能力提升]1.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.10种B.12种C .9种D .8种【解析】 先排第一列,因为每列的字母互不相同,因此共有A 33种不同的排法.再排第二列,其中第二列第一行的字母共有A 12种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A 33·A 12·1=12(种)不同的排列方法. 【答案】 B2.(2016·武汉调研)安排6名歌手演出的顺序时,要求歌手乙、丙均排在歌手甲的前面或者后面,则不同排法的种数是( )A .180B .240C .360D .480【解析】 不同的排法种数先全排列有A 66,甲、乙、丙的顺序有A 33,乙、丙都排在歌手甲的前面或者后面的顺序有甲乙丙,甲丙乙,乙丙甲,丙乙甲,4种顺序,所以不同排法的种数共有4×A 66A 33=480种.【答案】 D3.安排7位工作人员在10月1日到10月7日值班,每人值班一天,其中甲、乙两人都不能安排在10月1日和2日,不同的安排方法共有________种(用数字作答).【解析】 法一:(直接法)先安排甲、乙两人在后5天值班,有A 25=20种排法,其余5天再进行排列,有A 55=120种排法,所以共有20×120=2 400种安排方法.法二:(间接法)不考虑甲、乙两人的特殊情况,其安排方法有A 77=7×6×5×4×3×2×1=5 040种方法,其中不符合要求的有A 22A 55+A 12A 15A 22A 55=2640种方法,所以共有5 040-2 640=2 400种方法.【答案】 2 4004.(2016·西安月考)有4名男生、5名女生,全体排成一行,下列情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)女生互不相邻.【解】(1)法一:元素分析法.先排甲有6种,再排其余人有A88种,故共有6·A88=241 920(种)排法.法二:位置分析法.中间和两端有A38种排法,包括甲在内的其余6人有A66种排法,故共有A38·A66=336×730=241 920(种)排法.法三:等机会法.9个人全排列有A99种,甲排在每一个位置的机会都是均等=241 920(种).的,依题意得,甲不在中间及两端的排法总数是A99×69法四:间接法.A99-3·A88=6A88=241 920(种).(2)先排甲、乙,再排其余7人.共有A22·A77=10 080(种)排法.(3)插空法.先排4名男生有A44种方法,再将5名女生插空,有A55种方法,故共有A44·A55=2 880(种)排法.。
高中数学新北师大版精品教案《北师大版高中数学选修2-3 本章小结建议》
第二章概率复习课教学设计教学目标:1理解取有限个值的离散型随机变量及分布列的概念2掌握超几何分布及二项分布,并能进行简单的应用,了解分布密度曲线的特点及表示的意义3理解条件概率与事件相互独立的概念4会计算简单的离散型随机变量的均值和方差,并能利用均值和方差解决一些实际问题.教学重难点:1对超几何分布、二项分布、正态分布的理解与应用2会求分布列并能利用均值和方差解决一些实际问题教学方法:1让学生自己做本章小结,通过做小结,使学生的知识进一步系统化、条理化2导学--探究--质疑教学过程设计:一、知识梳理引导学生做好本章知识的分类与整理,教师总结。
(一)、离散型随机变量的分布列1.定义设离散型随机变量X的取值为a1,a2,…,随机变量X取a i的概率为M≤N件次品,从中任取nn≤N那么,n的超几何分布,其均值EX=________2.二项分布在n次相互独立的试验中,每次试验“成功”的概率均为,“失败”的概率均为1-次独立重复试验中成功的次数,则PX==____________=0,1,2,…,n.称为X服从参数为n,的二项分布.其均值为EX=n,方差为DX=n1-.(五)、正态分布1.正态分布的分布密度函数为f=错误!e{-错误!},-∞0的大小决定函数图像的“胖”“瘦”.3Pμ-σ<X<μ+σ=% Pμ-2σ<X<μ+2σ=% Pμ-3σ<X<μ+3σ=%二、题型探究专题1 离散型随机变量的求解问题离散型随机变量的分布列不仅能清楚地反映其所取的一切可能的值,而且也能清楚地看到取每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.求离散型随机变量分布列的步骤是:第一步,确定随机变量X的所有可能取值;第二步,求出随机变量X取每一个值时相应的概率;第三步,列表.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有1人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用X 表示摸球终止时所需要的取球次数.(1)求袋中原有白球的个数; (2)求随机变量X 的分布列; (3)求甲取到白球的概率.学生分小组讨论,教师通过巡视,提问的方式了解学生的答题情况,师生共同探讨,并注意规范答题步骤。
北京师范大学大版数学选修2-3全套教案(免费)
1.1基本计数原理(第一课时)教学目标:(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题教学重点:(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题教学过程一、复习引入:一次集会共50人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?某商场有东南西北四个大门,当你从一个大门进去又从另一个大门出来,问你共有多少种不同走法?二、讲解新课:问题1 春天来了,要从济南到北京旅游,有三种交通工具供选择:长途汽车、旅客列车和客机。
已知当天长途车有2班,列车有3班。
问共有多少种走法?设问1:从济南到北京按交通工具可分____类方法?第一类方法, 乘火车,有___ 种方法;第二类方法, 乘汽车,有___ 种方法;∴从甲地到乙地共有__________ 种方法设问2:每类方法中的每种一方法有什么特征?问题2:春天来了,要从济南到北京旅游,若想中途参观南开大学,已知从济南到天津有3种走法,从天津到北京有两种走法;问要从济南到北京共有多少种不同的方法?从济南到北京须经____ 再由_____到北京有____个步骤第一步, 由济南去天津有___种方法第二步, 由天津去北京有____种方法,设问2:上述每步的每种方法能否单独实现从济南村经天津到达北京的目的?1分类计数原理:(1)加法原理:如果完成一件工作有K种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有nK种方法可以完成。
那么,完成这件工作共有n1+n2+……+nK种不同的方法。
1.标准必须一致,而且全面、不重不漏!2“类”与“类”之间是并列的、互斥的、独立的即:它们两两的交集为空集!3每一类方法中的任何一种方法均能将这件事情从头至尾完成2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有n K种不同的方法。
高中数学人教B版选修2-3学案第3章-章末分层突破 Word版含解析
章末分层突破[自我校对]①回归分析②相互独立事件的概率③χ公式④判断两变量的线性相关回归分析问题建立回归模型的步骤()确定研究对象,明确变量,.()画出变量的散点图,观察它们之间的关系(如是否存在线性相关关系等).()由经验确定回归方程的类型(如我们观察到数据呈线性相关关系,则选用回归直线方程=+).()按一定规则估计回归方程中的参数(如最小二乘法).()得出回归方程.另外,回归直线方程只适用于我们所研究的样本的总体,而且一般都有时间性.样本的取值范围一般不能超过回归直线方程的适用范围,否则没有实用价值.假设一个人从出生到死亡,在每个生日那天都测量身高,并作出这些数据散点图,则这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:()求出这些数据的线性回归方程;()对于这个例子,你如何解释回归系数的含义?()解释一下回归系数与每年平均增长的身高之间的联系.【精彩点拨】()作出散点图,确定两个变量是否线性相关;()求出,,写出线性回归方程;()回归系数即的值,是一个单位变化量;()根据线性回归方程可找出其规律.【规范解答】()数据的散点图如下:()用表示身高,表示年龄,因为=×(+++…+)=,=×(++…+)=,=≈-×× -×)≈,=-=,所以数据的线性回归方程为=+.()在该例中,回归系数表示该人在一年中增加的高度.()回归系数与每年平均增长的身高之间近似相等.[再练一题].假定小麦基本苗数与成熟期有效穗之间存在相关关系,今测得组数据如下:()()求与之间的回归方程,对于基本苗数预报有效穗.。
北京市2016-2017学年高中数学北师大版选修1-2学案:章末分层突破3 Word版含解析
章末分层突破[自我校对]①合情推理②间接证明③归纳推理④综合法________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________合情推理1.归纳推理的特点及一般步骤2.类比推理的特点及一般步骤(1)观察式子:1+122<32,1+122+132<53,1+122+132+142<74,…,由此可归纳出的式子为( )A .1+122+132+…+1n 2<12n -1B .1+122+132+…+1n 2<12n +1C .1+122+132+…+1n 2<2n -1n D .1+122+132+…+1n 2<2n2n +1(2)两点等分单位圆时,有相应正确关系为sin α+sin(π+α)=0;三点等分单位圆时,有相应正确关系为sin α+sin ⎝ ⎛⎭⎪⎫α+2π3+sin ⎝ ⎛⎭⎪⎫α+4π3=0,由此可以推知,四点等分单位圆时的相应正确关系为__________.【精彩点拨】 (1)观察各式特点,找准相关点,归纳即得. (2)观察各角的正弦值之间的关系得出结论.【规范解答】 (1)由各式特点,可得1+122+132+…+1n 2<2n -1n .故选C. (2)用两点等分单位圆时,关系为sin α+sin(π+α)=0,两个角的正弦值之和为0,且第一个角为α,第二个角与第一个角的差为(π+α)-α=π,用三点等分单位圆时,关系为sin α+sin ⎝ ⎛⎭⎪⎫α+2π3+sin ⎝ ⎛⎭⎪⎫α+4π3=0,此时三个角的正弦值之和为0,且第一个角为α,第二个角与第一个角的差与第三个角与第二个角的差相等,即有⎝ ⎛⎭⎪⎫α+4π3-⎝ ⎛⎭⎪⎫α+2π3=⎝ ⎛⎭⎪⎫α+2π3-α=2π3.依此类推,可得当四点等分单位圆时,为四个角正弦值之和为0,且第一个角为α,第二个角为2π4+α=π2+α,第三个角为π2+α+2π4=π+α,第四个角为π+α+2π4=3π2+α,即其关系为sin α+sin ⎝ ⎛⎭⎪⎫α+π2+sin(α+π)+sin ⎝ ⎛⎭⎪⎫α+3π2=0.【答案】 (1)C (2)sin α+sin ⎝ ⎛⎭⎪⎫α+π2+sin(α+π)+sin ⎝ ⎛⎭⎪⎫α+3π2=0[再练一题]1.已知函数y =sin 4x +cos 4x (x ∈R )的值域是⎣⎢⎡⎦⎥⎤12,1,则(1)函数y =sin 6 x +cos 6x (x ∈R )的值域是__________;(2)类比上述结论,函数y =sin 2n x +cos 2n x (n ∈N +)的值域是__________. 【解析】 (1)y =sin 6x +cos 6x =(sin 2x +cos 2x )(sin 4x -sin 2 x cos 2 x +cos 4 x )=sin 4x -sin 2x cos 2 x +cos 4x =(sin 2 x +cos 2 x )2-3sin 2x cos 2x =1-34sin 2(2x )=1-38(1-cos 4x )=58+38cos 4x ∈⎣⎢⎡⎦⎥⎤14,1.(2)由类比可知,y =sin 2n x +cos 2n x 的值域是[21-n,1]. 【答案】 (1)⎣⎢⎡⎦⎥⎤14,1 (2)[21-n,1]综合法与分析法1.综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题的常用的方法,综合法是由因导果的思维方式,而分析法的思路恰恰相反,它是执果索因的思维方式.2.分析法和综合法是两种思路相反的推理方法.分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条理清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.设a >0,b >0,a +b =1,求证:1a +1b +1ab ≥8.试用综合法和分析法分别证明.【精彩点拨】 (1)综合法:根据a +b =1,分别求1a +1b 与1ab 的最小值. (2)分析法:把1ab 变形为a +b ab =1a +1b 求证. 【规范解答】 法一:(综合法) ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab ,ab ≤12,ab ≤14,∴1ab ≥4. 又1a +1b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥4,∴1a +1b +1ab ≥8⎝ ⎛⎭⎪⎫当且仅当a =b =12时等号成立.法二:(分析法) ∵a >0,b >0,a +b =1, 要证1a +1b +1ab ≥8, 只要证⎝ ⎛⎭⎪⎫1a +1b +a +bab ≥8,只要证⎝ ⎛⎭⎪⎫1a +1b +⎝ ⎛⎭⎪⎫1b +1a ≥8,即证1a +1b ≥4.也就是证a +b a +a +bb ≥4. 即证b a +ab ≥2,由基本不等式可知,当a >0,b >0时, b a +ab ≥2成立,所以原不等式成立. [再练一题]2.(1)已知a ,b ,c 为互不相等的非负数.求证:a2+b2+c2>abc(a+b+c).(2)用分析法证明:2cos(α-β)-sin(2α-β)sin α=sin βsin α.【解】(1)因为a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,又因为a,b,c为互不相等的非负数,所以上面三个式子中都不能取“=”,所以a2+b2+c2>ab+bc+ac,因为ab+bc≥2ab2c,bc+ac≥2abc2,ab+ac≥2a2bc,又a,b,c为互不相等的非负数,所以ab+bc+ac>abc(a+b+c),所以a2+b2+c2>abc(a+b+c).(2)要证原等式成立,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,①因为①左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α=cos(α-β)sin α-sin(α-β)cos α=sin β=右边,所以①成立,即原等式成立.反证法反证法是间接证明的一种基本方法,用反证法证明时,假定原结论的对立面为真,从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果,断定反设不成立,从而肯定结论.反证法的思路:反设→归谬→结论.设{a n}是公比为q的等比数列.(1)推导{a n}的前n项和公式;(2)设q≠1,证明:数列{a n+1}不是等比数列.【精彩点拨】(1)利用等比数列的概念及通项公式推导前n项和公式;(2)利用反证法证明要证的结论.【规范解答】(1)设{a n}的前n项和为S n,当q=1时,S n=a1+a1+…+a1=na1;当q≠1时,S n=a1+a1q+a1q2+…+a1q n-1,①qS n=a1q+a1q2+…+a1q n,②①-②得,(1-q)S n=a1-a1q n,∴S n=a1(1-q n)1-q,∴S n=⎩⎪⎨⎪⎧na1,q=1,a1(1-q n)1-q,q≠1.(2)证明:假设{a n+1}是等比数列,则对任意的k∈N+,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k+2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,∵a1≠0,∴2q k=q k-1+q k+1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{a n+1}不是等比数列.[再练一题]3.已知二次函数f(x)=ax2+bx+c(a>0)的图像与x轴有两个不同的交点,若f(c)=0,且0<x<c时,f(x)>0.(1)证明:1a 是f (x )=0的一个根; (2)试比较1a 与c 的大小.【解】 (1)证明:∵f (x )的图像与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2. ∵f (c )=0,∴x 1=c 是f (x )=0的根. 又x 1x 2=ca , ∴x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c ,∴1a 是f (x )=0的一个根. (2)假设1a <c ,又1a >0, 由0<x <c 时,f (x )>0, 知f ⎝ ⎛⎭⎪⎫1a >0与f ⎝ ⎛⎭⎪⎫1a =0矛盾,∴1a ≥c ,又∵1a ≠c , ∴1a >c .数学归纳法1.关注点一:用数学归纳法证明等式问题是数学归纳法的常见题型,其关键点在于“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.2.关注点二:由n =k 到n =k +1时,除等式两边变化的项外还要利用n =k 时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明.已知正数数列{a n }(n ∈N +)中,前n 项和为S n ,且2S n =a n +1a n,用数学归纳法证明:a n =n -n -1.【规范解答】 (1)当n =1时,a 1=S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,所以a 21=1(a n >0),所以a 1=1,又1-0=1, 所以n =1时,结论成立.(2)假设n =k (k ≥1,k ∈N +)时,结论成立,即a k =k -k -1.当n =k +1时,a k +1=S k +1-S k =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k , 所以a 2k +1+2ka k +1-1=0, 解得a k +1=k +1-k (a n >0),所以n =k +1时,结论成立.由(1)(2)可知,对n ∈N +都有a n =n -n -1.[再练一题]4.设数列{a n }的前n 项和S n =n (a n +1)2(n ∈N +),a 2=2. (1)求{a n }的前三项a 1,a 2,a 3; (2)猜想{a n }的通项公式,并证明.【解】 (1)由S n =n (a n +1)2,得a 1=1,又由a 2=2,得a 3=3.(2)猜想:a n =n .证明如下:①当n =1时,猜想成立. ②假设当n =k (k ≥2)时,猜想成立,即a k =k , 那么当n =k +1时,a k +1=S k +1-S k=(k +1)(a k +1+1)2-k (a k +1)2=(k +1)(a k +1+1)2-k (k +1)2.所以a k +1=k 2k -1-1k -1=k +1,所以当n =k +1时,猜想也成立. 根据①②知,对任意n ∈N +,都有a n =n .转化与化归思想转化与化归是数学思想方法的灵魂.在本章中,合情推理与演绎推理体现的是一般与特殊的转化;数学归纳法体现的是一般与特殊、有限与无限的转化;反证法体现的是对立与统一的转化.设二次函数f (x )=ax 2+bx +c (a ≠0)中的a ,b ,c 都为整数,已知f (0),f (1)均为奇数,求证:方程f (x )=0无整数根.【精彩点拨】 假设方程f (x )=0有整数根k ,结合f (0),f (1)均为奇数推出矛盾.【规范解答】 假设方程f (x )=0有一个整数根k , 则ak 2+bk +c =0,∵f (0)=c ,f (1)=a +b +c 都为奇数, ∴a +b 必为偶数,ak 2+bk 为奇数.