人教版高中数学优质教案1:2.1.2 椭圆的简单几何性质(一) 教学设计

合集下载

人教版高中数学优质教案3:2.1.2椭圆的简单几何性质 教学设计

人教版高中数学优质教案3:2.1.2椭圆的简单几何性质 教学设计

2.1.2椭圆的简单几何性质教学目标1.知识与技能掌握椭圆的几何性质,理解椭圆方程与椭圆曲线间互逆推导的逻辑关系及利用数形结合解决实际问题.2.过程与方法通过椭圆的方程研究其几何性质及其应用过程,培养学生观察、分析问题的能力,利用数形结合思想解决问题的能力.3.情感、态度与价值观通过数与形的辨证统一,对学生进行辨证唯物主义教育,通过对椭圆对称美的感受,激发学生对美好事物的追求.重点难点重点:由标准方程分析出椭圆的几何性质.难点:椭圆离心率几何意义的导入和理解及求法.对重难点的处理:为了突出重点,突破难点,应做好:①让学生自主探索新知;②重难点之处进行反复分析;③及时巩固.椭圆的简单几何性质问题导思1.观察椭圆x2a2+y2b2=1(a>b>0)的形状,图2-2-2你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?[答案]椭圆上的点都在如题图中的矩形框内部,椭圆关于坐标轴对称.椭圆与坐标轴的四个交点比较特殊.2.如何由椭圆x2a2+y2b2=1(a>b>0)求出椭圆与x、y轴的交点坐标?[答案]只要令x=0或y=0求解即可.椭圆的离心率问题导思1.观察不同的椭圆,我们会发现,椭圆的扁平程度不一.对于椭圆x2a2+y2b2=1(a>b>0),若令a不变,b怎样变化时椭圆形状越圆(扁)?此时c的情况如何?[答案]当a值不变,b越大,即c越小时,椭圆形状越圆;b越小即c越大时,椭圆形状越扁.2.若用ca来描述椭圆的扁平情况会是怎样的?[答案]ca越小椭圆形状越圆;ca越大椭圆形状越扁.(注意:0<ca<1)1.定义:椭圆的焦距与长轴长的比e=ca,叫做椭圆的离心率.2.性质:离心率e的范围是(0,1).当e越接近1时,椭圆越扁;当e越接近于0时,椭圆就越接近于圆.例题[解析]例1 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标.解:把已知方程化成标准方程2222154x y +=,于是5,4, 3.a b c ====椭圆的长轴长和短轴长分别是210,28,a b == 离心率35c e a ==, 两个焦点坐标分别为12(3,0)(3,0)F F -,,四个顶点坐标分别为1212(5,0),(5,0),(0,4),(0,4).A A B B --1212121122().,,.,.,|| 2.8 ,|| 4.5 .,.0.1 BAC F F F F BC F F F B cm F F cm BAC cm ⊥==例如图,一种电影放映灯泡的反射镜是旋转椭圆面椭圆绕其对称轴旋转一周形成的曲面的一部分过对称轴的截口是椭圆的一部分灯丝位于椭圆的一个焦点上片门位于另一个焦点上由椭圆一个焦点发出的光线经过旋转椭圆面反射后集中到另一个焦点已知试建立适当的坐标系求截口所在的椭圆方程(精确到)解:题图标设椭圆为2222建立如干所示的直角坐系,所求方程x y +=1.a b122在Rt ΔBF F 中,|F B|= 椭圆质12由的性知, |F B|+|F B|=2a,所以(1211a =(|F B |+|F B |)= 2.8 4.1;22≈3.4.b ==≈2222x y 所以,所求的椭圆方程为+=1.4.1 3.425 (,)(4,0):44.5M x y F l x M =例3点与定点的距离和它到直线的距离的比是常数,求点的轨迹25:44 ,5l x MF P M d =⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭解:设d 是点M 到直线的距离,根据题意,点M 的轨迹就是集合4.5=22925225,x y +=将上式两边平方,并化简,得221.259x y +=即所以,点M 的轨迹是长轴, 短轴长分别为10, 6的椭圆.例4 已知椭圆221259x y +=,直线l :45400x y -+=,椭圆上是否存在一点,到直线l 的距离最小?最小距离是多少?[解析]作出直线l 及椭圆(如图).观察图形,可以发现,利用平行于 直线l 且与椭圆只有一个交点的直线,可以求得相应的最小距离.解:由直线l 的方程与椭圆的方程可以知道,直线l 与椭圆不相交(为什么?).设直线m 平行于直线l ,则直线m 的方程可以写成224501259,,x y k x y -+=⎧⎪⎨+=⎪⎩由方程 222582250-y x kx k ++=消去,得,令方程②的根的判别式△=0,得22644252250().k k -⨯-=解方程③,得122525,.k k ==-或由图可知,当k =25时,直线m 与椭圆的交点到直线l 的距离最近,此时直线m 的方程为4x -5y +25=0直线m 与直线l 间的距离d ==max d ==根据椭圆的方程研究其几何性质 当堂训练1.椭圆x 281+y 245=1的长轴长为( )A .81B .9C .18D .45 [解析] 由标准方程知a =9,故长轴长2a =18. [答案] C2.椭圆6x 2+y 2=6的离心率为()A.56B.306C.16D.66[解析] 椭圆方程可化为x 2+y 26=1,∴a 2=6,b 2=1,∴c 2=5,∴e =c a =56=306.[答案] B3.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为( )A.12 B .2 C.14 D .4 [解析] 方程化为x 2+y 21m=1,长轴长为2m ,短轴长为2,由题意,2m =2×2,∴m =14. [答案] C4.求满足下列各条件的椭圆的标准方程.(1)长轴是短轴的3倍且经过点A (3,0),焦点在x 轴上;(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3. 解 (1)椭圆的焦点在x 轴上,设方程为x 2a 2+y 2b2=1(a >b >0),∵椭圆过点A (3,0), ∴9a 2=1,a =3, ∵2a =3·2b , ∴b =1,∴方程为x 29+y 2=1.(2)由已知{ a =2c ,a -c =3,∴{ a =23,c =3,从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.。

椭圆的简单几何性质 精品教案

椭圆的简单几何性质 精品教案

椭圆的简单几何性质第四课时(一)教学目标1.能推导并掌握椭圆的焦半径公式,能利用焦半径公式解决有关与焦点距离有关的问题.2.能利用椭圆的有关知识解决实际应用问题.3.能综合利用椭圆的有关知识,解决最值问题及参数的取值范围问题. (二)教学过程 【复习引入】1.利用投影仪显示椭圆的定义,标准方程及其几何性质(见第二课时). 2.求椭圆上到焦点距离的最大值与最小值. 【探索研究】为研究上述问题,可先解决例1,教师出示问题.例 1 求证:椭圆12222=+by a x ()0>>b a 上任一点()00y x P ,与焦点所连两条线段的长分别为0ex a ±.分析:由距离公式和椭圆定义可以有两种证法,先由一位学生演板,教师最后予以补充.证法一:设椭圆的左、右焦点分别为()01,c F -.()02,c F ,则 ()()2222202201a x a b c x y c x PF -⋅++=++= 2020222a cx x ac ++= 0x ac a += ∵a x a ≤≤-0, ∴00>-≥+c a x aca . ∴01ex a PF +=. 又a PF PF 221=+,∴()0022ex a ex a a PF -=+-= 故得证.证法二:设P 到左右准线的距离分别为1d ,2d ,由椭圆的第二定义有e d PF =11,又c a x c a x d 20201+=⎪⎪⎭⎫ ⎝⎛--=,∴02011ex a c a x a c ed PF +=⎪⎪⎭⎫⎝⎛+==. 又a PF PF 221=+,∴022ex a PF -=. 故得证.说明:1PF 、2PF 叫做椭圆的焦半径.利用焦半径公式在椭圆的有关计算、证明中,能大大简化相应的计算.至此可解决开始提出的问题.∵01ex a PF +=,a x a ≤≤-0, ∴c a a a c a PF +=⋅+≤1,()c a a aca PF -=-+≥1. ∴c a PF c a +≤≤-1.即椭圆上焦点的距离最大值为c a +,最小值为c a -,最大值与最小值点即是椭圆长轴上的顶点.例2 如图,我国发射的第一颗人造地球卫星的运行轨道是以地心(地球中心)2F 为一个焦点的椭圆.已知它们近地点A (离地面最近的点)距地面439km ,远地点B (离地面最)距地面2384km ,并且2F 、A 、B 在同一条直线上,地球半径约6371km ,求卫星运行的轨道方程(精确到1km ).分析:这是一个介绍椭圆在航天领域应用的例子,关键是理解近地点和远地点与椭圆的关系.由于数字大,计算较繁,可教师讲解.解:如图,建立直角坐标系,使点A 、B 、2F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的方程为12222=+by a x ()0>>b a则6810439637122=+==-=-A F OF OA c a87552384637122=+==-=+B F OF OB c a解得5.7782=a 5.972=c ∴()()77228755681022≈⨯=-+=-=c a ca c ab .因此,卫星的轨道方程是1772277832222=+y x . 点评:由例1可知椭圆上到焦点的距离的最大和最小的点,恰是椭圆长轴的两个端点,因而可知所有卫星的近地点、远地点、及轨道的焦点都在同一直线上.例3 已知点P 在圆()1422=-+y x C :上移动,点Q 在椭圆1422=+y x 上移动,求PQ 的最大值.分析:要求PQ 的最大值,只要考虑圆心到椭圆上的点的距离,而椭圆上的点是有范围的.可在教师指导下学生完成,解答如下:设椭圆上一点()y x Q ,,又()40,C ,于是 ()()()222224144-+-=-+=y y y x QC20832++-=y y3763432+⎪⎭⎫ ⎝⎛+-=y .而11≤≤-y∴当1-=y 时,QC 有最大值5. 故PQ 的最大值为6.点评:椭圆中的最值问题常转化为二次函数在闭区间上的最值问题.例4 已知椭圆12222=+by a x ()0>>b a 与x 轴的正半轴交于点A ,O 是原点.若椭圆上存在一点M ,使MO MA ⊥,求椭圆离心率e 的取值范围.分析:依题意M 点的横坐标a x <<0,找到x 与a 、b 的关系式.教师讲解为好.解:设M 的坐标为()y x ,,由OM AM ⊥,有22222⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-a y a x于是下面方程组的解为M 的坐标⎪⎩⎪⎨⎧=+=+-.022222222b a y a x b y ax x 消去y 整理得()0223222=+-+b a x a x b a.解得a x = 或 22c ab x =.a x =即为椭圆的右顶点∴ a cab <<220 即22c b <.即22>e ,而1<e , 故122<<e . (三)随堂练习1.如图在AFB ∆中,150=∠AFB ,32-=∆AFB S ,则以F 为焦点,A 、B 分别是长、短轴端点的椭圆方程是______________.2.设椭圆12922=+y x 上动点()y x P ,到定点()0,a A ()30<<a 的距离AP 最小值为1,求a 的值.答案:1.12822=+y x 2.2=a (四)总结提炼椭圆的焦半径是椭圆的基础问题,在解题中有其独特的作用,椭圆的范围在解决椭圆的元素的范围及与其有关的最大值(最小值)问题时是很有效的方法.(五)布置作业1.椭圆短半轴的长为1,离心率的最大值是23,则长半轴长的取值范围是___________. 2.若椭圆两焦点为()041,-F ,()042,F ,P 在椭圆上,且21F PF ∆的最大面积是12,则椭圆方程是_______________.3.已知F 是椭圆222222ba y a xb =+()0>>b a 的一个焦点,PQ 是过其中心的一条弦,记22b a c -=,则PQF ∆面积的最大值是( )A .ab 21B .abC .acD .bc 4.已知()00y x M ,是椭圆1162522=+y x 上的任意一点,以过M 的一条焦半径为直径作圆1O ,以椭圆长轴为直径作圆2O ,则圆1O 与圆2O 的位置关系是( )A .内切B .内含C .相交D .相离5.设P 是椭圆12222=+by a x ()0>>b a 上的任一点,求P 点到椭圆两焦点1F 、2F 距离之积的最大值与最大值,并求取得最大值与最小值时P 点的坐标.6.设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆方程,并求椭圆上到点P 的距离等于7的点的坐标.答案:1.(]21,2.192522=+y x 3.D 4.A 5.设()00y x P ,则01ex a PF +=,02ex a PF -=()()20220021x e a ex a ex a PF PF -=-+=⋅ ∵a x a ≤≤-0 ∴2200a x ≤≤当00=x 即()b P ,0或()b -,0时,21PF PF ⋅最大,最大值为2a .当220a x =即()0,a P 或()0,a -时,21PF PF ⋅最小,最小值为222b c a =-.6.设所求椭圆方程是12222=+by a x ()0>>b a依题意可得342132322222++⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛-+=b y y x d ,其中b y b ≤≤-如果210<<b ,则当b y -=时,2d 有最大值,即()22237⎪⎭⎫ ⎝⎛+=b .由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d 有最大值,即()34722+=b.由此得1=b ,2=a ,故所求椭圆方程为1422=+y x . 由21-=y 代入椭圆方程得点⎪⎭⎫ ⎝⎛--213,和⎪⎭⎫ ⎝⎛-213,到点P 的距离都是7.注:本题也可设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,πθ20<≤,利用三角函数求解.。

