三角形的边角与尺规作图

合集下载

三角形全等的判定ASA-AAS及尺规作图五种基本作

三角形全等的判定ASA-AAS及尺规作图五种基本作

以上内容是基于给定的大纲和指令进行的扩 展,但请注意,由于缺乏具体细节和背景信 息,某些描述可能不够精确或全面。如有需 要,请进一步补充和修正。
04
asa-aas在实际问题中的 应用
在几何证明题中的应用
在几何证明题中,asa-aas判定定理常常用于证明两个三角形全等。通过比较两 个三角形的两边和夹角,如果满足条件,则两个三角形全等,从而可以得出其他 相关结论。
asa-aas的发展方向
拓展适用范围
实际应用研究
研究如何将ASA-AAS判定应用于更广 泛的情况,例如处理只有一边和两个 角的情况或者只有两边和夹角的情况。
研究如何将ASA-AAS判定应用于解决 实际问题,例如几何证明、建筑设计、 工程测量等领域。
引入其他判定方法
研究如何将其他三角形全等判定方法 (如SAS、SSS、HL等)与ASA-AAS 判定相结合,以拓展其应用范围。
经过一点做已知直线的垂线
总结词
垂线的作法
详细描述
在给定的直线上选择一个点,然后使 用圆规在该点上画圆,与直线相交于 两点。连接这两点即可得到经过该点 的垂线。
作已知角的角平分线
总结词
角平分线的作法
详细描述
在给定的角内,使用圆规以角的顶点为圆心画圆,与角的两 边相交于两点。连接这两点即可得到该角的角平分线。
Hale Waihona Puke VS应用在尺规作图中,可以利用asa-aas判定三 角形全等来确定未知点的位置。例如,已 知一个三角形的两个角和一边,可以通过 asa-aas判定另一个三角形与之全等,从 而确定未知点的位置。
利用asa-aas解决实际问题
• 实例:在建筑设计中,常常需要确定某一点的位置使得该点到 两个已知点的角度相等。通过asa-aas判定定理,可以确定未知 点的位置,从而满足建筑设计的需求。

三角形的尺规作图

三角形的尺规作图

三角形的尺规作图
06
应用
在几何问题中的应用
确定三角形形状
解决几何问题
通过尺规作图,可以确定给定条件的 三角形形状,如等腰三角形、直角三 角形等。
通过三角形的尺规作图,可以解决各 种几何问题,如求三角形面积、证明 线段相等或垂直等。
证明几何定理
利用三角形的尺规作图,可以证明几 何定理,如塞瓦定理、梅涅劳斯定理 等。
在奥林匹克数学竞赛中,三角形的尺规作图是常用的解题技巧之 一,用于解决几何问题。
数学奥林匹克国家队选拔赛
在数学奥林匹克国家队选拔赛中,三角形的尺规作图也是重要的考 察内容之一。
国际数学奥林匹克竞赛
在国际数学奥林匹克竞赛中,三角形的尺规作图也是选手必须掌握 的基本技能之一。
THANKS.
三角形的尺规作图
汇报人: 2024-01-02
目录
• 尺规作图的基本知识 • 三角形的性质和分类 • 三角形的尺规作图方法 • 特殊三角形的尺规作图 • 三角形的尺规作图技巧 • 三角形的尺规作图应用
尺规作图的基本知
01

尺规作图定义
尺规作图
使用无刻度的直尺和圆规进行图 形构造的方法。
限制条件
现代应用
尺规作图在几何学、工程 制图等领域有广泛的应用 。
02
三角形的性质和分

三角形的基本性质
三角形的不变形性
三角形的三边长度和三个 角的大小在尺规作图过程 中保持不变。
三角形的稳定性
三角形是一种稳定的几何 图形,不易发生形变。
三角形内角和定理
三角形的三个内角之和等 于180度。
三角形的边和角
直角三角形
总结词
直角三角形是一种有一个角为直角的三角形,其作图方法需要利用勾股定理。

