自动控制原理第7章

合集下载

精品文档-自动控制原理(第二版)(薛安克)-第7章

精品文档-自动控制原理(第二版)(薛安克)-第7章

N
{ f [(n 1)T ] f (nT )} f (0) f [( N 1)T ]
第七章 数字控制系统分析基础 7.3.2 Z变换性质
Z变换有一些基本定理, 可以使Z变换的应用变得简单和 方便, 其内容在许多方面与拉氏变换基本定理有相似之处。
1.
设ci为常数, 如果有
n
f (t) ciFi (z) c1F1(z) c2F2 (z) cnFn (z) , 则
i 1
n
F (z) ciFi (z) c1F1(z) c2F2 (z) cnFn (z)
即式(7.18)成立。
第七章 数字控制系统分析基础
4. 初值定理 设lim F(z)存在,则
z
f (0) lim F(z) z
(7.19)
证明 根据Z变换定义有
F (z) f (nT )zn f (0) f (T )z1 f (2T )z2
n0
当z→∞时, 上式右边除第一项外, 其余各项均趋于0, 因此,
上式中e-Ts是s的超越函数, 为便于应用, 令变量
z eTs
将上式代入式(7.10), 则采样信号f*(t)的Z变换定义为
F (z) Z[ f *(t)] Z[ f (t)] f (nT )zn
(7.12)
n0
严格来说, Z变换只适合于离散函数。这就是说, Z变换
式只能表征连续函数在采样时刻的特性, 而不能反映在采样时刻
i 1
(7.15)
第七章 数字控制系统分析基础 2.
实数位移定理又称平移定理。实数位移的含义,是指整个 采样序列在时间轴上左右平移若干个采样周期, 其中向左平移为 超前, 向右平移为滞后。
Z[ f (t kT)] zk F (z)

自动控制原理第7章线性离散控制系统

自动控制原理第7章线性离散控制系统
差分方程描述了系统在离散时间点的 行为,通过求解差分方程,可以预测 系统未来的输出。
状态方程
状态方程是描述线性离散控制系统动态行为的数学模型,其形 式为 X(k+1) = A*X(k) + B*U(k),其中X(k)表示在时刻k的系统 状态向量,U(k)表示在时刻k的控制输入向量,A和B是系统矩 阵。
自动控制原理第7章 线性离散控制系统

目录
CONTENTS
• 引言 • 线性离散控制系统的数学模型 • 线性离散控制系统的稳定性分析 • 线性离散控制系统的性能分析 • 线性离散控制系统的设计方法 • 线性离散控制系统的应用案例
01
引言
线性离散控制系统的定义与特点
定义
线性离散控制系统是指系统的动态行为由差分方程或离散状态方程描述的一类控制系统。
适性。
常见的智能家居控制系统包括智 能照明、智能安防、智能环境监
测等。
案例三:工业自动化控制系统设计
工业自动化控制系统是线性离散 控制系统的另一个重要应用领域, 主要用于实现生产过程的自动化
和智能化。
工业自动化控制系统通常采用分 布式控制结构,通过各种传感器、 执行器和主控制器实现对生产设
备的监测和控制。
离散控制系统的稳定性判据
劳斯-赫尔维茨稳定性判据
通过计算离散控制系统的传递函数的极点和零点,判断系统的稳定性。如果所有极点都位于复平面的左半部分,则系 统稳定;否则系统不稳定。
奈奎斯特稳定性判据
通过分析离散控制系统的频率响应,判断系统的稳定性。如果频率响应的相位曲线在-π~π范围内,则系统稳定;否则系 统不稳定。
系统实现
将设计好的控制器应用于实际系统中,并进 行实验验证。
离散控制系统设计的常用方法

自动控制原理第7章_非线性控制系统

自动控制原理第7章_非线性控制系统

7.2 相平面法
1. 基本概念 2. 相平面图的绘制 3. 线性系统的相轨迹 4. 非线性系统的相平面分析
7.2 相平面法
1. 基本概念 相平面法是一种求解二阶常微分方程的图解方法。 1) 相平面图 f ( x, x ) 0 x 二阶系统的数学描述 ,得下列一阶微分方程组 设x1=x,x2= x

