《初等数学研究》教学大纲

合集下载

《初等数学研究》教学大纲

《初等数学研究》教学大纲

《中学数学研究》课程教学大纲课程名称:中学数学研究(代数分册)英文名称:课程代码: ZB1051021-22 课程类别: 专业必修学分: 3 学时: 48开课单位: 数学系适用专业: 数学与应用数学制订人:制订日期: 2011.04审核人:(教研室主任签字)审核日期:2011.05审定人: 审定日期: 2011.06一、课程性质与目的(一)课程的性质初等代数研究是高等师范本科数学与应用数学专业、专科数学教育专业的一门专业方向课。

本课程需要从中学数学的教学需要出发,根据中学数学的内容和知识结构,把初等代数的一些基本问题分别组成若干专题,在内容上适当延伸和充实,在理论、观点和方法上予以提高。

对各个专题的教学,都要着重基本思维方法和基本技能技巧的训练。

要求学生认清具体与抽象、特殊与一般、有限与无限等辩证关系,培养学生的辩证唯物主义观点。

(二)课程的目的本课程的教学目的是使学生掌握中学数学教学所需的初等代数的基础理论、基础知识和基本技能;了解初等代数的内容和知识结构;在数学思想上得到启发,在数学方法上得到初步训练,为教好中学数学打下较坚实的基础。

二、与相关课程的联系与分工中学数学研究(代数分册)是高等师范院校数学专业的专业方向课。

它是在学生已经掌握了一定的数学专业知识的基础上,继“心理学”、“教育学”之后开设的,是研究初等数学系统理论的一门课程。

本课程的主要特点是高等数学与初等数学相联系,弥补学生学习初等数学与高等数学衔接的不足,为学生用高观点指导中学数学教学、进行教学研究打下基础。

三、教学内容及要求第一章数系【教学要求】了解数系扩展的两种形式及其所遵循的原则。

掌握自然数的序数理论。

理解自然数集扩充到有理数集的有关概念,掌握有理数(实数)大小比较的法则、有理数(实数)的运算法则和有理数(实数)集的性质。

理解无理数、实数和复数概念,掌握复数的两种表示形式、复数的运算和复数集的性质。

【教学重点】序数理论、整数环、实数的运算、实数集的性质、复数的三角形式、复数的运算、复数集的性质。

《初等数论》教学大纲

《初等数论》教学大纲

引言概述:初等数论是数学的一个重要分支,它研究整数的性质和关系,是一门基础性的课程。

本文旨在为《初等数论》课程的教学制定一份详细的大纲,以帮助教师合理安排教学内容,提高教学效果。

正文内容:一、素数与合数1.素数的定义与性质素数的定义:只能被1和自身整除的正整数。

2.合数的定义与性质合数的定义:不是素数的正整数。

二、因数与倍数1.因数的概念因数的定义:能整除一个数的整数。

因子的分类:负因数、正因数、真因数。

2.最大公因数与最小公倍数最大公因数的定义与性质:两个数公共因子中最大的一个。

最小公倍数的定义与性质:两个数公共倍数中最小的一个。

三、整数的整除性与除法算法1.整除的概念与性质整除的定义:一个数能够被另一个数整除。

整除的性质:整数除法原则、整数的对称性。

2.整数的除法算法除法算法的步骤与原理:用减法、用乘法、整数除法算法的应用。

四、余数与模运算1.余数的概念与性质余数的定义:做除法时除不尽的部分。

余数的性质:余数的范围、余数的基本性质。

2.模运算的概念与性质模运算的定义:对于整数a和正整数n,a与n的商所得的余数。

模运算的性质:模运算的加法、减法和乘法规则。

五、同余与模运算应用1.同余的定义与性质同余的定义:对于整数a、b和正整数n,当a与b对n取余相等时,称a与b模n同余。

同余的性质:同余的传递性、同余的运算性质。

2.模运算的应用模运算在代数方程中的应用:线性同余方程、模运算的性质在方程求解中的应用。

总结:本文从素数与合数、因数与倍数、整除性与除法算法、余数与模运算以及同余与模运算应用等五个大点进行阐述。

通过这些内容的学习,学生将能够了解整数的性质和关系,理解数论的基本原理,为后续数学学习打下坚实的基础。

教师在教学过程中,应注重拓展学生的数学思维、培养其解决问题的能力,并结合实际生活和其他数学知识进行应用。

通过系统的教学大纲指导,教师能够更好地组织教学内容,提高学生的学习效果。

初等数学研究教学大纲

初等数学研究教学大纲

《初等数学研究》教学大纲Elementary Mathematics Research一、本大纲适用专业数学与应用数学。

二、课程性质与目的1. 课程目标(1)使学生了解初等数学的研究对象,明确初等数学在数学学科中的地位、作用以及本课程与中学数学的联系;(2)使学生理解初等数学中的概念、原理、法则、方法等;(3)使学生掌握初等数学的理论体系和结构以及初等数学中的重要的思想方法;(4)使学生学会运用高等数学的理论和观点分析研究初等数学,熟练地运用重要的思想方法解决初等数学中的问题;(5)使学生对中学数学新课程改革的基本思想和内容的设置有个较为全面地了解和认识,并产生自己的思考;(6)使学生提高分析、认识和处理中学数学教材的水平,培养学生独立思考、探索研究、分析和解决问题的能力,以及养成数学的思维习惯;(7)为学生今后从事数学教师职业提供必要的专业训练和知识准备,以及辅导中学生研究数学问题所需的基本方法。