《三角形的尺规作图》

《三角形的尺规作图》
7. 连接AE、AF、BF,则三角形AEF即为所求。
04
已知一角及两边长度作三 角形
已知一角及两边长度作三角形的方法
确定已知角
首先确定一个已知角,这 个角的大小不能超过180 度。
确定已知两边
确定两条已知的边长,这 两条边必须能够与已知角 形成一个三角形。
使用尺规作图
使用尺子和圆规,首先绘 制已知角,然后根据已知 两边,分别绘制两条线段 ,形成一个三角形。
使用尺子和圆规,首先绘制出 30度的角,然后分别绘制两条
线段,形成三角形。
05
复杂三角形的尺规作图
已知两边及夹角,作一个等腰三角形
总结词
使用尺规作图,可以根据已知两边及夹角 ,作一个等腰三角形。
VS
详细描述
首先,使用圆规以已知夹角的一边为半径 ,以夹角的顶点为圆心画弧,与已知的另 一边相交于两点。然后,使用直尺将两点 连接,从而得到等腰三角形的底边。最后 ,使用圆规以等腰三角形的底边为半径, 以底边的两个端点为圆心分别画弧,相交 于三角形的顶点,从而完成三角形的作图 。
第二步
以A点为圆心,以$BC$为半径画弧线,与 AB和AC两侧的延长线分别相交于D和E两 点。
第四步
以$AO$为半径,分别以$B$和$C$为圆心 画弧线,两段弧线在BC的同侧交于一点, 记作$F$。
第三步
连接$DC$和$EB$,得到的两条线段相交 于点$O$。
证明所作三角形为唯一的方法
• 根据圆的唯一性定理,以已知边长和夹角可以唯一确定一个圆。因此,已知两边及夹角作三角形的方法是唯一的。
已知一边及邻角,作一个直角三角形
总结词
通过已知一边及邻角,可以尺规作图得到一个直角三 角形。
详细描述

《三角形的尺规作图》PPT教学课件

《三角形的尺规作图》PPT教学课件

(来自《点拨》)
知2-练
1 已知:线段a,求作△ABC,使AB=BC=AC=a.
(来自《教材》)
2 利用基本作图方法,不能作出唯一三角形的是( )
A.已知两边及其夹角
B.已知两角及其夹边
C.已知两边及一边的对角
D.已知三边
(来自《典中点》)
知2-练
3 根据下列已知条件,能唯一画出△ABC的是( ) A.∠A=36°,∠B=45°,AB=4 B.AB=4,BC=3,∠A=30° C.AB=3,BC=4,CA=1 D.∠C=90°,AB=6
知1-练
知识点 2 用尺规作三角形
知2-讲
例 2 已知三边,用尺规作三角形.
如图,已知线段a,b,c.
求作:△ABC,使AB=c,BC=a,AC=b.
分析:由作一条线段等于已知线段,能够作出边AB,即A,
B两点确定. 而BC=a,AC=b.,故以点A为圆心,b为
半径画弧,以点B为圆心,a为半径画弧,两弧的交点
第十三章 全等三角形
三角形的尺规作图
-.
1 课堂讲解 2 课时流程
尺规作图 用尺规作பைடு நூலகம்角形
逐点 导讲练
课堂 小结
作业 提升
用直尺(没有刻度)和圆规作图,是一种具有特殊要 求的作图方法. 这种作图方法不必用具体数值,只按给 定图形进行再作图.这也是它与画图的区别所在.
知识点 1 尺规作图
知1-导
就是点C.
(来自《教材》)
作法:第一步:作线段AB等于c.
知2-讲
第二步:以点A为圆心,b为半径画弧.
知2-讲
第三步:以点B为圆心,a为半径画弧,两弧交于点C.
第四步:连接AC,BC,△ABC即为所求.