非线性系统一般理解为非线性微分方程所描述的
系统。 线性系统的本质特征是叠加原理,因此非线性系 统也可以理解为不满足叠加原理的系统。

7.1 概述
2. 典型的非线性特性
1) 饱和特性
2) 死区特性
3) 间隙特性(滞环特性)
4) 变放大系数特性
5) 继电器特性
7.1 概述
1) 饱和特性
x(t) k 0 a e(t)
数学表达式
ke(t ) x(t ) ka signe(t )
1 signe(t ) 1 不定
e(t ) a e(t ) a
-a
符号函数(开关函数)
e(t ) 0 e(t ) 0 e(t ) 0
图 7.2 饱和特性
a – 线性域宽度 k – 线性域斜率
(d)半稳定极限环
(a) 可通过实验观察到。设计时应尽量减少极限环 的大小,以满足系统的稳态误差要求。
(b) 不能通过实验观察到。设计时应尽量增大极限 环的大小,以扩大系统的稳定域。
(c)、(d)不能通过实验观察到。(c)不稳定。(d)稳 定,但过渡过程时间将由于极限环的存在而增加。
7.2 相平面法
单输入-单输出的线性定常系 统
现代控制理论(20世纪50 年代后)
可以是比较复杂的系统

自动控制原理第7章

自动控制原理第7章

3.数字计算机已经作为控制仪表成为控制系统的一个组成部 分 由于计算机技术的飞速发展,作为构成控制系统的控制设备, 数字计算机已经被广泛的用于工业生产过程自动化中,用数字 计算机替代常规仪表完成控制器及其校正装置的功能。图7-2 所示为数字控制系统原理框图。
r(t) e(t) A/D e*(t)
u*(t)
r r r e r r T r 脉冲控制器 r 保持器 r c r
图7-1
典型采样系统结构图

e是连续的误差信号,经采样开关后,变成一组脉冲序列e, 脉冲控制器对e进行某种运算,产生控制信号脉冲序列u, 保持器将采样信号u变成模拟信号u,作用于被控对象G(s)。
2.被控对象存在的大延迟大惯性

工业自动控制系统中,有一类被控对象的惯 性非常大并具有滞后特性。尤其是电站的电 力生产过程,这种延迟和惯性显得更为严重。 对于这类被控对象,采用简单的连续控制系 统的设计方法,容易出现过调现象,往往很 难得到高质量的控制效果。离散控制系统的 合理应用可以较好地解决这一问题。
|E (j )|
|E *(j )| 1/T
|H(j )| 1
- m
0
m
t
- m 0 - s/2
m s/2
t
- s/2
0
s/2

图7-5单一频谱
图 7-6多频谱之和
图 7-7 理想滤波器的频率特性

如果加大采样周期T,采样角频率ω相应能够 的减小,采样频谱中的补分量相互交叠,致 使采样器输出的信号发生畸变,这时即使采 用理想滤波器(理想滤波器的频率特性如图77所示),也无法恢复原来连续信号的频谱, 因此,对采样周期T的设定有一个约束条件, 用于保证附加频谱不覆盖主频谱。所以如何 选择采样周期时离散控制系统设计过程中的 一个重要问题 。

自动控制原理第7章离散控制系统

自动控制原理第7章离散控制系统
差分方程描述了系统在离散时间点的行为,通过求解差分方程可 以预测系统未来的输出。
Z变换
01
Z变换是分析离散时间信号和系统 的有力工具,它将离散时间信号 或系统转化为复平面上的函数或 传递函数。
02
Z变换的基本思想是通过将离散时 间信号或系统进行无限次加权和 ,将其转化为一个复数域上的函 数或传递函数。
离散状态方程
离散状态方程是描述离散控制系统动 态行为的数学模型,它的一般形式为 $mathbf{dot{x}}(k) = Amathbf{x}(k) + Bu(k)$,其中 $mathbf{x}(k)$表示在时刻$k$的系 统状态向量,$u(k)$表示在时刻$k$ 的输入向量,$A$和$B$是系统的系 数矩阵。
稳态误差主要来源于系统本身的结构 和参数,以及外部干扰和测量噪声。
离散控制系统的动态响应分析
动态响应定义
动态响应是指系统在输入信号作 用下,系统输出信号随时间变化 的特性。
动态响应的描述方

动态响应可以通过系统的传递函 数、频率特性、根轨迹图等方式 进行描述。
优化动态响应的方

通过调整系统参数、改变系统结 构、引入反馈控制等方法,可以 优化系统的动态响应。
离散控制系统的仿真工具与实例
仿真工具介绍
离散控制系统的仿真工具用于模拟和测试系统的性能和稳定性。常见的仿真工具包括MATLAB/Simulink、 LabVIEW等。这些工具提供了丰富的数学函数库和图形化界面,方便用户进行系统建模和仿真。
仿真实例分析
通过具体的仿真实例,可以深入了解离散控制系统的性能和特点。例如,可以设计一个温度控制系统,通过调整 系统参数和控制算法,观察系统在不同工况下的响应特性和稳定性。通过对比不同方案,可以评估各种参数和控 制策略对系统性能的影响,为实际应用提供参考和依据。