当k 为偶数时,令k =2n (n ∈Z ),则ak 2+bk =4n 2a +2nb =2n (2na +b )必为偶数,与ak 2+bk 为奇数矛盾;当k 为奇数时,令k =2n +1(n ∈Z ),则ak 2+bk =(2n +1)·(2na +a +b )为一奇数与一偶数乘积,必为偶数,也与ak 2+bk 为奇数矛盾.综上可知,方程f (x )=0无整数根.[再练一题]5.用数学归纳法证明:当n为正奇数时,x n+y n能被x+y整除.【证明】设n=2m-1,m∈N+,则x n+y n=x2m-1+y2m-1.要证明原命题成立,只需证明x2m-1+y2m-1能被x+y整除(m∈N+).(1)当m=1时,x2m-1+y2m-1=x+y能被x+y整除.(2)假设当m=k(k∈N+)时命题成立,即x2k-1+y2k-1能被x+y整除,那么当m=k+1时,x2(k+1)-1+y2(k+1)-1=x2k+2-1+y2k+2-1=x2k-1x2-x2k-1y2+y2k-1y2+x2k-1y2=x2k-1(x2-y2)+y2(x2k-1+y2k-1)=x2k-1(x-y)(x+y)+y2(x2k-1+y2k-1).因为x2k-1(x-y)(x+y)与y2(x2k-1+y2k-1)均能被x+y整除,所以当m=k+1时,命题成立.由(1)(2)知,原命题成立.1.(2016·北京高考)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.30秒跳绳决赛的有6人,则()A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛【解析】由题意可知1到8号学生进入了立定跳远决赛.由于同时进入立定跳远决赛和30秒跳绳决赛的有6人,因此1到8号同学中有且只有6人进入两项决赛,分类讨论如下:(1)当a<60时,a-1<59,此时2号和8号不能入选,即入选的只有1,3,4,5,6,7号;(2)当a=60时,a-1=59,此时2号和4号同时入选或同时都不入选,均不符合题意;(3)当a=61时,a-1=60,此时8号和4号不能入选,即入选的只有1,2,3,5,6,7号;(4)当a=62或63时,相应的a-1=61或62,此时8号和4号不能入选,即入选的只有1,2,3,5,6,7号;(5)当a≥64时,此时a-1≥63,不符合题意.综上可知1,3,5,6,7号学生一定进入30秒跳绳决赛.【答案】 B2.(2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.【解析】根据丙的说法及乙看了丙的卡片后的说法进行推理.由丙说“我的卡片上的数字之和不是5”,可推知丙的卡片上的数字是1和2或1和3.又根据乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”可知,乙的卡片不含1,所以乙的卡片上的数字为2和3.再根据甲的说法“我与乙的卡片上相同的数字不是2”可知,甲的卡片上的数字是1和3.【答案】 1和33.(2015·福建高考)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N +),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:⎩⎨⎧x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.【解析】 因为x 2⊕x 3⊕x 6⊕x 7=0,所以x 2,x 3,x 6,x 7都正确.又因为x 4⊕x 5⊕x 6⊕x 7=1,x 1⊕x 3⊕x 5⊕x 7=1,故x 1和x 4都错误,或仅x 5错误.因为条件中要求仅在第k 位发生码元错误,故只有x 5错误.【答案】 54.(2015·湖南高考)设a >0,b >0,且a +b =1a +1b .证明: 【导学号:67720022】 (1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立.【证明】 由a +b =1a +1b =a +bab ,a >0,b >0,得ab =1.(1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2,当且仅当a =b =1时等号成立.(2)假设a 2+a <2与b 2+b <2同时成立,则由a 2+a <2及a >0,得0<a <1; 同理,0<b <1,从而ab <1,这与ab =1矛盾.故a 2+a <2与b 2+b <2不可能同时成立. 5.(2016·浙江高考)设函数f (x )=x 3+11+x,x ∈[0,1].证明: (1)f (x )≥1-x +x 2;(2)34<f (x )≤32. 【证明】 (1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由(1)得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f ⎝ ⎛⎭⎪⎫12=1924>34,所以f (x )>34.综上,34<f (x )≤32.单元综合测评(三) 推理与证明 (时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个推理不是合情推理的是( ) A .由圆的性质类比推出球的有关性质B .由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】逐项分析可知,A项属于类比推理,B项和D项属于归纳推理,而C项中各个学生的成绩不能类比,不是合情推理.【答案】 C2.用反证法证明命题“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①【解析】结合反证法的证明步骤可知,其正确步骤为③①②.【答案】 B3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【解析】由归纳推理的特点知,选B.【答案】 B4.用反证法证明“a,b,c中至少有一个大于0”,下列假设正确的是() A.假设a,b,c都小于0B.假设a,b,c都大于0C.假设a,b,c中都不大于0D.假设a,b,c中至多有一个大于0【解析】用反证法证明“a,b,c中至少有一个大于0”,应先假设要证命题的否定成立.而要证命题的否定为“假设a,b,c中都不大于0”,故选C.【答案】 C5.下面给出了四个类比推理.①a,b为实数,若a2+b2=0则a=b=0;类比推出:z1,z2为复数,若z21+z22=0,则z1=z2=0;②若数列{a n}是等差数列,b n=1n(a1+a2+a3+…+a n),则数列{b n}也是等差数列;类比推出:若数列{c n}是各项都为正数的等比数列,d n=nc1c2c3…c n,则数列{d n}也是等比数列;③若a,b,c∈R,则(ab)c=a(bc);类比推出:若a,b,c为三个向量,则(a·b)·c=a·(b·c);④若圆的半径为a,则圆的面积为πa2;类比推出:若椭圆的长半轴长为a,短半轴长为b,则椭圆的面积为πab.上述四个推理中,结论正确的是()A.①②B.②③C.①④D.②④【解析】①在复数集C中,若z1,z2∈C,z21+z22=0,则可能z1=1且z2=i,故错误;②在类比等差数列性质推理等比数列性质时,一般思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,故正确;③由于向量的数量积运算结合律不成立,错误;④若圆的半径为a,则圆的面积为πa2;类比推出,若椭圆长半轴长为a,短半轴长为b,则椭圆面积为πab,正确.【答案】 D6.将平面向量的数量积运算与实数的乘法运算相类比,易得下列结论:①a·b=b·a;②(a·b)·c=a·(b·c);③a·(b+c)=a·b+a·c;④由a·b=a·c(a≠0)可得b=c.以上通过类比得到的结论正确的个数为()A.1B.2C.3 D.4【解析】平面向量的数量积的运算满足交换律和分配律,不满足结合律,故①③正确,②错误;由a·b=a·c(a≠0)得a·(b-c)=0,从而b-c=0或a⊥(b -c),故④错误.故选B.【答案】 B7.(2016·昌平模拟)已知{b n}为等比数列,b5=2,则b1·b2·b3·b4·b5·b6·b7·b8·b9=29.若{a n}为等差数列,a5=2,则{a n}的类似结论为()A.a1a2a3…a9=29B.a1+a2+a3+…+a9=29C.a1a2a3…a9=2×9D.a1+a2+a3+…+a9=2×9【解析】根据等差、等比数列的特征知,a1+a2+…+a9=2×9.【答案】 D8.(2016·北京高考)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1;②黑+黑,则丙盒中黑球数加1;③红+黑(红球放入甲盒中),则乙盒中黑球数加1;④黑+红(黑球放入甲盒中),则丙盒中红球数加1.因为红球和黑球个数一样多,所以①和②的情况一样多,③和④的情况完全随机.③和④对B选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样.综上,选B.【答案】 B9.在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N+)成立,类比上述性质,在等比数列{b n}中,若b11=1,则有()A.b1·b2·…·b n=b1·b2·…·b19-nB.b1·b2·…·b n=b1·b2·…·b21-nC.b1+b2+…+b n=b1+b2+…+b19-nD.b1+b2+…+b n=b1+b2+…+b21-n【解析】令n=10时,验证即知选B.【答案】 B10.将石子摆成如图1的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 016项与5的差,即a2 016-5=()图1A.2 018×2 014 B.2 018×2 013C.1 010×2 012 D.1 011×2 013【解析】a n-5表示第n个梯形有n-1层点,最上面一层为4个,最下面一层为n+2个.∴a n -5=(n -1)(n +6)2,∴a 2 016-5=2 015×2 0222=2 013×1 011. 【答案】 D11.在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图2中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 015+a 2 016+a 2 017=( )图2A .1 006B .1 007C .1 008D .1 009【解析】 依题意a 1=1,a 2=1;a 3=-1,a 4=2;a 5=2,a 6=3;…,归纳可得a 1+a 3=1-1=0,a 5+a 7=2-2=0,…,进而可归纳得a 2 015+a 2 017=0,a 2=1,a 4=2,a 6=3,…,进而可归纳得a 2 016=12×2 016=1 008,a 2 015+a 2 016+a 2 017=1 008.故选C.【答案】 C12.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或是丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖了.”四位歌手的话只有两句是对的,则获奖歌手是( )A .甲B .乙C .丙D .丁【解析】【答案】 C二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b 2=1类似的性质为__________.【解析】 圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1.【答案】 经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1 14.观察下列等式: 13=1, 13+23=9, 13+23+33=36, 13+23+33+43=100, …照此规律,第n 个等式可为__________.【解析】 依题意,注意到13=⎣⎢⎡⎦⎥⎤12×1×(1+1)2,13+23=⎣⎢⎡⎦⎥⎤12×2×(2+1)2=9,13+23+33=⎣⎢⎡⎦⎥⎤12×3×(3+1)2=36,…,照此规律,第n 个等式可为13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤12n (n +1)2.【答案】 13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤12n (n +1)215.(2016·东莞高二检测)当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab +b 2)=a 3-b 3,当n =3时,有(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4,当n ∈N +时,你能得到的结论是__________.【解析】 根据题意,由于当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab +b 2)=a 3-b 3,当n =3时,有(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4,当n ∈N +时,左边第二个因式可知为a n +a n -1b +…+ab n -1+b n ,那么对应的表达式为(a -b )·(a n +a n -1b +…+ab n -1+b n )=a n +1-b n +1.【答案】 (a -b )(a n +a n -1b +…+ab n -1+b n )=a n +1-b n +116.如图3,如果一个凸多面体是n (n ∈N +)棱锥,那么这个凸多面体的所有顶点所确定的直线共有________条,这些直线共有f (n )对异面直线,则f (4)=________,f (n )=__________.(答案用数字或n 的解析式表示)图3【解析】 所有顶点所确定的直线共有棱数+底边数+对角线数=n +n +n (n -3)2=n (n +1)2.从题图中能看出四棱锥中异面直线的对数为f (4)=4×2+4×12×2=12,所以f(n)=n(n-2)+n(n-3)2·(n-2)=n(n-1)(n-2)2.【答案】n(n+1)212n(n-1)(n-2)2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)用综合法或分析法证明:(1)如果a,b>0,则lg a+b2≥lg a+lg b2;(2)6+10>23+2.【证明】(1)当a,b>0时,有a+b2≥ab,∴lg a+b2≥lg ab,∴lg a+b2≥12lg ab=lg a+lg b2.(2)要证6+10>23+2,只要证(6+10)2>(23+2)2,即260>248,这是显然成立的,所以,原不等式成立.18.(本小题满分12分)观察以下各等式:sin230°+cos260°+sin 30°cos 60°=3 4,sin220°+cos250°+sin 20°cos 50°=3 4,sin215°+cos245°+sin 15°cos 45°=3 4.分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.【解】猜想:sin2α+cos2(α+30°)+sin αcos(α+30°)=3 4.证明如下:sin 2α+cos 2(α+30°)+sin αcos(α+30°) =sin 2α+⎝ ⎛⎭⎪⎫32cos α-12sin α2+sin α⎝ ⎛⎭⎪⎫32cos α-12sin α=sin 2α+34cos 2α-32sin αcos α+14sin 2α+32sin α·cos α-12sin 2α =34sin 2α+34cos 2α =34.19.(本小题满分12分)点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF ·EF ·cos ∠DFE .扩展到空间类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.【解】 (1)证明:因为PM ⊥BB 1,PN ⊥BB 1,又PM ∩PN =P , 所以BB 1⊥平面PMN ,所以BB 1⊥MN . 又CC 1∥BB 1,所以CC 1⊥MN .(2)在斜三棱柱ABC -A 1B 1C 1中,有S 2ABB 1A 1=S 2BCC 1B 1+S 2ACC 1A 1-2SBCC 1B 1SACC 1A 1cos α.其中α为平面BCC 1B 1与平面ACC 1A 1所成的二面角. 证明如下:因为CC 1⊥平面PMN ,所以上述的二面角的平面角为∠MNP .在△PMN中,因为PM2=PN2+MN2-2PN·MN cos∠MNP,所以PM2·CC21=PN2·CC21+MN2·CC21-2(PN·CC1)·(MN·CC1)cos∠MNP,由于SBCC1B1=PN·CC1,SACC1A1=MN·CC1,SABB1A1=PM·BB1=PM·CC1,所以S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1·SACC1A1·cos α.20.(本小题满分12分)(2014·江苏高考)如图4,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:图4(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.【证明】(1)因为D,E分别为棱PC,AC的中点,所以DE∥P A.又因为P A平面DEF,DE平面DEF,所以直线P A∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,P A=6,BC=8,所以DE∥P A,DE=12P A=3,EF=12BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又P A⊥AC,DE∥P A,所以DE⊥AC.因为AC ∩EF =E ,AC 平面ABC ,EF 平面ABC ,所以DE ⊥平面ABC . 又DE 平面BDE ,所以平面BDE ⊥平面ABC .21.(本小题满分12分)在数列{a n }中,a 1=1,a 2=14,且a n +1=(n -1)a n n -a n (n ≥2).(1)求a 3,a 4,猜想a n 的表达式,并加以证明; (2)设b n =a n ·a n +1a n +a n +1, 求证:对任意的n ∈N +,都有b 1+b 2+…+b n <n 3.【解】 (1)容易求得:a 3=17,a 4=110.故可以猜想a n =13n -2,n ∈N +.下面利用数学归纳法加以证明: ①显然当n =1,2,3,4时,结论成立,②假设当n =k (k ≥4,k ∈N +)时,结论也成立,即 a k =13k -2.那么当n =k +1时,由题设与归纳假设可知:a k +1=(k -1)a kk -a k=(k -1)×13k -2k -13k -2 =k -13k 2-2k -1=k -1(3k +1)(k -1)=13k +1=13(k +1)-2.即当n=k+1时,结论也成立,综上,对任意n∈N+,a n=13n-2成立.(2)证明:b n=a n·a n+1 a n+a n+1=13n-2·13n+1 13n-2+13n+1=13n+1+3n-2=13(3n+1-3n-2),所以b1+b2+…+b n=13[(4-1)+(7-4)+(10-7)+…+(3n+1-3n-2)]=13(3n+1-1),所以只需要证明13(3n+1-1)<n3⇔3n+1<3n+1⇔3n+1<3n+23n+1⇔0<23n(显然成立),所以对任意的n∈N+,都有b1+b2+…+b n<n3.22.(本小题满分12分)(2014·湖南高考)已知函数f(x)=x cos x-sin x+1(x>0). 【导学号:67720022】(1)求f(x)的单调区间;(2)记x i为f(x)的从小到大的第i(i∈N*)个零点,证明:对一切n∈N*,有1x21+1x22+…+1x2n<23.【解】(1)f′(x)=cos x-x sin x-cos x=-x sin x. 令f′(x)=0,得x=kπ(k∈N*).当x∈(2kπ,(2k+1)π)(k∈N)时,sin x>0,此时f ′(x )<0;当x ∈((2k +1)π,(2k +2)π)(k ∈N )时,sin x <0,此时f ′(x )>0.故f (x )的单调递减区间为(2k π,(2k +1)π)(k ∈N ),单调递增区间为((2k +1)π,(2k +2)π)(k ∈N ).(2)由(1)知,f (x )在区间(0,π)上单调递减. 又f ⎝ ⎛⎭⎪⎫π2=0,故x 1=π2.当n ∈N *时,因为f (n π)·f ((n +1)π)=[(-1)n n π+1]×[(-1)n +1(n +1)π+1]<0,且函数f (x )的图像是连续不断的,所以f (x )在区间(n π,(n +1)π)内至少存在一个零点.又f (x )在区间(n π,(n +1)π)上是单调的,故 n π<x n +1<(n +1)π.因此,当n =1时,1x 21=4π2<23;当n =2时,1x 21+1x 22<1π2(4+1)<23;当n ≥3时,1x 21+1x 22+…+1x 2n <1π2⎣⎢⎡⎦⎥⎤4+1+122+…+1(n -1)2 <1π2⎣⎢⎡⎦⎥⎤5+11×2+…+1(n -2)(n -1)= 1π2⎣⎢⎡⎦⎥⎤5+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -2-1n -1=1π2⎝⎛⎭⎪⎫6-1n -1<6π2<23.综上所述,对一切n ∈N *,1x 21+1x 22+…+1x 2n<23.。