三角形的尺规作图课件

三角形的尺规作图课件
2.利用尺规不可作的直角三角形是 ( C ) A.已知斜边及一条直角边 B.已知两条直角边 C.已知两锐角 D.已知一锐角及一直角边
•三角形的尺规作图
•25
练习
3.以下列线段为边能作三角形的是 ( ) A.2厘米、3厘米、5厘米 B.4厘米、4厘米、9厘米 C.1厘米、2厘米、 3厘米 D.2厘米、3厘米、4厘米
同样是已知两边及 一角,为什么会出 现两个三角形呢?
你从中可以感悟到 什么?
△ABC和△ABC'就是所求作的三角形。
•三角形的尺规作图
•22
D
A cα BaC E
两边及夹角
CN
C' α
a
a
A
b BM
两边及一边的对角
感悟:当已知两边及夹角时可以确定一个三角形, 因此可以用来判定两个三角形全等;
而当已知两边及一边的对角时,会画出两个不同的 三角形,因此不能用来作为判别两个三角形全等的 条件。
作法
(1)作 DA F.
示范
D
A
F
D
(2)在射线AF上截取线段
AB=c;
F
A
B
(3)以B为顶点,以BA为一 边,作 ABE,BE交AD
D C
于点C,连接BC.则△ABC
就是所求作的三角形.
A
BF
•三角形的尺规作图
•10
将你所作的三角形与同伴作出的三角形进行比 较,它们全等吗?为什么?
还有没有其他 的作法?
•三角形的尺规作图
•26
回 顾 与 反 思
谈 谈

你获
本与
节感
课受

作业:习题3.9
•三角形的尺规作图

全等三角形尺规作图

全等三角形尺规作图

全等三角形尺规作图xx年xx月xx日CATALOGUE目录•全等三角形基本概念•全等三角形尺规作图基本法则•尺规作图的技巧和方法•尺规作图的实例分析•尺规作图的应用和意义01全等三角形基本概念两个三角形全等是指它们能够完全重合,即三个内角相等且三条边相等。