2. 与其它课程的关系《初等数学研究》是在学习了《数学分析》、《高等代数》、《解析几何》等专业基础课的基础上开设的,并且与后继课程《现代教育学》、《教育心理学》、《数学课程与教学论》、《数学方法论与数学史》等教育理论,《几何画板与flash 制作》、《竞赛数学》等紧密结合。

3. 开设学期按培养方案规定的学期开设。

三、教学方式及学时分配序号主要内容主要教学方式学时1 第一章数系面授讲课 42 第二章解析式面授讲课 63 第三章方程与函数面授讲课84 第四章数列面授讲课 65 第五章排列与组合面授讲课 26 第六章算法面授讲课 27 第七章平面几何问题与证明面授讲课 48 第八章初等几何变换面授讲课 29 第九章几何轨迹面授讲课 210 第十章几何作图问题面授讲课 211 第十一章立体几何面授讲课 2四、教学内容、重点第一章数系1. 教学目标(1)了解数系扩展的两种形式及其所遵循的原则;(2)掌握自然数的基数理论及整数环的构造;(3)理解自然数集扩充到有理数集的有关概念,弄清自然数、整数运算的概念及其运算律,掌握有理数大小比较的法则、有理数的运算法则和有理数域的性质;(4)理解无理数、实数概念,掌握实数大小比较的法则、实数的运算法则和实数域的性质;(5)理解复数概念,掌握复数的两种表示形式、复数的运算和复数域的性质。

初等数学研究 课程教学大纲

初等数学研究 课程教学大纲

初等数学研究课程教学大纲一、课程的基本信息适应对象:数学与应用数学课程代码:14E01726学时分配:54学时赋予学分:3先修课程:教育心理学、教育学原理、数学方法论后续课程:教育实习,毕业综合训练二、课程性质与任务《初等数学研究》是从中学数学的教学需要出发,根据中学数学的内容和知识结构,主要围绕“怎样解题”、“怎样学会解题”这两个基本问题进行初等数学解题的理论分析与实践探索;使学生掌握中学数学教学所需的解题理论。

三、教学目的与要求通过本课程的教学,使学生熟练掌握解题的有效途径,理解一些有代表性的解题观点,如解题推理论、解题化归论、解题化简论、解题信息论、解题系统论、解题差异论和解题坐标系等。

通过分析典型例题的解题过程来领会解题的四步骤基本程式:“简单模仿、变式练习、自发领悟、自觉分析”。

是学生在数学思想上得到启发,在数学方法上得到初步训练,为教好中学数学打下较坚实的基础。

四、教学内容与安排第一章解题概论(12课时)解题研究的现状分析,解题概念的初步界定,成功解题的基本要素,基于经验的解题分析.第二章解题观点(16课时)解题推理论,解题化归论,解题化简论,解题信息论,解题系统论,解题差异论,解题坐标系.第三章解题案例(26课时)问题解决视角的解题分析,数学解题的思维过程,特殊与一般的双向沟通,高考数列题的解题反思,高考题的完整求解与思维测试,数学教育的结论也是要证实的,明确知识的认识封闭现象.五、附录教学参考文献1.罗增儒. 中学数学解题的理论与实践[M]. 南宁:广西教育出版社,2008.2.波利亚(涂泓、冯承天译). 怎样解题[M]. 上海:上海科技教育出版社,2015.3.单墫. 解题研究[M]. 上海:上海科技教育出版社,2016.4.王林全,吴有昌. 中学数学解题研究[M]. 北京:科学出版社,2009. 5.全国历届数学高考题.。

初等数学研究教学大纲

初等数学研究教学大纲

《初等数学研究》一、课程的性质目标与任务初等数学研究是高等师范院校数学与应用数学专业的一门选修课程,分初等代数和初等几何两部分。

本课程的教学目的是使学生掌握中学数学教学所需的初等数学的基础理论、基础知识和基本技能;了解数学的内容和知识结构;在数学思想上得到启发,在数学方法上得到初步训练,为教好中学数学打下较坚实的基础。

本课程主要讲授初等几何部分,初等代数部分作为自学内容。

二、课程的内容与基本要求本课程的基本要求是:从中学数学的教学需要出发,并根据中学数学的内容和知识结构,把初等数学的一些基本问题分别组成若干专题,在内容上适当延伸和充实,在理论、观点和方法上予以提高;对各专题的教学,都要着重基本思维方法和基本技能技巧的训练;要求学生认清具体与抽象、特殊与一般、有限与无限等辩证关系,培养学生的辩证唯物主义观点。