2016-2017学年高一数学北师大版选修2-2学案:第3章 章末分层突破 Word版含解析
章末分层突破[自我校对]①单调性与极值②单调性③极值④导数⑤最大值、最小值问题(1)求函数的定义域,并求导;(2)研究导函数f′(x)的符号,解不等式f′(x)>0或f′(x)<0;(3)确定函数的单调性或单调区间.在求导这一环节中,往往要将导函数变形,其目的在于方便下一环节研究导函数的符号,常见的措施有化为基本初等函数、通分、因式分解等.求函数f(x)=ln x-14(x-1)2-x的单调区间.【精彩点拨】按照求单调区间的步骤求解.【规范解答】 函数的定义域为(0,+∞).f ′(x )=1x -12x -12=-x 2-x +22x =-(x +2)(x -1)2x.令f ′(x )>0,得0<x <1, 令f ′(x )<0,得x >1.∴f (x )的增区间为(0,1),减区间为(1,+∞). [再练一题]1.已知函数f (x )=x 3-ax -1,讨论f (x )的单调区间. 【解】 f ′(x )=3x 2-a .(1)当a ≤0时,f ′(x )≥0,所以f (x )在(-∞,+∞)上为增函数. (2)当a >0时,令3x 2-a =0,得x =±3a3, 当x >3a 3或x <-3a3时,f ′(x )>0; 当-3a 3<x <3a3时,f ′(x )<0.因此f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,f (x )在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.综上可知,当a ≤0时,f (x )在R 上为增函数. 当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.(1)确定函数f (x )的定义域; (2)解方程f ′(x )=0的根;(3)检验f ′(x )=0的根的两侧f ′(x )的符号. 若左正右负,则f (x )在此根处取得极大值; 若左负右正,则f (x )在此根处取得极小值; 否则,此根不是f (x )的极值点.对于求函数的最值问题,只需直接将极值与区间端点函数值比较即可.已知函数f (x )=x 3+ax 2+b 的图像上一点P (1,0),且在点P 处的切线与直线3x +y =0平行.(1)求函数f (x )的解析式;(2)求函数f (x )在区间[0,t ](0<t <3)上的最大值和最小值;(3)在(1)的结论下,关于x 的方程f (x )=c 在区间[1,3]上恰有两个相异的实根,求实数c 的取值范围.【精彩点拨】 (1)由⎩⎪⎨⎪⎧f (1)=0,f ′(1)=-3,求出a ,b 即可.(2)对t 分0<t ≤2与2<t <3两种情况求最值.(3)构造函数g (x )=f (x )-c 转化为g (x )在[1,3]上有实根求解.【规范解答】 (1)因为f ′(x )=3x 2+2ax ,曲线在P (1,0)处的切线斜率为f ′(1)=3+2a ,即3+2a =-3,a =-3.又函数过(1,0)点,即-2+b =0,b =2. 所以a =-3,b =2,f (x )=x 3-3x 2+2. (2)由f (x )=x 3-3x 2+2,得f ′(x )=3x 2-6x . 由f ′(x )=0,得x =0或x =2.①当0<t ≤2时,在区间(0,t )上f ′(x )<0,f (x )在[0,t ]上是减函数,所以f (x )max =f (0)=2,f (x )min =f (t )=t 3-3t 2+2.②当2<t <3时,当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递减单调递增f (x )min max f (t )-f (0)=t 3-3t 2=t 2(t -3)<0. 所以f (x )max =f (0)=2.(3)令g (x )=f (x )-c =x 3-3x 2+2-c , g ′(x )=3x 2-6x =3x (x -2).在x ∈[1,2)上,g ′(x )<0;在x ∈(2,3]上,g ′(x )>0.要使g (x )=0在[1,3]上恰有两个相异的实根,则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (3)≥0,解得-2<c ≤0.[再练一题]2.已知函数f (x )=-x 3+12x +m .(1)若x ∈R ,求函数f (x )的极大值与极小值之差; (2)若函数y =f (x )有三个零点,求m 的取值范围; (3)当x ∈[-1,3]时,f (x )的最小值为-2,求f (x )的最大值. 【解】 (1)f ′(x )=-3x 2+12. 当f ′(x )=0时,x =-2或x =2. 当f ′(x )>0时,-2<x <2. 当f ′(x )<0时,x <-2或x >2.∴f (x )在(-∞,-2),(2,+∞)上单调递减,在(-2,2)上单调递增. ∴f (x )极小值=f (-2)=-16+m . f (x )极大值=f (2)=16+m .∴f (x )极大值-f (x )极小值=32.(2)由(1)知要使函数y =f (x )有三个零点,必须⎩⎪⎨⎪⎧f (x )极小值<0,f (x )极大值>0,即⎩⎪⎨⎪⎧-16+m <0,16+m >0,∴-16<m <16.∴m 的取值范围为(-16,16).(3)当x ∈[-1,3]时,由(1)知f (x )在[-1,2)上单调递增,f (x )在[2,3]上单调递减,f (x )的最大值为f (2).又f (-1)=-11+m ,f (3)=m +9, ∴f (-1)<f (3),∴在[-1,3]上f (x )的最小值为f (-1)=-11+m , ∴-11+m =-2,∴m =9.∴当x ∈[-1,3]时,f (x )的最大值为 f (2)=(-2)3+12×2+9=25.(1)求实际问题的最大(小)值时,一定要从问题的实际意义去考查,不符合实际意义的值应舍去.(2)在实际问题中,由f ′(x )=0常常仅解到一个根,若能判断函数的最大(小)值在x 的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值.请你设计一个包装盒,如图3-1所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x(cm).图3-1(1)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.【精彩点拨】根据侧面积和体积公式建立侧面积和体积关于x的函数,利用配方法或导数法求出最值.【规范解答】设包装盒的高为h cm,底面边长为a cm.由已知得a=2x,h=60-2x2=2(30-x),0<x<30.(1)S=4ah=8x(30-x)=-8(x-15)2+1 800,所以当x=15时,S取得最大值.(2)V=a2h=22(-x3+30x2),V′=62x(20-x).由V′=0,得x=0(舍)或x=20.当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0.所以当x=20时,V取得极大值,也是最大值.此时ha =12,即包装盒的高与底面边长的比值为12.[再练一题]3.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为y=1128 000x3-380x+8(0<x≤120).已知甲、乙两地相距100千米,当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?【解】 当速度为x 千米/时时,汽车从甲地到乙地行驶了100x 小时,设耗油量为h (x )升,依题意得h (x )=⎝ ⎛⎭⎪⎫1128 000x 3-380x +8×100x =11 280x 2+800x -154(0<x ≤120).h ′(x )=x 640-800x 2=x 3-803640x 2(0<x ≤120),令h ′(x )=0,得x =80.因为x ∈(0,80)时,h ′(x )<0,h (x )是减函数; x ∈(80,120]时,h ′(x )>0,h (x )是增函数, 所以当x =80时,h (x )取得极小值h (80)=11.25(升). 因为h (x )在(0,120]上只有一个极小值,所以它是最小值.答:汽车以80千米/时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.尽可能选择求导和判断导数符号都比较容易的函数,如果证明f (x )>g (x ),x ∈(a ,b ),可转化为证明F (x )=f (x )-g (x )与0的关系,若F ′(x )>0,则函数F (x )在(a ,b )上是增函数.若F (a )≥0,则由增函数的定义,知当x ∈(a ,b )时,有F (x )>F (a )≥0,即f (x )>g (x )成立,同理可证明f (x )<g (x ),x ∈(a ,b ).设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (1)求a ,b 的值;(2)若对任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 【精彩点拨】 (1)利用f ′(1)=0,f ′(2)=0,列方程组求解. (2)转化为求函数f (x )的最大值问题. 【规范解答】 (1)f ′(x )=6x 2+6ax +3b . 因为函数f (x )在x =1及x =2时取得极值,则有f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0,解得⎩⎪⎨⎪⎧a =-3,b =4.(2)由(1)可知,f (x )=2x 3-9x 2+12x +8c , 则f ′(x )=6x 2-18x +12=6(x -1)(x -2). 当x ∈[0,1)时,f ′(x )>0; 当x ∈[1,2]时,f ′(x )<0; 当x ∈(2,3]时,f ′(x )>0.所以当x =1时,f (x )取得极大值f (1)=5+8c ,当x =2时,f (x )取得极小值f (2)=4+8c ,又f (0)=8c ,f (3)=9+8c .所以当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9. 故c 的取值范围为c <-1或c >9. [再练一题]4.(2016·山东威海一模)已知函数f (x )=ln x -ax +bx ,对任意的x ∈(0,+∞),满足f (x )+f ⎝ ⎛⎭⎪⎫1x =0,其中a ,b 为常数.(1)若f (x )的图象在x =1处的切线经过点(0,-5),求a 的值; (2)已知0<a <1,求证:f ⎝ ⎛⎭⎪⎫a 22>0.【解】 (1)在f (x )+f ⎝ ⎛⎭⎪⎫1x =0中,取x =1,得f (1)=0,又f (1)=ln 1-a +b =-a +b ,所以b =a . 从而f (x )=ln x -ax +ax ,f ′(x )=1x -a ⎝ ⎛⎭⎪⎫1+1x 2,f ′(1)=1-2a .又f ′(1)=-5-f (1)0-1=5,所以1-2a =5,a =-2.(2)证明:f ⎝ ⎛⎭⎪⎫a 22=ln a 22-a 32+2a=2ln a +2a -a 32-ln 2. 令g (x )=2ln x +2x -x 32-ln 2,则g ′(x )=2x -2x 2-3x 22=-3x 4+4(x -1)2x 2.所以,x ∈(0,1)时, g ′(x )<0,g (x )单调递减, 故x ∈(0,1)时,g (x )>g (1)=2-12-ln 2>1-ln e =0. 所以0<a <1时, f ⎝ ⎛⎭⎪⎫a 22>0.1.(2015·全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)【解析】 设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0. ∵f (x )为奇函数,∴g (x )为偶函数, ∴g (x )的图像的示意图如图所示.当x >0,g (x )>0时,f (x )>0,0<x <1, 当x <0,g (x )<0时,f (x )>0,x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.【答案】 A2.(2015·福建高考)若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A.f ⎝ ⎛⎭⎪⎫1k <1kB.f ⎝ ⎛⎭⎪⎫1k >1k -1C.f ⎝ ⎛⎭⎪⎫1k -1<1k -1D.f ⎝ ⎛⎭⎪⎫1k -1>k k -1【解析】 令g (x )=f (x )-kx +1,则g (0)=f (0)+1=0, g ⎝ ⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k ·1k -1+1=f ⎝ ⎛⎭⎪⎫1k -1-1k -1. ∵g ′(x )=f ′(x )-k >0,∴g (x )在[0,+∞)上为增函数. 又∵k >1,∴1k -1>0,∴g ⎝⎛⎭⎪⎫1k -1>g (0)=0,∴f ⎝ ⎛⎭⎪⎫1k -1-1k -1>0,即f ⎝ ⎛⎭⎪⎫1k -1>1k -1. 【答案】 C3.(2015·全国卷Ⅰ)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34 D.⎣⎢⎡⎭⎪⎫32e ,1 【解析】 ∵f (0)=-1+a <0,∴x 0=0. 又∵x 0=0是唯一的使f (x )<0的整数, ∴⎩⎪⎨⎪⎧f (-1)≥0,f (1)≥0,即⎩⎪⎨⎪⎧e -1[2×(-1)-1]+a +a ≥0,e (2×1-1)-a +a ≥0,解得a ≥32e . 又∵a <1,∴32e ≤a <1,经检验a =34,符合题意.故选D. 【答案】 D4.(2016·北京高考)设函数f (x )=⎩⎨⎧x 3-3x ,x ≤a ,-2x ,x >a .(1)若a =0,则f (x )的最大值为________;(2)若f (x )无最大值,则实数a 的取值范围是________. 【解析】 由当x ≤a 时,f ′(x )=3x 2-3=0,得x =±1. 如图是函数y =x 3-3x 与y =-2x 在没有限制条件时的图象.(1)若a =0,则f (x )max =f (-1)=2. (2)当a ≥-1时,f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值, 且-2a >(x 3-3x )max ,所以a <-1.【答案】2a<-15.(2016·全国卷Ⅱ)(1)讨论函数f(x)=x-2x+2e x的单调性,并证明当x>0时,(x-2)e x+x+2>0.(2)证明:当a∈[0,1)时,函数g(x)=e x-ax-ax2(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.【解】(1)f(x)的定义域为(-∞,-2)∪(-2,+∞).f′(x)=(x-1)(x+2)e x-(x-2)e x(x+2)2=x2e x(x+2)2≥0,当且仅当x=0时,f′(x)=0,所以f(x)在(-∞,-2),(-2,+∞)上单调递增.因此当x∈(0,+∞)时,f(x)>f(0)=-1.所以(x-2)e x>-(x+2),即(x-2)e x+x+2>0.(2)g′(x)=(x-2)e x+a(x+2)x3=x+2x3(f(x)+a).由(1)知,f(x)+a单调递增.对任意a∈[0,1),f(0)+a=a-1<0,f(2)+a=a≥0.因此,存在唯一x a∈(0,2],使得f(x a)+a=0,即g′(x a)=0.当0<x<x a时,f(x)+a<0,g′(x)<0,g(x)单调递减;当x>x a时,f(x)+a>0,g′(x)>0,g(x)单调递增.因此g(x)在x=x a处取得最小值,最小值为g(x a)=e x a-a(x a+1)x2a=e x a+f(x a)(x a+1)x2a=e x ax a+2.于是h (a )=e x a x a +2.由⎝ ⎛⎭⎪⎫e x x +2′=(x +1)e x (x +2)2>0,得y =e xx +2单调递增, 所以,由x a ∈(0,2],得 12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24.因为y =e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.章末综合测评(三) 导数应用(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.物体运动的方程为s =14t 4-3,则t =5时的瞬时速度为( ) A.5 B.25 C.125D.625【解析】 ∵v =s ′=t 3,∴t =5时的瞬时速度为53=125. 【答案】 C2.函数f (x )=(x -3)e x 的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4)D.(2,+∞)【解析】 f ′(x )=(x -2)e x ,由f ′(x )>0,得x >2,所以函数f (x )的单调递增区间是(2,+∞).【答案】 D3.函数f (x )=ax 3+x +1有极值的充要条件是( ) A.a ≥0 B.a >0 C.a ≤0D.a <0【解析】 f ′(x )=3ax 2+1,当a =0时,f ′(x )=1>0,f (x )单调增加,无极值; 当a ≠0时,只需Δ=-12a >0,即a <0即可. 【答案】 D4.(2016·西安高二检测)函数f (x )的导函数f ′(x )的图像如图1所示,那么f (x )的图像最有可能的是( )图1A B C D【解析】 数形结合可得在(-∞,-2),(-1,+∞)上,f ′(x )<0,f (x )是减函数;在(-2,-1)上,f ′(x )>0,f (x )是增函数,从而得出结论.【答案】 B5.若函数y =a (x 3-x )的递增区间是⎝ ⎛⎭⎪⎫-∞,-33,⎝ ⎛⎭⎪⎫33,+∞,则a 的取值范围是( )A.a >0B.-1<a <0C.a >1D.0<a <1【解析】 依题意得y ′=a (3x 2-1)>0的解集为⎝ ⎛⎭⎪⎫-∞,-33,⎝ ⎛⎭⎪⎫33,+∞,∴a >0.【答案】 A6.若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( ) A.3f (1)<f (3) B.3f (1)>f (3) C.3f (1)=f (3)D.f (1)=f (3)【解析】 由于f (x )>xf ′(x ),⎝ ⎛⎭⎪⎫f (x )x ′=f ′(x )x -f (x )x 2<0恒成立,因此f (x )x 在R 上是单调递减函数,∴f (3)3<f (1)1,即3f (1)>f (3),故选B.【答案】 B7.若函数f (x )=-x 3+3x 2+9x +a 在区间[-2,-1]上的最大值为2,则它在该区间上的最小值为( )A.-5B.7C.10D.