解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(四)带答案人教版新高考分类汇编辅导班专用
解析几何综合问题圆与椭圆双曲线抛物线等40分钟限时练(四)带答案人教版新高考分类汇编
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线22y x =-+与曲线x x m+1y yn =的交点个数为 ▲3.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_____.(汇编全国理,16)评卷人得分三、解答题4.已知正三角形OAB 的三个顶点都在抛物线y 2=2x 上,其中O 为坐标 原点,设圆C 是△OAB 的外接圆(点C 为圆心). (1)求圆C 的方程;(2)设圆M 的方程为(x -4-7cos θ)2+(y -7sin θ)2=1,过圆M 上任意一点P 分别作圆C的两条切线PE 、PF ,切点为E 、F ,求CE ·CF 的最大值和最小值.5.已知椭圆C :x 24+y 2=1,过点(m ,0)作圆x 2+y 2=1的切线l 交椭圆G 于A 、B 两点.(1)求椭圆C 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值.6.已知椭圆1:C 22221(0)x y a b a b+=>>的右焦点为F ,上顶点为A ,P 为1C 上任一点,MN 是圆2:C 22(3)1x y +-=的一条直径.若与AF 平行且在y 轴上的截距为32-的直线l 恰好与圆2C 相切.(Ⅰ)求椭圆1C 的离心率;(7分)(Ⅱ)若PM PN ⋅的最大值为49,求椭圆1C 的方程.(8分)Oxy7.设顶点为P 的抛物线23(0)y ax x c a =-+≠交x 轴正半轴于A 、B 两点,交y轴正半轴于C 点,圆D (圆心为D )过A 、B 、C 三点,恰好与y 轴相切. 求证:PA DA ⊥.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.DD【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D 。
解析几何综合问题圆与椭圆双曲线抛物线等章节综合检测提升试卷(四)含答案人教版高中数学考点大全
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于
(A )9π (B )8π (C )4π (D )π
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C
相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.
解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0。
解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(四)带答案人教版新高考分类汇编艺考生专用
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0的距离d=55=1,且圆的半径r 满足r 2=12+32=10.∴圆的方程为x 2+(y -1)2=10.3. 已知直线l 的方程为2x =-,圆22:1O x y +=,则以l 为准线,中心在原点,且与圆O 恰好有两个公共点的椭圆方程为 . 评卷人得分 三、解答题4.在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x .(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;(3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值. 【汇编高考真题上海理22】(4+6+6=16分)5.已知,A B 分别是直线33y x =和33y x =-上的两个动点,线段AB 的长为23是AB 的中点,点P 的轨迹为.C(1)求轨迹C 的方程;(2)过点(1,0)Q 任意作直线l (与x 轴不垂直),设l 与轨迹C 交于,M N 两点,与y 轴交于R 点。
解析几何综合问题圆与椭圆双曲线抛物线等章节综合检测提升试卷(四)带答案新教材高中数学
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 如果以原点为圆心的圆经过双曲线C :)0,0(12222>>=-b a bya x 的顶点,并且被双曲线的右准线分成弧长之比为3:1的两段弧,则双曲线的离心率为________ 3. 已知直线l 的方程为2x =-,圆22:1O x y +=,则以l 为准线,中心在原点,且与圆O 恰好有两个公共点的椭圆方程为 .评卷人得分三、解答题4.(汇编年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.5.在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足MB//OA , MA •AB = MB •BA ,M 点的轨迹为曲线C 。
(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值。
(汇编年高考全国新课标卷理科20)(本小题满分12分)分析:(1)按照“建系、设点、列式、化简”求轨迹方程;(2)把点到直线的距离用动点坐标表示,然后化简,利用均值不等式求最值。
解析几何综合问题圆与椭圆双曲线抛物线等早练专题练习(四)带答案人教版新高考分类汇编