人教课标版高中数学选修2-1:《椭圆的简单几何性质(第1课时)》教案-新版

人教课标版高中数学选修2-1:《椭圆的简单几何性质(第1课时)》教案-新版

2.2.2 椭圆的简单几何性质(第一课时)一、教学目标 (一)学习目标1.给定椭圆标准方程,能说出椭圆的范围,对称性,顶点坐标和离心率;2.在图形中,能指出椭圆中e c b a ,,,的几何意义及其相互关系;3.知道离心率大小对椭圆扁平程度的影响. (二)学习重点1.用方程研究椭圆上点的横纵坐标范围,对称性;2.椭圆的简单几何性质. (三)学习难点椭圆的离心率及椭圆几何性质的简单应用 二.教学设计 (一)预习任务设计 1.预习任务(1)读一读:阅读教材第43页至第46页.(2)想一想:椭圆的离心率对椭圆扁平程度的影响?(3)写一写:焦点分别在,x y 轴上的椭圆的范围、对称性、顶点. 2.预习自测判断(正确的打“√”,错误的打“×”)(1)椭圆22221(0)x y a b a b +=>>的长轴长为a .( )(2)椭圆的离心率e 越大,椭圆就越圆.( )(3)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为2212516x y +=.( )(4)已知点(,)m n 在椭圆228324x y +=上,则24m +的最大值为4+.( ) 【知识点】椭圆的几何性质.【解题过程】通过椭圆的标准方程22221x y a b +=可认识到椭圆的相应几何量:长轴长2a ,短轴长2b ,离心率e ca=,x 的取值范围取值范围a x a -≤≤. 【思路点拨】通过椭圆的标准方程认识几何性质. 【答案】(1)×;(2)×;(3)×;(4)√. (二)课堂设计 1.知识回顾椭圆的标准方程:当焦点在x 轴时,)0(12222>>=+b a b y a x当焦点在y 轴时,)0(12222>>=+b a b x a y2.新知讲解探究一:具体方程,认识图形 ●活动① 图形引发性质运用所学的知识,你能否画出方程14922=+y x 所对应的曲线?(如果不能精确地画出,也可以画出它的草图.)预案一:利用椭圆的定义,用绳子画图;预案二:根据所学先判断其为椭圆,求与x 轴y 轴的交点再连结;预案三:根据所学判断椭圆具有对称性,只需比较精确地画出第一象限的部分; 【设计意图】让学生在画曲线的时候,通过动手能发现椭圆上点的坐标取值有范围限制,即椭圆的范围;发现椭圆具有对称性,从而为引出对称性作铺垫;发现特殊点(与对称轴的交点),即椭圆的顶点.研究曲线的性质,可以从整体上把握它的形状,大小和位置.以椭圆)0(12222>>=+b a b y a x 为例,你觉得应该从哪些方面研究它的几何性质?【设计意图】引出研究曲线性质的意义,为后面研究椭圆的几何性质指明角度. 探究二:简化抽象、探究性质 ●活动① 归纳梳理、理解提升(1)范围:由标准方程知,椭圆上点的坐标(,)x y 满足不等式22221,1x y a b ≤≤,∴22x a ≤,22y b ≤,∴||x a ≤,||y b ≤.说明椭圆位于直线x a =±,y b =±所围成的矩形里. (2)对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称.若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称.所以,椭圆关于x 轴、y 轴和原点对称.这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心. (3)顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标.在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点.同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点. 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点.同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长.由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22R t O BF ∆中,2||O B b =,2||O F c =,22||BF a =,且2222222||||||O F B F O B =-,即222c a b =-. (4)离心率:椭圆的焦距与长轴的比e ca=叫椭圆的离心率.∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆.当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a+=.e 1,0c a b →→→⎧⎨⎩当时,椭圆图形越扁; e 00,c b a →→→⎧⎨⎩当时,椭圆越接近于圆. ●活动② 巩固基础、检查反馈 例1.根据下列条件求椭圆的标准方程 (1)28,e 3c ==; (2)过点(3,0)P ,离心率e =,求椭圆的标准方程. 【知识点】椭圆的标准方程以及离心率. 【解题过程】(1)8e ,1223c c a a e =∴===,又2222212880b a c =-=-= ∴椭圆标标准方程为22114480x y +=或22114480y x +=. (2)当椭圆的焦点在x 轴上时,3,c a c a ==∴=. 从而222963b a c =-=-=,∴椭圆的方程为22193x y +=.当椭圆的焦点在y 轴上时,3,c b a === 227a ∴=,∴椭圆方程为221927x y += ∴所求椭圆的方程为221927x y +=或22193x y +=. 【思路点拨】已知椭圆的某些性质,和与性质相关的条件求标准方程仍需先判定焦点位置,从而确定方程形式,并用待定系数的思想,求出方程中的,a b 值,得到方程.【答案】(1)22114480x y +=或22114480y x +=;(2)221927x y +=或22193x y +=.同类训练 已知椭圆()22550mx y m m +=>的离心率为e =,求m 的值. 【知识点】椭圆的离心率.【解题过程】依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有a b c ===,∴=,得3m =;②当焦点在y 轴上,即5m >时,有a b c ===,∴253m =⇒=. 【思路点拨】根据椭圆焦点的位置确定,,a b c 的值,结合离心率的定义建立方程求解.【答案】m =3或253. 例2.已知12,F F 分别为椭圆12222=+by a x 的左右焦点,P 是以12F F 为直径的圆与椭圆的一个交点,且12212PF F PF F ∠=∠,求这个椭圆的离心率. 【知识点】椭圆的离心率.【解题过程】由题意12PF F ∆为直角三角形,且90P ∠=,1260PF F ∠=,122F F c =,则12,PF c PF ==,所以由椭圆的定义知,122PF PF a +=,即2c a +=,得离心率e 1ca==. 【思路点拨】求离心率一般是先找到关于,,a b c 的一个齐次关系式,然后再变形求e 的值或范围.1-同类训练 已知椭圆12222=+by a x (0)a b >>,过椭圆的右焦点作x 轴的垂线交椭圆于A B 、两点, 0OA OB ⋅=,求椭圆的离心率. 【知识点】椭圆的离心率.【解题过程】2(,0)F c ,把x c =代入椭圆12222=+b y a x 得2(,)b A c a .由0OA OB ⋅=,结合图形得22||||OF AF =,即:22222e e 10e b c b ac a c ac a =⇒=⇒-=⇒+-=⇒=. 【思路点拨】求离心率一般是先找到关于,,a b c 的一个齐次关系式,然后再变形求e 的值或范围.. 例3.如图,设(),M x y 与定点()4,0F 的距离和它到直线l :254x =的距离的比是常数45,求点M 的轨迹方程.【知识点】椭圆的方程以及离心率. 【解题过程】分析:若设点(),M x y ,则MF =,到直线l :254x =的距离254d x =-,则容易得点M 的轨迹方程.25:44,5d M l x MF M P M d =⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭解:设是点到直线的距离,根据题意,点的轨迹就是集合4.5=22925225,x y +=将上式两边平方,并化简,得22 1.259x y +=即 所以,点M 的轨迹是长轴、短轴长分别为10,6的椭圆.【思路点拨】利用条件直接求轨迹方程,我们可以将例3抽象为下面问题:点(,)P x y 与定点(,0)F c 的距离和它到一定直线2:a l x c=的距离之比是常数ca(0)a c >>,求点P 的轨迹方程. (记222b ac =-,则轨迹方程为22221x y a b+=.)【答案】221259x y +=.3.课堂总结知识梳理椭圆的简单几何性质:重难点归纳利用椭圆轴长、离心率、准线等性质求解椭圆方程时,需注意:(1)在,,,e a b c 四个参数中,只要知道其中的任意两个,便可求出其它两个,必须正确地掌握四个参数间的相互关系;(2)离心率的转化和变形:222e (1)c bb a e a a==⇒=⇒=-. (三)课后作业 基础型 自主突破1.若焦点在y 轴上的椭圆x 2m +y 22=1的离心率为12,则m 的值为( ) A.1 B.32 C. 3 D.83 【知识点】椭圆的离心率.【解题过程】由题意得a 2=2,b 2=m ,∴c 2=2-m ,又c a =12,∴2-m 2=12,∴m=32.【思路点拨】利用椭圆离心率定义解题. 【答案】B2.椭圆C 1:x 225+y 29=1和椭圆C 2:x 29-k +y 225-k =1 (0<k <9)有( )A.等长的长轴B.相等的焦距C.相等的离心率D.等长的短轴 【知识点】椭圆的几何性质.【解题过程】依题意知椭圆C 2的焦点在y 轴上,对于椭圆C 1:焦距=225-9=8,对于椭圆C 2:焦距=8=,故选B. 【思路点拨】灵活利用椭圆a,b,c 三者关系. 【答案】B3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 【知识点】椭圆的几何性质.【解题过程】根据条件可知c a =33,且4a =43, ∴a =3,c =1,b =2,椭圆的方程为x 23+y 22=1. 【思路点拨】过焦点的直线利用椭圆的定义. 【答案】A.4.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1、F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( ) A.14 B.55 C.12 D.5-2 【知识点】椭圆的几何性质.【解题过程】∵A 、B 分别为左右顶点,F 1、F 2分别为左右焦点,∴|AF 1|=a -c ,|F1F2|=2c,|BF1|=a+c,又由|AF1|、|F1F2|、|F1B|成等比数列得(a-c)(a+c)=4c2,即a2=5c2,所以离心率e=5 5.【思路点拨】利用椭圆的几何性质中量的关系.【答案】B5.已知椭圆的焦点在y轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________.【知识点】椭圆的定义.【解题过程】由已知,2a=8,2c=215,∴a=4,c=15,∴b2=a2-c2=16-15=1,∴椭圆的标准方程为y216+x2=1.【思路点拨】利用条件求a,b,c的值.【答案】y216+x2=1.6.已知椭圆的短半轴长为1,离心率0<e≤32.则长轴长的取值范围为________.【知识点】椭圆的几何性质.【解题过程】∵b=1,∴c2=a2-1,又c2a2=a2-1a2=1-1a2≤34,∴1a2≥14,∴a2≤4,又∵a2-1>0,∴a2>1,∴1<a≤2,故长轴长2<2a≤4.【思路点拨】利用离心率的定义建立不等关系. 【答案】2<2a≤4能力型师生共研7.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为________. 【知识点】椭圆的几何性质.【解题过程】设椭圆G的标准方程为x2a2+y2b2=1(a>b>0),半焦距为c,则⎩⎨⎧2a =12,c a =32,∴⎩⎨⎧a =6,c =3 3. ∴b 2=a 2-c 2=36-27=9, ∴椭圆G 的方程为x 236+y 29=1.【思路点拨】利用椭圆a,b,c 三者关系以及椭圆定义解题. 【答案】x 236+y 29=18.椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B .当△F AB 的周长最大时,△F AB 的面积是________. 【知识点】椭圆的几何性质.【解题过程】如图,当直线x =m ,过右焦点(1,0)时,△F AB 的周长最大,由⎩⎪⎨⎪⎧x =1,x 24+y 23=1,解得y =±32,∴|AB |=3.∴S =12×3×2=3.【思路点拨】数形结合解题. 【答案】3 探究型 多维突破9.已知点P (x 0,y 0)是椭圆x 28+y 24=1上一点,A 点的坐标为(6,0),求线段P A 中点M 的轨迹方程.【知识点】椭圆的几何性质.【解题过程】设M (x ,y ),则⎩⎪⎨⎪⎧x 0+62=x ,y 0+02=y ,∴⎩⎨⎧x 0=2x -6,y 0=2y .∵点P 在椭圆x 28+y 24=1上,∴x 208+y 24=1.把⎩⎨⎧x 0=2x -6,y 0=2y 代入x 208+y 204=1,得22(26)(2)184x y -+=, 即22(3)12x y -+=为所求.【思路点拨】相关点转移法求轨迹.【答案】22(3)12x y -+=.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1和F 2,离心率e =22,连接椭圆的四个顶点所得四边形的面积为4 2. (1)求椭圆C 的标准方程;(2)设A 、B 是直线l :x =22上的不同两点,若AF 1→·BF 2→=0,求|AB |的最小值. 【知识点】椭圆的几何性质.【解题过程】(1)由题意得:⎩⎪⎨⎪⎧e =c a =22,a 2=b 2+c 2,S =12ab =42,解得:⎩⎨⎧a =2,b =2,c = 2.所以椭圆的标准方程为:x 24+y 22=1.(2)由(1)知,F 1、F 2的坐标分别为F 1(-2,0)、F 2(2,0),设直线l :x =22上的不同两点A 、B 的坐标分别为A (22,y 1)、B (22,y 2),则AF 1→=(-32,-y 1)、BF 2→=(-2,-y 2),由AF 1→·BF 2→=0得y 1y 2+6=0,即y 2=-6y 1,不妨设y 1>0,则|AB |=|y 1-y 2|=y 1+6y 1≥26,当y 1=6、y 2=-6时取等号,所以|AB |的最小值是2 6.【思路点拨】建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值得方法确定最值. 【答案】(1)x 24+y 22=1;(2)2 6. 自助餐1.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为( ) A.8,6 B.4,3 C.2, 3 D.4,2 3 【知识点】椭圆的几何性质.【解题过程】椭圆过焦点的弦中最长的是长轴,最短的为垂直于长轴的弦(通径)是2b 2a .∴最长的弦为2a =4,最短的弦为2b 2a =2×32=3,故选B. 【思路点拨】利用椭圆的几何性质量的关系解题. 【答案】B2.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且,12:2:1PF PF =则△F 1PF 2的面积等于( ) A.5 B.4 C.3 D.1 【知识点】椭圆的几何性质.【解题过程】由椭圆方程,得a =3,b =2,c =5,∴|PF 1|+|PF 2|=2a =6,又12:2:1PF PF =,∴|PF 1|=4,|PF 2|=2,由22+42=(25)2可知,△F 1PF 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×4×2=4,故选B. 【思路点拨】充分利用椭圆的定义求出三角形三边解题. 【答案】B3.已知A ={1,2,4,5},a ,b ∈A ,则方程x 2a 2+y 2b 2=1表示焦点在y 轴上的椭圆的概率为( )A.34B.38C.316D.12 【知识点】椭圆的几何性质.【解题过程】∵a ,b ∈A ,∴不同的方程x 2a 2+y 2b 2=1共有16个. 由题意a 2<b 2,∴a =1时,b =2,4,5;a =2时,b =4,5; a =4时,b =5,共6个,∴所求概率P =616=38. 【思路点拨】注意椭圆的焦点在y 轴上. 【答案】B4.已知F 1(-3,0),F 2(3,0)是椭圆x 2a 2+y 2b 2=1(a >b >0)两个焦点,P 在椭圆上,∠F 1PF 2=α,且当α=2π3时,△F 1PF 2的面积最大,则椭圆的标准方程为( ) A.x 212+y 23=1 B.x 214+y 25=1 C.x 215+y 26=1 D.x 216+y 27=1 【知识点】椭圆的几何性质.【解题过程】∵当P 在短轴端点时,S △F 1PF 2最大,∴∠PF 1F 2=π6,∴tan π6=bc ,∵c =3,∴b =3,∴a 2=b 2+c 2=12,椭圆方程为x 212+y 23=1.【思路点拨】利用几何关系. 【答案】A5.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标. 【知识点】椭圆的几何性质.【解题过程】椭圆方程可化为x 2m +y 2m m +3=1,∵(2)33m m m m m m +-=>++,∴m >m m +3.即a 2=m ,b 2=mm +3,c ==.由e =32得,m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1,∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1(-32,0),F 2(32,0);四个顶点分别为A 1(-1,0),A 2(1,0),B 1(0,-12),B 2(0,12). 【思路点拨】利用离心率的定义建立关系.6.已知椭圆上横坐标等于焦点横坐标的点,它到x 轴的距离等于短半轴长的23,求椭圆的离心率.【知识点】椭圆的几何性质.【解题过程】解法一:设焦点坐标为F 1(-c,0),F 2(c,0),M 是椭圆上一点,依题意设M 点坐标为(c ,23b ).在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2, 即4c 2+49b 2=|MF 1|2, 而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理,得3c 2=3a 2-2ab . 又c 2=a 2-b23b =2a .∴b 2a 2=49.∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,∴e =53.解法二:设M(c,23b),代入椭圆方程,得c2a2+4b29b2=1,∴c2a2=59,∴ca=53,即e=53.【思路点拨】利用椭圆的几何关系结合椭圆离心率的定义解题.。