自动控制原理第七章 采样控制系统

自动控制原理第七章 采样控制系统
s2 2
展开为部分分式,即
E ( s)
1 1 1 [ ] 2 j s j s j
求拉氏反变换得 e(t ) 1 [e jt e jt ] 2j 分别求各部分的Z变换,得 Z [e* (t )] 1 [ 化简后得
E( z) z sinT z 2 2 z cosT 1
e(t ) e(nT ) e(nT )(t nT ) e (nT ) (t nT ) 2 2! nT t (n 1)T
外推法: 用采样点数值外推求得采样点之间的数值.
只取第一项 ---- 零阶保持器. 只取前两项 ---- 一阶保持器.
e*(t)
一阶保持器比零阶保持器信号恢复更
自动控制原理
蒋大明
一.Z变换
1. Z变换定义:
Z e
TS
S
*
1 ln Z T
代入上式得:

E ( z) E ( s)
1 s ln z T
e( nT ) z
n 0

n
E ( z ) e(0) Z 0 e(T ) Z 1 e(2T ) Z 2
e(kT)表征采样脉冲的幅值,Z的幂次表征采样脉冲出现的时刻。
-at
(a >0)的Z变换。
e(nT) = e
-a nT
(n = 0, 1, …)
代入Z变换的定义式可得
E(z) = 1 + e
若|e
–aT
-aTz -1
+ e
-2aTz -2
+ e
-3aTz -3
+ …
z
-1|
< 1,该级数收敛,利用等比级数求和公式,其Z变换

自动控制原理与应用第7章 自动控制系统的校正

自动控制原理与应用第7章 自动控制系统的校正

综上所述:比例-微分校正将使系统的稳定性和快速性得到改善, 但抗高频干扰的能力明显下降。
7.2.3 比例-积分(PI)校正(串联相位滞后校正) 其传递函数为
Gc ( s ) K c ( i s 1) is
装置的可调参数为:比例系数Kc、积分时间常数 τi。装置的伯德图如图所示,其相位曲线为 0°→-90°间变化的曲线(故称相位滞后)。 如果系统的固有部分中不包含积分环节而 又希望实现无静差调节时,可在系统中串联比 例积分校正来实现。
G( s )
(1s 1)( 2 s 1) (1s 1)( 2 s 1) R1C2 s

(1s 1)( 2 s 1) (1s 1)( 2 s 1)
式中
1 R1C1 2 R2C2 1 2
伯德图
表7-2
PD调节器
常见有源校正装置
由以上分析可知,比例微分校正对系统的影响为: (1)比例微分校正装置具有使相位超前的作用,可以抵消系统中惯性环 节带来的相位滞后的影响,使系统的稳定性显著改善。 (2) 校正后系统对数幅频特性的穿越频率ωc增大,从而改善了系统的 快速性,使调整时间减少(ωc↑→ts↓)。 (3) 比例微分校正不直接影响系统的稳态误差。 (4) 由图中曲线Ⅱ可知,比例-微分校正使系统的高频增益增大,由于 很多干扰都是高频干扰,因此这种校正容易引入高频干扰。
7.1.2
系统校正的方式
工程实践中常用的校正方法,串联校正、反馈校正 和复合校正。
7.有源校正装置两类。
无源校正装置通常是由一些电阻和电容组成的两端口网络。根据它 们对系统频率特性相位的影响,又分为相位滞后校正,相位超前校正 和相位滞后-超前校正。表7-1为几种典型的无源校正装置及其传递函 数和对数频率特性(伯德图)。 无源校正装置线路简单、组合方便、无需外供电源,但本身没有增 益,只有衰减,且输入阻抗较低、输出阻抗较高,因此在实际应用时, 常常需要增加放大器或隔离放大器。本课程重点介绍有源校正装置.

自动控制原理胡寿松第七章解析

自动控制原理胡寿松第七章解析

1、线性定理 齐次性 Z [ae (t)] aE(z ) Z[e1 (t) e 2 (t)] E1 (z ) E 2 (z ) 叠加性 2、实数位移定理
Z[e(t- kT )] z -k E(z)
Z [e(t kT)] z k [E(z)- e(nT)z -n ]
n 0
k -1
z变换实际上是采样函数拉氏变换的变形,
因此又称为采样拉氏变换
z变换只适用于离散函数,或者说只能表征
连续函数在采样时刻的特性,而不能反映其 在采样时刻之间的特性。
24
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
25
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
二、Z变换的性质
0T
*
采样器可以用一个周期性闭合的采样开关S来表示。
理想采样开关S: T (t ) (t nT )
n 0

11
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
理想单位脉冲序列 采样过程可以看成是一个幅值调制过程。
12
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
1 jns t T ( t ) e T n -
1 jns t * 代入采样信号表达式:e ( t ) e( t ) T (t ) e( t )e T n
对采样信号表达式取拉氏变换: 1 E* (s) E(s jns ) T n 采样信号的付氏变换: 1 E* ( j ) E[j( ns )] T n
T (t)的付氏级数形式:
T (t)
n -
(t - nT) C e