初等几何部分第一章绪论1.几何学的历史简介2.初等几何研究的对象和目的了解几何学发展的四个基本阶段以及初等几何研究的对象和方法第二章几何的证明1.几何证明的概述2.证度量关系3.证位置关系掌握常用的证题方法和技巧第三章几何量的计算1.线段度量2.面积计算3.解三角形掌握勾股定理推广和斯蒂瓦尔特定理及其应用,会计算面积和解三角形。

第四章初等变换1.合同变换及其间的关系2.位似变换和相似变换3.初等变换的应用理解合同变换、位似变换和相似变换等概念,能利用初等变换解题。

第五章轨迹1.基本概念(轨迹的概念与证明方法,轨迹命题的类型)2.常用轨迹命题及其证明3.轨迹的探求理解轨迹的概念,并掌握轨迹命题的证明方法。

掌握常用的几个轨迹命题。

第六章立体图形的一些性质1.直线与平面(直线与平面的各种位置关系,空间作图公法,简单作图题)2.三面角(三面角及其性质,三面角的相等)3.多面体(四面体的一些性质,凸多面体的欧拉定理,正多面体,截面图的画法)4.体积计算(体积概念,拟柱体体积公式,体积计算)掌握空间直线与平面的各种位置关系。

《初等数学研究》教学大纲

《初等数学研究》教学大纲
本章难点:式的变形基础,式的变形技巧
本章教学要求:要求学生掌握数系的扩充过程,深刻掌握式的变形基础,式的变形技巧
函数的理论(8课时)
函数的定义
函数的变量说定义与对应说定义,
函数的表示方法
表达式,图表,图象,方程等
函数的基本性质
定义域,值域,单调性、奇偶性与对称性,周期性
复合函数的性质
复合函数的定义域,值域,单调性等
开语句,真值集,开语句的复合,全称量词,存在量词,量词的否定,假言命题的四种形式,充分条件与必要条件
集合与逻辑的关系
本章重点:复合命题的真值定义,等价命题,假言命题的四种形式
本章难点:假言命题的四种形式
本章教学要求:要求学生掌握假言命题命题的四种形式(逆、否、逆否),开语句的复合,判断命题真假。
第三章数与式的理论(8课时)
2.葛军涂荣豹编著,《初等数学研究教程》,2009年7月第一版,江苏教育出版社, 2009
3.李长明周焕山编著,《初等数学研究》,1995年6月第一版,高等教育出版社,1995
4.叶立军编著,《初等数学研究》,2008年5月第一版,华东师范大学出版社,2008
5. Klaus Hulek著,胥鸣伟译,《初等代数几何》,2014年10月第一版,高等教育出版社,2014
初等数学研究是专业选修课,系主干课程。一般情况下第七---八学期开设,安排32周,有条件时可安排36周,共64课时。
二、教学内容与学时分配
序号
章节名称
学时分配
1
第一章绪论
2
2
第二章集合与逻辑
6
3
第三章数与式的理论
8
4
第四章函数的理论
8
5
第五章方程、不等式86ຫໍສະໝຸດ 公理化方法与演绎推理6

初等数学研究(第一讲)教学文案

初等数学研究(第一讲)教学文案

3、在实数集内分解因式
(x-1)(x+2)(x-3)(x+4)+24
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
例12 分解因式2 a 2 3 a 2 b b 2 a 7 b 3
解一:注意到 2 a 2 3 a b 2 b 2 (a 2 b )2 a ( b )
观察原式可设原式= (a 2 b x )2 ( a b y ) x, y为待定系数。
展开上式,原式=2 a 2 3 a 2 b b 2 ( 2 x y ) a ( x 2 y ) b xy
第一讲 元的认识
内容简介:
代数一个主要内容是对数符、字符和运算符组合 成的代数式进行研究,通过运算、恒等变形、转换形 式及数理的逻辑推演,从而达到对客观世界的自然形 态的认识和变化规律的认知,使人类改造世界的目标 得以实现;初等数学中,代数的基本内容主要是对数 的认识、式子的恒等变形的技巧训练、方程的求解、 函数观点的确定、不等量的比较等;它对学者有一个 最基本的要求就是要建立对“基元”的认识.下面举 例说明:
可x令 si2n(0),(三角代换)
2
则 x si,n1 x1 si2 n c os
yx1xsi nco s
2sin( )
4
由正弦函数单调性及取值范围
得 1: 2si n() 2
4
所以原函数的值域为 [1, 2 ].
作业一:
1、
已知
a,bR且
ab1,求证:a22b22
25 2
2、求函数 yx 1x2的值域。
• 总之,通过对数学问题的基本结构进行深入的分析, 对各种基本结构彼此关联的本质进行探索,掌握好处 理数学问题的一般的数学思维方式和方法,才能达到 掌握解决问题的本领.把初等数学作为一个系统,用 “结构”的观点来进行分析研究。