全等三角形的记号是“≌”,读作“全等形ABCD”或“三角形ABC全等于三角形DEF”。

全等三角形的对应边相等,对应角相等。

全等三角形的对应边上的高相等,对应边上的中线相等,对应角平分线相等。

SSS(Side-Side-Side):如果三角形的三条边相等,则它们全等。

AAS(Angle-Angle-Side):如果三角形的两个角相等且这两个角的夹边相等,则它们全等。

ASA(Angle-Side-Angle):如果三角形的两个角相等且其中一个角的对边相等,则它们全等。

SAS(Side-Angle-Side):如果三角形的两条边相等且这两条边的夹角相等,则它们全等。

全等三角形的判定方法02全等三角形尺规作图基本法则无刻度直尺只限制长度测量,无法进行面积、角度等测量。

圆规可以用来画圆和圆弧,也可以用来复制图形。

尺规作图的基本概念直接法通过圆规和无刻度直尺,直接画出全等三角形。

间接法通过画出一个三角形,再使用圆规和无刻度直尺,间接画出全等三角形。

全等三角形的尺规作图方法画出三角形使用圆规,以点A为圆心,以AB为半径画圆弧,得到点C;再以点B为圆心,以AB为半径画圆弧,得到点D;连接CD得到三角形ABC。

确定两个已知点确定两个已知点A和B,并连接两点得到线段AB。

判断全等通过比较AC和BC的长度,可以判断三角形ABC和三角形DEF是否全等。

作图步骤03尺规作图的技巧和方法1作图技巧23明确要画的图形,了解所需条件和限制条件。

确定作图目标根据已知条件逐步推导,按照顺序将图形画出来。

画图步骤检查画出的图形是否符合题目要求,确保准确性。

检验作图结果根据等边三角形的性质,通过平分已知角度或边长即可得到三个等边三角形。

《用尺规作三角形》三角形

《用尺规作三角形》三角形

感谢您的观看
THANKS
连接两个顶点,完成作图
总结词
连接两个顶点是完成作图的关键步骤。
VS
详细描述
最后一步是将两个顶点连接起来,形成一 个完整的直角三角形。可以使用直尺或者 曲线尺来完成这一步。在连接的过程中需 要注意线条的平直和光滑,以保证所画的 三角形是准确的。
05
用尺规作钝角三角形的步 骤
确定钝角三角形的两个钝角
连接两个顶点,完成作图
总结词
连接顶点是完成作图的最后一步。
详细描述
最后,使用直尺和圆规,连接两个顶点,完成三角形的 作图。在连接过程中,需要保证线条的平直和长度相等 ,以确保得到的三角形是准确的。
06
用尺规作三角形时常见错 误与注意事项
作图时未使用尺规导致误差过大
总结词
不使用尺规进行作图,会导致线条的长度、角度等出 现较大的误差,影响三角形的准确性。
详细描述
在使用尺规进行作图时,应保持工具的平整和准确, 避免使用有弯曲或不直的尺子,以免影响作图的准确 性。同时,要确保使用的圆规或直尺等工具的刻度准 确,以避免误差过大。
作图时未经过顶点连接导致图形不完整
总结词
未经过顶点连接导致图形不完整。
详细描述
在用尺规作三角形时,需要将顶点连接起来,形成完整 的三角形。如果没有经过顶点连接,则无法形成一个完 整的三角形,也无法满足题目的要求。因此,需要注意 在作图时按照规定的步骤进行,确保图形完整。
连接三个顶点,完成作图
使用直尺或卷尺,连接三个顶点A、B、C。
01
02
确保三条边的长度相等,即AB=BC=CA。
完成作图,得到等边三角形ABC。
03
04
注意事项

《三角形的尺规作图》PPT赏析

《三角形的尺规作图》PPT赏析
B
A
CD
E
A.2个 B.4个 C.6个 D.1个
3.已知线段b,∠β,如图所示. 求作:△ABC,使得BC=b,∠B=∠C=∠β.
b
β
作法: (1)作线段BC=b; (2)以B为顶点,射线BC为一边,作∠MBC=∠β;
(3)以C为顶点,射线CB为一边,在BC同侧作∠NCB=∠β; 射线BM,CN交于点A,则△ABC就是所求作的△ABC.
已知三角形的三边 求作三角形
设置疑问 作法示范
A
已知:线段a,b,c
a b c
求作:△ABC,使BC=a,AC=b,AB=c
作法
(1)做线段BC=a, (2)以C为圆心, b为半径画弧
(3)以B为圆心, C为半径画弧
两弧相交于点A
B
C
M (4)连接AB,AC
则△ABC为所求作的三角形
已知三角形的两边及其夹 角,求作三角形
作法:
(1)作∠A,使∠A=∠α;
(2)在∠A的一边上截取AB,使AB=a; (3)以点B为圆心,线段b为半径画弧,弧与∠A的另一
边有两个交点,即图中的C,C',分别连接BC,BC',得
到△ABC和△ABC',它们都是所求作的三角形. B
a
b
b
A
α
C'
C
例2 已知:线段a,b,c,如图所示. 求作:△ABC,使得AB=a,AC=b且BC边上的中线AD=c.
第十三章 全等三角形
三角形的尺规作图
学习目标
1.了解尺规作图的概念,会用尺规作图法作线段和角. 2.熟悉尺规作图的步骤并能熟练运用作图语言. 3.以三角形全等的判定方法为基础,利用尺规作三角形.(重点)