自动控制原理第7章 离散控制系统

自动控制原理第7章 离散控制系统

b(t )
H (s)
图7.5 数字控制系统的简化框图
2019/2/19
7
数字控制系统较之一般的连续控制系统具有如下一 些优点: 能够保证足够的计算精度; 在数字控制系统中可以采用高精度检测元件和执 行元件,从而提高整个系统的精度; 数字信号或脉冲信号的抗干扰性能好,可以提高 系统的抗干扰能力; 可以采用分时控制方式,提高设备的利用率,并 且可以采用不同的控制规律进行控制; 可以实现一些模拟控制器难以实现的控制律,特 别对复杂的控制过程,如自适应控制、最优控制、 智能控制等,只有数字计算机才能完成。
2019/2/19
9
7.2.1 采样过程及其数学描述
将连续信号通过采样开关(或采样器)变换成离 散信号的过程称为采样过程。相邻两次采样的时间 间隔称为采样周期T。 采样频率:f s 1/ T 采样角频率: s 2 /T 采样可分为:
等速采样:采样开关以相同的采样周期T动作,又 称为周期采样 多速采样:系统中有n个采样开关分别按不同周期 动作 随机采样:采样开关动作是随机的 本章仅限于讨论等速同步采样过程。
j t xj ( ) xt () e d t
1 X( s ) Xs ( j k s) T k
*
2019/2/19
(7-7)
15
X ( j )
max
2max
(a)
o
max
图7.7 连续信号及离散信号的频谱
式中ω s=2π/T为采样频率,X(s)为x(t)的拉氏变 换。若X*(s)的极点全都位于s左平面,可令s=jω , 求得x*(t)的傅氏变换为
离散控制系统最常见形式是数字控制系统。图 7.4是数字控制系统的结构图。图中用于控制的计算 机D工作在离散状态,被控对象G(s)工作在模拟状态。

自动控制原理第七章非线性系统ppt课件

自动控制原理第七章非线性系统ppt课件

7.1.3 非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无 法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
4M
sin t
故理想继电器特性的描述函数为
N ( A)
Y1 A
1
4M
A
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
2.饱和特性
当输入为x(t)=Asinωt,且A大于线性区宽度a 时,
饱和特性的输出波形如图7-10所示。
y
x
N
M
k 0a
x
yy
0 ψ1
π

ωt
0 x
ψ1
π
A sin 1
x(t) Asint
则其输出一般为周期性的非正弦信号,可以展成傅氏级 数:
y(t ) A0 ( An cos nt Bn sin nt ) n1
若系统满足上述第二个条件,则有A0=0
An
1
2 y(t ) cos ntd t
0
Bn
1
2 y(t ) sin ntd t
0
由于在傅氏级数中n越大,谐波分量的频率越高,An,Bn

自动控制原理_第7章_1

自动控制原理_第7章_1

& e (t ) < 0 & e (t ) > 0
24
继电器饱 和输出
x (t )
b
a ma
0 b
ma
a
e (t )
继电器吸 上电压 继电器释 放电压
25
若 a = 0 , 则继电器的吸上电压与释放电压均为零, 称为理想继电器特性,如图:
x (t )
b
0
b
e (t )
26
若 m = 1, 则继电器的吸上电压与释放电压相等, 称为含死区无滞环继电器特性,如图:
20
7.2.1 饱和特性
x (t )
a
线性区宽度 线性区特性 的斜率
b
k
0
a
b
a
e (t )
ke (t ) x (t ) = kasigne (t )
e (t ) ≤ a
e (t ) > a
21
7.2.2 死区特性
x (t )
a
死区宽度 线性输出 的斜率
k
a
k
0
a
k
e (t )
0 x (t ) = k [ e (t ) asigne (t ) ]
ω G(s) = 2 2 s +ω
其极点位于复平面的虚轴上,这是临界稳定系统。 在一定的初始条件下,系统的输出为
y (t ) = Y sin ωt
系统的输出也是一种等幅振荡。
13
临界稳定线性系统 的等幅振荡输出
两者之间 完全不同!
非线性系统的 等幅振荡极限环
14
不同点 极限环自激振荡的幅值与初始条件无关; 而临界稳定线性系统的等幅振荡幅值由初始条件 决定。 临界稳定线性系统对于参数的变化十分敏感, 参数的微小变化可能导致收敛或不收敛; 而非线性系统的极限环不易受参数变化的影响。