2.1.2《椭圆的简单几何性质》教学设计

2.1.2《椭圆的简单几何性质》教学设计

2.1.2《椭圆的简单几何性质》第一课时科目:高二数学****************完成时间:2022年4月25日课型:新授课教学工具:多媒体设备◆知识与技能目标通过对椭圆标准方程的讨论,理解并掌握椭圆的几何性质,用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念.◆过程与方法目标能够根据椭圆的标准方程求焦点、顶点坐标、离心率并能根据其性质画图.引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中要通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点P的思考问题,探究椭的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过39圆的扁平程度量椭圆的离心率.◆情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新.培养学生分析问题、解决问题的能力,并为学习其它圆锥曲线作方法上的准备.必须让学生认同和掌握:椭圆的简单几何性质,能由椭圆的标准方程能直接得到椭圆的范围、对称性、顶点和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.◆能力目标(1)分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.(3)实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.教学过程设计教学步骤教师活动学生活动设计意图(一)导入一、情景导入:1.国家大剧院的半椭圆正视图;1. 2.椭圆的标准方程.在解析几何里,是利用曲线的方程来研究曲线的几何性质的,我们现在利用焦点在x轴上的椭圆的标准方程来研究其几何性质.通过提出问题、分析问题、解决问题激发学生的学习兴趣,在掌握新知识的同时培养能力.(二)椭圆的大小思考1:如何将一个长、宽分别为10cm,8cm的矩形纸板制作成一个最大的椭圆呢?1.范围由椭圆的标准方程可知,椭圆上点的坐标(x,y)都适合不等式22ax≤1,22by≤1即x2≤a2,y2≤b2所以|x|≤a,|y|≤b即-a≤x≤a, -b≤y≤b这说明椭圆位于直线x=±a, y=±b所围成的矩形里。

人教版高中数学选修(1-1)-2.1《椭圆的简单几何性质(第1课时)》教学设计

人教版高中数学选修(1-1)-2.1《椭圆的简单几何性质(第1课时)》教学设计

2.1.2椭圆的简单几何性质(第1课时)(名师:张远建)一、教学目标核心素养发展直观想象、 逻辑推理 、数据分析素养学习目标(1)掌握椭圆的范围、对称性、顶点、离心率等几何性质.(2)明确椭圆中,,,a b c e 的几何意义,以及,,,a b c e 之间的相互关系.(3)能利用椭圆的几何性质解决椭圆的简单问题.学习重点利用椭圆的标准方程研究椭圆的几何性质学习难点椭圆离心率的概念的理解及椭圆的几何性质的综合应用二、教学设计(一)课前设计1.预习任务任务1预习教材3739P P - ,思考椭圆上的点,x y 的的取值范围? 椭圆具有怎样的对称性?与数轴的交点是什么?任务2完成41P 的练习5,思考椭圆的扁平程度与那些量有关?2.预习自测1. 椭圆22259225x y +=的长轴长、短轴长、离心率依次是( )A .5,3,0.8B .10,6,0.8C .5,3,0.6D .10,6,0.6.答案:B解析:椭圆的几何性质2. 椭圆2266x y +=的长轴的端点坐标是( )A .(-1,0)、(1,0)B .(-6,0)、(6,0)C .(、D .(0,、.答案:D解析:椭圆的几何性质(二)课堂设计1.知识回顾(1)椭圆的定义:平面内点M 到两定点12,F F 的距离和为常数,即122MF MF a +=,当122a F F >时,点M 的轨迹是椭圆(2)椭圆的标准方程:焦点在x 轴上的椭圆标准方程为__()222210x y a b a b+=>>__ 焦点在y 轴上的椭圆标准方程为__()222210y x a b a b+=>>__ 其中a ,b ,c 的关系为____ 222a b c =+_____.(3)(),P x y 关于原点对称的点()1,P x y --,(),P x y 关于x 轴对称的点()2,P x y -,(),P x y 关于y 轴对称的点()3,P x y -2.问题探究问题探究一 椭圆的几何性质●活动一 设椭圆的标准方程为22221(0)x y a b a b +=>>,研究椭圆的范围就是研究椭圆上点的横、纵坐标的取值范围.(1)从形的角度看:椭圆位于直线x a =±和y b =±所围成的矩形框里.(2)从数的角度看:利用方程研究,易知222210y x b a =-≥,故221x a ≤,即a x a -≤≤;。

人教A版高中数学选修1-1 第二章2.1.2椭圆的简单几何性质(一)数学教案

人教A版高中数学选修1-1 第二章2.1.2椭圆的简单几何性质(一)数学教案

2.1.2椭圆的简单几何性质(一)数学教案教师 科目 数学 上课时间课题椭圆的简单几何性质(一)教学目标知识与能力1.掌握椭圆的简单几何性质,能根据性质正确地作出椭圆的简图; 2.掌握椭圆标准方程中a 、b 、c 、e 的相互关系及其几何意义;3.培养学生观察、分析、概括的逻辑思维能力和数形结合思想的运用能力.过程与方法 以自主探究为主,学生独立思考.、合作交流、师生共同探究相结合. 情感态度 与价值观通过自主探究、交流合作使学生亲身体验研究的艰辛,亲历知识的构建过程,领悟其中所蕴含的数学思想和数学方法,从中体味探索中的成功与快乐,由此激发学生更加积极主动的学习精神和探索勇气;教 学 重难点 重点:椭圆的简单几何性质及其性质的初步运用.难点:椭圆几何性质的探究过程、方法及离心率的理解. 教学程序教师指导与学生活动一、.新课导入:请同学们看大屏幕(课件展示“神舟飞船”在变轨前绕地球飞行的模拟图)我们知道飞船在绕地球飞行的过程中,是沿着以地球的中心为一个焦点的椭圆轨道运行的,如果告诉你飞船飞离地球表面的最近和最远距离(即近地点距地面的距离和远地点距地面的距离),如何确定飞船运行的轨道方程呢?引入课题:要解决这一实际问题就有必要对椭圆做深入地研究,这节课我们就一起来先研究椭圆的一些简单几何性质.复习:前面我们学习了椭圆的定义和标准方程,谁能说说椭圆的定义和标准方程是?1.椭圆的定义;2. 椭圆的标准方程(注意椭圆中a,b,c 的关系).二、新课探究:【自主探究问题1】:观察椭圆 的形状,你能从图上看出它的范围吗?能否根据方程得出结论?辨析与研讨:结论:由椭圆方程知b y a x ≤≤,,由y x ,的范围可得椭圆位于直线a x ±=和b y ±=所围成的矩形里(课件展示图形) 。

22221(0)x y a b a b+=>>B 2A 1F 1F 2xB 1A 2y【自主探究问题2】:继续观察椭圆的特点,椭圆的图形给人以视觉上的美感,如果我们沿着焦点所在直线上下对折,或沿着焦点连线的垂直平分线左右对折大家猜想椭圆可能有什么性质?能否用方程来证明你的结论?辨析与研讨:结论:在标准方程下,坐标轴是对称轴,原点是对称中心,椭圆的对称中心叫做椭圆的中心。

人教版高中数学《椭圆的简单几何性质》教学设计

人教版高中数学《椭圆的简单几何性质》教学设计

《椭圆的简单几何性质》(第一课时)教学设计一、教学内容解析1.内容本节课学习椭圆的几何性质,主要包括范围、长轴、短轴、对称性、离心率,以及性质的应用.2.内容解析本节课是《普通高中课程标准实验教科书数学》人教A版选修2-1第二章《圆锥曲线与方程》中2.2《椭圆》的第二课时,主要内容是研究椭圆的几何性质. 椭圆的对称性、长轴、短轴描述了椭圆的形状特征,椭圆的范围描述了椭圆的大小,椭圆的离心率是用数值刻画椭圆扁平程度的量.从单元内容看,本单元主要包括三种圆锥曲线的定义、标准方程和性质,以及坐标法的应用,在学习的过程中要深入对数形结合思想的理解.本节课是在学生熟悉了直线和圆的方程、椭圆的定义及其标准方程的基础上,并具有初步运用方程研究曲线的方法的活动经验后,第一次系统地运用代数与几何相结合的方法研究曲线的性质.它为之后研究双曲线、抛物线的几何性质、运用“以数解形”的方法解决几何问题等内容提供了数学模型和方法指导,因此本节课对体会单元核心思想方法具有举足轻重的地位和作用.本节内容蕴含了丰富的数学思想方法,突出体现了数形结合、分类讨论及类比推理的思想和用代数法研究曲线性质的数学方法.基于以上分析,确定本节课的教学重点是:利用椭圆的标准方程研究椭圆的简单几何性质,理解“以数解形”的数形结合思想.二、教学目标设置1.教学目标(1)在动手画椭圆的过程中,发现并提出椭圆对称性、大小、圆扁程度等几何性质的问题,发展学生发现问题提出问题的能力,培养学生数学抽象的能力.(2)通过对椭圆图形特征的研究,分析椭圆的范围、长轴、短轴、对称性的性质,发展学生分析几何图形和直观想象的能力.(3)结合方程分析椭圆性质,以数解形,提升学生对数形结合思想的理解.(4)通过离心率的探究,使学生经历观察、分析、归纳、概括的思维过程和动手操作的实践过程,发展学生数学逻辑推理的能力.2.目标解析(1)设计画椭圆图形,可以提高学生研究曲线时动手作图的基本技能,并让学生从作图的过程中初步了解椭圆的各项几何性质,发展学生直观想象和数学抽象的数学核心素养,培养学生分析问题和解决问题的操作性思维能力.(2)研究曲线性质时,首先从图形角度研究,可以提高学生发现问题的能力,并让学生体会几何直观在研究曲线性质中的作用.(3)通过方程对椭圆的几何性质的探究,学生进一步感受用代数方法解决几何问题的数形结合的思想,在由数释形的过程中,培养学生的探究习惯,发展学生的理性思维.(4)在椭圆离心率的探究过程中,通过实验发现规律,结合老师的引导点拨,让学生去实现对离心率的发现和理解,培养学生严谨的治学态度和不断发现问题的能力,以及运用所学知识解决新问题的能力.三、学生学情分析学生已经熟悉和掌握椭圆的定义及其标准方程,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的能力,但这是学生第一次通过方程研究曲线的几何性质,研究思路并不是很清晰.对于范围、对称性、顶点三个性质,通过老师的点拨引导,学生比较容易掌握.离心率概念比较抽象,学生缺乏研究此类问题的经验.本节课的教学难点是:学生对椭圆的核心性质——离心率的认识与理解.本单元内容的教学,要使学生充分经历“操作、观察、分析、抽象、概括”的学习过程.即从生活中抽象图形的模型,动手操作画图象,观察曲线的特点,探究曲线的方程,根据方程研究曲线.教学中,充分运用类比学习、螺旋提升的方法,不断形成完整的解析几何研究方法和学习策略.在运用方程讨论曲线性质时,主要以独立探究为主,离心率的发现过程要为学生创设适当的情境,使学生在最近发展区中发现问题、解决问题.对于坐标法的理解,教师要为学生创造循序渐进地理解数形结合思想的条件,以代数与几何为什么结合、怎么结合、结合时注意什么等问题为抓手,帮助学生深刻理解此数学思想方法.四、教学策略分析根据本节课教学内容的特点,为了更直观、形象地突出重点,突破难点,激发学生的学习兴趣,在课堂教学中让学生通过动手操作画椭圆,亲历知识的生成过程,力求借助信息技术手段,以“几何画板”软件为平台,通过对椭圆的核心性质离心率e 的变化的演示,观察椭圆圆扁程度的变化,让学生体会运用“数形结合”的思想方法建立起高中数学的两条主线——代数主线和几何主线间的密切联系,同时利用展台将学生的研究成果进行实时呈现,能够使本节课重点研究的椭圆的简单几何性质的四方面——椭圆的范围、对称性、顶点及离心率问题及时得到很好的解决.具体来说包括:1.任务驱动教学法:利用问题串作引导,引发学生积极思考并积极探究;2.演示教学法:学生实物投影展示和教师几何画板动态演示相结合,提高课堂效率的同时兼顾解答的规范性;3.启发式教学法:在研究范围和离心率时,教师做积极启发并与学生自主探究与合作讨论相结合突破难点;4.学法:以小组合作为基本活动模型,采用自主学习法,结合合作探究法,讨论法,归纳总结法与交流展示法.五、教学过程设计(一) 创设情境、建构概念1.情境创设:让学生观察建筑中国国家大剧院,它与湖中倒影的正视图呈椭圆形,进而引出课题.2.知识回顾:椭圆的标准方程:当焦点在x 轴时,)0(12222>>=+b a by a x 当焦点在y 轴时,)0(12222>>=+b a bx a y 【设计意图】回顾上节课所学内容,巩固知识并为本节课所学做铺垫.3.活动创设 课前布置预习作业:你能否利用所学知识,在同一坐标系中画出方程1162522=+y x 和192522=+y x 所表示的曲线.课上分组展示学生的成果,并让学生观察他们有什么几何特征.预设可能出现的情况:预设1:先判断其为椭圆,再利用定义画图;预设2:先判断其为椭圆,寻找到与坐标轴的交点,画椭圆;评价预设:寻找画图的关键点,提高画图容易度.预设3:先判断其对称性,只需精确画出其第一象限的图象;评价预设:发现椭圆的对称性,可以给画图带来方便.预设4:从函数角度出发,利用描点法作图.评价预设:将其转化为函数,利用函数图象的画法作图.【设计意图】数学是现实世界的反映.从学生感兴趣的问题出发,创设思维情境,让学生在动手操作的过程中重温方程和曲线的关系,直观感受椭圆的几何特征,自然引出本节课的课题.(二)独思共议,引导探究通过画具体的椭圆,由特殊到一般,提出一般的椭圆会有哪些性质.以椭圆)0(12222>>=+b a by a x 为例研究椭圆的几何性质. 探究一.椭圆的范围 问题1:椭圆大小如何刻画? 问题2:该椭圆上点的横坐标的取值范围是什么?纵坐标呢(预设:学生会利用图形观察得知,老师要给予肯定:图形观察很直观)问题3: 你能否用方程说明该范围?追问:范围可以由不等关系求出,如何建立y x ,的不等关系?(先独立思考2分钟再进行小组合作,后进行小组展示成果)从方程上看: 预设1:因为012222≥-=a x b y 所以122≤ax ,故可得a x a ≤≤-,同理可得b y b ≤≤-. 预设2:由椭圆方程)0(12222>>=+b a b y a x 中实数平方的非负性可得122≤a x ,122≤by , o所以a x a ≤≤-,b y b ≤≤-.预设3:利用三角换元:设θθsin ,cos ==by a x ,则θθsin ,cos b y a x ==, 所以a x a ≤≤-,b y b ≤≤-.教师总结点评:利用方程中变量的非负性,判断其它变量范围的方法,是解析几何中利用方程研究曲线范围的一般方法.【设计意图】通过椭圆的标准方程确定椭圆的范围,使学生感受利用椭圆方程研究椭圆几何性质的方法,理解椭圆)0(12222>>=+b a by a x 位于直线a x ±=和b x ±=所围成的矩形内,为描点法作图提供了参考,体会利用坐标法研究曲线几何性质的优越性.探究二.椭圆的对称性问题1:椭圆具有怎样的对称性?师生活动:学生可以直观感受椭圆的对称性,并引导学生用椭圆的标准方程对其进行研究.学生在必修2《直线的方程》和《圆的方程》的学习中经历过对曲线对称性的探究过程,此外学生还可以类比函数的奇偶性的研究方法得到椭圆的对称性,并给出椭圆中心的定义.预设:学生可能会从图形和方程的角度得到.(教师通过几何画板演示)(此问题对学生具有相当的难度,老师指明图形对称的本质是点的对称,在学生回答过程中,要强调在椭圆上“任取一点”)问题2:能否用椭圆的方程说明该对称性?(小组讨论2分钟,找代表发言)(教师动画展示)椭圆上任取点),(y x P ,关于y 轴的对称点),('y x P -也在椭圆上,说明椭圆关于y 轴对称,关于x 轴的对称点),(''y x P -也在椭圆上,说明椭圆关于x 轴对称,关于原点的对称点),('''y x P --也在椭圆上,说明椭圆关于原点对称.即坐标轴x 轴和y 轴是椭圆的对称轴,原点)0,0(O 是椭圆的对称中心,称为椭圆的中心.强调:利用曲线上任意一点关于坐标轴和原点的对称点仍在曲线上来判断曲线的对称性,也是利用方程研究曲线对称性的一般方法.问题3:研究曲线 的对称性【设计意图】学生可以直观感受椭圆的对称性,并引导学生用椭圆的标准方程对其进行研究.教师通过信息技术的引入,让学生理解图形对称性的本质是构成图形的点的对称性,即利用曲线上点的坐标的对称性,可以实现曲线的对称性.并通过练习题,让学生学以致用,体会研究曲线对称性的一般方法.探究三.椭圆的顶点问题1:观察椭圆图形,他有哪些特殊点?问题2:这些点的坐标是什么?利用学生描点画图时的特殊点,引入椭圆的顶点,让学生感受图形中某些特殊点在确定曲线位置时的作用,从而得到顶点定义,即椭圆与对称轴x 轴和y 轴的四个交点.并指出长轴,短轴和长半轴长,短半轴长等相关概念.【设计意图】让学生明确顶点等相关概念,理解顶点与对称性的关系.探究四.椭圆的形状——认识椭圆的离心率e问题1:用什么量可以刻画椭圆的扁平程度?学生活动:小组合作,利用椭圆的定义画椭圆,(小组合作讨论,相互交流,小组展示)预设1:a c ;预设评价:学生可能从椭圆的定义出发,发现画椭圆时ac 的变化对椭圆形状的影响.预设2:ab .预设评价:学生可能观察预习作业中两个椭圆的扁平程度得到. 师生活动:小组展示探究成果.学生观察当a 保持不变时,随着c 的改变,椭圆圆扁程度的变化,发现椭圆随着a c 的增大而变扁,随着a c 的减小而变圆.教师利用几何画板动态展示,并给出离心率的概念,并引导学生求出椭圆离心率的范围,【设计意图】让学生从具体问题中抽象出离心率的定义,信息技术的引入不仅可以使学生体会到定义的科学性、严谨性,让学生深刻地理解定义,更有助于培养学生的数学抽象、逻辑推理等数学素养,不断积累数学活动的经验.问题2:离心率的大小如何影响椭圆的扁平程度?预设:e 越接近于0,则c 越接近于0,即22c a b -=越接近于a , 椭圆越接近于圆; 122=-y xe 越接近于1,则c 越接近于a ,即22c a b -=越接近于0,椭圆越扁.(让学生用逼近的思想想象当0→e 时,椭圆接近于圆,当1→e 时,椭圆接近于一条线段.)【设计意图】利用等价转化的思想刻画椭圆的扁平程度,加深学生对椭圆的核心性质离心率e 的认识与理解.(三)类比联想,知识迁移类比焦点在x 轴上的椭圆的几何性质,得到焦点在y 轴上的椭圆的几何性质,让学生体会数学研究中的类比推理的过程与方法.【设计意图】让学生体会椭圆焦点位置的变化对其性质的影响,提升学生的逻辑推理素养,并为后续双曲线和抛物线的学习奠定基础.(四)巩固新知,提升能力例题分析:例1.椭圆400251622=+y x 的长轴长是________,短轴长是_________,焦点坐标是________,焦距是__________,顶点坐标是__________,离心率是________.例2.在椭圆)0(12222>>=+b a by a x 中,已知B OF 2∆为等腰直角三角形,求椭圆的离心率.问题:你能从三角函数的角度理解离心率对椭圆形状的影响吗?【设计意图】通过例题分析,巩固椭圆的几何性质,例2旨在引导学生深刻理解椭圆离心率的几何意义,实现认识上的又一次飞跃.(五)回顾反思,归纳总结学生和老师共同回顾、梳理、总结本节课所学的数学知识、思想、方法.(1)椭圆的几何性质(2)用坐标法研究曲线性质的过程与方法(3)所用的数学思想方法:数形结合、化归转化、类比推理师生活动:先由学生总结所学内容,教师补充说明,特别是通过本节课所经历的知识的探究过程,体会类比与数形结合的数学思想.通过本节课,让学生看到数学在生活中的应用,意识到还有很多与椭圆相关的知识需要去探究,从而不断地激发学生的数学学习兴趣.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六)目标测试,当堂反馈1.已知椭圆方程为6622=+y x ,它的长轴长是__________,短轴长是___________, 焦点坐标是________,焦距是________,顶点坐标是_________,离心率是________.2.椭圆以坐标轴为对称轴,离心率32=e ,长轴长为6,则椭圆的标准方程为( ) (A)1203622=+y x (B)15922=+y x (C)15922=+y x 或15922=+x y (D)1203622=+x y 或1203622=+y x 【设计意图】通过目标检测,可以了解学生对知识的理解和掌握情况,为教学评价提供依据,其中第2题旨在体会分类讨论思想在数学中的应用.接着展示图片:展示椭圆在建筑与天文等方面的应用,让学生看到数学在生活中的应用,意识到还有很多与椭圆相关的知识需要去探究,从而不断激发学生的学习兴趣.(七)布置作业,巩固所学实践作业:查阅椭圆在建筑学与天文学方面应用的资料,每组写一份调研小报告.分层作业:P习题2.2A组2,3,4,5题必做:课本49选做:A组第9题【设计意图】作业分层布置,力求让不同基础的学生都拥有成功学习的体验.必做题主要考查学生对本节课重点知识的掌握情况,检查学生运用所学知识解决问题的能力,实践作业的设置是为了让学生体验如何检索、搜集资料进行数学学习,这是本节课所学内容的提高与拓展,可以更好地培养学生分析问题和解决问题的能力.。