7全等三角形的尺规作图

7全等三角形的尺规作图

第7讲三角形的尺规作图一、教学目标理解尺规作图的含义,掌握尺规作图的步骤。

二、知识点梳理1、尺规作图定义:只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图。

注意:尺规作图中的直尺没有刻度。

2、已知三边作三角形已知三边求作三角形是利用三角形全等的条件“边边边”来作图的,具体作图的方法、步骤、图形如下:已知:线段a,b,c求作:△ABC,使AB=c,BC=a,AC=b作法与示范:(1)作线段AB=c(2)以点A为圆心,b为半径画弧(3)以点B为圆心,a为半径画弧,两弧交于点C(4)连接AC,BC,△ABC即为所求3、已知两边及其夹角作三角形已知两边及其夹角作三角形是利用三角形全等的条件“边角边”来作图的,具体作图的方法、步骤、图形如下:已知:线段a,b,∠α求作:△ABC,使∠B=∠α,BC=a,BA=b作法与示范:(1)作∠MBN=∠α(2)在射线BM,BN上分别截取线段BC=a,BA=b(3)连接AC,则△ABC为所求作的三角形4、已知两角及其夹边作三角形已知两角及其夹边求作三角形是利用三角形全等的条件“角边角”来作图的,具体作图的方法、步骤、图形如下:已知:∠α,∠β,线段a求作:△ABC,使∠BAC=∠α,∠ABC=∠β,AB=a作法与示范:(1)作线段AB=a(2)在AB同侧,作∠DAB=∠α,∠EBA=∠β,AD与BE相交于点C,则△ABC为所求作的三角形三、典型例题例1 下列作图属于尺规作图的是()A、用量角器画出∠AOB的平分线B、用圆规和直尺作∠AOB等于已知的∠αC、用刻度尺画线段AB=3 cmD、用三角板作直线AB的平分线例2 如图13-4-1,已知:线段a、b。

求作:△ABC,使AB=2a,AC=b,BC=a。

例3 如图13-4-3,已知:线段m,n,∠α。

求作:△ABC,使AB=2m,AC=2n,∠A=∠α。

例4 如图13-4-5,已知:线段a和∠α。

作三角形尺规作图课件

作三角形尺规作图课件

对于特定类型的三角形,需要考虑特 殊情况的处理方法,如等腰三角形的 底角相等。
选择合适的已知条件
根据目标和限制条件,选择最少的已 知条件进行作图,提高作图效率和精 度。
如何利用尺规作图解决实际问题
分析实际问题
对实际问题进行深入分析,明确需要解决的几何问题。
转化为尺规作图问题
将实际问题转化为尺规作图问题,选择合适的已知条件和目标图形 。
详细描述
首先,根据给定的角度大小,利用尺 规作一个圆弧。然后,在该圆弧上选 择两个对称的点作为顶点,连接这两 个顶点与给定角的顶点,即可完成等 腰三角形的作图。
03
三角形的尺规作图技巧
如何选择合适的已知条件进行作图
确定作图目标
考虑特殊情况
明确需要完成的三角形类型(等边、 等腰、直角等)和已知条件(角度、 边长等)。
已知图形
在尺规作图中,已知的图形作为作图的起 始点。
尺规作图的历史与发展
古典尺规作图
古希腊数学家开始研究尺 规作图,探索可作出的图
形和不可作出的图形。
发展历程
随着数学的发展,尺规作 图的理论不断完善,可作 出的图形种类不断增加。
现代应用
尺规作图在现代数学、工 程和计算机图形学等领域
有广泛的应用。
尺规作图的基本原则
已知两角及其夹边作三角形
总结词
通过给定的两个角及其夹边,使用尺规作图可以作出唯一的三角形。
详细描述
首先,根据已知的两个角及其夹边,利用尺规作一个圆弧。然后,在该圆弧上选 择一个点作为顶点,连接该顶点与给定的角的夹边的两个端点,即可完成三角形 的作图。
已知一个角作等腰三角形
总结词
通过给定一个角的大小,使用尺规作 图可以作出等腰三角形。

全等三角形尺规作图ppt

全等三角形尺规作图ppt
使用直尺和圆规,根据SAS定理,作出两个全等三角形
已知三边作全等三角形
确定三条相等的边 使用直尺和圆规,根据SSS定理,作出两个全等三角形
04
全等三角形尺规作图的应用
证明定理“等腰三角形两腰上的中线相等”
总结词
全等三角形尺规作图可以用于证明等腰三角形两腰上的中线相等。
详细描述
首先,使用尺规作图方法作出等腰三角形ABC,其中AB=AC。然后,分别作出 AB和AC的中点D和E。通过全等三角形的性质,我们可以证明三角形DBE与三角 形DCF全等,因此可以得出DB=DC。
全等三角形的对应 边相等,对应角相 等。
02
尺规作图的基本知识
尺规作图的概念与规则
尺规作图定义
尺规作图是指使用无刻度的直尺和圆规进行图形绘制的方法。
规则与限制
在尺规作图中,只能使用圆规和直尺,且只限于绘制直线、线段、射线以及它们 所确定的图形,不能使用其他刻度或辅助工具。
圆规和直尺的使用方法
圆规的使用方法
证明定理“如果一个三角形一边上的中线等于这边的一半 ,那么这个三角形是直角三角形”
总结词
详细描述
全等三角形尺规作图可以用于证明如果一个三角形一 边上的中线等于这边的一半,那么这个三角形是直角 三角形。
首先,使用尺规作图方法作出一个三角形ABC,其中 AD是BC的中线,且AD等于BC的一半。然后,作出 AB的中点E和AC的中点F。通过全等三角形的性质, 我们可以证明三角形ADE与三角形ADF全等、三角形 ADB与三角形ADC全等,因此可以得出角B和角C都是 直角。因此,三角形ABC是一个直角三角形。
边边边定理
三边分别相等的两个三角形全等。
边角边定理
两边和它们的夹角分别相等的两个 三角形全等。