自动控制原理第七章z变换

自动控制原理第七章z变换
解: f (kT) eakT k 0,1,2,
F (z) Z[eat ] eakT zk 1 eaT z1 k 0
e2aT z 2 e3aT z 3
1
z
1 eaT z 1
z eaT
7.1 z变换与反变换
1. z变换部分分式法 2. z变换留数法 3. z变换性质 4. z反变换方法 (部分分式、幂级数法、留数法)
注意:若分母和分子多项式的系数都是实数的话,那 么任何一个复数极点或复数零点,都分别伴有共扼复数 的极点或零点。
7.1.5、z反变换-部分分式法
当F(z)的极点全部是低阶极点,并且至少有一个零点 是在坐标原点(即bm=0)时,一般采用的反变换求 解步骤是,用z去除F(z)表达式的两端,然后将F(z)/z 展开成部分分式。展开后的F(z)/z,将是下列形式
s2 a2 s ja s ja
F(z)
1
2j
1
1 e jaT z 1
1
2j
1
1 e jaT z 1
z 1 sin aT 1 2z 1 cos aT z 2 ei cos i sin
7.1.2、 z变换-部分分式法
n
F(s)
Ai
i1 s si
例:已知函数f(t)的拉氏变换如下式所示,求f(t)的z变换。
Z[ f (k 1)] zF (z) zf (0)
Z[ f (k 2)] z2F (z) z2 f (0) zf (1)
Z[ f (k n)] znF (z) zn f (0) zn1 f (1) zn2 f (2) zf (n 1)
Z[ f (k n)] znF (z)
n
f (t) Aiesit i 1

自动控制原理第七章

自动控制原理第七章
基本思想 相轨迹的特点 相轨迹的绘制方法 线性系统的相平面图 非线性系统的相平面图
基本思想
ɺ x
x
相平面分析法是分析非线性系统性能的一种图 示方法。 示方法。而相轨迹和相平面图的绘制为该分析方法的前提 条件。 条件。
x 1 (t), 2 (t) x
相平面定义:由两个线性无关的状态变量 作为坐标的平面称 为相平面。通常采用位移和位移的变化率作为状态变量用于描述一、二 阶系统的运动特性。
ɺɺ = -f(x, x ) ɺ x ⇒ ɺ ɺɺ = d x x = − f(x, x ) ɺ ɺ x dx ⇒ ɺ ɺ dx f(x, x ) = − ɺ dx x
ɺ x
x
相轨迹的绘制方法
解析法
消除变量法 直接积分法
等倾线法绘制相轨迹思 ɺɺ + f(x,ɺ ) = 0 x x 令: ⇒ 路: ɺ dx f(x,ɺ ) x =− ɺ x dx
E 0
Im

Re
死区继电器的负倒描述函数曲线
Im
N(E) N(E)
4M = πE = 0
Δ2 1− E 2 (E ≤ Δ )
(E
≥ Δ)
∆ ∞
E Re

1 N(E)
= − 4M
πE
Δ2 1− E 2
(E
≥ Δ)
拐点参数:
E = 2 Δ 1 − N(E) E =
Y ϕ 非线性环节的描述函数 :N = 1 e j 1 = E
2 2 − A 1 + B 1 jtg 1 B 1 B A = 1+j 1 e E E E
A1
描述函数的自变量为输入正弦信号的幅值
求取描述函数应用举例

自动控制原理(第三版)第7章非线性控制系统(1)

自动控制原理(第三版)第7章非线性控制系统(1)
大连民族学院机电信息工程学院
自动控制原理
4)当非线性输入的信号为正弦作用时,由 于非线性其输出将不再是正弦信号,而包 含有各种谐波分量,发生非线性畸变。
大连民族学院机电信息工程学院
自动控制原理
5)混沌
大连民族学院机电信息工程学院
自动控制原理
非线性系统运动的特殊性
• 不满足叠加原理 — 线性系统理论原则上不能运用 (区别) • 稳定性问题 — 不仅与自身结构参数,且与输入, 初条件有关,平衡点可能不惟一,可以稳定且可以 在多个平衡点稳定,可能不稳定—发散、衰减等 nonlinear • 自振运动— 非线性系统特有的运动形式,产生自 持振荡 • 发生频率激变—频率响应的复杂性 — 跳频响应, 倍/分频响应,组合振荡
大连民族学院机电信息工程学院
自动控制原理
3、滞环(非单值特性)
) x 0 , 且y 0 k ( x a sgn x y =0 y x2 m sgn x
滞环特性会 使系统的相 角裕度减小, 动态性能恶 化,甚至产生 自持振荡。
x2
x2m
x2
x2m
a
0
x1
a
x2m
7.3 描述函数法 7.4 相平面法
7.5 Matlab 在本章中的应用
大连民族学院机电信息工程学院
自动控制原理
7.1 非线性控制系统概述
如果一个控制系统包含一个或一个以上具有非 线性特性的元件或环节,则此系统即为非线性系统。
• 前面研究的线性系统满足叠加性和齐次性; • 严格地说,由于控制元件或多或少地带有非线性特 性,所以实际的自动控制系统都是非线性系统; • 一些系统作为线性系统来分析: ①系统的非线性 不明显,可近似为线性系统。②某些系统的非线性 特性虽然较明显,但在某些条件下,可进行线性化 处理; • 但当系统的非线性特征明显且不能进行线性化处理 时,就必须采用非线性系统理论来分析。这类非线 大连民族学院机电信息工程学院 性称为本质非线性。