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .若90APB ∠=,则椭圆离心率e 的取值范围是 ▲ .3.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_____.(汇编全国理,16)评卷人得分 三、解答题4.(汇编年高考课标Ⅰ卷(文))已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长是,求||AB .请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的 方框涂黑.5.如图,椭圆0C :22221(0x y a b a b+=>>,a ,b 为常数),动圆22211:C x y t +=,1b t a <<。
点12,A A 分别为0C 的左,右顶点,1C 与0C 相交于A ,B ,C ,D 四点。
解析几何综合问题圆与椭圆双曲线抛物线等章节综合检测专题练习(四)带答案新人教版高中数学名师一点通
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的右准线与x 轴的交点为M ,以椭圆的长轴为直径作圆O ,过点M 引圆O 的切线,切点为N ,若△OMN 为等腰直角三角形,则椭圆的离心率为 .O A 1A 2B 1 B 2xy (第173. 已知直线l 的方程为2x =-,圆22:1O x y +=,则以l 为准线,中心在原点,且与圆O 恰好有两个公共点的椭圆方程为 . 评卷人得分三、解答题4.设A 为椭圆221259x y +=上任一点,B 为圆22(1)1x y -+=上任一点,求AB 的最大值及最小值.5.在平面直角坐标系xOy 中,如图,已知椭圆E :22221(0)y x a b a b+=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B .设直线11A B 的倾斜角的正弦值为13,圆C 与以线段2OA 为直径的圆关于直线11A B 对称.(1)求椭圆E 的离心率;(2)判断直线11A B 与圆C 的位置关系,并说明理由; (3)若圆C 的面积为π,求圆C 的方程.6.中心在原点,焦点在x 轴上的椭圆C 的焦距为2,两准线间的距离为10.设A(5,0), B(1,0).(1)求椭圆C 的方程;(4分)(2)过点A 作直线与椭圆C 只有一个公共点D ,求过B ,D 两点,且以AD 为切线的圆的方程;(6分)(3)过点A 作直线l 交椭圆C 于P ,Q 两点,过点P 作x 轴的垂线交椭圆C 于另一点S .若→AP= t →AQ (t >1),求证:→SB= t →BQ (6分)7.已知圆O :222x y +=交x 轴于A ,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F .若P 是圆O 上一点,连结PF ,过原点O 作直线PF 的垂线交椭圆C 的左准线于点Q . (Ⅰ)求椭圆C 的标准方程;(5分)(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切;(5分)(Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由. (5分)【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.DD【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原xy OPFQAB点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D 。
解析几何综合问题圆与椭圆双曲线抛物线等强化训练专题练习(四)含答案人教版高中数学高考真题汇编
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )
A .22x +y +2x=0
B .22x +y +x=0
C .22x +y -x=0
D .22x +y -2x=0(汇编福建理) 第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.圆心在抛物线y x 42=上,并且和抛物线的准线及y 轴都相切的圆的标准方程为 ▲ .。
解析几何综合问题圆与椭圆双曲线抛物线等课后限时作业(四)带答案人教版新高考分类汇编
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) (A )12(B )1(C )2(D )4第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.圆心在抛物线y x 42上,并且和抛物线的准线及y 轴都相切的圆的标准方程为 ▲ .3.设椭圆x2a2+y2b2=1(a>b>0)的离心率为e=12,右焦点为F(c,0),方程ax2-bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)________.①必在圆x2+y2=2上②必在圆x2+y2=2外③必在圆x2+y2=2内解析:由e=12=ca,得a=2c,b=3c.所以x1+x2=ba=32,x1x2=-ca=-12.于是,点P(x1,x2)到圆心(0,0)的距离为x21+x22=(x1+x2)2-2x1x2=34+1=74<2,所以点P在圆x2+y2=2内.评卷人得分三、解答题4.设A为椭圆221259x y+=上任一点,B为圆22(1)1x y-+=上任一点,求AB的最大值及最小值.5.已知椭圆C:x24+y2=1,过点(m,0)作圆x2+y2=1的切线l交椭圆G于A、B两点.