三角形的边角与尺规作图

三角形的边角与尺规作图

三角形的边角与尺规作图-CAL-FENGHAI.-(YICAI)-Company One1123ACBDEB12013年全国中考题汇编三角形的边角与尺规作图一、选择题1.(2013凉山)如图,330∠=,为了使白球反弹后能将黑球直接撞入袋中,击打白球时,1∠的度数为( )A.30B.45C.60D.752.(2013南充)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40°3.(2013毕节)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为()A.30°B.60°C.90°D.45°4.(2013重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm5.(2013郴州)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°6.(2013宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6B.2,2,4C.1,2,3D.2,3,47. (2013长沙)如果一个三角形的两边长分别为2和4,则第三边长可能是()B.48.(2013巴中)如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的9.( 2013郴州)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°10.(2013鞍山)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100° B.90° C.80° D.70°11.(2013鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°)A.12B.15C.12或15D.1813.(2013咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1C.2a﹣b=1D.2a+b=114.(2013遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.4二、填空题15.(2013湖北荆门)若等腰三角形的一个内角为50°,则它的顶角为___ ___16.(2013泰州)如图,△ABC中,AB+AC=6cm, BC的垂直平分线l与AC相交于点D,则△ABD的周长为_____cm.17.(2013江西)如图△ABC中,∠A=90°点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为18 .如图,在Rt△ABC中,∠A=900,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC 面积是19.(2013上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.若一个“特征三角形”的“特征角”为100°,则这个“特征三角形”的最小内角的度数为______20.(2013烟台)如图,△ABC中,AB=AC.∠BAC=54°,∠BAC的平分线与AB的垂直平分线相交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为________度.21.(2013咸宁)如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是.22.如图,在四边形ABCD中,∠A=450,直线l与边AB、AD分别相交于点M、N。

三角形三角形的尺规作图课件五四制

三角形三角形的尺规作图课件五四制

件五四制2023-11-04CATALOGUE 目录•尺规作图的基本知识•等腰三角形的尺规作图•直角三角形的尺规作图•等边三角形的尺规作图•四边形的尺规作图01尺规作图的基本知识尺规作图是指使用无刻度的直尺和圆规进行图形绘制的方法。

直尺用于画直线,圆规用于画圆或弧线。

尺规作图的精度取决于绘图者的技能和经验。

尺规作图的基本概念确定三角形的三条边或三个顶点的位置。

确定已知条件选择绘图方法遵循几何定理根据已知条件选择适当的绘图方法,如直接绘制、等分线段、平行线等。

在绘制过程中,遵循几何定理,如等腰三角形的等边对等角,直角三角形的勾股定理等。

03三角形的尺规作图原则0201确定三角形的三条边或三个顶点的位置。

确定已知条件根据已知条件选择适当的绘图方法,如直接绘制、等分线段、平行线等。

选择绘图方法使用直尺和圆规按照选择的绘图方法绘制三角形。

绘制图形检查所绘制的图形是否符合要求,如是否符合几何定理,是否满足题目要求等。

检查图形三角形的尺规作图步骤02等腰三角形的尺规作图定义有两边长度相等的三角形叫做等腰三角形。

性质等腰三角形两腰相等,两底角相等,顶角角平分线是底边的中垂线。

等腰三角形的定义和性质等腰三角形的尺规作图方法方法一根据等腰三角形的性质,通过作图工具画出两腰相等,底角相等的三角形。

方法二利用圆规和直尺,先画一条线段,然后分别以这条线段的两个端点为圆心,以大于这条线段的一半长度为半径画弧,得到两个交点,连接这两个交点得到等腰三角形的底边,再分别以这两个交点为圆心,以大于两交点距离的一半长度为半径画弧,得到两个交点,连接这两个交点得到等腰三角形的两腰。