自动控制原理胡寿松--第7章

自动控制原理胡寿松--第7章
离散信号能无失真地恢复到原来的连续信号
采样周期的选取: 原则上采样周期的选取应该保证能够复现系统所能通过 的最高频率的信号,一般需要经过实验确定。对于伺服
系统一般认为频率超过c的信号将被滤除,因而一般选 择采样周期s 10c
信号的复现D/A转换
x (t)
T 2T 3T
解码,将数字信号折算成对应的电压或电流值 x(KT )
1- e-aT a(z - e-aT )
二.线性离散系统的闭环传函
• 在分析离散系统脉冲传递函数时,应注意在 闭环的各个通道以及环节之间是否有采样开关, 因为有、无采样开关所得的闭环脉冲传递函数是 不相同的。
试求右图所示系统的闭环传函
R(s) (s)
-
Y(s)
G1(s)
G2(s)
C* (s)
f () lim f (t) lim(z 1)F(z)
t
z1
(7) 卷积定理
若:Z[ f1(t)] F1(z), Z[ f2 (t)] F2 (z),

则 F1(z) F2 (z) Z[ f1(mT ) f2(kT mT )] m0
4. Z反变换
(1) 幂级数展开法
第七章 线性离散控制系统分析初步
•学习重点
了解线性离散系统的基本概念和基本定理,把握线性连 续系统与线性离散系统的区别与联系;
熟练掌握Z变换、Z变换的性质和Z反变换方法
了解脉冲传递函数的定义,熟练掌握开环与闭环系统脉 冲传递函数的计算方法;
掌握线性离散系统的时域分析方法
7.1 线性离散系统的基本概念
(2) 延迟定理 设t<0时f(t)=0,令Z[f(t)]=F(z),则
Z f (t nT) znF(z)

自动控制原理(Ⅱ)2014秋自控第七章4.2.7 第七章

自动控制原理(Ⅱ)2014秋自控第七章4.2.7 第七章
通常可认为,采样开关的闭合时间τ非常小,是 ms、μs级的,远小于采样周期T和系统连续部分的最大时间 常数。
分析时,可认为τ=0,这样的采样器可用理想采样 器来代替,且采样过程可看成是幅值调制过程。
c图所示为a图信号调制在b图载波上的结果。
第七章 线性离散系统的分析与校正
3. 香农采样定理
如果采样器的输入信号 具有有限带宽,并且有直
第七章 线性离散系统的分析与校正
7-1 离散系统的基本概念
连续系统: ①系统中所有信号都是时间的连续函数。 ②信号在全部时间上都是已知的。
离散(时间)系统 ①系统中至少一处信号是脉冲或数码。 ②那些信号只定义在离散时间上。
采样/脉冲控制系统: 系统中的离散信号是脉冲序列形式的离散系统。
数字/计算机控制系统 系统中的离散信号是数字序列形式的离散系统。
离散数字--解码--离散模拟--复现(保持器)--连续模拟
采样频率足够高时,连续模拟趋近于真正连续。 ③计算机的输出寄存器和解码网络相当于信号保持器。
第七章 线性离散系统的分析与校正
⑶数字控制系统的典型结构图
假定:
①A/D足够字长,量化单位q足够小,忽略幅值断续性。
②采样编码过程是瞬时完成的。
③可用理想脉冲幅值等效代替数字信号大小。
⑦若采样编码是瞬间完成,并用理想脉冲等效代替数字信号, 则数字信号可以看成脉冲信号, A/D转换器可用每隔T秒瞬时 闭合一次的理想采样开关S来表示。
第七章 线性离散系统的分析与校正
第七章 线性离散系统的分析与校正
⑵D/A转换器 ①将离散数字信号转换为连续模拟信号的装置。 ②D/A转换包括解码和复现两个过程。
第七章 线性离散系统的分析与校正
炉温 采样 控制 系统