初等数学研究教案

初等数学研究教案

教案课程名称:初等数学研究任课教师:教师所在单位课程简介《初等数学研究》是初等教育专业的专业课。

它是在学生掌握了一定的高等数学理论知识的基础上,继教育学、心理学之后而开设的。

本课程从中学数学教学的需要出发,以基本问题分成若干专题进行研究,在内容上适当加深和拓广,在理论、观点、思想、方法上予以总结提高,并着重解决理论方面的问题。

本课程的重点是培养中小学数学教师严谨、系统的初等数学理论和基础知识,训练中小学数学教师的技巧。

《初等数学研究》包括《初等代数研究》和《初等几何研究》两部分,是初等教育专业开设的一门综合性的选修课程。

根据高等师范学校数学专业的培养目标,通过该课程的学习,使学生了解初等数学的发展过程,初等数学的内容结构,思想方法等。

理解初等数学理论知识,提高中学数学教学水平。

学习本课程,要求学生更好地掌握并处理中学数学的教材,还必须使学生理解中学数学中用描述的方法引进的一些数学概念怎样给出精确的定义,未作证明的或证明不完整的数学命题怎样做出严格的证明,以及一些广泛应用的数学方法的理论依据。

本课程摆脱了中学数学里已有的基础,以及高等数学里已作详尽讨论的知识,按照自己的逻辑系统来阐述初等数学的内容,并进行研究,将避免造成与中学数学或高等数学不必要的重复。

对于中学数学中已经解决的问题,将不在展开讨论,已有的知识与技能将作为工具来应用,在高等数学里已讨论过的有关理论,可以直接指导中学数学的,将直接应用,不再讨论。

《初等数学研究》教案1. 反射变换函数)(x f y -=与)(x f y =的图象关于y 轴对称;函数)(x f y -=与)(x f y =的图象关于x 轴对称;函数)(1x f-与)(x f y =的图象关于直线x y =对称.因此函数)(x f y -=,)(x f y -=和)(1x f-的图象可由函数的图象分别对y 轴、x 轴和直线x y =作反射得到.2. 平移变换函数b x f y +=)(的图象可由函数)(x f y =的图象沿y 轴方向上下平移b 个单位得到.当0>b 时,图象向上平移;当0<b 时,图象向下平移.函数)(m x f y +=的图象可有函数)(x f y =的图象沿x 轴方向左右平移m 个单位得到.当0>m 时,图象向左平移;当0<m 时,图象向右平移.3. 伸缩变换函数)0)((>=k x kf y 的图象可由函数)(x f y =的图象沿y 轴方向放大)1(>k k 倍或缩短)10(<<k k 倍得到;而函数)0)((>=k kx f y 的图象可由函数)(x f y =的图象沿轴x 方向压缩)1(>k k 倍或伸长)10(1<<k k 倍得到.例3 作出函数211x y -=的图象.解 易知211xy -=的定义域为),1()1,1()1,(+∞⋃-⋃--∞,且没有零点,)1,1(-是其正值区间.),1(),1,(+∞--∞是其负值区间.所给函数是偶函数,其图象关于y 轴对称.当0=x 时,该函数有极小值1.当]1,0[∈x 时单调递增,当)0,1(-∈x 时单调递减,当)1,1(-∈x 时,函数是下凸的.当),1(+∞∈x 时,函数单调递增,且上凸;当),(1-∞-时,函数单调递减,且上凸.由于011lim 11lim 22=-=-+∞→-∞→x x x x 在)1,1(-区间内+∞=-=-+-→→212111lim 11lim x x x x 在区间内-∞=---→2111lim xx 在),1(+∞区间内-∞=-+→2111lim xx 所以函数图象无限趋近于x 轴与直线1±=x 根据以上分析容易作出函数的图象。

初等数学研究

初等数学研究

《初等数学研究》------本学期课程内容要点学完一门课程,读者应该自己学会把握课程的重点。

学习永远是自己的大事,任何人无法代替。

但作为一种引导,现将本课程主要内容简要列出,供学习参考,互相交流!绪论 初等数学研究概况1. 国内外初等数学研究的发展状况;2. 数学发展的各个历史时期。

第一章 数的扩张1. 自然数的序数理论:Peano(皮亚诺)公理化定义;四则运算;2. 自然数的重要性质:三分律;良序性-最小数原理;离散性;阿基米德性;3. 数学归纳法:第一数学归纳法;第二数学归纳法;反向归纳法;4. 整数的公理化体系:整数概念;四则运算;5. 有理数的公理化体系:有理数概念;四则运算;6. 实数概念:戴德金分割法;7. 复数的公理化体系:复数概念及其代数形式、几何表示、三角形式;欧拉公式及其应用;复数的开方运算;复数的模及其应用。

第二章 重要不等式1. 平均值不等式:几何平均、算术平均、调和平均与平方平均; 几何平均:na a a A nn +++=21算术平均:n n n a a a G 21=调和平均:nna a a n H 11121+++=平方平均:2122221)(na a a Q n n+++= n n n n Q A G H ≤≤≤2. 柯西(Cauchy)不等式与琴森(Jonson)不等式:加权几何幂平均不等式;加权幂平均不等式;Yong不等式;H Ölder 不等式;Minkowski 不等式;柯西(Cauchy)不等式:设n n b b b b a a a a ,,,,,,,,,321321 为实数,则22222122222122211)()()(n n n n b b b a a a b a b a b a ++++++≤+++当且仅当nn b a b a b a === 2211时等号成立。