《椭圆的简单几何性质》教学设计

《椭圆的简单几何性质》教学设计

椭圆的简单几何性质(1)教学设计杨华燕大附中2.2.2椭圆的简单几何性质(1)教学设计一、教学任务及对象1、教学内容分析《椭圆的简单几何性质》是选修2-1第二章第二节的内容,本节内容是在学生已经学过曲线与方程和椭圆的概念及其标准方程基础上引入的,是利用椭圆的标准方程研究椭圆的几何性质,它是由方程研究曲线的性质的一个应用,也是为后面学习利用双曲线、抛物线的标准方程研究其几何性质做铺垫,因此本节课起到承前启后的作用。

2、教学对象分析本节课授课的对象是高二年级的学生,他们已掌握了椭圆的标准方程,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。

二、教学目标依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:1、知识与技能:使学生掌握椭圆的几何性质,初步学会运用椭圆的几何性质解决问题,进一步体会数形结合的思想。

2、过程与方法:通过数和形两条线研究椭圆的几何性质,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数形结合的思想方法;对椭圆的几何性质的归纳、总结时培养学生抽象概括能力;进一步强化数形结合思想。

3、情感、态度与价值观:通过本节课的学习,养成积极主动思考,勇于探索,不断创新的学习习惯和品质。

三、重、难点分析重点:椭圆的简单几何性质难点:培养数形结合思想四、教学策略为了突出重点、突破难点,在教学中采取了以下策略:1.教法分析为了充分调动学生学习的积极性,采用“生本课堂”模式,培养学生的创新精神,使学生在解决问题的同时,形成了方法.另外恰当的利用多媒体课件进行辅助教学,借助信息技术创设情境激发学生的学习兴趣.2.学法分析本节课通过探究椭圆的几何性质,让学生体会数形结合思想,加深对解析几何的理解;让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、分析问题和解决问题的能力.五、教学过程本节课中应把更多的时间、机会留给学生,让学生充分的交流、探究,积极引导学生动手操作、动脑思考。

高中数学新课标人教A版选修1-1《2.1.2椭圆的简单几何性质》教案

高中数学新课标人教A版选修1-1《2.1.2椭圆的简单几何性质》教案
二、讲授新课:
1.例1设点 的坐标分别为 ,.直线 相交于点 ,且它们的斜率之积是 ,求点 的轨迹方程.
求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.
(教师引导——示范书写)
2.练习:1.点 的坐标是 ,直线 相交于点 ,且直线 的斜率与直线 的斜率的商是 ,点 的轨迹是什么?
(教师分析——学生演板——教师点评)
2.求到定点 与到定直线 的距离之比为 的动点的轨迹方程.
(教师分析——学生演板——教师点评)
3.例2在圆 上任取一点 ,过点 作 轴的垂线段 , 为垂足.当点 在圆上运动时,线段 的中点 的轨迹是什么?
相关点法:寻求点 的坐标 与中间 的关系,然后消去 ,得到点 的轨迹方程.(教师引导——示范书写)
4.练习:
1. 第7题.
2.已知三角形 的一边长为 ,周长为 ,求顶点 的轨迹方程.
5.知识小结:
①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.
②相关点法:寻求点 的坐标 与中间 的关系,然后消去 ,得到点 的轨迹方程.




上课时间
第 周星期第节
课型
课题
2.1.2椭圆及其标准方程
教学目的
掌握点的轨迹的求法,坐标法的基本思想和应用.
教学设想
教学重点:求点的轨迹方程,坐标法的基本思想和应用.
教学难点:求点的轨迹方程,坐标法的基本思想和应用.




一、复习:
1.椭圆的定义,椭圆的焦点坐标,焦距.
2.关于椭圆的两个基本等式.

高中数学人教版选修1-12-1-4椭圆的简单几何性质(一)教案(1).docx

高中数学人教版选修1-12-1-4椭圆的简单几何性质(一)教案(1).docx

2.2.4椭圆的简单几何性质(一)【学习目标】1.熟练掌握椭圆的范围、对称性、顶点等简单几何性质;2.掌握标准方程中c b a ,,的几何意义,以及e c b a ,,,的相互关系;3.理解、掌握坐标法中根据曲线的方程研究曲线的几何性质的一般方法。

【自主学习】1.“范围”是方程中变量的取值范围,是曲线所在的位置的范围,椭圆的标准方程中的y x ,取值范围是什么?其图形位置是怎样的?2.标准形式的方程所表示的椭圆,其对称性是怎样的?3.椭圆的顶点是怎样的点?椭圆的长轴与短轴是怎样定义的?长轴长、短轴长各是多少?c b a ,,的几何意义各是什么?4.椭圆的离心率是怎样定义的?用什么来表示?它的范围如何?在这个范围内,它的变化对椭圆有什么影响?5.画椭圆草图的方法是怎样的?【自主检测】1.在同一坐标系中画出下列椭圆的简图:(1)2212516x y += (2)221925x y += 2.求下列椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标:(1)221625400x y += (2)22981x y +=【典型例题】例.已知椭圆()22550mx y m m +=>的离心率为105e =,求m 的值,并求椭圆的长轴和短轴的长、焦点坐标、顶点坐标。

【目标检测】1.求适合下列条件的椭圆的标准方程。

⑴经过点(8,0)-、(0,6); ⑵长轴长是短轴长的3倍,且经过点(3,0);⑶焦距是8,离心率等于45。

2.短轴长为8,离心率为53的椭圆两焦点分别为1F 、2F ,过点1F 作直线l 交椭圆于A 、B 两点,则2ABF ∆的周长为 。

3.已知椭圆的一个焦点将长轴分为3:2两段,求其离心率。

【总结提升】由椭圆的方程研究椭圆的性质或其图像的特点。

注意数形结合思想的应用。

高中数学人教版选修1-1 2.1.2椭圆的简单几何性质 教案(系列一)

高中数学人教版选修1-1 2.1.2椭圆的简单几何性质 教案(系列一)

2.1.2椭圆的简单几何性质(二)教学目标: 椭圆的范围、对称性、对称中心、离心率及顶点(截距). 重点难点分析教学重点:椭圆的简单几何性质. 教学难点:椭圆的简单几何性质. 教学设计: 【复习引入】1.椭圆81922=+y x 的长轴长为 18 ,短轴长为 6 ,半焦距为 26 ,离心率为322 ,焦点坐标为)26,0(± ,顶点坐标为)9,0(±,)0,3(±.【讲授新课】例1 如图,设M (x ,y )与定点F (4,0)的距离和它到直线l :425=x 的距离的比是常数 54, 求点M 的轨迹方程. 练习11.求下列椭圆焦点坐标和准线方程:16421162512222=+=+y x y x )()(2. 椭圆1162522=+y x 上的点M 到左准线的距离是5,求M 到右焦点的距离..1525.322的连线互相垂直,使这点与椭圆两焦点上求一点在椭圆P y x =+例2.1),(222200=+by a x y x P 是椭圆设 .)0(1为其左焦点上任意一点,F b a >>求|PF 1|的最小值和最大值. 练习21.点P 与定点F (2,0)的距离与它到定直线x=8的距离之比为1:2,求点P 的轨迹方程.2.点P 与定点F (2,0)的距离与它到定直线x=2的距离之比为1:2,求点P 的轨迹方程.例3 如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对称的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点F 1上,片门位于另一个焦点F 2上,由椭圆一个焦点F 1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F 2.已知,21F F BC ⊥cm F F cm B F 5.4||8.2||211==,.建立适当的坐标系,求截口BAC 所在椭圆的方程.例4如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心)F 2为一个焦点的椭圆,已知它的近地点A (离地面最近的点)距地面439km ,远地点B (离地面最远的点)距地面2384km ,并且F 2、A 、B 在同一直线上,地球半径约为6371km ,求卫星运行的轨道方程(精确到1km).例5 求适合下列条件的椭圆的离心率.(1) 从短轴端点看两个焦点,所成视角为直角;(2) 两个焦点间的距离等于长轴的端点与短轴的端点间的距离. 练习31. 已知椭圆mx 2+5y 2=5m 的离心率.510m e ,求=,求其标准方程。

高中数学 2-1 2.2.2椭圆的简单几何性质 教案

高中数学 2-1 2.2.2椭圆的简单几何性质 教案

2.2.2椭圆的简单几何性质(一)教学目标1。

知识与技能:(1)通过对椭圆图形的研究,让学生熟悉椭圆的几何性质(对称性、范围、顶点、离心率)以及离心率的大小对椭圆形状的影响,进一步加强数形结合的思想。

(2)熟练掌握椭圆的几何性质,会用椭圆的几何性质解决相应的问题2.过程与方法:通过讲解椭圆的相关性质,理解并会用椭圆的相关性质解决问题。

3.情感、态度与价值观:(1) 学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;(2)培养学生抽象概括能力和逻辑思维能力. (二)教学重点与难点重点:椭圆的几何性质,数形结合思想的贯彻,运用曲线方程研究几何性质难点:数形结合思想的贯彻,运用曲线方程研究几何性质。