自动控制原理:第7章 离散控制系统

自动控制原理:第7章 离散控制系统

式中δ(t–kT)为t=kT(k=0,1,2,∙∙∙)时刻具有单位强 度的理想脉冲。
2020/12/17
12
需要指出,具有无穷大幅值和持续时间无穷小 的理想单位脉冲只是数学上的假设,在实际物理系 统中是不存在的。因此,在实际应用中,对理想单 位脉冲(面积为1)来说,只有讨论其面积,或强度才 有意义。式(7-3)就是基于这种观点,从矩形脉冲及 理想脉冲的面积来考虑的。
动作
随机采样:采样开关动作是随机的
本章仅限于讨论等速同步采样过程。
2020/12/17
10
采样过程如图7.6所示。连续信号x(t)经过采 样开关转换成离散信号x*(t)。如果x*(t)的幅值经 整量化用数字(或数码)来表示,则x*(t)在幅值上 也是离散的。考虑到采样开关的闭合时间远小于采 样周期T和系统连续部分的最大时间常数,可认为 采样时间τ=0,x(t)在τ内变化很小,因此x*(t) 可用幅值为x(kT),宽度为τ的脉冲序列近似表示。
可以实现一些模拟控制器难以实现的控制律,特 别对复杂的控制过程,如自适应控制、最优控制、 智能控制等,只有数字计算机才能完成。
2020/12/17
8
7.2 采样过程与采样定理
离散系统的特点是:系统中一处或数处的信号 是脉冲序列或数字序列。为了将连续信号变换为离 散信号,需要使用A/D转换器(采样器);另一方面, 为了控制连续的被控对象,又需使用D/A转换器(保 持器)将离散信号转换为连续信号。因此,为了定量 地研究离散系统,有必要对信号的采样和恢复过程 进行描述。
H (s)
图7.5 数字控制系统的简化框图
2020/12/17
7
数字控制系统较之一般的连续控制系统具有如下一
些优点:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j
Nyquist围线和Nyquist图
j
S 平面
Im
F (s)平面
F(s)=1+G0 (s)
0

Nyqust 围线
0
1
Re
j
映射 围线
当n > m时(多数情况),当s从0到+ j∞变化 时, G0(s)趋于0, F(s) = 1+G0(s) 趋于实轴上的1
Nyquist围线和Nyquist图
上节课需注意的要点
1,相角条件是手工绘制根轨迹的依据

i 1 i j 1
m
n
G0 ( s) 1
j
j
180 k 360
0
0
8条规则的前5条是基础。
(1800根轨迹) (k>0)
-p1 2,除根轨迹的8条规则外, - p2 0 还需注意根轨迹在实轴上 的相交点必定垂直于实轴。 3,标准根轨迹反映k’从0到∞变化过程闭环极点的变化 ,必须用箭头标识,并以此分析系统动态性能和稳定性。
闭环传递函数分母
N 0 (s) D0 (s) N 0 (s) DC ( s) 1 G0 ( s) 1 D0 ( s) D0 ( s) D0 ( s) DC (s)为闭环特征多项式。 D0 ( s) 为开环特征多项式。
1+G0(s)的零点是系统特征方程的根,其极点是G0(s)极点。

绘制Nyquist图和应用稳定判据的示例 G ( s) 0
K s ( s 1) s(s 1) K 0

G0 ( j) 0 1800
T1T2 s 2 (T1 T2 )s 1 K 0
-1

k 0 Re Nyquist图
正频率
(2) 由Nyquist判据判断系统的稳定性(已知N,n求m)
N = 0(由Nyquist图) n = 0 (由G0(s)表达式)
由N = m - n,得 m = 0,故系统稳定。
②变化趋势
G0 ( j ) G0 ( j )
绘制Nyquist图和应用稳定判据的示例
单调递减变化
100 100 (1 0.8 2 ) j (0.1 3 1.7 ) G( j ) ( j 1)(0.5 j 1)(0.2 j 1) (1 2 )(1 0.25 2 )(1 0.04 2 )
0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -1 -0.5 0 Real Axis 0.5 1 1.5 2
(-1,j0)
s 1 G ( s) 5s 1
K ( K 0) 例4.4 G0 ( s) s ( s 1) 2 s sK 0 (1) 开环频率特性极坐标图。 ①特殊点 0 Im G ( j 0 ) 90 0 0 0
G0 ( j ) 从k到0,单调递减。
G0 ( j ) 从00到-1800,
单调递减。
G0 ( j ) tg 1T1 tg 1T2
绘制Nyquist图和应用稳定判据的示例 对比Routh判据 Im K G0 ( s) (T1s 1)(T2 s 1) 负频率 (T1s 1)(T2 s 1) K 0
在s 平面上封闭曲线C 域内共有n个极点和m个零点, 且封闭曲线C 不穿过F(s) 的任一个极点和零点。当s 顺 时针沿封闭曲线C 变化一周时,在F(s) 平面上对应的 映射封闭曲线CF 顺时针包围原点 N = m – n 周。
C j
S平面
CF