琴森(Jonson)不等式:若函数在区间I 内上凸,对于任意的I x x x x n ∈,,,,321 ,以及任意的121=+++n λλλ 的正数n λλλ,,,21 都有()()()()n n n n x f x f x f x x x f λλλλλλ ++≥+++22112211加权几何幂平均不等式:设0),1(0,>≤≤>βλn i x ii 则ββββλλλλλλλλλλλλ1212211121)()(2121nn n n x x x x x x nn++++++≤+++++加权幂平均不等式:设αβλ>≤≤>),1(0,n i x ii 则ββββααααλλλλλλλλλλλλ12122111212211)()(nnn n n n x x x x x x ++++++≤++++++Yong 不等式:设0,)0,(,111>>=+b a q p q p 则q p b qa p ab 11+≤ H Ölder 不等式:设0,)0,(,111>>=+b a q p q p 则)0,(11111>⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===i i qn i q i n i p i n i i i b a b a b a pMinkowski 不等式:设0,0,>>p b a ii 则()()()()101111111111111<<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛≥⎪⎭⎫⎝⎛+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛≤⎪⎭⎫⎝⎛+∑∑∑∑∑∑======p b a b a p b a b a pni p i pni p i pni p i i pni p i pni p i pni p i i 3. 伯努利(Bernoulli)不等式与约当(Jordan)不等式;伯努利(Bernoulli)不等式:设1->x ,则()())1,0(,11)2()11(,11)1(><+≥+<<+≤+αααααααx x x x当且仅当x=0等号成了。

《初等代数研究》教学大纲1

《初等代数研究》教学大纲1

《初等代数研究》教学大纲一、课程性质、目的及开课对象(一)本课程为专业基础课(二)通过学习本课程的学习,使学生学会用现代数学、古典高等数学来考察传统的初等数学,理解“中学数学”的理论基础;灵活运用数学思想方法;探讨与延伸一些初等数学问题。

使学习者能“居高临下”,而且能形成较稳固的数学观念、掌握数学方法,提高自身解决问题的能力。

(三)开课对象为数学教育专业(本科)三年级上学期。

二、先修课程:数学分析、高等代数、解析几何。

三、教学方法与考核方式(一)教学方法:讲授(二)考核方式:考试四、学时分配总学时54学时。

其中讲授52学时,辅导答疑2学时。

五、教学内容与学时第一章数(10学时)(一)主要内容:绪言,数系的扩展,整数的整除性,有理数的教学等。

(二)重点与难点:整数整除性的初步知识。

(三)教学要求:1、了解数系概念的发展史。

2、熟练掌握整数整除性的初步知识。

3、了解有理数的教学方法。

(四)习题:书后部分习题。

第二章式(12学时)(一)主要内容:解析式的基本概念;多项式的恒等定理,多项式的运算,待定系数法,多项式的因式分解方法及注意事项;部分分式;根式的开方等。

(二)重点与难点:多项式的因式分解是本章的重点。

部分分式和根式的开方是本章的难点。

(三)教学要求:掌握各种解析式的基本概念、性质和运算法则,能熟练地进行解析式的变形。

了解中学有关式的教学中应注意的问题等。

(三)习题:书后部分习题。

第三章初等函数(10学时)(一)主要内容:基本初等的概念、分类;用初等方法讨论初等函数及中学教学中应注意的问题等。

(二)重点与难点:用初等方法讨论初等函数。

(三)教学要求:掌握五种基本初等函数的概念、性质和图象;能够运用初等方法讨论初等函数。

(四)习题:书后部分习题。

第四章方程(10学时)(一)主要内容:方程的概念;一元方程的同解性;一元代数方程(特殊类型)的解法;初等超越方程的解法举例。

(二)重点与难点:一元代数方程(特殊类型)的解法是本章的重点;初等超越方程的解法是本章的难点。

初等数学研究教学大纲

初等数学研究教学大纲

初等数学研究教学大纲一、简介初等数学是中学数学的基础,也是学习更高级数学的必备知识。

本教学大纲旨在指导初等数学研究的教学内容、目标和方法,以帮助学生建立扎实的数学基础,培养数学思维和解决实际问题的能力。

二、教学目标1. 了解和掌握初等数学的基本概念、原理和定理。

2. 能够运用代数、几何、概率等数学方法进行数学问题的分析和解决。

3. 培养数学思维和逻辑推理的能力,提高问题解决的思考能力和创新意识。

4. 培养学生对数学的兴趣和自信心,将数学应用于日常生活中。

三、教学内容1. 数的概念和运算a. 自然数、整数、有理数、无理数的概念及其运算规则b. 代数式、方程式和不等式的表示和运算c. 实数的性质和运算规则2. 代数a. 一次方程与一次不等式的解法及应用b. 二次方程与二次不等式的解法及应用c. 指数和对数的基本概念和运算规则d. 因式分解、分式和根式的运算和应用3. 几何a. 平面图形的性质和判定b. 立体图形的性质和判定c. 直角三角形和勾股定理的应用d. 向量的概念、运算和应用e. 平面几何和立体几何的基本证明方法4. 概率与统计a. 概率的基本概念和性质b. 随机事件的概率计算和应用c. 统计数据的收集、整理和分析d. 统计图表的绘制和分析四、教学方法1. 理论与实践相结合:将抽象的数学概念与实际问题相结合,提供实际例子进行解释和演示。