(三)教学过程活动一:创设情景、引入课题(5分钟)问题1:前面两节课,说一说所学习过的内容?1、椭圆的定义? 2、 两种不同椭圆方程的对比?问题2:观察椭圆12222=+b y a x (a 〉b>0)的形状,你能从图上看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?点题:今天我们学习“椭圆的简单几何性质"活动二:师生交流、进入新知,(20分钟)1.范围:-a x a ≤≤,b y b -≤≤由标准方程知,椭圆上点的坐标(,)x y 满足不等式22221,1x y a b≤≤, ∴22x a ≤,22y b ≤,∴||x a ≤,||y b ≤,∴-a x a ≤≤,b y b -≤≤ 说明椭圆位于直线x a =±,y b =±所围成的矩形里.2.对称性:椭圆关于x 轴、y 轴和原点对称。

在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称.若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称.所以,椭圆关于x 轴、y 轴和原点对称。

人教A版高中数学高二选修1-1教案 2.1.2椭圆的简单几何性质(1)

人教A版高中数学高二选修1-1教案 2.1.2椭圆的简单几何性质(1)

2.1.2 椭圆的简单几何性质第1课时椭圆的简单几何性质(教师用书独具)●三维目标1.知识与技能掌握椭圆的简单几何性质,了解椭圆标准方程中a,b,c的几何意义,明确其相互关系.2.过程与方法能够画出椭圆的图形,会利用椭圆的几何性质解决相关的简单问题.3.情感、态度与价值观从离心率大小变化对椭圆形状的影响,体现数形结合,体会数学的对称美、和谐美.●重点、难点重点:由标准方程分析出椭圆几何性质.难点:椭圆离心率几何意义的导入和理解.对重难点的处理:为了突出重点,突破难点,应做好①让学生自主探索新知,②重难点之处进行反复分析,③及时巩固(教师用书独具)●教学建议根据教学内容并结合学生所具备的逻辑思维能力,为了体现学生的主体地位,遵循学生的认知规律,宜采用这样的教学方法:启发式讲解,互动式讨论,研究式探索,反馈式评价.●教学流程创设问题情境,引出问题:椭圆有哪些简单几何性质?⇒引导学生结合椭圆的图形,观察、比较、分析,导出焦点在x轴上的椭圆的简单几何性质.⇒引导学生类比导出焦点在y轴上椭圆的简单几何性质.⇒通过例1及其互动探究,使学生掌握已知椭圆方程求几何性质的方法.⇒通过例2及其变式训练,使学生掌握由椭圆的几何性质求其标准方程的方法.⇒(对应学生用书第22页)课标解读1.掌握椭圆的简单几何性质及应用.(难点)2.掌握椭圆离心率的求法及a,b,c的几何意义.(难点)3.理解长轴长、短轴长、焦距与长半轴长、短半轴长、半焦距的概念.(易混点)椭圆的简单几何性质已知两椭圆C1、C2的标准方程:C1:x225+y216=1,C2:y225+x216=1.1.椭圆C1的焦点在哪个坐标轴上,a、b、c分别是多少?椭圆C2呢?【提示】C1:焦点在x轴上,a=5,b=4,c=3,C2:焦点在y轴上,a=5,b=4,c=3.2.怎样求C1、C2与两坐标轴的交点?交点坐标是什么?【提示】对于方程C1:令x=0,得y=±4,即椭圆与y轴的交点为(0,4)与(0,-4);令y=0得x=±5,即椭圆与x轴的交点为(5,0)与(-5,0).同理得C2与y轴的交点(0,5),(0,-5),与x轴的交点(4,0)(-4,0).焦点的位置焦点在x轴上焦点在y轴上续表焦点的位置焦点在x轴上焦点在y轴上顶点A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) A1(0,-a),A2(0,a) B1(-b,0),B2(b,0) 轴长短轴长=2b,长轴长=2a焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c对称性对称轴为坐标轴,对称中心为(0,0)离心率e=ca椭圆的离心率【问题导思】观察不同的椭圆,其扁平程度各不一样,如何刻画椭圆的扁平程度呢?【提示】利用椭圆的离心率.1.定义椭圆的焦距与长轴长的比e=ca,叫做椭圆的离心率.2.性质离心率e的范围是(0,1).当e越接近于1,椭圆越扁,当e越接近于0,椭圆就越接近于圆.(对应学生用书第23页)由椭圆方程研究几何性质已知椭圆16x2+9y2=1,求椭圆的顶点坐标、焦点坐标、长轴长、短轴长、焦距和离心率.【思路探究】(1)所给椭圆方程是标准形式吗?(2)怎样由椭圆的标准方程求得a、b、c的值进而写出其几何性质中的基本量?【自主解答】将椭圆方程化为x2116+y219=1,则a2=19,b2=116,椭圆焦点在y轴上,c2=a2-b2=19-116=7144,所以顶点坐标为(0,±13),(±14,0),焦点坐标为(0,±712),长轴长为23,短轴长为12,焦距为76,离心率为74.1.已知椭圆的方程讨论性质时,若不是标准形式的先化成标准形式,再确定焦点的位置,进而确定椭圆的类型.2.焦点位置不确定的要分类讨论,找准a 与b ,正确利用a 2=b 2+c 2求出焦点坐标,再写出顶点坐标.同时要注意长轴长、短轴长,焦距不是a ,b ,c ,而应是a ,b ,c 的两倍.本例中,若把椭圆方程改为“25x 2+16y 2=400”,试求其长轴长、短轴长、离心率、焦点与顶点坐标.【解】 将方程变形为y 225+x 216=1,得a =5,b =4,所以c =3.故椭圆的长轴长和短轴长分别为2a =10和2b =8,离心率e =c a =35,焦点坐标为F 1(0,-3),F 2(0,3),顶点坐标为A 1(0,-5),A 2(0,5),B 1(-4,0),B 2(4,0).由椭圆的几何性质求其标准方程求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点(2,-6); (2)过(3,0)点,离心率e =63. 【思路探究】 (1)椭圆的焦点位置确定了吗?(2)你将怎样求得a 2、b 2并写出标准方程? 【自主解答】 (1)由题意知2a =4b ,∴a =2b . 设椭圆标准方程为x 2a 2+y 2b 2=1或y 2a 2+x 2b 2=1,代入点(2,-6)得,4a 2+36b 2=1或36a 2+4b2=1,将a =2b 代入得,a 2=148,b 2=37或a 2=52,b 2=13,故所求的椭圆标准方程为x 2148+y 237=1或y 252+x 213=1.(2)当椭圆焦点在x 轴上时,有a =3,c a =63,∴c =6,∴b 2=a 2-c 2=9-6=3, ∴椭圆的标准方程为x 29+y 23=1;当椭圆焦点在y 轴上时,b =3,c a =63,∴a 2-b 2a =63, ∴a 2=27,∴椭圆的标准方程为x 29+y 227=1. 故所求椭圆标准方程为x 29+y 227=1或x 29+y 23=1.求标准方程的常用方法是待定系数法,基本思路是“先定位、再定量”. 1.定位即确定椭圆焦点的位置,若不能确定,应分类讨论.2.定量即通过已知条件构建关系式,用解方程(组)的方法求a 2、b 2.其中a 2=b 2+c 2,e =ca是重要关系式,应牢记.分别求适合下列条件的椭圆的标准方程. (1)长轴长是6,离心率是23;(2)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为6. 【解】 (1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0). 由已知得2a =6,a =3.e =c a =23,∴c =2.∴b 2=a 2-c 2=9-4=5.∴ 椭圆的标准方程为x 29+y 25=1或x 25+y 29=1.(2)设椭圆方程为x 2a 2+y 2b2=1(a >b >0).如图所示,△B 1FB 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|B 1B 2|=2b ,∴c =b =3,∴a 2=b 2+c 2=18, 故所求椭圆的标准方程为x 218+y 29=1.求椭圆的离心率(1)已知椭圆的焦距与短轴长相等,求其离心率.(2)若一个椭圆长轴长度、短轴的长度和焦距成等差数列,求该椭圆的离心率. 【思路探究】 (1)由焦距与短轴长相等,你能得出a 、b 、c 的关系吗?可以用离心率公式求离心率吗?(2)由题意得2b =a +c ,如何使用这一关系式求e? 【自主解答】 (1)由题意得:b =c , ∴e 2=c 2a 2=c 2b 2+c 2=c 22c 2=12. ∴e =22. (2)∵椭圆的长轴长度、短轴长度与焦距成等差数列, ∴2b =a +c ,∴4b 2=(a +c )2.又∵a 2=b 2+c 2,∴4(a 2-c 2)=a 2+2ac +c 2, 即3a 2-2ac -5c 2=0,∴(a +c )(3a -5c )=0.∵a +c ≠0,∴3a -5c =0,∴3a =5c , ∴e =c a =35.求椭圆离心率的常用方法:1.直接法:求出a 、c 后用公式e =ca求解;或求出a 、b 后,用公式e =1-b 2a2求解.2.转化法:将条件转化为关于a 、b 、c 的关系式,用b 2=a 2-c 2消去b ,构造关于ca 的方程来求解.(1)求椭圆x 216+y 28=1的离心率.(2)已知椭圆的两个焦点F 1、F 2,点A 为椭圆上一点,且AF 1→·AF 2→=0,∠AF 2F 1=60°,求椭圆的离心率.【解】 (1)e =1-b 2a2= 1-816=12=22. (2)设F 1F 2=2c ,由题意知,△AF 1F 2中,∠A =90°,∠AF 2F 1=60°,∴|AF 1|=3c ,|AF 2|=c .∵|AF 1|+|AF 2|=3c +c =2a ,即(3+1)c =2a ,∴e =c a =23+1=3-1.(对应学生用书第25页)混淆长轴长与长半轴长、短轴长与短半轴长的概念致误 求椭圆25x 2+y 2=25的长轴长和短轴长.【错解】将方程化为标准方程得:x2+y225=1,∴a=5,b=1,∴长轴长是5,短轴长是1.【错因分析】错解中将长半轴长、短半轴长与长轴长、短轴长混淆了,从而导致错误.【防范措施】根据定义,长轴长为2a,短轴长为2b,往往与长半轴长a、短半轴长b 混淆,解题时要特别注意.【正解】将已知方程化成标准方程为x2+y225=1.∴a=5,b=1,∴2a=10,2b=2.故长轴长为10,短轴长为2.1.通过椭圆方程可讨论椭圆的简单几何性质;反之,由椭圆的性质也可以通过待定系数法求椭圆的方程.2.椭圆的离心率反映了椭圆的扁平程度,离心率可以从关于a、b、c的一个方程求得,也可以用公式求得.(对应学生用书第25页)1.椭圆6x2+y2=6的长轴的顶点坐标是()A.(-1,0)、(1,0)B.(-6,0)、(6,0)C.(-6,0)、(6,0)D.(0,-6)、(0,6)【解析】 椭圆的标准方程为x 2+y 26=1,焦点在y 轴上,其长轴的端点坐标为(0,±6).【答案】 D2.椭圆x 2+4y 2=1的离心率为( ) A.32 B.34 C.22 D.23【解析】 椭圆方程可化为x 2+y 214=1,∴a 2=1,b 2=14,∴c 2=34,∴e 2=c 2a 2=34,∴e =32. 【答案】 A3.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A. 3B.32 C.83D.23【解析】 ∵椭圆焦点在x 轴上, ∴0<m <2,a =2,c =2-m ,e =c a=2-m 2=12. 故2-m 2=14,∴m =32.【答案】 B4.已知椭圆的中心在坐标原点,离心率为45,一个焦点是(0,4),求此椭圆的标准方程.【解】 由题意:c =4,e =45,∴a =5,∴b 2=a 2-c 2=9.又椭圆的焦点在y 轴上,∴其标准方程为y 225+x 29=1.一、选择题1.(2013·济南高二检测)若椭圆的长轴长为10,焦距为6,则椭圆的标准方程为( )A.x 2100+y 236=1 B.x 225+y 216=1 C.x 2100+y 264=1或y 2100+x 264=1 D.x 225+y 216=1或y 225+x 216=1 【解析】 由题意2a =10,2c =6,∴a =5,b 2=16,且焦点位置不确定,故应选D. 【答案】 D2.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有( )A .相同短轴B .相同长轴C .相同离心率D .以上都不对【解析】 由于椭圆x 2a 2+y 29=1中,焦点的位置不确定,故无法确定两椭圆的长轴、短轴、离心率的关系.【答案】 D3.曲线x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的关系是( )A .有相等的焦距,相同的焦点B .有相等的焦距,不同的焦点C .有不等的焦距,不同的焦点D .以上都不对【解析】 曲线x 225+y 29=1焦距为2c =8,而曲线x 29-k +y 225-k (10<k <9)表示的椭圆的焦距也是8,但由于焦点所在的坐标轴不同,故选B.【答案】 B4.过椭圆x 2a 2+y 2b 2=1(a >b >0)左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22 B.33C.12D.13【解析】 Rt △PF 1F 2中,|F 1F 2|=2c ,∠F 1PF 2=60°, ∴|PF 1|=2c 3,|PF 2|=4c 3,∴|PF 1|+|PF 2|=6c3=2a ,a =3c .∴e =c a =13=33. 【答案】 B5.设AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的长轴,若把线段AB 分为100等份,过每个分点作AB 的垂线,分别交椭圆的上半部分于点P 1,P 2,…,P 99,F 1为椭圆的左焦点,则|F 1A |+|F 1P 1|+|F 1P 2|+…+|F 1P 99|+|F 1B |的值是( )A .98aB .99aC .100aD .101a【解析】 由椭圆的定义及其对称性可知,|F 1P 1|+|F 1P 99|=|F 1P 2|+|F 1P 99|=…=|F 1F 49|+|F 1P 51|=|F 1A |+|F 1B |=2a ,F 1P 50=a ,故结果应为50×2a +|F 1P 50|=101a .【答案】 D二、填空题6.(2013·兰州高二检测)若椭圆x 2k +8+y 29=1的离心率为23,则k 的值为________. 【解析】 若焦点在x 轴上,则9k +8=1-(23)2=59,k =415;若焦点在y 轴上,则k +89=59,∴k =-3. 【答案】 415或-3 7.椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离心率为________.【解析】 如图所示,△AF 1F 2为等腰直角三角形.∴OA =OF 1,即c =b ,又∵a 2=b 2+c 2=2c 2,∴c a =22. 【答案】 228.一个顶点为(0,2),离心率e =12,坐标轴为对称轴的椭圆方程为________. 【解析】 (1)当椭圆焦点在x 轴上时,由已知得b =2,e =c a =12, ∴a 2=163,b 2=4,∴方程为3x 216+y 24=1. (2)当椭圆焦点在y 轴上时,由已知得a =2,e =c a =12, ∴a 2=4,b 2=3,∴方程为y 24+x 23=1. 【答案】 3x 216+y 24=1或y 24+x 23=1 三、解答题9.(1)求与椭圆x 29+y 24=1有相同的焦点,且离心率为55的椭圆的标准方程; (2)已知椭圆的两个焦点间的距离为8,两个顶点坐标分别是(-6,0),(6,0),求焦点在x 轴上的椭圆的标准方程.【解】 (1)∵c =9-4=5,∴所求椭圆的焦点为(-5,0),(5,0).设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0). ∵e =c a =55,c =5,∴a =5,b 2=a 2-c 2=20. ∴所求椭圆的标准方程为x 225+y 220=1. (2)因椭圆的焦点在x 轴上,设它的标准方程为x 2a 2+y 2b2=1(a >b >0). ∵2c =8,∴c =4,又a =6,∴b 2=a 2-c 2=20.∴椭圆的标准方程为x 236+y 220=1. 10.已知F 1,F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若△ABF 2是正三角形,求该椭圆的离心率.【解】 如图,不妨设椭圆的焦点在x 轴上,∵AB ⊥F 1F 2,且△ABF 2为正三角形,∴在Rt △AF 1F 2中,∠AF 2F 1=30°.令|AF 1|=x ,则|AF 2|=2x .∴|F 1F 2|=|AF 2|2-|AF 1|2=3x =2c .由椭圆定义,可知|AF 1|+|AF 2|=2a .∴e =2c 2a =3x 3x =33.图2-1-211.如图2-1-2所示,在Rt △ABC 中,∠CAB =90°,AB =2,AC =22,一曲线E 过点C ,动点P 在曲线E 上运动,且保持|PA |+|PB |的值不变.(1)建立适当的坐标系,求曲线E 的方程;(2)试判断该方程是否为椭圆方程,若是,请写出其长轴长、焦距、离心率.【解】 (1)以AB 所在直线为x 轴,AB 的中点O 为原点建立直角坐标系,则A (-1,0),B (1,0),由题设可得|PA |+|PB |=|CA |+|CB |=22+22+(22)2=2 2.由椭圆定义知动点P 的轨迹为椭圆.不妨设动点P 的轨迹方程为x 2a 2+y 2b2=1(a >b >0), 则a =2,c =1,b =a 2-c 2=1, ∴曲线E 的方程为x 22+y 2=1. (2)由(1)的求解过程知曲线E 的方程是椭圆方程,其长轴长为22,焦距为2,离心率为22.(教师用书独具)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在一点P 使a sin ∠PF 1F 2=c sin ∠PF 2F 1,求该椭圆的离心率的取值范围. 【解】 在△PF 1F 2中,由正弦定理得|PF 2|sin ∠PF 1F 2=|PF 1|sin ∠PF 2F 1,则结合已知,得a |PF 2|=c |PF 1|,即|PF 1|=c a |PF 2|.由椭圆的定义知|PF 1|+|PF 2|=2a ,则c a |PF 2|+|PF 2|=2a ,即|PF 2|=2a 2c +a,由椭圆的几何性质和已知条件知|PF 2|<a +c ,则2a 2c +a<a +c ,即c 2+2ac -a 2>0,所以e 2+2e -1>0,解得e <-2-1或e >2-1.又e ∈(0,1),故椭圆的离心率e ∈(2-1,1).椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆M 上任一点,且PF 1→·PF 2→的最大值的取值范围是[c 2,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是( )A .[14,12] B .[12,22] C .(22,1) D .[12,1) 【解析】 设P (x ,y ),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),PF 1→·PF 2→=x 2+y 2-c 2.又x 2+y 2可看作P (x ,y )到原点的距离的平方,所以(x 2+y 2)max =a 2,所以(PF 1→·PF 2→)max =b 2,所以c 2≤b 2=a 2-c 2≤3c 2,即14≤e 2≤12,∴12≤e ≤22. 【答案】 B。