Im
F(s)平面
0

0
Re
Cauchy幅角原理
零点个数考虑重根数,N > 0 顺时针,N < 0逆时针。
G( j ) T2 j 1 T1 j 1
绘制Nyquist图和应用稳定判据的示例
T2 G ( j) 0 0 T1
G( j ) tg 1T2 j tg 1T1 j
G( j)
T2 从1到 T 1 1
G( j ) 00
G( j ) 00
Im
(因为N = m - n = 0 , 又 n = 0 , 故m = 0)
2,闭环系统稳定的充要条件是Nyquist图包围 (-1,j 0)点周数为N =-n。
(因为N = m - n = -n 所以 m = 0 )
推论:若Nyquist图顺时针包围(-1,j 0)点, 则系统一定不稳定。
(N = m - n , 若N≥ 1,n不会为负值,则必有m ≥1)
线性系统不产生新的频率成分,不同频率分 量的信号通过线性系统,只会改变幅值和相位。
频率特性测试 (ω 从0→∞)
sin t
G ( j )
G ( j ) sin[ t G ( j )]
非线性系统可能在输出信号中产生新的频率成分。
4.1 系统的频率特性
频域分析方法的优点
(1)系统频率特性的物理意义明确。 (2)可以通过实验方法得到频率特性。

G ( j ) G ( s ) s j
Laplace变换定义在复频域 内,其虚轴有频率的含义。
4.1 系统的频率特性 Y ( j ) 幅相频特性 G( j ) U ( j )
复变函数
幅频特性
相频特性
G( j )
Y ( j ) U ( j )
G( j ) Y ( j ) U ( j )
j
j

-z1 -3
-p2 -1
-p1
-4
-2
0
0
第4章 控制系统的频域分析
4.1 系统的频率特性
系统对不同频率信号的响应特性。
u(t)
U ( j )
G ( j )
y(t)
Y ( j )
Y ( j ) G( j ) U ( j )
j
信号
系统
信号
S平面
频率特性可以由传递函数得到
Nyquist围线和Nyquist图
1,设s平面上有沿虚轴由—j∞到+j∞方向的封闭 曲线。称其为Nyquist围线。 j S 平面 j 图中半圆弧位于复 平面上无穷远点,示 意围线在该点的变化。
0

Nyqust 围线
j
DC ( s) 2,设映射函数为 F ( s) 1 G0 ( s) D0 ( s) s平面上的Nyquist围线映射到F(s)平面上的 有向闭曲线称为Nyquist图。
C j
S平面
CF

Im F(s)平面
0

0
Re
在s平面上封闭曲线C域内有3个零点1个极 点,当s顺时针沿封闭曲线C变化一周时,封闭 曲线CF按顺时针方向包围原点 :
N m n 3 1 2
复变函数映射概念 s2 例: F (s) s 3 j

C1 -3 -2 0 S平面
( 1, j 0)

0
0 Re
100
Nyquist判据 N=2,n = 0 , N = m-n, 故m = 2。 k 不稳定
有两个极点在右半平面,系统不稳定。
k 可能稳定
绘制Nyquist图和应用稳定判据的示例 用matlab绘制Nyquist图 Nyquist Diagram
每一个ωi对应一个复 向量G0(jωi),其复数 值为失端点值。
0 1 2 3
G0 ( j ) G0 ( j 3 ) G0 ( j 0)
Re
G0 ( j2 )
G0 ( j1 )
全部复向量G0(jωi)的 失端轨迹形成Nyuist图
绘制Nyquist图和应用稳定判据的示例
0
T2 G( j) 从1到 1 T1
Im


T2 T1
0
0
1
Re
0
T2 T1
1
Re
绘制Nyquist图和应用稳定判据的示例 用matlab绘制Nyquist图
1 0.8 0.6 NyquistDiagram
G(s)
s 1 0.5s 1
ImaginaryAxis
K G0 ( j ) ①特殊点 (T1 j 1)(T2 j 1) 0 0 G0 ( j 0) K0 Im 0 G ( j ) 0 180 0
01800 k 0
0
0
②分析变化趋势
Re
ω 从0到∞变化
K G0 ( j ) T1 j 1 T2 j 1
Cauchy幅角原理
Im F(s)平面 CF1 0 Re

j C2 -3 -2 0
S平面
CF2
Im
F(s)平面

0
Re
Nyquist围线和Nyquist图
R(s) + G(s) H(s) Y(s)
以开环传递函 数G0(s),研究闭 环系统的稳定性。
闭环传递函数
G( s) G( s) M ( s) 1 G( s) H ( s) 1 G0 ( s)
绘制Nyquist图和应用稳定判据的示例
K ( K 0,T1 0,T2 0) 例4.1 G0 ( s) (T1s 1)(T2 s 1) (1)画系统的开环频 K G0 ( j ) 率特性极坐标图。 (T1 j 1)(T2 j 1)
Im
G0 ( j ) G0 ( j ) G0 ( j )
Im


0.1 1.7 0
3
7.9
( 1, j 0)

0
17
0 Re
100
与实轴有交点,为-7.9
绘制Nyquist图和应用稳定判据的示例
相关文档
最新文档