(1)求椭圆C的焦点坐标和离心率;(2)将|AB|表示为m的函数,并求|AB|的最大值.O xy6.如图,椭圆22143x y +=的左焦点为F ,上顶点为A , 过点A 作直线AF 的垂线分别交椭圆、x 轴于,B C 两点. ⑴若AB BC λ=,求实数λ的值;[来源:Z|xx|] ⑵设点P 为ACF △的外接圆上的任意一点,当PAB △的面积最大时,求点P 的坐标. (江苏省苏州市汇编年1月高三调研) (本小题满分16分)7.已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .(1)①若圆O 过椭圆的两个焦点,求椭圆的离心率e ; ②若椭圆上存在点P ,使得90APB ∠=,求椭圆离心率e 的取值范围;(2)设直线AB 与x 轴、y 轴分别交于点M ,N ,求证:2222a b ONOM+为定值.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C 本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2=2px (p >0)的准线方程为2p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0) 所以2,12=-=-p p第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 4)1()2(22=-+±y x3.③ 评卷人得分三、解答题4.(选修4—4:坐标系与参数方程)解:设圆22(1)1x y -+=的圆心C(1,0),求AB 的最大值只需求AC 的最大值.A 在椭圆上,设A(5cos ,3sin )θθ,22225135(5cos 1)9sin 16(cos )1616AC θθθ=-+=-+, ∴当5cos 16θ=时,mi n 3154AC =,当cos 1θ=-时,mi n 6AC =, min 7AB ∴=,min 31514AB =-.………………………………………………………10分 5.解:(Ⅰ)由已知得,1,2==b a 所以.322--=b a c所以椭圆C 的焦点坐标为)0,3(),0,3(-,离心率为.23==a c e (Ⅱ)由题意知,1||≥m .当1=m 时,切线l 的方程1=x ,点A 、B 的坐标分别为),23,1(),23,1(-此时3||=AB 当m =-1时,同理可得3||=AB当1||>m 时,设切线l 的方程为),(m x k y -=由0448)41(.14),(2222222=-+-+⎪⎩⎪⎨⎧=+-=m k mx k x k y x m x k y 得;设A 、B 两点的坐标分别为),)(,(2211y x y x ,则2222122214144,418k m k x x k mk x x +-=+=+;又由l 与圆.1,11||,1222222+==+=+k k m k km y x 即得相切∴212212)()(||y y x x AB -+-=]41)44(4)41(64)[1(2222242km k k m k k +--++=2.3||342+=m m由于当3±=m 时,,3||=AB因为,2||3||343||34||2≤+=+=m m m m AB 且当3±=m 时,|AB |=2,所以|AB |的最大值为2.6.(1)由条件得()()1,0,0,3,F A - 3.AF k =因为,AB AF ⊥所以3,3AB k =-3: 3.3AB y x =-+ 令0,y =得3,x =所以点C 的坐标为()3,0.由22333143y x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得213240,x x -=解得10x =(舍)224.13x =所以点B 的坐标为2453,1313⎛⎫⎪ ⎪⎝⎭. 因为AB BC λ=,所以0,λ>且24813.245313AB BC λ===-(2)因为ACF △是直角三角形,所以ACF △的外接圆的圆心为()1,0D ,半径为2. 所以圆D 的方程为()2214x y -+=.因为AB 为定值,所以当PAB △的面积最大时点P 到直线AC 的距离最大. 过D 作直线AC 的垂线m ,则点P 为直线m 与圆D 的交点 . 直线():31m y x =-与()2214x y -+=联立得2x =(舍)或0,x =所以点P 的坐标为()0,3. 7.(本小题共16分)已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .(1)①若圆O 过椭圆的两个焦点,求椭圆的离心率e ; ②若椭圆上存在点P ,使得90APB ∠=,求椭圆离心率e 的取值范围;(2)设直线AB 与x 轴、y 轴分别交于点M ,N ,求证:2222a b ONOM+为定值.18.解:(Ⅰ)(ⅰ)∵ 圆O 过椭圆的焦点,圆O :222x y b +=, ∴ b c =,∴ 2222b a c c =-=, ∴ 222a c =,∴22e =. ……… 5分 (ⅱ)由90APB ∠=及圆的性质,可得2OP b =, ∴2222,OP b a =≤∴222a c ≤∴212e ≥,212e ≤<. ……… 10分 (Ⅱ)设()()()001122,,,,,P x y A x y B x y ,则 011011y y xx x y -=--整理得220011x x y y x y +=+22211x y b += ∴PA 方程为:211x x y y b +=,PB 方程为:222x x y y b +=.∴11x x y y +=22x x y y +,∴021210x y y x x y -=--,直线AB 方程为 ()0110x y y x x y -=--,即 200x x y y b +=. 令0x =,得20b ON y y ==,令0y =,得2b OM x x ==,∴2222222220022442a y b x a b a b a b b bON OM ++===,∴2222a b ON OM+为定值,定值是22a b ……… 16分。