-19【解析】 ∵f (x )′=-3x 2+6x +9=-3(x +1)(x -3), 所以函数在[-2,-1]内单调递减, 所以最大值为f (-2)=2+a =2, ∴a =0,最小值为f (-1)=a -5=-5. 【答案】 A8.函数y =12x -2sin x 的图像大致是( )【解析】 因为y ′=12-2cos x ,所以令y′=12-2cos x>0,得cos x<14,此时原函数是增函数;令y′=12-2cos x<0,得cos x>14,此时原函数是减函数,结合余弦函数图像,可得选项C正确.【答案】 C9.若f(x)=-12x2+b ln(x+2)在(-1,+∞)上是减函数,则b的取值范围是()【导学号:94210067】A.[-1,+∞)B.(-1,+∞)C.(-∞,-1]D.(-∞,-1)【解析】f′(x)=-x+bx+2,由题意知f′(x)≤0在(-1,+∞)上恒成立,即b≤x2+2x在(-1,+∞)上恒成立,即b≤(x+1)2-1,则b≤-1,故选C.【答案】 C10.已知y=f(x)是定义在R上的函数,且f(1)=1,f′(x)>1,则f(x)>x的解集是()A.(0,1)B.(-1,0)∪(0,1)C.(1,+∞)D.(-∞,-1)∪(1,+∞)【解析】不等式f(x)>x可化为f(x)-x>0,设g(x)=f(x)-x,则g′(x)=f(x)′-1,由题意g′(x)=f′(x)-1>0,∴函数g(x)在R上单调递增,又g(1)=f(1)-1=0,∴原不等式⇔g(x)>0⇔g(x)>g(1),∴x>1,故选C.【答案】 C11.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A.[-5,-3]B.⎣⎢⎡⎦⎥⎤-6,-98 C.[-6,-2]D.[-4,-3]【解析】 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R .当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max . 设φ(x )=x 2-4x -3x 3,φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0,∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6. ∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min. 仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4.当x ∈[-2,-1)时,φ′(x )<0. 当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值.而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2. 【答案】 C12.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A.a ≥0B.a <-4C.a ≥0或a ≤-4D.a >0或a <-4【解析】 f ′(x )=2x +2+ax ,x ∈(0,1), ∵f (x )在(0,1)上单调,∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,∴2x +2+a x ≥0或2x +2+ax ≤0在(0,1)上恒成立, 即a ≥-2x 2-2x 或a ≤-2x 2-2x 在(0,1)上恒成立.设g (x )=-2x 2-2x =-2⎝ ⎛⎭⎪⎫x +122+12,则g (x )在(0,1)上单调递减,∴g (x )max =g (0)=0,g (x )min =g (1)=-4. ∴a ≥g (x )max =0或a ≤g (x )min =-4. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.(2016·天津高考)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为________.【解析】 因为f (x )=(2x +1)e x , 所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x , 所以f ′(0)=3e 0=3. 【答案】 314.函数f (x )=12e x (sin x +cos x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.【导学号:94210068】【解析】 ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,f ′(x )=e x cos x ≥0, ∴f (0)≤f (x )≤f ⎝ ⎛⎭⎪⎫π2,即12≤f (x )≤12e π2. 【答案】 ⎣⎢⎡⎦⎥⎤12,12e π215.(2016·洛阳高二检测)已知函数f (x )=x 3+ax 2+bx +a 2,在x =1时有极值10,则a +b =________.【解析】 f ′(x )=3x 2+2ax +b ,f ′(1)=2a +b +3=0,f (1)=a 2+a +b +1=10,⎩⎪⎨⎪⎧2a +b =-3,a 2+a +b =9,解得⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11,当a =-3时,x =1不是极值点,a ,b 的值分别为4,-11,∴a +b =-7.【答案】 -716.周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________cm 3.【解析】 设矩形的长为x ,则宽为10-x (0<x <10),由题意可知所求圆柱的体积V =πx 2(10-x )=10πx 2-πx 3,∴V ′(x )=20πx -3πx 2.由V ′(x )=0,得x =0(舍去),x =203, 且当x ∈⎝ ⎛⎭⎪⎫0,203时,V ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫203,10时,V ′(x )<0,∴当x =203时,V (x )取得最大值为4 00027π cm 3. 【答案】4 00027π三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)若函数f (x )=x 3+3ax 2+3(a +2)x +3既有极大值又有极小值,求实数a 的取值范围.【解】 ∵f ′(x )=3x 2+6ax +3(a +2), 令3x 2+6ax +3(a +2)=0,即x 2+2ax +a +2=0,∵函数f (x )有极大值和极小值,∴方程x 2+2ax +a +2=0有两个不相等的实数根,即Δ=4a 2-4a -8>0,解得a >2或a <-1.故实数a 的取值范围是(-∞,-1)∪(2,+∞).18.(本小题满分12分)设函数f (x )=x 3-3ax 2+3bx 的图像与直线12x +y -1=0相切于点(1,-11).(1)求a ,b 的值; (2)讨论函数f (x )的单调性.【解】 (1)求导得f ′(x )=3x 2-6ax +3b .由于f (x )的图像与直线12x +y -1=0相切于点(1,-11),所以f (1)=-11,f ′(1)=-12,即⎩⎪⎨⎪⎧1-3a +3b =-11,3-6a +3b =-12,解得a =1,b =-3. (2)由a =1,b =-3得f ′(x )=3x 2-6x -9=3(x 2-2x -3) =3(x +1)(x -3).令f ′(x )>0,解得x <-1或x >3;又令f ′(x )<0,解得-1<x <3.故当x ∈(-∞,-1)和x ∈(3,+∞)时,f (x )是增函数,当x ∈(-1,3)时,f (x )是减函数.19.(本小题满分12分)已知函数f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值.【解】 ∵f ′(x )=3x 2+mx -2m 2 =(x +m )(3x -2m ),令f ′(x )=0,则x =-m 或x =23m .当x 变化时,f ′(x ),f (x )的变化情况如下表: 单调递增单调递减单调递增∴f (x )极大值=f (-m )=-m 3+12m 3+2m 3-4=-52, ∴m =1.20.(本小题满分12分)证明:当x >0时,ln(x +1)>x -12x 2.【证明】 设f (x )=ln(x +1)-⎝ ⎛⎭⎪⎫x -12x 2=ln(x +1)-x +12x 2,函数的定义域是(-1,+∞),则f ′(x )=1x +1-1+x =x 2x +1.当x ∈(-1,+∞)时,f ′(x )>0, ∴f (x )在(-1,+∞)上是增函数.∴当x>0时,f(x)>f(0)=0,即当x>0时,ln(x+1)>x-12x2.21.(本小题满分12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.【解】(1)因为蓄水池侧面的总成本为100·2πrh=200πrh(元),底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.又根据题意200πrh+160πr2=12 000π,所以h=15r(300-4r2),从而V(r)=πr2h=π5(300r-4r3).因为r>0,又由h>0可得0<r<53,故函数V(r)的定义域为(0,53).(2)因为V(r)=π5(300r-4r3)(0<r<53),所以V′(r)=π5(300-12r2).令V′(r)=0,解得r1=5,r2=-5(因为r2=-5不在定义域内,舍去).当r∈(0,5)时,V′(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,53)时,V′(r)<0,故V(r)在(5,53)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.22.(本小题满分12分)(2016·全国卷Ⅰ)已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. 【解】 (1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2, 则f (b )>a 2(b -2)+a (b -1)2=a ⎝ ⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1, 故当x ∈(1,ln(-2a )时,f ′(x )<0; 当x ∈(ln(-2a ),+∞)时,f ′(x )>0. 因此f (x )在(1,ln(-2a )内单调递减, 在(ln(-2a ),+∞)内单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明:不妨设x1<x2,由(1)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),f(x)在(-∞,1)内单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-x e2-x-(x-2)e x,则g′(x)=(x-1)(e2-x-e x).所以当x>1时,g′(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.。
高二数学北师大版选修2-3同步导学案:第1章 章末分层突破
章末分层突破[自我校对]①分类加法计数原理②分步乘法计数原理③排列④排列数公式⑤组合数公式⑥组合数⑦二项展开式的通项⑧对称性⑨增减性两个计数原理的应用分类加法计数原理和分步乘法计数原理是本部分内容的基础,对应用题的考查,经常要对问题进行分类或者分步,进而分析求解.(1)“分类”表现为其中任何一类均可独立完成所给事情.“分步”表现为必须把各步骤均完成,才能完成所给事情,所以准确理解两个原理的关键在于弄清分类加法计数原理强调完成一件事情的几类办法互不干扰,不论哪一类办法中的哪一种方法都能够独立完成事件.(2)分步乘法计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法. 王华同学有课外参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读.(1)若他从这些参考书中带一本去图书馆,有多少种不同的带法?(2)若带外语、数学、物理参考书各一本,有多少种不同的带法?(3)若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?【精彩点拨】 解决两个原理的应用问题,首先应明确所需完成的事情是什么,再分析每一种做法使这件事是否完成,从而区分加法原理和乘法原理.【规范解答】 (1)完成的事情是带一本书,无论带外语书,还是数学书、物理书,事情都已完成,从而确定为应用分类加法计数原理,结果为5+4+3=12(种).(2)完成的事情是带3本不同学科的参考书,只有从外语、数学、物理书中各选1本后,才能完成这件事,因此应用分步乘法计数原理,结果为5×4×3=60(种).(3)选1本外语书和选1本数学书应用分步乘法计数原理,有5×4=20种选法;同样,选外语书、物理书各1本,有5×3=15种选法;选数学书、物理书各1本,有4×3=12种选法.即有三类情况,应用分类加法计数原理,结果为20+15+12=47(种).应用两个计数原理解决应用问题时主要考虑三方面的问题: 1 要做什么事; 2如何去做这件事; 3 怎样才算把这件事完成了.并注意计数原则:分类用加法,分步用乘法.[再练一题]1.如图11为电路图,从A到B共有________条不同的线路可通电.图11【解析】 先分三类.第一类,经过支路①有3种方法;第二类,经过支路②有1种方法;第三类,经过支路③有2×2=4(种)方法,所以总的线路条数N=3+1+4=8.【答案】 8排列、组合的应用排列、组合应用题是高考的重点内容,常与实际问题结合命题,要认真审题,明确问题本质,利用排列、组合的知识解决. (1)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲不到银川,乙不到西宁,共有多少种不同派遣方案?(2)在高三一班元旦晚会上,有6个演唱节目,4个舞蹈节目.①当4个舞蹈节目要排在一起时,有多少种不同的节目安排顺序?②当要求每2个舞蹈节目之间至少安排1个演唱节目时,有多少种不同的节目安排顺序?③若已定好节目单,后来情况有变,需加上诗朗诵和快板2个栏目,但不能改变原来节目的相对顺序,有多少种不同的节目演出顺序?【精彩点拨】 按照“特殊元素先排法”分步进行,先特殊后一般.【规范解答】 (1)因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案A 种;48②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有A 种方法,所以38共有3A 种方法;38③若乙参加而甲不参加同理也有3A 种;38④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余学生到另两个城市有A 种,共有7A 种方法.2828所以共有不同的派遣方法总数为A +3A +3A +7A =4 088种.48383828(2)①第一步,先将4个舞蹈节目捆绑起来,看成1个节目,与6个演唱节目一起排,有A =5 040种方法;第二步,再松绑,给4个节目排序,有A =24种方法.74根据分步乘法计数原理,一共有5 040×24=120 960种.②第一步,将6个演唱节目排成一列(如下图中的“□”),一共有A =720种方法.6×□×□×□×□×□×□×第二步,再将4个舞蹈节目排在一头一尾或两个节目中间(即图中“×”的位置),这样相当于7个“×”选4个来排,一共有A =7×6×5×4=840种.47根据分步乘法计数原理,一共有720×840=604 800种.③若所有节目没有顺序要求,全部排列,则有A 种排法,但原来的节目已定好顺序,12需要消除,所以节目演出的方式有=A =132种排法.A1212A1010212解排列、组合应用题的解题策略1.特殊元素优先安排的策略.2.合理分类和准确分步的策略.3.排列、组合混合问题先选后排的策略.4.正难则反、等价转化的策略.5.相邻问题捆绑处理的策略.6.不相邻问题插空处理的策略.7.定序问题除序处理的策略.8.分排问题直排处理的策略.9.“小集团”排列问题中先整体后局部的策略.10.构造模型的策略.简单记成:合理分类,准确分步;特殊优先,一般在后;先取后排,间接排除;集团捆绑,间隔插空;抽象问题,构造模型;均分除序,定序除序.[再练一题]2.(1)一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是( )A.40B.74C.84D.200(2)(2016·山西质检)A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有( )A.60种B.48种C.30种D.24种【解析】 (1)分三类:第一类,前5个题目的3个,后4个题目的3个;第二类,前5个题目的4个,后4个题目的2个;第三类,前5个题目的5个,后4个题目的1个.由分类加法计数原理得C C +C C +C C =74.35344524514(2)由题意知,不同的座次有A A =48种,故选B.24【答案】 (1)B (2)B二项式定理问题的处理方法和技巧对于二项式定理的考查常出现两类问题,一类是直接运用通项公式来求特定项.另一类,需要运用转化思想化归为二项式定理来处理问题. (1)(2014·湖北高考)若二项式7的展开式中的系数是84,则实数(2x +a x )1x3a =( )A .2B.54C .1D.24(2)(2016·沈阳高二检测)已知(1+x +x 2)n (n∈N +)的展开式中没有常数项,且(x +1x3)2≤n≤8,则n =________.(3)设(3x -1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 6+a 4+a 2+a 0的值为________.【精彩点拨】 (1)、(2)利用二项式定理的通项求待定项;(3)通过赋值法求系数和.【规范解答】 (1)二项式7的展开式的通项公式为T r +1=C (2x)(2x +ax )r 77-rr =C 27-r a r x 7-2r ,令7-2r =-3,得r =5.故展开式中的系数是C 22a 5=84,解得(a x )r 71x357a =1.(2)n 展开式的通项是T r +1=C x n -r r =C x n -4r ,r =0,1,2,…,n ,(x +1x3)r n (1x3)r n 由于(1+x +x 2)n 的展开式中没有常数项,所以C x n -4r ,xC x n -4r =(x +1x3)r n r n C x n -4r +1和x 2C x n -4r =C x n -4r +2都不是常数,则rn r n r n n -4r≠0,n -4r +1≠0,n -4r +2≠0,又因为2≤n≤8,所以n≠2,3,4,6,7,8,故取n =5.(3)令x =1,得a 6+a 5+a 4+a 3+a 2+a 1+a 0=26=64.令x =-1,得a 6-a 5+a 4-a 3+a 2-a 1+a 0=(-4)6=4 096.两式相加,得2(a 6+a 4+a 2+a 0)=4 160,所以a6+a4+a2+a0=2 080.【答案】 (1)C (2)5 (3)2 0801.解决与二项展开式的项有关的问题时,通常利用通项公式.2.解决二项展开式项的系数(或和)问题常用赋值法.[再练一题]3.(1)(2014·浙江高考)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=( )A.45B.60C.120D.210(2)设a∈Z,且0≤a<13,若512 016+a能被13整除,则a=( )A.0B.1C.11D.12m6n4【解析】 (1)因为f(m,n)=C C,所以f(3,0)+f(2,1)+f(1,2)+f(0,3)3604261416240634=C C+C C+C C+C C=120.(2)512 016+a=(13×4-1)2 016+a,被13整除余1+a,结合选项可得a=12时,512 016+a能被13整除.