示例一已知线段AB,分别以A和B为圆心,以大于AB的一半长度为半径画弧,得到两个交点C 和D,连接CD得到线段AC和BC,再分别以C和D为圆心,以大于CD的一半长度为半径画弧,得到两个交点E和F,连接EF得到线段CE和DF,则三角形ACE和三角形BDF为等腰三角形。

全等三角形尺规作图

全等三角形尺规作图

利用辅助线提高作图效率
中线、高线、角平分线
在作全等三角形时,可以利用中线、高线、角平分线等辅助线来帮助定位和构造三角形。这些辅助线能够提供更 多的几何信息,使得作图过程更为精准和高效。
平行线、垂线
在复杂情况下,可以通过构造平行线、垂线等辅助线,将问题分解为更简单的部分进行解决。这种方法能够大大 降低作图的难度,并提高作图的效率。
04
该方法基于全等三角形的对 应角相等性质,通过确保角 度和边长的一致,实现全等 三角形的作图。
05 全等三角形尺规作图的注 意事项与技巧
作图精度控制
使用精确的测量工具
在进行全等三角形尺规作图时,应使用精确的测量工具,如精确 的直尺和圆规,以确保测量的准确性。
细心操作
在作图过程中,要保持细心,避免因为粗心大意导致测量或绘制的 误差。
06 全等三角形尺规作图的应 用与拓展
在几何题中的应用
解题思路简化
全等三角形尺规作图可以用于证 明和求解几何题目,通过构建全 等三角形,可以将复杂的几何问 题转化为简单易解的等式关系。
图形性质研究
利用全等三角形尺规作图,可以 深入探究三角形的各种性质,如 角度、边长等,进一步理解几何
学的基本原理。
步骤一:已知一个三角形及 其各边长度。
步骤二:在作图区域选择一 点作为全等三角形的一个顶 点,并从该点出发绘制已知 三角形的一条边,使其长度 与已知三角形的对应边相等 。
步骤三:按照已知三角形的 边长和角度关系,依次绘制 全等三角形的其他两条边。
该方法利用了全等三角形的 对应边相等性质,通过确保 各边长度一致,从而达到作 图的目的。
实例3:利用对应角法作全等三角形
01
步骤一:已知一个三角形及 其各角度大小。