解析几何综合问题圆与椭圆双曲线抛物线等课后限时作业(四)带答案人教版高中数学
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为()(A)12(B)1(C)2 (D)4第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题2.若直线mx+ny=4和圆O:x2+y2=4没有公共点,则过点(m,n)的直线与椭圆x25+y24=1的交点个数为________.解析:由题意可知,圆心O到直线mx+ny=4的距离大于半径,即得m2+n2<4,所以点(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点. 3.椭圆21)0,0(12222=>>=+e b a by ax 的离心率,右焦点F (c,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在与圆222=+y x 的位置关系是▲ . 评卷人得分三、解答题4.如图,直角三角形ABC 的顶点坐标(2,0)A -,直角顶点(0,22)B -,顶点C 在x 轴上,点P 为线段OA 的中点. (1)求BC 边所在直线方程; (2)求三角形ABC 外接圆的方程;(3)若动圆N 过点P 且与ABC ∆的外接圆内切, 求动圆N 的圆心N 所在的曲线方程.5.(汇编年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.6.定义变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩可把平面直角坐标系上的点(,)P x y 变换到这一平面上的点(,)P x y '''.特别地,若曲线M 上一点P 经变换公式T 变换后得到的点P '与点P 重合,则称点P 是曲线M 在变换T 下的不动点.(1)若椭圆C 的中心为坐标原点,焦点在x 轴上,且焦距为22,长轴顶点和短轴顶点间的距离为 2. 求该椭圆C 的标准方程. 并求出当3arctan 4θ=时,其两个焦点1F 、2F 经变换公式T 变换后得到的点1F '和2F '的坐标; (2)当3arctan4θ=时,求(1)中的椭圆C 在变换T 下的所有不动点的坐标; (3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩(2k πθ≠,k Z ∈)下的不动点的存在情况和个数.7.已知圆O :222x y +=交x 轴于A ,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F .若P 是圆O 上一点,连结PF ,过原点O 作直线PF 的垂线交椭圆C 的左准线于点Q . (Ⅰ)求椭圆C 的标准方程;(5分)(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切;(5分)(Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由. (5分)xy OPFQAB【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C 本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2=2px (p >0)的准线方程为2p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0) 所以2,12=-=-p p第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.23.点P (x1,x2)在圆内 评卷人得分三、解答题4.解:(1)∵k A B =-2,AB⊥BC,∴k C B =22, ……………………………2分∴直线BC 方程为:y =22x -22. ……………………………4分(2)直线BC 与x 轴交于C,令y =0,得C (4,0),∴圆心M (1,0),……………7分又∵AM =3,∴外接圆的方程为22(1)9x y -+=. ……………………10分 (3)∵P (-1,0),M (1,0),∵圆N 过点P (-1,0),∴PN 是该圆的半径.又∵动圆N 与圆M 内切,∴MN =3-PN ,即MN + PN =3. ……………12分 ∴点N 的轨迹是以M 、P 为焦点,长轴长为3的椭圆, ……………14分∴a =32,c =1,b 2=a 2-c 2=54,∴轨迹方程为2219544x y+=. …………………16分 5.由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|P M|+|PN|=12()()R r r R ++-=12r r +=4, 由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R≤2, 当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=23.当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q,则||||QP QM =1R r ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M 相切得2|3|11k k=+,解得24k =±. 