高中数学1-1 2.1.2椭圆的简单的几何性质 教案

高中数学1-1 2.1.2椭圆的简单的几何性质 教案

2。

1。

2 椭圆的简单几何性质一、教学目标:1.知识与技能目标:(1)掌握椭圆的简单几何性质。

初步学习利用方程研究曲线几何性质的方法。

(2)掌握方程中a、b、c的几何意义及三者之间的关系.2.过程与方法目标:(1)能够运用椭圆的简单几何性质解决实际问题。

(2)培养学生观察分析,类比猜想,逻辑推理的思维能力及用数形结合思想解决问题的能力。

3。

情感态度价值观目标:通过自主探究、合作交流激发学习兴趣和探索问题的勇气,培养良好的思维品质.二、教学重点。

难点重点:掌握椭圆的范围、对称性、顶点的概念、离心率及其应用难点:椭圆几何性质的形成过程。

三、学情分析学生已熟悉和掌握椭圆的定义及其标准方程,有亲历体验发现和探究的兴趣;具有一定的动手操作、归纳猜想和逻辑推理的能力;有分组讨论、合作交流的习惯。

在教师的指导下能够主动与同学探究、发现归纳数学知识.四、教学过程新课引入引例:2010年10月1日下午十八时,随着一声巨响,我国研制的嫦娥二号载人飞船,从西昌卫星发射中心顺利升空,不久,飞船进入了以近地点200公里,远地点347公里的椭圆轨道围绕地球运行,举世瞩目,万众欢腾.请问你能利用所学的知识求出椭圆轨道的方程吗?你想知道椭圆有哪些重要的几何性质吗?今天这一节课我们就来探讨这些问题设计意图:通过同学们熟悉的例子,引入新课,激发学生的爱国热情和好奇心,激起他们强烈的求知欲,从而引入课题。

五、自主学习1.椭圆的简单几何性质位置图形标准方程错误!+错误!=1 (a〉b〉0)y2a2+错误!=1 (a〉b>0)范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长=2b,长轴长=2a焦点(±错误!,0)(0,±a2-b2)焦距|F1F2|=2错误!对称性对称轴:x轴、y轴对称中心:原点离心率e=错误!∈(0,1)椭圆的离心率越接近1,则椭圆越扁;椭圆离心率越接近0,则椭圆越接近于圆.六、合作探究 探究一观察椭圆)0(12222>>=+b a by a x 的形状,你能从图形上看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊? 1 、范围 :(1)从图形上看,椭圆上点的横坐标的范围是_________________.椭圆上点的纵坐标的范围是.____________________.(2)由椭圆的标准方程)0(12222>>=+b a by a x 知① 22a x ____1,即____≤≤x ____; ②22by ____ 1;即____≤≤y ___。

人教版高中数学高二数学《椭圆的几何性质》教案1

人教版高中数学高二数学《椭圆的几何性质》教案1
3、顶点:椭圆与它的对称轴的交点叫做椭圆的顶点。
注:焦点是在长轴上的。
4、离心率:椭圆的焦距与长轴长的比2c/2a=c/a=e。椭圆离心率e的范围是0<e<1
注:e越接近1,椭圆就越扁;e越接近0,椭圆就越接近于圆。
三、数学应用:
例1求椭圆16x2+25y2=400的长轴和短轴长、离心率、焦点和顶点坐标,并用描点法画出它的图形。
教学参考
教师用书鼎尖教案
授课ห้องสมุดไป่ตู้法
启发引导探究
教学辅助手段
多媒体
专用教室
教学过程设计


二次备课
一、复习回顾1、椭圆的标准方程是
2、由标准方程如何判断焦点的位置及其坐标。
问题:1观察椭圆,你能看出椭圆的哪些性质?
2你能根据方程研究那些性质吗?
二、数学建构:
1、范围:-a≤x≤a,-b≤y≤b;
2、对称性:关于x轴、y轴、原点对称;
分析:将方程化为标准方程即可求解
学生回顾并口答
师生共同讨论、探究
长轴
短轴
长半长轴长
短半轴长
1、你能求出顶点的坐标吗?
2、找出字母a、b、C的线段表示
练习:P33 1
教学过程设计


二次备课
例2求适合下列条件的椭圆的标准方程
⑴经过点P(-3,0)、Q(0,-2);
⑵长轴长等于20,离心率3/5。
⑴分析一:设方程为mx2+ny2=1,将点的坐标代入方程,求出m=1/9,n=1/4。
备课时间
2012年11月7日
主备人:李学习
上课时间
第周周月日
班级节次
课题
椭圆的简单几何性质1
总课时数

人教版高中数学优质教案2:2.1.2 椭圆的简单几何性质(一) 教学设计

人教版高中数学优质教案2:2.1.2 椭圆的简单几何性质(一) 教学设计

2.1.2 椭圆的简单几何性质(一)【教学目标】1、知识目标:⑴掌握椭圆的简单几何性质(范围、对称性、顶点、离心率).⑵能根据椭圆的几何性质解决一些简单问题.2、能力目标:培养学生的[解析]几何观念,培养学生观察、概括能力,以及分析问题、解决问题的能力.3、情感目标:培养学生对待知识的科学态度和主动探索精神,激发学生学习激情,提高学生数学素养,培养学生对立统一的辩证唯物主义思想. 【教学重点】椭圆的简单几何性质. 【教学难点】椭圆的简单几何性质的应用. 【教学方法】尝试教学法 【教具准备】多媒体电脑课件 【教学过程】一、思考并回答下列问题: 1.椭圆的定义在平面内,到两定点F 1、F 2的距离之和为常数(大于|F 1F 2 |)的动点的轨迹叫做椭圆.2.椭圆的标准方程 当焦点在X 轴上时当焦点在Y 轴上时3.椭圆中a,b,c 的关系:22c b a +=4.平面[解析]几何研究的两个主要问题是什么? (1)根据已知条件,求出表示平面曲线的方程.|)|2(2||||2121F F a a PF PF >=+)0(12222>>=+b a b y a x )0(12222>>=+b a b x a y(2)通过方程,研究平面曲线的性质. 二、椭圆的简单几何性质(以 )0(12222>>=+b a b y a x 为例) 1.椭圆的范围:由12222=+b y a x-a ≤x ≤a , -b ≤y ≤b 知椭圆落在x =±a , y = ± b 组成的矩形巩固练习题1.椭圆14922=+y x 的范围是22,33≤≤-≤≤-y x 巩固练习题2.椭圆)0,0(12222>>=+n m y n x m 的范围是ny n m x m 11,11≤≤-≤≤- 2.椭圆的对称性:从图形上看,椭圆关于x 轴、y 轴、原点对称. 从方程上看:(1)以-x 代x 方程不变,椭圆关于y 轴对称; (2)以-y 代y 方程不变,椭圆关于x 轴对称;(3)以-x 代x ,同时以-y 代y 方程不变,椭圆关于原点成中心对称.坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心.巩固练习题3.若方程)0(2≠++=a c bx ax y 所表示的曲线关于y 轴对称,则=b 0 巩固练习题4.在下列方程所表示的曲线中,关于x 轴、y 轴都对称的是( D )A.x 2=yB.x 2+2xy +y =0C.x 2-4y 2=5xD.9x 2+y 2=4 3.椭圆的顶点:在12222=+by a x ()0(>>b a 中112222≤≤⇒by a x 和令x =0,得y =?,说明椭圆与y 轴的交点? 令y =0,得x =?,说明椭圆与x 轴的交点?顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点.长轴、短轴:线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴,它们的长分别为a 2和b 2, a 、b 分别叫做椭圆的长半轴长和短半轴长.巩固练习题5.椭圆的一个顶点为)0,2(A ,其长轴长是短轴长的2倍,则椭圆的标准方程为1422=+y x 141622=+x y 或 巩固练习题6.椭圆122=+my x 的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为( C )A. 21B.2C.41D.44.椭圆的离心率e (刻画椭圆扁平程度的量) 离心率:椭圆的焦距与长轴长的比:ace =叫做椭圆的离心率. [1]离心率的取值范围: 因为a >c > 0,所以0<e <1 [2]离心率对椭圆形状的影响:1)e 越接近 1,c 就越接近a ,从而b 就越小,椭圆就越扁. 2)e 越接近 0,c 就越接近 0,从而b 就越大,椭圆就越圆.3)特例:e =0,则a = b ,则c =0,两个焦点重合,椭圆方程变为(?)[3]e 与a ,b 的关系:巩固练习题7.椭圆122=+my x 的离心率为23,则m 的值为( C ) A. 2或21 B. 2 C. 41或4 D. 41巩固练习题8.求适合下列条例的椭圆方程: (1)经过点P (-3,0),Q (0,-2)222221ab a b a ac e -=-==(2)长轴长等于20,离心率等于53 三、目标检测1.椭圆2214x y m +=的焦距为2,则m 的值等于( A ) A.5或3 B.5 C.8 D.162.椭圆的一个顶点和一个焦点在直线360x y +-=上,则此椭圆的标准方程是( D )A.221404x y +=B.2213640x y +=C.22221140363640x y x y +=+=或D.2222114043640x y x y +=+=或3.下列椭圆的形状,哪一个更圆,哪一个更扁?为什么?(1)1922=+y x (2)1121622=+y x 4.求满足下列条件的椭圆的标准方程: (1)焦点在x 轴上,6=a ,31=e ; (2) 焦点在y 轴上,3=c ,53=e . 四、课堂小结1.椭圆的简单几何性质2. 椭圆中的有四个基本量a,b,c,e,可以知二求二.3.椭圆有“四线”(两条对称轴、两条准线),“六点”(两个焦点,四个顶点),“两形”(中心,焦点以及短轴端点构成的三角形、椭圆上一点和两焦点构成的三角形).要注意它们之间的位置关系(如准线垂直于长轴所在的直线、焦点在长轴上等)及相互间的距离.五、课下作业。