2. 启发式教学法:通过提问、讨论和探究,引导学生主动发现和解决问题的方法。

3. 案例分析法:以实际问题为切入点,通过具体案例的分析和解决,培养学生的问题解决能力和应用能力。

4. 游戏化教学:利用数学游戏和竞赛,激发学生的兴趣和动力,培养他们的合作和竞争意识。

5. 多媒体辅助教学:利用多媒体技术,辅助讲解和演示,提高学生的理解和记忆效果。

五、教学评价1. 定期进行知识测试,检测学生的掌握情况和理解程度。

2. 鼓励学生进行课堂练习和作业,及时给予反馈和指导。

3. 定期组织小测验和期中、期末考试,评估学生的学习效果。

《初等数学研究》教学大纲

《初等数学研究》教学大纲

《初等数学研究》课程教学大纲一、教学大纲的说明(一)课程的地位、作用和任务《初等数学研究》为第四学期的课程,是为数学系数学与应用数学(教师教育)专业本科生开设的专业选修课,是师范院校教学计划的重要组成部分,也是整个师范教育结构体系的重要支柱,学生通过学习和训练,对中小学数学教学内容有一个较全面的高观点的认识,掌握作为一名数学教师应掌握的专业知识和基本解题技能,打下扎实基础。

(二)课程教学的目的和要求本课程的教学目的是使学员掌握中小学数学教学所需的初等数学的基础理论、基本知识和基本技能;了解初等数学的内容和知识结构;在数学思想上得到启发,在数学方法上得到初步培训,为教好初等数学打下较坚实的基础。

本课程分为初等代数和初等几何两部分,其基本要求是:掌握:数系扩展的理论、解析式分类及其恒等变形理论、掌握用初等方法讨论函数、方程的基本概念及其解法、不等式的基本性质及其证明不等式的常用方法、利用初等几何变换解题、轨迹命题的证明方法、作图的基本知识和常用的方法。

理解:代数延拓原理、方程的同解理论、解不等式的概念和理论、合同变换、位似变换和相似变换等概念。

了解:数系扩展的形式及其所遵循的原则、函数概念的发展与几种定义方式、中学几何的逻辑结构。

(三)课程与其他课程的联系本课程涉及到部分高等数学知识,因而在开设本课程之前需为学生开设预备课程:数学分析、高等代数、解析几何。

(四)教材与教学参考书教材:华南师范大学王林全、林国泰教授主编,《初等代数研究教程》《初等几何研究教程》,暨南大学出版社2004年6月教学参考书:1、余元希等编著,《初等代数研究》,高等教育出版社,1988年2月2、王仁发编著,《高观点下的中学数学》,高等教育出版社3、陈计编,《初等数学前沿》,江苏教育出版社二、课程的教学内容、重点和难点第一部分初等代数第一章绪论内容:代数学发展概述、作为教学科目的中学代数第二章数系内容:数的概念的扩展、自然数集基数理论、序数理论、整数环、有理数域、近似计算初步、实数域、无理数的引入、实数的概念及其大小比较、实数的运算、实数集的性质、复数、复数的代数形式、复数的几何表示、复数的三角形式、复数的运算、复数集的性质。

初等数学研究教案

初等数学研究教案

教案课程名称:初等数学研究***师:***教师所在单位:统计系课程简介《初等数学研究》是初等教育专业的专业课。

它是在学生掌握了一定的高等数学理论知识的基础上,继教育学、心理学之后而开设的。

本课程从中学数学教学的需要出发,以基本问题分成若干专题进行研究,在内容上适当加深和拓广,在理论、观点、思想、方法上予以总结提高,并着重解决理论方面的问题。

本课程的重点是培养中小学数学教师严谨、系统的初等数学理论和基础知识,训练中小学数学教师的技巧。

《初等数学研究》包括《初等代数研究》和《初等几何研究》两部分,是初等教育专业开设的一门综合性的选修课程。

根据高等师范学校数学专业的培养目标,通过该课程的学习,使学生了解初等数学的发展过程,初等数学的内容结构,思想方法等。

理解初等数学理论知识,提高中学数学教学水平。

学习本课程,要求学生更好地掌握并处理中学数学的教材,还必须使学生理解中学数学中用描述的方法引进的一些数学概念怎样给出精确的定义,未作证明的或证明不完整的数学命题怎样做出严格的证明,以及一些广泛应用的数学方法的理论依据。

本课程摆脱了中学数学里已有的基础,以及高等数学里已作详尽讨论的知识,按照自己的逻辑系统来阐述初等数学的内容,并进行研究,将避免造成与中学数学或高等数学不必要的重复。