当k =24时,将224y x =+代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x =4627-±,∴|AB|=2121||k x x +-=187.当k =-24时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|=23. 6.(理)解:(1)设椭圆C 的标准方程为22221x y a b+=(0a b >>),由椭圆定义知焦距2222c c =⇒=,即222a b -=…①.又由条件得224a b +=…②,故由①、②可解得23a =,21b =.即椭圆C 的标准方程为2213x y +=. 且椭圆C 两个焦点的坐标分别为()12,0F -和()12,0F .对于变换T :cos sin ,sin cos x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩,当3arctan 4θ=时,可得43,5534,55x y x x y y ⎧'+=⎪⎪⎨⎪'-=⎪⎩设()111,F x y '和()222,F x y '分别是由()12,0F -和()12,0F 的坐标由变换公式T 变换得到.于是,114342(2)0,5553432(2)0555x y ⎧=⋅-+⋅=-⎪⎪⎨⎪=⋅--⋅=-⎪⎩,即1F '的坐标为4232,55⎛⎫-- ⎪ ⎪⎝⎭; 又22434220,555343220555x y ⎧=⋅+⋅=⎪⎪⎨⎪=⋅-⋅=⎪⎩即2F '的坐标为4232,55⎛⎫ ⎪ ⎪⎝⎭.(2)设(,)P x y 是椭圆C 在变换T 下的不动点,则当3arctan4θ=时, 有43553455x y x x y y ⎧+=⎪⎪⎨⎪-=⎪⎩⇒3x y =,由点(,)P x y C ∈,即(3,)P y y C ∈,得:22(3)13y y += ⇒123y x y ⎧=±⎪⎨⎪=⎩,因而椭圆C 的不动点共有两个,分别为31,22⎛⎫ ⎪⎝⎭和31,22⎛⎫-- ⎪⎝⎭.(3) 设(,)P x y 是双曲线在变换T 下的不动点,则由cos sin ,sin cos ,x y x x y y θθθθ⋅+⋅=⎧⎨⋅-⋅=⎩()()sin 1cos ,sin 1cos ,y x x y θθθθ⋅=-⋅⎧⎪⇒⎨⋅=+⋅⎪⎩ 因为2k πθ≠,k Z ∈,故1cos sin tan sin 1cos 2y x θθθθθ-===+. 不妨设双曲线方程为221x y m n +=(0mn <),由tan 2y x θ=代入得 则有2222tan tan 2211x n m x x m n mnθθ⎛⎫⋅+ ⎪⎝⎭+=⇔=, 因为0mn <,故当2tan 02n m θ+=时,方程22tan 21n m x mnθ+=无解;当2tan 02n m θ+≠时,要使不动点存在,则需220tan2mnx n m θ=>+,因为0mn <,故当2tan 02n m θ+<时,双曲线在变换T 下一定有2个不动点,否则不存在不动点. 进一步分类可知:(i )当0n <,0m >时,即双曲线的焦点在x 轴上时,22tan 0tan 22nn m mθθ⇒+<⇒<-; 此时双曲线在变换T 下一定有2个不动点;(ii )当0n >,0m <时,即双曲线的焦点在y 轴上时,22tan 0tan 022nn m mθθ⇒+<⇒>->.此时双曲线在变换T 下一定有2个不动点. 7.(本小题满分15分)解:(Ⅰ)因为22,2a e ==,所以c=1……………………(3分)则b=1,即椭圆C 的标准方程为2212x y +=………………………………(5分) (Ⅱ)因为P (1,1),所以12PF k =,所以2OQ k =-,所以直线OQ 的方程为y=-2x(7分)又椭圆的左准线方程为x=-2,所以点Q(2-,4) ……………………………(8分) 所以1PQ k =-,又1OP k =,所以1k k PQ OP -=⊥,即OP PQ ⊥, 故直线PQ 与圆O 相切…………………………………(10分) (Ⅲ)当点P 在圆O 上运动时,直线PQ 与圆O 保持相切……………………(11分)证明:设00(,)P x y (00,1x ≠±),则22002y x =-,所以001PF y k x =+,001OQ x k y +=-, 所以直线OQ 的方程为001x y x y +=-……………(13分)所以点Q(-2,0022x y +)…………………… (13分)所以002200000000000022(22)22(2)(2)PQ x y y y x x x xk x x y x y y +--+--====-+++,又00OP y k x =,所以1k k PQ OP -=⊥,即OP PQ ⊥,故直线PQ 始终与圆O 相切 …(15分)。
解析几何综合问题圆与椭圆双曲线抛物线等晚练专题练习(四)带答案人教版新高考分类汇编
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0 C .22x +y -x=0D .22x +y -2x=0(汇编福建理)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知实数0p >,直线3420x y p -+=与抛物线22x p y=和圆222()24p p x y +-=从左到右的交点依次为,A B C D 、、、则AB CD的值为 ▲ .高考资源网w 。