【答案】 (1)C (2)D排列、组合中的分组与分配问题n个不同元素按照条件分配给k个不同的对象称为分配问题,分定向分配与不定向分配两种问题;将n个不同元素按照某种条件分成k组,称为分组问题,分组问题有不平均分组、平均分组、部分平均分组三种情况.分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使2组元素个数相同,但因所属对象不同,仍然是可区分的.对于后者必须先分组再排列. 按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;(7)甲得1本,乙得1本,丙得4本.【精彩点拨】 这是一个分配问题,解题的关键是搞清事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏.【规范解答】 (1)无序不均匀分组问题.先选1本有C 种选法,再从余下的5本中16选2本有C 种选法,最后余下3本全选有C 种选法.故共有C C C =60(种).25316253(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在第(1)问基础上,还应考虑再分配,共有C C C A =360(种).162533(3)无序均匀分组问题.先分三步,则应是C C C 种方法,但是这里出现了重复.不26242妨记6本书为A 、B 、C 、D 、E 、F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB ,CD ,EF),则C C C 种分法中还有(AB ,EF ,CD),(AB ,CD ,EF),26242(CD ,AB ,EF),(CD ,EF ,AB),(EF ,CD ,AB),(EF ,AB ,CD),共A 种情况,而这A 种33情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有=15(种)C26C24C22A33.(4)有序均匀分组问题.在第(3)问基础上再分配给3个人,共有分配方式·A =C C C =90(种).C26C24C22A33326242(5)无序部分均匀分组问题.共有=15(种).C46C12C11A22(6)有序部分均匀分组问题.在第(5)问基础上再分配给3个人,共有分配方式·A =90(种).C46C12C11A223(7)直接分配问题.甲选1本有C 种方法,乙从余下5本中选1本有C 种方法,余下16154本留给丙有C 种方法.共有C C C =30(种).416154均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关,有序分组要在无序分组的基础上乘以分组数的阶乘数.[再练一题]4.将6本不同的书,分配给甲、乙、丙三人,问如下分配的分配方法各有多少种?(1)甲一本,乙两本,丙三本?(2)其中有一人一本,有一人两本,有一人三本?(3)甲、乙、丙每人两本?(4)分成三堆,每堆两本?【解】 (1)甲一本,有C 种取法;乙从剩余的5本中任取2本,有C 种取法;丙有1625C 种取法,故有C ·C ·C =60种取法.316253(2)有一人一本,有一人两本,有一人三本,没指定哪个人几本,故在(1)的情况下,甲、乙、丙手中的书可以任意交换,故有C ·C ·C ·A =360种分配法.162533(3)同(1)一样,甲、乙、丙依次去取书,共有C ·C ·C =90种分配方法.26242(4)分成三堆,每堆两本,注意与(3)中的情况不同,假如在(3)中甲选AB ,乙选CD ,丙选EF ,这是一种分法,将AB ,CD ,EF 任意交换得到甲、乙、丙不同的分法.如甲CD ,乙AB ,丙EF 或甲EF ,乙AB ,丙CD ,…,而分成三堆都属于同一种分法.故应有=15种分配方法.C26·C24·C22A331.(2015·湖北高考)已知(1+x)n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .29B .210C .211D .212【解析】 由C =C ,得n =10,故奇数项的二项式系数和为29.3n 7n 【答案】 A2.(2016·全国卷Ⅱ)如图12,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )图12A .24B .18C .12D .9【解析】 从E 到G 需要分两步完成:先从E 到F ,再从F 到G.从F 到G 的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F 到G 的最短路径共有3条.如图,从E 到F 的最短路径有两类:先从E 到A ,再从A 到F ,或先从E 到B ,再从B 到F.因为从A 到F 或从B 到F 都与从F 到G 的路径形状相同,所以从A 到F ,从B 到F 最短路径的条数都是3,所以从E 到F 的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.【答案】 B3.(2016·全国卷Ⅲ)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k≤2m,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个【解析】 由题意知:当m =4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a 1=0,a 8=1.不考虑限制条件“对任意k≤2m,a 1,a 2,…,a k 中0的个数不少于1的个数”,则中间6个数的情况共有C =20(种),其中存在k≤2m,a 1,a 2,…,a k 中360的个数少于1的个数的情况有:①若a 2=a 3=1,则有C =4(种);②若a 2=1,a 3=0,14则a 4=1,a 5=1,只有1种;③若a 2=0,则a 3=a 4=a 5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C.【答案】 C4.(2016·四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A .24B .48C .60D .72【解析】 第一步,先排个位,有C 种选择;13第二步,排前4位,有A 种选择.4由分步乘法计数原理,知有C ·A =72(个).134【答案】 D5.(2016·全国卷Ⅰ)(2x+)5的展开式中,x 3的系数是________.(用数字填写答案)x 【解析】 (2x +)5展开式的通项为T r +1=C (2x)5-r ()r =25-r ·C ·.x r 5x r 5令5-=3,得r =4.r2故x 3的系数为25-4·C =2C =10.4545【答案】 10。
高中数学(北师大版)选修2-3教案:第3章 拓展资料:例谈回归分析的应用
例谈回归分析的应用在解许多实际应用问题时,运用回归分析的基本思想,通过构建回归模型去刻画解释变量与预报变量的关系,并利用模型,利用解释变量的某个值去预测相应预报变量的某个值,从而使问题得到解决.建立回归模型解决实际问题的步骤是:(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量;(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系;(3)由经验确定回归方程的类型,即拟合直线或拟合曲线;(4)按一定规则估计回归方程中的参数,从而求出拟合直线或拟合曲线的函数关系式;(5)利用函数关系式,根据条件对所给问题进行预测和控制,以便为决策提供依据.下面举例说明.例1某商场经营一批进价是30元/台的小商品,在市场试验中发现,此商品的销售单价x元与日销售量y台之间有如下关系:x35 40 45 50y56 41 28 11(1)y与x是否具有线性相关关系?如果具有线性相关关系,求出回归直线方程;(2)设经营此商品的日销售利润为P元,根据(1)写出P关于x的函数关系式并预测当销售单价x为多少元时,才能获得最大日销售利润.解析:(1)散点图如右图所示,并从图中可以看出,这些点大致分布在一条直线附近,因此两个变量线性相关.设回归直线为$y bx a=+,则由公式求得3161.5,.≈-=b a$3161.5=--∴;y x(2)依题意有2=-+-=-+-,(3161.5)(30)3251.54845P x x x x∴当251.5426x =≈时,P 有最大值约为426. 即预测销售单价为42元时,才能获得最大日销售利润.点评:本题主要考查构建线性回归模型在解决实际问题中的应用.例2 某国从1790年至1950年人口数据资料:试利用上述资料预测该国1980年的人口数(假设该国政治、社会、经济环境稳定,且人口数相对于时间是连续的).分析:以x 轴代表年度,y 轴代表人口数,建立直角坐标系,画出散点图(略),并观察散点图可以发现,从1890年以后散点近似分布在一条直线上;而从散点图的整体趋势来看,也可以认为散点近似分布在一条抛物线上,故可采用线性回归模型拟合,或采用二次函数模型拟合.解法一:由散点图可以看出,1890年以后散点大致分布在一条直线上,设线性回归直线方程为$y bx a =+,由公式求得 1.485b ≈,2747.05a ≈-,即$1.48582747.025y x =-.∴当1980x =时,6194.85910y =⨯,即1980年该国人口预测为194.859百万人. 解法二:从散点的整体趋势看,散点近似分布在一条以直线1790x =为对称轴,以点(17903.929),为顶点的抛物经一上,再任意选一点(189062.948), 确定抛物线方程为20.0059(1790) 3.929y x =-+.∴当1980x =时,216.91910y =⨯6,则该国人口预测为216.919百万人.点评:本题主要考查重视对信息、图表的分析,提取,加工和处理能力.两种解法,由于考虑问题和观察角度不同,所得到结论和答案也不相同,线性回归模型是在依据部分已知数据的基础上作出的,因此精确度比较差;而二次函数模型是根据全部已知数据的分布趋势拟合的,因而有较高的精确度.当然,同学们可以进一步利用回归分析的方法,通过利用相关指数2R 来比较两个模型的拟合效果.。
2017新人教B版高中数学选修2-3全册学案
目录✧ 1.1.1基本计数原理学案✧ 1.1.2基本计数原理的应用学案✧ 1.2.1.1排列及排列数公式学案✧ 1.2.1.2排列的综合应用学案✧ 1.2.2.1组合及组合数公式学案✧ 1.2.2.2组合的综合应用学案✧ 1.3.1二项式定理学案✧ 1.3.2杨辉三角学案✧第1章计数原理章末分层突破学案✧ 2.1.1离散型随机变量学案✧ 2.1.2离散型随机变量的分布列学案✧ 2.1.3超几何分布学案✧ 2.2.1条件概率学案✧ 2.2.2事件的独立性学案✧ 2.2.3独立重复试验与二项分布学案✧ 2.3.1离散型随机变量的数学期望学案✧ 2.3.2离散型随机变量的方差学案✧ 2.4正态分布学案✧第2章概率章末分层突破学案✧ 3.1独立性检验学案✧ 3.2回归分析学案✧统计案例章末分层突破学案基本计数原理1.通过实例,能总结出分类加法计数原理、分步乘法计数原理.(重点)2.正确地理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.(易混点)3.能利用两个原理解决一些简单的实际问题.(难点)[基础·初探]教材整理1 分类加法计数原理阅读教材P3中间部分,完成下列问题.做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )(3)从甲地到乙地有两类交通方式:坐飞机和乘轮船,其中飞机每天有3班,轮船有4班.若李先生从甲地去乙地,则不同的交通方式共有7种.( )(4)某校高一年级共8个班,高二年级共6个班,从中选一个班级担任星期一早晨升旗任务,安排方法共有14种.( )【解析】(1)×在分类加法计数原理中,分类标准是统一的,两类不同方案中的方法是不能相同的.(2)√在分类加法计数原理中,是把能完成这件事的所有方法按某一标准分类的,故每类方案中的每种方法都能完成这些事.(3)√由分类加法计数原理,从甲地去乙地共3+4=7(种)不同的交通方式.(4)√根据分类加法计数原理,担任星期一早晨升旗任务可以是高一年级,也可以是高二年级,因此安排方法共有8+6=14(种).【答案】(1)×(2)√(3)√(4)√教材整理2 分步乘法计数原理阅读教材P3后半部分内容,完成下列问题.做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(2)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( )(3)已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为9个.( )(4)在一次运动会上有四项比赛,冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有43种.( )【解析】(1)√因为在分步乘法计数原理中的每一步都有多种方法,而每种方法各不相同.(2)×因为在分步乘法计数原理中,要完成这件事需分两步,而每步都不能完成这件事,只有各步都完成了,这件事才算完成.(3)√因为x从集合{2,3,7}中任取一个值共有3个不同的值,y从集合{-3,-4,8}中任取一个值共有3个不同的值,故x·y可表示3×3=9个不同的值.(4)×因为每个项目中的冠军都有3种可能的情况,根据分步乘法计数原理共有34种不同的夺冠情况.【答案】(1)√(2)×(3)√(4)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]分类加法计数原理的应用(1)从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人,5人,6人,7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?(2)在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【精彩点拨】(1)按所选组长来自不同年级为分类标准.(2)按个位(或十位)取0~9不同的数字进行分类.【自主解答】(1)分四类:从一班中选一人,有4种选法;从二班中选一人,有5种选法;从三班中选一人,有6种选法;从四班中选一人,有7种选法.共有不同选法N=4+5+6+7=22种.(2)法一按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).法二按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).1.应用分类加法计数原理解题的策略(1)标准明确:明确分类标准,依次确定完成这件事的各类方法.(2)不重不漏:完成这件事的各类方法必须满足不能重复,又不能遗漏.(3)方法独立:确定的每一类方法必须能独立地完成这件事.2.利用分类加法计数原理解题的一般思路[再练一题]1.(1)某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有( )A.1种B.2种C.3种D.4种(2)有三个袋子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个.若从三个袋子中任取1个小球,有________种不同的取法.【导学号:62980000】【解析】(1)分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.故选C.(2)有3类不同方案:第1类,从第1个袋子中任取1个红色小球,有6种不同的取法;第2类,从第2个袋子中任取1个白色小球,有5种不同的取法;第3类,从第3个袋子中任取1个黄色小球,有4种不同的取法.其中,从这三个袋子的任意一个袋子中取1个小球都能独立地完成“任取1个小球”这件事,根据分类加法计数原理,不同的取法共有6+5+4=15种.【答案】(1)C (2)15分步乘法计数原理的应用一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?【精彩点拨】根据题意,必须依次在每个拨号盘上拨号,全部拨号完毕后,才拨出一个四位数号码,所以应用分步乘法计数原理.【自主解答】按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10.根据分步乘法计数原理,共可以组成N=10×10×10×10=10 000个四位数的号码.1.应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.2.利用分步乘法计数原理解题的一般思路(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果.[再练一题]2.张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?【解】由题意知,张涛要完成理财目标应分步完成.第1步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式;第2步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式.由分步乘法计数原理,得2×3=6种.[探究共研型]两个计数原理的辨析探究1 某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,试问要“完成的这件事”指的是什么?若配成“一荤一素”是否“完成了这件事”?【提示】“完成这件事”是指从6种荤菜中选出一种,再从5种素菜中选出一种,最后从3种汤中选出一种,这时这件事才算完成.而只选出“一荤一素”不能算“完成这件事”.探究2 在探究1中,要“完成配成套餐”这件事需分类,还是分步?为什么?【提示】要配成一荤一素一汤的套餐,需分步完成.只配荤菜、素菜、汤中的一种或两种都不能达到“一荤一素一汤”的要求,即都不能完成“配套餐”这件事.探究3 在探究1中若要配成“一素一汤套餐”试问可配成多少种不同的套餐?你能分别用分类加法计数原理和分步乘法计数原理求解吗?你能说明分类加法计数原理与分步乘法计数原理的主要区别吗?【提示】5种素菜分别记为A,B,C,D,E.3种汤分别记为a,b,c.利用分类加法计数原理求解:以选用5种不同的素菜分类:选素菜A时,汤有3种选法;选素菜B时,汤有3种选法;选素菜C时,汤有3种选法;选素菜D时,汤有3种选法;选素菜E时,汤有3种选法.故由加法计数原理,配成“一素一汤”的套餐共有3+3+3+3+3=15(种)不同的套餐.利用分步乘法计数原理求解:第一步:从5种素菜中,任选一种共5种不同的选法;第二步:从3种汤中,任选一种共3种不同的选法.由分步乘法计数原理,配成“一素一汤”的套餐共有5×3=15(种)不同套餐.两个计数原理的主要区别在于分类加法计数原理是将一件事分类完成,每类中的每种方法都能完成这件事,而分步乘法计数原理是将一件事分步完成,每步中的每种方法都不能完成这件事.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?【精彩点拨】从这4个操作人员中选3人分别去操作这三种型号的电脑,首先将问题分类,可分为4类,然后每一类再分步完成.即解答本题可“先分类,后分步”.【自主解答】第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作电脑,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人操作电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人操作电脑只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.1.能用分步乘法计数原理解决的问题具有如下特点:(1)完成一件事需要经过n个步骤,缺一不可;(2)完成每一步有若干种方法;(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.2.利用分步乘法计数原理应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)“步”与“步”之间是连续的、不间断的、缺一不可的,但也不能重复、交叉.(3)若完成某件事情需n步,则必须依次完成这n个步骤后,这件事情才算完成.[再练一题]3.一个袋子里有10张不同的中国移动手机卡,另一个袋子里有12张不同的中国联通手机卡.