对于中学数学中已经解决的问题,将不在展开讨论,已有的知识与技能将作为工具来应用,在高等数学里已讨论过的有关理论,可以直接指导中学数学的,将直接应用,不再讨论。

《初等数学研究》教案1. 反射变换函数)(x f y -=与)(x f y =的图象关于y 轴对称;函数)(x f y -=与)(x f y =的图象关于x 轴对称;函数)(1x f-与)(x f y =的图象关于直线x y =对称.因此函数)(x f y -=,)(x f y -=和)(1x f-的图象可由函数的图象分别对y 轴、x 轴和直线x y =作反射得到.2. 平移变换函数b x f y +=)(的图象可由函数)(x f y =的图象沿y 轴方向上下平移b 个单位得到.当0>b 时,图象向上平移;当0<b 时,图象向下平移.函数)(m x f y +=的图象可有函数)(x f y =的图象沿x 轴方向左右平移m 个单位得到.当0>m 时,图象向左平移;当0<m 时,图象向右平移.3. 伸缩变换函数)0)((>=k x kf y 的图象可由函数)(x f y =的图象沿y 轴方向放大)1(>k k 倍或缩短)10(<<k k 倍得到;而函数)0)((>=k kx f y 的图象可由函数)(x f y =的图象沿轴x 方向压缩)1(>k k 倍或伸长)10(1<<k k 倍得到.例3 作出函数211x y -=的图象.解 易知211xy -=的定义域为),1()1,1()1,(+∞⋃-⋃--∞,且没有零点,)1,1(-是其正值区间.),1(),1,(+∞--∞是其负值区间.所给函数是偶函数,其图象关于y 轴对称.当0=x 时,该函数有极小值1.当]1,0[∈x 时单调递增,当)0,1(-∈x 时单调递减,当)1,1(-∈x 时,函数是下凸的.当),1(+∞∈x 时,函数单调递增,且上凸;当),(1-∞-时,函数单调递减,且上凸.由于011lim 11lim 22=-=-+∞→-∞→x x x x 在)1,1(-区间内+∞=-=-+-→→212111lim 11lim x x x x 在区间内-∞=---→2111lim xx 在),1(+∞区间内-∞=-+→2111lim xx 所以函数图象无限趋近于x 轴与直线1±=x 根据以上分析容易作出函数的图象。

《初数研究课程教学大纲(2010修订版)》

《初数研究课程教学大纲(2010修订版)》

《中学数学研究》课程教学大纲(2010修订版)Ⅰ说明部分课程编号:KXB课程名称:中学数学研究英文名称:The Mathematics Study of Middle School推荐教材:《中学几何研究》,张奠宙沈文选主编,高等教育出版社,2006年。

《中学代数研究》,张奠宙张广祥主编,高等教育出版社,2006年。

参考教材:《初等几何研究》,庞正琳主编,中国地质大学出版社,1989年。

《初等代数研究》,林六十主编,中国地质大学出版社,1991年。

课程类型:专业限选课总学时:54学分:适用专业:数学与应用数学先修课程:数学分析,高等代数,空间解析几何。

课程性质与设置目的:本课程为专业限选课,旨在使学生通过大学基础课程学习以后,回过头来对中学数学内容有进一步的认识,加深对数学本质的理解,为从事中学数学教育工作打下良好基础。

课程教学基本目标:使学生对中学几何、代数的框架有个清晰的印象,对其概念在中学的基础上有更高的认识,对数学思想方法有个系统、全面、深入的理解,对解题的思维方法、操作途径、类型归纳、过程反思等进行严格训练,使解题能力有个质的提高。

考核方式:考查。

平时与期末相结合,平时考核注重面对面的交流,注重对学习内容的消化与应用,对课堂提问与互动结果进行记载,作为平时成绩的重要依据。

期末考核以开卷方式进行。

说明:本课程虽有推荐教材和参考书,但不宜照本宣科,逐章逐节讲授,应依据教学基本目标,有选择、有重点地进行筛选,还应及时吸收中学数学研究的最新成果作为教学内容。

Ⅱ正文部分第一部分中学几何研究中学几何主要研究以下专题一、平面几何命题的证明【学习目的与要求】掌握平面几何问题的证明方法与途径,对于不同类型的问题,有相应的解题策略,并且掌握相应的理论和技巧。

【教学方法与手段】采取讲授、讨论和动手尝试相结合。

【实践环节】组织讨论【授课时数安排】8学时。

【课程与教学内容】线段、角相等关系的证明;和、差、倍、分关系的证明;不等关系的证明;比例线段的证明;定值命题的证明;垂直与平行关系的证明;共线点与共点线关系的证明;共圆点与共点圆关系的证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《初等数学研究》教学大纲
课程编码:1511101802
课程名称:初等数学研究
学时/学分:36/2
先修课程: 《数学教学论》、《数学分析》、《高等代数》、《解析几何》
适用专业:数学与应用数学
开课教研室:课程论教研室
一、课程性质与任务
1.课程性质:《初等数学研究》是数学与应用数学专业的专业必修课程。