w-w*k&s%5¥u3.若抛物线212y x =与圆222210x y ax a +-+-=有且只有两个不同的公共点,则实数a 的取值范围为___错 评卷人得分三、解答题4. 已知椭圆221:12x C y +=和圆222:1C x y +=,左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+ 求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.5.设A 为椭圆221259x y +=上任一点,B 为圆22(1)1x y -+=上任一点,求AB 的最大值及最小值.6.已知点P (4,4),圆C :22()5(3)x m y m -+=<与椭圆E :22221(0)x y a b a b +=>>有一个公共点A (3,1),F 1、F 2分别是椭圆的左、右焦点,直线PF 1与圆C 相切. (Ⅰ)求m 的值与椭圆E 的方程; (Ⅱ)设Q 为椭圆E 上的一个动点,求AP AQ ⋅的取值范围.7.设椭圆)22(18:222>=+a y ax M 焦点坐标为F 1(-c,0), F 2(c,0),点Q 是椭圆短轴上的顶点,且满足122c QF QF +=. (I )求椭圆M 的方程;(II )设A,B 是圆与()12:22=-+y x N 与y 轴的交点,P 是椭圆M 上的任一点,求PA PB ⋅的最大值.QPOyxF 1A C F 2(III )设P 0是椭圆M 上的一个顶点,EF 为圆()12:22=-+y x N 的任一条直径,求证00P E P F ⋅为定值。
解析几何综合问题圆与椭圆双曲线抛物线等40分钟限时练(四)带答案人教版高中数学新高考指导
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.椭圆21)0,0(12222=>>=+e b a by ax 的离心率,右焦点F (c,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在与圆222=+y x 的位置关系是▲ .3.以抛物线y 2=4x 的焦点为圆心、2为半径的圆,与过点A (-1,3)的直线l 相切,则直线l 的方程是______________________.评卷人得分三、解答题4.如图,在平面直角坐标系xoy 中,已知1(4,0)F -,2(4,0)F ,(0,8)A ,直线(08)y t t =<<与线段1AF 、2AF 分别交于点P 、Q . (1)当3t =时,求以12,F F 为焦点,且过PQ 中点的椭圆的标准方程; (2)过点Q 作直线1QR AF 交12F F 于点R ,记1PRF∆的外接圆为圆C .①求证:圆心C 在定直线7480x y ++=上;②圆C 是否恒过异于点1F 的一个定点?若过,求出该点的坐标;若不过,请说明理由.5.已知,A B 分别是直线33y x =和33y x =-上的两个动点,线段AB 的长为23是AB 的中点,点P 的轨迹为.C(1)求轨迹C 的方程;(2)过点(1,0)Q 任意作直线l (与x 轴不垂直),设l 与轨迹C 交于,M N 两点,与y 轴交于R 点。
解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(四)带答案新人教版高中数学名师一点通
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知椭圆221:12x C y +=和圆222:1C x y +=,椭圆1C 的左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.3.以椭圆 22221x y a b+=(a>b>0)的右焦点为圆心的圆经过原点O ,且与该椭圆的右准线交与A ,B 两点,已知△OAB 是正三角形,则该椭圆的离心率是 ▲ . 评卷人得分三、解答题4.如图,直角三角形ABC 的顶点坐标(2,0)A -,直角顶点(0,22)B -,顶点C 在x 轴上,点P 为线段OA 的中点. (1)求BC 边所在直线方程;(2)求三角形ABC 外接圆的方程;(3)若动圆N 过点P 且与ABC ∆的外接圆内切, 求动圆N 的圆心N 所在的曲线方程.5.设A 为椭圆221259x y +=上任一点,B 为圆22(1)1x y -+=上任一点,求AB 的最大值及最小值.O A 1A 2B 1 B 2xy (第176.在平面直角坐标系xOy 中,如图,已知椭圆E :22221(0)y x a b a b+=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B .设直线11A B 的倾斜角的正弦值为13,圆C 与以线段2OA 为直径的圆关于直线11A B 对称.(1)求椭圆E 的离心率;(2)判断直线11A B 与圆C 的位置关系,并说明理由; (3)若圆C 的面积为π,求圆C 的方程.7.在平面直角坐标系xoy 中,已知圆心在直线4y x =+上,半径为22的圆C经过坐标原点O ,椭圆()222109x y a a +=>与圆C 的一个交点到椭圆两焦点的距离之和为10。
解析几何综合问题圆与椭圆双曲线抛物线等三轮复习考前保温专题练习(四)带答案人教版新高考分类汇编