(1)某人要从两个袋子中任取一张自己使用的手机卡,共有多少种不同的取法?(2)某人手机是双卡双待机,想得到一张移动和一张联通卡供自己使用,问一共有多少种不同的取法?【解】(1)第一类:从第一个袋子取一张移动卡,共有10种取法;第二类:从第二个袋子取一张联通卡,共有12种取法.根据分类加法计数原理,共有10+12=22种取法.(2)第一步,从第一个袋子取一张移动卡,共有10种取法;第二步,从第二个袋子取一张联通卡,共有12种取法.根据分步乘法计数原理,共有10×12=120种取法.[构建·体系]1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )【导学号:62980001】A.7B.12C.64D.81【解析】先从4件上衣中任取一件共4种选法,再从3条长裤中任选一条共3种选法,由分步乘法计数原理,上衣与长裤配成一套共4×3=12(种)不同配法.故选B.【答案】 B2.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为( )A.1+1+1=3B.3+4+2=9C.3×4×2=24D.以上都不对【解析】分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类,乘轮船,从2次中选1次有2种走法.所以,共有3+4+2=9种不同的走法.【答案】 B3.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.【解析】产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.【答案】20 104.十字路口来往的车辆,如果不允许回头,不同的行车路线有________条.【解析】经过一次十字路口可分两步:第一步确定入口,共有4种选法;第二步确定出口,从剩余3个路口任选一个共3种,由分步乘法计数原理知不同的路线有4×3=12条.【答案】125.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?【解】(1)小明爸爸选凳子可以分两类:第一类:选东面的空闲凳子,有8种坐法;第二类:选西面的空闲凳子,有6种坐法.根据分类加法计数原理,小明爸爸共有8+6=14(种)坐法.(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14(个)凳子中选一个坐下,共有14种坐法;(小明坐下后,空闲凳子数变成13)第二步,小明爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,共13种坐法.由分步乘法计数原理,小明与爸爸分别就坐共有14×13=182(种)坐法.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.如图111所示为一个电路图,从左到右可通电的线路共有( )图111A.6条B.5条C.9条D.4条【解析】从左到右通电线路可分为两类:从上面有3条;从下面有2条.由分类加法计数原理知,从左到右通电的线路共有3+2=5条.【答案】 B2.有5列火车停在某车站并排的5条轨道上,若火车A 不能停在第1道上,则5列火车的停车方法共有( )A.96种B.24种C.120种D.12种【解析】 先排第1道,有4种排法,第2,3,4,5道各有4,3,2,1种,由分步乘法计数原理知共有4×4×3×2×1=96种.【答案】 A3.将5封信投入3个邮筒,不同的投法共有( )【导学号:62980002】A.53种B.35种 C.8种 D.15种 【解析】 每封信均有3种不同的投法,所以依次把5封信投完,共有3×3×3×3×3=35种投法.【答案】 B4.如果x ,y ∈N ,且1≤x ≤3,x +y <7,则满足条件的不同的有序自然数对的个数是( )A.15B.12C.5D.4 【解析】 利用分类加法计数原理.当x =1时,y =0,1,2,3,4,5,有6个;当x =2时,y =0,1,2,3,4,有5个;当x =3时,y =0,1,2,3,有4个.据分类加法计数原理可得,共有6+5+4=15个.【答案】 A5.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax +By =0的系数A ,B 的值,则形成的不同直线有( )A.18条B.20条C.25条D.10条【解析】 第一步,取A 的值,有5种取法;第二步,取B 的值,有4种取法,其中当A =1,B =2时与A =2,B =4时是相同的方程;当A =2,B =1时与A =4,B =2时是相同的方程,故共有5×4-2=18条.【答案】 A二、填空题6.椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则满足题意的椭圆的个数为________.【解析】因为焦点在y轴上,所以0<m<n,考虑m依次取1,2,3,4,5时,符合条件的n值分别有6,5,4,3,2个,由分类加法计数原理知,满足题意的椭圆的个数为6+5+4+3+2=20个.【答案】207.某班2016年元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________.【解析】将第一个新节目插入5个节目排成的节目单中有6种插入方法,再将第二个新节目插入到刚排好的6个节目排成的节目单中有7种插入方法,利用分步乘法计数原理,共有插入方法:6×7=42(种).【答案】428.如图112,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为________.图112【解析】依题意,首先找出B到A的路线,一共有4条,分别是BCDA,信息量最大为3;BEDA,信息量最大为4;BFGA,信息量最大为6;BHGA,信息量最大为6.由分类加法计数原理,单位时间内传递的最大信息量为3+4+6+6=19.【答案】19三、解答题9.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?【解】(1)由分类加法计数原理,从中任取一个球共有8+7=15(种).(2)由分步乘法计数原理,从中任取两个不同颜色的球共有8×7=56(种).10.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法;(2)从四种血型的人中各选1人去献血,有多少种不同的选法?【解】从O型血的人中选1人有28种不同的选法;从A型血的人中选1人有7种不同的选法;从B型血的人中选1人有9种不同的选法;从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理.有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理.有28×7×9×3=5 292种不同的选法.[能力提升]1.一植物园参观路径如图113所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( )图113A.6种B.8种C.36种D.48种【解析】由题意知在A点可先参观区域1,也可先参观区域2或3,每种选法中可以按逆时针参观,也可以按顺时针参观,所以第一步可以从6个路口任选一个,有6种走法,参观完第一个区域后,选择下一步走法,有4种走法,参观完第二个区域后,只剩下最后一个区域,有2种走法,根据分步乘法计数原理,共有6×4×2=48种不同的参观路线.【答案】 D2.某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有( )【导学号:62980003】A.180种B.360种C.720种D.960种【解析】分五步完成,第i步取第i个号码(i=1,2,3,4,5).由分步乘法计数原理,可得车牌号码共有5×3×4×4×4=960种.【答案】 D3.直线方程Ax+By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A,B 的值,则可表示________条不同的直线.【解析】若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.【答案】224.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),(1)P可以表示平面上的多少个不同点?(2)P可以表示平面上的多少个第二象限的点?(3)P可以表示多少个不在直线y=x上的点?【解】(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,P可以表示平面上的6×6=36(个)不同点.(2)根据条件需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,P 可以表示平面上的3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,P可以表示6×5=30(个)不在直线y=x上的点.基本计数原理的应用1.熟练应用两个计数原理.(重点)2.能运用两个计数原理解决一些综合性的问题.(难点)[基础·初探]教材整理分类加法计数原理与分步乘法计数原理的联系与区别阅读教材P4~P5,完成下列问题.分类加法计数原理和分步乘法计数原理的联系与区别分类加法计数原理分步乘法计数原理联系两个原理回答的都是关于完成一件事情的不同方法的种数的问题区别一完成一件事共有n类办法,关键词是“分类”完成一件事共分n个步骤,关键词是“分步”区别二每类办法都能完成这件事任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有每个步骤都完成了,才能完成这件事区别三各类办法都是互斥的、并列的、独立的各步之间是相互关联的、互相依存的1.由1,2,3,4组成没有重复数字的三位数的个数为________.【解析】由题意知可以组成没有重复数字的三位数的个数为4×3×2=24.【答案】242.(a1+a2+a3)(b1+b2+b3)(c1+c2+c3+c4)展开后共有________项.【导学号:62980004】【解析】该展开式中每一项的因式分别来自a1+a2+a3,b1+b2+b3,c1+c2+c3+c4中的各一项.由a1,a2,a3中取一项共3种取法,从b1,b2,b3中取一项有3种不同取法,从c1,c2,c3,c4中任取一项共4种不同的取法.由分步乘法计数原理知,该展开式共3×3×4=36(项).【答案】363.5名班委进行分工,其中A不适合当班长,B只适合当学习委员,则不同的分工方案种数为________.【解析】根据题意,B只适合当学习委员,有1种情况,A不适合当班长,也不能当学习委员,有3种安排方法,剩余的3人担任剩余的工作,有3×2×1=6种情况,由分步乘法计数原理,可得共有1×3×6=18种分工方案.【答案】184.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻,这样的四位数有________个.【解析】分三步完成,第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上,有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.【答案】18[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]抽取(分配)问题(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )A.16种B.18种C.37种D.48种(2)甲、乙、丙、丁四人各写一张贺卡,放在一起,再各取一张不是自己的贺卡,则不同取法的种数有________.【精彩点拨】(1)由于去甲工厂的班级分配情况较多,而其对立面较少,可考虑间接法求解.(2)先让一人去抽,然后再让被抽到贺卡所写人去抽.【自主解答】(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践有43种不同的分配方案,若三个班都不去工厂甲则有33种不同的分配方案.则满足条件的不同的分配方案有43-33=37(种).故选C.(2)不妨由甲先来取,共3种取法,而甲取到谁的将由谁在甲取后第二个来取,共3种取法,余下来的人,都只有1种选择,所以不同取法共有3×3×1×1=9(种).【答案】(1)C (2)9求解抽取(分配)问题的方法1.当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.2.当涉及对象数目很大时,一般有两种方法:①直接法:直接使用分类加法计数原理或分步乘法计数原理.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.[再练一题]1.3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?【解】法一(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择.根据分步乘法计数原理得:共有方法数N=5×4×3=60.法二(以盒子为研究对象)盒子标上序号1,2,3,4,5,分成以下10类:第一类:空盒子标号为(1,2):选法有3×2×1=6(种);第二类:空盒子标号为(1,3):选法有3×2×1=6(种);第三类:空盒子标号为(1,4):选法有3×2×1=6(种);分类还有以下几种情况:空盒子标号分别为(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10类,每一类都有6种方法.根据分类加法计数原理得,共有方法数N=6+6+…+6=60(种).组数问题用0,1,2,3,4,5可以组成多少个无重复数字的(1)银行存折的四位密码;(2)四位整数;。
高中数学北师大版选修2-3同步导学案:第2章 章末分层突破
章末分层突破[自我校对]①均值②条件概率③正态分布④正态分布密度曲线的性质必须搞清欲求的条件概率是在什么条件下发生的概率.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.【精彩点拨】本题是条件概率问题,根据条件概率公式求解即可.【规范解答】设“第1次抽到理科题”为事件A,“第2题抽到理科题”为事件B,则“第1次和第2次都抽到理科题”为事件AB.(1)从5道题中不放回地依次抽取2道题的事件数为n(Ω)=A25=20.根据分步乘法计数原理,n(A)=A13×A14=12.于是P(A)=Ω=1220=35. (2)因为n(AB)=A 23=6, 所以P(AB)=Ω=620=310. (3)法一:由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率P(B|A)==31035=12. 法二:因为n(AB)=6,n(A)=12, 所以P(B|A)==612=12. [再练一题]1.掷两颗均匀的骰子,已知第一颗骰子掷出6点,问“掷出点数之和大于或等于10”的概率.【解】 设“掷出的点数之和大于或等于10”为事件A ,“第一颗骰子掷出6点”为事件B.法一:P(A|B)==336636=12. 法二:“第一颗骰子掷出6点”的情况有(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共6种,故n(B)=6.“掷出的点数之和大于或等于10”且“第一颗掷出6点”的情况有(6,4),(6,5),(6,6),共3种,即n(AB)=3.从而P(A|B)==36=12.清事件间的内部联系,在此基础上用基本事件之间的交、并、补运算表示出有关事件,并运用相应公式求解.特别注意以下两公式的使用前提:(1)若A ,B 互斥,则P(A ∪B)=P(A)+P(B),反之不成立. (2)若A ,B 相互独立,则P(AB)=P(A)P(B),反之成立.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求P(X=1).【精彩点拨】解决本题的关键是将复杂事件拆分成若干个彼此互斥事件的和或几个彼此相互独立事件的积事件,再利用相应公式求解.【规范解答】记A i表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2,B表示事件:甲需使用设备,C表示事件:丁需使用设备,D表示事件:同一工作日至少3人需使用设备.(1)D=A1BC+A2B+A2B C,P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1BC+A2B+A2B C) =P(A1BC)+P(A2B)+P(A2B C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X=1表示在同一工作日有一人需使用设备.P(X=1)=P(BA0C+B A0C+B A1C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)·P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25.[再练一题]2.某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第1,2,3个问题分别得100分,100分,200分,答错得零分.假设这名同学答对第1,2,3个问题的概率分别为0.8,0.7,0.6.且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率;(2)求这名同学至少得300分的概率.【解】记“这名同学答对第i个问题”为事件A i(i=1,2,3),则P(A1)=0.8,P(A2)=0.7,P(A3)=0.6.(1)这名同学得300分的概率为:P1=P(A1A2A3)+P(A1A2A3)=P(A1)P(A2)P(A3)+P(A1)P(A2)·P(A3)=0.8×0.3×0.6+0.2×0.7×0.6=0.228.(2)这名同学至少得300分的概率为:P2=P1+P(A1A2A3)=P1+P(A1)P(A2)P(A3)=0.228+0.8×0.7×0.6=0.564.2.应用范围:均值和方差在实际优化问题中应用非常广泛,如同等资本下比较收益的高低、相同条件下比较质量的优劣、性能的好坏等.3.求解思路:应用时,先要将实际问题数学化,然后求出随机变量的概率分布列.对于一般类型的随机变量,应先求其分布列,再代入公式计算,此时解题的关键是概率的计算.计算概率时要结合事件的特点,灵活地结合排列组合、古典概型、独立重复试验概率、互斥事件和相互独立事件的概率等知识求解.若离散型随机变量服从特殊分布(如两点分布、二项分布等),则可直接代入公式计算其数学期望与方差.甲、乙、丙三支足球队进行比赛,根据规则:每支队伍比赛两场,共赛三场,每场比赛胜者得3分,负者得0分,没有平局.已知乙队胜丙队的概率为15,甲队获得第一名的概率为16,乙队获得第一名的概率为115.(1)求甲队分别胜乙队和丙队的概率P 1,P 2;(2)设在该次比赛中,甲队得分为ξ,求ξ的分布列及数学期望、方差.【精彩点拨】 (1)通过列方程组求P 1和P 2;(2)由题意求出甲队得分ξ的可能取值,然后再求出ξ的分布列,最后求出数学期望和方差.【规范解答】 (1)设“甲队胜乙队”的概率为P 1,“甲队胜丙队”的概率为P 2.根据题意,甲队获得第一名,则甲队胜乙队且甲队胜丙队,所以甲队获得第一名的概率为P 1×P 2=16.①乙队获得第一名,则乙队胜甲队且乙队胜丙队, 所以乙队获得第一名的概率为(1-P 1)×15=115.②解②,得P 1=23,代入①,得P 2=14,所以甲队胜乙队的概率为23,甲队胜丙队的概率为14.(2)ξ的可能取值为0,3,6.当ξ=0时,甲队两场比赛皆输,其概率为P(ξ=0)=⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-14=14;当ξ=3时,甲队两场只胜一场,其概率为P(ξ=3)=23×⎝ ⎛⎭⎪⎫1-14+14×⎝ ⎛⎭⎪⎫1-23=712;当ξ=6时,甲队两场皆胜,其概率为 P(ξ=6)=23×14=16.所以ξ的分布列为所以E ξ=0×4+3×12+6×6=4.D ξ=⎝⎛⎭⎪⎫0-1142×14+⎝ ⎛⎭⎪⎫3-1142×712+⎝ ⎛⎭⎪⎫6-1142×16=5916.[再练一题]3.(2015·天津高考)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望. 