本课程与中学数学紧密相关,并与高等数学有一定的联系,它是在学生掌握了一定高等数学理论知识的基础上,根据中学数学教学工作的实际需要而开设的。

2.课程任务:本课程兼具基础性和应用性特征 。

课程的任务是使学生掌握基础教育数学课程的基础理论、基础知识和基本技能;了解其内容和知识结构,使学生对中学数学教学所必需的初等数学的基础知识和理论体系有较深刻的理解、较系统的掌握,能够运用现代数学观点审视中学数学问题,能够从高等数学的背景解释中学代数问题,在数学思想上得到启发,在数学方法上得到训练,为毕业后从事中学数学教学打下必要的基础。

二、课程教学基本要求
从初中数学的教学需要出发,并根据中学数学的内容和知识结构,把初等数学分为代数与几何两大部分,再进一步将两部分内容分别组成若干专题,在内容上适当延伸和充实,在理论、观点和方法上予以提高。

对各专题的教学,都要着重基本思维方法的培养和基本技能技巧的训练。

要求学生认清具体与抽象、特殊与一般、有限与无限等辩证关系,培养学生的辩证唯物主义观点。

在教学形式上以课堂讲授、小组讨论等为主要教学环节,其中以课堂讲授为主,研制电子教案和多媒体幻灯片以及CAI课件,在教学方法和手段上采用现代教育技术。

研制电子教案和多媒体幻灯片,在教学方法和手段上采用现代教育技术。

1. 本课程开设在第6学期,总学时36,其中课堂讲授36学时,课堂实践0学时。

2. 本课程的成绩考核形式:期终成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。

成绩评定采用百分制,60分为及格。

三、课程教学内容
第一章 自然数
1.教学基本要求
掌握自然数的性质,了解基数理论下自然数性质的证明;掌握自然数的性质,了解序数理论下自然数性质的证明;了解数学归纳法的证明,掌握数学归纳法的实质和运用技巧,理
解各种形式数学归纳法之间的联系。

2.要求学生掌握的基本概念、理论、原理
通过本章学习,使学生能准确理解自然数、基数、皮亚诺公理系统、数学归纳法等基本概念,掌握自然数的基本性质及其证明方法、能够熟练掌握数学归纳法的实质和运用技巧。

3.教学重点和难点
教学重点是自然数的性质,基数理论下自然数性质的证明;自然数的性质,序数理论下自然数性质的证明;数学归纳法的实质和运用技巧。

教学难点是自然数的性质的证明、数学归纳法的运用技巧。

4.教学内容
第一节 自然数的基数理论
1. 基数理论下的自然数的定义
2. 自然数的顺序律、运算律
3. 可数集的定义
第二节 自然数的序数理沦
1. 公理法
2. 皮亚诺的自然数公理系统
3. 序数理论下自然数的顺序律、运算律
第三节 数学归纳法
1. 第一数学归纳法的原理及应用
2. 第二数学归纳法的原理及应用
第二章 整数
1.教学基本要求
掌握整数的性质,了解序偶理论下性质的证明;掌握带余除法的应用并能够灵活运用带余除法解决相关问题;了解最大公因数与最小公倍数性质的证明,掌握最大公因数与最小公倍数的性质,能灵活运用性质解决相关问题;灵活运用素数的性质解决相关问题;了解同余性质的证明,灵活运用同余的性质解决相关问题,了解欧拉函数的性质和运用。

2.要求学生掌握的基本概念、理论、原理
通过本章学习,使学生能准确理整数环、带余除法、最大公因数与最小公倍数、素数与合数、同余等基本概念,掌握整数性质的证明方法,能够灵活运用整数的性质和原理解决相关问题。

3.教学重点和难点
教学重点是整数的定义及其性质,带余除法的应用;最大公因数与最小公倍数的性质及运用性质解决相关问题;素数的性质解决相关问题。

教学难点是整数理论及其性质的证明。

4.教学内容
第一节 整数环
1. 代数系统的同构与扩张
2. 序偶的概念
3. 用序偶定义的整数及其运算、运算律
第三章 有理数
1.教学基本要求
了解有理数性质的证明,掌握有理数域的性质;了解分数和循环小数互化的理论基础。

2.要求学生掌握的基本概念、理论、原理
通过本章学习,使学生能了解有理数性质的证明,掌握有理数域的性质;了解分数和循环小数互化的理论基础。

3.教学重点和难点
教学重点是有理数的定义、有理数域的性质;分数和循环小数互化的理论基础。

教学难点是有理数域性质的证明。

4.教学内容
第一节 有理数域
1. 用整数的序偶定义有理数
2. 有理数的顺序律,运算及运算律
第二节 十进循环小数
1. 分数、既约分数
2. 有限小数、无限小数、无限循环小数
3. 分数与循环小数的互化
第四章 实数
1.教学基本要求
了解无理数的存在性;了解性质的证明,掌握实数域的基本性质;了解实数的可开方性;了解一些常见的无理数;了解性质的证明,掌握[x]的性质、灵活运用性质解决相关问题。

2.要求学生掌握的基本概念、理论、原理
通过本章学习,使学生能准确理解实数集、实数的基本性质、实数的四则运算、实数的开方、一些常见的无理数等基本概念,掌握 [x]的性质及其应用。

3.教学重点和难点
教学重点是实数域的基本性质;[x]的性质,灵活运用性质解决相关问题。

教学难点是。

相关文档
最新文档