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( )A .22x +y +2x=0B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0(汇编福建理) 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的右准线与x 轴的交点为M ,以椭圆的长轴为直径作圆O ,过点M 引圆O 的切线,切点为N ,若△OMN 为等腰直角三角形,则椭圆的离心率为 .3.若抛物线212y x =与圆222210x y ax a +-+-=有且只有两个不同的公共点,则实数a 的取值范围为___错 评卷人得分 三、解答题4.(汇编年高考福建卷(文))如图,在抛物线2:4E y x =的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心OC 为半径作圆,设圆C 与准线l 的交于不同的两点,M N .(1)若点C 的纵坐标为2,求MN ;(2)若2AF AM AN =⋅,求圆C 的半径.5. 已知椭圆221:12x C y +=和圆222:1C x y +=,左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+ 求证:;AP OP⊥ (2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.6.如图,椭圆22143x y +=的左焦点为F ,上顶点为A , 过点A 作直线AF 的垂线分别交椭圆、x 轴于,B C 两点.⑴若AB BC λ=,求实数λ的值;[来源:Z|xx|]⑵设点P 为ACF △的外接圆上的任意一点,当PAB △的面积最大时,求点P 的坐标. (江苏省苏州市汇编年1月高三调研) (本小题满分16分)7.椭圆2222:1(0)x y C a b a b+=>>上顶点为A ,椭圆C 上两点,P Q 在x 轴上的射影分别为左焦点1F 和右焦点2F ,直线PQ 斜率为32,过点A 且与1AF 垂直的直线与x 轴交于点B ,1AF B ∆的外接圆为圆M .(1)求椭圆的离心率;(2)直线213404x y a ++=与圆M 相交于,E F 两点,且21 2ME MF a ⋅=-,求椭圆方程;(3)设点(0,3)N 在椭圆C 内部,若椭圆C 上的点到点N 的最远距离不大于62,求椭圆C 的短轴长的取值范围.4.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、选择题1.D 抛物线的焦点为)0,1(F ,又圆过原点,所以1=R ,方程为021)1(2222=+-⇔=+-y x x y x 。
解析几何综合问题圆与椭圆双曲线抛物线等二轮复习专题练习(四)带答案新高考高中数学
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) (A )12(B )1(C )2(D )4第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 的值为 .xNMOyA B l :x =t 3.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_____.(汇编全国理,16)评卷人得分三、解答题4.已知椭圆)0(12222>>=+b a by a x 的离心率为23,椭圆的左、右两个顶点分别为A ,B ,AB=4,直线(22)x t t =-<<与椭圆相交于M ,N 两点,经过三点A ,M ,N 的圆与经过三点B ,M ,N 的圆分别记为圆C1与圆C2. (1)求椭圆的方程;(2)求证:无论t 如何变化,圆C1与圆C2的圆心距是定值; (3)当t 变化时,求圆C1与圆C2的面积的和S 的最小值.5.已知椭圆2221(01)y x b b+=<<的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B .过F 、B 、C 作⊙P ,其中圆心P 的坐标为(m ,n ). (Ⅰ)当m +n >0时,求椭圆离心率的范围; (Ⅱ)直线AB 与⊙P 能否相切?证明你的结论.6.设椭圆)22(18:222>=+a y ax M 焦点坐标为F 1(-c,0), F 2(c,0),点Q 是椭圆短轴上的顶点,且满足122c QF QF +=. (I )求椭圆M 的方程;(II )设A,B 是圆与()12:22=-+y x N 与y 轴的交点,P 是椭圆M 上的任一点,求PA PB ⋅的最大值.(III )设P 0是椭圆M 上的一个顶点,EF 为圆()12:22=-+y x N 的任一条直径,求证00P E P F ⋅为定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分
一、选择题
1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于
(A )9π (B )8π (C )4π (D )π
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
2.设椭圆x 2a 2+y 2
b 2=1(a >b >0)的右准线与x 轴的交点为M ,以椭圆的长轴为直径作圆O ,过点M 引圆O 的切线,切点为N ,若△OMN 为等腰直角三角形,则椭圆的离心率为 .
3. 如果以原点为圆心的圆经过双曲线C :)0,0(12222>>=-b a b
y
a x 的顶点,并且
被双曲线的右准线分成弧长之比为3:1的两段弧,则双曲线的离心率为________ 评卷人
得分
三、解答题
4.已知抛物线:C 2
2(0)y px p =>的准线为l ,焦点为F .M 的圆心在x 轴的正
半轴上,且与y 轴相切.过原点O 作倾斜角为3
π
的直线n ,交l 于点A ,交M 于另一点B ,且2AO OB ==. (Ⅰ)求M 和抛物线C 的方程;
(Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅的最小值;
(Ⅲ)过l 上的动点Q 向
M 作切线,切点为,S T ,求证:直线ST 恒过一个定点,
并求该定点的坐标.
5.已知双曲线()22
2210,0x y a b a b
-=>>左右两焦点为12,F F ,P 是右支上一点,
O l
x
y
A B F · M
第17题
2121,PF F F OH PF ⊥⊥于H , 111,,92OH OF λλ⎡⎤
=∈⎢⎥⎣⎦
.