【解】 (1)由已知,有P(A)=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P(X =k)=C k 5C 4-k3C 48(k =1,2,3,4).所以,随机变量X 的分布列为随机变量X 的数学期望EX =1×14+2×7+3×7+4×14=2.主要是:(1)掌握正态分布曲线函数关系式;(2)理解正态分布曲线的性质;(3)记住正态分布在三个区间内取值的概率,运用对称性结合图象求相应的概率.正态分布的概率通常有以下两种方法:(1)注意“3σ原则”的应用.记住正态总体在三个区间内取值的概率.(2)注意数形结合.由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题.某学校高三2 500名学生第二次模拟考试总成绩服从正态分布N(500,502),请您判断考生成绩X 在550~600分的人数.【精彩点拨】 根据正态分布的性质,求出P(550<x≤600),即可解决在550~600分的人数.【规范解答】∵考生成绩X ~N (500,502), ∴μ=500,σ=50,∴P(550<X≤600)=12[P(500-2×50<X≤500+2×50)-P(500-50<X ≤500+50)]=12(0.954 4-0.682 6)=0.135 9,∴考生成绩在550~600分的人数为2 500×0.135 9≈340(人). [再练一题]4.已知随机变量X 服从正态分布N(0,σ2),若P(X >2)=0.023,则P(-2≤X≤2)=( )A .0.447B .0.628C .0.954D .0.977【解析】∵随机变量X 服从标准正态分布N(0,σ2), ∴正态曲线关于x =0对称.又P(X >2)=0.023, ∴P(X <-2)=0.023,∴P(-2≤X≤2)=1-2×0.023=0.954. 【答案】 C在概率运算过程中,会经常遇到求两个或三个事件的概率或确定参数的值的问题,此时可考虑方程(组)的方法,借助题中条件列出含参数或未知量的方程(组)进行求解即可.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.【精彩点拨】 设出甲、乙、丙三台机床各自加工的零件是一等品,依题意,它们相互独立,利用乘法公式,结合方程思想来解决.【规范解答】 (1)设A ,B ,C 分别表示甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件,有⎩⎪⎨⎪⎧ B =14,C=112,=29,即⎩⎪⎨⎪⎧-=14, ①-=112, ②=29. .③由①③得,P(B)=1-98P(C),代入②得:27[P(C)]2-51P(C)+22=0, 解得P(C)=23或119(舍去).将P(C)=23分别代入②③,可得P(A)=13,P(B)=14.即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件. 则P(D)=1-P(D )=1-[1-P(A)][1-P(B)][1-P(C)]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.[再练一题]5.A ,B ,C 相互独立,如果P(AB)=16,P(B -C)=18,P(AB C )=18,则P(A B)=________.【解析】 设P(A)=a ,P(B)=b ,P(C)=c ,∴⎩⎪⎨⎪⎧ ab =16,-=18,-=18,解得⎩⎪⎨⎪⎧a =13,b =12,c =14,∴P(A B)=⎝ ⎛⎭⎪⎫1-13×12=13.【答案】131.(2016·江苏高考)已知一组数据 4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.【解析】 5个数的平均数x =4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.【答案】 0.12.(2016·四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.【解析】 法一:由题意可知每次试验不成功的概率为14,成功的概率为34,在2次试验中成功次数X 的可能取值为0,1,2,则P(X =0)=116,P(X =1)=C 12×14×34=38,P(X =2)=⎝ ⎛⎭⎪⎫342=916.所以在2次试验中成功次数X 的分布列为则在2E(X)=0×116+1×38+2×916=32.法二:此试验满足二项分布,其中p =34,所以在2次试验中成功次数X 的均值为E(X)=np =2×34=32.【答案】323.(2016·全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.【解】 (1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B 表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B), 故P(B|A)===0.150.55=311. 因此所求概率为311.(3)记续保人本年度的保费为X ,则X 的分布列为EX1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2016·山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX. 【解】 (1)记事件A :“甲第一轮猜对”, 记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”, 记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”. 由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D , 由事件的独立性与互斥性,P(E)=P(ABCD)+P(A BCD)+P(A B CD)+P(AB C D)+P(ABC D )=P(A)P(B)P(C)P(D)+P(A )·P(B)P(C)P(D)+P(A)P(B )P(C)P(D)+P(A)P(B)·P(C )P(D)+P(A)P(B)P(C)P(D )=34×23×34×23+2×⎝ ⎛⎭⎪⎫14×23×34×23+34×13×34×23=23, 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P(X =0)=14×13×14×13=1144,P(X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13 =10144=572, P(X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P(X =3)=34×23×14×13+14×13×34×23=12144=112, P(X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23 =60144=512, P(X =6)=34×23×34×23=36144=14. 可得随机变量X 的分布列为所以数学期望EX =0×144+1×72+2×144+3×12+4×12+6×4=6. 5.(2015·四川高考)某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 的分布列和数学期望.【解】 (1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100. 因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100. (2)根据题意,X 的可能取值为1,2,3.P(X =1)=C 13C 33C 46=15, P(X =2)=C 23C 23C 46=35, P(X =3)=C 33C 13C 46=15, 所以X 的分布列为因此,X EX =1×P(X=1)+2×P(X=2)+3×P(X=3)=1×15+2×35+3×15=2.。
2016-2017学年高二数学北师大版选修2-3学案:2.3.2 独立事件 Word版含解析
第2课时 独立事件1.理解相互独立事件的定义及意义.(重点)2.掌握相互独立事件概率乘法公式.(重点)3.能综合运用互斥事件的概率加法公式及相互独立事件的概率乘法公式解决一些简单的实际问题.(难点)[基础·初探]教材整理 独立事件阅读教材P44~P45“练习”以上部分,完成下列问题.1.相互独立事件的概率(1)一般地,对两个事件A,B,如果P(AB)=______,则称A,B相互独立.(2)如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=____________.【答案】 (1)P(A)·P(B) (2)P(A1)P(A2)…P(A n)2.相互独立事件的性质B 若A与B是相互独立事件,则A与____,B与____,____与也相互独立.B A A【答案】 1.下列说法正确的有________.(填序号)①对事件A 和B ,若P (B |A )=P (B ),则事件A 与B 相互独立;②若事件A ,B 相互独立,则P ()=P ()×P ();AB A B ③如果事件A 与事件B 相互独立,则P (B |A )=P (B );④若事件A 与B 相互独立,则B 与相互独立.B 【解析】 若P (B |A )=P (B ),则P (AB )=P (A )·P (B ),故A ,B 相互独立,所以①正确;若事件A ,B 相互独立,则、也相互独立,故②正确;若事件A B A ,B 相互独立,则A 发生与否不影响B 的发生,故③正确;④B 与相互对立,B 不是相互独立,故④错误.【答案】 ①②③2.甲、乙两人投球命中率分别为,,则甲、乙两人各投一次,恰好命中1223一次的概率为________.【解析】 事件“甲投球一次命中”记为A ,“乙投球一次命中”记为B ,“甲、乙两人各投一次恰好命中一次”记为事件C ,则C =A ∪B 且AB A 与B 互斥,P (C )=P (A ∪B )=P (A )P ()+P ()P (B )=×+×==.B A B A B A 121312233612【答案】 12[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: [小组合作型]事件相互独立性的判定 判断下列各对事件是否是相互独立事件.(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.【精彩点拨】 (1)利用独立性概念的直观解释进行判断.(2)计算“从8个球中任取一球是白球”发生与否,事件“从剩下的7个球中任意取出一球还是白球”的概率是否相同进行判断.(3)利用事件的独立性定义式判断.【自主解答】 (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为,若这一事件58发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为;47若前一事件没有发生,则后一事件发生的概率为,可见,前一事件是否发生,57对后一事件发生的概率有影响,所以二者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6},∴P (A )==,P (B )==,P (AB )=.3612261316∴P (AB )=P (A )·P (B ),∴事件A 与B 相互独立.判断两个事件独立性的方法:(1)利用相互独立事件的定义(即P (AB )=P (A )·P (B )),可以准确地判定两个事件是否相互独立,这是用定量计算方法,较准确,因此我们必须熟练掌握.(2)判定两个事件是否为相互独立事件,也可以从定性的角度进行分析,也就是看一个事件的发生对另一个事件的发生是否有影响.没有影响就是相互独立事件;有影响就不是相互独立事件.[再练一题]1.甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥 B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥【解析】 对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A 与B 相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A 与B 可能同时发生,所以事件A 与B 不是互斥事件.故选A.【答案】 A 相互独立事件同时发生的概率 面对非洲埃博拉病毒,各国医疗科研机构都在研究疫苗,现有A ,B ,C 三个独立的研究机构在一定的时期内能研制出疫苗的概率分别是,15,.求:1413(1)他们都研制出疫苗的概率;(2)他们都失败的概率;(3)他们能够研制出疫苗的概率.【精彩点拨】 →明确已知事件的概率及其关系→把待求事件的概率表示成已知事件的概率选择公式计算求值【自主解答】 令事件A ,B ,C 分别表示A ,B ,C 三个独立的研究机构在一定时期内成功研制出该疫苗,依题意可知,事件A ,B ,C 相互独立,且P (A )=,P (B )=,P (C )=.151413(1)他们都研制出疫苗,即事件ABC 同时发生,故P (ABC )=P (A )P (B )P (C )=××=.151413160(2)他们都失败即事件 同时发生.A B C 故P ( )=P ()P ()P ()A B C A B C =(1-P (A ))(1-P (B ))(1-P (C ))=(1-15)(1-14)(1-13)=××=.45342325(3)“他们能研制出疫苗”的对立事件为“他们都失败”,结合对立事件间的概率关系可得所求事件的概率P =1-P ( )=1-=.A B C 25351.求相互独立事件同时发生的概率的步骤:(1)首先确定各事件之间是相互独立的;(2)确定这些事件可以同时发生;(3)求出每个事件的概率,再求积.2.使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们能同时发生.[再练一题]2.一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回,求:(1)第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率;(2)第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率.【解】 记“第1次取出的2个球都是白球”的事件为A ,“第2次取出的2个球都是红球”的事件为B ,“第1次取出的2个球中1个是白球、1个是红球”的事件为C ,很明显,由于每次取出后再放回,A ,B ,C 都是相互独立事件.(1)P (AB )=P (A )P (B )=×=×=.C23C25C22C253101103100故第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率是.3100(2)P (CA )=P (C )P (A )=·=·=.C13·C12C25C23C25610310950故第1次取出的2个球中1个是白球、1个是红球,第2次取出的2个球都是白球的概率是.950[探究共研型]事件的相互独立性与互斥性探究 你能归纳出相互独立事件与互斥事件的区别吗?【提示】 相互独立事件与互斥事件的区别相互独立事件互斥事件条件事件A (或B )是否发生对事件B (或A )发生的概率没有影响不可能同时发生的两个事件符号相互独立事件A ,B 同时发生,记作:AB 互斥事件A ,B 中有一个发生,记作:A ∪B (或A +B )计算公式P (AB )=P (A )P (B )P (A ∪B )=P (A )+P (B ) 红队队员甲、乙、丙与蓝队队员A ,B ,C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.求:(1)红队中有且只有一名队员获胜的概率;(2)求红队至少两名队员获胜的概率.【精彩点拨】 弄清事件“红队有且只有一名队员获胜”与事件“红队至少两名队员获胜”是由哪些基本事件组成的,及这些事件间的关系,然后选择相应概率公式求值.【自主解答】 设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则,,分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.D E F因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P ()=0.4,P ()=0.5,P ()=0.5.D E F (1)红队有且只有一名队员获胜的事件有D ,E ,F ,以上3个E F D F D - E - 事件彼此互斥且独立.所以红队有且只有一名队员获胜的概率为P 1=P (D +E +F )=P (D )+P (E )+P (F )E - F - D F D - E - E - F - D F D - E - =0.6×0.5×0.5+0.4×0.5×0.5+0.4×0.5×0.5=0.35.(2)法一:红队至少两人获胜的事件有:DE ,D F ,EF ,DEF .F E D 由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE )+P (D F )+P (EF )+P (DEF )F E D =0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.法二:“红队至少两人获胜”与“红队最多一人获胜”为对立事件,而红队都不获胜为事件 ,且P ( )=0.4×0.5×0.5=0.1.D E F D E F ∴红队至少两人获胜的概率为P 2=1-P 1-P ( )=1-0.35-0.1=0.55.D E F1.本题(2)中用到直接法和间接法.当遇到“至少”“至多”问题可以考虑间接法.2.求复杂事件的概率一般可分三步进行:(1)列出题中涉及的各个事件,并用适当的符号表示它们;(2)理清各事件之间的关系,恰当地用事件间的“并”“交”表示所求事件;(3)根据事件之间的关系准确地运用概率公式进行计算.[再练一题]3.(2016·邯郸高二检测)某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13 s 内(称为合格)的概率分别为,,,若对这三名短跑运动员的100米跑的成绩进行一次检测,则求:253413(1)三人都合格的概率;(2)三人都不合格的概率;(3)出现几人合格的概率最大.【解】 记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P (A )=,P (B )=,P (C )=.253413设恰有k 人合格的概率为P k (k =0,1,2,3).(1)三人都合格的概率:P 3=(A ∩B ∩C )=P (A )·P (B )·P (C )=××=.253413110(2)三人都不合格的概率:P 0=(∩∩)=P ()·P ()·P ()=××=.A B C A B C 351423110(3)恰有两人合格的概率:P 2=P (A ∩B ∩)+P (A ∩∩C )+P (∩B ∩C )C B A =××+××+××=.2534232514133534132360恰有一人合格的概率:P 1=1-P 0-P 2-P 3=1---==.110236*********12综合(1)(2)可知P 1最大.所以出现恰有一人合格的概率最大.[构建·体系]1.抛掷3枚质地均匀的硬币,A ={既有正面向上又有反面向上},B ={至多有一个反面向上},则A 与B 的关系是( )A .互斥事件B .对立事件C .相互独立事件D .不相互独立事件【解析】 由已知,有P (A )=1-=,P (B )=1-=,P (AB )=,满足2834481238P (AB )=P (A )P (B ),则事件A 与事件B 相互独立,故选C.【答案】 C2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.B.51212C.D.71234【解析】 ∵P (A )=,P (B )=,∴P ()=,P ()=.1216A 12B 56又A ,B 为相互独立事件,∴P ()=P ()P ()=×=.A -B - A - B - 1256512∴A ,B 中至少有一件发生的概率为1-P ()=1-=.A - B - 512712【答案】 C3.