人教课标版高中数学选修1-1《椭圆的简单几何性质(第1课时)》教案-新版

人教课标版高中数学选修1-1《椭圆的简单几何性质(第1课时)》教案-新版

2.1.2椭圆的简单几何性质(第1课时)一、教学目标 核心素养发展直观想象、 逻辑推理 、数据分析素养 学习目标(1)掌握椭圆的范围、对称性、顶点、离心率等几何性质. (2)明确椭圆中,,,a b c e 的几何意义,以及,,,a b c e 之间的相互关系. (3)能利用椭圆的几何性质解决椭圆的简单问题. 学习重点利用椭圆的标准方程研究椭圆的几何性质 学习难点椭圆离心率的概念的理解及椭圆的几何性质的综合应用 二、教学设计 (一)课前设计 1.预习任务 任务1预习教材3739P P - ,思考椭圆上的点,x y 的的取值范围? 椭圆具有怎样的对称性?与数轴的交点是什么? 任务2完成41P 的练习5,思考椭圆的扁平程度与那些量有关? 2.预习自测1. 椭圆22259225x y +=的长轴长、短轴长、离心率依次是( ) A .5,3,0.8 B .10,6,0.8 C .5,3,0.6D .10,6,0.6.答案:B解析:椭圆的几何性质2. 椭圆2266x y +=的长轴的端点坐标是( ) A .(-1,0)、(1,0)B .(-6,0)、(6,0)C .(6,0)-、(6,0)D .(0,6)-、(0,6). 答案:D解析:椭圆的几何性质 (二)课堂设计 1.知识回顾(1)椭圆的定义:平面内点M 到两定点12,F F 的距离和为常数,即122MF MF a +=,当122a F F >时,点M 的轨迹是椭圆(2)椭圆的标准方程:焦点在x 轴上的椭圆标准方程为__()222210x y a b a b +=>>__焦点在y 轴上的椭圆标准方程为__()222210y x a b a b+=>>__其中a ,b ,c 的关系为____ 222a b c =+_____.(3)(),P x y 关于原点对称的点()1,P x y --,(),P x y 关于x 轴对称的点()2,P x y -,(),P x y 关于y 轴对称的点()3,P x y - 2.问题探究问题探究一 椭圆的几何性质●活动一 设椭圆的标准方程为22221(0)x y a b a b +=>>,研究椭圆的范围就是研究椭圆上点的横、纵坐标的取值范围.(1)从形的角度看:椭圆位于直线x a =±和y b =±所围成的矩形框里.(2)从数的角度看:利用方程研究,易知222210y x b a =-≥,故221x a ≤,即a x a -≤≤;222210x y a b=-≥故221y b ≤,即b y b -≤≤. ●活动二 (1)从形的角度看:观察椭圆的图形可以发现,椭圆是中心对称图形,也是轴对称图形.(2)从数的角度看:在椭圆方程22221(0)x y a b a b +=>>中以,x y --分别代替,x y ,方程不变,∴椭圆22221(0)x y a b a b +=>>既关于x 轴对称,又关于y 轴对称,从而关于坐标原点对称,椭圆的对称中心叫做椭圆的中心. ●活动三如图, 椭圆22221(0)x y a b a b +=>>与它的对称轴共有四个交点,即12,A A 和12,B B ,这四个点叫做椭圆的顶点,线段12,A A 叫做椭圆的长轴,它的长等于2a ;线段12,B B 叫做椭圆的短轴,它的长等于2b.显然,椭圆的两个焦点在它的长轴_上. ●活动四椭圆的焦距与长轴长的比ca叫做椭圆的长轴.用e 表示,即c e a =.(1)离心率的范围:01e <<(2)椭圆离心率的意义:椭圆离心率的变化刻画了椭圆的扁平程度. 当e 越接近于1时,c 越接近于a ,从而22b a c =-越小,因此椭圆越扁 当e 越接近于0时,c 越接近于0,从而22b a c =-越接近于a,因此椭圆越接近于圆;当且仅当a b =时,0c =,这时两个焦点重合,图象变为圆222x y a +=. ★▲问题探究二 椭圆中,,,a b c e 的几何意义,以及,,,a b c e 之间的相互关系 例1.求椭圆222525x y +=的长轴和短轴的长、焦点和顶点坐标. 【知识点:椭圆的几何性质】详解:把原方程化成标准方程:22125y x +=.这里5,1a b ==,所以25126c =-=.因此,椭圆的长轴和短轴的长分别是210a =和22b =,两个焦点分别是12(0,26),(0,26)F F -,椭圆的四个顶点是1212(0,5),(0,5),(1,0),(1,0)A A B B --. 点拔:解决这类问题关键是将所给方程正确地化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a ,b ,c 之间的关系求椭圆的几何性质.例2.求适合下列条件的椭圆的标准方程. (1)椭圆过点 ()3,0,离心率63e =; (2)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为8. 【知识点:椭圆的几何性质,椭圆的标准方程】 详解: (1)若焦点在x 轴上,则3a =, ∵63c e a ==,2226,963c b a c ∴=∴=-=-=, ∴椭圆的方程为22193x y += 若焦点在y 轴上,则3b =,∵22296113c b e a a a ==-=-=解得 227a =.∴椭圆的方程为221279y x +=综上可知椭圆方程为22193x y +=或221279y x +=. (2)设椭圆的方程为22221(0)x y a b a b +=>>.如图所示,12A FA ∆为等腰直角三角形,OF 为斜边12A A 的中线(高),且12,2OF c A A b ==2224,32c b a b c ∴==∴=+=,故所求椭圆的方程为2213216x y +=. 点拔:利用椭圆的几何性质求椭圆的标准方程时,需要解决定位问题和定量问题.定位问题是由顶点、焦点可确定焦点在哪个坐标轴上,不能确定的要分情况讨论.定量问题可由长轴长、离心率、顶点坐标、焦点坐标来确定.利用离心率确定a ,b ,c 时,常用22=1c b e a a=-.例3.已知椭圆的对称轴是坐标轴,O 是坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且2cos 3OFA ∠=,求椭圆的方程. 【知识点:椭圆的几何性质,椭圆的标准方程】 详解:∵椭圆的长轴长是6、且2c os 3O FA ∠=,∴点A 不是长轴的端点(是短轴的端点).∴2, 3.33c OF c AF a ===∴=2222,325c b ∴==-=.∴椭圆的方程是:22195x y +=或22159x y +=. 点拔:△OFA 是椭圆的特征三角形,它的两直角边长分别为b 、c ,斜边的长为a ,∠OFA 的余弦值是椭圆的离心率.问题探究三 利用椭圆的几何性质解决椭圆的简单问题 ●活动一 求椭圆的离心率例4.12,F F 为椭圆的两个焦点,过2F 的直线交椭圆于,P Q 两点,11PF PQ PF PQ ⊥=且,求椭圆的离心率. 【知识点:椭圆的几何性质,椭圆的定义】解析 由题目可获取以下主要信息:①已知椭圆上两点与焦点连线的几何关系.②求椭圆的离心率.解答本题的关键是把已知条件化为,,a b c 之间的关系.详解: 如图所示,设m PF =1,则1,2PQ m FQm ==.由椭圆定义得a QF QF PF PF 22121=+=+. 所以a Q F PQ PF 411=++.即()a m 422=+.所以()a m 224-=.又()a m a PF 22222-=-=.在12Rt PF F ∆中, 2212221F F PF PF =+.即()()222224224222c aa =-+-.所以()222962321,62c e a=-=-=-.点拔:求椭圆的离心率e 的值,即求ca的值,解答这类题目的主要思路是将已知条件转化为,,a b c 之间的关系.如特征三角形中边边关系、椭圆的定义、222c a b =-等关系都与离心率有直接联系,同时,,,a b c 之间是平方关系,所以,在求e 值时,也常先考查它的平方值. ●活动二 椭圆中的最值问题例5.设P 为椭圆22221x y a b+=上任意一点,1F 为它的一个焦点,求1PF 的最大值和最小值.【知识点:椭圆的几何性质,椭圆的定义】详解:设2F 为椭圆的另一焦点,则由椭圆定义得:a PF PF 221=+,122PF PF c -≤Q ,1222c PF PF c ∴-≤-≤,122222a c PF a c ∴-≤≤+,即c a PF c a +≤≤-1,1PF ∴的最大值为c a +,最小值为c a -.点拔:椭圆上到某一焦点的最远点与最近点分别是长轴的两个端点,应掌握这一性质.例6.若AB 为过椭圆22221x y a b+=中心的弦,Fc (,0)为椭圆的右焦点,则AFB ∆ 的面积最大值是多少?【知识点:椭圆的几何性质,直线与椭圆的位置关系】 详解:设A 、B 两点的坐标分别为0000(,),(,)x y x y --,则:AFB OFB OFA S S S ∆∆∆=+001122c y c y =⋅⋅+⋅⋅-00122c y c y =⋅⋅=⋅.因为点A 、B 在椭圆22221x y a b+=上,所以点A 00(,)x y 的纵坐标0y 的最大值是0y b =.所以AFB S ∆的最大值为bc .点拔:此题关键的地方是写出过椭圆中心的弦与椭圆交点的坐标,然后表示出相应面积. 3.课堂总结 【知识梳理】依据椭圆的几何性质填写下表: 标准方程22221(0)x y a b a b +=>> 22221(0)y x a b a b +=>> 图形性质 焦点 12(,0),(,0)F c F c - 12(0,),(0,)F c F c -焦距 ()2212||2F F c c a b ==-()2212||2F F c c a b ==-范围 ,x a y b ≤≤,x b y a ≤≤对称性 关于x 轴 ,y 轴 ,坐标原点对称顶点 (,0),(0,)a b ±±(0,),(,0)a b ±±轴长轴长2a ,短轴长2b【重难点突破】(1)根据曲线的方程,研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一.本节就是根据椭圆的标准方程来研究它的几何性质.其性质可分为两类:一类是与坐标系无关的本身固有性质,如长短轴长、焦距、离心率;一类是与坐标系有关的性质,如顶点、焦点.(2)通过对椭圆的范围、对称性、特殊点(顶点、焦点、中心)、对称轴及其他特性的讨论从整体上把握曲线的形状、大小和位置,进而掌握椭圆的性质,学习过程中应注意,图形与方程对照、方程与性质对照,通过数形结合的方式探究掌握椭圆的几何性质.(3)根据椭圆几何性质解决实际问题时,关键是将实际问题转化为数学问题,建立数学模型,用代数知识解决几何问题,体现了数形结合思想、函数与方程及等价转化的思想方法. (4)如图所示在2Rt BF O V 中,a c O BF =∠2cos ,记ace =则10<<e ,e 越大,O BF 2∠越小,椭圆越扁;e 越小,O BF 2∠越大,椭圆越圆. 4.随堂检测1.已知点(,)m n 在椭圆228324x y +=,则24m +的取值范围是( )A .423,423⎡⎤-+⎣⎦B .43,43⎡⎤-+⎣⎦C .422,422⎡⎤-+⎣⎦D .42,42⎡⎤-+⎣⎦答案:A离心率()22101c b e e a a==-<<解析:【知识点:椭圆的几何性质】2.椭圆的短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程是( )A .221169x y +=或221916x y += B .221259x y +=或221259y x += C .2212516x y +=或2212516y x +=D .无法确定 答案:C解析:【知识点:椭圆的标准方程,椭圆的几何性质】3.设椭圆的两个焦点分别为F 1、F 2,过F 1作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率为( ) A.22B.212- C .22- D.12- 答案:D解析:【知识点:椭圆的几何性质】设椭圆方程为()012222>>=+b a by a x 如图,∵)0,(1c F -,∴()P y c P ,-代入椭圆方程得12222=+b y a c P ,∴222a b y P =,∴2121F F a b PF ==,即c ab 22=, 又∵222c a b -=,∴c ac a 222=-,∴0122=-+e e ,又10<<e ,∴12-=e . (三)课后作业 基础型 自在突破1.已知点(,1)A a 在椭圆22142x y +=的内部,则a 的取值范围是( ) A. 22a -<< B. 22a a <->或 C .22a -<< D .11a -<< 答案: A解析:【知识点:椭圆的几何性质】2.若焦点在轴上的椭圆2212x y m+=的离心率为12,则m =( ) A. 3B.32C .83D .23答案:B解析:【知识点:椭圆的几何性质】3. 椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A. 14B.12C .2D .4 答案: A解析:【知识点:椭圆的几何性质】4. 已知椭圆的长轴长8,离心率为32,则椭圆的标准方程为()A.221 43x y+=B.221163x y+=或221163y x+=C.221 164x y+=D.221164x y+=或221164y x+=答案:D解析:【知识点:椭圆的标准方程,椭圆的几何性质】5.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是______.答案:1 2解析:【知识点:椭圆的几何性质】6.椭圆的一个焦点与短轴两端点的连线互相垂直,与离它较近的长轴端点的距离为105-,则此椭圆的方程为________________________.答案:222211 105510x y x y+=+=或解析:【知识点:椭圆的标准方程,椭圆的几何性质】能力型师生共研7.椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆离心率为()A. 22B.3 2C.5 3D.63答案:A解析:【知识点:椭圆的几何性质】8.已知22221(0)x y a b a b +=>>的两个定点为()(),0,0,A a B b ,且左焦点为,F FAB ∆是以B 为直角三角形,则椭圆的离心率为( )A. 312- B. 512- C. 1+54D.3+14答案:B解析:【知识点:椭圆的几何性质】9. 以椭圆两焦点F 1、F 2所连线段为直径的圆,恰好过短轴两端点,则此椭圆的离心率e 等于__________ 答案:22解析:【知识点:椭圆的几何性质】 10. 求适合下列条件的椭圆的标准方程:(1)与椭圆369422=+y x 有相同的焦距,且离心率为55. (2)长轴长是短轴长的2倍,且经过点()4,2-P . 答案:见解析解析:【知识点:椭圆的标准方程,椭圆的几何性质】(1)∵椭圆369422=+y x 的标准方程为:14922=+y x , ∴5492=-=c ,∴该椭圆的焦距522=c ,5=c .又∵55==a c e ,∴5=a ,252=a .∴20525222=-=-=c ab . ∴所求椭圆的方程为:1202522=+y x 或1202522=+x y . (2)设椭圆的标准方程为12222=+b y a x 或()012222>>=+b a bx a y ,由已知得b a 2=,且椭圆过点()4,2-, ∴1164422=+b b 或1441622=+bb , 解得172=b ,682=a 或82=b ,322=a ,∴所求的椭圆方程为1176822=+y x 或183222=+x y . 探究型 多维突破11.已知A 、B 为椭圆C:2211y x m m+=+的长轴的两个端点,P 是椭圆C 上的动点,且APB ∠的最大值是23π,则实数m 的值等于( )A.312+B.312-C.12D.32-答案: C解析:【知识点:椭圆的几何性质】由椭圆性质知,当点P 位于短轴的端点时APB ,∠取得最大值, 则tan 1132m m m+π=⇒=.12. 设P 是椭圆22221(0)x y a b a b +=>>上的一点,F 1,F 2是椭圆的左、右焦点,且∠F 1PF 2=60°,求椭圆的离心率的取值范围. 答案:见解析解析:【知识点:椭圆的定义,椭圆的几何性质】 解法一:如下图点P 是椭圆上的点,F 1,F 2是椭圆的焦点,由椭圆定义得a PF PF 221=+,① 在△F 1PF 2中,由余弦定理得21260cos 212212221=-+=︒PF PF F F PF PF . 即21222214PF PF c PF PF =-+. 由①得221222142a PF PF PF PF =++, 所以22134b PF PF =⋅②. 由①和②根据基本不等式,得221212⎪⎪⎭⎫⎝⎛+≤⋅PF PF PF PF . 即2234a b ≤,又222c a b -=,故()22234a c a ≤-,解得21≥=a c e . 又1<e ,所以该椭圆的离心率e 的范围是⎪⎭⎫⎢⎣⎡1,21.解法二:由解法一得出a PF PF 221=+①,22134b PF PF =⋅②. 由①②可知1PF ,2PF 是方程034222=+-b ax x 的两根.则有0344422≥⨯-=∆b a ,即()2222443c a b a -=≥,所以224a c ≥.所以21≥=a c e ,又1<e ,所以该椭圆离心率e 的范围是⎪⎭⎫⎢⎣⎡1,21.解法三:设点()y x P ,,则ex a PF +=1,ex a PF -=2. 在△F 1PF 2中由余弦定理,得21260cos 212212221=-+=︒PF PF F F PF PF . 化简得222234ea c x -=,又因为a x a <<-. 2222340a e a c <-≤,即1314022<-≤ee ,解得121<≤e ,所以离心率的范围是⎪⎭⎫⎢⎣⎡1,21. 解法四:设椭圆交y 轴于B 1,B 2两点,则当点P 位于B 1或B 2处时,点P 对两焦点的张角最大,故︒≥∠60211F B F ,则︒≥∠3021F OB . 在Rt △OB 1F 2中2130sin sin 21=︒≥=∠a c F OB ,所以离心率e 的取值范围是⎪⎭⎫⎢⎣⎡1,21. [点评] 本题根据椭圆定义及性质从不同角度应用了四种方法求椭圆离心率的范围,法一应用了基本不等式,法二构造一元二次方程,应用了方程思路,可谓奇思妙解,法三通过焦半径公式搭建起应用x 范围的桥梁,法四应用了极端思想使问题迅速得解,由此可见,在椭圆中建立不等关系的途径或方法还是比较多的,平时解题时需要根据已知条件灵活选择方法,达到快速而又准确地解答题目的目的. 四、自助餐1. 已知点(3,2)在椭圆22221x y a b+=上,则( ).A .点(-3,-2)不在椭圆上B .点(3,-2)不在椭圆上C .点(-3,2)在椭圆上D .无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上答案:C解析:【知识点:椭圆的几何性质】2.椭圆的焦点在x 轴上,长、短半轴之和为10,焦距为45,则椭圆的标准方程A.221 3616x y+=B.221 1636x y+=C.221 64x y+=D.221 64y x+=答案:A解析:【知识点:椭圆的标准方程,椭圆的几何性质】3.椭圆221259x y+=上点P到右焦点的距离().A.最大值为5,最小值为4B.最大值为10,最小值为8C.最大值为10,最小值为6D.最大值为9,最小值为1答案:D解析:【知识点:椭圆的几何性质】点评:若椭圆上的点P到焦点的距离最小,则P点是椭圆的长轴离焦点近的端点,若椭圆上的点P到焦点的距离最大,则P点是椭圆的长轴离焦点远的端点4.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是().A.221 8172x y+=B.221 819x y+=C.221 8145x y+=D.221 8136x y+=解析:【知识点:椭圆的标准方程,几何性质】5.椭圆22194x y k+=+的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D.1925或21 答案:C解析:【知识点:椭圆的几何性质】6.P 点在椭圆22143x y +=上运动,点Q 、R 分别在圆22(1)1x y ++=与22(1)1x y -+=上运动,则PQ PR +的最大值是( ) A .4 B .6C .27D .523+ 答案:B解析:【知识点:椭圆的几何性质,圆的性质】7. 已知P 是以12,F F 为焦点的椭圆22221(0)x y a b a b +=>>上的一点,若121210,tan 2PF PF PF F ⋅=∠=u u u r u u u u r ,则此椭圆的离心率为________.解析:【知识点:椭圆的几何性质】 答案:538.已知1F ,2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是_____________.答案:⎪⎪⎭⎫⎝⎛22,0 解析:【知识点:椭圆的几何性质】9.椭圆22221(0)x y a b a b +=>> 的离心率为512e -=,A 是左顶点,F 是右焦点,B 是短轴的一个端点,则ABF ∠等于_____________. 答案:90︒解析:【知识点:椭圆的几何性质】10.如图所示,12,F F 分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.答案:见解析解析:【知识点:椭圆的几何性质】设椭圆的长半轴、短半轴、半焦距长分别为a 、b 、c ,可得焦点为()0,1c F -、()0,2c F ,点M 的坐标为⎪⎭⎫ ⎝⎛b c 32,,∵Rt △MF 1F 2中,221MF F F ⊥, ∴2122221MF MF F F =+,即2122944MF b c =+, 根据椭圆的定义得a MF MF 221=+, 可得()222213222⎪⎭⎫ ⎝⎛-=-=b a MF a MF ,∴222944322b c b a +=⎪⎭⎫ ⎝⎛-,整理得ab a c 384422-=,可得()ab c a 2322=-,所以ab b 232=,解得a b 32=, ∴a b a c 3522=-=,因此可得35==a c e ,即该椭圆的离心率等于35. 11. 动点M 到一个定点()0,c F 的距离和它到一条定直线c a x l 2:=的距离比是常数()10<<=e ace ,求动点M 的轨迹方程. 答案:见解析解析:【知识点:椭圆的定义】 设()y x M ,,由题意得()ac ca x y c x =-+-222, ()()22222222c a a y a x c a-=+-,令222b c a =-,方程化为22221(0)x y a b a b +=>>∴所求动点的轨迹方程为22221(0)x y a b a b+=>> .12. P 是椭圆22221(0)x y a b a b+=>> 上异于长轴端点的任一点,1F 、2F 是椭圆的两个焦点,若12PF F α∠=,21PF F β∠=,求证:椭圆的离心率sin()sin sin e αβαβ+=+.答案:见解析解析:【知识点:椭圆的定义,标准方程,椭圆的几何性质】 证明:在△12PF F 中,由正弦定理,得:1212sin sin sin[180()]PF PF F F βααβ==-+.由等比定理得1212sin sin sin()PF PF F F βααβ+=++,即:22sin sin sin()a cβααβ=++.∴sin()sin sin c e a αβαβ+==+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.2 椭圆的简单几何性质(一)教学目标(一)教学知识点椭圆的范围、对称性、对称轴、对称中心、离心率及顶点. (二)能力训练要求1.使学生了解并掌握椭圆的范围.2使学生掌握椭圆的对称性,明确标准方程所表示的椭圆的对称轴、对称中心. 3.使学生掌握椭圆的顶点坐标、长轴长、短轴长以及a 、b 、c 的几何意义,明确标准方程所表示的椭圆的截距.4.使学生掌握离心率的定义及其几何意义. 教学重点椭圆的简单几何性质. 教学难点椭圆的简单几何性质.(这是第一次用代数的方法研究几何图形的性质的) 教学方法师生共同讨论法.通过师生的共同讨论研究,学生的亲身实践体验,使学生明确椭圆的几何性质的研究方法,加强对性质的理解,掌握椭圆的几何性质. 教学过程 Ⅰ.课题导入[师]前面,我们研究讨论椭圆的标准方程)0(12222>>=+b a by a x ,(焦点在x 轴上)或)0(12222>>=+b a b x a y (焦点在y 轴上)(板书) 那么我们研究椭圆的标准方程有什么实际作用呢?同学们知道,2008年的8月,中国为世界奉献了一个空前盛况的奥运会,一个多月后的9月25日,世界的目光再次投向中国,同学们知道是什么事吗?(出示神七发射画片并解说):2008年9月25日21时,“神舟七号”载人飞船顺利升空,实现多人多天飞行和宇航员太空行走等多项先进技术,标志着我国航天事业又上了一个新台阶,请问: “神舟七号”载人飞船的运行轨道是什么?――对,是椭圆。