(1)当1
3
λ=
时,求双曲线的渐近线方程; (2)求双曲线的离心率e 的取值范围;
(3)当e 取最大值时,过12,,F F P 的圆的截y 轴的线段长为8,求该圆的方程. 17-1
6.椭圆22
22:1(0)x y C a b a b
+=>>上顶点为A ,椭圆C 上两点,P Q 在x 轴上的射影
分别为左焦点1F 和右焦点2F ,直线PQ 斜率为
3
2
,过点A 且与1AF 垂直的直线与x 轴交于点B ,1AF B ∆的外接圆为圆M .
(1)求椭圆的离心率; (2)直线213404x y a ++=与圆M 相交于,E F 两点,且21
2
ME MF a ⋅=-,求椭圆方程;
(3)设点(0,3)N 在椭圆C 内部,若椭圆C 上的点到点N 的最远距离不大于
62,求椭圆C 的短轴长的取值范围.
4.
7. 已知椭圆x 2+22
b y =1(0<b<1)的左焦点为F ,左、右顶点分别为A 、C ,上顶点
为B.过F 、B 、C 三点作圆P ,其中圆心P 的坐标为(m ,n). (1)当m+n>0时,求椭圆离心率的取值范围;
(2)直线AB 与圆P 能否相切?证明你的结论.
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.B
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
2. 3.
;2
评卷人
得分
三、解答题
4.解:(Ⅰ)因为
1
cos602122
p OA =⋅=⨯=,即2p =,所以抛物线C 的方程为24y x =……… 2分
设
M 的半径为r ,则1
22cos 60
OB r =
⋅=,所以M 的方程为
22(2)4x y -+=……………… 5分
(Ⅱ)设(,)(0)P x y x ≥,则
(2,)(1,)PM PF x y x y ⋅=----=222322x x y x x -++=++……8分
所以当0x =时, PM PF ⋅有最小值为2 …………………………………10分
(Ⅲ)以点Q 这圆心,QS 为半径作
Q ,则线段ST 即为Q 与M 的公共
弦………… 11分
设点(1,)Q t -,则2
2
2
45QS QM t =-=+,所以
Q 的方程为
222(1)()5x y t t ++-=+…13分
从而直线QS 的方程为320x ty --=
(*)………………………………………………………………14分
因为230
x y ⎧=⎪⎨⎪=⎩一定是方程(*)的解,
所以直线QS 恒过一个定点,且该定点坐标为2
(,0)3
……………16分
5.由相似三角形知,
1
21
OF OH PF PF =,22
2b a
b a a
λ=+
,
∴()2
2
2
2
2
2,21a b b a b λλλλ+==- ,2221b a λ
λ
=-.
(1)当1
3λ=时,221b a =,∴,a b y x ==±.
(2)()222
22211211111c b e a a λλλλ
--⎡⎤⎣⎦==+=+
=+--
=
221111λλ-=--
--,在11,92⎡⎤
⎢⎥⎣⎦
上单调递增函数. ∴12λ=
时,2e 最大3,19λ=时,2
e 最小54
, ∴
25
34
e ≤≤,∴532e ≤≤. (3)当3e =时,
3c
a
=,∴3c =,∴222b a =. ∵212PF F F ⊥,∴1PF 是圆的直径,圆心是1PF 的中点, ∴在y 轴上截得的弦长就是直径,∴1PF =8.
又22
12224b a PF a a a a a
=+=+=,∴48,2,23,22a a c b ====.
∴2224b PF a a
===,圆心()0,2C ,半径为4,()2
2216x y +-=. 6.(1)由条件可知⎪⎪⎭⎫ ⎝
⎛--a
b c P 2
,,⎪⎪⎭
⎫
⎝⎛a b c Q 2, 因为23
=
PQ k ,所以得:=e 12
(2)由(1)可知,c b c a 3,2==,所以,()
()()0,3,0,,3,01c B c F c A -,从而()0,c M 半径为a ,因为21
2
ME MF a ⋅=-,所以︒=∠120EMF ,可得:M 到直线距离为2a
从而,求出2=c ,所以椭圆方程为:
22
11612
x y +=. (3)因为点N 在椭圆内部,所以b>3 设椭圆上任意一点为()y x K ,,则()()
2
2
22263≤-+=y x KN
由条件可以整理得:018941822≥+-+b y y 对任意[]()3,>-∈b b b y 恒成立,
所以有:()()⎪⎩⎪⎨⎧≥+--+--≤-0189418922b b b b 或者()()⎪⎩⎪⎨⎧≥+--+-->-0
1894918992
2b b
解之得: 2∈b (6,1226]-. 7.。