明天上午李明要参加“青年文明号”活动,为了准时起床,他用甲乙两个闹钟叫醒自己,假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率为0.90,则两个闹钟至少有一个准时响的概率是________.【解析】 设两个闹钟至少有一个准时响的事件为A ,则P (A )=1-(1-0.80)(1-0.90)=1-0.20×0.10=0.98.【答案】 0.984.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为,,,且各道工序互不影响,则加工出来的零件的次品率为________.170169168【导学号:62690037】【解析】 加工出来的零件的正品率是××=,因(1-170)(1-169)(1-168)6770此加工出来的零件的次品率为1-=.6770370【答案】 3705.某班甲、乙、丙三名同学竞选班委,甲当选的概率为,乙当选的概率45为,丙当选的概率为.35710(1)求恰有一名同学当选的概率;(2)求至多有两人当选的概率.【解】 设甲、乙、丙当选的事件分别为A ,B ,C ,则有P (A )=,P (B )=,P (C )=.4535710(1)因为事件A ,B ,C 相互独立,所以恰有一名同学当选的概率为P (A )B - C- +P (B )+P (C )A - C - A -B - =P (A )·P ()·P ()+P ()·P (B )·P ()+P ()·P ()·P (C )B C A C A B =××+××+××=.45253101535310152571047250(2)至多有两人当选的概率为1-P (ABC )=1-P (A)·P (B )·P (C )=1-××=.453571083125我还有这些不足:(1) (2) 我的课下提升方案:(1) (2) 学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.有以下三个问题:①掷一枚骰子一次,事件M :“出现的点数为奇数”,事件N :“出现的点数为偶数”;②袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M :“第1次摸到白球”,事件N :“第2次摸到白球”;③分别抛掷2枚相同的硬币,事件M :“第1枚为正面”,事件N :“两枚结果相同”.这三个问题中,M ,N 是相互独立事件的有( )A .3个 B .2个 C .1个 D .0个【解析】 ①中,M ,N 是互斥事件;②中,P (M )=,P (N )=.即事件M 3512的结果对事件N 的结果有影响,所以M ,N 不是相互独立事件;③中,P (M )=,P (N )=,P (MN )=,P (MN )=P (M )P (N ),因此M ,N 是相互独立事件.121214【答案】 C2.(2016·东莞调研)从甲袋中摸出一个红球的概率是,从乙袋中摸出一个13红球的概率是,从两袋各摸出一个球,则表示( )1223A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率【解析】 分别记从甲、乙袋中摸出一个红球为事件A ,B ,则P (A )=,P (B )=,由于A ,B 相互独立,所以1-P ()P ()=1-×=.根据互斥1312A B 231223事件可知C 正确.【答案】 C3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )A. B. 3423C.D.3512【解析】 问题等价为两类:第一类,第一局甲赢,其概率P 1=;第二12类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=×=.故甲队获得121214冠军的概率为P 1+P 2=.34【答案】 A4.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图233所示.假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是( )图233A. B. 1329C.D.49827【解析】 青蛙跳三次要回到A 叶有两条途径:第一条:按A →B →C →A ,P 1=××=;232323827第二条,按A →C →B →A ,P 2=××=.131313127所以跳三次之后停在A 叶上的概率为P =P 1+P 2=+=.82712713【答案】 A5.如图234所示,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )图234A. B. 4929C.D.2313【解析】 “左边圆盘指针落在奇数区域”记为事件A ,则P (A )==,“右边圆盘指针落在奇数区域”记为事件B ,则P (B )=,事件A ,B462323相互独立,所以两个指针同时落在奇数区域的概率为×=,故选A.232349【答案】 A 二、填空题6.(2016·铜陵质检)在甲盒内的200个螺杆中有160个是A 型,在乙盒内的240个螺母中有180个是A 型.若从甲、乙两盒内各取一个,则能配成A 型螺栓的概率为________. 【导学号:62690038】【解析】 “从200个螺杆中,任取一个是A 型”记为事件B .“从240个螺母中任取一个是A 型”记为事件C ,则P (B )=,P (C )=.C 1160C 1200C 1180C 1240∴P (A )=P (BC )=P (B )·P (C )=·=.C 1160C 1200C 1180C 124035【答案】 357.三人独立地破译一份密码,他们能单独译出的概率分别为,,,假设151314他们破译密码是彼此独立的,则此密码被破译的概率为________.【解析】 用A ,B ,C 分别表示“甲、乙、丙三人能破译出密码”,则P (A )=,P (B )=,P (C )=,151314且P ( )=P ()P ()P ()=××=.A B C A B C 45233425所以此密码被破译的概率为1-=.2535【答案】 358.同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是________.【解析】 设“同学甲答对第i 个题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.6,P (A 3)=0.5,且A 1,A 2,A 3相互独立,同学甲得分不低于300分对应于事件A 1A 2A 3∪A 12A 3∪1A 2A 3发生,故所求概率为A A P =P (A 1A 2A 3∪A 12A 3∪1A 2A 3)A A =P (A 1A 2A 3)+P (A 12A 3)+P (1A 2A 3)A A =P (A 1)P (A 2)P (A 3)+P (A 1)P (2)·P (A 3)+P (1)P (A 2)P (A 3)A A =0.8×0.6×0.5+0.8×0.4×0.5+0.2×0.6×0.5=0.46【答案】 0.46三、解答题9.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地的1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【解】 记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的一种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.C(2)D=,P(D)=1-P(C)=1-0.8=0.2,P(E)=0.8×0.2×0.8+0.8×0.8×0.2+0.2×0.8×0.8=0.384.10.某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4,0.5,0.6,且游客是否游览哪个景点互不影响,用ξ表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求ξ的分布列.【解】 设游客游览甲、乙、丙景点分别记为事件A1,A2,A3,已知A1,A2,A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6,游客游览的景点数可能取值为0,1,2,3,相应的游客没有游览的景点数可能取值为3,2,1,0,所以ξ的可能取值为1,3.则P(ξ=3)=P(A1·A2·A3)+P(1·2·3)A A A=P(A1)·P(A2)·P(A3)+P(1)·P(2)·P(3)A A A=2×0.4×0.5×0.6=0.24.P (ξ=1)=1-0.24=0.76.所以分布列为:ξ13P0.760.24[能力提升]1.设两个独立事件A 和B 都不发生的概率为,A 发生B 不发生的概率与19B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A. B. 29118C.D.1323【解析】 由P (A )=P (B ),得P (A )P ()=P (B )·P (),即P (A )[1-P (B )]B A B A =P (B )[1-P (A )],∴P (A )=P (B ).又P ( )=,A B 19∴P ()=P ()=,∴P (A )=.A B 1323【答案】 D2.三个元件T 1,T 2,T 3正常工作的概率分别为,,,且是互相独立的.将123434它们中某两个元件并联后再和第三个元件串联接入电路,在如图235的电路中,电路不发生故障的概率是( )图235A.B.1532932C.D.7321732【解析】 记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3,则P (A 1)=,P (A 2)=,P (A 3)=.123434不发生故障的事件为(A 2∪A 3)A 1,∴不发生故障的概率为P =P [(A 2∪A 3)A 1]=[1-P (2)·P (3)]·P (A 1)A A =×=.故选A.(1-14×14)121532【答案】 A3.本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为,14,两小时以上且不超过三小时还车的概率分别是,,两人租车时间都不会超121214过四小时.则甲、乙两人所付的租车费用相同的概率为________.【解析】 由题意可知,甲、乙在三小时以上且不超过四个小时还车的概率分别为,,设甲、乙两人所付的租车费用相同为事件A ,则P (A )1414=×+×+×=.141212141414516所以甲、乙两人所付的租车费用相同的概率为.516【答案】 5164.在一个选拔项目中,每个选手都需要进行四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为,,,,且各轮问题能否正确回答互不影响.56453413(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;(3)该选手在选拔过程中回答的问题的个数记为X ,求随机变量X 的分布列.【解】 设事件A i (i =1,2,3,4)表示“该选手能正确回答第i 轮问题”,由已知P (A 1)=,P (A 2)=,P (A 3)=,P (A 4)=.56453413(1)设事件B 表示“该选手进入第三轮才被淘汰”,则P (B )=P (A 1A 2)=P (A 1)P (A 2)P ()A 3A 3=××=.5645(1-34)16(2)设事件C 表示“该选手至多进入第三轮考核”,则P (C )=P (+A 1+A 1A 2)A 1A 2A 3=P ()+P (A 1)+P (A 1A 2)A 1A 2A 3=+×+××=.1656155645(1-34)12(3)X 的可能取值为1,2,3,4.P (X =1)=P ()=,A 116P (X =2)=P (A 1)=×=,A 256(1-45)16P (X =3)=P (A 1A 2)=××=,A 35645(1-34)1612P(X=4)=P(A1A2A3)=××=,56453412所以,X的分布列为X1234P16161612。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末分层突破[自我校对]①回归分析②独立性检验③相关系数④相互独立事件(1)散点图法,该法主要是用来直观地分析两变量间是否存在相关关系.(2)相关系数法,该法主要是从量上分析两个变量间相互联系的密切程度,|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.下表是一位母亲给儿子作的成长记录:(1)年龄和身高之间具有怎样的相关关系?(2)如果年龄(3周岁~16周岁之间)相差5岁,其身高有多大差异? (3)如果身高相差20 cm ,其年龄相差多少?【精彩点拨】 本例考查对两个变量进行回归分析.首先求出相关系数,根据相关系数的大小判断其是否线性相关,由此展开运算.【规范解答】 (1)设年龄为x ,身高为y ,则x =114(3+4+…+15+16)=9.5,y =114(90.8+97.6+…+167.5+173.0)≈131.985 7,∑14i =1x 2i =1 491,∑14i =1y 2i =252 958.2,∑14i =1x i y i =18 990.6,14x y ≈17 554.1, ∴∑14i =1x 2i -14(x )2=227.5,∑14i =1y 2i -14(y )2≈9 075.05, ∑14i =1x i y i -14x y =1 436.5,∴r =∑14i =1x i y i -14x y∑14i =1x 2i -14(x )2∑14i =1y 2i -14(y )2=1 436.5227.5×9 075.05≈0.999 7.因此,年龄和身高之间具有较强的线性相关关系.(2)由(1)得b =∑14i =1x i y i -14x y∑14i =1x 2i -14(x )2=1 436.5227.5≈6.314,a=y-b x=131.985 7-6.314×9.5≈72,∴x与y的线性回归方程为y=6.314x+72.因此,如果年龄相差5岁,那么身高相差6.314×5=31.57(cm).(3)如果身高相差20 cm,年龄相差206.314≈3.168≈3(岁).[再练一题]1.某运动员训练次数与运动成绩之间的数据关系如下:(1)(2)求出回归直线方程;(3)计算相关系数并进行相关性检验;(4)试预测该运动员训练47次及55次的成绩.【解】(1)作出该运动员训练次数x与成绩y之间的散点图,如图所示,由散点图可知,它们之间具有线性相关关系.(2)列表计算:由上表可求得x =39.25,y =40.875,∑i =18x 2i =12 656,∑i =18y 2i =13 731,∑i =18x i y i =13 180,∴b =∑i =18x i y i -8x y∑i =18x 2i -8x 2≈1.041 5,a =y -b x =-0.003 88,∴回归直线方程为y =1.041 5x -0.003 88.(3)计算相关系数r =0.992 7,因此运动员的成绩和训练次数两个变量有较强的相关关系.(4)由上述分析可知,我们可用回归直线方程y =1.041 5x -0.003 88作为该运动员成绩的预报值.将x =47和x =55分别代入该方程可得y ≈49和y ≈57.故预测该运动员训练47次和55次的成绩分别为49和57.(1)找相关数据,作列联表. (2)求统计量χ2.(3)判断可能性,注意与临界值做比较,得出事件有关的可信度.考察黄烟经过药物处理跟发生青花病的关系,得到如下数据:在试验的470株黄烟中,经过药物处理的黄烟有25株发生青花病,60株没有发生青花病;未经过药物处理的有185株发生青花病,200株没有发生青花病.试推断经过药物处理跟发生青花病是否有关系.【精彩点拨】提出假设,根据2×2列联表求出χ2,从而进行判断.【规范解答】由已知得到下表:假设经过药物处理跟发生青花病无关.根据2×2列联表中的数据,可以求得χ2=470×(25×200-185×60)2 210×260×85×385≈9.788.因为χ2>7.879,所以我们有99.5%的把握认为经过药物处理跟发生青花病是有关系的.[再练一题]2.某学校高三年级有学生1 000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学).现用分层抽样方法(按A类、B类分两层)从该年级的学生中共抽查100名同学,如果以身高达165 cm作为达标的标准,对抽取的100名学生,得到以下列联表:体育锻炼与身高达标2×2列联表(2)请问体育锻炼与身高达标是否有关系(χ2值精确到0.01)? 参考公式:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).【解】 (1)(2)根据列联表得χ2=100×(40×15-35×10)275×25×50×50≈1.33<2.706,所以没有充分的理由说明体育锻炼与身高达标有关系.1.(2015·湖北高考)已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( )A .x 与y 正相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 负相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关【解析】 因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =by +a ,b >0,则z =by +a =-0.1bx +b +a ,故x 与z 负相关.【答案】 C2.(2015·福建高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y=bx+a,其中b=0.76,a=y-b x.据此估计,该社区一户年收入为15万元家庭的年支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元【解析】由题意知,x=8.2+8.6+10.0+11.3+11.95=10,y=6.2+7.5+8.0+8.5+9.85=8,∴a=8-0.76×10=0.4,∴当x=15时,y=0.76×15+0.4=11.8(万元).【答案】 B3.(2014·湖北高考)根据如下样本数据得到的回归方程为y=bx+a,则()A.a>0,b<0 B.a>0,b>0C.a<0,b<0 D.a<0,b>0【解析】作出散点图如下:观察图象可知,回归直线y^=bx+a的斜率b<0,当x=0时,y^=a>0.故a>0,b<0.【答案】 A4.(2016·全国卷Ⅲ)如图3-1是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008~2014.图3-1(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑7i=1y i=9.32,∑7i=1t i y i=40.17,∑7i=1(y i-y)2=0.55,7≈2.646.参考公式:相关系数r=∑ni=1(t i-t)(y i-y)∑ni=1(t i-t)2∑ni=1(y i-y)2,回归方程y^=a+bt中斜率和截距的最小二乘估计公式分别为b=∑ni=1(t i-t)(y i-y)∑ni=1(t i-t)2,a=y--b t.【解】(1)由折线图中的数据和附注中的参考数据得t=4,∑7i=1(t i-t)2=28,∑7i=1(y i-y)2=0.55,∑7 i=1(t i-t)(y i-y)=∑7i=1t i y i-t∑7i=1y i=40.17-4×9.32=2.89,∴r≈2.890.55×2×2.646≈0.99.因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当大,从而可以用线性回归模型拟合y与t的关系.(2)由y=9.327≈1.331及(1)得b=∑7i=1(t i-t)(y i-y)∑7i=1(t i-t)2=2.8928≈0.103.a=y-b t≈1.331-0.103×4≈0.92.所以y关于t的回归方程为y^=0.92+0.10t.将2016年对应的t=9代入回归方程得y^=0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.。