据有关资料报道,飞船发射升空后,进入的是以地球的地心为一个焦点,距地球表面近地点高度约200公里、远地点约346公里的椭圆轨道。

我们在前几节课刚刚学习了椭圆的标准方程,请同学们回忆椭圆是标准方程是怎样的?它们有几种形式?问题1:我们前面刚刚学习了椭圆的标准方程,同学们还记得椭圆的标准方程吗?它有几种形式(板书))0(12222>>=+b a b y a x )0(12222>>=+b a bx a y(焦点在x 轴上) (焦点在y 轴上) 问题2:你想求出神七在宇宙中运行的椭圆轨道的标准方程吗? Ⅱ.讲授新课(板书标题)椭圆的几何性质 一、几何性质[师]我们不妨对焦点在x 轴的椭圆的标准方程.(板书)12222=+by a x (a >b >0)进行讨论.在[解析]几何里,我们常常是从两个方面来研究曲线的几何性质:一是由曲线的图像去“看”曲线的几何特征(以形辅数),同时又由曲线的方程来“证”明它(以数助形)。

我们今天也用这种方法来研究椭圆的几何性质, 1.范围:[师]所谓范围,就是指椭圆图象上的所有的点在什么约束范围内,也就是说椭圆上所有的点的纵、横坐标应该在哪个范围内取值。

那么,你能从椭圆的图形上看出椭圆上所有的点所在的范围吗?[师]请看,如果我们过椭圆与x 轴的两个交点作两条平行于y 轴的直线,再过椭圆与y 轴的两个交点作两条平行于x 的直线(出示幻灯片)。

此时,你能说出椭圆的范围吗? [生]在一个矩形中[师]这两组平行线所在的直线方程是多少?能从椭圆的标准方程中找出它来吗? [生]方程中两个非负数的和等于1,所以,椭圆上点的坐标(x ,y )适合不等式:22a x ≤1, 22bx ≤1 即:x 2≤a 2,y 2≤b 2 ∴|x |≤a ,|y |≤b这说明椭圆位于直线x =±a ,y =±b 所围成的矩形里. 结论(板书)椭圆的范围是-a ≤x ≤a ; -b ≤y ≤b[师]很好!请大家思考:对函数性质的研究常常是根据函数的[解析]来讨论的,那么我们能否从函数的思想出发,对椭圆的范围进行分析呢?[生](师点拨、提示)椭圆的标准方程可化为两个函数y =22x a a b -、y =-22x a ab -,对它们的定义域、值域分别进行讨论可得-a ≤x ≤a ,-b ≤y ≤b ,即椭圆位于直线x =±a ,y =±b 所围成的矩形里.[师]将由函数的[解析]式研究函数的性质与由椭圆的方程研究椭圆的性质结合起来学习,有助于我们理解知识与知识之间的本质联系,对我们的进一步学习是大有益处的. 2.对称性:[师]你能从椭圆的图形上看出椭圆的对称性吗? [生]关于x 轴、y 轴成轴对称;关于原点成中心对称。

[师]我们怎样由椭圆的标准方程来研究椭圆的对称性? 想一想,我们前面在函数中是怎样研究函数图像的对称性的?[师]在函数里,我们讨论过对称性,如果以如果以-x 代x 方程不变,那么曲线关于y 轴对称,同理,以-y 代y 方程不变,那么曲线关于x 轴对称,如果同时以-x 代x ,以-y 代y 方程不变,那么曲线关于原点对称.[师]我们来看椭圆的标准方程,以-x 代x ,或以-y 代y 或同时以-x 代x ,-y 代y ,方程怎样改变?[生]没有改变.[师]所以椭圆关于x 轴、y 轴及原点都是对称的,这时坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫椭圆的中心.结论(板书)坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫椭圆的中心. 3.顶点:[师]什么叫做椭圆的顶点?———椭圆与它的对称轴的交点叫做椭圆的顶点.(板书) [师]由刚才我们所学的第二条性质,标准方程下的椭圆的对称轴是哪个? [生]坐标轴[师]那么标准方程下的椭圆的顶点就在坐标轴上。

你能从椭圆的图形上看出椭圆有几个顶点?他们分别在什么地方?[师](出示幻灯提示)椭圆有四个顶点,其中,在x 轴有两个顶点,我们把它命名为21A A 、,在y 轴有两个顶点,我们把它命名为21B B 、[师]想一想,怎样由椭圆的标准方程求得椭圆的顶点坐标?(再提示:直线方程1+=x y 与x 轴的交点坐标是怎样求的?与y 轴的坐标又是怎样求的?)[生]在椭圆的标准方程里,令y =0,得a x ±=可得A 1(-a ,0)、A 2(a ,0)是椭圆在x 轴上的两个顶点,,同理. 令x =0得y =±b ,所以得到:B 1(0,-b )、B 2(0,b )是椭圆在y 轴的两个顶点结论(板书)椭圆的四个顶点分别是A 1(a ,0)A 2(-a ,0)、B 1(0,b )、B 2(0,-b )。

[师]线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴.它们的长分别是2a 和2b ,其中a 和b 分别叫椭圆的长半轴长和短半轴长.(板书)[师]通过以上性质,我们就知道了在椭圆的标准方程节课里我们接触到的三个基本量:a 、b 、c 的几何意义是a 、b 、c 分别是长半轴长、短半轴长、半焦距[师]请观察图形,如果我们吧短轴的一个端点与一个焦点连接起来,则短轴端点、中心、焦点构成一直角Δ,显然,这个直角Δ的两直角边的长分别是b 和c ,那么,它的斜边隐私多长呢?由椭圆的对称性可知,椭圆短轴的端点到两个焦点的距离相等,且等于长半轴长,即 |B 1F 1|=|B 2F 1|=|B 1F 2|=|B 2F 2|=a 所以斜边长是a , 在Rt △OB 2F 2中 |B 2F 2|2-|OF 2|2=|OB 2|2 即a 2-c 2= b 2这就是在上节中令a 2-c 2=b 2的几何意义.我们把Rt △OB 2F 2叫做椭圆的特征三角形,请大家注意这个特征三角形,我们在后续内容中还将研究它。

[师]现在,我们来举一个例子来说明椭圆的范围、顶点、对称性的作用。

(出示幻灯)根据前面所学有关知识画出下列图形(1)1162522=+y x (2)142522=+y x (在学生思考后教师评讲)第一步,作出坐标轴,第二步找出顶点坐标,第三步,画出范围,第四步作出一象限的图像(必要时还可以取x 等于1、2、3、4,求出y 的值来描点)最后根据对称性画出其他几个象限的图像,用同样方法可作出(2)的图像。

[师]从以上两个椭圆的形状看,同为椭圆为什么有些椭圆“圆”些,有些椭圆“扁”些? 是什么因素影响了椭圆的扁圆程度?我一起来研究椭圆是性质4――离心率。

4.离心率[师]椭圆的离心率是怎样定义的? [生]椭圆的焦距与长轴长的比aca c =22=e ,叫做椭圆的离心率.(板书) [师]椭圆离心率e 的范围是怎样的? [生]因为a >c >0,所以0<e <1 结论(板书)离心率ac e =,(0<e <1) [师]e 既然在(0,1)变化,e 的变化又对椭圆有什么影响呢? [师]我们不妨用两个例子来看一看。

对于(1)1162522=+y x ,椭圆的长半轴、短半轴、半焦距a 、b 、c 分别等于多少?离心率呢?[生]a =5, b =4, ∴c =3;离心率53==a c e [师](2)142522=+y x 呢? [生]a =5, b =2, ∴c =21;离心率5212==a c e[师]两个的离心率那股大? [生]第二个大于第一个[师]从椭圆的图形上看,哪个椭圆更扁些?哪个椭圆更圆些? [生]第二个扁些,第一个圆些。

[师]你能得出什么结论来?[生]离心率越大椭圆就越扁,离心率越小,椭圆越圆。

[师]我们可以再用一个动画展示一下椭圆的扁圆程度受离心率影响的情况。

[师](4)e 与a ,b 的关系:22221ab a b a ac e -=-==[师]到此为止,我们已学习了椭圆的范围、对称性、顶点及离心率,我们把这些性质总结一下师生共同完成下表标准方程)0(12222>>=+b a b y a x )0(12222>>=+b a bx a y 图形范围 -a ≤x ≤a ,-b ≤y ≤b -b ≤x ≤b , -a ≤y ≤a对称性 关于x 轴、y 轴、原点对称顶点坐标 (±a ,0)(0,±b )(±b ,0),(0,±a )离心率)10(<<=e ace[师](指出)以上我们是对焦点在x 轴上的标准椭圆的性质的总结,那么,焦点在y 轴上的椭圆呢?请同学们自己完成表的右半部分[师]下面我们来看看椭圆的这些几何性质的应用。

二、应用(板书)[师]下面同学们自己来看例1求椭圆400251622=+y x 的长轴长,短轴长,离心率,焦点和顶点的坐标。

[师]根据椭圆方程求椭圆的长轴长、短轴长、离心率、焦点和顶点坐标时,首先应该做些什么?[生]首先应将椭圆的方程化成标准方程. [师]然后呢?[师](归纳)解决这类问题的关键是1、将椭圆方程转化为标准方程,再求出椭圆的基本量a 、b 、c 、e 等;2,判断焦点的位置和长轴的位置。

[师](总结)解决这类问题的一般步骤是:①化为标准方程,②求出a 、b 、c 、知,③判断焦点位置,④回答所提问题。

相关文档
最新文档