作三角形尺规作图课件

作三角形尺规作图课件
用尺规作图创造三角形艺 术
尺规作图是一种精确定位几何形状的技术,它可以创造出无限的三角形,我 们将带您探索它的世界。
什么是尺规作图?
简介
尺规作图是一种基于欧氏 几何原理和直尺、圆规这 两个简单工具,用于绘制 几何图形的技术。
历史
尺规作图自古希腊时期就 开始出现,发展到欧洲基本原理、规则、步骤、应用范围、注意事项以及 一些历史信息。掌握这些知识,您可以构造出精确的三角形和其他几何形状。 祝您好运!
2
接下来,需要画出角度,例如使用两
个直线和一个圆来确定角度。
3
确定基本要素
首先需要确定你需要构造的形状和已 知要素,例如边长或角度。
构造形状
最后,需要使用圆规和直尺,根据构 造的角度来构造形状。
尺规作图的应用范围
建筑设计
尺规作图可以用于建筑设计 和测量,例如计算角度和距 离。
工程测量
尺规作图也可以用于工程测 量,例如确定土地边界和水 坑的大小。
重要性
尺规作图是理解欧氏几何 基础的关键。此外,许多 几何学问题可以使用尺规 作图解决。
尺规作图的基本原理
直尺
尺子是尺规作图中的一种基本 工具,它可以用来画出直线。
圆规
圆规是另一种基本工具,可以 用来画出圆和弧线。
欧氏原理
欧氏几何原理是尺规作图的理 论基础,它描述了空间中点、 线和平面的关系。
尺规作图的三个基本规则
美术设计
尺规作图是创意作品中的一 部分。例如,它可以用于绘 画、插图及其他艺术形式。
尺规作图的注意事项
规则和限制
尽管尺规作图非常有用,但它有严格的限制,例如无法构造立方根和其他有些曲线。
不同解法
在某些情况下,可能存在多种解法。这些解法可能使用不同的步骤和规则。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12
3
A
C
B
D
E
B1
2013年全国中考题汇编
三角形的边角与尺规作图
一、选择题
1.(2013凉山)如图,330
∠=o,为了使白球反弹后能将黑球直接撞入袋中,击打白球时,1
∠的度数为( ) A.30o B.45o C.60o D.75o
2.(2013南充)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()
A.70°B.55°C.50°D.40°
3.(2013毕节)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为()
A.30°B.60°C.90°D.45°
4.(2013重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()
A.6cm B.4cm C.2cm D.1cm
5.(2013郴州)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°
6.(2013宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6B.2,2,4C.1,2,3D.2,3,4
7. (2013长沙)如果一个三角形的两边长分别为2和4,则第三边长可能是()
B.4
8.(2013巴中)如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的
9.( 2013郴州)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()
A.25°B.30°C.35°D.40°
A.100°B.90°C.80°D.70°
11.(2013鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()
A.165°B.120°C.150°D.135°
12.(2013•新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()
A.
12B.15C.12或15D.18
13.(2013咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交
x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两
弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()
A.a=b B.2a+b=﹣1C.2a﹣b=1D.2a+b=1
14.(2013遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.
A.1B.2C.3D.4
二、填空题
15.(2013湖北荆门)若等腰三角形的一个内角为50°,则它的顶角为___ ___
16.(2013泰州)如图,△ABC中,AB+AC=6cm, BC的垂直平分线l与AC相交于点D,则△ABD的周长为_____cm. 17.(2013江西)如图△ABC中,∠A=90°点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为
18 .如图,在Rt△ABC中,∠A=900,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC面积是19.(2013上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.若一个“特征三角形”的“特征角”为100°,则这个“特征三角形”的最小内角的度数为______ 20.(2013烟台)如图,△ABC中,AB=AC.∠BAC=54°,∠BAC的平分线与AB的垂直平分线相交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为________度.
21.(2013咸宁)如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是.
C
F
E
A
B D C
三、解答题
1.(2013兰州)如图,两条公路OA和OB相交于O点,在∠AOB的内部有
工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,
且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:写出结论)
2. (2013湖南邵阳)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F. (1)求证:CF∥AB;(2)求∠DFC的度数
3.(2013鞍山)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,
使BC=a,∠B=∠O,∠C=2∠B(写出作法,保留作图痕迹)
4.(2013四川乐山)如图,已知线段AB。

(1)用尺规作图的方法作出线段AB的垂直平分线l(保留作图痕迹,不要求写出作法);
(2)在(1)中所作的直线l上任意取两点M、N(线段AB的上方),连接AM、AN。

BM、BN。

求证:∠MAN=∠MBN。

5.(2013嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;
(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;
(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.
6.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的
平分线与BC边的垂直平分线的交点Q(保留作图痕迹).连结QD,在
新图形中,你发现了什么请写出一条.
7.(2013山西)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。

(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)。

(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由。

A
B
C
D
E
G F C ′
B ′
1
2
7.(2013浙江台州分)如图,在□ABCD 中,点E ,F 分别在边DC ,AB 上,DE=BF ,CD ∥AB ,把平行四边形沿直线EF 折叠,使得点B ,C 分别落在点B ′,C ′处,线段EC ′与线段AF 交于点G ,连接DG ,B ′G .
求证:(1)∠1=∠2; (2)DG=B ′G .。

相关文档
最新文档